annotations_creators:
- found
language_creators:
- found
language:
- tr
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
pretty_name: TTC4900 - A Benchmark Data for Turkish Text Categorization
tags:
- news-category-classification
dataset_info:
config_name: ttc4900
features:
- name: category
dtype:
class_label:
names:
'0': siyaset
'1': dunya
'2': ekonomi
'3': kultur
'4': saglik
'5': spor
'6': teknoloji
- name: text
dtype: string
splits:
- name: train
num_bytes: 10640827
num_examples: 4900
download_size: 5511518
dataset_size: 10640827
configs:
- config_name: ttc4900
data_files:
- split: train
path: ttc4900/train-*
default: true
Dataset Card for TTC4900: A Benchmark Data for Turkish Text Categorization
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: TTC4900 Homepage
- Repository: TTC4900 Repository
- Paper: A Comparison of Different Approaches to Document Representation in Turkish Language
- Point of Contact: Savaş Yıldırım
Dataset Summary
The data set is taken from kemik group The data are pre-processed for the text categorization, collocations are found, character set is corrected, and so forth. We named TTC4900 by mimicking the name convention of TTC 3600 dataset shared by the study "A Knowledge-poor Approach to Turkish Text Categorization with a Comparative Analysis, Proceedings of CICLING 2014, Springer LNCS, Nepal, 2014"
If you use the dataset in a paper, please refer https://www.kaggle.com/savasy/ttc4900 as footnote and cite one of the papers as follows:
- A Comparison of Different Approaches to Document Representation in Turkish Language, SDU Journal of Natural and Applied Science, Vol 22, Issue 2, 2018
- A comparative analysis of text classification for Turkish language, Pamukkale University Journal of Engineering Science Volume 25 Issue 5, 2018
- A Knowledge-poor Approach to Turkish Text Categorization with a Comparative Analysis, Proceedings of CICLING 2014, Springer LNCS, Nepal, 2014.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
The dataset is based on Turkish.
Dataset Structure
Data Instances
A text classification dataset with 7 different news category.
Here is an example from the dataset:
{
"category": 0, # politics/siyaset
"text": "paris teki infaz imralı ile başlayan sürece bir darbe mi elif_çakır ın sunduğu söz_bitmeden in bugünkü konuğu gazeteci melih altınok oldu programdan satıbaşları imralı ile görüşmeler hangi aşamada bundan sonra ne olacak hangi kesimler sürece engel oluyor psikolojik mayınlar neler türk solu bu dönemde evrensel sorumluluğunu yerine getirebiliyor mu elif_çakır sordu melih altınok söz_bitmeden de yanıtladı elif_çakır pkk nın silahsızlandırılmasına yönelik olarak öcalan ile görüşme sonrası 3 kadının infazı enteresan çünkü kurucu isimlerden birisi sen nasıl okudun bu infazı melih altınok herkesin ciddi anlamda şüpheleri var şu an yürüttüğümüz herşey bir delile dayanmadığı için komple teorisinden ibaret kalacak ama şöyle bir durum var imralı görüşmelerin ilk defa bir siyasi iktidar tarafından açıkça söylendiği bir dönem ardından geliyor bu sürecin gerçekleşmemesini isteyen kesimler yaptırmıştır dedi"
}
Data Fields
- category : Indicates to which category the news text belongs. (Such as "politics", "world", "economy", "culture", "health", "sports", "technology".)
- text : Contains the text of the news.
Data Splits
It is not divided into Train set and Test set.
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
The data are pre-processed for the text categorization, collocations are found, character set is corrected, and so forth.
Who are the source language producers?
Turkish online news sites.
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
The dataset was created by Savaş Yıldırım
Licensing Information
[More Information Needed]
Citation Information
@article{doi:10.5505/pajes.2018.15931,
author = {Yıldırım, Savaş and Yıldız, Tuğba},
title = {A comparative analysis of text classification for Turkish language},
journal = {Pamukkale Univ Muh Bilim Derg},
volume = {24},
number = {5},
pages = {879-886},
year = {2018},
doi = {10.5505/pajes.2018.15931},
note ={doi: 10.5505/pajes.2018.15931},
URL = {https://dx.doi.org/10.5505/pajes.2018.15931},
eprint = {https://dx.doi.org/10.5505/pajes.2018.15931}
}
Contributions
Thanks to @yavuzKomecoglu for adding this dataset.