|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@misc{jeon2022user, |
|
title={User Guide for KOTE: Korean Online Comments Emotions Dataset}, |
|
author={Duyoung Jeon and Junho Lee and Cheongtag Kim}, |
|
year={2022}, |
|
eprint={2205.05300}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
50k Korean online comments labeled for 44 emotion categories. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/searle-j/KOTE" |
|
|
|
_LICENSE = "MIT License" |
|
|
|
_BASE_URL = "https://raw.githubusercontent.com/searle-j/KOTE/main/" |
|
|
|
_LABELS = [ |
|
'๋ถํ/๋ถ๋ง', |
|
'ํ์/ํธ์', |
|
'๊ฐ๋/๊ฐํ', |
|
'์ง๊ธ์ง๊ธ', |
|
'๊ณ ๋ง์', |
|
'์ฌํ', |
|
'ํ๋จ/๋ถ๋
ธ', |
|
'์กด๊ฒฝ', |
|
'๊ธฐ๋๊ฐ', |
|
'์ฐ์ญ๋/๋ฌด์ํจ', |
|
'์ํ๊น์/์ค๋ง', |
|
'๋น์ฅํจ', |
|
'์์ฌ/๋ถ์ ', |
|
'๋ฟ๋ฏํจ', |
|
'ํธ์/์พ์ ', |
|
'์ ๊ธฐํจ/๊ด์ฌ', |
|
'์๊ปด์ฃผ๋', |
|
'๋ถ๋๋ฌ์', |
|
'๊ณตํฌ/๋ฌด์์', |
|
'์ ๋ง', |
|
'ํ์ฌํจ', |
|
'์ญ๊ฒจ์/์ง๊ทธ๋ฌ์', |
|
'์ง์ฆ', |
|
'์ด์ด์์', |
|
'์์', |
|
'ํจ๋ฐฐ/์๊ธฐํ์ค', |
|
'๊ท์ฐฎ์', |
|
'ํ๋ฆ/์ง์นจ', |
|
'์ฆ๊ฑฐ์/์ ๋จ', |
|
'๊นจ๋ฌ์', |
|
'์ฃ์ฑ
๊ฐ', |
|
'์ฆ์ค/ํ์ค', |
|
'ํ๋ญํจ(๊ท์ฌ์/์์จ)', |
|
'๋นํฉ/๋์ฒ', |
|
'๊ฒฝ์
', |
|
'๋ถ๋ด/์_๋ดํด', |
|
'์๋ฌ์', |
|
'์ฌ๋ฏธ์์', |
|
'๋ถ์ํจ/์ฐ๋ฏผ', |
|
'๋๋', |
|
'ํ๋ณต', |
|
'๋ถ์/๊ฑฑ์ ', |
|
'๊ธฐ์จ', |
|
'์์ฌ/์ ๋ขฐ' |
|
] |
|
|
|
class KOTEConfig(datasets.BuilderConfig): |
|
@property |
|
def features(self): |
|
if self.name == "dichotomized": |
|
return { |
|
"ID": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"labels": datasets.Sequence(datasets.ClassLabel(names=_LABELS)), |
|
} |
|
|
|
class KOTE(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [KOTEConfig(name="dichotomized")] |
|
BUILDER_CONFIG_CLASS = KOTEConfig |
|
DEFAULT_CONFIG_NAME = "dichotomized" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(self.config.features), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.name=="dichotomized": |
|
train_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "train.tsv")) |
|
test_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "test.tsv")) |
|
val_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "val.tsv")) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": [train_path],}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [test_path],}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [val_path],}), |
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
if self.config.name=="dichotomized": |
|
for filepath in filepaths: |
|
with open(filepath, mode="r", encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter="\t", fieldnames=list(self.config.features.keys())) |
|
for idx, row in enumerate(reader): |
|
row["labels"] = [int(lab) for lab in row["labels"].split(",")] |
|
yield idx, row |