Datasets:
license: cc-by-4.0
task_categories:
- audio-classification
language:
- de
- en
- es
- fr
- it
- nl
- pl
- sv
tags:
- speech
- speech-classifiation
- text-to-speech
- spoofing
- multilingualism
pretty_name: FLEURS-HS VITS
size_categories:
- 10K<n<100K
FLEURS-HS VITS
An extension of the FLEURS dataset for synthetic speech detection using text-to-speech, featured in the paper Synthetic speech detection with Wav2Vec 2.0 in various language settings.
This dataset is 1 of 3 used in the paper, the others being:
- FLEURS-HS
- the default train, dev and test sets
- separated due to different licensing
- ARCTIC-HS
- extension of the CMU_ARCTIC and L2-ARCTIC sets in a similar manner
Dataset Details
Dataset Description
The dataset features 8 languages originally seen in FLEURS:
- German
- English
- Spanish
- French
- Italian
- Dutch
- Polish
- Swedish
The original FLEURS samples are used as human
samples, while synthetic
samples are generated using:
The resulting dataset features roughly twice the samples per language (every human
sample usually has its synthetic
counterpart).
- Curated by: KONTXT by RealNetworks
- Funded by: RealNetworks
- Language(s) (NLP): English, German, Spanish, French, Italian, Dutch, Polish, Swedish
- License: Apache 2.0 for the code, CC BY 4.0 for the dataset (but various licenses depending on the source for VITS samples)
Dataset Sources
The original FLEURS dataset was downloaded from HuggingFace.
FLEURS Repository: HuggingFace
FLEURS Paper: arXiv
Paper: Synthetic speech detection with Wav2Vec 2.0 in various language settings
Uses
This dataset is best used as a difficult test set. Each sample contains an Audio
feature, and a label: human
or synthetic
.
Direct Use
The following snippet of code demonstrates loading the training split for English:
from datasets import load_dataset
fleurs_hs = load_dataset(
"realnetworks-kontxt/fleurs-hs-vits",
"en_us",
split="test",
trust_remote_code=True,
)
To load a different language, change en_us
into one of the following:
de_de
for Germanes_419
for Spanishfr_fr
for Frenchit_it
for Italiannl_nl
for Dutchpl_pl
for Polishsv_se
for Swedish
This dataset only has a test
split.
To load only the synthetic samples, append _without-human
to the name. For example, en_us
will load the test set also containing the original English FLEURS samples, while en_us_without-human
will only load the synthetic VITS samples. This is useful if you simply want to include the VITS samples into the original FLEURS-HS test set without duplicating human samples.
The trust_remote_code=True
parameter is necessary because this dataset uses a custom loader. To check out which code is being ran, check out the loading script.
Dataset Structure
The dataset data is contained in the data directory.
There exists 1 directory per language.
Within those directories, there is a directory named splits
; it contains 1 file per split:
test.tar.gz
Those .tar.gz
files contain 2 or more directories:
human
- 1 or more directories named after the VITS model being used, ex.
thorsten-vits
Each of these directories contain .wav
files. Keep in mind that these directories can't be merged as they share most of their file names. An identical file name implies a speaker-voice pair, ex. human/123.wav
and thorsten-vits/123.wav
.
Finally, back to the language directory, it contains 3 metadata files, which are not used in the loaded dataset, but might be useful to researchers:
recording-metadata.csv
- contains the transcript ID, file name, split and gender of the original FLEURS samples
recording-transcripts.csv
- contains the transcrpits of the original FLEURS samples
voice-metadata.csv
- contains the groupation of TTS' used alongside the splits they were used for
Sample
A sample contains contains an Audio feature audio
, and a string label
.
{
'audio': {
'path': 'ljspeech-vits/1003119935936341070.wav',
'array': array([-0.00048828, -0.00106812, -0.00164795, ..., 0., 0., 0.]),
'sampling_rate': 16000
},
'label': 'synthetic'
}
Citation
The dataset is featured alongside our paper, Synthetic speech detection with Wav2Vec 2.0 in various language settings, which will be published on IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW). We'll provide links once it's available online.
BibTeX:
Note, the following BibTeX is incomplete - we'll update it once the actual one is known.
@inproceedings{dropuljic-ssdww2v2ivls
author={Dropuljić, Branimir and Šuflaj, Miljenko and Jertec, Andrej and Obadić, Leo}
booktitle={2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)}
title={Synthetic speech detection with Wav2Vec 2.0 in various language settings}
year={2024}
volume={}
number={}
pages={1-5}
keywords={Synthetic speech detection;text-to-speech;wav2vec 2.0;spoofing attack;multilingualism}
doi={}
}