Datasets:
metadata
language:
- en
- multilingual
- ar
- cs
- de
- es
- fr
- it
- ja
- nl
- pt
- ru
size_categories:
- 100K<n<1M
task_categories:
- feature-extraction
- sentence-similarity
pretty_name: News-Commentary
tags:
- sentence-transformers
dataset_info:
- config_name: all
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 364506039
num_examples: 972552
download_size: 212877098
dataset_size: 364506039
- config_name: en-ar
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 92586042
num_examples: 160944
download_size: 49722288
dataset_size: 92586042
- config_name: en-cs
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 49880143
num_examples: 170683
download_size: 32540459
dataset_size: 49880143
- config_name: en-de
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 67264401
num_examples: 214971
download_size: 41648198
dataset_size: 67264401
- config_name: en-es
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 10885552
num_examples: 34352
download_size: 6671353
dataset_size: 10885552
- config_name: en-fr
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 34229410
num_examples: 106040
download_size: 20771370
dataset_size: 34229410
- config_name: en-it
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 14672830
num_examples: 45791
download_size: 8938106
dataset_size: 14672830
- config_name: en-ja
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 541819
num_examples: 1253
download_size: 327264
dataset_size: 541819
- config_name: en-nl
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 7209024
num_examples: 22890
download_size: 4399324
dataset_size: 7209024
- config_name: en-pt
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 9170349
num_examples: 29077
download_size: 5684510
dataset_size: 9170349
- config_name: en-ru
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 77891207
num_examples: 183413
download_size: 42240433
dataset_size: 77891207
configs:
- config_name: all
data_files:
- split: train
path: all/train-*
- config_name: en-ar
data_files:
- split: train
path: en-ar/train-*
- config_name: en-cs
data_files:
- split: train
path: en-cs/train-*
- config_name: en-de
data_files:
- split: train
path: en-de/train-*
- config_name: en-es
data_files:
- split: train
path: en-es/train-*
- config_name: en-fr
data_files:
- split: train
path: en-fr/train-*
- config_name: en-it
data_files:
- split: train
path: en-it/train-*
- config_name: en-ja
data_files:
- split: train
path: en-ja/train-*
- config_name: en-nl
data_files:
- split: train
path: en-nl/train-*
- config_name: en-pt
data_files:
- split: train
path: en-pt/train-*
- config_name: en-ru
data_files:
- split: train
path: en-ru/train-*
Dataset Card for Parallel Sentences - News Commentary
This dataset contains parallel sentences (i.e. English sentence + the same sentences in another language) for numerous other languages. Most of the sentences originate from the OPUS website. In particular, this dataset contains the News-Commentary dataset.
Related Datasets
The following datasets are also a part of the Parallel Sentences collection:
- parallel-sentences-europarl
- parallel-sentences-global-voices
- parallel-sentences-muse
- parallel-sentences-jw300
- parallel-sentences-news-commentary
- parallel-sentences-opensubtitles
- parallel-sentences-talks
- parallel-sentences-tatoeba
- parallel-sentences-wikimatrix
- parallel-sentences-wikititles
- parallel-sentences-ccmatrix
These datasets can be used to train multilingual sentence embedding models. For more information, see sbert.net - Multilingual Models.
Dataset Subsets
all
subset
- Columns: "english", "non_english"
- Column types:
str
,str
- Examples:
{ "english": "Pure interests – expressed through lobbying power – were undoubtedly important to several key deregulation measures in the US, whose political system and campaign-finance rules are peculiarly conducive to the power of specific lobbies.", "non_english": "Заинтересованные группы, действующие посредством лоббирования власти, явились важными действующими лицами при принятии нескольких ключевых мер по отмене регулирующих норм в США, чья политическая система и правила финансирования кампаний особенно поддаются власти отдельных лобби." }
- Collection strategy: Combining all other subsets from this dataset.
- Deduplified: No
en-...
subsets
- Columns: "english", "non_english"
- Column types:
str
,str
- Examples:
{ "english": "Last December, many gold bugs were arguing that the price was inevitably headed for $2,000.", "non_english": "Lo scorso dicembre, molti fanatici dell’oro sostenevano che il suo prezzo era inevitabilmente destinato a raggiungere i 2000 dollari." }
- Collection strategy: Processing the raw data from parallel-sentences and formatting it in Parquet, followed by deduplication.
- Deduplified: Yes