cub200 / cub200.py
leonleyang's picture
Create cub200.py
78ed321 verified
import datasets
from PIL import Image
import pandas as pd
from pathlib import Path
class CUB200(datasets.GeneratorBasedBuilder):
"""Caltech-UCSD Birds-200-2011 (CUB-200-2011) Dataset"""
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description="""The Caltech-UCSD Birds-200-2011 dataset consists of 11,788 images of 200 bird species.""",
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(names=self._labels())
}
),
supervised_keys=("image", "label"),
homepage="https://www.vision.caltech.edu/datasets/cub_200_2011/",
citation="""@techreport{WahCUB_200_2011,
Title = {The Caltech-UCSD Birds-200-2011 Dataset},
Author = {Wah, C. and Branson, S. and Welinder, P. and Perona, P. and Belongie, S.},
Year = {2011},
Institution = {California Institute of Technology},
Number = {CNS-TR-2011-001}}"""
)
def _split_generators(self, dl_manager):
# Download and extract in a single step
extracted_path = dl_manager.download_and_extract("https://data.caltech.edu/records/65de6-vp158/files/CUB_200_2011.tgz?download=1")
data_dir = Path(extracted_path) / "CUB_200_2011"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_dir": data_dir, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data_dir": data_dir, "split": "test"},
)
]
def _generate_examples(self, data_dir, split):
"""Generate examples from the extracted directory."""
# Paths to metadata files in the extracted directory
image_labels_path = data_dir / "image_class_labels.txt"
image_paths_path = data_dir / "images.txt"
train_test_split_path = data_dir / "train_test_split.txt"
# Load metadata
images_df = pd.read_csv(image_paths_path, sep='\s+', header=None, names=["image_id", "file_path"])
labels_df = pd.read_csv(image_labels_path, sep='\s+', header=None, names=["image_id", "label"])
split_df = pd.read_csv(train_test_split_path, sep='\s+', header=None, names=["image_id", "is_training"])
# Merge metadata into a single DataFrame
data_df = images_df.merge(labels_df, on="image_id").merge(split_df, on="image_id")
data_df["label"] -= 1 # Zero-index the labels
# Filter by the specified split
is_training_split = 1 if split == "train" else 0
split_data = data_df[data_df["is_training"] == is_training_split]
# Generate examples
for _, row in split_data.iterrows():
image_path = data_dir / "images" / row['file_path']
label = row["label"]
# Load the image
with open(image_path, "rb") as img_file:
image = Image.open(img_file).convert("RGB")
yield row["image_id"], {
"image": image,
"label": label,
}
@staticmethod
def _labels():
return [
"Black_footed_Albatross", "Laysan_Albatross", "Sooty_Albatross", "Groove_billed_Ani",
"Crested_Auklet", "Least_Auklet", "Parakeet_Auklet", "Rhinoceros_Auklet", "Brewer_Blackbird",
"Red_winged_Blackbird", "Rusty_Blackbird", "Yellow_headed_Blackbird", "Bobolink",
"Indigo_Bunting", "Lazuli_Bunting", "Painted_Bunting", "Cardinal", "Spotted_Catbird",
"Gray_Catbird", "Yellow_breasted_Chat", "Eastern_Towhee", "Chuck_will_Widow",
"Brandt_Cormorant", "Red_faced_Cormorant", "Pelagic_Cormorant", "Bronzed_Cowbird",
"Shiny_Cowbird", "Brown_Creeper", "American_Crow", "Fish_Crow", "Black_billed_Cuckoo",
"Mangrove_Cuckoo", "Yellow_billed_Cuckoo", "Gray_crowned_Rosy_Finch", "Purple_Finch",
"Northern_Flicker", "Acadian_Flycatcher", "Great_Crested_Flycatcher", "Least_Flycatcher",
"Olive_sided_Flycatcher", "Scissor_tailed_Flycatcher", "Vermilion_Flycatcher",
"Yellow_bellied_Flycatcher", "Frigatebird", "Northern_Fulmar", "Gadwall", "American_Goldfinch",
"European_Goldfinch", "Boat_tailed_Grackle", "Eared_Grebe", "Horned_Grebe",
"Pied_billed_Grebe", "Western_Grebe", "Blue_Grosbeak", "Evening_Grosbeak", "Pine_Grosbeak",
"Rose_breasted_Grosbeak", "Pigeon_Guillemot", "California_Gull", "Glaucous_winged_Gull",
"Heermann_Gull", "Herring_Gull", "Ivory_Gull", "Ring_billed_Gull", "Slaty_backed_Gull",
"Western_Gull", "Anna_Hummingbird", "Ruby_throated_Hummingbird", "Rufous_Hummingbird",
"Green_Violetear", "Long_tailed_Jaeger", "Pomarine_Jaeger", "Blue_Jay", "Florida_Jay",
"Green_Jay", "Dark_eyed_Junco", "Tropical_Kingbird", "Gray_Kingbird", "Belted_Kingfisher",
"Green_Kingfisher", "Pied_Kingfisher", "Ringed_Kingfisher", "White_breasted_Kingfisher",
"Red_legged_Kittiwake", "Horned_Lark", "Pacific_Loon", "Mallard", "Western_Meadowlark",
"Hooded_Merganser", "Red_breasted_Merganser", "Mockingbird", "Nighthawk", "Clark_Nutcracker",
"White_breasted_Nuthatch", "Baltimore_Oriole", "Hooded_Oriole", "Orchard_Oriole",
"Scott_Oriole", "Ovenbird", "Brown_Pelican", "White_Pelican", "Western_Wood_Pewee",
"Sayornis", "American_Pipit", "Whip_poor_Will", "Horned_Puffin", "Common_Raven",
"White_necked_Raven", "American_Redstart", "Geococcyx", "Loggerhead_Shrike",
"Great_Grey_Shrike", "Baird_Sparrow", "Black_throated_Sparrow", "Brewer_Sparrow",
"Chipping_Sparrow", "Clay_colored_Sparrow", "House_Sparrow", "Field_Sparrow",
"Fox_Sparrow", "Grasshopper_Sparrow", "Harris_Sparrow", "Henslow_Sparrow",
"Le_Conte_Sparrow", "Lincoln_Sparrow", "Nelson_Sharp_tailed_Sparrow", "Savannah_Sparrow",
"Seaside_Sparrow", "Song_Sparrow", "Tree_Sparrow", "Vesper_Sparrow",
"White_crowned_Sparrow", "White_throated_Sparrow", "Cape_Glossy_Starling",
"Bank_Swallow", "Barn_Swallow", "Cliff_Swallow", "Tree_Swallow", "Scarlet_Tanager",
"Summer_Tanager", "Arctic_Tern", "Black_Tern", "Caspian_Tern", "Common_Tern",
"Elegant_Tern", "Forster_Tern", "Least_Tern", "Green_tailed_Towhee", "Brown_Thrasher",
"Sage_Thrasher", "Black_capped_Vireo", "Blue_headed_Vireo", "Philadelphia_Vireo",
"Red_eyed_Vireo", "Warbling_Vireo", "White_eyed_Vireo", "Yellow_throated_Vireo",
"Bay_breasted_Warbler", "Black_and_white_Warbler", "Black_throated_Blue_Warbler",
"Blue_winged_Warbler", "Canada_Warbler", "Cape_May_Warbler", "Cerulean_Warbler",
"Chestnut_sided_Warbler", "Golden_winged_Warbler", "Hooded_Warbler", "Kentucky_Warbler",
"Magnolia_Warbler", "Mourning_Warbler", "Myrtle_Warbler", "Nashville_Warbler",
"Orange_crowned_Warbler", "Palm_Warbler", "Pine_Warbler", "Prairie_Warbler",
"Prothonotary_Warbler", "Swainson_Warbler", "Tennessee_Warbler", "Wilson_Warbler",
"Worm_eating_Warbler", "Yellow_Warbler", "Northern_Waterthrush", "Louisiana_Waterthrush",
"Bohemian_Waxwing", "Cedar_Waxwing", "American_Three_toed_Woodpecker",
"Pileated_Woodpecker", "Red_bellied_Woodpecker", "Red_cockaded_Woodpecker",
"Red_headed_Woodpecker", "Downy_Woodpecker", "Bewick_Wren", "Cactus_Wren",
"Carolina_Wren", "House_Wren", "Marsh_Wren", "Rock_Wren", "Winter_Wren",
"Common_Yellowthroat"
]