Datasets:

Modalities:
Image
ArXiv:
Libraries:
Datasets
License:
q-bench2 / README.md
zhangzicheng's picture
Update README.md
c766b14 verified
---
license: mit
---
## This is the benchmark dataset for ["A Benchmark for Multi-modal Foundation Models on Low-level Vision: from Single Images to Pairs"](https://arxiv.org/abs/2402.07116)
# The structure of the jsonl files is as follows:
1. q-bench2-a1-dev.jsonl (**with** *img_path*, *question*, *answer_candidates*, *correct_answer*)
2. q-bench2-a1-test.jsonl (**with** *img_path*, *question*, *answer_candidates*, **without** *correct_answer*)
3. q-bench2-a2.jsonl (**with** *img_path*, *empty response*)
# The img_path is organized as *prefix* + *img1* + \_cat\_ + *img2* + *.jpg*
For example, if the img_path is "llvisionqa_compare_dev\\\\00079.jpg_cat_09769.jpg.jpg", then the prefix is "llvisionqa_compare_dev", img1 is "00079.jpg", img2 is "09769.jpg".
You can use the function to get the image paths:
```
def get_img_names(img_path, prefix = "path_to_all_single_images"):
img_paths = img_path.split('\\')[1][:-4].split("_cat_")
img1_name = os.path.join(prefix,img_paths[0])
img2_name = os.path.join(prefix,img_paths[1])
return img1_name,img2_name
```
# The image file structure is:
1. all_single_images: all of the single images used, [Baiduyunpan download link](https://pan.baidu.com/s/1fr8A0sqDxWuznsZEC_bHrQ?pwd=tzp5)
2. llvisionqa_compare_dev: the concatenated images for the dev subset of the perception-compare task
3. llvisionqa_compare_test: the concatenated images for the test subset of the perception-compare task
4. lldescribe_compare: the concatenated images for the description-compare task
# Submission for test your own MLLM on q-bench2
1. Perception-compare task (a1): organize your jsonl file "q-bench2-a1-test_(YOUR_MLLM_NAME).jsonl" as the structure of the provided "q-bench2-a1-dev.jsonl"
2. Description-compare task (a2): simply complete the empty "response" of "q-bench2-a2.jsonl" file and rename into "q-bench2-a2_(YOUR_MLLM_NAME).jsonl"
Please contact any of the first authors to get the results of your MLLM with the submission files.
Zicheng Zhang, zzc1998@sjtu.edu.cn
Haoning Wu, haoning001@e.ntu.edu.sg