|
from PIL import Image, ImageDraw, ImageFont |
|
import torch |
|
from typing import Tuple, List, Dict, Union, Optional |
|
import torch.utils.data as data |
|
from tqdm import tqdm |
|
import copy |
|
|
|
|
|
_TYPING_BOX = Tuple[float, float, float, float] |
|
_TYPING_IMAGES = List[Dict[str, int]] |
|
_TYPING_ANNOTATIONS = List[Dict[str, Union[int, _TYPING_BOX]]] |
|
_TYPING_CATEGORIES = List[Dict[str, Union[int, str]]] |
|
_TYPING_JSON_COCO = Dict[ |
|
str, Union[_TYPING_IMAGES, _TYPING_ANNOTATIONS, _TYPING_CATEGORIES] |
|
] |
|
_TYPING_BOX = Tuple[float, float, float, float] |
|
_TYPING_SCORES = List[float] |
|
_TYPING_LABELS = List[int] |
|
_TYPING_BOXES = List[_TYPING_BOX] |
|
_TYPING_PRED_REF = Union[_TYPING_SCORES, _TYPING_LABELS, _TYPING_BOXES] |
|
_TYPING_PREDICTION = Dict[str, _TYPING_PRED_REF] |
|
|
|
_acc_box_format = ['xywh', 'xyx2y2'] |
|
|
|
def draw_rectangles( |
|
image: Image, |
|
boxes, |
|
box_format='xyx2y2', |
|
color_bbx=(255, 0, 0), |
|
color_txt=(255, 255, 255), |
|
thickness=1, |
|
labels=None, |
|
confidences=None, |
|
draw_confidence=True, |
|
): |
|
""" |
|
Draw rectangles around objects in an image. |
|
|
|
Args: |
|
image (Image): Image object to draw on. |
|
boxes (List[torch.Tensor]): List of bounding boxes in (xywh or xyx2y2) format. |
|
color_bbx (Tuple[int, int, int]): RGB color tuple for bounding box outlines. Default \ |
|
is (255, 0, 0) (red). |
|
color_txt (Tuple[int, int, int]): RGB color tuple for text. Default is \ |
|
(255, 255, 255) (white). |
|
thickness (int): Thickness of the bounding box outline. Default is 1. |
|
labels (List[str]): List of labels for each object. Default is None. |
|
confidences (List[float]): List of confidences for each object. Default is None. |
|
draw_confidence (bool): Whether to draw confidence values. Default is True. |
|
|
|
Returns: |
|
Image: Image with rectangles drawn around objects. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
assert box_format in _acc_box_format, "box_format must be {}".format(_acc_box_format) |
|
offset = 0.05 |
|
font = ImageFont.load_default() |
|
|
|
|
|
if boxes is not None: |
|
if isinstance(boxes, torch.Tensor): |
|
_boxes = copy.deepcopy(boxes).tolist() |
|
elif isinstance(boxes, list): |
|
_boxes = copy.deepcopy(boxes) |
|
else: |
|
_boxes = None |
|
|
|
if confidences is not None: |
|
if isinstance(confidences, torch.Tensor): |
|
_confidences = copy.deepcopy(confidences).tolist() |
|
elif isinstance(confidences, list): |
|
_confidences = copy.deepcopy(confidences) |
|
else: |
|
_confidences = None |
|
draw_confidence = False |
|
_confidences = ["" for i in _boxes] |
|
|
|
ret_image = image.copy() |
|
img_draw = ImageDraw.Draw(ret_image) |
|
for box, label, confidence in zip(_boxes, labels, _confidences): |
|
if box_format == "xywh": |
|
|
|
box[2] = box[0]+box[2] |
|
box[3] = box[1]+box[3] |
|
text = f"{label}" |
|
if draw_confidence: |
|
text += f" ({100*confidence:.2f}%)" |
|
text = " " + text + " " |
|
_, _, txt_w, txt_h = font.getbbox(text) |
|
offset_y = txt_h * offset |
|
x, y, _, _ = box |
|
box_txt = (x, y - txt_h - (2 * offset_y), x + txt_w, y) |
|
pos_text = (x, y - txt_h - (offset_y)) |
|
|
|
|
|
img_draw.rectangle(box, outline=color_bbx, width=thickness) |
|
|
|
img_draw.rectangle(box_txt, fill=color_bbx, width=thickness) |
|
|
|
img_draw.text(pos_text, text, fill=color_txt, anchor="ma", font=font) |
|
|
|
return ret_image |
|
|
|
def val_formatted_anns( |
|
image_id: int, objects: _TYPING_PREDICTION, feat_name: str = "category" |
|
) -> List[_TYPING_PREDICTION]: |
|
""" |
|
This function formats annotations the same way they are for training, without the need \ |
|
for data augmentation. |
|
|
|
Args: |
|
image_id (int): The id of the image. |
|
objects (_TYPING_PREDICTION): The dictionary containing object annotations. |
|
feat_name (str): The name of the feature containing the category id. |
|
Returns: |
|
List[Dict[str, Union[int, _TYPING_BOX]]]: List of dictionaries with formatted annotations. |
|
""" |
|
annotations = [] |
|
for i in range(0, len(objects["id"])): |
|
new_ann = { |
|
"id": objects["id"][i], |
|
"category_id": objects[feat_name][i], |
|
"iscrowd": objects["iscrowd"][i], |
|
"image_id": image_id, |
|
"area": objects["area"][i], |
|
"bbox": objects["bbox"][i], |
|
} |
|
annotations.append(new_ann) |
|
|
|
return annotations |
|
|
|
def create_json_COCO_format( |
|
dataset: data.Dataset, round_approx: Optional[int] = None |
|
) -> Tuple[Dict[int, int], _TYPING_JSON_COCO]: |
|
""" |
|
Function to create a JSON in COCO format. |
|
|
|
Args: |
|
dataset (Dataset): The dataset to be converted to COCO format. |
|
round_approx (Optional[int]): The number of decimal places to round the boxes. |
|
|
|
Returns: |
|
A tuple of a dictionary mapping image_id to index in dataset and a dictionary \ |
|
in COCO format. |
|
""" |
|
feature = dataset.features["objects"].feature |
|
|
|
|
|
for feat_name in ["category", "label"]: |
|
if feat_name in feature: |
|
break |
|
categories = feature[feat_name].names |
|
|
|
id2label = {index: x for index, x in enumerate(categories, start=0)} |
|
categories_json = [ |
|
{"supercategory": "none", "id": id, "name": id2label[id]} for id in id2label |
|
] |
|
|
|
output_json = {} |
|
output_json["images"] = [] |
|
output_json["annotations"] = [] |
|
|
|
|
|
ids_mapping = {} |
|
pbar = tqdm(dataset, desc="Collecting ground-truth annotations from dataset") |
|
for idx, example in enumerate(pbar): |
|
|
|
ids_mapping[example["image_id"]] = idx |
|
|
|
ann = val_formatted_anns(example["image_id"], example["objects"], feat_name) |
|
output_json["images"].append( |
|
{ |
|
"id": example["image_id"], |
|
"width": example["image"].width, |
|
"height": example["image"].height, |
|
} |
|
) |
|
if round_approx is not None: |
|
for annotation in ann: |
|
annotation["bbox"] = [round(val, round_approx) for val in annotation["bbox"]] |
|
|
|
output_json["annotations"].extend(ann) |
|
|
|
output_json["categories"] = categories_json |
|
|
|
return ids_mapping, output_json |
|
|