SentiMP-En / README.md
emcamara's picture
Update README.md
5a3c3b0 verified
|
raw
history blame
3.4 kB
---
license: cc-by-sa-4.0
task_categories:
- text-classification
language:
- es
- en
- el
tags:
- code
size_categories:
- 1K<n<10K
---
# SentiMP Dataset
The SentiMP Dataset is a multilingual sentiment analysis dataset based on tweets written by members of parliament in Greece, Spain and United Kingdom in 2021. It has been developed collaboratively by the [Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI)](https://dasci.es/) research group from the [University of Granada](https://www.ugr.es/), the [SINAI](https://sinai.ujaen.es/) research group from the [University of Jaén](https://www.ujaen.es/) and the [Cardiff NLP](https://sites.google.com/view/cardiffnlp/) research group from the [University of Cardiff](https://isc.cardiff.ac.uk/).
<div align="center", style="text-align:center; display:block">
<img style="float:left; padding-right:10px" src="https://dasci.es/wp-content/uploads/2018/12/DaSCI_logo_vertical.png" alt="DaSCI" width="150"/>
<img style="float:left; padding-right:10px" src="https://www.ujaen.es/gobierno/viccom/sites/gobierno_viccom/files/uploads/inline-images/Marca%20Tradicional.png" alt="UJAEN" width="175"/>
<img style="float:left;" src="https://upload.wikimedia.org/wikipedia/commons/e/ef/Cardiff_University_%28logo%29.svg" alt="Cardiff" width="125"/>
</div>
<div style="clear:both"></div>
## Dataset details
The dataset containst 1500 tweets in three different languages: Greek (500 tweets), Spanish (500 tweets) and English (500 tweets). For each tweet we provide the following information:
* **full_text**: Which containts the content of the tweet.
* **fold**: Proposed partitions \{0,1,2,3,4\} in 5 folds for 5 fold cross-validation.
* **label_i** : Annotator's i label (i in \{1,2,3\} for English and Greek and i in \{1,2,3,4,5\} for Spanish). It takes values in \{-1,0,1\}.
* **majority_vote**: The result after applying the majority vote strategy to the annotators' partial labelling. When there is a tie we use the label "TIE". It takes values in \{-1,0,1,TIE\}.
* **tie_break**: We use this column to break ties in cases where there is a tie. Therefore, it is only completed when TIE appears in the *majority_vote* column. It takes values in \{-1,0,1\}.
* **gold_label**: It represents the final label. It is a combination between the *majority_vote* abd the *tie_break* columns. It takes values in \{-1,0,1\}.
## Downloads
You can find these files in the following repositories:
* [Spanish dataset](https://huggingface.co/datasets/rbnuria/SentiMP/blob/main/sp.csv)
* [English dataset](https://huggingface.co/datasets/rbnuria/SentiMP/blob/main/en.csv)
* [Greek dataset](https://huggingface.co/datasets/rbnuria/SentiMP/blob/main/gr.csv)
## Citation
If you use this dataset, please cite:
## Contact
Nuria Rodríguez Barroso - rbnuria@ugr.es
## Acknowledgements
This dataset has partially supported by the R&D&I grant PID2020-116118GA-I00 funded by MCIN/ AEI/10.13039/501100011033.
Shield: [![CC BY-SA 4.0][cc-by-sa-shield]][cc-by-sa]
This work is licensed under a
[Creative Commons Attribution-ShareAlike 4.0 International License][cc-by-sa].
[![CC BY-SA 4.0][cc-by-sa-image]][cc-by-sa]
[cc-by-sa]: http://creativecommons.org/licenses/by-sa/4.0/
[cc-by-sa-image]: https://licensebuttons.net/l/by-sa/4.0/88x31.png
[cc-by-sa-shield]: https://img.shields.io/badge/License-CC%20BY--SA%204.0-lightgrey.svg