|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""OCR-IDL: OCR annotations for the Industry Document Library.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{biten2022ocr, |
|
title = {OCR-IDL: Ocr annotations for industry document library dataset}, |
|
author = {{Biten}, Ali Furkan and {Tito}, Ruben and {Gomez}, Lluis and {Valveny}, Ernest and {Karatzas}, Dimosthenis}, |
|
journal = {arXiv preprint arXiv:2202.12985}, |
|
year = 2022, |
|
eid = {arXiv:2202.12985}, |
|
pages = {arXiv:2202.12985}, |
|
archivePrefix = {arXiv}, |
|
eprint = {2202.12985}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The OCR-IDL Dataset contains the OCR annotations of 26M pages of theIndustry Document Library (IDL).\ |
|
It is specially intended to be used for text-layout self-supervised tasks such as Masked Language Modeling or Text De-noising.\ |
|
However, we also include the url to the documents so that can be downloaded for image-text alignment tasks. |
|
""" |
|
|
|
_URL = "http://datasets.cvc.uab.es/UCSF_IDL/" |
|
_PROJECT_URL = "https://github.com/furkanbiten/idl_data" |
|
_URLS = { |
|
"train": _URL + "train-v1.1.json", |
|
"dev": _URL + "dev-v1.1.json", |
|
} |
|
|
|
|
|
class OCRIDLConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for OCR-IDL.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for OCR-IDL. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(OCRIDLConfig, self).__init__(**kwargs) |
|
|
|
|
|
class OCR_IDL(datasets.GeneratorBasedBuilder): |
|
"""SQUAD: The Stanford Question Answering Dataset. Version 1.1.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
OCRIDLConfig( |
|
name="OCR-IDL", |
|
version=datasets.Version("1.0.0", ""), |
|
description=_DESCRIPTION, |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"document_url": datasets.Value("string"), |
|
"page_id": datasets.Value("string"), |
|
"page_height": datasets.Value("int32"), |
|
"page_width": datasets.Value("int32"), |
|
"words": [], |
|
"boxes": [], |
|
"word_lines_id": [], |
|
"text_types": [], |
|
"recog_conf": [] |
|
} |
|
), |
|
|
|
supervised_keys=None, |
|
homepage=_PROJECT_URL, |
|
citation=_CITATION, |
|
|
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download('https://huggingface.co/datasets/rubentito/OCR-IDL/resolve/main/val.csv') |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data": downloaded_files[0]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files[0]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
key = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
squad = json.load(f) |
|
for article in squad["data"]: |
|
title = article.get("title", "") |
|
for paragraph in article["paragraphs"]: |
|
context = paragraph["context"] |
|
for qa in paragraph["qas"]: |
|
answer_starts = [answer["answer_start"] for answer in qa["answers"]] |
|
answers = [answer["text"] for answer in qa["answers"]] |
|
|
|
|
|
yield key, { |
|
"title": title, |
|
"context": context, |
|
"question": qa["question"], |
|
"id": qa["id"], |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
}, |
|
} |
|
key += 1 |