File size: 2,979 Bytes
1af3915
 
 
d61a5ba
 
1af3915
 
fc74c6f
 
3f0c3b8
1af3915
fc74c6f
 
1af3915
 
 
 
 
 
fc74c6f
 
 
 
1af3915
fc74c6f
 
1af3915
fc74c6f
1af3915
fc74c6f
1af3915
 
fc74c6f
1af3915
ea0a244
fc74c6f
 
 
 
 
3f0c3b8
d61a5ba
4058cac
fc74c6f
 
4058cac
fc74c6f
 
4058cac
fc74c6f
 
cf33127
1af3915
e2cde20
 
 
 
 
fc74c6f
 
 
 
48890ce
ea0a244
 
 
 
 
48890ce
ea0a244
 
 
 
 
48890ce
fc74c6f
 
 
 
e2cde20
1af3915
 
 
 
 
e2cde20
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import csv
import datasets
import requests
import os

from PIL import Image
from io import BytesIO
from datasets.tasks import ImageClassification


_HOMEPAGE = "https://huggingface.co/datasets/rshrott/renovation"

_CITATION = """\
@ONLINE {renovationquality,
    author="Your Name",
    title="Renovation Quality Dataset",
    month="Your Month",
    year="Your Year",
    url="https://huggingface.co/datasets/rshrott/renovation"
}
"""

_DESCRIPTION = """\
This dataset contains images of various properties, along with labels indicating the quality of renovation - 'cheap', 'average', 'expensive'.
"""

_URL = "https://huggingface.co/datasets/rshrott/renovation/raw/main/labels.csv"

_NAMES = ["cheap", "average", "expensive"]

class RenovationQualityDataset(datasets.GeneratorBasedBuilder):
    """Renovation Quality Dataset."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image_file_path": datasets.Value("string"),
                    "image": datasets.Image(),
                    "labels": datasets.features.ClassLabel(names=_NAMES),
                }
            ),
            supervised_keys=("image", "labels"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[ImageClassification(image_column="image", label_column="labels")],
        )

    def _split_generators(self, dl_manager):
        csv_path = dl_manager.download(_URL)
        with open(csv_path, "r") as f:
            reader = csv.reader(f)
            next(reader)  # skip header
            rows = list(reader)
        
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "rows": rows[:int(0.9 * len(rows))],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "rows": rows[int(0.9 * len(rows)):],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "rows": rows[int(0.9 * len(rows)):],
                },
            ),
        ]

    def _generate_examples(self, rows):
        def url_to_image(url):
            response = requests.get(url)
            img = Image.open(BytesIO(response.content))
            return img
    
        for id_, row in enumerate(rows):
            if len(row) < 2:
                print(f"Row with id {id_} has less than 2 elements: {row}")
            else:
                image_file_path = str(row[0])
                image = url_to_image(image_file_path)
                yield id_, {
                    'image_file_path': image_file_path,
                    'image': image,
                    'labels': row[1],
                }