|
import csv |
|
import datasets |
|
import requests |
|
import os |
|
|
|
from PIL import Image |
|
from io import BytesIO |
|
from datasets.tasks import ImageClassification |
|
|
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/rshrott/renovation" |
|
|
|
_CITATION = """\ |
|
@ONLINE {renovationquality, |
|
author="Your Name", |
|
title="Renovation Quality Dataset", |
|
month="Your Month", |
|
year="Your Year", |
|
url="https://huggingface.co/datasets/rshrott/renovation" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains images of various properties, along with labels indicating the quality of renovation - 'cheap', 'average', 'expensive'. |
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/rshrott/renovation/raw/main/labels.csv" |
|
|
|
_NAMES = ["cheap", "average", "expensive"] |
|
|
|
class RenovationQualityDataset(datasets.GeneratorBasedBuilder): |
|
"""Renovation Quality Dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image_file_path": datasets.Value("string"), |
|
"image": datasets.Image(), |
|
"labels": datasets.features.ClassLabel(names=_NAMES), |
|
} |
|
), |
|
supervised_keys=("image", "labels"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[ImageClassification(image_column="image", label_column="labels")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
csv_path = dl_manager.download(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": csv_path, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": csv_path, |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": csv_path, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
def url_to_image(url): |
|
response = requests.get(url) |
|
img = Image.open(BytesIO(response.content)) |
|
return img |
|
|
|
with open(filepath, "r") as f: |
|
reader = csv.reader(f) |
|
next(reader) |
|
rows = list(reader) |
|
if split == 'train': |
|
rows = rows[:int(0.8 * len(rows))] |
|
elif split == 'validation': |
|
rows = rows[int(0.8 * len(rows)):int(0.9 * len(rows))] |
|
else: |
|
rows = rows[int(0.9 * len(rows)):] |
|
|
|
for id_, row in enumerate(rows): |
|
if len(row) < 2: |
|
print(f"Row with id {id_} has less than 2 elements: {row}") |
|
else: |
|
image_file_path = str(row[0]) |
|
image = url_to_image(image_file_path) |
|
yield id_, { |
|
'image_file_path': image_file_path, |
|
'image': image, |
|
'labels': row[1], |
|
} |
|
|