sidewalk-semantic / README.md
segments-bert's picture
Add license
9c33630
---
annotations_creators:
- crowdsourced
- expert-generated
language_creators:
- expert-generated
license: cc-by-nc-4.0
multilinguality: []
pretty_name: sidewalk-semantic
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- image-segmentation
task_ids:
- semantic-segmentation
---
# Dataset Card for sidewalk-semantic
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Dataset Structure](#dataset-structure)
- [Data Categories](#data-categories)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [Dataset homepage on Segments.ai](https://segments.ai/segments/sidewalk-imagery/)
- **Repository:** [Needs More Information]
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Bert De Brabandere](mailto:bert@segments.ai)
### Dataset Summary
A dataset of sidewalk images gathered in Belgium in the summer of 2021. Label your own semantic segmentation datasets on [segments.ai](https://segments.ai/?utm_source=hf&utm_medium=hf-ds&utm_campaign=sidewalk)
### Supported Tasks and Leaderboards
- `semantic-segmentation`: The dataset can be used to train a semantic segmentation model, where each pixel is classified. The model performance is measured by how high its [mean IoU (intersection over union)](https://huggingface.co/metrics/mean_iou) to the reference is.
## Dataset Structure
### Data categories
| Id | Name | Description |
| --- | ---- | ----------- |
| 0 | unlabeled | - |
| 1 | flat-road | - |
| 2 | flat-sidewalk | - |
| 3 | flat-crosswalk | - |
| 4 | flat-cyclinglane | - |
| 5 | flat-parkingdriveway | - |
| 6 | flat-railtrack | - |
| 7 | flat-curb | - |
| 8 | human-person | - |
| 9 | human-rider | - |
| 10 | vehicle-car | - |
| 11 | vehicle-truck | - |
| 12 | vehicle-bus | - |
| 13 | vehicle-tramtrain | - |
| 14 | vehicle-motorcycle | - |
| 15 | vehicle-bicycle | - |
| 16 | vehicle-caravan | - |
| 17 | vehicle-cartrailer | - |
| 18 | construction-building | - |
| 19 | construction-door | - |
| 20 | construction-wall | - |
| 21 | construction-fenceguardrail | - |
| 22 | construction-bridge | - |
| 23 | construction-tunnel | - |
| 24 | construction-stairs | - |
| 25 | object-pole | - |
| 26 | object-trafficsign | - |
| 27 | object-trafficlight | - |
| 28 | nature-vegetation | - |
| 29 | nature-terrain | - |
| 30 | sky | - |
| 31 | void-ground | - |
| 32 | void-dynamic | - |
| 33 | void-static | - |
| 34 | void-unclear | - |
### Data Instances
[Needs More Information]
### Data Fields
[Needs More Information]
### Data Splits
This dataset only contains one split.
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
[Needs More Information]