text
stringlengths
1
2.05k
selectors.insert(GadgetType::VarDivRoundBig3, vec![selector]); GadgetConfig { columns, tables, selectors, ..gadget_config } } } impl<F: PrimeField> Gadget<F> for VarDivRoundBig3Chip<F> { fn name(&self) -> String { "VarDivBig3RoundChip".to_string() } fn num_cols_per_op(&self) -> usize { Self::num_cols_per_op() } fn num_inputs_per_row(&self) -> usize { (self.config.columns.len() - 1) / self.num_cols_per_op() } fn num_outputs_per_row(&self) -> usize { self.num_inputs_per_row() } fn op_row_region( &self, region: &mut Region<F>, row_offset: usize, vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>, single_inputs: &Vec<&AssignedCell<F, F>>, ) -> Result<Vec<AssignedCell<F, F>>, Error> { let a_vec = &vec_inputs[0]; let b = &single_inputs[1]; let c_shift_base = (-(1_i64 << 62)) as i128; let num_rows = self.config.num_rows as i128; if self.config.use_selectors { let selector = self .config .selectors .get(&GadgetType::VarDivRoundBig3) .unwrap()[0]; selector.enable(region, row_offset)?; } b.copy_advice( || "", region, self.config.columns[self.config.columns.len() - 1], row_offset, )?; let mut div_out = vec![]; for (i, a) in a_vec.iter().enumerate() { let offset = i * self.num_cols_per_op(); a.copy_advice(|| "", region, self.config.columns[offset], row_offset) .unwrap(); let div_mod = a.value().zip(b.value()).map(|(a, b)| { let b = convert_to_u128(b); let c_shift = (-c_shift_base) as u128 / b * b; let div_inp_min_val_pos = F::from(c_shift as u64); let a_pos = *a + div_inp_min_val_pos; let a = convert_to_u128(&a_pos); let c_pos = a.rounded_div(b); let c = c_pos as i128 - (c_shift / b) as i128; let rem_floor = (a as i128) - (c_pos * b) as i128; let r = 2 * rem_floor + (b as i128); (c, r) });
let br_split = div_mod.zip(b.value()).map(|((_, r), b)| { let b = convert_to_u128(b) as i128; let val = 2 * b - r; let p2 = val / (num_rows * num_rows); let p1 = (val % (num_rows * num_rows)) / num_rows; let p0 = val % num_rows; (p2, p1, p0) }); let r_split = div_mod.map(|(_, r)| { let p2 = r / (num_rows * num_rows); let p1 = (r % (num_rows * num_rows)) / num_rows; let p0 = r % num_rows; (p2, p1, p0) }); let div_cell = region.assign_advice( || "", self.config.columns[offset + 1], row_offset, || { div_mod.map(|(c, _)| { let offset = F::from(-c_shift_base as u64); let c = F::from((c - c_shift_base) as u64); c - offset }) }, )?; let _mod_cell = region.assign_advice( || "", self.config.columns[offset + 2], row_offset, || div_mod.map(|(_, r)| F::from(r as u64)), )?; let _br_split_cell_2 = region.assign_advice( || "", self.config.columns[offset + 3], row_offset, || br_split.map(|(p2, _, _)| F::from(p2 as u64)), )?; let _br_split_cell_1 = region.assign_advice( || "", self.config.columns[offset + 4], row_offset, || br_split.map(|(_, p1, _)| F::from(p1 as u64)), )?; let _br_split_cell_0 = region.assign_advice( || "", self.config.columns[offset + 5], row_offset, || br_split.map(|(_, _, p0)| F::from(p0 as u64)), )?; let _r_split_cell_2 = region.assign_advice( || "", self.config.columns[offset + 6], row_offset, || r_split.map(|(p2, _, _)| F::from(p2 as u64)), )?; let _r_split_cell_1 = region.assign_advice( || "", self.config.columns[offset + 7], row_offset, || r_split.map(|(_, p1, _)| F::from(p1 as u64)), )?; let _r_sp
lit_cell_0 = region.assign_advice( || "", self.config.columns[offset + 8], row_offset, || r_split.map(|(_, _, p0)| F::from(p0 as u64)), )?; div_out.push(div_cell); } Ok(div_out) } fn forward( &self, mut layouter: impl Layouter<F>, vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>, single_inputs: &Vec<&AssignedCell<F, F>>, ) -> Result<Vec<AssignedCell<F, F>>, Error> { let mut inps = vec_inputs[0].clone(); let initial_len = inps.len(); let default = &single_inputs[0]; while inps.len() % self.num_inputs_per_row() != 0 { inps.push(&default); } let res = self.op_aligned_rows( layouter.namespace(|| "var_div_big3"), &vec![inps], single_inputs, )?; Ok(res[..initial_len].to_vec()) } }
// Generics pub mod averager; pub mod arithmetic; pub mod shape; // Concrete implementations pub mod avg_pool_2d; pub mod batch_mat_mul; pub mod conv2d; pub mod div_fixed; pub mod fully_connected; pub mod logistic; pub mod max_pool_2d; pub mod mean; pub mod noop; pub mod pow; pub mod rsqrt; pub mod softmax; pub mod sqrt; pub mod square; pub mod squared_diff; pub mod tanh; pub mod update; // Special: dag pub mod dag; // Special: layer pub mod layer;
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{ circuit::{AssignedCell, Layouter}, halo2curves::ff::PrimeField, plonk::Error, }; use crate::{gadgets::gadget::GadgetConfig, utils::helpers::broadcast}; use super::layer::{AssignedTensor, CellRc}; pub mod add; pub mod div_var; pub mod mul; pub mod sub; pub trait Arithmetic<F: PrimeField> { fn gadget_forward( &self, layouter: impl Layouter<F>, vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>, constants: &Vec<&AssignedCell<F, F>>, gadget_config: Rc<GadgetConfig>, ) -> Result<Vec<AssignedCell<F, F>>, Error>; fn arithmetic_forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, ) -> Result<(Vec<CellRc<F>>, Vec<usize>), Error> { assert_eq!(tensors.len(), 2); // println!("tensors: {:?} {:?}", tensors[0].shape(), tensors[1].shape()); let (inp1, inp2) = broadcast(&tensors[0], &tensors[1]); let out_shape = inp1.shape().clone(); assert_eq!(inp1.shape(), inp2.shape()); let zero = constants.get(&0).unwrap().as_ref(); let inp1_vec = inp1.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let inp2_vec = inp2.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let vec_inputs = vec![inp1_vec, inp2_vec]; let constants = vec![zero]; let out = self.gadget_forward( layouter.namespace(|| ""), &vec_inputs, &constants, gadget_config.clone(), )?; let out = out.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); Ok((out, out_shape.to_vec())) } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{ circuit::{AssignedCell, Layouter}, halo2curves::ff::PrimeField, plonk::Error, }; use ndarray::{Array, IxDyn}; use crate::{ gadgets::{ add_pairs::AddPairsChip, gadget::{Gadget, GadgetConfig, GadgetType}, nonlinear::relu::ReluChip, }, layers::layer::{ActivationType, AssignedTensor, CellRc, GadgetConsumer}, }; use super::{ super::layer::{Layer, LayerConfig}, Arithmetic, }; pub
struct AddChip {} impl AddChip { fn get_activation(&self, layer_params: &Vec<i64>) -> ActivationType { let activation = layer_params[0]; match activation { 0 => ActivationType::None, 1 => ActivationType::Relu, _ => panic!("Unsupported activation type for add"), } } } impl<F: PrimeField> Arithmetic<F> for AddChip { fn gadget_forward( &self, mut layouter: impl Layouter<F>, vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>, constants: &Vec<&AssignedCell<F, F>>, gadget_config: Rc<GadgetConfig>, ) -> Result<Vec<AssignedCell<F, F>>, Error> { let add_pairs_chip = AddPairsChip::<F>::construct(gadget_config); let out = add_pairs_chip.forward(layouter.namespace(|| "add chip"), &vec_inputs, constants)?; Ok(out) } } impl<F: PrimeField> Layer<F> for AddChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let activation = self.get_activation(&layer_config.layer_params); let (out, out_shape) = self.arithmetic_forward( layouter.namespace(|| ""), tensors, constants, gadget_config.clone(), )?; let out = if activation == ActivationType::Relu { let zero = constants.get(&0).unwrap(); let single_inps = vec![zero.as_ref()]; let out = out.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let relu_chip = ReluChip::<F>::construct(gadget_config); let out = relu_chip.forward(layouter.namespace(|| "relu"), &vec![out], &single_inps)?; let out = out.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); out } else if activation == ActivationType::None { out } else { panic!("Unsupported activation type for add"); }; let out = Array::from_shape_vec(IxDyn(out_shape.as_slice()), out).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for AddChip { f
n used_gadgets(&self, layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { let activation = self.get_activation(&layer_params); let mut outp = vec![GadgetType::AddPairs]; match activation { ActivationType::Relu => outp.push(GadgetType::Relu), ActivationType::None => (), _ => panic!("Unsupported activation type for add"), } outp } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{ circuit::{AssignedCell, Layouter}, halo2curves::ff::PrimeField, plonk::Error, }; use ndarray::{Array, IxDyn}; use crate::{ gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, mul_pairs::MulPairsChip, var_div::VarDivRoundChip, }, layers::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer}, }; use super::Arithmetic; pub
struct DivVarChip {} impl<F: PrimeField> Arithmetic<F> for DivVarChip { fn gadget_forward( &self, mut layouter: impl Layouter<F>, vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>, constants: &Vec<&AssignedCell<F, F>>, gadget_config: Rc<GadgetConfig>, ) -> Result<Vec<AssignedCell<F, F>>, Error> { let mul_pairs_chip = MulPairsChip::<F>::construct(gadget_config.clone()); let out = mul_pairs_chip.forward( layouter.namespace(|| "mul pairs chip"), &vec_inputs, constants, )?; Ok(out) } } impl<F: PrimeField> Layer<F> for DivVarChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, _layer_config: &crate::layers::layer::LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { assert_eq!(tensors.len(), 2); assert_eq!(tensors[1].shape().len(), 1); assert_eq!(tensors[1].shape()[0], 1); let sf = constants .get(&(gadget_config.scale_factor as i64)) .unwrap() .as_ref(); let sf_tensor = Array::from_shape_vec(IxDyn(&[1]), vec![Rc::new(sf.clone())]).unwrap(); let (out, out_shape) = self.arithmetic_forward( layouter.namespace(|| ""), &vec![tensors[0].clone(), sf_tensor], constants, gadget_config.clone(), )?; let var_div_chip = VarDivRoundChip::<F>::construct(gadget_config.clone()); let div = tensors[1].iter().next().unwrap().as_ref(); let zero = constants.get(&0).unwrap().as_ref(); let single_inputs = vec![zero, div]; let out = out.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let out = var_div_chip.forward(layouter.namespace(|| "mul div"), &vec![out], &single_inputs)?; let out = out.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); let out = Array::from_shape_vec(IxDyn(out_shape.as_slice()), out).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for DivVarChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Ve
c<crate::gadgets::gadget::GadgetType> { vec![ GadgetType::MulPairs, GadgetType::VarDivRound, GadgetType::InputLookup, ] } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{ circuit::{AssignedCell, Layouter}, halo2curves::ff::PrimeField, plonk::Error, }; use ndarray::{Array, IxDyn}; use crate::{ gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, mul_pairs::MulPairsChip, var_div::VarDivRoundChip, }, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::{ super::layer::{Layer, LayerConfig}, Arithmetic, }; pub
struct MulChip {} impl<F: PrimeField> Arithmetic<F> for MulChip { fn gadget_forward( &self, mut layouter: impl Layouter<F>, vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>, constants: &Vec<&AssignedCell<F, F>>, gadget_config: Rc<GadgetConfig>, ) -> Result<Vec<AssignedCell<F, F>>, Error> { let mul_pairs_chip = MulPairsChip::<F>::construct(gadget_config.clone()); let out = mul_pairs_chip.forward( layouter.namespace(|| "mul pairs chip"), &vec_inputs, constants, )?; Ok(out) } } impl<F: PrimeField> Layer<F> for MulChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, _layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let (out, out_shape) = self.arithmetic_forward( layouter.namespace(|| ""), tensors, constants, gadget_config.clone(), )?; let var_div_chip = VarDivRoundChip::<F>::construct(gadget_config.clone()); let div = constants .get(&(gadget_config.scale_factor as i64)) .unwrap() .as_ref(); let zero = constants.get(&0).unwrap().as_ref(); let single_inputs = vec![zero, div]; let out = out.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let out = var_div_chip.forward(layouter.namespace(|| "mul div"), &vec![out], &single_inputs)?; let out = out.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); let out = Array::from_shape_vec(IxDyn(out_shape.as_slice()), out).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for MulChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![ GadgetType::MulPairs, GadgetType::VarDivRound, GadgetType::InputLookup, ] } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{ circuit::{AssignedCell, Layouter}, halo2curves::ff::PrimeField, plonk::Error, }; use ndarray::{Array, IxDyn}; use crate::{ gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, sub_pairs::SubPairsChip, }, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::{ super::layer::{Layer, LayerConfig}, Arithmetic, }; #[derive(Clone, Debug)] pub struct SubChip {} impl<F: PrimeField> Arithmetic<F> for SubChip { fn gadget_forward( &self, mut layouter: impl Layouter<F>, vec_inputs: &Vec<Vec<&AssignedCell<F, F>>>, constants: &Vec<&AssignedCell<F, F>>, gadget_config: Rc<GadgetConfig>, ) -> Result<Vec<AssignedCell<F, F>>, Error> { let sub_pairs_chip = SubPairsChip::<F>::construct(gadget_config); let out = sub_pairs_chip.forward(layouter.namespace(|| "sub chip"), &vec_inputs, constants)?; Ok(out) } } impl<F: PrimeField> Layer<F> for SubChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, _layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let (out, out_shape) = self.arithmetic_forward( layouter.namespace(|| ""), tensors, constants, gadget_config.clone(), )?; let out = Array::from_shape_vec(IxDyn(out_shape.as_slice()), out).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for SubChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![GadgetType::SubPairs] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{ circuit::{AssignedCell, Layouter}, halo2curves::ff::PrimeField, plonk::Error, }; use crate::gadgets::gadget::Gadget; use crate::gadgets::{adder::AdderChip, gadget::GadgetConfig, var_div::VarDivRoundChip}; use super::layer::{AssignedTensor, CellRc, LayerConfig}; pub trait Averager<F: PrimeField> { fn splat(&self, input: &AssignedTensor<F>, layer_config: &LayerConfig) -> Vec<Vec<CellRc<F>>>; fn get_div_val( &self, layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<AssignedCell<F, F>, Error>; fn avg_forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<CellRc<F>>, Error> { let zero = constants.get(&0).unwrap().as_ref(); let inp = &tensors[0]; let splat_inp = self.splat(inp, layer_config); let adder_chip = AdderChip::<F>::construct(gadget_config.clone()); let single_inputs = vec![zero]; let mut added = vec![]; for i in 0..splat_inp.len() { let tmp = splat_inp[i].iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let tmp = adder_chip.forward( layouter.namespace(|| format!("average {}", i)), &vec![tmp], &single_inputs, )?; added.push(tmp[0].clone()); } let div = self.get_div_val( layouter.namespace(|| "average div"), tensors, gadget_config.clone(), layer_config, )?; let var_div_chip = VarDivRoundChip::<F>::construct(gadget_config.clone()); let single_inputs = vec![zero, &div]; let added = added.iter().map(|x| x).collect::<Vec<_>>(); let dived = var_div_chip.forward( layouter.namespace(|| "average div"), &vec![added], &single_inputs, )?; let dived = dived.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>();
Ok(dived) } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{ circuit::{AssignedCell, Layouter, Value}, halo2curves::ff::PrimeField, plonk::Error, }; use ndarray::{Array, IxDyn}; use crate::{ gadgets::gadget::{GadgetConfig, GadgetType}, layers::max_pool_2d::MaxPool2DChip, }; use super::{ averager::Averager, layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}, }; pub
struct AvgPool2DChip {} impl<F: PrimeField> Averager<F> for AvgPool2DChip { fn splat(&self, input: &AssignedTensor<F>, layer_config: &LayerConfig) -> Vec<Vec<CellRc<F>>> { assert_eq!(input.shape().len(), 4); assert_eq!(input.shape()[0], 1); MaxPool2DChip::splat(input, layer_config).unwrap() } fn get_div_val( &self, mut layouter: impl Layouter<F>, _tensors: &Vec<AssignedTensor<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<AssignedCell<F, F>, Error> { let div = layer_config.layer_params[0] * layer_config.layer_params[1]; let div = F::from(div as u64); let div = layouter .assign_region( || "avg pool 2d div", |mut region| { let div = region .assign_advice( || "avg pool 2d div", gadget_config.columns[0], 0, || Value::known(div), ) .unwrap(); Ok(div) }, ) .unwrap(); Ok(div) } } impl<F: PrimeField> Layer<F> for AvgPool2DChip { fn forward( &self, layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let dived = self .avg_forward(layouter, tensors, constants, gadget_config, layer_config) .unwrap(); let inp = &tensors[0]; let out_xy = MaxPool2DChip::shape(inp, layer_config); let out_shape = vec![1, out_xy.0, out_xy.1, inp.shape()[3]]; println!("out_shape: {:?}", out_shape); let out = Array::from_shape_vec(IxDyn(&out_shape), dived).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for AvgPool2DChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![ GadgetType::Adder, GadgetType::VarDivRound, GadgetType::InputLookup, ] } }
use std::{collections::HashMap, marker::PhantomData, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, Axis, IxDyn}; use crate::{ gadgets::gadget::{GadgetConfig, GadgetType}, layers::fully_connected::FullyConnectedConfig, }; use super::{ fully_connected::FullyConnectedChip, layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}, }; pub
struct BatchMatMulChip {} impl<F: PrimeField> Layer<F> for BatchMatMulChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp1 = &tensors[0]; let inp2 = &tensors[1]; println!("inp1: {:?}", inp1.shape()); println!("inp2: {:?}", inp2.shape()); assert_eq!(inp1.ndim(), 3); assert_eq!(inp2.ndim(), 3); assert_eq!(inp1.shape()[0], inp2.shape()[0]); let adj_y = layer_config.layer_params[1] == 1; if adj_y { assert_eq!(inp1.shape()[2], inp2.shape()[2]); } else { assert_eq!(inp1.shape()[2], inp2.shape()[1]); } let out_shape = if adj_y { vec![inp1.shape()[0], inp1.shape()[1], inp2.shape()[1]] } else { vec![inp1.shape()[0], inp1.shape()[1], inp2.shape()[2]] }; let fc_chip = FullyConnectedChip::<F> { _marker: PhantomData, config: FullyConnectedConfig::construct(true), }; let mut outp: Vec<CellRc<F>> = vec![]; for i in 0..inp1.shape()[0] { let inp1_slice = inp1.index_axis(Axis(0), i).to_owned(); let inp2_slice = if adj_y { inp2.index_axis(Axis(0), i).to_owned() } else { inp2.index_axis(Axis(0), i).t().to_owned() }; println!("inp1_slice: {:?}", inp1_slice.shape()); println!("inp2_slice: {:?}", inp2_slice.shape()); let tmp_config = LayerConfig { layer_params: vec![0], ..layer_config.clone() }; let outp_slice = fc_chip.forward( layouter.namespace(|| ""), &vec![inp1_slice, inp2_slice], constants, gadget_config.clone(), &tmp_config, )?; outp.extend(outp_slice[0].iter().map(|x| x.clone()).collect::<Vec<_>>()); } let outp = Array::from_shape_vec(IxDyn(out_shape.as_slice()), outp).unwrap(); Ok(vec![outp]) } } impl GadgetConsumer for BatchMat
MulChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![ GadgetType::Adder, GadgetType::DotProduct, GadgetType::VarDivRound, GadgetType::InputLookup, ] } }
use std::{collections::HashMap, marker::PhantomData, rc::Rc}; use halo2_proofs::{ circuit::{AssignedCell, Layouter}, halo2curves::ff::PrimeField, plonk::Error, }; use ndarray::{Array, IxDyn}; use crate::{ gadgets::{ bias_div_round_relu6::BiasDivRoundRelu6Chip, dot_prod::DotProductChip, gadget::{Gadget, GadgetConfig, GadgetType}, nonlinear::relu::ReluChip, }, layers::{ fully_connected::{FullyConnectedChip, FullyConnectedConfig}, shape::pad::pad, }, }; use super::layer::{ActivationType, AssignedTensor, GadgetConsumer, Layer, LayerConfig}; pub enum PaddingEnum { Same, Valid, } pub enum ConvLayerEnum { Conv2D, DepthwiseConv2D, } pub
struct Conv2DConfig { pub conv_type: ConvLayerEnum, pub padding: PaddingEnum, pub activation: ActivationType, pub stride: (usize, usize), } pub struct Conv2DChip<F: PrimeField> { pub config: LayerConfig, pub _marker: PhantomData<F>, } impl<F: PrimeField> Conv2DChip<F> { pub fn param_vec_to_config(layer_params: Vec<i64>) -> Conv2DConfig { let conv_type = match layer_params[0] { 0 => ConvLayerEnum::Conv2D, 1 => ConvLayerEnum::DepthwiseConv2D, _ => panic!("Invalid conv type"), }; let padding = match layer_params[1] { 0 => PaddingEnum::Same, 1 => PaddingEnum::Valid, _ => panic!("Invalid padding"), }; let activation = match layer_params[2] { 0 => ActivationType::None, 1 => ActivationType::Relu, 3 => ActivationType::Relu6, _ => panic!("Invalid activation type"), }; let stride = (layer_params[3] as usize, layer_params[4] as usize); Conv2DConfig { conv_type, padding, activation, stride, } } pub fn get_padding( h: usize, w: usize, si: usize, sj: usize, ci: usize, cj: usize, ) -> ((usize, usize), (usize, usize)) { let ph = if h % si == 0 { (ci as i64 - sj as i64).max(0) } else { (ci as i64 - (h % si) as i64).max(0) } as usize; let pw = if w % sj == 0 { (cj as i64 - sj as i64).max(0) } else { (cj as i64 - (w % sj) as i64).max(0) } as usize; ((ph / 2, ph - ph / 2), (pw / 2, pw - pw / 2)) } pub fn out_hw( h: usize, w: usize, si: usize, sj: usize, ch: usize, cw: usize, padding: PaddingEnum, ) -> (usize, usize) { /* println!( "H: {}, W: {}, SI: {}, SJ: {}, CH: {}, CW: {}", h, w, si, sj, ch, cw ); */ match padding { PaddingEnum::Same => ((h + si - 1) / si, (w + sj - 1) / sj), PaddingEnum::Valid => ((h - ch) / si + 1, (w - cw) / sj + 1), } } pub fn splat<G: Clone>( &self, tensors: &Vec<Array<Rc<G>,
IxDyn>>, zero: Rc<G>, ) -> (Vec<Vec<Rc<G>>>, Vec<Vec<Rc<G>>>, Vec<Rc<G>>) { assert!(tensors.len() <= 3); let conv_config = &Self::param_vec_to_config(self.config.layer_params.clone()); let inp = &tensors[0]; let weights = &tensors[1]; let zero_arr = Array::from_elem(IxDyn(&vec![1]), zero.clone()); let biases = if tensors.len() == 3 { &tensors[2] } else { &zero_arr }; let h: usize = inp.shape()[1]; let w: usize = inp.shape()[2]; let ch: usize = weights.shape()[1]; let cw: usize = weights.shape()[2]; let (si, sj) = conv_config.stride; assert_eq!(inp.shape().len(), 4); let (ph, pw) = if conv_config.padding == PaddingEnum::Same { Self::get_padding(h, w, si, sj, ch, cw) } else { ((0, 0), (0, 0)) }; let padding = vec![[0, 0], [ph.0, ph.1], [pw.0, pw.1], [0, 0]]; let inp_pad = pad(&inp, padding, &zero); let (oh, ow) = Self::out_hw(h, w, si, sj, ch, cw, conv_config.padding); let mut inp_cells = vec![]; let mut weights_cells = vec![]; let mut biases_cells = vec![]; let mut input_row_idx = 0; let mut weight_row_idx = 0; for chan_out in 0..weights.shape()[0] { weights_cells.push(vec![]); for ci in 0..weights.shape()[1] { for cj in 0..weights.shape()[2] { for ck in 0..weights.shape()[3] { weights_cells[weight_row_idx].push(weights[[chan_out, ci, cj, ck]].clone()); } } } weight_row_idx += 1; } for batch in 0..inp.shape()[0] { for i in 0..oh { for j in 0..ow { inp_cells.push(vec![]); for ci in 0..weights.shape()[1] { for cj in 0..weights.shape()[2] { for ck in 0..weights.shape()[3] { let idx_i = i * si + ci; let idx_j = j * sj + cj; inp_cells[input_row_idx].push(inp_pad[[batch, idx_i, idx_j, ck]].clone()); } } } input_row_idx +=
1; } } } for _batch in 0..inp.shape()[0] { for _ in 0..oh { for _ in 0..ow { for chan_out in 0..weights.shape()[0] { if tensors.len() == 3 { biases_cells.push(biases[chan_out].clone()); } else { biases_cells.push(zero.clone()); } } } } } (inp_cells, weights_cells, biases_cells) } pub fn splat_depthwise<G: Clone>( &self, tensors: &Vec<Array<Rc<G>, IxDyn>>, zero: Rc<G>, ) -> (Vec<Vec<Rc<G>>>, Vec<Vec<Rc<G>>>, Vec<Rc<G>>) { let input = &tensors[0]; let weights = &tensors[1]; let biases = &tensors[2]; assert_eq!(tensors.len(), 3); assert_eq!(input.shape().len(), 4); assert_eq!(weights.shape().len(), 4); assert_eq!(input.shape()[0], 1); let conv_config = &Self::param_vec_to_config(self.config.layer_params.clone()); let strides = conv_config.stride; let h: usize = input.shape()[1]; let w: usize = input.shape()[2]; let ch: usize = weights.shape()[1]; let cw: usize = weights.shape()[2]; let (si, sj) = conv_config.stride; let (oh, ow) = Self::out_hw(h, w, si, sj, ch, cw, conv_config.padding); let (ph, pw) = if conv_config.padding == PaddingEnum::Same { Self::get_padding(h, w, si, sj, ch, cw) } else { ((0, 0), (0, 0)) }; let padding = vec![[0, 0], [ph.0, ph.1], [pw.0, pw.1], [0, 0]]; let inp_pad = pad(&input, padding, &zero); let mut inp_cells = vec![]; let mut weight_cells = vec![]; let mut biases_cells = vec![]; let mut row_idx = 0; for i in 0..oh { for j in 0..ow { for chan_out in 0..weights.shape()[3] { inp_cells.push(vec![]); weight_cells.push(vec![]); biases_cells.push(biases[[chan_out]].clone()); for ci in 0..weights.shape()[1] { for cj in 0..weights.shape()[2] { let idx_i = i * strides.0 + ci; let idx_j = j * strides.1 + cj; inp_
cells[row_idx].push(inp_pad[[0, idx_i, idx_j, chan_out]].clone()); weight_cells[row_idx].push(weights[[0, ci, cj, chan_out]].clone()); } } row_idx += 1; } } } (inp_cells, weight_cells, biases_cells) } } impl<F: PrimeField> Layer<F> for Conv2DChip<F> { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, Rc<AssignedCell<F, F>>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let conv_config = &Self::param_vec_to_config(self.config.layer_params.clone()); let zero = constants.get(&0).unwrap(); let inp = &tensors[0]; let weights = &tensors[1]; let (oh, ow) = Self::out_hw( inp.shape()[1], inp.shape()[2], conv_config.stride.0, conv_config.stride.1, weights.shape()[1], weights.shape()[2], conv_config.padding, ); let batch_size = inp.shape()[0]; let (splat_inp, splat_weights, splat_biases) = match conv_config.conv_type { ConvLayerEnum::Conv2D => self.splat(tensors, zero.clone()), ConvLayerEnum::DepthwiseConv2D => self.splat_depthwise(tensors, zero.clone()), }; let outp_flat: Vec<AssignedCell<F, F>> = match conv_config.conv_type { ConvLayerEnum::Conv2D => { let fc_chip = FullyConnectedChip::<F> { _marker: PhantomData, config: FullyConnectedConfig::construct(false), }; let conv_size = splat_inp[0].len(); let flattened_inp: Vec<_> = splat_inp.into_iter().flat_map(|x| x.into_iter()).collect(); let flattened_weights = splat_weights .into_iter() .flat_map(|x| x.into_iter()) .collect::<Vec<_>>(); let out_channels = weights.shape()[0]; let inp_array = Array::from_shape_vec(IxDyn(&vec![batch_size * oh * ow, conv_size]), flattened_inp) .unwrap(); let weights_array = Arra
y::from_shape_vec(IxDyn(&vec![out_channels, conv_size]), flattened_weights).unwrap(); let outp_slice = fc_chip .forward( layouter.namespace(|| ""), &vec![weights_array, inp_array], constants, gadget_config.clone(), layer_config, ) .unwrap(); let outp_flat = outp_slice[0] .t() .into_iter() .map(|x| (**x).clone()) .collect::<Vec<_>>(); outp_flat } ConvLayerEnum::DepthwiseConv2D => { let dot_prod_chip = DotProductChip::<F>::construct(gadget_config.clone()); let mut outp_flat = vec![]; for (inp_vec, weight_vec) in splat_inp.iter().zip(splat_weights.iter()) { let inp_vec = inp_vec.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let weight_vec = weight_vec.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let vec_inputs = vec![inp_vec, weight_vec]; let constants = vec![zero.as_ref()]; let outp = dot_prod_chip .forward(layouter.namespace(|| "dot_prod"), &vec_inputs, &constants) .unwrap(); outp_flat.push(outp[0].clone()); } outp_flat } }; let mut biases = vec![]; for bias in splat_biases.iter() { biases.push(bias.as_ref()); } let bdr_chip = BiasDivRoundRelu6Chip::<F>::construct(gadget_config.clone()); let tmp = vec![zero.as_ref()]; let outp_flat = outp_flat.iter().map(|x| x).collect::<Vec<_>>(); let outp = bdr_chip .forward( layouter.namespace(|| "bias_div_relu"), &vec![outp_flat, biases], &tmp, ) .unwrap(); let outp = if conv_config.activation == ActivationType::Relu6 { outp .into_iter() .step_by(2) .map(|x| Rc::new(x)) .collect::<Vec<_>>() } else if conv_config.activation == ActivationType::None { outp .into_iter() .skip(1) .step_by(2)
.map(|x| Rc::new(x)) .collect::<Vec<_>>() } else if conv_config.activation == ActivationType::Relu { let dived = outp.iter().skip(1).step_by(2).collect::<Vec<_>>(); let relu_chip = ReluChip::<F>::construct(gadget_config.clone()); let relu_outp = relu_chip .forward(layouter.namespace(|| "relu"), &vec![dived], &tmp) .unwrap(); let relu_outp = relu_outp .into_iter() .map(|x| Rc::new(x)) .collect::<Vec<_>>(); relu_outp } else { panic!("Unsupported activation type"); }; let oc = match conv_config.conv_type { ConvLayerEnum::Conv2D => weights.shape()[0], ConvLayerEnum::DepthwiseConv2D => weights.shape()[3], }; let out_shape = vec![batch_size, oh, ow, oc]; let outp = Array::from_shape_vec(IxDyn(&out_shape), outp).unwrap(); Ok(vec![outp]) } } impl<F: PrimeField> GadgetConsumer for Conv2DChip<F> { fn used_gadgets(&self, layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { let conv_config = &Self::param_vec_to_config(layer_params.clone()); let mut outp = vec![ GadgetType::Adder, GadgetType::DotProduct, GadgetType::InputLookup, GadgetType::BiasDivRoundRelu6, ]; if conv_config.activation == ActivationType::Relu { outp.push(GadgetType::Relu); } outp } }
use std::{collections::HashMap, fs::File, io::BufWriter, marker::PhantomData, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use crate::{ gadgets::gadget::{convert_to_u64, GadgetConfig}, layers::{ arithmetic::{add::AddChip, div_var::DivVarChip, mul::MulChip, sub::SubChip}, batch_mat_mul::BatchMatMulChip, div_fixed::DivFixedChip, fully_connected::{FullyConnectedChip, FullyConnectedConfig}, logistic::LogisticChip, max_pool_2d::MaxPool2DChip, mean::MeanChip, noop::NoopChip, pow::PowChip, rsqrt::RsqrtChip, shape::{ broadcast::BroadcastChip, concatenation::ConcatenationChip, mask_neg_inf::MaskNegInfChip, pack::PackChip, pad::PadChip, permute::PermuteChip, reshape::ReshapeChip, resize_nn::ResizeNNChip, rotate::RotateChip, slice::SliceChip, split::SplitChip, transpose::TransposeChip, }, softmax::SoftmaxChip, sqrt::SqrtChip, square::SquareChip, squared_diff::SquaredDiffChip, tanh::TanhChip, update::UpdateChip, }, utils::helpers::print_assigned_arr, }; use super::{ avg_pool_2d::AvgPool2DChip, conv2d::Conv2DChip, layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig, LayerType}, }; pub
struct DAGLayerConfig { pub ops: Vec<LayerConfig>, pub inp_idxes: Vec<Vec<usize>>, pub out_idxes: Vec<Vec<usize>>, pub final_out_idxes: Vec<usize>, } pub struct DAGLayerChip<F: PrimeField + Ord> { dag_config: DAGLayerConfig, _marker: PhantomData<F>, } impl<F: PrimeField + Ord> DAGLayerChip<F> { pub fn construct(dag_config: DAGLayerConfig) -> Self { Self { dag_config, _marker: PhantomData, } } pub fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, _layer_config: &LayerConfig, ) -> Result<(HashMap<usize, AssignedTensor<F>>, Vec<AssignedTensor<F>>), Error> { let mut tensor_map = HashMap::new(); for (idx, tensor) in tensors.iter().enumerate() { tensor_map.insert(idx, tensor.clone()); } for (layer_idx, layer_config) in self.dag_config.ops.iter().enumerate() { let layer_type = &layer_config.layer_type; let inp_idxes = &self.dag_config.inp_idxes[layer_idx]; let out_idxes = &self.dag_config.out_idxes[layer_idx]; println!( "Processing layer {}, type: {:?}, inp_idxes: {:?}, out_idxes: {:?}, layer_params: {:?}", layer_idx, layer_type, inp_idxes, out_idxes, layer_config.layer_params ); let vec_inps = inp_idxes .iter() .map(|idx| tensor_map.get(idx).unwrap().clone()) .collect::<Vec<_>>(); let out = match layer_type { LayerType::Add => { let add_chip = AddChip {}; add_chip.forward( layouter.namespace(|| "dag add"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::AvgPool2D => { let avg_pool_2d_chip = AvgPool2DChip {}; avg_pool_2d_chip.forward( layouter.namespace(|| "dag avg pool 2d"), &vec_inps, constants, gadget_config.clone(),
&layer_config, )? } LayerType::MaxPool2D => { let max_pool_2d_chip = MaxPool2DChip { marker: PhantomData::<F>, }; max_pool_2d_chip.forward( layouter.namespace(|| "dag max pool 2d"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::BatchMatMul => { let batch_mat_mul_chip = BatchMatMulChip {}; batch_mat_mul_chip.forward( layouter.namespace(|| "dag batch mat mul"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Broadcast => { let broadcast_chip = BroadcastChip {}; broadcast_chip.forward( layouter.namespace(|| "dag batch mat mul"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Conv2D => { let conv_2d_chip = Conv2DChip { config: layer_config.clone(), _marker: PhantomData, }; conv_2d_chip.forward( layouter.namespace(|| "dag conv 2d"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::DivFixed => { let div_fixed_chip = DivFixedChip {}; div_fixed_chip.forward( layouter.namespace(|| "dag div"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::DivVar => { let div_var_chip = DivVarChip {}; div_var_chip.forward( layouter.namespace(|| "dag div"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::FullyConnected => { let fc_chip = FullyConnectedChi
p { _marker: PhantomData, config: FullyConnectedConfig::construct(true), }; fc_chip.forward( layouter.namespace(|| "dag fully connected"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Softmax => { let softmax_chip = SoftmaxChip {}; softmax_chip.forward( layouter.namespace(|| "dag softmax"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Mean => { let mean_chip = MeanChip {}; mean_chip.forward( layouter.namespace(|| "dag mean"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Pad => { let pad_chip = PadChip {}; pad_chip.forward( layouter.namespace(|| "dag pad"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Permute => { let pad_chip = PermuteChip {}; pad_chip.forward( layouter.namespace(|| "dag permute"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::SquaredDifference => { let squared_diff_chip = SquaredDiffChip {}; squared_diff_chip.forward( layouter.namespace(|| "dag squared diff"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Rsqrt => { let rsqrt_chip = RsqrtChip {}; rsqrt_chip.forward( layouter.namespace(|| "dag rsqrt"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? }
LayerType::Sqrt => { let sqrt_chip = SqrtChip {}; sqrt_chip.forward( layouter.namespace(|| "dag sqrt"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Logistic => { let logistic_chip = LogisticChip {}; logistic_chip.forward( layouter.namespace(|| "dag logistic"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Pow => { let pow_chip = PowChip {}; pow_chip.forward( layouter.namespace(|| "dag logistic"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Tanh => { let tanh_chip = TanhChip {}; tanh_chip.forward( layouter.namespace(|| "dag tanh"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Mul => { let mul_chip = MulChip {}; mul_chip.forward( layouter.namespace(|| "dag mul"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Sub => { let sub_chip = SubChip {}; sub_chip.forward( layouter.namespace(|| "dag sub"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Noop => { let noop_chip = NoopChip {}; noop_chip.forward( layouter.namespace(|| "dag noop"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Transpose => { let transpose_chip = TransposeChip {}; transpose_chip.forward(
layouter.namespace(|| "dag transpose"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Reshape => { let reshape_chip = ReshapeChip {}; reshape_chip.forward( layouter.namespace(|| "dag reshape"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::ResizeNN => { let resize_nn_chip = ResizeNNChip {}; resize_nn_chip.forward( layouter.namespace(|| "dag resize nn"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Rotate => { let rotate_chip = RotateChip {}; rotate_chip.forward( layouter.namespace(|| "dag rotate"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Concatenation => { let concat_chip = ConcatenationChip {}; concat_chip.forward( layouter.namespace(|| "dag concatenation"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Pack => { let pack_chip = PackChip {}; pack_chip.forward( layouter.namespace(|| "dag pack"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Split => { let split_chip = SplitChip {}; split_chip.forward( layouter.namespace(|| "dag split"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Update => { let split_chip = UpdateChip {}; split_chip.forward( layouter.namespace
(|| "dag update"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Slice => { let slice_chip = SliceChip {}; slice_chip.forward( layouter.namespace(|| "dag slice"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::MaskNegInf => { let mask_neg_inf_chip = MaskNegInfChip {}; mask_neg_inf_chip.forward( layouter.namespace(|| "dag mask neg inf"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } LayerType::Square => { let square_chip = SquareChip {}; square_chip.forward( layouter.namespace(|| "dag square"), &vec_inps, constants, gadget_config.clone(), &layer_config, )? } }; for (idx, tensor_idx) in out_idxes.iter().enumerate() { println!("Out {} shape: {:?}", idx, out[idx].shape()); tensor_map.insert(*tensor_idx, out[idx].clone()); } println!(); } let mut final_out = vec![]; for idx in self.dag_config.final_out_idxes.iter() { final_out.push(tensor_map.get(idx).unwrap().clone()); } let print_arr = if final_out.len() > 0 { &final_out[0] } else { if self.dag_config.ops.len() > 0 { let last_layer_idx = self.dag_config.ops.len() - 1; let out_idx = self.dag_config.out_idxes[last_layer_idx][0]; tensor_map.get(&out_idx).unwrap() } else { tensor_map.get(&0).unwrap() } }; let tmp = print_arr.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); print_assigned_arr("final out", &tmp.to_vec(), gadget_config.scale_factor); println!("final out idxes: {:?}", self.dag_config.final_out_idxes); let mut x = vec![]; for cell in print_arr.iter() {
cell.value().map(|v| { let bias = 1 << 60 as i64; let v_pos = *v + F::from(bias as u64); let v = convert_to_u64(&v_pos) as i64 - bias; x.push(v); }); } if x.len() > 0 { let out_fname = "out.msgpack"; let f = File::create(out_fname).unwrap(); let mut buf = BufWriter::new(f); rmp_serde::encode::write_named(&mut buf, &x).unwrap(); } Ok((tensor_map, final_out)) } } impl<F: PrimeField + Ord> GadgetConsumer for DAGLayerChip<F> { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{ circuit::{AssignedCell, Layouter, Value}, halo2curves::ff::PrimeField, plonk::Error, }; use ndarray::{Array, IxDyn}; use crate::gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, var_div::VarDivRoundChip, }; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; pub
struct DivFixedChip {} impl DivFixedChip { fn get_div_val<F: PrimeField>( &self, mut layouter: impl Layouter<F>, _tensors: &Vec<AssignedTensor<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<AssignedCell<F, F>, Error> { let div = layer_config.layer_params[0]; let div = F::from(div as u64); let div = layouter .assign_region( || "division", |mut region| { let div = region .assign_advice( || "avg pool 2d div", gadget_config.columns[0], 0, || Value::known(div), ) .unwrap(); Ok(div) }, ) .unwrap(); Ok(div) } } impl<F: PrimeField> Layer<F> for DivFixedChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let inp_flat = inp.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let zero = constants.get(&0).unwrap().as_ref(); let shape = inp.shape(); let div = self.get_div_val( layouter.namespace(|| "average div"), tensors, gadget_config.clone(), layer_config, )?; let var_div_chip = VarDivRoundChip::<F>::construct(gadget_config.clone()); let dived = var_div_chip.forward( layouter.namespace(|| "average div"), &vec![inp_flat], &vec![zero, &div], )?; let dived = dived.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); let out = Array::from_shape_vec(IxDyn(shape), dived).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for DivFixedChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![GadgetType::VarDivRound] } }
use std::{collections::HashMap, marker::PhantomData, rc::Rc}; use halo2_proofs::{ circuit::{AssignedCell, Layouter, Region, Value}, halo2curves::ff::PrimeField, plonk::{Advice, Column, Error}, }; use ndarray::{Array, ArrayView, Axis, IxDyn}; use crate::{ gadgets::{ add_pairs::AddPairsChip, dot_prod::DotProductChip, gadget::{Gadget, GadgetConfig, GadgetType}, nonlinear::relu::ReluChip, var_div::VarDivRoundChip, }, layers::layer::ActivationType, utils::helpers::RAND_START_IDX, }; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; pub
struct FullyConnectedConfig { pub normalize: bool, } impl FullyConnectedConfig { pub fn construct(normalize: bool) -> Self { Self { normalize } } } pub struct FullyConnectedChip<F: PrimeField> { pub _marker: PhantomData<F>, pub config: FullyConnectedConfig, } impl<F: PrimeField> FullyConnectedChip<F> { pub fn compute_mm( input: &ArrayView<CellRc<F>, IxDyn>, weight: &AssignedTensor<F>, ) -> Array<Value<F>, IxDyn> { assert_eq!(input.ndim(), 2); assert_eq!(weight.ndim(), 2); assert_eq!(input.shape()[1], weight.shape()[0]); let mut outp = vec![]; for i in 0..input.shape()[0] { for j in 0..weight.shape()[1] { let mut sum = input[[i, 0]].value().map(|x: &F| *x) * weight[[0, j]].value(); for k in 1..input.shape()[1] { sum = sum + input[[i, k]].value().map(|x: &F| *x) * weight[[k, j]].value(); } outp.push(sum); } } let out_shape = [input.shape()[0], weight.shape()[1]]; Array::from_shape_vec(IxDyn(out_shape.as_slice()), outp).unwrap() } pub fn assign_array( columns: &Vec<Column<Advice>>, region: &mut Region<F>, array: &Array<Value<F>, IxDyn>, ) -> Result<Array<AssignedCell<F, F>, IxDyn>, Error> { assert_eq!(array.ndim(), 2); let mut outp = vec![]; for (idx, val) in array.iter().enumerate() { let row_idx = idx / columns.len(); let col_idx = idx % columns.len(); let cell = region .assign_advice(|| "assign array", columns[col_idx], row_idx, || *val) .unwrap(); outp.push(cell); } let out_shape = [array.shape()[0], array.shape()[1]]; Ok(Array::from_shape_vec(IxDyn(out_shape.as_slice()), outp).unwrap()) } pub fn random_vector( constants: &HashMap<i64, CellRc<F>>, size: usize, ) -> Result<Vec<CellRc<F>>, Error> { let mut outp = vec![]; for idx in 0..size { let idx = RAND_START_IDX + (idx as i64); if !constants.contains_key(&idx) { println!("Random vector is too small: {:?}", size);
} let cell = constants.get(&idx).unwrap().clone(); outp.push(cell); } Ok(outp) } fn get_activation(&self, layer_params: &Vec<i64>) -> ActivationType { let activation = layer_params[0]; match activation { 0 => ActivationType::None, 1 => ActivationType::Relu, _ => panic!("Unsupported activation type for fully connected"), } } } impl<F: PrimeField> Layer<F> for FullyConnectedChip<F> { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { assert!(tensors.len() <= 3); let activation = self.get_activation(&layer_config.layer_params); let input = &tensors[0]; let ndim = input.ndim(); let input = if ndim == 2 { ArrayView::from(input) } else { input.index_axis(Axis(0), 0) }; let weight = &tensors[1].t().into_owned(); let zero = constants.get(&0).unwrap().as_ref(); let mm_result = layouter .assign_region( || "compute and assign mm", |mut region| { let mm_result = Self::compute_mm(&input, weight); let mm_result = Self::assign_array(&gadget_config.columns, &mut region, &mm_result).unwrap(); Ok(mm_result) }, ) .unwrap(); let r1 = Self::random_vector(constants, mm_result.shape()[0]).unwrap(); let r2 = Self::random_vector(constants, mm_result.shape()[1]).unwrap(); let dot_prod_chip = DotProductChip::<F>::construct(gadget_config.clone()); let r1_ref = r1.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let r2_ref = r2.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let mut r1_res = vec![]; for i in 0..mm_result.shape()[1] { let tmp = mm_result.index_axis(Axis(1), i); let mm_ci = tmp.iter().collect::<Vec<_>>(); let r1_res_i = dot_prod_chip .forwar
d( layouter.namespace(|| format!("r1_res_{}", i)), &vec![mm_ci, r1_ref.clone()], &vec![zero], ) .unwrap(); r1_res.push(r1_res_i[0].clone()); } let r1_res_ref = r1_res.iter().collect::<Vec<_>>(); let r1_res_r2 = dot_prod_chip .forward( layouter.namespace(|| "r1_res_r2"), &vec![r1_res_ref, r2_ref.clone()], &vec![zero], ) .unwrap(); let r1_res_r2 = r1_res_r2[0].clone(); let mut r1_input = vec![]; for i in 0..input.shape()[1] { let tmp = input.index_axis(Axis(1), i); let input_ci = tmp.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let r1_input_i = dot_prod_chip .forward( layouter.namespace(|| format!("r1_input_{}", i)), &vec![input_ci, r1_ref.clone()], &vec![zero], ) .unwrap(); r1_input.push(r1_input_i[0].clone()); } let mut weight_r2 = vec![]; for i in 0..weight.shape()[0] { let tmp = weight.index_axis(Axis(0), i); let weight_ci = tmp.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let weight_r2_i = dot_prod_chip .forward( layouter.namespace(|| format!("weight_r2_{}", i)), &vec![weight_ci, r2_ref.clone()], &vec![zero], ) .unwrap(); weight_r2.push(weight_r2_i[0].clone()); } let r1_input_ref = r1_input.iter().collect::<Vec<_>>(); let weight_r2_ref = weight_r2.iter().collect::<Vec<_>>(); let r1_inp_weight_r2 = dot_prod_chip .forward( layouter.namespace(|| "r1_inp_weight_r2"), &vec![r1_input_ref, weight_r2_ref], &vec![zero], ) .unwrap(); let r1_inp_weight_r2 = r1_inp_weight_r2[0].clone(); layouter .assign_region( || "fc equality check", |mut region| { let t1 = r1_res_r2 .copy_advice(|| "", &mut region, gadget_config.columns[0], 0) .unwrap(); let t2 = r1_inp_weigh
t_r2 .copy_advice(|| "", &mut region, gadget_config.columns[0], 1) .unwrap(); region.constrain_equal(t1.cell(), t2.cell()).unwrap(); Ok(()) }, ) .unwrap(); let shape = [mm_result.shape()[0], mm_result.shape()[1]]; let final_result_flat = if self.config.normalize { let mm_flat = mm_result.iter().collect::<Vec<_>>(); let var_div_chip = VarDivRoundChip::<F>::construct(gadget_config.clone()); let sf = constants .get(&(gadget_config.scale_factor as i64)) .unwrap() .as_ref(); let mm_div = var_div_chip .forward( layouter.namespace(|| "mm_div"), &vec![mm_flat], &vec![zero, sf], ) .unwrap(); let mm_div = if tensors.len() == 3 { let bias = tensors[2].broadcast(shape.clone()).unwrap(); let bias = bias.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let mm_div = mm_div.iter().collect::<Vec<_>>(); let adder_chip = AddPairsChip::<F>::construct(gadget_config.clone()); let mm_bias = adder_chip .forward( layouter.namespace(|| "mm_bias"), &vec![mm_div, bias], &vec![zero], ) .unwrap(); mm_bias } else { mm_div }; let mm_div = if activation == ActivationType::Relu { let relu_chip = ReluChip::<F>::construct(gadget_config.clone()); let mm_div = mm_div.iter().collect::<Vec<_>>(); let vec_inputs = vec![mm_div]; relu_chip .forward(layouter.namespace(|| "relu"), &vec_inputs, &vec![zero]) .unwrap() } else if activation == ActivationType::None { mm_div } else { panic!("Unsupported activation type"); }; mm_div.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>() } else { mm_result .into_iter() .map(|x| Rc::new(x)) .collect::<Vec<_>>() }; let final_result = Array::from_shape_vec(IxDyn(&shape),
final_result_flat).unwrap(); Ok(vec![final_result]) } } impl<F: PrimeField> GadgetConsumer for FullyConnectedChip<F> { fn used_gadgets(&self, layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { let activation = self.get_activation(&layer_params); let mut outp = vec![ GadgetType::Adder, GadgetType::AddPairs, GadgetType::DotProduct, GadgetType::VarDivRound, GadgetType::InputLookup, ]; match activation { ActivationType::Relu => outp.push(GadgetType::Relu), ActivationType::None => (), _ => panic!("Unsupported activation type"), } outp } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{ circuit::{AssignedCell, Layouter}, halo2curves::ff::PrimeField, plonk::Error, }; use ndarray::{Array, IxDyn}; use crate::gadgets::gadget::{GadgetConfig, GadgetType}; #[derive(Clone, Copy, Debug, Default, Hash, Eq, PartialEq)] pub enum LayerType { Add, AvgPool2D, BatchMatMul, Broadcast, Concatenation, Conv2D, DivVar, DivFixed, FullyConnected, Logistic, MaskNegInf, MaxPool2D, Mean, Mul, #[default] Noop, Pack, Pad, Pow, Permute, Reshape, ResizeNN, Rotate, Rsqrt, Slice, Softmax, Split, Sqrt, Square, SquaredDifference, Sub, Tanh, Transpose, Update, } // NOTE: This is the same order as the TFLite schema // Must not be changed #[derive(Clone, Debug, Default, Hash, Eq, PartialEq)] pub enum ActivationType { #[default] None, Relu, ReluN1To1, Relu6, Tanh, SignBit, } #[derive(Clone, Debug, Default)] pub struct LayerConfig { pub layer_type: LayerType, pub layer_params: Vec<i64>, // This is turned into layer specific configurations at runtime pub inp_shapes: Vec<Vec<usize>>, pub out_shapes: Vec<Vec<usize>>, pub mask: Vec<i64>, } pub type CellRc<F> = Rc<AssignedCell<F, F>>; pub type AssignedTensor<F> = Array<CellRc<F>, IxDyn>; // General issue with rust: I'm not sure how to pass named arguments to a trait... // Currently, the caller must be aware of the order of the tensors and results pub trait Layer<F: PrimeField> { fn forward( &self, layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error>; } pub trait GadgetConsumer { fn used_gadgets(&self, layer_params: Vec<i64>) -> Vec<GadgetType>; }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, IxDyn}; use crate::gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, nonlinear::logistic::LogisticGadgetChip, }; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; #[derive(Clone, Debug)] pub struct LogisticChip {} impl<F: PrimeField> Layer<F> for LogisticChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, _layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let inp_vec = inp.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let zero = constants.get(&0).unwrap().as_ref(); let logistic_chip = LogisticGadgetChip::<F>::construct(gadget_config.clone()); let vec_inps = vec![inp_vec]; let constants = vec![zero]; let out = logistic_chip.forward( layouter.namespace(|| "logistic chip"), &vec_inps, &constants, )?; let out = out.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); let out = Array::from_shape_vec(IxDyn(inp.shape()), out).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for LogisticChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![GadgetType::Logistic, GadgetType::InputLookup] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, IxDyn}; use crate::{ gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, max::MaxChip, }, layers::conv2d::{Conv2DChip, PaddingEnum}, }; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; pub struct MaxPool2DChip<F: PrimeField> { pub marker: std::marker::PhantomData<F>, } impl<F: PrimeField> MaxPool2DChip<F> { pub fn shape(inp: &AssignedTensor<F>, layer_config: &LayerConfig) -> (usize, usize) { let params = &layer_config.layer_params; let (fx, fy) = (params[0], params[1]); let (fx, fy) = (fx as usize, fy as usize); let (sx, sy) = (params[2], params[3]); let (sx, sy) = (sx as usize, sy as usize); assert_eq!(inp.shape()[0], 1); let out_shape = Conv2DChip::<F>::out_hw( inp.shape()[1], inp.shape()[2], sx, sy, fx, fy, PaddingEnum::Valid, ); out_shape } pub fn splat( inp: &AssignedTensor<F>, layer_config: &LayerConfig, ) -> Result<Vec<Vec<CellRc<F>>>, Error> { let params = &layer_config.layer_params; let (fx, fy) = (params[0], params[1]); let (fx, fy) = (fx as usize, fy as usize); let (sx, sy) = (params[2], params[3]); let (sx, sy) = (sx as usize, sy as usize); assert_eq!(inp.shape()[0], 1); let out_shape = Self::shape(inp, layer_config); let mut splat = vec![]; for i in 0..out_shape.0 { for j in 0..out_shape.1 { for k in 0..inp.shape()[3] { let mut tmp = vec![]; for x in 0..fx { for y in 0..fy { let x = i * sx + x; let y = j * sy + y; if x < inp.shape()[1] && y < inp.shape()[2] { tmp.push(inp[[0, x, y, k]].clone()); } } } splat.push(tmp); } } } Ok(splat) } } impl<F: PrimeField> Layer<F> for MaxPool2DChip<F> {
fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, _constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let splat = Self::splat(inp, layer_config).unwrap(); let max_chip = MaxChip::<F>::construct(gadget_config.clone()); let mut out = vec![]; for i in 0..splat.len() { let inps = &splat[i]; let inps = inps.iter().map(|x| x.as_ref()).collect(); let max = max_chip .forward( layouter.namespace(|| format!("max {}", i)), &vec![inps], &vec![], ) .unwrap(); out.push(max[0].clone()); } let out = out.into_iter().map(|x| Rc::new(x)).collect(); let out_xy = Self::shape(inp, layer_config); let out_shape = vec![1, out_xy.0, out_xy.1, inp.shape()[3]]; let out = Array::from_shape_vec(IxDyn(&out_shape), out).unwrap(); Ok(vec![out]) } } impl<F: PrimeField> GadgetConsumer for MaxPool2DChip<F> { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<GadgetType> { vec![GadgetType::Max, GadgetType::InputLookup] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{ circuit::{AssignedCell, Layouter, Value}, halo2curves::ff::PrimeField, plonk::Error, }; use ndarray::{Array, Axis, IxDyn}; use crate::gadgets::gadget::{GadgetConfig, GadgetType}; use super::{ averager::Averager, layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}, }; pub
struct MeanChip {} impl MeanChip { pub fn get_keep_axis(&self, layer_config: &LayerConfig) -> usize { let inp_shape = &layer_config.inp_shapes[0]; let out_shape = &layer_config.out_shapes[0]; assert_eq!(inp_shape[0], 1); assert_eq!(out_shape[0], 1); let mut keep_axes = (1..inp_shape.len()).collect::<Vec<_>>(); for mean_axis in layer_config.layer_params.iter() { keep_axes.retain(|&x| x != *mean_axis as usize); } assert_eq!(keep_axes.len(), 1); keep_axes[0] /* let mut num_same = 0; let mut keep_axis: i64 = -1; for i in 1..inp_shape.len() { if inp_shape[i] == out_shape[i] { keep_axis = i as i64; num_same += 1; } } if keep_axis == -1 { panic!("All axes are different"); } if num_same > 1 { panic!("More than one axis is the same"); } keep_axis as usize */ } } impl<F: PrimeField> Averager<F> for MeanChip { fn splat(&self, input: &AssignedTensor<F>, layer_config: &LayerConfig) -> Vec<Vec<CellRc<F>>> { assert_eq!(input.shape()[0], 1); let keep_axis = self.get_keep_axis(layer_config); let mut splat = vec![]; for i in 0..input.shape()[keep_axis] { let mut tmp = vec![]; for x in input.index_axis(Axis(keep_axis), i).iter() { tmp.push(x.clone()); } splat.push(tmp); } splat } fn get_div_val( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<AssignedCell<F, F>, Error> { let inp = &tensors[0]; let keep_axis = self.get_keep_axis(layer_config); let mut div = 1; for i in 0..inp.shape().len() { if i != keep_axis { div *= inp.shape()[i]; } } let div = F::from(div as u64); let div = layouter.assign_region( || "mean div", |mut region| { let div = region.assign_advice( || "mean div", gadget_config.columns[0],
0, || Value::known(div), )?; Ok(div) }, )?; Ok(div) } } impl<F: PrimeField> Layer<F> for MeanChip { fn forward( &self, layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let dived = self.avg_forward(layouter, tensors, constants, gadget_config, layer_config)?; let out_shape = layer_config.out_shapes[0] .iter() .map(|x| *x as usize) .collect::<Vec<_>>(); let out = Array::from_shape_vec(IxDyn(&out_shape), dived).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for MeanChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![ GadgetType::Adder, GadgetType::VarDivRound, GadgetType::InputLookup, ] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use crate::gadgets::gadget::GadgetConfig; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; pub struct NoopChip {} impl<F: PrimeField> Layer<F> for NoopChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, _constants: &HashMap<i64, CellRc<F>>, _gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let ret_idx = layer_config.layer_params[0] as usize; Ok(vec![tensors[ret_idx].clone()]) } } impl GadgetConsumer for NoopChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, IxDyn}; use crate::gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, nonlinear::pow::PowGadgetChip, }; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; #[derive(Clone, Debug)] pub struct PowChip {} impl<F: PrimeField> Layer<F> for PowChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, _layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let inp_vec = inp.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let zero = constants.get(&0).unwrap().as_ref(); let pow_chip = PowGadgetChip::<F>::construct(gadget_config.clone()); let vec_inps = vec![inp_vec]; let constants = vec![zero]; let out = pow_chip.forward(layouter.namespace(|| "pow chip"), &vec_inps, &constants)?; let out = out.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); let out = Array::from_shape_vec(IxDyn(inp.shape()), out).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for PowChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![GadgetType::Pow, GadgetType::InputLookup] } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, IxDyn}; use crate::gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, nonlinear::rsqrt::RsqrtGadgetChip, }; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; pub
struct RsqrtChip {} impl<F: PrimeField> Layer<F> for RsqrtChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let mut inp_vec = vec![]; let mask = &layer_config.mask; let mut mask_map = HashMap::new(); for i in 0..mask.len() / 2 { mask_map.insert(mask[2 * i], mask[2 * i + 1]); } let min_val = gadget_config.min_val; let min_val = constants.get(&min_val).unwrap().as_ref(); let max_val = gadget_config.max_val; let max_val = constants.get(&max_val).unwrap().as_ref(); for (i, val) in inp.iter().enumerate() { let i = i as i64; if mask_map.contains_key(&i) { let mask_val = *mask_map.get(&i).unwrap(); if mask_val == 1 { inp_vec.push(max_val); } else if mask_val == -1 { inp_vec.push(min_val); } else { panic!(); } } else { inp_vec.push(val.as_ref()); } } let zero = constants.get(&0).unwrap().as_ref(); let rsqrt_chip = RsqrtGadgetChip::<F>::construct(gadget_config.clone()); let vec_inps = vec![inp_vec]; let constants = vec![zero, min_val, max_val]; let out = rsqrt_chip.forward(layouter.namespace(|| "rsqrt chip"), &vec_inps, &constants)?; let out = out.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); let out = Array::from_shape_vec(IxDyn(inp.shape()), out).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for RsqrtChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![GadgetType::Rsqrt, GadgetType::InputLookup] } }
pub mod broadcast; pub mod concatenation; pub mod mask_neg_inf; pub mod pack; pub mod pad; pub mod permute; pub mod reshape; pub mod resize_nn; pub mod rotate; pub mod slice; pub mod split; pub mod transpose;
// // Broadcast is used as a temporary measure to represent a the backprop // of a full-kernel AvgPool2D // use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::Array; use crate::{ gadgets::gadget::GadgetConfig, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::super::layer::{Layer, LayerConfig}; pub struct BroadcastChip {} // TODO: Fix this after demo impl<F: PrimeField> Layer<F> for BroadcastChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, _constants: &HashMap<i64, CellRc<F>>, _gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let shape = inp.shape(); let output_shape = layer_config.out_shapes[0].clone(); // Check that we only broadcast dimensions with shape 1 assert!(shape.len() == output_shape.len()); assert!(shape.len() == 4); for (inp, outp) in shape.iter().zip(output_shape.iter()) { if *inp != *outp && !(*inp == 1) { panic!(); } } let mut output_flat = vec![]; for i in 0..output_shape[0] { for j in 0..output_shape[1] { for k in 0..output_shape[2] { for l in 0..output_shape[3] { let indexes = [i, j, k, l] .iter() .enumerate() .map(|(idx, x)| if shape[idx] == 1 { 0 } else { *x }) .collect::<Vec<_>>(); output_flat.push(inp[[indexes[0], indexes[1], indexes[2], indexes[3]]].clone()); } } } } println!("Broadcast : {:?} -> {:?}", inp.shape(), output_shape); let out = Array::from_shape_vec(output_shape, output_flat).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for BroadcastChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{concatenate, Axis}; use crate::{ gadgets::gadget::{GadgetConfig, GadgetType}, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::super::layer::{Layer, LayerConfig}; pub struct ConcatenationChip {} impl<F: PrimeField> Layer<F> for ConcatenationChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, _constants: &HashMap<i64, CellRc<F>>, _gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let axis = layer_config.layer_params[0] as usize; let views = tensors.iter().map(|x| x.view()).collect::<Vec<_>>(); // TODO: this is a bit of a hack let out = concatenate(Axis(axis), views.as_slice()).unwrap_or(tensors[0].clone()); Ok(vec![out]) } } impl GadgetConsumer for ConcatenationChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, IxDyn}; use crate::{ gadgets::gadget::GadgetConfig, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::super::layer::{Layer, LayerConfig}; pub struct MaskNegInfChip {} impl<F: PrimeField> Layer<F> for MaskNegInfChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let mask_ndim = layer_config.layer_params[0] as usize; let mask_shape = layer_config.layer_params[1..mask_ndim + 1] .iter() .map(|x| *x as usize) .collect::<Vec<_>>(); let mask_vec = layer_config.layer_params[mask_ndim + 1..].to_vec(); let mask = Array::from_shape_vec(IxDyn(&mask_shape), mask_vec).unwrap(); let mask = mask.broadcast(inp.raw_dim()).unwrap(); let min_val = gadget_config.min_val; let min_val = constants.get(&min_val).unwrap().clone(); let mut out_vec = vec![]; for (val, to_mask) in inp.iter().zip(mask.iter()) { if *to_mask == 0 { out_vec.push(val.clone()); } else { out_vec.push(min_val.clone()); } } let outp = Array::from_shape_vec(inp.raw_dim(), out_vec).unwrap(); Ok(vec![outp]) } } impl GadgetConsumer for MaskNegInfChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{concatenate, Axis}; use crate::{ gadgets::gadget::{GadgetConfig, GadgetType}, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::super::layer::{Layer, LayerConfig}; pub struct PackChip {} impl<F: PrimeField> Layer<F> for PackChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, _constants: &HashMap<i64, CellRc<F>>, _gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let axis = layer_config.layer_params[0] as usize; if axis > 1 { panic!("Pack only supports axis=0 or axis=1"); } let expanded = tensors .into_iter() .map(|x| x.clone().insert_axis(Axis(axis))) .collect::<Vec<_>>(); let views = expanded.iter().map(|x| x.view()).collect::<Vec<_>>(); // TODO: in some cases, the pack is unnecessary. Simply return the first tensor in this case let out = concatenate(Axis(axis), views.as_slice()).unwrap_or(tensors[0].clone()); Ok(vec![out]) } } impl GadgetConsumer for PackChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{ circuit::{AssignedCell, Layouter}, halo2curves::ff::PrimeField, plonk::Error, }; use ndarray::{Array, Axis, IxDyn, Slice}; use crate::{ gadgets::gadget::GadgetConfig, layers::layer::{AssignedTensor, GadgetConsumer}, }; use super::super::layer::{Layer, LayerConfig}; pub fn pad<G: Clone>( input: &Array<Rc<G>, IxDyn>, padding: Vec<[usize; 2]>, pad_val: &Rc<G>, ) -> Array<Rc<G>, IxDyn> { let tmp = input.iter().collect(); let input = Array::from_shape_vec(input.raw_dim(), tmp).unwrap(); assert_eq!(input.ndim(), padding.len()); let mut padded_shape = input.raw_dim(); for (ax, (&ax_len, &[pad_lo, pad_hi])) in input.shape().iter().zip(&padding).enumerate() { padded_shape[ax] = ax_len + pad_lo + pad_hi; } let mut padded = Array::from_elem(padded_shape, pad_val); let padded_dim = padded.raw_dim(); { let mut orig_portion = padded.view_mut(); for (ax, &[pad_lo, pad_hi]) in padding.iter().enumerate() { orig_portion.slice_axis_inplace( Axis(ax), Slice::from(pad_lo as isize..padded_dim[ax] as isize - (pad_hi as isize)), ); } orig_portion.assign(&input.view()); } let dim = padded.raw_dim(); let tmp = padded.into_iter().map(|x| x.clone()).collect(); let padded = Array::from_shape_vec(dim, tmp).unwrap(); padded } pub
struct PadChip {} pub
struct PadConfig { pub padding: Vec<[usize; 2]>, } impl PadChip { pub fn param_vec_to_config(layer_params: Vec<i64>) -> PadConfig { assert!(layer_params.len() % 2 == 0); let padding = layer_params .chunks(2) .map(|chunk| [chunk[0] as usize, chunk[1] as usize]) .collect(); PadConfig { padding } } } impl<F: PrimeField> Layer<F> for PadChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, Rc<AssignedCell<F, F>>>, _gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let input = &tensors[0]; let zero = constants.get(&0).unwrap().clone(); let padding = PadChip::param_vec_to_config(layer_config.layer_params.clone()); let padded = pad(input, padding.padding, &zero); Ok(vec![padded]) } } impl GadgetConsumer for PadChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::IxDyn; use crate::{ gadgets::gadget::GadgetConfig, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::super::layer::{Layer, LayerConfig}; pub struct PermuteChip {} impl<F: PrimeField> Layer<F> for PermuteChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, _constants: &HashMap<i64, CellRc<F>>, _gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let params = &layer_config .layer_params .iter() .map(|x| *x as usize) .collect::<Vec<_>>()[..]; assert!(inp.ndim() == params.len()); let out = inp.clone(); let out = out.permuted_axes(IxDyn(params)); Ok(vec![out]) } } impl GadgetConsumer for PermuteChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::Array; use crate::{ gadgets::gadget::GadgetConfig, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::super::layer::{Layer, LayerConfig}; pub struct ReshapeChip {} impl<F: PrimeField> Layer<F> for ReshapeChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, _constants: &HashMap<i64, CellRc<F>>, _gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let shape = layer_config.out_shapes[0].clone(); println!("Reshape: {:?} -> {:?}", inp.shape(), shape); let flat = inp.iter().map(|x| x.clone()).collect(); let out = Array::from_shape_vec(shape, flat).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for ReshapeChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, IxDyn}; use crate::{ gadgets::gadget::GadgetConfig, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::super::layer::{Layer, LayerConfig}; pub struct ResizeNNChip {} // TODO: this does not work in general impl<F: PrimeField> Layer<F> for ResizeNNChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, _constants: &HashMap<i64, CellRc<F>>, _gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let output_shape = layer_config.out_shapes[0].clone(); assert_eq!(inp.ndim(), 4); assert_eq!(inp.shape()[0], 1); assert_eq!(inp.shape()[3], output_shape[3]); let mut flat = vec![]; // Do nearest neighbor interpolation over batch, h, w, c // The interpolation is over h and w for b in 0..inp.shape()[0] { for h in 0..output_shape[1] { let h_in = (h as f64 * (inp.shape()[1] as f64 / output_shape[1] as f64)) as usize; for w in 0..output_shape[2] { let w_in = (w as f64 * (inp.shape()[2] as f64 / output_shape[2] as f64)) as usize; for c in 0..inp.shape()[3] { flat.push(inp[[b, h_in, w_in, c]].clone()); } } } } let outp = Array::from_shape_vec(IxDyn(&output_shape), flat).unwrap(); Ok(vec![outp]) } } impl GadgetConsumer for ResizeNNChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![] } }
// TODO: The implementation is not ideal. use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use crate::{ gadgets::gadget::GadgetConfig, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::super::layer::{Layer, LayerConfig}; pub struct RotateChip {} // Example: // input: // [1 2 3 4] // [5 6 7 8] // // params: [1] -- flip axis 1 only // output: // [4 3 2 1] // [8 7 6 5] impl<F: PrimeField> Layer<F> for RotateChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, _constants: &HashMap<i64, CellRc<F>>, _gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let params = &layer_config.layer_params; assert!(inp.shape().len() == 4); let mut flip = vec![false; 4]; for p in params { flip[*p as usize] = true; } let shape = inp.shape(); println!("Rotate: {:?} -> {:?}", inp.shape(), shape); let mut out = inp.clone(); for i in 0..shape[0] { for j in 0..shape[1] { for k in 0..shape[2] { for l in 0..shape[3] { let [ix, jx, kx, lx]: [usize; 4] = [i, j, k, l] .iter() .enumerate() .map(|(idx, x)| if flip[idx] { shape[idx] - 1 - *x } else { *x }) .collect::<Vec<_>>() .try_into() .unwrap(); out[[ix, jx, kx, lx]] = inp[[i, j, k, l]].clone(); } } } } Ok(vec![out]) } } impl GadgetConsumer for RotateChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::Slice; use crate::{ gadgets::gadget::{GadgetConfig, GadgetType}, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::super::layer::{Layer, LayerConfig}; pub struct SliceChip {} impl<F: PrimeField> Layer<F> for SliceChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, _constants: &HashMap<i64, CellRc<F>>, _gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let params = &layer_config.layer_params; assert_eq!(params.len() % 2, 0); let num_axes = params.len() / 2; let starts = &params[0..num_axes]; let sizes = &params[num_axes..]; let inp = &tensors[0]; let outp = inp.slice_each_axis(|ax| { let start = starts[ax.axis.0] as usize; let size = sizes[ax.axis.0]; if size == -1 { Slice::from(start..) } else { Slice::from(start..(start + size as usize)) } }); Ok(vec![outp.to_owned()]) } } impl GadgetConsumer for SliceChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Axis, Slice}; use crate::{ gadgets::gadget::{GadgetConfig, GadgetType}, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::super::layer::{Layer, LayerConfig}; pub struct SplitChip {} impl<F: PrimeField> Layer<F> for SplitChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, _constants: &HashMap<i64, CellRc<F>>, _gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let axis = layer_config.layer_params[0] as usize; let num_splits = layer_config.layer_params[1] as usize; let inp = &tensors[1]; let mut out = vec![]; let split_len = inp.shape()[axis] / num_splits; for i in 0..num_splits { let slice = inp .slice_axis( Axis(axis), Slice::from((i * split_len)..((i + 1) * split_len)), ) .to_owned(); out.push(slice.to_owned()); } Ok(out) } } impl GadgetConsumer for SplitChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, IxDyn}; use crate::{ gadgets::gadget::GadgetConfig, layers::layer::{AssignedTensor, CellRc, GadgetConsumer}, }; use super::super::layer::{Layer, LayerConfig}; pub struct TransposeChip {} impl<F: PrimeField> Layer<F> for TransposeChip { fn forward( &self, _layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, _constants: &HashMap<i64, CellRc<F>>, _gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { assert_eq!(layer_config.layer_params.len() % 2, 0); let ndim = layer_config.layer_params.len() / 2; let inp_shape = layer_config.layer_params[0..ndim] .to_vec() .iter() .map(|x| *x as usize) .collect::<Vec<_>>(); let permutation = layer_config.layer_params[ndim..] .to_vec() .iter() .map(|x| *x as usize) .collect::<Vec<_>>(); let inp = &tensors[0]; // Required because of memory layout issues let inp_flat = inp.iter().cloned().collect::<Vec<_>>(); let inp = Array::from_shape_vec(IxDyn(&inp_shape), inp_flat).unwrap(); let inp = inp.permuted_axes(IxDyn(&permutation)); Ok(vec![inp]) } } impl GadgetConsumer for TransposeChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![] } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{ circuit::{AssignedCell, Layouter}, halo2curves::ff::PrimeField, plonk::Error, }; use ndarray::{s, Array, IxDyn}; use crate::gadgets::{ adder::AdderChip, gadget::{Gadget, GadgetConfig, GadgetType}, max::MaxChip, nonlinear::exp::ExpGadgetChip, sub_pairs::SubPairsChip, var_div_big3::VarDivRoundBig3Chip, }; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; pub
struct SoftmaxChip {} impl SoftmaxChip { pub fn softmax_flat<F: PrimeField>( mut layouter: impl Layouter<F>, constants: &HashMap<i64, CellRc<F>>, inp_flat: Vec<&AssignedCell<F, F>>, gadget_config: Rc<GadgetConfig>, mask: &Vec<i64>, ) -> Result<Vec<AssignedCell<F, F>>, Error> { let exp_chip = ExpGadgetChip::<F>::construct(gadget_config.clone()); let adder_chip = AdderChip::<F>::construct(gadget_config.clone()); let sub_pairs_chip = SubPairsChip::<F>::construct(gadget_config.clone()); let max_chip = MaxChip::<F>::construct(gadget_config.clone()); let var_div_big_chip = VarDivRoundBig3Chip::<F>::construct(gadget_config.clone()); let zero = constants.get(&0).unwrap().as_ref(); let sf = constants .get(&(gadget_config.scale_factor as i64)) .unwrap() .as_ref(); let inp_take = inp_flat .iter() .enumerate() .filter(|(i, _)| mask[*i] == 0) .map(|(_, x)| *x) .collect::<Vec<_>>(); let max = max_chip .forward( layouter.namespace(|| format!("max")), &vec![inp_take.clone()], &vec![zero], ) .unwrap(); let max = &max[0]; let max_flat = vec![max; inp_take.len()]; let sub = sub_pairs_chip.forward( layouter.namespace(|| format!("sub")), &vec![inp_take, max_flat], &vec![zero], )?; let sub = sub.iter().collect::<Vec<_>>(); let exp_slice = exp_chip.forward( layouter.namespace(|| format!("exp")), &vec![sub], &vec![zero], )?; let sum = adder_chip.forward( layouter.namespace(|| format!("sum")), &vec![exp_slice.iter().collect()], &vec![zero], )?; let sum = sum[0].clone(); let sum_div_sf = var_div_big_chip.forward( layouter.namespace(|| format!("sum div sf")), &vec![vec![&sum]], &vec![zero, sf], )?; let sum_div_sf = sum_div_sf[0].clone(); let dived = var_div_big_chip.forward( layouter.namespace(|| format!("div")), &vec![e
xp_slice.iter().collect()], &vec![zero, &sum_div_sf], )?; let mut div_idx = 0; let dived = mask .iter() .map(|x| { if *x == 1 { zero.clone() } else { let tmp = dived[div_idx].clone(); div_idx = div_idx + 1; tmp } }) .collect(); Ok(dived) } } impl<F: PrimeField> Layer<F> for SoftmaxChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; assert!(inp.ndim() == 2 || inp.ndim() == 3 || inp.ndim() == 4); if inp.ndim() == 4 { assert_eq!(inp.shape()[0], 1); } let inp_shape = inp.shape().iter().map(|x| *x).collect::<Vec<_>>(); let mask = if layer_config.layer_params.len() == 0 { Array::from_shape_fn(IxDyn(&inp_shape), |_| 0) } else { let mask_shape_len = layer_config.layer_params[0] as usize; let mask_shape = layer_config.layer_params[1..(1 + mask_shape_len)] .iter() .map(|x| *x as usize) .collect::<Vec<_>>(); let mask = layer_config.layer_params[(1 + mask_shape_len)..].to_vec(); let mask = Array::from_shape_vec(IxDyn(&mask_shape), mask).unwrap(); let mask = mask.broadcast(IxDyn(&inp_shape)).unwrap().to_owned(); mask }; let shape = if inp.ndim() == 2 || inp.ndim() == 3 { inp.shape().iter().map(|x| *x).collect::<Vec<_>>() } else { vec![inp.shape()[1], inp.shape()[2], inp.shape()[3]] }; let inp = inp.to_owned().into_shape(shape.clone()).unwrap(); let mask = mask.into_shape(shape.clone()).unwrap(); let mut outp = vec![]; if inp.ndim() == 2 { for i in 0..shape[0] { let inp_slice = inp.slice(s![i, ..]); let inp_flat = inp_slice.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let mask_slice = mask.slice(s![i, .
.]); let mask_flat = mask_slice.iter().map(|x| *x as i64).collect::<Vec<_>>(); let dived = Self::softmax_flat( layouter.namespace(|| format!("softmax {}", i)), constants, inp_flat, gadget_config.clone(), &mask_flat, ) .unwrap(); outp.extend(dived); } } else if inp.ndim() == 3 { for i in 0..shape[0] { for j in 0..shape[1] { let inp_slice = inp.slice(s![i, j, ..]); let inp_flat = inp_slice.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let mask_slice = mask.slice(s![i, j, ..]); let mask_flat = mask_slice.iter().map(|x| *x as i64).collect::<Vec<_>>(); let dived = Self::softmax_flat( layouter.namespace(|| format!("softmax {} {}", i, j)), constants, inp_flat, gadget_config.clone(), &mask_flat, ) .unwrap(); outp.extend(dived); } } } else { panic!("Not implemented"); } let outp = outp.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); let outp = Array::from_shape_vec(IxDyn(inp.shape()), outp).unwrap(); Ok(vec![outp]) } } impl GadgetConsumer for SoftmaxChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![ GadgetType::Exp, GadgetType::Adder, GadgetType::VarDivRoundBig3, GadgetType::Max, GadgetType::SubPairs, GadgetType::InputLookup, ] } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, IxDyn}; use crate::gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, nonlinear::sqrt::SqrtGadgetChip, }; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; pub
struct SqrtChip {} impl<F: PrimeField> Layer<F> for SqrtChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let mut inp_vec = vec![]; let mask = &layer_config.mask; let mut mask_map = HashMap::new(); for i in 0..mask.len() / 2 { mask_map.insert(mask[2 * i], mask[2 * i + 1]); } let min_val = gadget_config.min_val; let min_val = constants.get(&min_val).unwrap().as_ref(); let max_val = gadget_config.max_val; let max_val = constants.get(&max_val).unwrap().as_ref(); for (i, val) in inp.iter().enumerate() { let i = i as i64; if mask_map.contains_key(&i) { let mask_val = *mask_map.get(&i).unwrap(); if mask_val == 1 { inp_vec.push(max_val); } else if mask_val == -1 { inp_vec.push(min_val); } else { panic!(); } } else { inp_vec.push(val.as_ref()); } } let zero = constants.get(&0).unwrap().as_ref(); let sqrt_chip = SqrtGadgetChip::<F>::construct(gadget_config.clone()); let vec_inps = vec![inp_vec]; let constants = vec![zero, min_val, max_val]; let out = sqrt_chip.forward(layouter.namespace(|| "sqrt chip"), &vec_inps, &constants)?; let out = out.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); let out = Array::from_shape_vec(IxDyn(inp.shape()), out).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for SqrtChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![GadgetType::Sqrt, GadgetType::InputLookup] } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, IxDyn}; use crate::gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, square::SquareGadgetChip, var_div::VarDivRoundChip, }; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; #[derive(Clone, Debug)] pub struct SquareChip {} impl<F: PrimeField> Layer<F> for SquareChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, _layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { assert_eq!(tensors.len(), 1); let inp = &tensors[0]; let zero = constants.get(&0).unwrap().as_ref(); let square_chip = SquareGadgetChip::<F>::construct(gadget_config.clone()); let inp_vec = inp.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let vec_inputs = vec![inp_vec]; let single_inps = vec![zero]; let out = square_chip.forward( layouter.namespace(|| "square chip"), &vec_inputs, &single_inps, )?; let var_div_chip = VarDivRoundChip::<F>::construct(gadget_config.clone()); let div = constants .get(&(gadget_config.scale_factor as i64)) .unwrap() .as_ref(); let single_inps = vec![zero, div]; let out = out.iter().collect::<Vec<_>>(); let vec_inputs = vec![out]; let out = var_div_chip.forward( layouter.namespace(|| "var div chip"), &vec_inputs, &single_inps, )?; let out = out.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); let out = Array::from_shape_vec(IxDyn(inp.shape()), out).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for SquareChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![ GadgetType::Square, GadgetType::VarDivRound, GadgetType::InputLookup, ] } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, IxDyn}; use crate::{ gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, squared_diff::SquaredDiffGadgetChip, var_div::VarDivRoundChip, }, utils::helpers::broadcast, }; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; pub
struct SquaredDiffChip {} impl<F: PrimeField> Layer<F> for SquaredDiffChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, _layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { assert_eq!(tensors.len(), 2); let inp1 = &tensors[0]; let inp2 = &tensors[1]; let (inp1, inp2) = broadcast(inp1, inp2); let zero = constants.get(&0).unwrap().as_ref(); let sq_diff_chip = SquaredDiffGadgetChip::<F>::construct(gadget_config.clone()); let inp1_vec = inp1.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let inp2_vec = inp2.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let vec_inputs = vec![inp1_vec, inp2_vec]; let tmp_constants = vec![zero]; let out = sq_diff_chip.forward( layouter.namespace(|| "sq diff chip"), &vec_inputs, &tmp_constants, )?; let var_div_chip = VarDivRoundChip::<F>::construct(gadget_config.clone()); let div = constants .get(&(gadget_config.scale_factor as i64)) .unwrap() .as_ref(); let single_inputs = vec![zero, div]; let out = out.iter().map(|x| x).collect::<Vec<_>>(); let out = var_div_chip.forward( layouter.namespace(|| "sq diff div"), &vec![out], &single_inputs, )?; let out = out.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); let out = Array::from_shape_vec(IxDyn(inp1.shape()), out).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for SquaredDiffChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![ GadgetType::SquaredDiff, GadgetType::VarDivRound, GadgetType::InputLookup, ] } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, IxDyn}; use crate::gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, nonlinear::tanh::TanhGadgetChip, }; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; #[derive(Clone, Debug)] pub struct TanhChip {} impl<F: PrimeField> Layer<F> for TanhChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, _layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let inp = &tensors[0]; let inp_vec = inp.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); let zero = constants.get(&0).unwrap().as_ref(); let tanh_chip = TanhGadgetChip::<F>::construct(gadget_config.clone()); let vec_inps = vec![inp_vec]; let constants = vec![zero]; let out = tanh_chip.forward(layouter.namespace(|| "tanh chip"), &vec_inps, &constants)?; let out = out.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); let out = Array::from_shape_vec(IxDyn(inp.shape()), out).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for TanhChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![GadgetType::Tanh, GadgetType::InputLookup] } }
use std::{collections::HashMap, rc::Rc, vec}; use halo2_proofs::{circuit::Layouter, halo2curves::ff::PrimeField, plonk::Error}; use ndarray::{Array, IxDyn}; use crate::gadgets::{ gadget::{Gadget, GadgetConfig, GadgetType}, update::UpdateGadgetChip, }; use super::layer::{AssignedTensor, CellRc, GadgetConsumer, Layer, LayerConfig}; #[derive(Clone, Debug)] pub struct UpdateChip {} impl<F: PrimeField + Ord> Layer<F> for UpdateChip { fn forward( &self, mut layouter: impl Layouter<F>, tensors: &Vec<AssignedTensor<F>>, constants: &HashMap<i64, CellRc<F>>, gadget_config: Rc<GadgetConfig>, _layer_config: &LayerConfig, ) -> Result<Vec<AssignedTensor<F>>, Error> { let w = &tensors[0]; let dw = &tensors[1]; let zero = constants.get(&0).unwrap().as_ref(); let update_chip = UpdateGadgetChip::<F>::construct((*gadget_config).clone()); let flattened_w = w.into_iter().map(|x| (**x).clone()).collect::<Vec<_>>(); let flattened_dw = dw.into_iter().map(|x| (**x).clone()).collect::<Vec<_>>(); let flattened_w_ref = flattened_w.iter().collect::<Vec<_>>(); let flattened_dw_ref = flattened_dw.iter().collect::<Vec<_>>(); let vec_inps = vec![flattened_w_ref, flattened_dw_ref]; let constants = vec![zero]; let out = update_chip.forward(layouter.namespace(|| "update chip"), &vec_inps, &constants)?; let out = out.into_iter().map(|x| Rc::new(x)).collect::<Vec<_>>(); let out = Array::from_shape_vec(IxDyn(w.shape()), out).unwrap(); Ok(vec![out]) } } impl GadgetConsumer for UpdateChip { fn used_gadgets(&self, _layer_params: Vec<i64>) -> Vec<crate::gadgets::gadget::GadgetType> { vec![GadgetType::Update] } }
#![feature(int_roundings)] pub mod commitments; pub mod gadgets; pub mod layers; pub mod model; pub mod utils;
use std::{ collections::{BTreeMap, BTreeSet, HashMap}, marker::PhantomData, rc::Rc, sync::{Arc, Mutex}, }; use halo2_proofs::{ circuit::{Layouter, SimpleFloorPlanner, Value}, halo2curves::ff::{FromUniformBytes, PrimeField}, plonk::{Advice, Circuit, Column, ConstraintSystem, Error, Instance}, }; use lazy_static::lazy_static; use ndarray::{Array, IxDyn}; use num_bigint::BigUint; use crate::{ commitments::{ commit::Commit, packer::PackerChip, poseidon_commit::{PoseidonCommitChip, L, RATE, WIDTH}, }, gadgets::{ add_pairs::AddPairsChip, adder::AdderChip, bias_div_round_relu6::BiasDivRoundRelu6Chip, dot_prod::DotProductChip, gadget::{Gadget, GadgetConfig, GadgetType}, input_lookup::InputLookupChip, max::MaxChip, mul_pairs::MulPairsChip, nonlinear::{exp::ExpGadgetChip, pow::PowGadgetChip, relu::ReluChip, tanh::TanhGadgetChip}, nonlinear::{logistic::LogisticGadgetChip, rsqrt::RsqrtGadgetChip, sqrt::SqrtGadgetChip}, sqrt_big::SqrtBigChip, square::SquareGadgetChip, squared_diff::SquaredDiffGadgetChip, sub_pairs::SubPairsChip, update::UpdateGadgetChip, var_div::VarDivRoundChip, var_div_big::VarDivRoundBigChip, var_div_big3::VarDivRoundBig3Chip, }, layers::{ arithmetic::{add::AddChip, div_var::DivVarChip, mul::MulChip, sub::SubChip}, avg_pool_2d::AvgPool2DChip, batch_mat_mul::BatchMatMulChip, conv2d::Conv2DChip, dag::{DAGLayerChip, DAGLayerConfig}, fully_connected::{FullyConnectedChip, FullyConnectedConfig}, layer::{AssignedTensor, CellRc, GadgetConsumer, LayerConfig, LayerType}, logistic::LogisticChip, max_pool_2d::MaxPool2DChip, mean::MeanChip, noop::NoopChip, pow::PowChip, rsqrt::RsqrtChip, shape::{ broadcast::BroadcastChip, concatenation::ConcatenationChip, mask_neg_inf::MaskNegInfChip, pack::PackChip, pad::PadChip, permute::PermuteChip, reshape::ReshapeChip, resize_nn::ResizeNNChip, rotate::RotateChip, slice::SliceChip, split::SplitChip,
transpose::TransposeChip, }, softmax::SoftmaxChip, sqrt::SqrtChip, square::SquareChip, squared_diff::SquaredDiffChip, tanh::TanhChip, update::UpdateChip, }, utils::{ helpers::{convert_to_bigint, RAND_START_IDX}, loader::{load_model_msgpack, ModelMsgpack}, }, }; lazy_static! { pub static ref GADGET_CONFIG: Mutex<GadgetConfig> = Mutex::new(GadgetConfig::default()); pub static ref PUBLIC_VALS: Mutex<Vec<BigUint>> = Mutex::new(vec![]); } pub struct ModelCircuit<F: PrimeField> { pub used_gadgets: Arc<BTreeSet<GadgetType>>, pub dag_config: DAGLayerConfig, pub tensors: BTreeMap<i64, Array<F, IxDyn>>, pub commit_before: Vec<Vec<i64>>, pub commit_after: Vec<Vec<i64>>, pub k: usize, pub bits_per_elem: usize, pub inp_idxes: Vec<i64>, pub num_random: i64, } pub struct ModelConfig<F: PrimeField + Ord + FromUniformBytes<64>> { pub gadget_config: Rc<GadgetConfig>, pub public_col: Column<Instance>, pub hasher: Option<PoseidonCommitChip<F, WIDTH, RATE, L>>, pub _marker: PhantomData<F>, } impl<F: PrimeField + Ord + FromUniformBytes<64>> ModelCircuit<F> { pub fn assign_tensors_map( &self, mut layouter: impl Layouter<F>, columns: &Vec<Column<Advice>>, tensors: &BTreeMap<i64, Array<F, IxDyn>>, ) -> Result<BTreeMap<i64, AssignedTensor<F>>, Error> { let tensors = layouter.assign_region( || "asssignment", |mut region| { let mut cell_idx = 0; let mut assigned_tensors = BTreeMap::new(); for (tensor_idx, tensor) in tensors.iter() { let mut flat = vec![]; for val in tensor.iter() { let row_idx = cell_idx / columns.len(); let col_idx = cell_idx % columns.len(); let cell = region .assign_advice( || "assignment", columns[col_idx], row_idx, || Value::known(*val), ) .unwrap(); flat.push(Rc::new(cell)); cell_idx += 1;
} let tensor = Array::from_shape_vec(tensor.shape(), flat).unwrap(); assigned_tensors.insert(*tensor_idx, tensor); } Ok(assigned_tensors) }, )?; Ok(tensors) } pub fn tensor_map_to_vec( &self, tensor_map: &BTreeMap<i64, Array<CellRc<F>, IxDyn>>, ) -> Result<Vec<AssignedTensor<F>>, Error> { let smallest_tensor = tensor_map .iter() .min_by_key(|(_, tensor)| tensor.len()) .unwrap() .1; let max_tensor_key = tensor_map .iter() .max_by_key(|(key, _)| *key) .unwrap() .0 .clone(); let mut tensors = vec![]; for i in 0..max_tensor_key + 1 { let tensor = tensor_map.get(&i).unwrap_or(smallest_tensor); tensors.push(tensor.clone()); } Ok(tensors) } pub fn assign_tensors_vec( &self, mut layouter: impl Layouter<F>, columns: &Vec<Column<Advice>>, tensors: &BTreeMap<i64, Array<F, IxDyn>>, ) -> Result<Vec<AssignedTensor<F>>, Error> { let tensor_map = self .assign_tensors_map( layouter.namespace(|| "assign_tensors_map"), columns, tensors, ) .unwrap(); self.tensor_map_to_vec(&tensor_map) } pub fn assign_constants( &self, mut layouter: impl Layouter<F>, gadget_config: Rc<GadgetConfig>, ) -> Result<HashMap<i64, CellRc<F>>, Error> { let sf = gadget_config.scale_factor; let min_val = gadget_config.min_val; let max_val = gadget_config.max_val; let constants = layouter.assign_region( || "constants", |mut region| { let mut constants: HashMap<i64, CellRc<F>> = HashMap::new(); let vals = vec![0 as i64, 1, sf as i64, min_val, max_val]; let shift_val_i64 = -min_val * 2; let shift_val_f = F::from(shift_val_i64 as u64); for (i, val) in vals.iter().enumerate() { let cell = region.assign_fixed( || format!("constant_{}", i), gadget_config.fixed_columns[0], i, || Value::kno
wn(F::from((val + shift_val_i64) as u64) - shift_val_f), )?; constants.insert(*val, Rc::new(cell)); } let r_base = F::from(0x123456789abcdef); let mut r = r_base.clone(); for i in 0..self.num_random { let rand = region.assign_fixed( || format!("rand_{}", i), gadget_config.fixed_columns[0], constants.len(), || Value::known(r), )?; r = r * r_base; constants.insert(RAND_START_IDX + (i as i64), Rc::new(rand)); } Ok(constants) }, )?; Ok(constants) } pub fn assign_constants2( &self, mut layouter: impl Layouter<F>, gadget_config: Rc<GadgetConfig>, fixed_constants: &HashMap<i64, CellRc<F>>, ) -> Result<HashMap<i64, CellRc<F>>, Error> { let sf = gadget_config.scale_factor; let min_val = gadget_config.min_val; let max_val = gadget_config.max_val; let constants = layouter.assign_region( || "constants", |mut region| { let mut constants: HashMap<i64, CellRc<F>> = HashMap::new(); let vals = vec![0 as i64, 1, sf as i64, min_val, max_val]; let shift_val_i64 = -min_val * 2; let shift_val_f = F::from(shift_val_i64 as u64); for (i, val) in vals.iter().enumerate() { let assignment_idx = i as usize; let row_idx = assignment_idx / gadget_config.columns.len(); let col_idx = assignment_idx % gadget_config.columns.len(); let cell = region.assign_advice( || format!("constant_{}", i), gadget_config.columns[col_idx], row_idx, || Value::known(F::from((val + shift_val_i64) as u64) - shift_val_f), )?; constants.insert(*val, Rc::new(cell)); } let r_base = F::from(0x123456789abcdef); let mut r = r_base.clone(); for i in 0..self.num_random { let assignment_idx = constants.len(); let
row_idx = assignment_idx / gadget_config.columns.len(); let col_idx = assignment_idx % gadget_config.columns.len(); let rand = region.assign_advice( || format!("rand_{}", i), gadget_config.columns[col_idx], row_idx, || Value::known(r), )?; r = r * r_base; constants.insert(RAND_START_IDX + (i as i64), Rc::new(rand)); } for (k, v) in fixed_constants.iter() { let v2 = constants.get(k).unwrap(); region.constrain_equal(v.cell(), v2.cell()).unwrap(); } Ok(constants) }, )?; Ok(constants) } pub fn generate_from_file(config_file: &str, inp_file: &str) -> ModelCircuit<F> { let config = load_model_msgpack(config_file, inp_file); Self::generate_from_msgpack(config, true) } pub fn generate_from_msgpack(config: ModelMsgpack, panic_empty_tensor: bool) -> ModelCircuit<F> { let to_field = |x: i64| { let bias = 1 << 31; let x_pos = x + bias; F::from(x_pos as u64) - F::from(bias as u64) }; let match_layer = |x: &str| match x { "AveragePool2D" => LayerType::AvgPool2D, "Add" => LayerType::Add, "BatchMatMul" => LayerType::BatchMatMul, "Broadcast" => LayerType::Broadcast, "Concatenation" => LayerType::Concatenation, "Conv2D" => LayerType::Conv2D, "Div" => LayerType::DivFixed, "DivVar" => LayerType::DivVar, "FullyConnected" => LayerType::FullyConnected, "Logistic" => LayerType::Logistic, "MaskNegInf" => LayerType::MaskNegInf, "MaxPool2D" => LayerType::MaxPool2D, "Mean" => LayerType::Mean, "Mul" => LayerType::Mul, "Noop" => LayerType::Noop, "Pack" => LayerType::Pack, "Pad" => LayerType::Pad, "Pow" => LayerType::Pow, "Permute" => LayerType::Permute, "Reshape" => LayerType::Reshape, "ResizeNearestNeighbor" => LayerType::ResizeNN, "Rotate" => LayerType::Rotate, "Rsqrt" => LayerType::Rsqrt,
"Slice" => LayerType::Slice, "Softmax" => LayerType::Softmax, "Split" => LayerType::Split, "Sqrt" => LayerType::Sqrt, "Square" => LayerType::Square, "SquaredDifference" => LayerType::SquaredDifference, "Sub" => LayerType::Sub, "Tanh" => LayerType::Tanh, "Transpose" => LayerType::Transpose, "Update" => LayerType::Update, _ => panic!("unknown op: {}", x), }; let mut tensors = BTreeMap::new(); for flat in config.tensors { let value_flat = flat.data.iter().map(|x| to_field(*x)).collect::<Vec<_>>(); let shape = flat.shape.iter().map(|x| *x as usize).collect::<Vec<_>>(); let num_el: usize = shape.iter().product(); if panic_empty_tensor && num_el != value_flat.len() { panic!("tensor shape and data length mismatch"); } if num_el == value_flat.len() { let tensor = Array::from_shape_vec(IxDyn(&shape), value_flat).unwrap(); tensors.insert(flat.idx, tensor); } else { }; } let i64_to_usize = |x: &Vec<i64>| x.iter().map(|x| *x as usize).collect::<Vec<_>>(); let mut used_gadgets = BTreeSet::new(); let dag_config = { let ops = config .layers .iter() .map(|layer| { let layer_type = match_layer(&layer.layer_type); let layer_gadgets = match layer_type { LayerType::Add => Box::new(AddChip {}) as Box<dyn GadgetConsumer>, LayerType::AvgPool2D => Box::new(AvgPool2DChip {}) as Box<dyn GadgetConsumer>, LayerType::BatchMatMul => Box::new(BatchMatMulChip {}) as Box<dyn GadgetConsumer>, LayerType::Broadcast => Box::new(BroadcastChip {}) as Box<dyn GadgetConsumer>, LayerType::Concatenation => Box::new(ConcatenationChip {}) as Box<dyn GadgetConsumer>, LayerType::DivFixed => Box::new(ConcatenationChip {}) as Box<dyn GadgetConsumer>, LayerType::DivVar => Box::new(DivVarChip {}) as Box<dyn GadgetConsumer>, LayerType::Conv2D => Box
::new(Conv2DChip { config: LayerConfig::default(), _marker: PhantomData::<F>, }) as Box<dyn GadgetConsumer>, LayerType::FullyConnected => Box::new(FullyConnectedChip { config: FullyConnectedConfig { normalize: true }, _marker: PhantomData::<F>, }) as Box<dyn GadgetConsumer>, LayerType::Logistic => Box::new(LogisticChip {}) as Box<dyn GadgetConsumer>, LayerType::MaskNegInf => Box::new(MaskNegInfChip {}) as Box<dyn GadgetConsumer>, LayerType::MaxPool2D => Box::new(MaxPool2DChip { marker: PhantomData::<F>, }) as Box<dyn GadgetConsumer>, LayerType::Mean => Box::new(MeanChip {}) as Box<dyn GadgetConsumer>, LayerType::Mul => Box::new(MulChip {}) as Box<dyn GadgetConsumer>, LayerType::Noop => Box::new(NoopChip {}) as Box<dyn GadgetConsumer>, LayerType::Pack => Box::new(PackChip {}) as Box<dyn GadgetConsumer>, LayerType::Pad => Box::new(PadChip {}) as Box<dyn GadgetConsumer>, LayerType::Pow => Box::new(PowChip {}) as Box<dyn GadgetConsumer>, LayerType::Permute => Box::new(PermuteChip {}) as Box<dyn GadgetConsumer>, LayerType::Reshape => Box::new(ReshapeChip {}) as Box<dyn GadgetConsumer>, LayerType::ResizeNN => Box::new(ResizeNNChip {}) as Box<dyn GadgetConsumer>, LayerType::Rotate => Box::new(RotateChip {}) as Box<dyn GadgetConsumer>, LayerType::Rsqrt => Box::new(RsqrtChip {}) as Box<dyn GadgetConsumer>, LayerType::Slice => Box::new(SliceChip {}) as Box<dyn GadgetConsumer>, LayerType::Softmax => Box::new(SoftmaxChip {}) as Box<dyn GadgetConsumer>, LayerType::Split => Box::new(SplitChip {}) as Box<dyn GadgetConsumer>, LayerType::Sqrt => Box::new(SqrtChip {}) as Box<dyn GadgetConsumer>, LayerType::Square => Box::new(SquareChip {}) as Box<dyn GadgetConsumer>, LayerType::S
quaredDifference => Box::new(SquaredDiffChip {}) as Box<dyn GadgetConsumer>, LayerType::Sub => Box::new(SubChip {}) as Box<dyn GadgetConsumer>, LayerType::Tanh => Box::new(TanhChip {}) as Box<dyn GadgetConsumer>, LayerType::Transpose => Box::new(TransposeChip {}) as Box<dyn GadgetConsumer>, LayerType::Update => Box::new(UpdateChip {}) as Box<dyn GadgetConsumer>, } .used_gadgets(layer.params.clone()); for gadget in layer_gadgets { used_gadgets.insert(gadget); } LayerConfig { layer_type, layer_params: layer.params.clone(), inp_shapes: layer.inp_shapes.iter().map(|x| i64_to_usize(x)).collect(), out_shapes: layer.out_shapes.iter().map(|x| i64_to_usize(x)).collect(), mask: layer.mask.clone(), } }) .collect::<Vec<_>>(); let inp_idxes = config .layers .iter() .map(|layer| i64_to_usize(&layer.inp_idxes)) .collect::<Vec<_>>(); let out_idxes = config .layers .iter() .map(|layer| i64_to_usize(&layer.out_idxes)) .collect::<Vec<_>>(); let final_out_idxes = config .out_idxes .iter() .map(|x| *x as usize) .collect::<Vec<_>>(); DAGLayerConfig { inp_idxes, out_idxes, ops, final_out_idxes, } }; used_gadgets.insert(GadgetType::InputLookup); let used_gadgets = Arc::new(used_gadgets); let gadget = &GADGET_CONFIG; let cloned_gadget = gadget.lock().unwrap().clone(); *gadget.lock().unwrap() = GadgetConfig { scale_factor: config.global_sf as u64, shift_min_val: -(config.global_sf * config.global_sf * (1 << 17)), div_outp_min_val: -(1 << (config.k - 1)), min_val: -(1 << (config.k - 1)), max_val: (1 << (config.k - 1)) - 10, k: config.k as usize, num_rows: (1 << config.k) - 10 + 1, num_cols: config.num_cols as usize
, used_gadgets: used_gadgets.clone(), commit_before: config.commit_before.clone().unwrap_or(vec![]), commit_after: config.commit_after.clone().unwrap_or(vec![]), use_selectors: config.use_selectors.unwrap_or(true), num_bits_per_elem: config.bits_per_elem.unwrap_or(config.k), ..cloned_gadget }; ModelCircuit { tensors, dag_config, used_gadgets, k: config.k as usize, bits_per_elem: config.bits_per_elem.unwrap_or(config.k) as usize, inp_idxes: config.inp_idxes.clone(), commit_after: config.commit_after.unwrap_or(vec![]), commit_before: config.commit_before.unwrap_or(vec![]), num_random: config.num_random.unwrap_or(0), } } pub fn assign_and_commit( &self, mut layouter: impl Layouter<F>, constants: &HashMap<i64, CellRc<F>>, config: &ModelConfig<F>, tensors: &BTreeMap<i64, Array<F, IxDyn>>, ) -> (BTreeMap<i64, AssignedTensor<F>>, CellRc<F>) { let num_bits = self.bits_per_elem; let packer_config = PackerChip::<F>::construct(num_bits, config.gadget_config.as_ref()); let packer_chip = PackerChip::<F> { config: packer_config, }; let (tensor_map, packed) = packer_chip .assign_and_pack( layouter.namespace(|| "packer"), config.gadget_config.clone(), constants, tensors, ) .unwrap(); let zero = constants.get(&0).unwrap().clone(); let commit_chip = config.hasher.clone().unwrap(); let commitments = commit_chip .commit( layouter.namespace(|| "commit"), config.gadget_config.clone(), constants, &packed, zero.clone(), ) .unwrap(); assert_eq!(commitments.len(), 1); (tensor_map, commitments[0].clone()) } pub fn copy_and_commit( &self, mut layouter: impl Layouter<F>, constants: &HashMap<i64, CellRc<F>>, config: &ModelConfig<F>, tensors: &BTreeMap<i64, AssignedTensor<F>>, ) -> CellRc<F> { let num_bits = self.bits_per_elem;
let packer_config = PackerChip::<F>::construct(num_bits, config.gadget_config.as_ref()); let packer_chip = PackerChip::<F> { config: packer_config, }; let packed = packer_chip .copy_and_pack( layouter.namespace(|| "packer"), config.gadget_config.clone(), constants, tensors, ) .unwrap(); let zero = constants.get(&0).unwrap().clone(); let commit_chip = config.hasher.clone().unwrap(); let commitments = commit_chip .commit( layouter.namespace(|| "commit"), config.gadget_config.clone(), constants, &packed, zero.clone(), ) .unwrap(); assert_eq!(commitments.len(), 1); commitments[0].clone() } } impl<F: PrimeField + Ord + FromUniformBytes<64>> Circuit<F> for ModelCircuit<F> { type Config = ModelConfig<F>; type FloorPlanner = SimpleFloorPlanner; type Params = (); fn without_witnesses(&self) -> Self { todo!() } fn configure(meta: &mut ConstraintSystem<F>) -> Self::Config { let mut gadget_config = crate::model::GADGET_CONFIG.lock().unwrap().clone(); let columns = (0..gadget_config.num_cols) .map(|_| meta.advice_column()) .collect::<Vec<_>>(); for col in columns.iter() { meta.enable_equality(*col); } gadget_config.columns = columns; let public_col = meta.instance_column(); meta.enable_equality(public_col); gadget_config.fixed_columns = vec![meta.fixed_column()]; meta.enable_equality(gadget_config.fixed_columns[0]); gadget_config = InputLookupChip::<F>::configure(meta, gadget_config); let used_gadgets = gadget_config.used_gadgets.clone(); for gadget_type in used_gadgets.iter() { gadget_config = match gadget_type { GadgetType::AddPairs => AddPairsChip::<F>::configure(meta, gadget_config), GadgetType::Adder => AdderChip::<F>::configure(meta, gadget_config), GadgetType::BiasDivRoundRelu6 => BiasDivRoundRelu6Chip::<F>::configure(meta, gadget_config),
GadgetType::BiasDivFloorRelu6 => panic!(), GadgetType::DotProduct => DotProductChip::<F>::configure(meta, gadget_config), GadgetType::Exp => ExpGadgetChip::<F>::configure(meta, gadget_config), GadgetType::Logistic => LogisticGadgetChip::<F>::configure(meta, gadget_config), GadgetType::Max => MaxChip::<F>::configure(meta, gadget_config), GadgetType::MulPairs => MulPairsChip::<F>::configure(meta, gadget_config), GadgetType::Pow => PowGadgetChip::<F>::configure(meta, gadget_config), GadgetType::Relu => ReluChip::<F>::configure(meta, gadget_config), GadgetType::Rsqrt => RsqrtGadgetChip::<F>::configure(meta, gadget_config), GadgetType::Sqrt => SqrtGadgetChip::<F>::configure(meta, gadget_config), GadgetType::SqrtBig => SqrtBigChip::<F>::configure(meta, gadget_config), GadgetType::Square => SquareGadgetChip::<F>::configure(meta, gadget_config), GadgetType::SquaredDiff => SquaredDiffGadgetChip::<F>::configure(meta, gadget_config), GadgetType::SubPairs => SubPairsChip::<F>::configure(meta, gadget_config), GadgetType::Tanh => TanhGadgetChip::<F>::configure(meta, gadget_config), GadgetType::VarDivRound => VarDivRoundChip::<F>::configure(meta, gadget_config), GadgetType::VarDivRoundBig => VarDivRoundBigChip::<F>::configure(meta, gadget_config), GadgetType::VarDivRoundBig3 => VarDivRoundBig3Chip::<F>::configure(meta, gadget_config), GadgetType::InputLookup => gadget_config, GadgetType::Update => UpdateGadgetChip::<F>::configure(meta, gadget_config), GadgetType::Packer => panic!(), }; } let hasher = if gadget_config.commit_before.len() + gadget_config.commit_after.len() > 0 { let packer_config = PackerChip::<F>::construct(gadget_config.num_bits_per_elem as usize, &gadget_config); gadget_config = PackerChip::<F>::configure(meta, packer_config, gadget_config); let input = gadget_config.columns[0..L].try_into().unwrap();
let state = gadget_config.columns[L..L + WIDTH].try_into().unwrap(); let partial_sbox = gadget_config.columns[L + WIDTH].into(); Some(PoseidonCommitChip::<F, WIDTH, RATE, L>::configure( meta, input, state, partial_sbox, )) } else { None }; ModelConfig { gadget_config: gadget_config.into(), public_col, hasher, _marker: PhantomData, } } fn synthesize(&self, config: Self::Config, mut layouter: impl Layouter<F>) -> Result<(), Error> { let gadget_rc: Rc<GadgetConfig> = config.gadget_config.clone().into(); for gadget in self.used_gadgets.iter() { match gadget { GadgetType::AddPairs => { let chip = AddPairsChip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "add pairs lookup"))?; } GadgetType::Adder => { let chip = AdderChip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "adder lookup"))?; } GadgetType::BiasDivRoundRelu6 => { let chip = BiasDivRoundRelu6Chip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "bias div round relu6 lookup"))?; } GadgetType::DotProduct => { let chip = DotProductChip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "dot product lookup"))?; } GadgetType::VarDivRound => { let chip = VarDivRoundChip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "var div lookup"))?; } GadgetType::Pow => { let chip = PowGadgetChip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "pow lookup"))?; } GadgetType::Relu => { let chip = ReluChip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "relu lookup"))?; } GadgetType::Rsqrt => { let c
hip = RsqrtGadgetChip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "rsqrt lookup"))?; } GadgetType::Sqrt => { let chip = SqrtGadgetChip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "sqrt lookup"))?; } GadgetType::Tanh => { let chip = TanhGadgetChip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "tanh lookup"))?; } GadgetType::Exp => { let chip = ExpGadgetChip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "exp lookup"))?; } GadgetType::Logistic => { let chip = LogisticGadgetChip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "logistic lookup"))?; } GadgetType::InputLookup => { let chip = InputLookupChip::<F>::construct(gadget_rc.clone()); chip.load_lookups(layouter.namespace(|| "input lookup"))?; } GadgetType::VarDivRoundBig => {} GadgetType::VarDivRoundBig3 => {} GadgetType::Max => {} GadgetType::MulPairs => {} GadgetType::SqrtBig => {} GadgetType::Square => {} GadgetType::SquaredDiff => {} GadgetType::SubPairs => {} GadgetType::Update => {} _ => panic!("unsupported gadget {:?}", gadget), } } let constants_base = self .assign_constants( layouter.namespace(|| "constants"), config.gadget_config.clone(), ) .unwrap(); let constants = self .assign_constants2( layouter.namespace(|| "constants 2"), config.gadget_config.clone(), &constants_base, ) .unwrap(); let mut commitments = vec![]; let tensors = if self.commit_before.len() > 0 { let mut tensor_map = BTreeMap::new(); let mut ignore_idxes: Vec<i64> = vec![]; for commit_idxes in self.commit_before.iter() {
let to_commit = BTreeMap::from_iter( commit_idxes .iter() .map(|idx| (*idx, self.tensors.get(idx).unwrap().clone())), ); let (mut committed_tensors, commitment) = self.assign_and_commit( layouter.namespace(|| "commit"), &constants, &config, &to_commit, ); commitments.push(commitment); tensor_map.append(&mut committed_tensors); ignore_idxes.extend(commit_idxes.iter()); } let mut assign_map = BTreeMap::new(); for (idx, tensor) in self.tensors.iter() { if ignore_idxes.contains(idx) { continue; } assign_map.insert(*idx, tensor.clone()); } let mut remainder_tensor_map = self .assign_tensors_map( layouter.namespace(|| "assignment"), &config.gadget_config.columns, &assign_map, ) .unwrap(); tensor_map.append(&mut remainder_tensor_map); self.tensor_map_to_vec(&tensor_map).unwrap() } else { self .assign_tensors_vec( layouter.namespace(|| "assignment"), &config.gadget_config.columns, &self.tensors, ) .unwrap() }; let dag_chip = DAGLayerChip::<F>::construct(self.dag_config.clone()); let (final_tensor_map, result) = dag_chip.forward( layouter.namespace(|| "dag"), &tensors, &constants, config.gadget_config.clone(), &LayerConfig::default(), )?; if self.commit_after.len() > 0 { for commit_idxes in self.commit_after.iter() { let to_commit = BTreeMap::from_iter(commit_idxes.iter().map(|idx| { ( *idx, final_tensor_map.get(&(*idx as usize)).unwrap().clone(), ) })); let commitment = self.copy_and_commit( layouter.namespace(|| "commit"), &constants, &config, &to_commit, ); commitments.push(commitment); }
} let mut pub_layouter = layouter.namespace(|| "public"); let mut total_idx = 0; let mut new_public_vals = vec![]; for cell in commitments.iter() { pub_layouter .constrain_instance(cell.as_ref().cell(), config.public_col, total_idx) .unwrap(); let val = convert_to_bigint(cell.value().map(|x| x.to_owned())); new_public_vals.push(val); total_idx += 1; } for tensor in result { for cell in tensor.iter() { pub_layouter .constrain_instance(cell.as_ref().cell(), config.public_col, total_idx) .unwrap(); let val = convert_to_bigint(cell.value().map(|x| x.to_owned())); new_public_vals.push(val); total_idx += 1; } } *PUBLIC_VALS.lock().unwrap() = new_public_vals; Ok(()) } }
pub mod helpers; pub mod loader; pub mod proving_ipa; pub mod proving_kzg;
use halo2_proofs::{ circuit::{AssignedCell, Value}, halo2curves::ff::PrimeField, }; use ndarray::{Array, IxDyn}; use num_bigint::BigUint; use crate::{gadgets::gadget::convert_to_u128, model::PUBLIC_VALS}; pub const RAND_START_IDX: i64 = i64::MIN; pub const NUM_RANDOMS: i64 = 20001; pub fn convert_to_bigint<F: PrimeField>(x: Value<F>) -> BigUint { let mut big = Default::default(); x.map(|x| { big = BigUint::from_bytes_le(x.to_repr().as_ref()); }); big } pub fn convert_pos_int<F: PrimeField>(x: Value<F>) -> i128 { let bias = 1 << 60; let x_pos = x + Value::known(F::from(bias as u64)); let mut outp: i128 = 0; x_pos.map(|x| { let x_pos = convert_to_u128(&x); let tmp = x_pos as i128 - bias; outp = tmp; }); return outp; } pub fn print_pos_int<F: PrimeField>(prefix: &str, x: Value<F>, scale_factor: u64) { let tmp = convert_pos_int(x); let tmp_float = tmp as f64 / scale_factor as f64; println!("{} x: {} ({})", prefix, tmp, tmp_float); } pub fn print_assigned_arr<F: PrimeField>( prefix: &str, arr: &Vec<&AssignedCell<F, F>>, scale_factor: u64, ) { for (idx, x) in arr.iter().enumerate() { print_pos_int( &format!("{}[{}]", prefix, idx), x.value().map(|x: &F| x.to_owned()), scale_factor, ); } } pub fn get_public_values<F: PrimeField>() -> Vec<F> { let mut public_vals = vec![]; for val in PUBLIC_VALS.lock().unwrap().iter() { let val = F::from_str_vartime(&val.to_str_radix(10)); public_vals.push(val.unwrap()); } public_vals } fn shape_dominates(s1: &[usize], s2: &[usize]) -> bool { if s1.len() != s2.len() { return false; } for (x1, x2) in s1.iter().zip(s2.iter()) { if x1 < x2 { return false; } } true } fn intermediate_shape(s1: &[usize], s2: &[usize]) -> Vec<usize> { let mut res = vec![1; s2.len() - s1.len()]; for s in s1.iter() { res.push(*s); } res } fn final_shape(s1: &[usize], s2: &[usize]) -> Vec<usize> { let mut res = vec![]; for (x1, x2) in s1.iter().zip(s2.iter())
{ res.push(std::cmp::max(*x1, *x2)); } res } pub fn broadcast<G: Clone>( x1: &Array<G, IxDyn>, x2: &Array<G, IxDyn>, ) -> (Array<G, IxDyn>, Array<G, IxDyn>) { if x1.shape() == x2.shape() { return (x1.clone(), x2.clone()); } if x1.ndim() == x2.ndim() { let s1 = x1.shape(); let s2 = x2.shape(); if shape_dominates(s1, s2) { return (x1.clone(), x2.broadcast(s1).unwrap().into_owned()); } else if shape_dominates(x2.shape(), x1.shape()) { return (x1.broadcast(s2).unwrap().into_owned(), x2.clone()); } } let (tmp1, tmp2) = if x1.ndim() < x2.ndim() { (x1, x2) } else { (x2, x1) }; let s1 = tmp1.shape(); let s2 = tmp2.shape(); let s = intermediate_shape(s1, s2); let final_shape = final_shape(s2, s.as_slice()); let tmp1 = tmp1.broadcast(s.clone()).unwrap().into_owned(); let tmp1 = tmp1.broadcast(final_shape.as_slice()).unwrap().into_owned(); let tmp2 = tmp2.broadcast(final_shape.as_slice()).unwrap().into_owned(); if x1.ndim() < x2.ndim() { return (tmp1, tmp2); } else { return (tmp2, tmp1); } }