text
stringlengths
3
11.2M
id
stringlengths
15
188
metadata
dict
__index_level_0__
int64
0
275
# Copyright (c) Alibaba, Inc. and its affiliates. from swift.llm import export_main if __name__ == '__main__': export_main()
swift/swift/cli/export.py/0
{ "file_path": "swift/swift/cli/export.py", "repo_id": "swift", "token_count": 44 }
216
# Copyright (c) Alibaba, Inc. and its affiliates. import hashlib import os from datetime import datetime from pathlib import Path from typing import Optional from swift.hub.constants import (DEFAULT_MODELSCOPE_DOMAIN, DEFAULT_MODELSCOPE_GROUP, MODEL_ID_SEPARATOR, MODELSCOPE_SDK_DEBUG, MODELSCOPE_URL_SCHEME) from swift.hub.errors import FileIntegrityError from swift.utils.logger import get_logger logger = get_logger() def get_default_cache_dir(): """ default base dir: '~/.cache/modelscope' """ default_cache_dir = Path.home().joinpath('.cache', 'modelscope') return default_cache_dir def model_id_to_group_owner_name(model_id): if MODEL_ID_SEPARATOR in model_id: group_or_owner = model_id.split(MODEL_ID_SEPARATOR)[0] name = model_id.split(MODEL_ID_SEPARATOR)[1] else: group_or_owner = DEFAULT_MODELSCOPE_GROUP name = model_id return group_or_owner, name def get_cache_dir(model_id: Optional[str] = None): """cache dir precedence: function parameter > environment > ~/.cache/modelscope/hub Args: model_id (str, optional): The model id. Returns: str: the model_id dir if model_id not None, otherwise cache root dir. """ default_cache_dir = get_default_cache_dir() base_path = os.getenv('MODELSCOPE_CACHE', os.path.join(default_cache_dir, 'hub')) return base_path if model_id is None else os.path.join(base_path, model_id + '/') def get_release_datetime(): if MODELSCOPE_SDK_DEBUG in os.environ: rt = int(round(datetime.now().timestamp())) else: from swift import version rt = int(round(datetime.strptime(version.__release_datetime__, '%Y-%m-%d %H:%M:%S').timestamp())) return rt def get_endpoint(): modelscope_domain = os.getenv('MODELSCOPE_DOMAIN', DEFAULT_MODELSCOPE_DOMAIN) return MODELSCOPE_URL_SCHEME + modelscope_domain def compute_hash(file_path): BUFFER_SIZE = 1024 * 64 # 64k buffer size sha256_hash = hashlib.sha256() with open(file_path, 'rb') as f: while True: data = f.read(BUFFER_SIZE) if not data: break sha256_hash.update(data) return sha256_hash.hexdigest() def file_integrity_validation(file_path, expected_sha256): """Validate the file hash is expected, if not, delete the file Args: file_path (str): The file to validate expected_sha256 (str): The expected sha256 hash Raises: FileIntegrityError: If file_path hash is not expected. """ file_sha256 = compute_hash(file_path) if not file_sha256 == expected_sha256: os.remove(file_path) msg = 'File %s integrity check failed, the download may be incomplete, please try again.' % file_path logger.error(msg) raise FileIntegrityError(msg)
swift/swift/hub/utils/utils.py/0
{ "file_path": "swift/swift/hub/utils/utils.py", "repo_id": "swift", "token_count": 1182 }
217
# Copyright (c) Alibaba, Inc. and its affiliates. from typing import Dict, List, Optional, Tuple, Union from swift.utils import get_logger from swift.utils.utils import split_str_parts_by logger = get_logger() REACT_PROMPT = """Answer the following questions as best you can. You have access to the following tools: {tool_list} Use the following format: Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can be repeated zero or more times) Final Answer: the final answer to the original input question Begin! """ REACT_ZH_PROMPT = """尽你所能回答以下问题。你拥有如下工具: {tool_list} 使用以下格式回答: Thought: 思考你应该做什么 Action: 工具的名称,必须是[{tool_names}]之一 Action Input: 工具的输入 Observation: 工具返回的结果 ... (Thought/Action/Action Input/Observation的过程可以重复零次或多次) Final Answer: 对输入问题的最终答案 开始! """ TOOLBENCH_PROMPT = '''You can use many tools(functions) to do the following task. First I will give you the task description, and your task start. At each step, you need to give your thought to analyze the status now and what to do next, \ with a function call to actually excute your step. Your output should follow this format: Thought: Action: Action Input: After the call, you will get the call result, and you are now in a new state. Then you will analyze your status now, then decide what to do next... After many (Thought-call) pairs, you finally perform the task, then you can give your finial answer. Remember: 1.the state change is irreversible, you can't go back to one of the former state, if you want to restart the task, \ say \"I give up and restart\". 2.All the thought is short, at most in 5 sentence. 3.You can do more then one trys, so if your plan is to continusly try some conditions, \ you can do one of the conditions per try. Let's Begin! Task description: You should use functions to help handle the real time user querys. Remember: 1.ALWAYS call \"Finish\" function at the end of the task. And the final answer should contain enough information \ to show to the user,If you can't handle the task, \ or you find that function calls always fail(the function is not valid now), \ use function Finish->give_up_and_restart. 2.Do not use origin tool names, use only subfunctions' names. Specifically, you have access to the following APIs: {tool_list}''' def calculate_loss_scale(query: str, response: str, use_loss_scale=False, response_loss_scale_map: Optional[Dict[str, list]] = None, query_loss_scale_map: Optional[Dict[str, list]] = None) -> Tuple[List[str], List[float]]: """Calculate the loss scale by splitting the agent response. This algorithm comes from paper: https://arxiv.org/pdf/2309.00986.pdf Agent response format: ```text Thought: you should always think about what to do Action: the action to take, should be one of the above tools[fire_recognition, fire_alert, call_police, call_fireman] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can be repeated zero or more times) Thought: I now know the final answer Final Answer: the final answer to the original input question ``` Args: response: The response text use_loss_scale: Use weighted loss. With this, some part of the loss will be enhanced to improve performance. Returns: A tuple of agent response parts and their weights. """ if use_loss_scale: # query loss scale map if query_loss_scale_map is not None: for key in query_loss_scale_map.keys(): if key in query: if isinstance(query_loss_scale_map[key], (float, int)): query_loss_scale_map[key] = [query_loss_scale_map[key]] loss_scale_value = query_loss_scale_map[key][0] return [response], [float(loss_scale_value)] delimiters = list(k for k in response_loss_scale_map.keys() if len(response_loss_scale_map[k]) == 2) agent_parts = split_str_parts_by(response, delimiters) regex_delimiters = {k: v for k, v in response_loss_scale_map.items() if len(v) == 1} if len(regex_delimiters): split_parts_by_regex(agent_parts, regex_delimiters) weights = [] agent_content = [] for c in agent_parts: if isinstance(c['key'], (float, int)): weights += [c['key']] agent_content.append(c['content']) else: if c['key'] in response_loss_scale_map: weights += [response_loss_scale_map[c['key']][0]] weights += [response_loss_scale_map[c['key']][1]] agent_content.append(c['key']) agent_content.append(c['content']) else: weights += [1.0] agent_content.append(c['content']) return agent_content, weights else: return [response], [1.0] def split_action_action_input(response: str) -> Tuple[Optional[str], Optional[str]]: agent_keyword = [ 'action:', 'Action:', 'ACTION:', 'action input:', 'Action Input:', 'Action input:', 'ACTION INPUT:', 'Thought:', 'Final Answer:', 'Observation:' ] agent_parts = split_str_parts_by(response, agent_keyword) action = None action_input = None for c in agent_parts: if c['key'].lower() == 'action:': action = c['content'] elif c['key'].lower() == 'action input:': action_input = c['content'] if action: action = action.strip().replace('\n', '') if action_input: action_input.strip().replace('\n', '') return action, action_input def split_parts_by_regex(text_list: list, regex_delimiters: Dict[str, List[float]]) -> None: import re compiled_patterns = [(re.compile(pattern), scale) for pattern, scale in regex_delimiters.items()] for i in range(len(text_list) - 1, -1, -1): item = text_list[i] if item.get('key') == '': res_text = item['content'] last_idx = 0 segments = [] for pattern, scale in compiled_patterns: matches = list(re.finditer(pattern, res_text)) for match in matches: if match.start() > last_idx: segments.append({'key': '', 'content': res_text[last_idx:match.start()]}) segments.append({'key': scale[0], 'content': match.group(0)}) last_idx = match.end() if last_idx < len(res_text): segments.insert(0, {'key': '', 'content': res_text[last_idx:]}) if segments: text_list[i:i + 1] = segments def get_tools_prompt(TOOLS: List[Dict[str, Union[str, dict]]], prompt_format: str = 'react_en') -> Optional[str]: tool_descs = [] tool_names = [] for info in TOOLS: # info: Dict[str, Union[str, dict]] try: if 'function' in info: info = info['function'] tool_names.append(info['name']) tool_descs.append(str(info)) # info: dict except KeyError: print('invalid tools format, please check' 'https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/Agent-deployment-best-practice.md') return None tool_descs = '\n\n'.join(tool_descs) tool_names = ','.join(tool_names) if prompt_format == 'react_en': return REACT_PROMPT.format(tool_list=tool_descs, tool_names=tool_names) elif prompt_format == 'react_zh': return REACT_ZH_PROMPT.format(tool_list=tool_descs, tool_names=tool_names) return TOOLBENCH_PROMPT.format(tool_list=tool_descs)
swift/swift/llm/agent/utils.py/0
{ "file_path": "swift/swift/llm/agent/utils.py", "repo_id": "swift", "token_count": 3439 }
218
# Copyright (c) Alibaba, Inc. and its affiliates. import time import uuid from dataclasses import dataclass, field from typing import Dict, List, Literal, Optional, Union def random_uuid() -> str: return str(uuid.uuid4().hex) @dataclass class Model: id: str # model_type is_chat: Optional[bool] = None # chat model or generation model is_multimodal: bool = False object: str = 'model' created: int = field(default_factory=lambda: int(time.time())) owned_by: str = 'swift' @dataclass class ModelList: data: List[Model] object: str = 'list' @dataclass class XRequestConfig: """NOTE: The following behavior is inconsistent with the OpenAI API. Default values for OpenAI: temperature = 1. top_k = -1 top_p = 1. repetition_penalty = 1. """ max_tokens: Optional[int] = None # None: max_model_len - num_tokens # None: use deploy_args temperature: Optional[float] = None top_p: Optional[float] = None n: int = 1 seed: Optional[int] = None stop: Optional[List[str]] = None stream: bool = False best_of: Optional[int] = None presence_penalty: float = 0. frequency_penalty: float = 0. length_penalty: float = 1. # additional num_beams: int = 1 # None: use deploy_args top_k: Optional[int] = None repetition_penalty: Optional[float] = None @dataclass class CompletionRequestMixin: model: str prompt: str images: List[str] = field(default_factory=list) @dataclass class ChatCompletionRequestMixin: model: str messages: List[Dict[str, str]] tools: Optional[List[Dict[str, Union[str, Dict]]]] = None tool_choice: Optional[Union[str, Dict]] = 'auto' images: List[str] = field(default_factory=list) @dataclass class CompletionRequest(XRequestConfig, CompletionRequestMixin): pass @dataclass class ChatCompletionRequest(XRequestConfig, ChatCompletionRequestMixin): pass @dataclass class UsageInfo: prompt_tokens: int = 0 completion_tokens: int = 0 total_tokens: int = 0 @dataclass class Function: arguments: Optional[str] = None name: str = '' @dataclass class ChatCompletionMessageToolCall: id: str function: Function type: str = 'function' @dataclass class ChatMessage: role: Literal['system', 'user', 'assistant'] content: str tool_calls: Optional[ChatCompletionMessageToolCall] = None @dataclass class ChatCompletionResponseChoice: index: int message: ChatMessage finish_reason: Literal['stop', 'length', None] # None: for infer_backend='pt' @dataclass class CompletionResponseChoice: index: int text: str finish_reason: Literal['stop', 'length', None] # None: for infer_backend='pt' @dataclass class ChatCompletionResponse: model: str choices: List[ChatCompletionResponseChoice] usage: UsageInfo id: str = field(default_factory=lambda: f'chatcmpl-{random_uuid()}') object: str = 'chat.completion' created: int = field(default_factory=lambda: int(time.time())) @dataclass class CompletionResponse: model: str choices: List[CompletionResponseChoice] usage: UsageInfo id: str = field(default_factory=lambda: f'cmpl-{random_uuid()}') object: str = 'text_completion' created: int = field(default_factory=lambda: int(time.time())) @dataclass class DeltaMessage: role: Literal['system', 'user', 'assistant'] content: str tool_calls: Optional[ChatCompletionMessageToolCall] = None @dataclass class ChatCompletionResponseStreamChoice: index: int delta: DeltaMessage finish_reason: Literal['stop', 'length', None] @dataclass class ChatCompletionStreamResponse: model: str choices: List[ChatCompletionResponseStreamChoice] usage: UsageInfo id: str = field(default_factory=lambda: f'chatcmpl-{random_uuid()}') object: str = 'chat.completion.chunk' created: int = field(default_factory=lambda: int(time.time())) @dataclass class CompletionResponseStreamChoice: index: int text: str finish_reason: Literal['stop', 'length', None] @dataclass class CompletionStreamResponse: model: str choices: List[CompletionResponseStreamChoice] usage: UsageInfo id: str = field(default_factory=lambda: f'cmpl-{random_uuid()}') object: str = 'text_completion.chunk' created: int = field(default_factory=lambda: int(time.time()))
swift/swift/llm/utils/protocol.py/0
{ "file_path": "swift/swift/llm/utils/protocol.py", "repo_id": "swift", "token_count": 1633 }
219
from typing import Any, Dict, List, Literal, Tuple, Union import torch from torch import nn from transformers import PreTrainedModel, trainer from trl import DPOTrainer as HFDPOTrainer from swift.llm.utils.template import Template from swift.llm.utils.utils import sort_by_max_length from swift.utils import get_logger from .callback import DefaultFlowCallbackNew, PrinterCallbackNew, ProgressCallbackNew from .mixin import PushToMsHubMixin, SwiftMixin from .utils import build_tokenized_answer, concat_template logger = get_logger() class DPOTrainer(PushToMsHubMixin, SwiftMixin, HFDPOTrainer): def __init__(self, *args, template: Template, sft_beta=0., test_oom_error=False, **kwargs): self.template = template self.sft_beta = sft_beta super().__init__(*args, **kwargs) train_ds_info = self.stat_dataset(self.train_dataset) val_ds_info = self.stat_dataset(self.eval_dataset) self.dataset_info = {'train_dataset': train_ds_info, 'val_dataset': val_ds_info} if test_oom_error: self.train_dataset = sort_by_max_length(self.train_dataset, 20000) # performance self.perf: Dict[str, Any] = { 'gen_time': 0., 'gen_len': 0, 'memory': {}, 'model': self.model.get_trainable_parameters() if hasattr(self.model, 'get_trainable_parameters') else None, } def train(self, *args, **kwargs) -> torch.Tensor: res = super().train(*args, **kwargs) for i in range(torch.cuda.device_count()): self.perf['memory'][f'cuda:{i}'] = f'{torch.cuda.max_memory_reserved(i)/1024/1024/1024:.2f}GiB' return res def tokenize_row(self, feature, model: Union[PreTrainedModel, nn.Module] = None) -> Dict: batch = {} if not self.is_encoder_decoder: prompt, chosen, rejected, loss_scale = concat_template(feature, self.template) prompt_tokens, _, _, _ = self.template._encode_context_list(prompt, loss_scale) prompt_tokens = { 'input_ids': prompt_tokens, 'attention_mask': [1] * len(prompt_tokens), } prompt_tokens = {f'prompt_{k}': v for k, v in prompt_tokens.items()} if not isinstance(chosen, str): raise ValueError(f'chosen should be an str but got {type(chosen)}') chosen_tokens = build_tokenized_answer(chosen, self.template) # Avoid tokenizing the prompt repeatedly. chosen_tokens.update(prompt_tokens) if not isinstance(rejected, str): raise ValueError(f'rejected should be an str but got {type(rejected)}') rejected_tokens = build_tokenized_answer(rejected, self.template) rejected_tokens.update(prompt_tokens) longer_response_length = max(len(chosen_tokens['input_ids']), len(rejected_tokens['input_ids'])) # if combined sequence is too long, truncate the prompt for answer_tokens in [chosen_tokens, rejected_tokens, prompt_tokens]: if len(answer_tokens['prompt_input_ids']) + longer_response_length > self.max_length: if self.truncation_mode == 'keep_start': for k in ['prompt_input_ids', 'prompt_attention_mask']: answer_tokens[k] = answer_tokens[k][:self.max_prompt_length] elif self.truncation_mode == 'keep_end': for k in ['prompt_input_ids', 'prompt_attention_mask']: answer_tokens[k] = answer_tokens[k][-self.max_prompt_length:] else: raise ValueError(f'Unknown truncation mode: {self.truncation_mode}') # if that's still too long, truncate the response for answer_tokens in [chosen_tokens, rejected_tokens]: if len(answer_tokens['prompt_input_ids']) + longer_response_length > self.max_length: for k in ['input_ids', 'attention_mask']: answer_tokens[k] = answer_tokens[k][:self.max_length - self.max_prompt_length] # Create labels chosen_sequence_tokens = { k: chosen_tokens[f'prompt_{k}'] + chosen_tokens[k] for k in ['input_ids', 'attention_mask'] } rejected_sequence_tokens = { k: rejected_tokens[f'prompt_{k}'] + rejected_tokens[k] for k in ['input_ids', 'attention_mask'] } chosen_sequence_tokens['labels'] = chosen_sequence_tokens['input_ids'][:] _paddings = [self.label_pad_token_id] * len(chosen_tokens['prompt_input_ids']) chosen_sequence_tokens['labels'][:len(chosen_tokens['prompt_input_ids'])] = _paddings rejected_sequence_tokens['labels'] = rejected_sequence_tokens['input_ids'][:] _paddings = [self.label_pad_token_id] * len(rejected_tokens['prompt_input_ids']) rejected_sequence_tokens['labels'][:len(rejected_tokens['prompt_input_ids'])] = _paddings for k, toks in { 'chosen_': chosen_sequence_tokens, 'rejected_': rejected_sequence_tokens, '': prompt_tokens, }.items(): for type_key, tokens in toks.items(): if type_key == 'token_type_ids': continue batch[f'{k}{type_key}'] = tokens else: # encoder-decoder batch = super().tokenize_row(feature, model) return batch @staticmethod def stat_dataset(llm_dataset) -> Any: _token_len = [] from datasets import Dataset as HfDataset from swift.utils.np_utils import stat_array if isinstance(llm_dataset, HfDataset): chosen = llm_dataset['chosen_input_ids'] rejected = llm_dataset['rejected_input_ids'] for cc, rr in zip(chosen, rejected): _token_len.append(max(len(cc), len(rr))) else: for d in llm_dataset: _token_len.append(max(len(d['chosen_input_ids']), len(d['rejected_input_ids']))) _, stat_str = stat_array(_token_len) logger.info(f'Dataset Token Length: {stat_str}') return stat_str def get_batch_loss_metrics( self, model, batch: Dict[str, Union[List, torch.LongTensor]], train_eval: Literal['train', 'eval'] = 'train', ): """Compute the DPO loss and other metrics for the given batch of inputs for train or test.""" metrics = {} ( policy_chosen_logps, policy_rejected_logps, policy_chosen_logits, policy_rejected_logits, concatenated_batch, ) = self.concatenated_forward(model, batch) # if reference_chosen_logps and reference_rejected_logps in batch use them, otherwise use the reference model if 'reference_chosen_logps' in batch and 'reference_rejected_logps' in batch: reference_chosen_logps = batch['reference_chosen_logps'] reference_rejected_logps = batch['reference_rejected_logps'] else: with torch.no_grad(): if self.ref_model is None: with self.null_ref_context(): ( reference_chosen_logps, reference_rejected_logps, _, _, _, ) = self.concatenated_forward(self.model, batch) else: ( reference_chosen_logps, reference_rejected_logps, _, _, _, ) = self.concatenated_forward(self.ref_model, batch) losses, chosen_rewards, rejected_rewards = self.dpo_loss( policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps, ) if self.sft_beta > 0.: chosen_labels = concatenated_batch['concatenated_labels'][:batch['chosen_labels'].shape[0]] sft_loss, size_completion = self.get_batch_logps(policy_chosen_logits, chosen_labels) sft_loss = -sft_loss / size_completion if losses.shape[0] == 2 * sft_loss.shape[0]: sft_loss = sft_loss.repeat(2, *sft_loss.shape[1:]) losses = (1 - self.sft_beta) * losses + self.sft_beta * sft_loss reward_accuracies = (chosen_rewards > rejected_rewards).float() prefix = 'eval_' if train_eval == 'eval' else '' metrics[f'{prefix}rewards/chosen'] = chosen_rewards.mean().cpu() metrics[f'{prefix}rewards/rejected'] = rejected_rewards.mean().cpu() metrics[f'{prefix}rewards/accuracies'] = reward_accuracies.mean().cpu() metrics[f'{prefix}rewards/margins'] = (chosen_rewards - rejected_rewards).mean().cpu() metrics[f'{prefix}logps/rejected'] = policy_rejected_logps.detach().mean().cpu() metrics[f'{prefix}logps/chosen'] = policy_chosen_logps.detach().mean().cpu() metrics[f'{prefix}logps/ref_rejected'] = reference_rejected_logps.detach( # noqa ).mean().cpu() # noqa metrics[f'{prefix}logps/ref_chosen'] = reference_chosen_logps.detach().mean().cpu() metrics[f'{prefix}logits/rejected'] = policy_rejected_logits.detach().mean().cpu() metrics[f'{prefix}logits/chosen'] = policy_chosen_logits.detach().mean().cpu() return losses.mean(), metrics def concatenated_forward( self, model: nn.Module, batch: Dict[str, Union[List, torch.LongTensor]] ) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, Dict[str, torch.LongTensor]]: """Run the given model on the given batch of inputs, concatenating the chosen and rejected inputs together. We do this to avoid doing two forward passes, because it's faster for FSDP. """ concatenated_batch = self.concatenated_inputs( batch, is_encoder_decoder=self.is_encoder_decoder, label_pad_token_id=self.label_pad_token_id, padding_value=self.padding_value, device=self.accelerator.device, ) len_chosen = batch['chosen_labels'].shape[0] model_kwargs = ({ 'labels': concatenated_batch['concatenated_labels'], 'decoder_input_ids': concatenated_batch.pop('concatenated_decoder_input_ids', None), } if self.is_encoder_decoder else {}) all_logits = model( concatenated_batch['concatenated_input_ids'], attention_mask=concatenated_batch['concatenated_attention_mask'], **model_kwargs, ).logits all_logps, _ = self.get_batch_logps( all_logits, concatenated_batch['concatenated_labels'], is_encoder_decoder=self.is_encoder_decoder, label_pad_token_id=self.label_pad_token_id, ) chosen_logps = all_logps[:len_chosen] rejected_logps = all_logps[len_chosen:] chosen_logits = all_logits[:len_chosen] rejected_logits = all_logits[len_chosen:] return chosen_logps, rejected_logps, chosen_logits, rejected_logits, concatenated_batch # monkey patching trainer.DEFAULT_PROGRESS_CALLBACK = ProgressCallbackNew trainer.DEFAULT_CALLBACKS = [DefaultFlowCallbackNew] trainer.PrinterCallback = PrinterCallbackNew
swift/swift/trainers/dpo_trainer.py/0
{ "file_path": "swift/swift/trainers/dpo_trainer.py", "repo_id": "swift", "token_count": 5676 }
220
# Copyright (c) Alibaba, Inc. and its affiliates. import time from typing import Any, Dict, List, Optional, Tuple, Union import torch from peft import PeftModel from torch import Tensor, nn from torch.nn import CrossEntropyLoss from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer from transformers import Trainer as HfTrainer from transformers import trainer from transformers.modeling_utils import unwrap_model from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from transformers.utils import is_peft_available from swift.torchacc_utils import ta_eval_dataloader, ta_test_dataloader, ta_train_dataloader, ta_trim_graph from swift.utils import use_torchacc from .callback import DefaultFlowCallbackNew, PrinterCallbackNew, ProgressCallbackNew from .mixin import PushToMsHubMixin, SwiftMixin try: from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled except ImportError: from transformers.deepspeed import is_deepspeed_zero3_enabled class Trainer(PushToMsHubMixin, SwiftMixin, HfTrainer): pass class Seq2SeqTrainer(PushToMsHubMixin, SwiftMixin, HfSeq2SeqTrainer): def __init__(self, *args, **kwargs): self.sequence_parallel_size = kwargs.pop('sequence_parallel_size', 1) super().__init__(*args, **kwargs) # performance if not hasattr(self, 'perf'): self.perf = {} self.perf.update({ 'gen_time': 0., 'gen_len': 0, }) self._acc = torch.tensor(0.).to(self.args.device) if self.sequence_parallel_size > 1: from swift.trainers.xtuner import init_sequence_parallel_xtuner init_sequence_parallel_xtuner(self.sequence_parallel_size) def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, **gen_kwargs, ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: if not self.args.predict_with_generate or prediction_loss_only: return super().prediction_step( model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys) inputs.pop('loss_scale', None) has_labels = 'labels' in inputs inputs = self._prepare_inputs(inputs) # XXX: adapt synced_gpus for fairscale as well # Priority (handled in generate): # gen_kwargs > model.generation_config > default GenerationConfig() if len(gen_kwargs) == 0 and hasattr(self, '_gen_kwargs'): gen_kwargs = self._gen_kwargs.copy() if hasattr(self.model, 'generation_config'): gen_kwargs.update(self.model.generation_config.to_dict()) if gen_kwargs.get('max_length') is None and gen_kwargs.get('max_new_tokens') is None: gen_kwargs['max_length'] = self.model.config.max_length gen_kwargs['num_beams'] = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.model.config.num_beams) default_synced_gpus = True if is_deepspeed_zero3_enabled() else False gen_kwargs['synced_gpus'] = ( gen_kwargs['synced_gpus'] if gen_kwargs.get('synced_gpus') is not None else default_synced_gpus) # If the `decoder_input_ids` was created from `labels`, evict the former, so that the model can freely generate # (otherwise, it would continue generating from the padded `decoder_input_ids`) if ('labels' in inputs and 'decoder_input_ids' in inputs and inputs['labels'].shape == inputs['decoder_input_ids'].shape): inputs = {k: v for k, v in inputs.items() if k != 'decoder_input_ids'} gen_kwargs['pad_token_id'] = self.tokenizer.pad_token_id gen_kwargs['eos_token_id'] = self.tokenizer.eos_token_id # fix generate warning if 'max_length' in gen_kwargs and 'max_new_tokens' in gen_kwargs and gen_kwargs['max_new_tokens'] is not None: gen_kwargs.pop('max_length') gen_time = time.time() generate_inputs = inputs.copy() if has_labels: _labels = inputs['labels'][0] n_mask = 0 for i in range(len(_labels)): if _labels[i] != -100: n_mask = i break for k in ['input_ids', 'attention_mask']: generate_inputs[k] = generate_inputs[k][:, :n_mask] generate_inputs['labels'] = generate_inputs['labels'][:, n_mask:] generated_tokens = self.model.generate(**generate_inputs, **gen_kwargs) gen_time = time.time() - gen_time if hasattr(self.model, 'encoder') and self.model.encoder.main_input_name != self.model.main_input_name: generation_inputs = generate_inputs[self.model.encoder.main_input_name] else: generation_inputs = generate_inputs[self.model.main_input_name] generated_tokens = generated_tokens[:, generation_inputs.shape[1]:] gen_len = len(generated_tokens[0]) self.perf['gen_time'] = self.perf['gen_time'] + gen_time self.perf['gen_len'] = self.perf['gen_len'] + gen_len # in case the batch is shorter than max length, the output should be padded if gen_kwargs.get('max_length') is not None and generated_tokens.shape[-1] < gen_kwargs['max_length']: generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs['max_length']) elif gen_kwargs.get('max_new_tokens') is not None and generated_tokens.shape[-1] < (gen_kwargs['max_new_tokens'] + 1): generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs['max_new_tokens'] + 1) with torch.no_grad(): if has_labels: with self.compute_loss_context_manager(): outputs = model(**inputs) if self.label_smoother is not None: loss = self.label_smoother(outputs, inputs['labels']).mean().detach() else: loss = (outputs['loss'] if isinstance(outputs, dict) else outputs[0]).mean().detach() else: loss = None if self.args.prediction_loss_only: return loss, None, None if has_labels: labels = generate_inputs['labels'] if gen_kwargs.get('max_length') is not None and labels.shape[-1] < gen_kwargs['max_length']: labels = self._pad_tensors_to_max_len(labels, gen_kwargs['max_length']) elif gen_kwargs.get('max_new_tokens') is not None and labels.shape[-1] < (gen_kwargs['max_new_tokens'] + 1): labels = self._pad_tensors_to_max_len(labels, (gen_kwargs['max_new_tokens'] + 1)) else: labels = None return loss, generated_tokens, labels @staticmethod def compute_scaled_loss(labels: torch.Tensor, lm_logits: torch.Tensor, loss_scale: torch.Tensor) -> torch.Tensor: device = lm_logits.device # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :] shift_labels = labels[..., 1:] shift_scale = loss_scale[..., 1:] # Save memory masks = shift_labels != -100 shift_logits = shift_logits[masks] shift_labels = shift_labels[masks].to(device) shift_scale = shift_scale[masks].to(device) # Flatten the tokens loss_fct = CrossEntropyLoss(reduction='none') loss = loss_fct(shift_logits, shift_labels) loss = shift_scale * loss return loss.mean() def compute_loss(self, model, inputs, return_outputs=None): if not hasattr(self, '_custom_metrics'): self._custom_metrics = {} labels = None loss_scale = None if 'loss_scale' in inputs: labels = inputs.pop('labels') loss_scale = inputs.pop('loss_scale') if self.label_smoother is not None and 'labels' in inputs: labels = inputs.pop('labels') outputs = model(**inputs) if loss_scale is not None: outputs['loss'] = self.compute_scaled_loss(labels, outputs.logits, loss_scale) # Save past state if it exists # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index] if labels is not None and loss_scale is None: unwrapped_model = unwrap_model(model) if is_peft_available() and isinstance(unwrapped_model, PeftModel): model_name = unwrapped_model.base_model.model._get_name() else: model_name = unwrapped_model._get_name() if model_name in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.values(): loss = self.label_smoother(outputs, labels, shift_labels=True) else: loss = self.label_smoother(outputs, labels) else: loss = outputs['loss'] if isinstance(outputs, dict) else outputs[0] if self.sequence_parallel_size > 1: from swift.trainers.xtuner import reduce_xtuner_sequence_parallel_loss loss = reduce_xtuner_sequence_parallel_loss(loss, labels) if labels is None: labels = inputs['labels'] preds = outputs.logits.argmax(dim=2)[..., :-1] labels = labels[..., 1:] masks = labels != -100 acc_strategy = getattr(self.args, 'acc_strategy', 'token') acc: Optional[Tensor] = None if self.state.global_step % self.sft_args.acc_steps == 0: if preds.shape != labels.shape: pass elif acc_strategy == 'sentence': acc_list = [] for i, m in enumerate(masks): acc_list.append(torch.all(preds[i, m] == labels[i, m]).to(torch.int64).item()) acc = torch.tensor(acc_list, device=preds.device).float().mean() else: if use_torchacc(): ta_trim_graph() preds = preds.to('cpu') masks = masks.to('cpu') labels = labels.to('cpu') acc = (torch.masked_select(preds, masks) == torch.masked_select(labels, masks)).float().mean() if model.training and acc is not None: if 'acc' not in self._custom_metrics: self._custom_metrics['acc'] = self._acc self._custom_metrics['acc'] = self._custom_metrics['acc'] + acc / self.args.gradient_accumulation_steps return (loss, outputs) if return_outputs else loss def get_train_dataloader(self): if self.sequence_parallel_size > 1: from swift.trainers.xtuner import get_xtuner_train_dataloader return get_xtuner_train_dataloader(self) elif use_torchacc(): if trainer.is_datasets_available(): import datasets if self.train_dataset is None: raise ValueError('Trainer: training requires a train_dataset.') train_dataset = self.train_dataset data_collator = self.data_collator if trainer.is_datasets_available() and isinstance(train_dataset, datasets.Dataset): train_dataset = self._remove_unused_columns(train_dataset, description='training') else: data_collator = self._get_collator_with_removed_columns(data_collator, description='training') return ta_train_dataloader(train_dataset, data_collator, self._get_train_sampler(), self.args, self._train_batch_size) else: return super().get_train_dataloader() def get_eval_dataloader(self, eval_dataset=None): if not use_torchacc(): return super().get_eval_dataloader(eval_dataset) else: if trainer.is_datasets_available(): import datasets if eval_dataset is None and self.eval_dataset is None: raise ValueError('Trainer: evaluation requires an eval_dataset.') eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset data_collator = self.data_collator if trainer.is_datasets_available() and isinstance(eval_dataset, datasets.Dataset): eval_dataset = self._remove_unused_columns(eval_dataset, description='evaluation') else: data_collator = self._get_collator_with_removed_columns(data_collator, description='evaluation') return ta_eval_dataloader(eval_dataset, data_collator, self._get_eval_sampler(eval_dataset), self.args) def get_test_dataloader(self, test_dataset): if not use_torchacc(): return super().get_test_dataloader(test_dataset) else: if trainer.is_datasets_available(): import datasets data_collator = self.data_collator if trainer.is_datasets_available() and isinstance(test_dataset, datasets.Dataset): test_dataset = self._remove_unused_columns(test_dataset, description='test') else: data_collator = self._get_collator_with_removed_columns(data_collator, description='test') return ta_test_dataloader(test_dataset, data_collator, self._get_eval_sampler(test_dataset), self.args) # monkey patching trainer.DEFAULT_PROGRESS_CALLBACK = ProgressCallbackNew trainer.DEFAULT_CALLBACKS = [DefaultFlowCallbackNew] trainer.PrinterCallback = PrinterCallbackNew
swift/swift/trainers/trainers.py/0
{ "file_path": "swift/swift/trainers/trainers.py", "repo_id": "swift", "token_count": 6316 }
221
# Copyright (c) Alibaba, Inc. and its affiliates. from dataclasses import dataclass, field import torch from torch import nn from swift.utils.logger import get_logger from .utils import SwiftAdapter, SwiftConfig, SwiftOutput logger = get_logger() @dataclass class NEFTuneConfig(SwiftConfig): """ The configuration class for the NEFTune module. NEFTune adds slightly noises to embedding outputs. See https://arxiv.org/abs/2310.05914 Args: noise_alpha(`float`): The noise alpha value used for the NEFTune, default 5.0 """ noise_alpha: float = field(default=5.0, metadata={'help': 'The noise alpha value used for the NEFTune'}) def __post_init__(self): from .mapping import SwiftTuners self.swift_type = SwiftTuners.NEFTUNE class NEFTune(SwiftAdapter): @staticmethod def prepare_model(model: nn.Module, config: NEFTuneConfig, adapter_name: str) -> SwiftOutput: """Prepare a model with `NEFTuneConfig`""" for sub_module in model.modules(): if isinstance(sub_module, torch.nn.Embedding): def neftune_hook(module, args, output): if module.training and getattr(module, 'nef_activated'): dims = torch.tensor(output.size(-1) * output.size(-2)) mag_norm = config.noise_alpha / torch.sqrt(dims) output = output + torch.zeros_like(output).uniform_(-mag_norm, mag_norm) return output if hasattr(sub_module, 'nef_activated'): raise ValueError('NEFTune does not support a second tuner.') sub_module.register_forward_hook(neftune_hook) sub_module.nef_activated = True def state_dict_callback(state_dict, adapter_name): return state_dict def mark_trainable_callback(model): return return SwiftOutput(config, state_dict_callback, mark_trainable_callback) @staticmethod def activate_adapter(module: torch.nn.Module, adapter_name: str, activate: bool, offload: str = None): for sub_module in module.modules(): if isinstance(sub_module, torch.nn.Embedding): sub_module.nef_activated = activate @staticmethod def freeze_model(): return False @staticmethod def has_additional_modules(): return False
swift/swift/tuners/neftune.py/0
{ "file_path": "swift/swift/tuners/neftune.py", "repo_id": "swift", "token_count": 1007 }
222
# Copyright (c) Alibaba, Inc. and its affiliates. # Part of the implementation is borrowed from kmeng01/rome. from typing import Dict, List import torch from modelscope import AutoTokenizer from swift.utils.logger import get_logger from .repr_tools import get_reprs_at_idxs, get_reprs_at_word_tokens from .rome_hparams import ROMEHyperParams logger = get_logger() def compute_u( model: torch.nn.Module, tokenizer: AutoTokenizer, request: Dict, hparams: ROMEHyperParams, layer: int, context_templates: List[str], batch_first=True, ) -> torch.Tensor: """ Computes the left vector used in constructing the rank-1 update matrix. """ logger.info('Computing left vector (u)...') # Compute projection token word_repr_args = dict( model=model, tokenizer=tokenizer, layer=layer, module_template=hparams.rewrite_module_tmp, track='in', batch_first=batch_first, ) if 'subject_' in hparams.fact_token and hparams.fact_token.index('subject_') == 0: word = request['subject'] logger.info(f'Selected u projection object {word}') cur_repr = get_reprs_at_word_tokens( context_templates=[templ.format(request['prompt']) for templ in context_templates], words=[word for _ in range(len(context_templates))], subtoken=hparams.fact_token[len('subject_'):], **word_repr_args, ).mean(0) elif hparams.fact_token == 'last': # Heuristic to choose last word. Not a huge deal if there's a minor # edge case (e.g. multi-token word) because the function below will # take the last token. cur_repr = get_reprs_at_idxs( contexts=[templ.format(request['prompt'].format(request['subject'])) for templ in context_templates], idxs=[[-1] for _ in range(len(context_templates))], **word_repr_args, ).mean(0) logger.info('Selected u projection token with last token') else: raise ValueError(f'fact_token={hparams.fact_token} not recognized') # Apply inverse second moment adjustment u = cur_repr return u / u.norm()
swift/swift/tuners/rome/compute_u.py/0
{ "file_path": "swift/swift/tuners/rome/compute_u.py", "repo_id": "swift", "token_count": 889 }
223
import os from typing import Type import gradio as gr from swift.ui.base import BaseUI class Generate(BaseUI): group = 'llm_infer' locale_dict = { 'max_new_tokens': { 'label': { 'zh': '生成序列最大长度', 'en': 'Max new tokens' }, }, 'do_sample': { 'label': { 'zh': 'do_sample', 'en': 'do_sample' }, }, 'temperature': { 'label': { 'zh': 'temperature', 'en': 'temperature' }, }, 'top_k': { 'label': { 'zh': 'top_k', 'en': 'top_k' }, }, 'top_p': { 'label': { 'zh': 'top_p', 'en': 'top_p' }, }, 'infer_backend': { 'label': { 'zh': '推理框架', 'en': 'Infer backend' }, }, 'repetition_penalty': { 'label': { 'zh': 'repetition_penalty', 'en': 'repetition_penalty' }, }, 'port': { 'label': { 'zh': '端口', 'en': 'port' }, }, } @classmethod def do_build_ui(cls, base_tab: Type['BaseUI']): with gr.Row(): gr.Textbox(elem_id='max_new_tokens', lines=1, value='2048') gr.Checkbox(elem_id='do_sample', value=True) gr.Dropdown(elem_id='infer_backend', value='pt') gr.Slider(elem_id='temperature', minimum=0.0, maximum=10, step=0.1, value=0.3) gr.Slider(elem_id='top_k', minimum=1, maximum=100, step=5, value=20) gr.Slider(elem_id='top_p', minimum=0.0, maximum=1.0, step=0.05, value=0.7) gr.Slider(elem_id='repetition_penalty', minimum=0.0, maximum=10, step=0.05, value=1.05) if os.environ.get('MODELSCOPE_ENVIRONMENT') != 'studio': gr.Textbox(elem_id='port', lines=1, value='8000')
swift/swift/ui/llm_infer/generate.py/0
{ "file_path": "swift/swift/ui/llm_infer/generate.py", "repo_id": "swift", "token_count": 1298 }
224
import collections import os.path import sys import time import webbrowser from datetime import datetime from typing import Dict, List, Tuple, Type import gradio as gr import json import matplotlib.pyplot as plt import psutil from gradio import Accordion, Tab from transformers import is_tensorboard_available from swift.ui.base import BaseUI from swift.ui.llm_train.utils import close_loop, run_command_in_subprocess from swift.utils import TB_COLOR, TB_COLOR_SMOOTH, get_logger, read_tensorboard_file, tensorboard_smoothing logger = get_logger() class Runtime(BaseUI): handlers: Dict[str, Tuple[List, Tuple]] = {} group = 'llm_train' all_plots = None log_event = None is_studio = os.environ.get('MODELSCOPE_ENVIRONMENT') == 'studio' sft_plot = [ { 'name': 'train/loss', 'smooth': 0.9, }, { 'name': 'train/acc', 'smooth': None, }, { 'name': 'train/learning_rate', 'smooth': None, }, { 'name': 'eval/loss', 'smooth': 0.9, }, { 'name': 'eval/acc', 'smooth': None, }, ] dpo_plot = [ { 'name': 'train/loss', 'smooth': 0.9, }, { 'name': 'train/rewards/accuracies', 'smooth': None, }, { 'name': 'train/rewards/margins', 'smooth': 0.9, }, { 'name': 'train/logps/chosen', 'smooth': 0.9, }, { 'name': 'train/logps/rejected', 'smooth': 0.9, }, ] kto_plot = [ { 'name': 'kl', 'smooth': None, }, { 'name': 'rewards/chosen_sum', 'smooth': 0.9, }, { 'name': 'logps/chosen_sum', 'smooth': 0.9, }, { 'name': 'rewards/rejected_sum', 'smooth': 0.9, }, { 'name': 'logps/rejected_sum', 'smooth': 0.9, }, ] orpo_plot = [ { 'name': 'train/loss', 'smooth': 0.9, }, { 'name': 'train/rewards/accuracies', 'smooth': None, }, { 'name': 'train/rewards/margins', 'smooth': 0.9, }, { 'name': 'train/rewards/chosen', 'smooth': 0.9, }, { 'name': 'train/log_odds_ratio', 'smooth': 0.9, }, ] locale_dict = { 'runtime_tab': { 'label': { 'zh': '运行时', 'en': 'Runtime' }, }, 'tb_not_found': { 'value': { 'zh': 'tensorboard未安装,使用pip install tensorboard进行安装', 'en': 'tensorboard not found, install it by pip install tensorboard', } }, 'running_cmd': { 'label': { 'zh': '运行命令', 'en': 'Command line' }, 'info': { 'zh': '执行的实际命令', 'en': 'The actual command' } }, 'show_log': { 'value': { 'zh': '展示运行状态', 'en': 'Show running status' }, }, 'stop_show_log': { 'value': { 'zh': '停止展示运行状态', 'en': 'Stop showing running status' }, }, 'logging_dir': { 'label': { 'zh': '日志路径', 'en': 'Logging dir' }, 'info': { 'zh': '支持手动传入文件路径', 'en': 'Support fill custom path in' } }, 'log': { 'label': { 'zh': '日志输出', 'en': 'Logging content' }, 'info': { 'zh': '如果日志无更新请再次点击"展示日志内容"', 'en': 'Please press "Show log" if the log content is not updating' } }, 'running_tasks': { 'label': { 'zh': '运行中任务', 'en': 'Running Tasks' }, 'info': { 'zh': '运行中的任务(所有的swift sft命令)', 'en': 'All running tasks(started by swift sft)' } }, 'refresh_tasks': { 'value': { 'zh': '找回运行时任务', 'en': 'Find running tasks' }, }, 'kill_task': { 'value': { 'zh': '杀死任务', 'en': 'Kill running task' }, }, 'tb_url': { 'label': { 'zh': 'Tensorboard链接', 'en': 'Tensorboard URL' }, 'info': { 'zh': '仅展示,不可编辑', 'en': 'Not editable' } }, 'start_tb': { 'value': { 'zh': '打开TensorBoard', 'en': 'Start TensorBoard' }, }, 'close_tb': { 'value': { 'zh': '关闭TensorBoard', 'en': 'Close TensorBoard' }, }, } @classmethod def do_build_ui(cls, base_tab: Type['BaseUI']): with gr.Accordion(elem_id='runtime_tab', open=False, visible=True): with gr.Blocks(): with gr.Row(): gr.Textbox(elem_id='running_cmd', lines=1, scale=20, interactive=False, max_lines=1) if not cls.is_studio: gr.Textbox(elem_id='logging_dir', lines=1, scale=20, max_lines=1) gr.Button(elem_id='show_log', scale=2, variant='primary') gr.Button(elem_id='stop_show_log', scale=2) gr.Textbox(elem_id='tb_url', lines=1, scale=10, interactive=False, max_lines=1) gr.Button(elem_id='start_tb', scale=2, variant='primary') gr.Button(elem_id='close_tb', scale=2) with gr.Row(): gr.Textbox(elem_id='log', lines=6, visible=False) if not cls.is_studio: with gr.Row(): gr.Dropdown(elem_id='running_tasks', scale=10) gr.Button(elem_id='refresh_tasks', scale=1) gr.Button(elem_id='kill_task', scale=1) with gr.Row(): cls.all_plots = [] for idx, k in enumerate(Runtime.sft_plot): name = k['name'] cls.all_plots.append(gr.Plot(elem_id=str(idx), label=name)) if not cls.is_studio: cls.log_event = base_tab.element('show_log').click( Runtime.update_log, [base_tab.element('running_tasks')], [cls.element('log')] + cls.all_plots).then( Runtime.wait, [base_tab.element('logging_dir'), base_tab.element('running_tasks')], [cls.element('log')] + cls.all_plots) base_tab.element('stop_show_log').click(lambda: None, cancels=cls.log_event) base_tab.element('start_tb').click( Runtime.start_tb, [base_tab.element('logging_dir')], [base_tab.element('tb_url')], ) base_tab.element('close_tb').click( Runtime.close_tb, [base_tab.element('logging_dir')], [], ) base_tab.element('refresh_tasks').click( Runtime.refresh_tasks, [base_tab.element('running_tasks')], [base_tab.element('running_tasks')], ) @classmethod def get_plot(cls, task): if not task or 'swift sft' in task: return cls.sft_plot args: dict = cls.parse_info_from_cmdline(task)[1] train_type = args.get('rlhf_type', 'dpo') if train_type in ('dpo', 'cpo', 'simpo'): return cls.dpo_plot elif train_type == 'kto': return cls.kto_plot elif train_type == 'orpo': return cls.orpo_plot @classmethod def update_log(cls, task): ret = [gr.update(visible=True)] plot = Runtime.get_plot(task) for i in range(len(plot)): p = plot[i] ret.append(gr.update(visible=True, label=p['name'])) return ret @classmethod def wait(cls, logging_dir, task): if not logging_dir: return [None] + Runtime.plot(task) log_file = os.path.join(logging_dir, 'run.log') offset = 0 latest_data = '' lines = collections.deque(maxlen=int(os.environ.get('MAX_LOG_LINES', 50))) try: with open(log_file, 'r') as input: input.seek(offset) fail_cnt = 0 while True: try: latest_data += input.read() except UnicodeDecodeError: continue if not latest_data: time.sleep(0.5) fail_cnt += 1 if fail_cnt > 50: break if '\n' not in latest_data: continue latest_lines = latest_data.split('\n') if latest_data[-1] != '\n': latest_data = latest_lines[-1] latest_lines = latest_lines[:-1] else: latest_data = '' lines.extend(latest_lines) yield ['\n'.join(lines)] + Runtime.plot(task) except IOError: pass @classmethod def show_log(cls, logging_dir): webbrowser.open('file://' + os.path.join(logging_dir, 'run.log'), new=2) @classmethod def start_tb(cls, logging_dir): if not is_tensorboard_available(): gr.Error(cls.locale('tb_not_found', cls.lang)['value']) return '' logging_dir = logging_dir.strip() logging_dir = logging_dir if not logging_dir.endswith(os.sep) else logging_dir[:-1] if logging_dir in cls.handlers: return cls.handlers[logging_dir][1] handler, lines = run_command_in_subprocess('tensorboard', '--logdir', logging_dir, timeout=2) localhost_addr = '' for line in lines: if 'http://localhost:' in line: line = line[line.index('http://localhost:'):] localhost_addr = line[:line.index(' ')] cls.handlers[logging_dir] = (handler, localhost_addr) logger.info('===========Tensorboard Log============') logger.info('\n'.join(lines)) webbrowser.open(localhost_addr, new=2) return localhost_addr @staticmethod def close_tb(logging_dir): if logging_dir in Runtime.handlers: close_loop(Runtime.handlers[logging_dir][0]) Runtime.handlers.pop(logging_dir) @staticmethod def refresh_tasks(running_task=None): output_dir = running_task if not running_task or 'pid:' not in running_task else None process_name = 'swift' negative_name = 'swift.exe' cmd_name = ['sft', 'rlhf'] process = [] selected = None for proc in psutil.process_iter(): try: cmdlines = proc.cmdline() except (psutil.ZombieProcess, psutil.AccessDenied, psutil.NoSuchProcess): cmdlines = [] if any([process_name in cmdline for cmdline in cmdlines]) and not any([negative_name in cmdline for cmdline in cmdlines]) and any( # noqa [cmdline in cmd_name for cmdline in cmdlines]): # noqa process.append(Runtime.construct_running_task(proc)) if output_dir is not None and any( # noqa [output_dir == cmdline for cmdline in cmdlines]): # noqa selected = Runtime.construct_running_task(proc) if not selected: if running_task and running_task in process: selected = running_task if not selected and process: selected = process[0] return gr.update(choices=process, value=selected) @staticmethod def construct_running_task(proc): pid = proc.pid ts = time.time() create_time = proc.create_time() create_time_formatted = datetime.fromtimestamp(create_time).strftime('%Y-%m-%d, %H:%M') def format_time(seconds): days = int(seconds // (24 * 3600)) hours = int((seconds % (24 * 3600)) // 3600) minutes = int((seconds % 3600) // 60) seconds = int(seconds % 60) if days > 0: time_str = f'{days}d {hours}h {minutes}m {seconds}s' elif hours > 0: time_str = f'{hours}h {minutes}m {seconds}s' elif minutes > 0: time_str = f'{minutes}m {seconds}s' else: time_str = f'{seconds}s' return time_str return f'pid:{pid}/create:{create_time_formatted}' \ f'/running:{format_time(ts-create_time)}/cmd:{" ".join(proc.cmdline())}' @staticmethod def parse_info_from_cmdline(task): pid = None if '/cmd:' in task: for i in range(3): slash = task.find('/') if i == 0: pid = task[:slash].split(':')[1] task = task[slash + 1:] if 'swift sft' in task: args = task.split('swift sft')[1] elif 'swift rlhf' in task: args = task.split('swift rlhf')[1] args = [arg.strip() for arg in args.split('--') if arg.strip()] all_args = {} for i in range(len(args)): space = args[i].find(' ') splits = args[i][:space], args[i][space + 1:] all_args[splits[0]] = splits[1] output_dir = all_args['output_dir'] if os.path.exists(os.path.join(output_dir, 'sft_args.json')): with open(os.path.join(output_dir, 'sft_args.json'), 'r') as f: _json = json.load(f) for key in all_args.keys(): all_args[key] = _json.get(key) if isinstance(all_args[key], list): if any([' ' in value for value in all_args[key]]): all_args[key] = [f'"{value}"' for value in all_args[key]] all_args[key] = ' '.join(all_args[key]) return pid, all_args @staticmethod def kill_task(task): pid, all_args = Runtime.parse_info_from_cmdline(task) output_dir = all_args['output_dir'] if sys.platform == 'win32': os.system(f'taskkill /f /t /pid "{pid}"') else: os.system(f'pkill -9 -f {output_dir}') time.sleep(1) return [Runtime.refresh_tasks()] + [gr.update(value=None)] * (len(Runtime.get_plot(task)) + 1) @staticmethod def reset(): return None, 'output' @staticmethod def task_changed(task, base_tab): if task: _, all_args = Runtime.parse_info_from_cmdline(task) else: all_args = {} elements = [value for value in base_tab.elements().values() if not isinstance(value, (Tab, Accordion))] ret = [] for e in elements: if e.elem_id in all_args: if isinstance(e, gr.Dropdown) and e.multiselect: arg = all_args[e.elem_id].split(' ') else: arg = all_args[e.elem_id] ret.append(gr.update(value=arg)) else: ret.append(gr.update()) return ret + [gr.update(value=None)] * (len(Runtime.get_plot(task)) + 1) @staticmethod def plot(task): plot = Runtime.get_plot(task) if not task: return [None] * len(plot) _, all_args = Runtime.parse_info_from_cmdline(task) tb_dir = all_args['logging_dir'] if not os.path.exists(tb_dir): return [None] * len(plot) fname = [ fname for fname in os.listdir(tb_dir) if os.path.isfile(os.path.join(tb_dir, fname)) and fname.startswith('events.out') ] if fname: fname = fname[0] else: return [None] * len(plot) tb_path = os.path.join(tb_dir, fname) data = read_tensorboard_file(tb_path) plots = [] for k in plot: name = k['name'] smooth = k['smooth'] if name not in data: plots.append(None) continue _data = data[name] steps = [d['step'] for d in _data] values = [d['value'] for d in _data] if len(values) == 0: continue plt.close('all') fig = plt.figure() ax = fig.add_subplot() # _, ax = plt.subplots(1, 1, squeeze=True, figsize=(8, 5), dpi=100) ax.set_title(name) if len(values) == 1: ax.scatter(steps, values, color=TB_COLOR_SMOOTH) elif smooth is not None: ax.plot(steps, values, color=TB_COLOR) values_s = tensorboard_smoothing(values, smooth) ax.plot(steps, values_s, color=TB_COLOR_SMOOTH) else: ax.plot(steps, values, color=TB_COLOR_SMOOTH) plots.append(fig) return plots
swift/swift/ui/llm_train/runtime.py/0
{ "file_path": "swift/swift/ui/llm_train/runtime.py", "repo_id": "swift", "token_count": 10483 }
225
{"system": "00000", "query": "11111", "response": "22222"} {"query": "aaaaa", "response": "bbbbb"} {"query": "AAAAA", "response": "BBBBB"}
swift/tests/llm/data/swift_single.jsonl/0
{ "file_path": "swift/tests/llm/data/swift_single.jsonl", "repo_id": "swift", "token_count": 53 }
226
import os import shutil import tempfile import unittest import torch from modelscope import AutoTokenizer, Model from swift import Swift from swift.tuners.rome import RomeConfig class TestRome(unittest.TestCase): def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) def tearDown(self): shutil.rmtree(self.tmp_dir) super().tearDown() @unittest.skip('Rome test is skipped because the test image do not have flash-attn2') def test_rome(self): model = Model.from_pretrained('modelscope/Llama-2-7b-ms', device_map='auto', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained('modelscope/Llama-2-7b-ms', trust_remote_code=True) request = [{ 'prompt': '{} was the founder of', 'subject': 'Steve Jobs', 'target': 'Microsoft', }] config = RomeConfig( model_type='llama-7b', knowledge=request, tokenizer=tokenizer, ) model = Swift.prepare_model(model, config) prompt = 'Steve Jobs was the founder of' inp_tok = tokenizer(prompt, return_token_type_ids=False, return_tensors='pt') for key, value in inp_tok.items(): inp_tok[key] = value.to('cuda') with torch.no_grad(): generated_ids = model.generate(**inp_tok, temperature=0.1, top_k=50, max_length=128, do_sample=True) responses = tokenizer.batch_decode( generated_ids[:, inp_tok['input_ids'].size(1):], skip_special_tokens=True, clean_up_tokenization_spaces=True) self.assertTrue('Microsoft' in responses[0])
swift/tests/tuners/test_rome.py/0
{ "file_path": "swift/tests/tuners/test_rome.py", "repo_id": "swift", "token_count": 817 }
227
services: llamafactory: build: dockerfile: ./docker/docker-cuda/Dockerfile context: ../.. args: INSTALL_BNB: false INSTALL_VLLM: false INSTALL_DEEPSPEED: false PIP_INDEX: https://pypi.org/simple container_name: llamafactory volumes: - ../../hf_cache:/root/.cache/huggingface - ../../ms_cache:/root/.cache/modelscope - ../../data:/app/data - ../../output:/app/output ports: - "7860:7860" - "8000:8000" ipc: host tty: true stdin_open: true command: bash deploy: resources: reservations: devices: - driver: nvidia count: "all" capabilities: [gpu] restart: unless-stopped
LLaMA-Factory/docker/docker-cuda/docker-compose.yml/0
{ "file_path": "LLaMA-Factory/docker/docker-cuda/docker-compose.yml", "repo_id": "LLaMA-Factory", "token_count": 378 }
0
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct template: llama3 infer_backend: vllm vllm_enforce_eager: true
LLaMA-Factory/examples/inference/llama3_vllm.yaml/0
{ "file_path": "LLaMA-Factory/examples/inference/llama3_vllm.yaml", "repo_id": "LLaMA-Factory", "token_count": 54 }
1
### model model_name_or_path: llava-hf/llava-1.5-7b-hf visual_inputs: true ### method stage: sft do_train: true finetuning_type: lora lora_target: all ### dataset dataset: mllm_demo template: vicuna cutoff_len: 1024 max_samples: 1000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: saves/llava1_5-7b/lora/sft logging_steps: 10 save_steps: 500 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 1.0e-4 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0.1 fp16: true ddp_timeout: 180000000 ### eval val_size: 0.1 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 500
LLaMA-Factory/examples/train_lora/llava1_5_lora_sft.yaml/0
{ "file_path": "LLaMA-Factory/examples/train_lora/llava1_5_lora_sft.yaml", "repo_id": "LLaMA-Factory", "token_count": 291 }
2
top.booster: auto top.checkpoint_path: [] top.finetuning_type: lora top.model_name: Qwen2-0.5B top.quantization_bit: none top.quantization_method: bitsandbytes top.rope_scaling: none top.template: default top.visual_inputs: false train.additional_target: '' train.badam_mode: layer train.badam_switch_interval: 50 train.badam_switch_mode: ascending train.badam_update_ratio: 0.05 train.batch_size: 2 train.compute_type: fp16 train.create_new_adapter: false train.cutoff_len: 1024 train.dataset: - alpaca_gpt4_zh train.dataset_dir: data train.ds_offload: false train.ds_stage: none train.freeze_extra_modules: '' train.freeze_trainable_layers: 2 train.freeze_trainable_modules: all train.galore_rank: 16 train.galore_scale: 0.25 train.galore_target: all train.galore_update_interval: 200 train.gradient_accumulation_steps: 8 train.learning_rate: 5e-5 train.logging_steps: 5 train.lora_alpha: 16 train.lora_dropout: 0 train.lora_rank: 8 train.lora_target: '' train.loraplus_lr_ratio: 0 train.lr_scheduler_type: cosine train.max_grad_norm: '1.0' train.max_samples: '100000' train.neftune_alpha: 0 train.num_train_epochs: '3.0' train.optim: adamw_torch train.packing: false train.ppo_score_norm: false train.ppo_whiten_rewards: false train.pref_beta: 0.1 train.pref_ftx: 0 train.pref_loss: sigmoid train.report_to: false train.resize_vocab: false train.reward_model: null train.save_steps: 100 train.shift_attn: false train.training_stage: Supervised Fine-Tuning train.upcast_layernorm: false train.use_badam: false train.use_dora: false train.use_galore: false train.use_llama_pro: false train.use_pissa: false train.use_rslora: false train.val_size: 0 train.warmup_steps: 0
LLaMA-Factory/saves/Qwen2-0.5B/lora/train_2024-06-27-07-03-48/llamaboard_config.yaml/0
{ "file_path": "LLaMA-Factory/saves/Qwen2-0.5B/lora/train_2024-06-27-07-03-48/llamaboard_config.yaml", "repo_id": "LLaMA-Factory", "token_count": 663 }
3
# coding=utf-8 # Copyright 2024 Microsoft Corporation and the LlamaFactory team. # # This code is inspired by the Microsoft's DeepSpeed library. # https://www.deepspeed.ai/tutorials/flops-profiler/ # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fire import torch from deepspeed.accelerator import get_accelerator # type: ignore from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore from llamafactory.chat import ChatModel def calculate_flops( model_name_or_path: str, batch_size: int = 1, seq_length: int = 256, flash_attn: str = "auto", ): r""" Calculates the flops of pre-trained models. Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512 """ with get_accelerator().device(0): chat_model = ChatModel(dict(model_name_or_path=model_name_or_path, template="empty", flash_attn=flash_attn)) fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device) input_dict = {"input_ids": fake_input, "labels": fake_input.clone()} flops, macs, params = get_model_profile(chat_model.model, kwargs=input_dict, print_profile=True, detailed=True) print("FLOPs:", flops) print("MACs:", macs) print("Params:", params) if __name__ == "__main__": fire.Fire(calculate_flops)
LLaMA-Factory/scripts/cal_flops.py/0
{ "file_path": "LLaMA-Factory/scripts/cal_flops.py", "repo_id": "LLaMA-Factory", "token_count": 645 }
4
# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Dict, List, Sequence, Tuple from ..data import Role from ..extras.constants import CHOICES @dataclass class EvalTemplate: system: str choice: str answer: str def _parse_example(self, example: Dict[str, str]) -> Tuple[str, str]: r""" input: a dict with keys {"question", "A", "B", "C", "D", "answer"} output: a tuple of (prompt, response) """ candidates = [self.choice.format(choice=ch, content=example[ch]) for ch in CHOICES if ch in example] return "".join([example["question"]] + candidates + [self.answer]), example["answer"] def format_example( self, target_data: Dict[str, str], support_set: Sequence[Dict[str, str]], subject_name: str ) -> List[Dict[str, str]]: r""" Converts dataset examples to messages. """ messages = [] for k in range(len(support_set)): prompt, response = self._parse_example(support_set[k]) messages.append({"role": Role.USER.value, "content": prompt}) messages.append({"role": Role.ASSISTANT.value, "content": response}) prompt, response = self._parse_example(target_data) messages.append({"role": Role.USER.value, "content": prompt}) messages.append({"role": Role.ASSISTANT.value, "content": response}) messages[0]["content"] = self.system.format(subject=subject_name) + messages[0]["content"] return messages eval_templates: Dict[str, "EvalTemplate"] = {} def _register_eval_template(name: str, system: str, choice: str, answer: str) -> None: eval_templates[name] = EvalTemplate(system=system, choice=choice, answer=answer) def get_eval_template(name: str) -> "EvalTemplate": eval_template = eval_templates.get(name, None) assert eval_template is not None, "Template {} does not exist.".format(name) return eval_template _register_eval_template( name="en", system="The following are multiple choice questions (with answers) about {subject}.\n\n", choice="\n{choice}. {content}", answer="\nAnswer:", ) _register_eval_template( name="zh", system="以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n", choice="\n{choice}. {content}", answer="\n答案:", )
LLaMA-Factory/src/llamafactory/eval/template.py/0
{ "file_path": "LLaMA-Factory/src/llamafactory/eval/template.py", "repo_id": "LLaMA-Factory", "token_count": 1067 }
5
# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import math import os from typing import Any, Dict, List from transformers.trainer import TRAINER_STATE_NAME from .logging import get_logger from .packages import is_matplotlib_available if is_matplotlib_available(): import matplotlib.figure import matplotlib.pyplot as plt logger = get_logger(__name__) def smooth(scalars: List[float]) -> List[float]: r""" EMA implementation according to TensorBoard. """ if len(scalars) == 0: return [] last = scalars[0] smoothed = [] weight = 1.8 * (1 / (1 + math.exp(-0.05 * len(scalars))) - 0.5) # a sigmoid function for next_val in scalars: smoothed_val = last * weight + (1 - weight) * next_val smoothed.append(smoothed_val) last = smoothed_val return smoothed def gen_loss_plot(trainer_log: List[Dict[str, Any]]) -> "matplotlib.figure.Figure": r""" Plots loss curves in LlamaBoard. """ plt.close("all") plt.switch_backend("agg") fig = plt.figure() ax = fig.add_subplot(111) steps, losses = [], [] for log in trainer_log: if log.get("loss", None): steps.append(log["current_steps"]) losses.append(log["loss"]) ax.plot(steps, losses, color="#1f77b4", alpha=0.4, label="original") ax.plot(steps, smooth(losses), color="#1f77b4", label="smoothed") ax.legend() ax.set_xlabel("step") ax.set_ylabel("loss") return fig def plot_loss(save_dictionary: os.PathLike, keys: List[str] = ["loss"]) -> None: r""" Plots loss curves and saves the image. """ plt.switch_backend("agg") with open(os.path.join(save_dictionary, TRAINER_STATE_NAME), "r", encoding="utf-8") as f: data = json.load(f) for key in keys: steps, metrics = [], [] for i in range(len(data["log_history"])): if key in data["log_history"][i]: steps.append(data["log_history"][i]["step"]) metrics.append(data["log_history"][i][key]) if len(metrics) == 0: logger.warning(f"No metric {key} to plot.") continue plt.figure() plt.plot(steps, metrics, color="#1f77b4", alpha=0.4, label="original") plt.plot(steps, smooth(metrics), color="#1f77b4", label="smoothed") plt.title("training {} of {}".format(key, save_dictionary)) plt.xlabel("step") plt.ylabel(key) plt.legend() figure_path = os.path.join(save_dictionary, "training_{}.png".format(key.replace("/", "_"))) plt.savefig(figure_path, format="png", dpi=100) print("Figure saved at:", figure_path)
LLaMA-Factory/src/llamafactory/extras/ploting.py/0
{ "file_path": "LLaMA-Factory/src/llamafactory/extras/ploting.py", "repo_id": "LLaMA-Factory", "token_count": 1312 }
6
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the HuggingFace's Transformers library. # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/modeling_llava.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Tuple import torch import transformers.models from transformers.activations import ACT2FN from ...extras.logging import get_logger if TYPE_CHECKING: from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel from ...hparams import ModelArguments logger = get_logger(__name__) class LlavaMultiModalProjectorForYiVL(torch.nn.Module): def __init__(self, config: "LlavaConfig") -> None: super().__init__() self.config = config if config is None: return self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True) self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True) self.act = ACT2FN[config.projector_hidden_act] def forward(self, image_features: "torch.Tensor") -> "torch.Tensor": hidden_states = self.linear_1(image_features) hidden_states = self.linear_2(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.linear_3(hidden_states) hidden_states = self.linear_4(hidden_states) if hidden_states.dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.linear_1.weight.dtype logger.warning_once("The hidden states seems to be silently casted in float32.") hidden_states = hidden_states.to(target_dtype) return hidden_states class LlavaMultiModalProjectorForYiVLForVLLM(LlavaMultiModalProjectorForYiVL): def __init__(self, vision_hidden_size: int, text_hidden_size: int, projector_hidden_act: str) -> None: super().__init__(config=None) self.linear_1 = torch.nn.Linear(vision_hidden_size, text_hidden_size, bias=True) self.linear_2 = torch.nn.LayerNorm(text_hidden_size, bias=True) self.linear_3 = torch.nn.Linear(text_hidden_size, text_hidden_size, bias=True) self.linear_4 = torch.nn.LayerNorm(text_hidden_size, bias=True) self.act = ACT2FN[projector_hidden_act] def autocast_projector_dtype( model: "PreTrainedModel", model_args: "ModelArguments", mm_projector_name: str = "multi_modal_projector" ) -> None: def _mm_projector_forward_post_hook( module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor" ) -> "torch.Tensor": return output.to(model_args.compute_dtype) if hasattr(model, mm_projector_name) and getattr(model, "quantization_method", None): logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype)) mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name) mm_projector.register_forward_hook(_mm_projector_forward_post_hook) def configure_visual_model(config: "PretrainedConfig") -> None: if getattr(config, "model_type", None) == "llava": # required for ds zero3 and valuehead models setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None)) if getattr(config, "is_yi_vl_derived_model", None): logger.info("Detected Yi-VL model, applying projector patch.") transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL
LLaMA-Factory/src/llamafactory/model/model_utils/visual.py/0
{ "file_path": "LLaMA-Factory/src/llamafactory/model/model_utils/visual.py", "repo_id": "LLaMA-Factory", "token_count": 1694 }
7
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the HuggingFace's TRL library. # https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/kto_trainer.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from collections import defaultdict from contextlib import nullcontext from types import MethodType from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union import torch from transformers import Trainer from trl import KTOTrainer from trl.trainer import disable_dropout_in_model from ...extras.constants import IGNORE_INDEX from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_batch_logps if TYPE_CHECKING: import torch.utils.data from transformers import PreTrainedModel, ProcessorMixin from ...hparams import FinetuningArguments class CustomKTOTrainer(KTOTrainer): def __init__( self, model: Union["PreTrainedModel", torch.nn.Module], ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]], finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], disable_dropout: bool = True, **kwargs, ): if disable_dropout: disable_dropout_in_model(model) if ref_model is not None: disable_dropout_in_model(ref_model) self.finetuning_args = finetuning_args self.processor = processor self.reference_free = False self.use_dpo_data_collator = True # hack to avoid warning self.generate_during_eval = False # disable at evaluation self.label_pad_token_id = IGNORE_INDEX self.padding_value = 0 self.is_encoder_decoder = model.config.is_encoder_decoder self.precompute_ref_log_probs = False self._precomputed_train_ref_log_probs = False self._precomputed_eval_ref_log_probs = False self._peft_has_been_casted_to_bf16 = False self.ref_model = ref_model self._stored_metrics = defaultdict(lambda: defaultdict(list)) # kto hyperparams self.beta = finetuning_args.pref_beta self.desirable_weight = finetuning_args.kto_chosen_weight self.undesirable_weight = finetuning_args.kto_rejected_weight self.ftx_gamma = finetuning_args.pref_ftx Trainer.__init__(self, model=model, **kwargs) if not hasattr(self, "accelerator"): raise AttributeError("Please update `transformers`.") warnings.simplefilter("ignore") # remove gc warnings on ref model if ref_model is not None: if self.is_deepspeed_enabled: if not ( getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False) ): # quantized models are already set on the correct device self.ref_model = self._prepare_deepspeed(self.ref_model) else: self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) self.ref_model.eval() if finetuning_args.use_badam: from badam import BAdamCallback, clip_grad_norm_old_version self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator) self.callback_handler.add_callback(BAdamCallback) def create_optimizer(self) -> "torch.optim.Optimizer": if self.optimizer is None: self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args) return super().create_optimizer() def create_scheduler( self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None ) -> "torch.optim.lr_scheduler.LRScheduler": create_custom_scheduler(self.args, num_training_steps, optimizer) return super().create_scheduler(num_training_steps, optimizer) def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]: r""" Replaces the sequential sampler of KTO Trainer created by trl with the random sampler. """ return Trainer._get_train_sampler(self) def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None: super()._save(output_dir, state_dict) output_dir = output_dir if output_dir is not None else self.args.output_dir if self.processor is not None: getattr(self.processor, "image_processor").save_pretrained(output_dir) def forward( self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"], prefix: Literal["", "kl_"] = "" ) -> Tuple["torch.Tensor", "torch.Tensor"]: r""" Runs forward pass and computes the log probabilities. """ batch = {k: v.detach().clone() for k, v in batch.items()} # avoid error model_inputs = { "input_ids": batch["{}input_ids".format(prefix)], "attention_mask": batch["{}attention_mask".format(prefix)], } if "pixel_values" in batch: model_inputs["pixel_values"] = batch["pixel_values"] if "{}token_type_ids".format(prefix) in batch: model_inputs["token_type_ids"] = batch["{}token_type_ids".format(prefix)] logits = model(**model_inputs, return_dict=True, use_cache=False).logits.to(torch.float32) logps, valid_length = get_batch_logps(logits=logits, labels=batch["{}labels".format(prefix)]) return logps, logps / valid_length def concatenated_forward( self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"] ) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]: target_logps, target_logps_avg = self.forward(model, batch) with torch.no_grad(): kl_logps, _ = self.forward(model, batch, prefix="kl_") if len(target_logps) != len(batch["kto_tags"]): raise ValueError("Mismatched shape of inputs and labels.") chosen_logps = target_logps[batch["kto_tags"]] rejected_logps = target_logps[~batch["kto_tags"]] chosen_logps_avg = target_logps_avg[batch["kto_tags"]] return chosen_logps, rejected_logps, kl_logps, chosen_logps_avg def compute_reference_log_probs( self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"] ) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]: r""" Computes log probabilities of the reference model. """ if self.ref_model is None: ref_model = model ref_context = self.accelerator.unwrap_model(model).disable_adapter() else: ref_model = self.ref_model ref_context = nullcontext() with torch.no_grad(), ref_context: reference_chosen_logps, reference_rejected_logps, reference_kl_logps, _ = self.concatenated_forward( ref_model, batch ) return reference_chosen_logps, reference_rejected_logps, reference_kl_logps def get_batch_loss_metrics( self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"], ) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]: r""" Computes the DPO loss and other metrics for the given batch of inputs for train or test. """ metrics = {} policy_chosen_logps, policy_rejected_logps, policy_kl_logps, policy_chosen_logps_avg = ( self.concatenated_forward(model, batch) ) reference_chosen_logps, reference_rejected_logps, reference_kl_logps = self.compute_reference_log_probs( model, batch ) losses, chosen_rewards, rejected_rewards, kl = self.kto_loss( policy_chosen_logps, policy_rejected_logps, policy_kl_logps, reference_chosen_logps, reference_rejected_logps, reference_kl_logps, ) losses = losses.nanmean() if self.ftx_gamma > 1e-6 and len(policy_chosen_logps) > 0: # remember to rescale sft_loss = -policy_chosen_logps_avg losses += self.ftx_gamma * sft_loss.nanmean() / len(policy_chosen_logps) * len(batch["labels"]) num_chosen = torch.Tensor([len(chosen_rewards)]).to(self.accelerator.device) num_rejected = torch.Tensor([len(rejected_rewards)]).to(self.accelerator.device) all_num_chosen = self.accelerator.gather(num_chosen).sum().item() all_num_rejected = self.accelerator.gather(num_rejected).sum().item() if all_num_chosen > 0: metrics["rewards/chosen_sum"] = self.accelerator.gather(chosen_rewards.nansum()).nansum().item() metrics["logps/chosen_sum"] = self.accelerator.gather(policy_chosen_logps.nansum()).nansum().item() metrics["count/chosen"] = all_num_chosen if all_num_rejected > 0: metrics["rewards/rejected_sum"] = self.accelerator.gather(rejected_rewards.nansum()).nansum().item() metrics["logps/rejected_sum"] = self.accelerator.gather(policy_rejected_logps.nansum()).nansum().item() metrics["count/rejected"] = all_num_rejected metrics["kl"] = kl.item() return losses, metrics
LLaMA-Factory/src/llamafactory/train/kto/trainer.py/0
{ "file_path": "LLaMA-Factory/src/llamafactory/train/kto/trainer.py", "repo_id": "LLaMA-Factory", "token_count": 4156 }
8
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the original GaLore's implementation: https://github.com/jiaweizzhao/GaLore # and the original LoRA+'s implementation: https://github.com/nikhil-ghosh-berkeley/loraplus # and the original BAdam's implementation: https://github.com/Ledzy/BAdam # and the HuggingFace's TRL library: https://github.com/huggingface/trl # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union import torch from peft import PeftModel from transformers import Trainer from transformers.integrations import is_deepspeed_zero3_enabled from transformers.optimization import get_scheduler from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS from transformers.trainer_pt_utils import get_parameter_names from ..extras.constants import IGNORE_INDEX from ..extras.logging import get_logger from ..extras.packages import is_galore_available from ..hparams import FinetuningArguments, ModelArguments from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params if is_galore_available(): from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit if TYPE_CHECKING: from accelerate import Accelerator from transformers import PreTrainedModel, Seq2SeqTrainingArguments from trl import AutoModelForCausalLMWithValueHead from ..hparams import DataArguments logger = get_logger(__name__) class DummyOptimizer(torch.optim.Optimizer): r""" A dummy optimizer used for the GaLore algorithm. """ def __init__( self, lr: float = 1e-3, optimizer_dict: Optional[Dict["torch.nn.Parameter", "torch.optim.Optimizer"]] = None ) -> None: dummy_tensor = torch.randn(1, 1) self.optimizer_dict = optimizer_dict super().__init__([dummy_tensor], {"lr": lr}) def zero_grad(self, set_to_none: bool = True) -> None: pass def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: pass def create_modelcard_and_push( trainer: "Trainer", model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", ) -> None: kwargs = { "tasks": "text-generation", "finetuned_from": model_args.model_name_or_path, "tags": ["llama-factory", finetuning_args.finetuning_type], } if data_args.dataset is not None: kwargs["dataset"] = [dataset.strip() for dataset in data_args.dataset.split(",")] if model_args.use_unsloth: kwargs["tags"] = kwargs["tags"] + ["unsloth"] if not training_args.do_train: pass elif training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(license="other", **kwargs) # prevent from connecting to hub def create_ref_model( model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: bool = False ) -> Optional[Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]]: r""" Creates reference model for PPO/DPO training. Evaluation mode is not supported. The valuehead parameter is randomly initialized since it is useless for PPO training. """ if finetuning_args.ref_model is not None: ref_model_args = ModelArguments.copyfrom( model_args, model_name_or_path=finetuning_args.ref_model, adapter_name_or_path=finetuning_args.ref_model_adapters, quantization_bit=finetuning_args.ref_model_quantization_bit, ) ref_finetuning_args = FinetuningArguments() tokenizer = load_tokenizer(ref_model_args)["tokenizer"] ref_model = load_model( tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead ) logger.info("Created reference model from {}".format(finetuning_args.ref_model)) else: if finetuning_args.finetuning_type == "lora": ref_model = None else: ref_model_args = ModelArguments.copyfrom(model_args) ref_finetuning_args = FinetuningArguments() tokenizer = load_tokenizer(ref_model_args)["tokenizer"] ref_model = load_model( tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead ) logger.info("Created reference model from the model itself.") return ref_model def create_reward_model( model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments" ) -> Optional["AutoModelForCausalLMWithValueHead"]: r""" Creates reward model for PPO training. """ if finetuning_args.reward_model_type == "api": assert finetuning_args.reward_model.startswith("http"), "Please provide full url." logger.info("Use reward server {}".format(finetuning_args.reward_model)) return finetuning_args.reward_model elif finetuning_args.reward_model_type == "lora": model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward") for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090 if "default" in name: param.data = param.data.to(torch.float32) # trainable params should in fp32 vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args) assert vhead_params is not None, "Reward model is not correctly loaded." model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False) model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False) model.register_buffer( "default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False ) model.register_buffer( "default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False ) logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model)) return None else: reward_model_args = ModelArguments.copyfrom( model_args, model_name_or_path=finetuning_args.reward_model, adapter_name_or_path=finetuning_args.reward_model_adapters, quantization_bit=finetuning_args.reward_model_quantization_bit, ) reward_finetuning_args = FinetuningArguments() tokenizer = load_tokenizer(reward_model_args)["tokenizer"] reward_model = load_model( tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True ) logger.info("Loaded full weights of reward model from {}".format(finetuning_args.reward_model)) logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.") return reward_model def convert_pissa_adapter( output_dir: str, state_dict: Dict[str, "torch.Tensor"], accelerator: "Accelerator", model: "PreTrainedModel", training_args: "Seq2SeqTrainingArguments", ) -> None: r""" Converts the PiSSA adapter to a LoRA adapter. """ pissa_init_dir = os.path.join(training_args.output_dir, "pissa_init") pissa_backup_dir = os.path.join(output_dir, "pissa_backup") if output_dir == pissa_init_dir: logger.info("Initial PiSSA adatper will be saved at: {}.".format(pissa_init_dir)) unwrapped_model = accelerator.unwrap_model(model) if isinstance(unwrapped_model, PeftModel): init_lora_weights = getattr(unwrapped_model.peft_config["default"], "init_lora_weights") setattr(unwrapped_model.peft_config["default"], "init_lora_weights", True) unwrapped_model.save_pretrained( output_dir, state_dict=state_dict, safe_serialization=training_args.save_safetensors, ) setattr(unwrapped_model.peft_config["default"], "init_lora_weights", init_lora_weights) elif output_dir == training_args.output_dir: # at the end of training logger.info("Converted PiSSA adapter will be saved at: {}.".format(output_dir)) unwrapped_model = accelerator.unwrap_model(model) if isinstance(unwrapped_model, PeftModel): # backup the pissa adapter for further use unwrapped_model.save_pretrained( pissa_backup_dir, state_dict=state_dict, safe_serialization=training_args.save_safetensors, ) unwrapped_model.save_pretrained( output_dir, state_dict=state_dict, safe_serialization=training_args.save_safetensors, convert_pissa_to_lora=pissa_init_dir, ) # TODO: the model is applied pissa again unexpectedly unwrapped_model.load_adapter(pissa_backup_dir, "default", is_trainable=True) unwrapped_model.set_adapter("default") def _get_decay_parameter_names(model: "PreTrainedModel") -> List[str]: r""" Returns a list of names of parameters with weight decay. (weights in non-layernorm layers) """ decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS) decay_parameters = [name for name in decay_parameters if "bias" not in name] return decay_parameters def _create_galore_optimizer( model: "PreTrainedModel", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", ) -> "torch.optim.Optimizer": if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all": galore_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower) else: galore_targets = finetuning_args.galore_target galore_params: List["torch.nn.Parameter"] = [] for name, module in model.named_modules(): if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets): for param in module.parameters(): if param.requires_grad and len(param.shape) > 1: galore_params.append(param) galore_kwargs = { "rank": finetuning_args.galore_rank, "update_proj_gap": finetuning_args.galore_update_interval, "scale": finetuning_args.galore_scale, "proj_type": finetuning_args.galore_proj_type, } id_galore_params = {id(param) for param in galore_params} decay_params, nodecay_params = [], [] # they are non-galore parameters trainable_params: List["torch.nn.Parameter"] = [] # galore_params + decay_params + nodecay_params decay_param_names = _get_decay_parameter_names(model) for name, param in model.named_parameters(): if param.requires_grad: trainable_params.append(param) if id(param) not in id_galore_params: if name in decay_param_names: decay_params.append(param) else: nodecay_params.append(param) _, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args) if training_args.optim == "adamw_torch": optim_class = GaLoreAdamW elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]: optim_class = GaLoreAdamW8bit elif training_args.optim == "adafactor": optim_class = GaLoreAdafactor else: raise NotImplementedError("Unknow optim: {}".format(training_args.optim)) if finetuning_args.galore_layerwise: if training_args.gradient_accumulation_steps != 1: raise ValueError("Per-layer GaLore does not support gradient accumulation.") optimizer_dict: Dict["torch.Tensor", "torch.optim.Optimizer"] = {} for param in nodecay_params: param_groups = [dict(params=[param], weight_decay=0.0)] optimizer_dict[param] = optim_class(param_groups, **optim_kwargs) for param in decay_params: param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)] optimizer_dict[param] = optim_class(param_groups, **optim_kwargs) for param in galore_params: # galore params have weight decay param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **galore_kwargs)] optimizer_dict[param] = optim_class(param_groups, **optim_kwargs) def optimizer_hook(param: "torch.nn.Parameter"): if param.grad is not None: optimizer_dict[param].step() optimizer_dict[param].zero_grad() for param in trainable_params: param.register_post_accumulate_grad_hook(optimizer_hook) optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict) else: param_groups = [ dict(params=nodecay_params, weight_decay=0.0), dict(params=decay_params, weight_decay=training_args.weight_decay), dict(params=galore_params, weight_decay=training_args.weight_decay, **galore_kwargs), ] optimizer = optim_class(param_groups, **optim_kwargs) logger.info("Using GaLore optimizer, may cause hanging at the start of training, wait patiently.") return optimizer def _create_loraplus_optimizer( model: "PreTrainedModel", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", ) -> "torch.optim.Optimizer": default_lr = training_args.learning_rate loraplus_lr = training_args.learning_rate * finetuning_args.loraplus_lr_ratio embedding_lr = finetuning_args.loraplus_lr_embedding decay_param_names = _get_decay_parameter_names(model) param_dict: Dict[str, List["torch.nn.Parameter"]] = { "lora_a": [], "lora_b": [], "lora_b_nodecay": [], "embedding": [], } for name, param in model.named_parameters(): if param.requires_grad: if "lora_embedding_B" in name: param_dict["embedding"].append(param) elif "lora_B" in name or param.ndim == 1: if name in decay_param_names: param_dict["lora_b"].append(param) else: param_dict["lora_b_nodecay"].append(param) else: param_dict["lora_a"].append(param) optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args) param_groups = [ dict(params=param_dict["lora_a"], lr=default_lr, weight_decay=training_args.weight_decay), dict(params=param_dict["lora_b"], lr=loraplus_lr, weight_decay=training_args.weight_decay), dict(params=param_dict["lora_b_nodecay"], lr=loraplus_lr, weight_decay=0.0), dict(params=param_dict["embedding"], lr=embedding_lr, weight_decay=training_args.weight_decay), ] optimizer = optim_class(param_groups, **optim_kwargs) logger.info("Using LoRA+ optimizer with loraplus lr ratio {:.2f}.".format(finetuning_args.loraplus_lr_ratio)) return optimizer def _create_badam_optimizer( model: "PreTrainedModel", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", ) -> "torch.optim.Optimizer": decay_params, nodecay_params = [], [] decay_param_names = _get_decay_parameter_names(model) for name, param in model.named_parameters(): if param.requires_grad: if name in decay_param_names: decay_params.append(param) else: nodecay_params.append(param) optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args) param_groups = [ dict(params=nodecay_params, weight_decay=0.0), dict(params=decay_params, weight_decay=training_args.weight_decay), ] if finetuning_args.badam_mode == "layer": from badam import BlockOptimizer base_optimizer = optim_class(param_groups, **optim_kwargs) optimizer = BlockOptimizer( base_optimizer=base_optimizer, named_parameters_list=list(model.named_parameters()), block_prefix_list=None, switch_block_every=finetuning_args.badam_switch_interval, start_block=finetuning_args.badam_start_block, switch_mode=finetuning_args.badam_switch_mode, verbose=finetuning_args.badam_verbose, ds_zero3_enabled=is_deepspeed_zero3_enabled(), ) logger.info( f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, " f"switch block every {finetuning_args.badam_switch_interval} steps, " f"default start block is {finetuning_args.badam_start_block}" ) elif finetuning_args.badam_mode == "ratio": from badam import BlockOptimizerRatio assert finetuning_args.badam_update_ratio > 1e-6 optimizer = BlockOptimizerRatio( param_groups=param_groups, named_parameters_list=list(model.named_parameters()), update_ratio=finetuning_args.badam_update_ratio, mask_mode=finetuning_args.badam_mask_mode, verbose=finetuning_args.badam_verbose, include_embedding=False, **optim_kwargs, ) logger.info( f"Using BAdam optimizer with ratio-based update, update ratio is {finetuning_args.badam_update_ratio}, " f"mask mode is {finetuning_args.badam_mask_mode}" ) return optimizer def create_custom_optimzer( model: "PreTrainedModel", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", ) -> Optional["torch.optim.Optimizer"]: if finetuning_args.use_galore: return _create_galore_optimizer(model, training_args, finetuning_args) if finetuning_args.loraplus_lr_ratio is not None: return _create_loraplus_optimizer(model, training_args, finetuning_args) if finetuning_args.use_badam: return _create_badam_optimizer(model, training_args, finetuning_args) def create_custom_scheduler( training_args: "Seq2SeqTrainingArguments", num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None, ) -> None: if optimizer is not None and isinstance(optimizer, DummyOptimizer): optimizer_dict = optimizer.optimizer_dict scheduler_dict: Dict["torch.nn.Parameter", "torch.optim.lr_scheduler.LRScheduler"] = {} for param in optimizer_dict.keys(): scheduler_dict[param] = get_scheduler( training_args.lr_scheduler_type, optimizer=optimizer_dict[param], num_warmup_steps=training_args.get_warmup_steps(num_training_steps), num_training_steps=num_training_steps, scheduler_specific_kwargs=training_args.lr_scheduler_kwargs, ) def scheduler_hook(param: "torch.nn.Parameter"): scheduler_dict[param].step() for param in optimizer_dict.keys(): param.register_post_accumulate_grad_hook(scheduler_hook) def get_batch_logps( logits: "torch.Tensor", labels: "torch.Tensor", label_pad_token_id: int = IGNORE_INDEX ) -> Tuple["torch.Tensor", "torch.Tensor"]: r""" Computes the log probabilities of the given labels under the given logits. Returns: logps: A tensor of shape (batch_size,) containing the sum of log probabilities. valid_length: A tensor of shape (batch_size,) containing the number of non-masked tokens. """ if logits.shape[:-1] != labels.shape: raise ValueError("Logits (batchsize x seqlen) and labels must have the same shape.") labels = labels[:, 1:].clone() logits = logits[:, :-1, :] loss_mask = labels != label_pad_token_id labels[labels == label_pad_token_id] = 0 # dummy token per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2) return (per_token_logps * loss_mask).sum(-1), loss_mask.sum(-1)
LLaMA-Factory/src/llamafactory/train/trainer_utils.py/0
{ "file_path": "LLaMA-Factory/src/llamafactory/train/trainer_utils.py", "repo_id": "LLaMA-Factory", "token_count": 8689 }
9
# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Dict from .chatter import WebChatModel from .common import load_config from .locales import LOCALES from .manager import Manager from .runner import Runner from .utils import create_ds_config, get_time if TYPE_CHECKING: from gradio.components import Component class Engine: def __init__(self, demo_mode: bool = False, pure_chat: bool = False) -> None: self.demo_mode = demo_mode self.pure_chat = pure_chat self.manager = Manager() self.runner = Runner(self.manager, demo_mode) self.chatter = WebChatModel(self.manager, demo_mode, lazy_init=(not pure_chat)) if not demo_mode: create_ds_config() def _update_component(self, input_dict: Dict[str, Dict[str, Any]]) -> Dict["Component", "Component"]: r""" Gets the dict to update the components. """ output_dict: Dict["Component", "Component"] = {} for elem_id, elem_attr in input_dict.items(): elem = self.manager.get_elem_by_id(elem_id) output_dict[elem] = elem.__class__(**elem_attr) return output_dict def resume(self): user_config = load_config() if not self.demo_mode else {} lang = user_config.get("lang", None) or "en" init_dict = {"top.lang": {"value": lang}, "infer.chat_box": {"visible": self.chatter.loaded}} if not self.pure_chat: current_time = get_time() init_dict["train.current_time"] = {"value": current_time} init_dict["train.output_dir"] = {"value": "train_{}".format(current_time)} init_dict["train.config_path"] = {"value": "{}.yaml".format(current_time)} init_dict["eval.output_dir"] = {"value": "eval_{}".format(current_time)} init_dict["infer.image_box"] = {"visible": False} if user_config.get("last_model", None): init_dict["top.model_name"] = {"value": user_config["last_model"]} yield self._update_component(init_dict) if self.runner.running and not self.demo_mode and not self.pure_chat: yield {elem: elem.__class__(value=value) for elem, value in self.runner.running_data.items()} if self.runner.do_train: yield self._update_component({"train.resume_btn": {"value": True}}) else: yield self._update_component({"eval.resume_btn": {"value": True}}) def change_lang(self, lang: str): return { elem: elem.__class__(**LOCALES[elem_name][lang]) for elem_name, elem in self.manager.get_elem_iter() if elem_name in LOCALES }
LLaMA-Factory/src/llamafactory/webui/engine.py/0
{ "file_path": "LLaMA-Factory/src/llamafactory/webui/engine.py", "repo_id": "LLaMA-Factory", "token_count": 1303 }
10
# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from llamafactory.hparams import get_infer_args, get_train_args from llamafactory.model import load_model, load_tokenizer TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") TRAIN_ARGS = { "model_name_or_path": TINY_LLAMA, "stage": "sft", "do_train": True, "finetuning_type": "full", "dataset": "llamafactory/tiny-supervised-dataset", "dataset_dir": "ONLINE", "template": "llama3", "cutoff_len": 1024, "overwrite_cache": True, "output_dir": "dummy_dir", "overwrite_output_dir": True, "fp16": True, } INFER_ARGS = { "model_name_or_path": TINY_LLAMA, "finetuning_type": "full", "template": "llama3", "infer_dtype": "float16", } def test_full_train(): model_args, _, _, finetuning_args, _ = get_train_args(TRAIN_ARGS) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) for param in model.parameters(): assert param.requires_grad is True assert param.dtype == torch.float32 def test_full_inference(): model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False) for param in model.parameters(): assert param.requires_grad is False assert param.dtype == torch.float16
LLaMA-Factory/tests/model/test_full.py/0
{ "file_path": "LLaMA-Factory/tests/model/test_full.py", "repo_id": "LLaMA-Factory", "token_count": 774 }
11
#!/bin/bash abort(){ echo "Run unittest failed" 1>&2 echo "Please check your code" 1>&2 echo " 1. you can run unit tests by 'bash .travis/unittest.sh' locally" 1>&2 echo " 2. you can add python requirements in .travis/requirements.txt if you use new requirements in unit tests" 1>&2 exit 1 } unittest(){ if [ $? != 0 ]; then exit 1 fi find "./ppdet" -name 'tests' -type d -print0 | \ xargs -0 -I{} -n1 bash -c \ 'python -m unittest discover -v -s {}' } trap 'abort' 0 set -e # install travis python dependencies exclude pycocotools if [ -f ".travis/requirements.txt" ]; then pip install -r .travis/requirements.txt fi # install pycocotools if [ `pip list | grep pycocotools | wc -l` -eq 0 ]; then # install git if needed if [ -n `which git` ]; then apt-get update apt-get install -y git fi; git clone https://github.com/cocodataset/cocoapi.git cd cocoapi/PythonAPI make install python setup.py install --user cd ../.. rm -rf cocoapi fi export PYTHONPATH=`pwd`:$PYTHONPATH unittest . trap : 0
PaddleDetection/.travis/unittest.sh/0
{ "file_path": "PaddleDetection/.travis/unittest.sh", "repo_id": "PaddleDetection", "token_count": 450 }
12
_BASE_: [ 'centernet_r50_140e_coco.yml' ] pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams weights: output/centernet_mbv3_large_140e_coco/model_final CenterNet: backbone: MobileNetV3 neck: CenterNetDLAFPN head: CenterNetHead post_process: CenterNetPostProcess MobileNetV3: model_name: large scale: 1. with_extra_blocks: false extra_block_filters: [] feature_maps: [4, 7, 13, 16] TrainReader: batch_size: 32
PaddleDetection/configs/centernet/centernet_mbv3_large_140e_coco.yml/0
{ "file_path": "PaddleDetection/configs/centernet/centernet_mbv3_large_140e_coco.yml", "repo_id": "PaddleDetection", "token_count": 205 }
13
metric: RBOX num_classes: 15 TrainDataset: !COCODataSet image_dir: trainval1024/images anno_path: trainval1024/DOTA_trainval1024.json dataset_dir: dataset/dota/ data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd', 'gt_poly'] EvalDataset: !COCODataSet image_dir: trainval1024/images anno_path: trainval1024/DOTA_trainval1024.json dataset_dir: dataset/dota/ data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd', 'gt_poly'] TestDataset: !ImageFolder anno_path: test1024/DOTA_test1024.json dataset_dir: dataset/dota/
PaddleDetection/configs/datasets/dota.yml/0
{ "file_path": "PaddleDetection/configs/datasets/dota.yml", "repo_id": "PaddleDetection", "token_count": 247 }
14
_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', '../faster_rcnn/_base_/optimizer_1x.yml', '../faster_rcnn/_base_/faster_rcnn_r50_fpn.yml', '../faster_rcnn/_base_/faster_fpn_reader.yml', ] weights: output/faster_rcnn_dcn_r50_fpn_1x_coco/model_final ResNet: depth: 50 norm_type: bn freeze_at: 0 return_idx: [0,1,2,3] num_stages: 4 dcn_v2_stages: [1,2,3]
PaddleDetection/configs/dcn/faster_rcnn_dcn_r50_fpn_1x_coco.yml/0
{ "file_path": "PaddleDetection/configs/dcn/faster_rcnn_dcn_r50_fpn_1x_coco.yml", "repo_id": "PaddleDetection", "token_count": 205 }
15
worker_num: 2 TrainReader: inputs_def: num_max_boxes: 90 sample_transforms: - Decode: {} - RandomDistort: {brightness: [0.5, 1.125, 0.875], random_apply: False} - RandomExpand: {fill_value: [123.675, 116.28, 103.53]} - RandomFlip: {} - CropWithDataAchorSampling: { anchor_sampler: [[1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]], batch_sampler: [ [1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0], ], target_size: 640} - Resize: {target_size: [640, 640], keep_ratio: False, interp: 1} - NormalizeBox: {} - PadBox: {num_max_boxes: 90} batch_transforms: - NormalizeImage: {mean: [123, 117, 104], std: [127.502231, 127.502231, 127.502231], is_scale: false} - Permute: {} batch_size: 8 shuffle: true drop_last: true EvalReader: sample_transforms: - Decode: {} - NormalizeImage: {mean: [123, 117, 104], std: [127.502231, 127.502231, 127.502231], is_scale: false} - Permute: {} batch_size: 1 TestReader: sample_transforms: - Decode: {} - NormalizeImage: {mean: [123, 117, 104], std: [127.502231, 127.502231, 127.502231], is_scale: false} - Permute: {} batch_size: 1
PaddleDetection/configs/face_detection/_base_/face_reader.yml/0
{ "file_path": "PaddleDetection/configs/face_detection/_base_/face_reader.yml", "repo_id": "PaddleDetection", "token_count": 744 }
16
_BASE_: [ 'faster_rcnn_r50_fpn_1x_coco.yml', ] pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNeXt101_vd_64x4d_pretrained.pdparams weights: output/faster_rcnn_x101_vd_64x4d_fpn_2x_coco/model_final ResNet: # for ResNeXt: groups, base_width, base_channels depth: 101 groups: 64 base_width: 4 variant: d norm_type: bn freeze_at: 0 return_idx: [0,1,2,3] num_stages: 4 epoch: 24 LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [16, 22] - !LinearWarmup start_factor: 0.1 steps: 1000
PaddleDetection/configs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.yml/0
{ "file_path": "PaddleDetection/configs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.yml", "repo_id": "PaddleDetection", "token_count": 277 }
17
_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', '_base_/optimizer_1x.yml', '_base_/gfl_reader.yml', ] weights: output/gfl_r18vd_1x_coco/model_final find_unused_parameters: True architecture: GFL pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet18_vd_pretrained.pdparams GFL: backbone: ResNet neck: FPN head: LDGFLHead ResNet: depth: 18 variant: d norm_type: bn freeze_at: 0 return_idx: [1,2,3] num_stages: 4 FPN: out_channel: 256 spatial_scales: [0.125, 0.0625, 0.03125] extra_stage: 2 has_extra_convs: true use_c5: false LDGFLHead: # new head conv_feat: name: FCOSFeat feat_in: 256 feat_out: 256 num_convs: 4 norm_type: "gn" use_dcn: false fpn_stride: [8, 16, 32, 64, 128] prior_prob: 0.01 reg_max: 16 loss_class: name: QualityFocalLoss use_sigmoid: True beta: 2.0 loss_weight: 1.0 loss_dfl: name: DistributionFocalLoss loss_weight: 0.25 loss_bbox: name: GIoULoss loss_weight: 2.0 loss_ld: name: KnowledgeDistillationKLDivLoss loss_weight: 0.25 T: 10 loss_ld_vlr: name: KnowledgeDistillationKLDivLoss loss_weight: 0.25 T: 10 loss_kd: name: KnowledgeDistillationKLDivLoss loss_weight: 10 T: 2 nms: name: MultiClassNMS nms_top_k: 1000 keep_top_k: 100 score_threshold: 0.025 nms_threshold: 0.6
PaddleDetection/configs/gfl/gfl_slim_ld_r18vd_1x_coco.yml/0
{ "file_path": "PaddleDetection/configs/gfl/gfl_slim_ld_r18vd_1x_coco.yml", "repo_id": "PaddleDetection", "token_count": 676 }
18
architecture: FasterRCNN pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/HRNet_W18_C_pretrained.pdparams FasterRCNN: backbone: HRNet neck: HRFPN rpn_head: RPNHead bbox_head: BBoxHead # post process bbox_post_process: BBoxPostProcess HRNet: width: 18 freeze_at: 0 return_idx: [0, 1, 2, 3] HRFPN: out_channel: 256 share_conv: false RPNHead: anchor_generator: aspect_ratios: [0.5, 1.0, 2.0] anchor_sizes: [[32], [64], [128], [256], [512]] strides: [4, 8, 16, 32, 64] rpn_target_assign: batch_size_per_im: 256 fg_fraction: 0.5 negative_overlap: 0.3 positive_overlap: 0.7 use_random: True train_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 2000 post_nms_top_n: 2000 topk_after_collect: True test_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 1000 post_nms_top_n: 1000 BBoxHead: head: TwoFCHead roi_extractor: resolution: 7 sampling_ratio: 0 aligned: True bbox_assigner: BBoxAssigner BBoxAssigner: batch_size_per_im: 512 bg_thresh: 0.5 fg_thresh: 0.5 fg_fraction: 0.25 use_random: True TwoFCHead: out_channel: 1024 BBoxPostProcess: decode: RCNNBox nms: name: MultiClassNMS keep_top_k: 100 score_threshold: 0.05 nms_threshold: 0.5
PaddleDetection/configs/hrnet/_base_/faster_rcnn_hrnetv2p_w18.yml/0
{ "file_path": "PaddleDetection/configs/hrnet/_base_/faster_rcnn_hrnetv2p_w18.yml", "repo_id": "PaddleDetection", "token_count": 631 }
19
English | [简体中文](README.md) # MOT (Multi-Object Tracking) ## Table of Contents - [Introduction](#Introduction) - [Installation](#Installation) - [Model Zoo](#Model_Zoo) - [Dataset Preparation](#Dataset_Preparation) - [Citations](#Citations) ## Introduction The current mainstream of 'Tracking By Detecting' multi-object tracking (MOT) algorithm is mainly composed of two parts: detection and embedding. Detection aims to detect the potential targets in each frame of the video. Embedding assigns and updates the detected target to the corresponding track (named ReID task). According to the different implementation of these two parts, it can be divided into **SDE** series and **JDE** series algorithm. - **SDE** (Separate Detection and Embedding) is a kind of algorithm which completely separates Detection and Embedding. The most representative is **DeepSORT** algorithm. This design can make the system fit any kind of detectors without difference, and can be improved for each part separately. However, due to the series process, the speed is slow. Time-consuming is a great challenge in the construction of real-time MOT system. - **JDE** (Joint Detection and Embedding) is to learn detection and embedding simultaneously in a shared neural network, and set the loss function with a multi task learning approach. The representative algorithms are **JDE** and **FairMOT**. This design can achieve high-precision real-time MOT performance. Paddledetection implements three MOT algorithms of these two series, they are [DeepSORT](https://arxiv.org/abs/1812.00442) of SDE algorithm, and [JDE](https://arxiv.org/abs/1909.12605),[FairMOT](https://arxiv.org/abs/2004.01888) of JDE algorithm. ### PP-Tracking real-time MOT system In addition, PaddleDetection also provides [PP-Tracking](../../deploy/pptracking/README.md) real-time multi-object tracking system. PP-Tracking is the first open source real-time Multi-Object Tracking system, and it is based on PaddlePaddle deep learning framework. It has rich models, wide application and high efficiency deployment. PP-Tracking supports two paradigms: single camera tracking (MOT) and multi-camera tracking (MTMCT). Aiming at the difficulties and pain points of actual business, PP-Tracking provides various MOT functions and applications such as pedestrian tracking, vehicle tracking, multi-class tracking, small object tracking, traffic statistics and multi-camera tracking. The deployment method supports API and GUI visual interface, and the deployment language supports Python and C++, The deployment platform environment supports Linux, NVIDIA Jetson, etc. ### AI studio public project tutorial PP-tracking provides an AI studio public project tutorial. Please refer to this [tutorial](https://aistudio.baidu.com/aistudio/projectdetail/3022582). ### Python predict and deployment PP-Tracking supports Python predict and deployment. Please refer to this [doc](../../deploy/pptracking/python/README.md). ### C++ predict and deployment PP-Tracking supports C++ predict and deployment. Please refer to this [doc](../../deploy/pptracking/cpp/README.md). ### GUI predict and deployment PP-Tracking supports GUI predict and deployment. Please refer to this [doc](https://github.com/yangyudong2020/PP-Tracking_GUi). <div width="1000" align="center"> <img src="../../docs/images/pptracking_en.png"/> </div> <div width="1000" align="center"> <img src="https://user-images.githubusercontent.com/22989727/205546999-f847183d-73e5-4abe-9896-ce6a245efc79.gif"/> <br> video source:VisDrone, BDD100K dataset</div> </div> ## Installation Install all the related dependencies for MOT: ``` pip install lap motmetrics sklearn or pip install -r requirements.txt ``` **Notes:** - Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`. ## Model Zoo - Base models - [ByteTrack](bytetrack/README.md) - [OC-SORT](ocsort/README.md) - [BoT-SORT](botsort/README.md) - [DeepSORT](deepsort/README.md) - [JDE](jde/README.md) - [FairMOT](fairmot/README.md) - [CenterTrack](centertrack/README.md) - Feature models - [Pedestrian](pedestrian/README.md) - [Head](headtracking21/README.md) - [Vehicle](vehicle/README.md) - Multi-Class Tracking - [MCFairMOT](mcfairmot/README.md) - Multi-Target Multi-Camera Tracking - [MTMCT](mtmct/README.md) ## Dataset Preparation ### MOT Dataset PaddleDetection implement [JDE](https://github.com/Zhongdao/Towards-Realtime-MOT) and [FairMOT](https://github.com/ifzhang/FairMOT), and use the same training data named 'MIX' as them, including **Caltech Pedestrian, CityPersons, CUHK-SYSU, PRW, ETHZ, MOT17 and MOT16**. The former six are used as the mixed dataset for training, and MOT16 are used as the evaluation dataset. If you want to use these datasets, please **follow their licenses**. **Notes:** - Multi-Object Tracking(MOT) datasets are always used for single category tracking. DeepSORT, JDE and FairMOT are single category MOT models. 'MIX' dataset and it's sub datasets are also single category pedestrian tracking datasets. It can be considered that there are additional IDs ground truth for detection datasets. - In order to train the feature models of more scenes, more datasets are also processed into the same format as the MIX dataset. PaddleDetection Team also provides feature datasets and models of [vehicle tracking](vehicle/README.md), [head tracking](headtracking21/README.md) and more general [pedestrian tracking](pedestrian/README.md). User defined datasets can also be prepared by referring to data preparation [doc](../../docs/tutorials/data/PrepareMOTDataSet.md). - The multipe category MOT model is [MCFairMOT] (mcfairmot/readme_cn.md), and the multi category dataset is the integrated version of VisDrone dataset. Please refer to the doc of [MCFairMOT](mcfairmot/README.md). - The Multi-Target Multi-Camera Tracking (MTMCT) model is [AIC21 MTMCT](https://www.aicitychallenge.org)(CityFlow) Multi-Camera Vehicle Tracking dataset. The dataset and model can refer to the doc of [MTMCT](mtmct/README.md) ### Dataset Directory First, download the image_lists.zip using the following command, and unzip them into `PaddleDetection/dataset/mot`: ``` wget https://bj.bcebos.com/v1/paddledet/data/mot/image_lists.zip ``` Then, download the MIX dataset using the following command, and unzip them into `PaddleDetection/dataset/mot`: ``` wget https://bj.bcebos.com/v1/paddledet/data/mot/MOT17.zip wget https://bj.bcebos.com/v1/paddledet/data/mot/Caltech.zip wget https://bj.bcebos.com/v1/paddledet/data/mot/CUHKSYSU.zip wget https://bj.bcebos.com/v1/paddledet/data/mot/PRW.zip wget https://bj.bcebos.com/v1/paddledet/data/mot/Cityscapes.zip wget https://bj.bcebos.com/v1/paddledet/data/mot/ETHZ.zip wget https://bj.bcebos.com/v1/paddledet/data/mot/MOT16.zip ``` The final directory is: ``` dataset/mot |——————image_lists |——————caltech.10k.val |——————caltech.all |——————caltech.train |——————caltech.val |——————citypersons.train |——————citypersons.val |——————cuhksysu.train |——————cuhksysu.val |——————eth.train |——————mot16.train |——————mot17.train |——————prw.train |——————prw.val |——————Caltech |——————Cityscapes |——————CUHKSYSU |——————ETHZ |——————MOT16 |——————MOT17 |——————PRW ``` ### Data Format These several relevant datasets have the following structure: ``` MOT17 |——————images | └——————train | └——————test └——————labels_with_ids └——————train ``` Annotations of these datasets are provided in a unified format. Every image has a corresponding annotation text. Given an image path, the annotation text path can be generated by replacing the string `images` with `labels_with_ids` and replacing `.jpg` with `.txt`. In the annotation text, each line is describing a bounding box and has the following format: ``` [class] [identity] [x_center] [y_center] [width] [height] ``` **Notes:** - `class` is the class id, support single class and multi-class, start from `0`, and for single class is `0`. - `identity` is an integer from `1` to `num_identities`(`num_identities` is the total number of instances of objects in the dataset of all videos or image squences), or `-1` if this box has no identity annotation. - `[x_center] [y_center] [width] [height]` are the center coordinates, width and height, note that they are normalized by the width/height of the image, so they are floating point numbers ranging from 0 to 1. ## Citations ``` @inproceedings{Wojke2017simple, title={Simple Online and Realtime Tracking with a Deep Association Metric}, author={Wojke, Nicolai and Bewley, Alex and Paulus, Dietrich}, booktitle={2017 IEEE International Conference on Image Processing (ICIP)}, year={2017}, pages={3645--3649}, organization={IEEE}, doi={10.1109/ICIP.2017.8296962} } @inproceedings{Wojke2018deep, title={Deep Cosine Metric Learning for Person Re-identification}, author={Wojke, Nicolai and Bewley, Alex}, booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)}, year={2018}, pages={748--756}, organization={IEEE}, doi={10.1109/WACV.2018.00087} } @article{wang2019towards, title={Towards Real-Time Multi-Object Tracking}, author={Wang, Zhongdao and Zheng, Liang and Liu, Yixuan and Wang, Shengjin}, journal={arXiv preprint arXiv:1909.12605}, year={2019} } @article{zhang2020fair, title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking}, author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu}, journal={arXiv preprint arXiv:2004.01888}, year={2020} } @article{zhang2021bytetrack, title={ByteTrack: Multi-Object Tracking by Associating Every Detection Box}, author={Zhang, Yifu and Sun, Peize and Jiang, Yi and Yu, Dongdong and Yuan, Zehuan and Luo, Ping and Liu, Wenyu and Wang, Xinggang}, journal={arXiv preprint arXiv:2110.06864}, year={2021} } @article{cao2022observation, title={Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking}, author={Cao, Jinkun and Weng, Xinshuo and Khirodkar, Rawal and Pang, Jiangmiao and Kitani, Kris}, journal={arXiv preprint arXiv:2203.14360}, year={2022} } @article{aharon2022bot, title={BoT-SORT: Robust Associations Multi-Pedestrian Tracking}, author={Aharon, Nir and Orfaig, Roy and Bobrovsky, Ben-Zion}, journal={arXiv preprint arXiv:2206.14651}, year={2022} } @article{zhou2020tracking, title={Tracking Objects as Points}, author={Zhou, Xingyi and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp}, journal={ECCV}, year={2020} } ```
PaddleDetection/configs/mot/README_en.md/0
{ "file_path": "PaddleDetection/configs/mot/README_en.md", "repo_id": "PaddleDetection", "token_count": 3593 }
20
# This config is an assembled config for ByteTrack MOT, used as eval/infer mode for MOT. _BASE_: [ 'detector/yolov3_darknet53_40e_608x608_mot17half.yml', '_base_/mot17.yml', '_base_/yolov3_mot_reader_608x608.yml' ] weights: output/bytetrack_yolov3/model_final log_iter: 20 snapshot_epoch: 2 metric: MOT # eval/infer mode num_classes: 1 architecture: ByteTrack pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/yolov3_darknet53_270e_coco.pdparams ByteTrack: detector: YOLOv3 # General YOLOv3 version reid: None tracker: JDETracker det_weights: https://bj.bcebos.com/v1/paddledet/models/mot/yolov3_darknet53_40e_608x608_mot17half.pdparams reid_weights: None YOLOv3: backbone: DarkNet neck: YOLOv3FPN yolo_head: YOLOv3Head post_process: BBoxPostProcess # Tracking requires higher quality boxes, so NMS score_threshold will be higher BBoxPostProcess: decode: name: YOLOBox conf_thresh: 0.005 downsample_ratio: 32 clip_bbox: true nms: name: MultiClassNMS keep_top_k: 100 score_threshold: 0.01 nms_threshold: 0.45 nms_top_k: 1000 # BYTETracker JDETracker: use_byte: True match_thres: 0.9 conf_thres: 0.2 low_conf_thres: 0.1 min_box_area: 100 vertical_ratio: 1.6 # for pedestrian
PaddleDetection/configs/mot/bytetrack/bytetrack_yolov3.yml/0
{ "file_path": "PaddleDetection/configs/mot/bytetrack/bytetrack_yolov3.yml", "repo_id": "PaddleDetection", "token_count": 547 }
21
architecture: JDE pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/DarkNet53_pretrained.pdparams find_unused_parameters: True JDE: detector: YOLOv3 reid: JDEEmbeddingHead tracker: JDETracker YOLOv3: backbone: DarkNet neck: YOLOv3FPN yolo_head: YOLOv3Head post_process: JDEBBoxPostProcess for_mot: True DarkNet: depth: 53 return_idx: [2, 3, 4] freeze_norm: True YOLOv3FPN: freeze_norm: True YOLOv3Head: anchors: [[128,384], [180,540], [256,640], [512,640], [32,96], [45,135], [64,192], [90,271], [8,24], [11,34], [16,48], [23,68]] anchor_masks: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] loss: JDEDetectionLoss JDEBBoxPostProcess: decode: name: JDEBox conf_thresh: 0.3 downsample_ratio: 32 nms: name: MultiClassNMS keep_top_k: 500 score_threshold: 0.01 nms_threshold: 0.5 nms_top_k: 2000 normalized: true JDEEmbeddingHead: anchor_levels: 3 anchor_scales: 4 embedding_dim: 512 emb_loss: JDEEmbeddingLoss jde_loss: JDELoss JDETracker: det_thresh: 0.3 track_buffer: 30 min_box_area: 200 vertical_ratio: 1.6 # for pedestrian
PaddleDetection/configs/mot/jde/_base_/jde_darknet53.yml/0
{ "file_path": "PaddleDetection/configs/mot/jde/_base_/jde_darknet53.yml", "repo_id": "PaddleDetection", "token_count": 547 }
22
English | [简体中文](README.md) # PP-PicoDet ![](../../docs/images/picedet_demo.jpeg) ## News - Released a new series of PP-PicoDet models: **(2022.03.20)** - (1) It was used TAL/ETA Head and optimized PAN, which greatly improved the accuracy; - (2) Moreover optimized CPU prediction speed, and the training speed is greatly improved; - (3) The export model includes post-processing, and the prediction directly outputs the result, without secondary development, and the migration cost is lower. ### Legacy Model - Please refer to: [PicoDet 2021.10](./legacy_model/) ## Introduction We developed a series of lightweight models, named `PP-PicoDet`. Because of the excellent performance, our models are very suitable for deployment on mobile or CPU. For more details, please refer to our [report on arXiv](https://arxiv.org/abs/2111.00902). - 🌟 Higher mAP: the **first** object detectors that surpass mAP(0.5:0.95) **30+** within 1M parameters when the input size is 416. - 🚀 Faster latency: 150FPS on mobile ARM CPU. - 😊 Deploy friendly: support PaddleLite/MNN/NCNN/OpenVINO and provide C++/Python/Android implementation. - 😍 Advanced algorithm: use the most advanced algorithms and offer innovation, such as ESNet, CSP-PAN, SimOTA with VFL, etc. <div align="center"> <img src="../../docs/images/picodet_map.png" width='600'/> </div> ## Benchmark | Model | Input size | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params<br><sup>(M) | FLOPS<br><sup>(G) | Latency<sup><small>[CPU](#latency)</small><sup><br><sup>(ms) | Latency<sup><small>[Lite](#latency)</small><sup><br><sup>(ms) | Weight | Config | Inference Model | | :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: | :--------------------------------------- | :--------------------------------------- | | PicoDet-XS | 320*320 | 23.5 | 36.1 | 0.70 | 0.67 | 3.9ms | 7.81ms | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_xs_320_coco_lcnet.yml) | [w/ postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_xs_320_coco_lcnet.tar) &#124; [w/o postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_xs_320_coco_lcnet_non_postprocess.tar) | | PicoDet-XS | 416*416 | 26.2 | 39.3 | 0.70 | 1.13 | 6.1ms | 12.38ms | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_xs_416_coco_lcnet.yml) | [w/ postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_xs_416_coco_lcnet.tar) &#124; [w/o postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_xs_416_coco_lcnet_non_postprocess.tar) | | PicoDet-S | 320*320 | 29.1 | 43.4 | 1.18 | 0.97 | 4.8ms | 9.56ms | [model](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_320_coco_lcnet.yml) | [w/ postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_320_coco_lcnet.tar) &#124; [w/o postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_320_coco_lcnet_non_postprocess.tar) | | PicoDet-S | 416*416 | 32.5 | 47.6 | 1.18 | 1.65 | 6.6ms | 15.20ms | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_416_coco_lcnet.yml) | [w/ postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet.tar) &#124; [w/o postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet_non_postprocess.tar) | | PicoDet-M | 320*320 | 34.4 | 50.0 | 3.46 | 2.57 | 8.2ms | 17.68ms | [model](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_320_coco_lcnet.yml) | [w/ postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_m_320_coco_lcnet.tar) &#124; [w/o postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_m_320_coco_lcnet_non_postprocess.tar) | | PicoDet-M | 416*416 | 37.5 | 53.4 | 3.46 | 4.34 | 12.7ms | 28.39ms | [model](https://paddledet.bj.bcebos.com/models/picodet_m_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_416_coco_lcnet.yml) | [w/ postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_m_416_coco_lcnet.tar) &#124; [w/o postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_m_416_coco_lcnet_non_postprocess.tar) | | PicoDet-L | 320*320 | 36.1 | 52.0 | 5.80 | 4.20 | 11.5ms | 25.21ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_320_coco_lcnet.yml) | [w/ postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_320_coco_lcnet.tar) &#124; [w/o postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_320_coco_lcnet_non_postprocess.tar) | | PicoDet-L | 416*416 | 39.4 | 55.7 | 5.80 | 7.10 | 20.7ms | 42.23ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_416_coco_lcnet.yml) | [w/ postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_416_coco_lcnet.tar) &#124; [w/o postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_416_coco_lcnet_non_postprocess.tar) | | PicoDet-L | 640*640 | 42.6 | 59.2 | 5.80 | 16.81 | 62.5ms | 108.1ms | [model](https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_640_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_640_coco_lcnet.yml) | [w/ postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_640_coco_lcnet.tar) &#124; [w/o postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_640_coco_lcnet_non_postprocess.tar) | <details open> <summary><b>Table Notes:</b></summary> - <a name="latency">Latency:</a> All our models test on `Intel core i7 10750H` CPU with MKLDNN by 12 threads and `Qualcomm Snapdragon 865(4xA77+4xA55)` with 4 threads by arm8 and with FP16. In the above table, test CPU latency on Paddle-Inference and testing Mobile latency with `Lite`->[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite). - PicoDet is trained on COCO train2017 dataset and evaluated on COCO val2017. And PicoDet used 4 GPUs for training and all checkpoints are trained with default settings and hyperparameters. - Benchmark test: When testing the speed benchmark, the post-processing is not included in the exported model, you need to set `-o export.benchmark=True` or manually modify [runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/runtime.yml#L12). </details> #### Benchmark of Other Models | Model | Input size | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params<br><sup>(M) | FLOPS<br><sup>(G) | Latency<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) | | :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | | YOLOv3-Tiny | 416*416 | 16.6 | 33.1 | 8.86 | 5.62 | 25.42 | | YOLOv4-Tiny | 416*416 | 21.7 | 40.2 | 6.06 | 6.96 | 23.69 | | PP-YOLO-Tiny | 320*320 | 20.6 | - | 1.08 | 0.58 | 6.75 | | PP-YOLO-Tiny | 416*416 | 22.7 | - | 1.08 | 1.02 | 10.48 | | Nanodet-M | 320*320 | 20.6 | - | 0.95 | 0.72 | 8.71 | | Nanodet-M | 416*416 | 23.5 | - | 0.95 | 1.2 | 13.35 | | Nanodet-M 1.5x | 416*416 | 26.8 | - | 2.08 | 2.42 | 15.83 | | YOLOX-Nano | 416*416 | 25.8 | - | 0.91 | 1.08 | 19.23 | | YOLOX-Tiny | 416*416 | 32.8 | - | 5.06 | 6.45 | 32.77 | | YOLOv5n | 640*640 | 28.4 | 46.0 | 1.9 | 4.5 | 40.35 | | YOLOv5s | 640*640 | 37.2 | 56.0 | 7.2 | 16.5 | 78.05 | - Testing Mobile latency with code: [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark). ## Quick Start <details open> <summary>Requirements:</summary> - PaddlePaddle >= 2.2.2 </details> <details> <summary>Installation</summary> - [Installation guide](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md) - [Prepare dataset](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/data/PrepareDataSet_en.md) </details> <details> <summary>Training and Evaluation</summary> - Training model on single-GPU: ```shell # training on single-GPU export CUDA_VISIBLE_DEVICES=0 python tools/train.py -c configs/picodet/picodet_s_320_coco_lcnet.yml --eval ``` If the GPU is out of memory during training, reduce the batch_size in TrainReader, and reduce the base_lr in LearningRate proportionally. At the same time, the configs we published are all trained with 4 GPUs. If the number of GPUs is changed to 1, the base_lr needs to be reduced by a factor of 4. - Training model on multi-GPU: ```shell # training on multi-GPU export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/picodet/picodet_s_320_coco_lcnet.yml --eval ``` - Evaluation: ```shell python tools/eval.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \ -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams ``` - Infer: ```shell python tools/infer.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \ -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams ``` Detail also can refer to [Quick start guide](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED.md). </details> ## Deployment ### Export and Convert Model <details open> <summary>1. Export model</summary> ```shell cd PaddleDetection python tools/export_model.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \ -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams \ --output_dir=output_inference ``` - If no post processing is required, please specify: `-o export.post_process=False` (if -o has already appeared, delete -o here) or manually modify corresponding fields in [runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/runtime.yml). - If no NMS is required, please specify: `-o export.nms=True` or manually modify corresponding fields in [runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/runtime.yml). Many scenes exported to ONNX only support single input and fixed shape output, so if exporting to ONNX, it is recommended not to export NMS. </details> <details> <summary>2. Convert to PaddleLite (click to expand)</summary> - Install Paddlelite>=2.10: ```shell pip install paddlelite ``` - Convert model: ```shell # FP32 paddle_lite_opt --model_dir=output_inference/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp32 # FP16 paddle_lite_opt --model_dir=output_inference/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp16 --enable_fp16=true ``` </details> <details> <summary>3. Convert to ONNX (click to expand)</summary> - Install [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX) >= 0.7 and ONNX > 1.10.1, for details, please refer to [Tutorials of Export ONNX Model](../../deploy/EXPORT_ONNX_MODEL.md) ```shell pip install onnx pip install paddle2onnx==0.9.2 ``` - Convert model: ```shell paddle2onnx --model_dir output_inference/picodet_s_320_coco_lcnet/ \ --model_filename model.pdmodel \ --params_filename model.pdiparams \ --opset_version 11 \ --save_file picodet_s_320_coco.onnx ``` - Simplify ONNX model: use onnx-simplifier to simplify onnx model. - Install onnxsim >= 0.4.1: ```shell pip install onnxsim ``` - simplify onnx model: ```shell onnxsim picodet_s_320_coco.onnx picodet_s_processed.onnx ``` </details> - Deploy models | Model | Input size | ONNX(w/o postprocess) | Paddle Lite(fp32) | Paddle Lite(fp16) | | :-------- | :--------: | :---------------------: | :----------------: | :----------------: | | PicoDet-XS | 320*320 | [( w/ postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_lcnet_postprocessed.onnx) &#124; [( w/o postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_xs_320_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_xs_320_coco_lcnet_fp16.tar) | | PicoDet-XS | 416*416 | [( w/ postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_lcnet_postprocessed.onnx) &#124; [( w/o postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_xs_416_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_xs_416_coco_lcnet_fp16.tar) | | PicoDet-S | 320*320 | [( w/ postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_lcnet_postprocessed.onnx) &#124; [( w/o postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_coco_lcnet_fp16.tar) | | PicoDet-S | 416*416 | [( w/ postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_lcnet_postprocessed.onnx) &#124; [( w/o postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_coco_lcnet_fp16.tar) | | PicoDet-M | 320*320 | [( w/ postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_lcnet_postprocessed.onnx) &#124; [( w/o postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_coco_lcnet_fp16.tar) | | PicoDet-M | 416*416 | [( w/ postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_lcnet_postprocessed.onnx) &#124; [( w/o postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_coco_lcnet_fp16.tar) | | PicoDet-L | 320*320 | [( w/ postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_lcnet_postprocessed.onnx) &#124; [( w/o postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_coco_lcnet_fp16.tar) | | PicoDet-L | 416*416 | [( w/ postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_lcnet_postprocessed.onnx) &#124; [( w/o postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_coco_lcnet_fp16.tar) | | PicoDet-L | 640*640 | [( w/ postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_lcnet_postprocessed.onnx) &#124; [( w/o postprocess)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco_lcnet.onnx) [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640_coco_lcnet_fp16.tar) | ### Deploy | Infer Engine | Python | C++ | Predict With Postprocess | | :-------- | :--------: | :---------------------: | :----------------: | | OpenVINO | [Python](../../deploy/third_engine/demo_openvino/python) | [C++](../../deploy/third_engine/demo_openvino)(postprocess coming soon) | ✔︎ | | Paddle Lite | - | [C++](../../deploy/lite) | ✔︎ | | Android Demo | - | [Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite-Demo/tree/develop/object_detection/android/app/cxx/picodet_detection_demo) | ✔︎ | | PaddleInference | [Python](../../deploy/python) | [C++](../../deploy/cpp) | ✔︎ | | ONNXRuntime | [Python](../../deploy/third_engine/demo_onnxruntime) | Coming soon | ✔︎ | | NCNN | Coming soon | [C++](../../deploy/third_engine/demo_ncnn) | ✘ | | MNN | Coming soon | [C++](../../deploy/third_engine/demo_mnn) | ✘ | Android demo visualization: <div align="center"> <img src="../../docs/images/picodet_android_demo1.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo2.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo3.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo4.jpg" height="500px" > </div> ## Quantization <details open> <summary>Requirements:</summary> - PaddlePaddle >= 2.2.2 - PaddleSlim >= 2.2.2 **Install:** ```shell pip install paddleslim==2.2.2 ``` </details> <details open> <summary>Quant aware</summary> Configure the quant config and start training: ```shell python tools/train.py -c configs/picodet/picodet_s_416_coco_lcnet.yml \ --slim_config configs/slim/quant/picodet_s_416_lcnet_quant.yml --eval ``` - More detail can refer to [slim document](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim) </details> - Quant Aware Model ZOO: | Quant Model | Input size | mAP<sup>val<br>0.5:0.95 | Configs | Weight | Inference Model | Paddle Lite(INT8) | | :-------- | :--------: | :--------------------: | :-------: | :----------------: | :----------------: | :----------------: | | PicoDet-S | 416*416 | 31.5 | [config](./picodet_s_416_coco_lcnet.yml) &#124; [slim config](../slim/quant/picodet_s_416_lcnet_quant.yml) | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco_lcnet_quant.pdparams) | [w/ postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet_quant.tar) &#124; [w/o postprocess](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet_quant_non_postprocess.tar) | [w/ postprocess](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_coco_lcnet_quant.nb) &#124; [w/o postprocess](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_coco_lcnet_quant_non_postprocess.nb) | ## Unstructured Pruning <details open> <summary>Tutorial:</summary> Please refer this [documentation](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/legacy_model/pruner/README.md) for details such as requirements, training and deployment. </details> ## Application - **Pedestrian detection:** model zoo of `PicoDet-S-Pedestrian` please refer to [PP-TinyPose](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/keypoint/tiny_pose#%E8%A1%8C%E4%BA%BA%E6%A3%80%E6%B5%8B%E6%A8%A1%E5%9E%8B) - **Mainbody detection:** model zoo of `PicoDet-L-Mainbody` please refer to [mainbody detection](./legacy_model/application/mainbody_detection/README.md) ## FAQ <details> <summary>Out of memory error.</summary> Please reduce the `batch_size` of `TrainReader` in config. </details> <details> <summary>How to transfer learning.</summary> Please reset `pretrain_weights` in config, which trained on coco. Such as: ```yaml pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams ``` </details> <details> <summary>The transpose operator is time-consuming on some hardware.</summary> Please use `PicoDet-LCNet` model, which has fewer `transpose` operators. </details> <details> <summary>How to count model parameters.</summary> You can insert below code at [here](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/engine/trainer.py#L141) to count learnable parameters. ```python params = sum([ p.numel() for n, p in self.model. named_parameters() if all([x not in n for x in ['_mean', '_variance']]) ]) # exclude BatchNorm running status print('params: ', params) ``` </details> ## Cite PP-PicoDet If you use PicoDet in your research, please cite our work by using the following BibTeX entry: ``` @misc{yu2021pppicodet, title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices}, author={Guanghua Yu and Qinyao Chang and Wenyu Lv and Chang Xu and Cheng Cui and Wei Ji and Qingqing Dang and Kaipeng Deng and Guanzhong Wang and Yuning Du and Baohua Lai and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma}, year={2021}, eprint={2111.00902}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
PaddleDetection/configs/picodet/README_en.md/0
{ "file_path": "PaddleDetection/configs/picodet/README_en.md", "repo_id": "PaddleDetection", "token_count": 11217 }
23
_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', '../ppyoloe/_base_/optimizer_300e.yml', '../ppyoloe/_base_/ppyoloe_crn.yml', '../ppyoloe/_base_/ppyoloe_reader.yml', ] log_iter: 100 snapshot_epoch: 4 weights: output/ppyoloe_crn_l_36e_uadetrac/model_final pretrain_weights: https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams depth_mult: 1.0 width_mult: 1.0 num_classes: 4 TrainDataset: !COCODataSet image_dir: train anno_path: annotations/train.json dataset_dir: dataset/uadetrac data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd'] EvalDataset: !COCODataSet image_dir: val anno_path: annotations/test.json dataset_dir: dataset/uadetrac TestDataset: !ImageFolder anno_path: annotations/test.json dataset_dir: dataset/uadetrac TrainReader: batch_size: 8 epoch: 36 LearningRate: base_lr: 0.001 schedulers: - !CosineDecay max_epochs: 43 - !LinearWarmup start_factor: 0. epochs: 1 PPYOLOEHead: static_assigner_epoch: -1 nms: name: MultiClassNMS nms_top_k: 1000 keep_top_k: 100 score_threshold: 0.01 nms_threshold: 0.6
PaddleDetection/configs/ppvehicle/ppyoloe_crn_l_36e_uadetrac.yml/0
{ "file_path": "PaddleDetection/configs/ppvehicle/ppyoloe_crn_l_36e_uadetrac.yml", "repo_id": "PaddleDetection", "token_count": 549 }
24
architecture: YOLOv3 pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams norm_type: sync_bn use_ema: true ema_decay: 0.9998 YOLOv3: backbone: MobileNetV3 neck: PPYOLOFPN yolo_head: YOLOv3Head post_process: BBoxPostProcess MobileNetV3: model_name: large scale: 1. with_extra_blocks: false extra_block_filters: [] feature_maps: [13, 16] PPYOLOFPN: in_channels: [160, 368] coord_conv: true conv_block_num: 0 spp: true drop_block: true YOLOv3Head: anchors: [[11, 18], [34, 47], [51, 126], [115, 71], [120, 195], [254, 235]] anchor_masks: [[3, 4, 5], [0, 1, 2]] loss: YOLOv3Loss YOLOv3Loss: ignore_thresh: 0.5 downsample: [32, 16] label_smooth: false scale_x_y: 1.05 iou_loss: IouLoss IouLoss: loss_weight: 2.5 loss_square: true BBoxPostProcess: decode: name: YOLOBox conf_thresh: 0.005 downsample_ratio: 32 clip_bbox: true scale_x_y: 1.05 nms: name: MultiClassNMS keep_top_k: 100 nms_threshold: 0.45 nms_top_k: 1000 score_threshold: 0.005
PaddleDetection/configs/ppyolo/_base_/ppyolo_mbv3_large.yml/0
{ "file_path": "PaddleDetection/configs/ppyolo/_base_/ppyolo_mbv3_large.yml", "repo_id": "PaddleDetection", "token_count": 529 }
25
_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', './_base_/ppyolo_r50vd_dcn.yml', './_base_/optimizer_1x.yml', './_base_/ppyolo_reader.yml', ] snapshot_epoch: 16 EvalDataset: !COCODataSet image_dir: test2017 anno_path: annotations/image_info_test-dev2017.json dataset_dir: dataset/coco
PaddleDetection/configs/ppyolo/ppyolo_test.yml/0
{ "file_path": "PaddleDetection/configs/ppyolo/ppyolo_test.yml", "repo_id": "PaddleDetection", "token_count": 157 }
26
_BASE_: [ './_base_/pcb_detection.yml', '../../runtime.yml', '../_base_/optimizer_80e.yml', '../_base_/ppyoloe_plus_crn.yml', '../_base_/ppyoloe_plus_reader.yml', ] log_iter: 100 snapshot_epoch: 5 weights: output/ppyoloe_plus_crn_m_80e_obj365_pretrained_pcb/model_final pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_m_obj365_pretrained.pdparams depth_mult: 0.67 width_mult: 0.75
PaddleDetection/configs/ppyoloe/application/ppyoloe_plus_crn_m_80e_obj365_pretrained_pcb.yml/0
{ "file_path": "PaddleDetection/configs/ppyoloe/application/ppyoloe_plus_crn_m_80e_obj365_pretrained_pcb.yml", "repo_id": "PaddleDetection", "token_count": 201 }
27
_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', './_base_/optimizer_300e.yml', './_base_/ppyoloe_crn.yml', './_base_/ppyoloe_reader.yml', ] log_iter: 100 snapshot_epoch: 10 weights: output/ppyoloe_crn_m_300e_coco/model_final pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/CSPResNetb_m_pretrained.pdparams depth_mult: 0.67 width_mult: 0.75
PaddleDetection/configs/ppyoloe/ppyoloe_crn_m_300e_coco.yml/0
{ "file_path": "PaddleDetection/configs/ppyoloe/ppyoloe_crn_m_300e_coco.yml", "repo_id": "PaddleDetection", "token_count": 181 }
28
简体中文 | [English](README_en.md) # PP-YOLOE-R ## 内容 - [简介](#简介) - [模型库](#模型库) - [使用说明](#使用说明) - [预测部署](#预测部署) - [附录](#附录) - [引用](#引用) ## 简介 PP-YOLOE-R是一个高效的单阶段Anchor-free旋转框检测模型。基于PP-YOLOE, PP-YOLOE-R以极少的参数量和计算量为代价,引入了一系列有用的设计来提升检测精度。在DOTA 1.0数据集上,PP-YOLOE-R-l和PP-YOLOE-R-x在单尺度训练和测试的情况下分别达到了78.14和78.27 mAP,这超越了几乎所有的旋转框检测模型。通过多尺度训练和测试,PP-YOLOE-R-l和PP-YOLOE-R-x的检测精度进一步提升至80.02和80.73 mAP。在这种情况下,PP-YOLOE-R-x超越了所有的anchor-free方法并且和最先进的anchor-based的两阶段模型精度几乎相当。此外,PP-YOLOE-R-s和PP-YOLOE-R-m通过多尺度训练和测试可以达到79.42和79.71 mAP。考虑到这两个模型的参数量和计算量,其性能也非常卓越。在保持高精度的同时,PP-YOLOE-R避免使用特殊的算子,例如Deformable Convolution或Rotated RoI Align,以使其能轻松地部署在多种多样的硬件上。在1024x1024的输入分辨率下,PP-YOLOE-R-s/m/l/x在RTX 2080 Ti上使用TensorRT FP16分别能达到69.8/55.1/48.3/37.1 FPS,在Tesla V100上分别能达到114.5/86.8/69.7/50.7 FPS。更多细节可以参考我们的[**技术报告**](https://arxiv.org/abs/2211.02386)。 <div align="center"> <img src="../../../docs/images/ppyoloe_r_map_fps.png" width=500 /> </div> PP-YOLOE-R相较于PP-YOLOE做了以下几点改动: - Rotated Task Alignment Learning - 解耦的角度预测头 - 使用DFL进行角度预测 - 可学习的门控单元 - [ProbIoU损失函数](https://arxiv.org/abs/2106.06072) ## 模型库 | 模型 | Backbone | mAP | V100 TRT FP16 (FPS) | RTX 2080 Ti TRT FP16 (FPS) | Params (M) | FLOPs (G) | 学习率策略 | 角度表示 | 数据增广 | GPU数目 | 每GPU图片数目 | 模型下载 | 配置文件 | |:---:|:--------:|:----:|:--------------------:|:------------------------:|:----------:|:---------:|:--------:|:----------:|:-------:|:------:|:-----------:|:--------:|:------:| | PP-YOLOE-R-s | CRN-s | 73.82 | 114.5 | 69.8 | 8.09 | 43.46 | 3x | oc | RR | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_s_3x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/ppyoloe_r/ppyoloe_r_crn_s_3x_dota.yml) | | PP-YOLOE-R-s | CRN-s | 79.42 | 114.5 | 69.8 | 8.09 | 43.46 | 3x | oc | MS+RR | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_s_3x_dota_ms.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/ppyoloe_r/ppyoloe_r_crn_s_3x_dota_ms.yml) | | PP-YOLOE-R-m | CRN-m | 77.64 | 86.8 | 55.1 | 23.96 |127.00 | 3x | oc | RR | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_m_3x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/ppyoloe_r/ppyoloe_r_crn_m_3x_dota.yml) | | PP-YOLOE-R-m | CRN-m | 79.71 | 86.8 | 55.1 | 23.96 |127.00 | 3x | oc | MS+RR | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_m_3x_dota_ms.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/ppyoloe_r/ppyoloe_r_crn_m_3x_dota_ms.yml) | | PP-YOLOE-R-l | CRN-l | 78.14 | 69.7 | 48.3 | 53.29 |281.65 | 3x | oc | RR | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml) | | PP-YOLOE-R-l | CRN-l | 80.02 | 69.7 | 48.3 | 53.29 |281.65 | 3x | oc | MS+RR | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota_ms.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota_ms.yml) | | PP-YOLOE-R-x | CRN-x | 78.28 | 50.7 | 37.1 | 100.27|529.82 | 3x | oc | RR | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_x_3x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/ppyoloe_r/ppyoloe_r_crn_x_3x_dota.yml) | | PP-YOLOE-R-x | CRN-x | 80.73 | 50.7 | 37.1 | 100.27|529.82 | 3x | oc | MS+RR | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_x_3x_dota_ms.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/ppyoloe_r/ppyoloe_r_crn_x_3x_dota_ms.yml) | **注意:** - 如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率。 - 模型库中的模型默认使用单尺度训练单尺度测试。如果数据增广一栏标明MS,意味着使用多尺度训练和多尺度测试。如果数据增广一栏标明RR,意味着使用RandomRotate数据增广进行训练。 - CRN表示在PP-YOLOE中提出的CSPRepResNet - PP-YOLOE-R的参数量和计算量是在重参数化之后计算得到,输入图像的分辨率为1024x1024 - 速度测试使用TensorRT 8.2.3在DOTA测试集中测试2000张图片计算平均值得到。参考速度测试以复现[速度测试](#速度测试) ## 使用说明 参考[数据准备](../README.md#数据准备)准备数据。 ### 训练 GPU单卡训练 ``` bash CUDA_VISIBLE_DEVICES=0 python tools/train.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml ``` GPU多卡训练 ``` bash CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml ``` ### 预测 执行以下命令预测单张图片,图片预测结果会默认保存在`output`文件夹下面 ``` bash python tools/infer.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota.pdparams --infer_img=demo/P0861__1.0__1154___824.png --draw_threshold=0.5 ``` ### DOTA数据集评估 参考[DOTA Task](https://captain-whu.github.io/DOTA/tasks.html), 评估DOTA数据集需要生成一个包含所有检测结果的zip文件,每一类的检测结果储存在一个txt文件中,txt文件中每行格式为:`image_name score x1 y1 x2 y2 x3 y3 x4 y4`。将生成的zip文件提交到[DOTA Evaluation](https://captain-whu.github.io/DOTA/evaluation.html)的Task1进行评估。你可以执行以下命令得到test数据集的预测结果: ``` bash python tools/infer.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota.pdparams --infer_dir=/path/to/test/images --output_dir=output_ppyoloe_r --visualize=False --save_results=True ``` 将预测结果处理成官网评估所需要的格式: ``` bash python configs/rotate/tools/generate_result.py --pred_txt_dir=output_ppyoloe_r/ --output_dir=submit/ --data_type=dota10 zip -r submit.zip submit ``` ### 速度测试 可以使用Paddle模式或者Paddle-TRT模式进行测速。当使用Paddle-TRT模式测速时,需要确保**TensorRT版本大于8.2, PaddlePaddle版本为develop版本**。使用Paddle-TRT进行测速,可以执行以下命令: ``` bash # 导出模型 python tools/export_model.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota.pdparams trt=True # 速度测试 CUDA_VISIBLE_DEVICES=0 python configs/rotate/tools/inference_benchmark.py --model_dir output_inference/ppyoloe_r_crn_l_3x_dota/ --image_dir /path/to/dota/test/dir --run_mode trt_fp16 ``` 当只使用Paddle进行测速,可以执行以下命令: ``` bash # 导出模型 python tools/export_model.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota.pdparams # 速度测试 CUDA_VISIBLE_DEVICES=0 python configs/rotate/tools/inference_benchmark.py --model_dir output_inference/ppyoloe_r_crn_l_3x_dota/ --image_dir /path/to/dota/test/dir --run_mode paddle ``` ## 预测部署 **使用Paddle**进行部署,执行以下命令: ``` bash # 导出模型 python tools/export_model.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota.pdparams # 预测图片 python deploy/python/infer.py --image_file demo/P0072__1.0__0___0.png --model_dir=output_inference/ppyoloe_r_crn_l_3x_dota --run_mode=paddle --device=gpu ``` **使用Paddle-TRT进行部署**,执行以下命令: ``` # 导出模型 python tools/export_model.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota.pdparams trt=True # 预测图片 python deploy/python/infer.py --image_file demo/P0072__1.0__0___0.png --model_dir=output_inference/ppyoloe_r_crn_l_3x_dota --run_mode=trt_fp16 --device=gpu ``` **注意:** - 使用Paddle-TRT使用确保**PaddlePaddle版本为develop版本且TensorRT版本大于8.2**. **使用ONNX Runtime进行部署**,执行以下命令: ``` # 导出模型 python tools/export_model.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota.pdparams export_onnx=True # 安装paddle2onnx pip install paddle2onnx # 转换成onnx模型 paddle2onnx --model_dir output_inference/ppyoloe_r_crn_l_3x_dota --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 11 --save_file ppyoloe_r_crn_l_3x_dota.onnx # 预测图片 python configs/rotate/tools/onnx_infer.py --infer_cfg output_inference/ppyoloe_r_crn_l_3x_dota/infer_cfg.yml --onnx_file ppyoloe_r_crn_l_3x_dota.onnx --image_file demo/P0072__1.0__0___0.png ``` ## 附录 PP-YOLOE-R消融实验 | 模型 | mAP | 参数量(M) | FLOPs(G) | | :-: | :-: | :------: | :------: | | Baseline | 75.61 | 50.65 | 269.09 | | +Rotated Task Alignment Learning | 77.24 | 50.65 | 269.09 | | +Decoupled Angle Prediction Head | 77.78 | 52.20 | 272.72 | | +Angle Prediction with DFL | 78.01 | 53.29 | 281.65 | | +Learnable Gating Unit for RepVGG | 78.14 | 53.29 | 281.65 | ## 引用 ``` @article{wang2022pp, title={PP-YOLOE-R: An Efficient Anchor-Free Rotated Object Detector}, author={Wang, Xinxin and Wang, Guanzhong and Dang, Qingqing and Liu, Yi and Hu, Xiaoguang and Yu, Dianhai}, journal={arXiv preprint arXiv:2211.02386}, year={2022} } @article{xu2022pp, title={PP-YOLOE: An evolved version of YOLO}, author={Xu, Shangliang and Wang, Xinxin and Lv, Wenyu and Chang, Qinyao and Cui, Cheng and Deng, Kaipeng and Wang, Guanzhong and Dang, Qingqing and Wei, Shengyu and Du, Yuning and others}, journal={arXiv preprint arXiv:2203.16250}, year={2022} } @article{llerena2021gaussian, title={Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection}, author={Llerena, Jeffri M and Zeni, Luis Felipe and Kristen, Lucas N and Jung, Claudio}, journal={arXiv preprint arXiv:2106.06072}, year={2021} } ```
PaddleDetection/configs/rotate/ppyoloe_r/README.md/0
{ "file_path": "PaddleDetection/configs/rotate/ppyoloe_r/README.md", "repo_id": "PaddleDetection", "token_count": 6041 }
29
_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', '_base_/optimizer_6x.yml', '_base_/rtdetr_r50vd.yml', '_base_/rtdetr_reader.yml', ] weights: output/rtdetr_focalnet_L_384_3x_coco/model_final find_unused_parameters: True log_iter: 100 snapshot_epoch: 2 pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/focalnet_large_fl4_pretrained_on_o365.pdparams DETR: backbone: FocalNet neck: HybridEncoder transformer: RTDETRTransformer detr_head: DINOHead post_process: DETRPostProcess FocalNet: arch: 'focalnet_L_384_22k_fl4' out_indices: [1, 2, 3] HybridEncoder: hidden_dim: 256 use_encoder_idx: [2] num_encoder_layers: 6 # encoder_layer: name: TransformerLayer d_model: 256 nhead: 8 dim_feedforward: 2048 dropout: 0. activation: 'gelu' expansion: 1.0 RTDETRTransformer: num_queries: 300 position_embed_type: sine feat_strides: [8, 16, 32] num_levels: 3 nhead: 8 num_decoder_layers: 6 dim_feedforward: 2048 # dropout: 0.0 activation: relu num_denoising: 100 label_noise_ratio: 0.5 box_noise_scale: 1.0 learnt_init_query: False query_pos_head_inv_sig: True # DINOHead: loss: name: DINOLoss loss_coeff: {class: 1, bbox: 5, giou: 2} aux_loss: True use_vfl: True matcher: name: HungarianMatcher matcher_coeff: {class: 2, bbox: 5, giou: 2} DETRPostProcess: num_top_queries: 300 epoch: 36 LearningRate: base_lr: 0.0001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [36] use_warmup: false OptimizerBuilder: clip_grad_by_norm: 0.1 regularizer: false optimizer: type: AdamW weight_decay: 0.0001 param_groups: - params: ['absolute_pos_embed', 'relative_position_bias_table', 'norm'] weight_decay: 0.0
PaddleDetection/configs/rtdetr/rtdetr_focalnet_L_384_3x_coco.yml/0
{ "file_path": "PaddleDetection/configs/rtdetr/rtdetr_focalnet_L_384_3x_coco.yml", "repo_id": "PaddleDetection", "token_count": 823 }
30
# convert VOC xml to COCO format json import xml.etree.ElementTree as ET import os import json import argparse # create and init coco json, img set, and class set def init_json(): # create coco json coco = dict() coco['images'] = [] coco['type'] = 'instances' coco['annotations'] = [] coco['categories'] = [] # voc classes voc_class = [ 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ] # init json categories image_set = set() class_set = dict() for cat_id, cat_name in enumerate(voc_class): cat_item = dict() cat_item['supercategory'] = 'none' cat_item['id'] = cat_id cat_item['name'] = cat_name coco['categories'].append(cat_item) class_set[cat_name] = cat_id return coco, class_set, image_set def getImgItem(file_name, size, img_id): if file_name is None: raise Exception('Could not find filename tag in xml file.') if size['width'] is None: raise Exception('Could not find width tag in xml file.') if size['height'] is None: raise Exception('Could not find height tag in xml file.') image_item = dict() image_item['id'] = img_id image_item['file_name'] = file_name image_item['width'] = size['width'] image_item['height'] = size['height'] return image_item def getAnnoItem(object_name, image_id, ann_id, category_id, bbox): annotation_item = dict() annotation_item['segmentation'] = [] seg = [] # bbox[] is x,y,w,h # left_top seg.append(bbox[0]) seg.append(bbox[1]) # left_bottom seg.append(bbox[0]) seg.append(bbox[1] + bbox[3]) # right_bottom seg.append(bbox[0] + bbox[2]) seg.append(bbox[1] + bbox[3]) # right_top seg.append(bbox[0] + bbox[2]) seg.append(bbox[1]) annotation_item['segmentation'].append(seg) annotation_item['area'] = bbox[2] * bbox[3] annotation_item['iscrowd'] = 0 annotation_item['ignore'] = 0 annotation_item['image_id'] = image_id annotation_item['bbox'] = bbox annotation_item['category_id'] = category_id annotation_item['id'] = ann_id return annotation_item def convert_voc_to_coco(txt_path, json_path, xml_path): # create and init coco json, img set, and class set coco_json, class_set, image_set = init_json() ### collect img and ann info into coco json # read img_name in txt, e.g., 000005 for voc2007, 2008_000002 for voc2012 img_txt = open(txt_path, 'r') img_line = img_txt.readline().strip() # loop xml img_id = 0 ann_id = 0 while img_line: print('img_id:', img_id) # find corresponding xml xml_name = img_line.split('Annotations/', 1)[1] xml_file = os.path.join(xml_path, xml_name) if not os.path.exists(xml_file): print('{} is not exists.'.format(xml_name)) img_line = img_txt.readline().strip() continue # decode xml tree = ET.parse(xml_file) root = tree.getroot() if root.tag != 'annotation': raise Exception( 'xml {} root element should be annotation, rather than {}'. format(xml_name, root.tag)) # init img and ann info bndbox = dict() size = dict() size['width'] = None size['height'] = None size['depth'] = None # filename fileNameNode = root.find('filename') file_name = fileNameNode.text # img size sizeNode = root.find('size') if not sizeNode: raise Exception('xml {} structure broken at size tag.'.format( xml_name)) for subNode in sizeNode: size[subNode.tag] = int(subNode.text) # add img into json if file_name not in image_set: img_id += 1 format_img_id = int("%04d" % img_id) # print('line 120. format_img_id:', format_img_id) image_item = getImgItem(file_name, size, img_id) image_set.add(file_name) coco_json['images'].append(image_item) else: raise Exception(' xml {} duplicated image: {}'.format(xml_name, file_name)) ### add objAnn into json objectAnns = root.findall('object') for objectAnn in objectAnns: bndbox['xmin'] = None bndbox['xmax'] = None bndbox['ymin'] = None bndbox['ymax'] = None #add obj category object_name = objectAnn.find('name').text if object_name not in class_set: raise Exception('xml {} Unrecognized category: {}'.format( xml_name, object_name)) else: current_category_id = class_set[object_name] #add obj bbox ann objectBboxNode = objectAnn.find('bndbox') for coordinate in objectBboxNode: if bndbox[coordinate.tag] is not None: raise Exception('xml {} structure corrupted at bndbox tag.'. format(xml_name)) bndbox[coordinate.tag] = int(float(coordinate.text)) bbox = [] # x bbox.append(bndbox['xmin']) # y bbox.append(bndbox['ymin']) # w bbox.append(bndbox['xmax'] - bndbox['xmin']) # h bbox.append(bndbox['ymax'] - bndbox['ymin']) ann_id += 1 ann_item = getAnnoItem(object_name, img_id, ann_id, current_category_id, bbox) coco_json['annotations'].append(ann_item) img_line = img_txt.readline().strip() print('Saving json.') json.dump(coco_json, open(json_path, 'w')) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--type', type=str, default='VOC2007_test', help="data type") parser.add_argument( '--base_path', type=str, default='dataset/voc/VOCdevkit', help="base VOC path.") args = parser.parse_args() # image info path txt_name = args.type + '.txt' json_name = args.type + '.json' txt_path = os.path.join(args.base_path, 'PseudoAnnotations', txt_name) json_path = os.path.join(args.base_path, 'PseudoAnnotations', json_name) # xml path xml_path = os.path.join(args.base_path, args.type.split('_')[0], 'Annotations') print('txt_path:', txt_path) print('json_path:', json_path) print('xml_path:', xml_path) print('Converting {} to COCO json.'.format(args.type)) convert_voc_to_coco(txt_path, json_path, xml_path) print('Finished.')
PaddleDetection/configs/semi_det/_base_/voc2coco.py/0
{ "file_path": "PaddleDetection/configs/semi_det/_base_/voc2coco.py", "repo_id": "PaddleDetection", "token_count": 3302 }
31
_BASE_: [ '../../ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml', ] log_iter: 50 snapshot_epoch: 5 weights: output/ppyoloe_plus_crn_l_80e_coco_sup005/model_final pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_l_obj365_pretrained.pdparams depth_mult: 1.0 width_mult: 1.0 TrainDataset: !COCODataSet image_dir: train2017 anno_path: semi_annotations/instances_train2017.1@5.json dataset_dir: dataset/coco data_fields: ['image', 'gt_bbox', 'gt_class'] epoch: 80 LearningRate: base_lr: 0.001 schedulers: - !CosineDecay max_epochs: 96 - !LinearWarmup start_factor: 0. epochs: 5
PaddleDetection/configs/semi_det/baseline/ppyoloe_plus_crn_l_80e_coco_sup005.yml/0
{ "file_path": "PaddleDetection/configs/semi_det/baseline/ppyoloe_plus_crn_l_80e_coco_sup005.yml", "repo_id": "PaddleDetection", "token_count": 308 }
32
pretrain_weights: https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams slim: Pruner Pruner: criterion: fpgm pruned_params: ['conv2d_62.w_0', 'conv2d_63.w_0', 'conv2d_64.w_0', 'conv2d_65.w_0', 'conv2d_66.w_0', 'conv2d_67.w_0'] pruned_ratios: [0.75, 0.75, 0.75, 0.75, 0.75, 0.75] print_params: True
PaddleDetection/configs/slim/prune/ppyolo_mbv3_large_prune_fpgm.yml/0
{ "file_path": "PaddleDetection/configs/slim/prune/ppyolo_mbv3_large_prune_fpgm.yml", "repo_id": "PaddleDetection", "token_count": 187 }
33
# Weights of yolov3_mobilenet_v3_coco pretrain_weights: https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams slim: QAT QAT: quant_config: { 'activation_preprocess_type': 'PACT', 'weight_quantize_type': 'channel_wise_abs_max', 'activation_quantize_type': 'moving_average_abs_max', 'weight_bits': 8, 'activation_bits': 8, 'dtype': 'int8', 'window_size': 10000, 'moving_rate': 0.9, 'quantizable_layer_type': ['Conv2D', 'Linear']} print_model: True epoch: 50 LearningRate: base_lr: 0.0001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 35 - 45 - !LinearWarmup start_factor: 0. steps: 1000
PaddleDetection/configs/slim/quant/yolov3_mobilenet_v3_qat.yml/0
{ "file_path": "PaddleDetection/configs/slim/quant/yolov3_mobilenet_v3_qat.yml", "repo_id": "PaddleDetection", "token_count": 297 }
34
weights: output/picodet_l_1024_coco_lcnet_lvjian1/model_final pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams worker_num: 2 eval_height: &eval_height 1024 eval_width: &eval_width 1024 eval_size: &eval_size [*eval_height, *eval_width] metric: COCO num_classes: 5 TrainDataset: !COCODataSet image_dir: images anno_path: train.json dataset_dir: dataset/slice_lvjian1_data/train data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd'] EvalDataset: !COCODataSet image_dir: images anno_path: val.json dataset_dir: dataset/slice_lvjian1_data/eval TestDataset: !ImageFolder anno_path: val.json dataset_dir: dataset/slice_lvjian1_data/eval epoch: 50 LearningRate: base_lr: 0.006 schedulers: - !CosineDecay max_epochs: 50 - !LinearWarmup start_factor: 0.001 steps: 300 TrainReader: sample_transforms: - Decode: {} - RandomCrop: {} - RandomFlip: {prob: 0.5} - RandomDistort: {} batch_transforms: - BatchRandomResize: {target_size: [960, 992, 1024, 1056, 1088], random_size: True, random_interp: True, keep_ratio: False} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} - PadGT: {} batch_size: 8 shuffle: true drop_last: true EvalReader: sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: *eval_size, keep_ratio: False} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} batch_size: 8 shuffle: false TestReader: inputs_def: image_shape: [1, 3, *eval_height, *eval_width] sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: *eval_size, keep_ratio: False} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_size: 1 use_gpu: true use_xpu: false log_iter: 100 save_dir: output snapshot_epoch: 10 print_flops: false find_unused_parameters: True use_ema: true # Exporting the model export: post_process: True # Whether post-processing is included in the network when export model. nms: True # Whether NMS is included in the network when export model. benchmark: False # It is used to testing model performance, if set `True`, post-process and NMS will not be exported. OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.00004 type: L2 architecture: PicoDet PicoDet: backbone: LCNet neck: LCPAN head: PicoHeadV2 LCNet: scale: 2.0 feature_maps: [3, 4, 5] LCPAN: out_channels: 160 use_depthwise: True num_features: 4 PicoHeadV2: conv_feat: name: PicoFeat feat_in: 160 feat_out: 160 num_convs: 4 num_fpn_stride: 4 norm_type: bn share_cls_reg: True use_se: True fpn_stride: [8, 16, 32, 64] feat_in_chan: 160 prior_prob: 0.01 reg_max: 7 cell_offset: 0.5 grid_cell_scale: 5.0 static_assigner_epoch: 100 use_align_head: True static_assigner: name: ATSSAssigner topk: 9 force_gt_matching: False assigner: name: TaskAlignedAssigner topk: 13 alpha: 1.0 beta: 6.0 loss_class: name: VarifocalLoss use_sigmoid: False iou_weighted: True loss_weight: 1.0 loss_dfl: name: DistributionFocalLoss loss_weight: 0.5 loss_bbox: name: GIoULoss loss_weight: 2.5 nms: name: MultiClassNMS nms_top_k: 1000 keep_top_k: 100 score_threshold: 0.025 nms_threshold: 0.6
PaddleDetection/configs/smrt/picodet/picodet_l_1024_coco_lcnet_lvjian1.yml/0
{ "file_path": "PaddleDetection/configs/smrt/picodet/picodet_l_1024_coco_lcnet_lvjian1.yml", "repo_id": "PaddleDetection", "token_count": 1563 }
35
_BASE_: [ '../datasets/sniper_visdrone_detection.yml', '../runtime.yml', '../faster_rcnn/_base_/faster_rcnn_r50_fpn.yml', '../faster_rcnn/_base_/optimizer_1x.yml', '_base_/faster_fpn_reader.yml', ] weights: output/faster_rcnn_r50_fpn_1x_sniper_visdrone/model_final find_unused_parameters: true
PaddleDetection/configs/sniper/faster_rcnn_r50_fpn_1x_sniper_visdrone.yml/0
{ "file_path": "PaddleDetection/configs/sniper/faster_rcnn_r50_fpn_1x_sniper_visdrone.yml", "repo_id": "PaddleDetection", "token_count": 147 }
36
worker_num: 4 TrainReader: sample_transforms: - Decode: {} - RandomResize: {target_size: [[480, 1333], [512, 1333], [544, 1333], [576, 1333], [608, 1333], [640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: true, interp: 1} - RandomFlip: {prob: 0.5} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} - Gt2SparseTarget: {use_padding_shape: True} batch_size: 4 shuffle: true drop_last: true collate_batch: false EvalReader: sample_transforms: - Decode: {} - Resize: {interp: 1, target_size: [800, 1333], keep_ratio: True} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} - Gt2SparseTarget: {use_padding_shape: True} batch_size: 1 shuffle: false drop_last: false TestReader: sample_transforms: - Decode: {} - Resize: {interp: 1, target_size: [800, 1333], keep_ratio: True} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} - Gt2SparseTarget: {use_padding_shape: True} batch_size: 1 shuffle: false
PaddleDetection/configs/sparse_rcnn/_base_/sparse_rcnn_reader.yml/0
{ "file_path": "PaddleDetection/configs/sparse_rcnn/_base_/sparse_rcnn_reader.yml", "repo_id": "PaddleDetection", "token_count": 571 }
37
worker_num: 3 TrainReader: inputs_def: num_max_boxes: 90 sample_transforms: - Decode: {} - RandomCrop: {num_attempts: 1} - RandomFlip: {} - Resize: {target_size: [300, 300], keep_ratio: False, interp: 1} - RandomDistort: {brightness: [0.875, 1.125, 0.5], random_apply: False} - NormalizeBox: {} - PadBox: {num_max_boxes: 90} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true} - Permute: {} batch_size: 64 shuffle: true drop_last: true use_shared_memory: true EvalReader: sample_transforms: - Decode: {} - Resize: {target_size: [300, 300], keep_ratio: False, interp: 1} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true} - Permute: {} batch_size: 1 TestReader: inputs_def: image_shape: [3, 300, 300] sample_transforms: - Decode: {} - Resize: {target_size: [300, 300], keep_ratio: False, interp: 1} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true} - Permute: {} batch_size: 1
PaddleDetection/configs/ssd/_base_/ssd_r34_reader.yml/0
{ "file_path": "PaddleDetection/configs/ssd/_base_/ssd_r34_reader.yml", "repo_id": "PaddleDetection", "token_count": 494 }
38
# Swin Transformer ## COCO Model Zoo | 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | mAP<sup>val<br>0.5:0.95 | 下载 | 配置文件 | | :------------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: | | swin_T_224 | Faster R-CNN | 2 | 36e | ---- | 45.3 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_swin_tiny_fpn_3x_coco.pdparams) | [配置文件](./faster_rcnn_swin_tiny_fpn_3x_coco.yml) | | swin_T_224 | PP-YOLOE+ | 8 | 36e | ---- | 44.7 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_swin_tiny_36e_coco.pdparams) | [配置文件](./ppyoloe_plus_swin_tiny_36e_coco.yml) | ## Citations ``` @article{liu2021Swin, title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining}, journal={arXiv preprint arXiv:2103.14030}, year={2021} } @inproceedings{liu2021swinv2, title={Swin Transformer V2: Scaling Up Capacity and Resolution}, author={Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, booktitle={International Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2022} } ```
PaddleDetection/configs/swin/README.md/0
{ "file_path": "PaddleDetection/configs/swin/README.md", "repo_id": "PaddleDetection", "token_count": 738 }
39
epoch: 300 LearningRate: base_lr: 0.01 schedulers: - !CosineDecay max_epochs: 300 min_lr_ratio: 0.05 last_plateau_epochs: 15 - !ExpWarmup epochs: 5 OptimizerBuilder: optimizer: type: Momentum momentum: 0.9 use_nesterov: True regularizer: factor: 0.0005 type: L2
PaddleDetection/configs/yolox/_base_/optimizer_300e.yml/0
{ "file_path": "PaddleDetection/configs/yolox/_base_/optimizer_300e.yml", "repo_id": "PaddleDetection", "token_count": 151 }
40
Global: reader_config: configs/yolov5_reader.yml include_nms: True Evaluation: True model_dir: ./yolov6mt_s_400e_coco model_filename: model.pdmodel params_filename: model.pdiparams Distillation: alpha: 1.0 loss: soft_label QuantAware: activation_quantize_type: 'moving_average_abs_max' quantize_op_types: - conv2d - depthwise_conv2d TrainConfig: train_iter: 8000 eval_iter: 1000 learning_rate: type: CosineAnnealingDecay learning_rate: 0.00003 T_max: 8000 optimizer_builder: optimizer: type: SGD weight_decay: 0.00004
PaddleDetection/deploy/auto_compression/configs/yolov6mt_s_qat_dis.yaml/0
{ "file_path": "PaddleDetection/deploy/auto_compression/configs/yolov6mt_s_qat_dis.yaml", "repo_id": "PaddleDetection", "token_count": 241 }
41
# Visual Studio 2019 Community CMake 编译指南 Windows 平台下,我们使用`Visual Studio 2019 Community` 进行了测试。微软从`Visual Studio 2017`开始即支持直接管理`CMake`跨平台编译项目,但是直到`2019`才提供了稳定和完全的支持,所以如果你想使用CMake管理项目编译构建,我们推荐你使用`Visual Studio 2019`环境下构建。 ## 前置条件 * Visual Studio 2019 (根据Paddle预测库所使用的VS版本选择,请参考 [Visual Studio 不同版本二进制兼容性](https://docs.microsoft.com/zh-cn/cpp/porting/binary-compat-2015-2017?view=vs-2019) ) * CUDA 9.0 / CUDA 10.0,cudnn 7+ / TensorRT(仅在使用GPU版本的预测库时需要) * CMake 3.0+ [CMake下载](https://cmake.org/download/) **特别注意:windows下预测库需要的TensorRT版本为:**。 | 预测库版本 | TensorRT版本 | | ---- | ---- | | cuda10.1_cudnn7.6_avx_mkl_trt6 | TensorRT-6.0.1.5 | | cuda10.2_cudnn7.6_avx_mkl_trt7 | TensorRT-7.0.0.11 | | cuda11.0_cudnn8.0_avx_mkl_trt7 | TensorRT-7.2.1.6 | 请确保系统已经安装好上述基本软件,我们使用的是`VS2019`的社区版。 **下面所有示例以工作目录为 `D:\projects`演示**。 ### Step1: 下载代码 下载源代码 ```shell git clone https://github.com/PaddlePaddle/PaddleDetection.git ``` **说明**:其中`C++`预测代码在`PaddleDetection/deploy/cpp` 目录,该目录不依赖任何`PaddleDetection`下其他目录。 ### Step2: 下载PaddlePaddle C++ 预测库 paddle_inference PaddlePaddle C++ 预测库针对不同的`CPU`和`CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#windows) 解压后`D:\projects\paddle_inference`目录包含内容为: ``` paddle_inference ├── paddle # paddle核心库和头文件 | ├── third_party # 第三方依赖库和头文件 | └── version.txt # 版本和编译信息 ``` ### Step3: 安装配置OpenCV 1. 在OpenCV官网下载适用于Windows平台的3.4.6版本, [下载地址](https://sourceforge.net/projects/opencvlibrary/files/3.4.6/opencv-3.4.6-vc14_vc15.exe/download) 2. 运行下载的可执行文件,将OpenCV解压至指定目录,如`D:\projects\opencv` 3. 配置环境变量,如下流程所示(如果使用全局绝对路径,可以不用设置环境变量) - 我的电脑->属性->高级系统设置->环境变量 - 在系统变量中找到Path(如没有,自行创建),并双击编辑 - 新建,将opencv路径填入并保存,如`D:\projects\opencv\build\x64\vc14\bin` ### Step4: 编译 1. 进入到`cpp`文件夹 ``` cd D:\projects\PaddleDetection\deploy\cpp ``` 2. 使用CMake生成项目文件 编译参数的含义说明如下(带`*`表示仅在使用**GPU版本**预测库时指定, 其中CUDA库版本尽量对齐,**使用9.0、10.0版本,不使用9.2、10.1等版本CUDA库**): | 参数名 | 含义 | | ---- | ---- | | *CUDA_LIB | CUDA的库路径 | | *CUDNN_LIB | CUDNN的库路径 | | OPENCV_DIR | OpenCV的安装路径, | | PADDLE_DIR | Paddle预测库的路径 | | PADDLE_LIB_NAME | Paddle 预测库名称 | **注意:** 1. 如果编译环境为CPU,需要下载`CPU`版预测库,请把`WITH_GPU`的勾去掉 2. 如果使用的是`openblas`版本,请把`WITH_MKL`勾去掉 3. 如无需使用关键点模型可以把`WITH_KEYPOINT`勾去掉 4. Windows环境下,`PADDLE_LIB_NAME`需要设置为`paddle_inference` 执行如下命令项目文件: ``` cmake . -G "Visual Studio 16 2019" -A x64 -T host=x64 -DWITH_GPU=ON -DWITH_MKL=ON -DCMAKE_BUILD_TYPE=Release -DCUDA_LIB=path_to_cuda_lib -DCUDNN_LIB=path_to_cudnn_lib -DPADDLE_DIR=path_to_paddle_lib -DPADDLE_LIB_NAME=paddle_inference -DOPENCV_DIR=path_to_opencv -DWITH_KEYPOINT=ON ``` 例如: ``` cmake . -G "Visual Studio 16 2019" -A x64 -T host=x64 -DWITH_GPU=ON -DWITH_MKL=ON -DCMAKE_BUILD_TYPE=Release -DCUDA_LIB=D:\projects\packages\cuda10_0\lib\x64 -DCUDNN_LIB=D:\projects\packages\cuda10_0\lib\x64 -DPADDLE_DIR=D:\projects\packages\paddle_inference -DPADDLE_LIB_NAME=paddle_inference -DOPENCV_DIR=D:\projects\packages\opencv3_4_6 -DWITH_KEYPOINT=ON ``` 3. 编译 用`Visual Studio 16 2019`打开`cpp`文件夹下的`PaddleObjectDetector.sln`,将编译模式设置为`Release`,点击`生成`->`全部生成 ### Step5: 预测及可视化 上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release`目录下,打开`cmd`,并切换到该目录: ``` cd D:\projects\PaddleDetection\deploy\cpp\out\build\x64-Release ``` 可执行文件`main`即为样例的预测程序,其主要的命令行参数如下: | 参数 | 说明 | | ---- | ---- | | --model_dir | 导出的检测预测模型所在路径 | | --model_dir_keypoint | Option | 导出的关键点预测模型所在路径 | | --image_file | 要预测的图片文件路径 | | --image_dir | 要预测的图片文件夹路径 | | --video_file | 要预测的视频文件路径 | | --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测)| | --device | 运行时的设备,可选择`CPU/GPU/XPU`,默认为`CPU`| | --gpu_id | 指定进行推理的GPU device id(默认值为0)| | --run_mode | 使用GPU时,默认为paddle, 可选(paddle/trt_fp32/trt_fp16/trt_int8)| | --batch_size | 检测模型预测时的batch size,在指定`image_dir`时有效 | | --batch_size_keypoint | 关键点模型预测时的batch size,默认为8 | | --run_benchmark | 是否重复预测来进行benchmark测速 | | --output_dir | 输出图片所在的文件夹, 默认为output | | --use_mkldnn | CPU预测中是否开启MKLDNN加速 | | --cpu_threads | 设置cpu线程数,默认为1 | | --use_dark | 关键点模型输出预测是否使用DarkPose后处理,默认为true | **注意**: (1)优先级顺序:`camera_id` > `video_file` > `image_dir` > `image_file`。 (2)如果提示找不到`opencv_world346.dll`,把`D:\projects\packages\opencv3_4_6\build\x64\vc14\bin`文件夹下的`opencv_world346.dll`拷贝到`main.exe`文件夹下即可。 (3)--run_benchmark如果设置为True,则需要安装依赖`pip install pynvml psutil GPUtil`。 `样例一`: ```shell #不使用`GPU`测试图片 `D:\\images\\test.jpeg` .\main --model_dir=D:\\models\\yolov3_darknet --image_file=D:\\images\\test.jpeg ``` 图片文件`可视化预测结果`会保存在当前目录下`output.jpg`文件中。 `样例二`: ```shell #使用`GPU`测试视频 `D:\\videos\\test.mp4` .\main --model_dir=D:\\models\\yolov3_darknet --video_path=D:\\videos\\test.mp4 --device=GPU ``` 视频文件目前支持`.mp4`格式的预测,`可视化预测结果`会保存在当前目录下`output.mp4`文件中。 `样例三`: ```shell #使用关键点模型与检测模型联合预测,使用 `GPU`预测 #检测模型检测到的人送入关键点模型进行关键点预测 .\main --model_dir=D:\\models\\yolov3_darknet --model_dir_keypoint=D:\\models\\hrnet_w32_256x192 --image_file=D:\\images\\test.jpeg --device=GPU ``` ## 性能测试 Benchmark请查看[BENCHMARK_INFER](../../BENCHMARK_INFER.md)
PaddleDetection/deploy/cpp/docs/windows_vs2019_build.md/0
{ "file_path": "PaddleDetection/deploy/cpp/docs/windows_vs2019_build.md", "repo_id": "PaddleDetection", "token_count": 4319 }
42
[English](README.md) | 简体中文 # PP-PicoDet + PP-TinyPose (Pipeline) CPU-GPU Python部署示例 本目录下提供`det_keypoint_unite_infer.py`快速完成多人模型配置 PP-PicoDet + PP-TinyPose 在CPU/GPU,以及GPU上通过TensorRT加速部署的`单图多人关键点检测`示例。执行如下脚本即可完成.**注意**: PP-TinyPose单模型独立部署,请参考[PP-TinyPose 单模型](../README.md) ## 1. 部署环境准备 在部署前,需确认软硬件环境,同时下载预编译部署库,参考[FastDeploy安装文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#FastDeploy预编译库安装)安装FastDeploy预编译库。 ## 2. 部署模型准备 在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../../README.md)或者[自行导出PaddleDetection部署模型](../../README.md)。 ## 3. 运行部署示例 ```bash # 下载部署示例代码 git clone https://github.com/PaddlePaddle/PaddleDetection.git cd PaddleDetection/deploy/fastdeploy/kunlunxin/python/det_keypoint_unite # 注意:如果当前分支找不到下面的fastdeploy测试代码,请切换到develop分支 # git checkout develop # 下载PP-TinyPose模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz tar -xvf PP_TinyPose_256x192_infer.tgz wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz tar -xvf PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz wget https://bj.bcebos.com/paddlehub/fastdeploy/000000018491.jpg # 运行部署示例 python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image_file 000000018491.jpg ``` 运行完成可视化结果如下图所示 <div align="center"> <img src="https://user-images.githubusercontent.com/16222477/196393343-eeb6b68f-0bc6-4927-871f-5ac610da7293.jpeg", width=640px, height=427px /> </div> - 关于如何通过FastDeploy使用更多不同的推理后端,以及如何使用不同的硬件,请参考文档:[如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md) ## 4. 部署示例选项说明 |参数|含义|默认值 |---|---|---| |--tinypose_model_dir|指定关键点模型文件夹所在的路径|None| |--det_model_dir|指定目标模型文件夹所在的路径|None| |--image_file|指定测试图片所在的路径|None| ## 5. PPTinyPose 模型串联 Python接口 ```python fd.pipeline.PPTinyPose(det_model=None, pptinypose_model=None) ``` PPTinyPose Pipeline 模型加载和初始化,其中det_model是使用`fd.vision.detection.PicoDet`初始化的检测模型,pptinypose_model是使用`fd.vision.keypointdetection.PPTinyPose`初始化的关键点检测模型。 ## 6. 更多指南 - [PaddleDetection Python API文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/object_detection.html) - [FastDeploy部署PaddleDetection模型概览](../../../) - [C++部署](../../cpp) ## 7. 常见问题 - [如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md) - [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md) - [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md) - [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md) - [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)
PaddleDetection/deploy/fastdeploy/kunlunxin/python/det_keypoint_unite/README.md/0
{ "file_path": "PaddleDetection/deploy/fastdeploy/kunlunxin/python/det_keypoint_unite/README.md", "repo_id": "PaddleDetection", "token_count": 2077 }
43
[English](README.md) | 简体中文 # PaddleDetection 服务化部署示例 本文档以PP-YOLOE模型(ppyoloe_crn_l_300e_coco)为例,进行详细介绍。其他PaddleDetection模型都已支持服务化部署,只需将下述命令中的模型和配置名字修改成要部署模型的名字。 PaddleDetection模型导出和预训练模型下载请看[PaddleDetection模型部署](../README.md)文档。 ## 1. 部署环境准备 在服务化部署前,需确认 - 1. 服务化镜像的软硬件环境要求和镜像拉取命令请参考[FastDeploy服务化部署](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/README_CN.md) ## 2. 启动服务 ```bash #下载部署示例代码 git clone https://github.com/PaddlePaddle/PaddleDetection.git cd PaddleDetection/deploy/fastdeploy/serving #下载PPYOLOE模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg tar xvf ppyoloe_crn_l_300e_coco.tgz # 将配置文件放入预处理目录 mv ppyoloe_crn_l_300e_coco/infer_cfg.yml models/preprocess/1/ # 将模型放入 models/runtime/1目录下, 并重命名为model.pdmodel和model.pdiparams mv ppyoloe_crn_l_300e_coco/model.pdmodel models/runtime/1/model.pdmodel mv ppyoloe_crn_l_300e_coco/model.pdiparams models/runtime/1/model.pdiparams # 将ppdet和runtime中的ppyoloe配置文件重命名成标准的config名字 # 其他模型比如faster_rcc就将faster_rcnn_config.pbtxt重命名为config.pbtxt cp models/ppdet/ppyoloe_config.pbtxt models/ppdet/config.pbtxt cp models/runtime/ppyoloe_runtime_config.pbtxt models/runtime/config.pbtxt # 注意: 由于mask_rcnn模型多一个输出,需要将后处理目录(models/postprocess)中的mask_config.pbtxt重命名为config.pbtxt # 拉取fastdeploy镜像(x.y.z为镜像版本号,需替换成fastdeploy版本数字) # GPU镜像 docker pull registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10 # CPU镜像 docker pull paddlepaddle/fastdeploy:z.y.z-cpu-only-21.10 # 运行容器.容器名字为 fd_serving, 并挂载当前目录为容器的 /serving 目录 nvidia-docker run -it --net=host --name fd_serving --shm-size="1g" -v `pwd`/:/serving registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10 bash # 启动服务(不设置CUDA_VISIBLE_DEVICES环境变量,会拥有所有GPU卡的调度权限) CUDA_VISIBLE_DEVICES=0 fastdeployserver --model-repository=/serving/models ``` >> **注意**: >> 由于mask_rcnn模型多一个输出,部署mask_rcnn需要将后处理目录(models/postprocess)中的mask_config.pbtxt重命名为config.pbtxt >> 拉取镜像请看[服务化部署主文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/README_CN.md) >> 执行fastdeployserver启动服务出现"Address already in use", 请使用`--grpc-port`指定grpc端口号来启动服务,同时更改客户端示例中的请求端口号. >> 其他启动参数可以使用 fastdeployserver --help 查看 服务启动成功后, 会有以下输出: ``` ...... I0928 04:51:15.784517 206 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001 I0928 04:51:15.785177 206 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000 I0928 04:51:15.826578 206 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002 ``` ## 3. 客户端请求 在物理机器中执行以下命令,发送grpc请求并输出结果 ``` #下载测试图片 wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg #安装客户端依赖 python3 -m pip install tritonclient[all] # 发送请求 python3 paddledet_grpc_client.py ``` 发送请求成功后,会返回json格式的检测结果并打印输出: ``` output_name: DET_RESULT [[159.93016052246094, 82.35527038574219, 199.8546600341797, 164.68682861328125], ... ..., [60.200584411621094, 123.73260498046875, 108.83859252929688, 169.07467651367188]] ``` ## 4. 配置修改 当前默认配置在GPU上运行Paddle引擎, 如果要在CPU或其他推理引擎上运行。 需要修改`models/runtime/config.pbtxt`中配置,详情请参考[配置文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/model_configuration.md) ## 5. 使用VisualDL进行可视化部署 可以使用VisualDL进行[Serving可视化部署](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/vdl_management.md),上述启动服务、配置修改以及客户端请求的操作都可以基于VisualDL进行。 通过VisualDL的可视化界面对PaddleDetection进行服务化部署只需要如下三步: ```text 1. 载入模型库:./vision/detection/paddledetection/serving/models 2. 下载模型资源文件:点击preprocess模型,点击版本号1添加预训练模型,选择检测模型ppyoloe_crn_l_300e_coco进行下载,此时preprocess中将会有资源文件infer_cfg.yml。点击runtime模型,点击版本号1添加预训练模型,选择检测模型ppyoloe_crn_l_300e_coco进行下载,此时runtime中将会有资源文件model.pdmodel和model.pdiparams。 3. 设置启动配置文件:点击ensemble配置按钮,选择配置文件ppyoloe_config.pbtxt,并设为启动配置文件。点击runtime模型,选择配置文件ppyoloe_runtime_config.pbtxt,并设为启动配置文件。 4. 启动服务:点击启动服务按钮,输入启动参数。 ``` <p align="center"> <img src="https://user-images.githubusercontent.com/22424850/211710983-2d1f1427-6738-409d-903b-2b4e4ab6cbfc.gif" width="100%"/> </p>
PaddleDetection/deploy/fastdeploy/serving/README.md/0
{ "file_path": "PaddleDetection/deploy/fastdeploy/serving/README.md", "repo_id": "PaddleDetection", "token_count": 3207 }
44
import logging import numpy as np import time from typing import Optional import cv2 import json from tritonclient import utils as client_utils from tritonclient.grpc import InferenceServerClient, InferInput, InferRequestedOutput, service_pb2_grpc, service_pb2 LOGGER = logging.getLogger("run_inference_on_triton") class SyncGRPCTritonRunner: DEFAULT_MAX_RESP_WAIT_S = 120 def __init__( self, server_url: str, model_name: str, model_version: str, *, verbose=False, resp_wait_s: Optional[float]=None, ): self._server_url = server_url self._model_name = model_name self._model_version = model_version self._verbose = verbose self._response_wait_t = self.DEFAULT_MAX_RESP_WAIT_S if resp_wait_s is None else resp_wait_s self._client = InferenceServerClient( self._server_url, verbose=self._verbose) error = self._verify_triton_state(self._client) if error: raise RuntimeError( f"Could not communicate to Triton Server: {error}") LOGGER.debug( f"Triton server {self._server_url} and model {self._model_name}:{self._model_version} " f"are up and ready!") model_config = self._client.get_model_config(self._model_name, self._model_version) model_metadata = self._client.get_model_metadata(self._model_name, self._model_version) LOGGER.info(f"Model config {model_config}") LOGGER.info(f"Model metadata {model_metadata}") for tm in model_metadata.inputs: print("tm:", tm) self._inputs = {tm.name: tm for tm in model_metadata.inputs} self._input_names = list(self._inputs) self._outputs = {tm.name: tm for tm in model_metadata.outputs} self._output_names = list(self._outputs) self._outputs_req = [ InferRequestedOutput(name) for name in self._outputs ] def Run(self, inputs): """ Args: inputs: list, Each value corresponds to an input name of self._input_names Returns: results: dict, {name : numpy.array} """ infer_inputs = [] for idx, data in enumerate(inputs): infer_input = InferInput(self._input_names[idx], data.shape, "UINT8") infer_input.set_data_from_numpy(data) infer_inputs.append(infer_input) results = self._client.infer( model_name=self._model_name, model_version=self._model_version, inputs=infer_inputs, outputs=self._outputs_req, client_timeout=self._response_wait_t, ) results = {name: results.as_numpy(name) for name in self._output_names} return results def _verify_triton_state(self, triton_client): if not triton_client.is_server_live(): return f"Triton server {self._server_url} is not live" elif not triton_client.is_server_ready(): return f"Triton server {self._server_url} is not ready" elif not triton_client.is_model_ready(self._model_name, self._model_version): return f"Model {self._model_name}:{self._model_version} is not ready" return None if __name__ == "__main__": model_name = "ppdet" model_version = "1" url = "localhost:8001" runner = SyncGRPCTritonRunner(url, model_name, model_version) im = cv2.imread("000000014439.jpg") im = np.array([im, ]) # batch input # im = np.array([im, im, im]) for i in range(1): result = runner.Run([im, ]) for name, values in result.items(): print("output_name:", name) # values is batch for value in values: value = json.loads(value) print(value['boxes'])
PaddleDetection/deploy/fastdeploy/serving/paddledet_grpc_client.py/0
{ "file_path": "PaddleDetection/deploy/fastdeploy/serving/paddledet_grpc_client.py", "repo_id": "PaddleDetection", "token_count": 1942 }
45
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include <iostream> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include "json/json.h" namespace PaddleDetection { // Object for storing all preprocessed data class ImageBlob { public: // image width and height std::vector<float> im_shape_; // Buffer for image data after preprocessing std::vector<float> im_data_; // in net data shape(after pad) std::vector<float> in_net_shape_; // Evaluation image width and height // std::vector<float> eval_im_size_f_; // Scale factor for image size to origin image size std::vector<float> scale_factor_; }; // Abstraction of preprocessing opration class class PreprocessOp { public: virtual void Init(const Json::Value& item) = 0; virtual void Run(cv::Mat* im, ImageBlob* data) = 0; }; class InitInfo : public PreprocessOp { public: virtual void Init(const Json::Value& item) {} virtual void Run(cv::Mat* im, ImageBlob* data); }; class NormalizeImage : public PreprocessOp { public: virtual void Init(const Json::Value& item) { mean_.clear(); scale_.clear(); for (auto tmp : item["mean"]) { mean_.emplace_back(tmp.as<float>()); } for (auto tmp : item["std"]) { scale_.emplace_back(tmp.as<float>()); } is_scale_ = item["is_scale"].as<bool>(); } virtual void Run(cv::Mat* im, ImageBlob* data); private: // CHW or HWC std::vector<float> mean_; std::vector<float> scale_; bool is_scale_; }; class Permute : public PreprocessOp { public: virtual void Init(const Json::Value& item) {} virtual void Run(cv::Mat* im, ImageBlob* data); }; class Resize : public PreprocessOp { public: virtual void Init(const Json::Value& item) { interp_ = item["interp"].as<int>(); // max_size_ = item["target_size"].as<int>(); keep_ratio_ = item["keep_ratio"].as<bool>(); target_size_.clear(); for (auto tmp : item["target_size"]) { target_size_.emplace_back(tmp.as<int>()); } } // Compute best resize scale for x-dimension, y-dimension std::pair<float, float> GenerateScale(const cv::Mat& im); virtual void Run(cv::Mat* im, ImageBlob* data); private: int interp_; bool keep_ratio_; std::vector<int> target_size_; std::vector<int> in_net_shape_; }; // Models with FPN need input shape % stride == 0 class PadStride : public PreprocessOp { public: virtual void Init(const Json::Value& item) { stride_ = item["stride"].as<int>(); } virtual void Run(cv::Mat* im, ImageBlob* data); private: int stride_; }; class TopDownEvalAffine : public PreprocessOp { public: virtual void Init(const Json::Value& item) { trainsize_.clear(); for (auto tmp : item["trainsize"]) { trainsize_.emplace_back(tmp.as<int>()); } } virtual void Run(cv::Mat* im, ImageBlob* data); private: int interp_ = 1; std::vector<int> trainsize_; }; void CropImg(cv::Mat& img, cv::Mat& crop_img, std::vector<int>& area, std::vector<float>& center, std::vector<float>& scale, float expandratio = 0.15); class Preprocessor { public: void Init(const Json::Value& config_node) { // initialize image info at first ops_["InitInfo"] = std::make_shared<InitInfo>(); for (const auto& item : config_node) { auto op_name = item["type"].as<std::string>(); ops_[op_name] = CreateOp(op_name); ops_[op_name]->Init(item); } } std::shared_ptr<PreprocessOp> CreateOp(const std::string& name) { if (name == "Resize") { return std::make_shared<Resize>(); } else if (name == "Permute") { return std::make_shared<Permute>(); } else if (name == "NormalizeImage") { return std::make_shared<NormalizeImage>(); } else if (name == "PadStride") { // use PadStride instead of PadBatch return std::make_shared<PadStride>(); } else if (name == "TopDownEvalAffine") { return std::make_shared<TopDownEvalAffine>(); } std::cerr << "can not find function of OP: " << name << " and return: nullptr" << std::endl; return nullptr; } void Run(cv::Mat* im, ImageBlob* data); public: static const std::vector<std::string> RUN_ORDER; private: std::unordered_map<std::string, std::shared_ptr<PreprocessOp>> ops_; }; } // namespace PaddleDetection
PaddleDetection/deploy/lite/include/preprocess_op.h/0
{ "file_path": "PaddleDetection/deploy/lite/include/preprocess_op.h", "repo_id": "PaddleDetection", "token_count": 1893 }
46
[English](pphuman_action_en.md) | 简体中文 # PP-Human行为识别模块 ## 目录 - [基于骨骼点的行为识别](#基于骨骼点的行为识别) - [基于图像分类的行为识别](#基于图像分类的行为识别) - [基于检测的行为识别](#基于检测的行为识别) - [基于行人轨迹的行为识别](#基于行人轨迹的行为识别) - [基于视频分类的行为识别](#基于视频分类的行为识别) 行为识别在智慧社区,安防监控等方向具有广泛应用,根据行为的不同,PP-Human中集成了基于视频分类、基于检测、基于图像分类,基于行人轨迹以及基于骨骼点的行为识别模块,方便用户根据需求进行选择。 ## 基于骨骼点的行为识别 应用行为:摔倒识别 <div align="center"> <img src="https://user-images.githubusercontent.com/22989727/205582385-08a1b6ae-9b1b-465a-ac25-d6427571eb56.gif" width='600'/><br> <center>数据来源及版权归属:天覆科技,感谢提供并开源实际场景数据,仅限学术研究使用</center> </div> ### 模型库 基于骨骼点的行为识别包含行人检测/跟踪,关键点检测和摔倒行为识别三个模型,首先需要下载以下预训练模型 | 任务 | 算法 | 精度 | 预测速度(ms) | 模型权重 | 预测部署模型 | |:---------------------|:---------:|:------:|:------:| :------: |:---------------------------------------------------------------------------------: | | 行人检测/跟踪 | PP-YOLOE | mAP: 56.3 <br> MOTA: 72.0 | 检测: 16.2ms <br> 跟踪:22.3ms |[下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.pdparams) |[下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | | 关键点识别 | HRNet | AP: 87.1 | 单人 2.9ms |[下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.pdparams) |[下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip)| | 摔倒行为识别 | ST-GCN | 准确率: 96.43 | 单人 2.7ms | - |[下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) | 注: 1. 检测/跟踪模型精度为[MOT17](https://motchallenge.net/),[CrowdHuman](http://www.crowdhuman.org/),[HIEVE](http://humaninevents.org/)和部分业务数据融合训练测试得到。 2. 关键点模型使用[COCO](https://cocodataset.org/),[UAV-Human](https://github.com/SUTDCV/UAV-Human)和部分业务数据融合训练, 精度在业务数据测试集上得到。 3. 摔倒行为识别模型使用[NTU-RGB+D](https://rose1.ntu.edu.sg/dataset/actionRecognition/),[UR Fall Detection Dataset](http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html)和部分业务数据融合训练,精度在业务数据测试集上得到。 4. 预测速度为NVIDIA T4 机器上使用TensorRT FP16时的速度, 速度包含数据预处理、模型预测、后处理全流程。 ### 配置说明 [配置文件](../../config/infer_cfg_pphuman.yml)中与行为识别相关的参数如下: ``` SKELETON_ACTION: # 基于骨骼点的行为识别模型配置 model_dir: output_inference/STGCN # 模型所在路径 batch_size: 1 # 预测批大小。 当前仅支持为1进行推理 max_frames: 50 # 动作片段对应的帧数。在行人ID对应时序骨骼点结果时达到该帧数后,会通过行为识别模型判断该段序列的动作类型。与训练设置一致时效果最佳。 display_frames: 80 # 显示帧数。当预测结果为摔倒时,在对应人物ID中显示状态的持续时间。 coord_size: [384, 512] # 坐标统一缩放到的尺度大小。与训练设置一致时效果最佳。 enable: False # 是否开启该功能 ``` ### 使用方法 1. 从`模型库`中下载`行人检测/跟踪`、`关键点识别`、`摔倒行为识别`三个预测部署模型并解压到```./output_inference```路径下;默认自动下载模型,如果手动下载,需要修改模型文件夹为模型存放路径。 2. 目前行为识别模块仅支持视频输入,根据期望开启的行为识别方案类型,设置infer_cfg_pphuman.yml中`SKELETON_ACTION`的enable: True, 然后启动命令如下: ```bash python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ --video_file=test_video.mp4 \ --device=gpu \ ``` 3. 若修改模型路径,有以下两种方式: - ```./deploy/pipeline/config/infer_cfg_pphuman.yml```下可以配置不同模型路径,关键点模型和摔倒行为识别模型分别对应`KPT`和`SKELETON_ACTION`字段,修改对应字段下的路径为实际期望的路径即可。 - 命令行中--config后面紧跟着增加`-o KPT.model_dir=xxx SKELETON_ACTION.model_dir=xxx `修改模型路径: ```bash python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ -o KPT.model_dir=./dark_hrnet_w32_256x192 SKELETON_ACTION.model_dir=./STGCN \ --video_file=test_video.mp4 \ --device=gpu ``` 4. 启动命令中的完整参数说明,请参考[参数说明](./PPHuman_QUICK_STARTED.md)。 ### 方案说明 1. 使用多目标跟踪获取视频输入中的行人检测框及跟踪ID序号,模型方案为PP-YOLOE,详细文档参考[PP-YOLOE](../../../../configs/ppyoloe/README_cn.md),跟踪方案为OC-SORT,详细文档参考[OC-SORT](../../../../configs/mot/ocsort)。 2. 通过行人检测框的坐标在输入视频的对应帧中截取每个行人。 3. 使用[关键点识别模型](../../../../configs/keypoint/hrnet/dark_hrnet_w32_256x192.yml)得到对应的17个骨骼特征点。骨骼特征点的顺序及类型与COCO一致,详见[如何准备关键点数据集](../../../../docs/tutorials/data/PrepareKeypointDataSet.md)中的`COCO数据集`部分。 4. 每个跟踪ID对应的目标行人各自累计骨骼特征点结果,组成该人物的时序关键点序列。当累计到预定帧数或跟踪丢失后,使用行为识别模型判断时序关键点序列的动作类型。当前版本模型支持摔倒行为的识别,预测得到的`class id`对应关系为: ``` 0: 摔倒, 1: 其他 ``` - 摔倒行为识别模型使用了[ST-GCN](https://arxiv.org/abs/1801.07455),并基于[PaddleVideo](https://github.com/PaddlePaddle/PaddleVideo/blob/develop/docs/zh-CN/model_zoo/recognition/stgcn.md)套件完成模型训练。 ## 基于图像分类的行为识别 应用行为:打电话识别 <div align="center"> <img src="https://user-images.githubusercontent.com/22989727/205596971-d92fd24e-977a-4742-91cc-ce5b4802473c.gif" width='600'/><br> <center>数据来源及版权归属:天覆科技,感谢提供并开源实际场景数据,仅限学术研究使用</center> </div> ### 模型库 基于图像分类的行为识别包含行人检测/跟踪,打电话识别两个模型,首先需要下载以下预训练模型 | 任务 | 算法 | 精度 | 预测速度(ms) | 模型权重 | 预测部署模型 | |:---------------------|:---------:|:------:|:------:| :------: |:---------------------------------------------------------------------------------: | | 行人检测/跟踪 | PP-YOLOE | mAP: 56.3 <br> MOTA: 72.0 | 检测: 16.2ms <br> 跟踪:22.3ms |[下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.pdparams) |[下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | | 打电话识别 | PP-HGNet | 准确率: 86.85 | 单人 2.94ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_tiny_calling_halfbody.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_tiny_calling_halfbody.zip) | 注: 1. 检测/跟踪模型精度为[MOT17](https://motchallenge.net/),[CrowdHuman](http://www.crowdhuman.org/),[HIEVE](http://humaninevents.org/)和部分业务数据融合训练测试得到。 2. 打电话行为识别模型使用[UAV-Human](https://github.com/SUTDCV/UAV-Human)的打电话行为部分进行训练和测试。 3. 预测速度为NVIDIA T4 机器上使用TensorRT FP16时的速度, 速度包含数据预处理、模型预测、后处理全流程。 ### 配置说明 [配置文件](../../config/infer_cfg_pphuman.yml)中相关的参数如下: ``` ID_BASED_CLSACTION: # 基于分类的行为识别模型配置 model_dir: output_inference/PPHGNet_tiny_calling_halfbody # 模型所在路径 batch_size: 8 # 预测批大小 threshold: 0.45 #识别为对应行为的阈值 display_frames: 80 # 显示帧数。当识别到对应动作时,在对应人物ID中显示状态的持续时间。 enable: False # 是否开启该功能 ``` ### 使用方法 1. 从`模型库`中下载`行人检测/跟踪`、`打电话行为识别`两个预测部署模型并解压到`./output_inference`路径下;默认自动下载模型,如果手动下载,需要修改模型文件夹为模型存放路径。 2. 修改配置文件`deploy/pipeline/config/infer_cfg_pphuman.yml`中`ID_BASED_CLSACTION`下的`enable`为`True`; 3. 仅支持输入视频,启动命令如下: ``` python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ --video_file=test_video.mp4 \ --device=gpu ``` 4. 启动命令中的完整参数说明,请参考[参数说明](./PPHuman_QUICK_STARTED.md)。 ### 方案说明 1. 使用目标检测与多目标跟踪获取视频输入中的行人检测框及跟踪ID序号,模型方案为PP-YOLOE,详细文档参考[PP-YOLOE](../../../../configs/ppyoloe/README_cn.md),跟踪方案为OC-SORT,详细文档参考[OC-SORT](../../../../configs/mot/ocsort)。 2. 通过行人检测框的坐标在输入视频的对应帧中截取每个行人。 3. 通过在帧级别的行人图像通过图像分类的方式实现。当图片所属类别为对应行为时,即认为在一定时间段内该人物处于该行为状态中。该任务使用[PP-HGNet](https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/models/PP-HGNet.md)实现,当前版本模型支持打电话行为的识别,预测得到的`class id`对应关系为: ``` 0: 打电话, 1: 其他 ``` - 基于分类的行为识别基于[PaddleClas](https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/models/PP-HGNet.md#3.3)完成模型训练。 ## 基于检测的行为识别 应用行为:吸烟识别 <div align="center"> <img src="https://user-images.githubusercontent.com/22989727/205599300-380c3805-63d6-43cc-9b77-2687b1328d7b.gif" width='600'/><br> <center>数据来源及版权归属:天覆科技,感谢提供并开源实际场景数据,仅限学术研究使用</center> </div> ### 模型库 在这里,我们提供了行人检测/跟踪、吸烟行为识别的预训练模型,用户可以直接下载使用。 | 任务 | 算法 | 精度 | 预测速度(ms) | 模型权重 | 预测部署模型 | |:---------------------|:---------:|:------:|:------:| :------: |:---------------------------------------------------------------------------------: | | 行人检测/跟踪 | PP-YOLOE | mAP: 56.3 <br> MOTA: 72.0 | 检测: 16.2ms <br> 跟踪:22.3ms |[下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.pdparams) |[下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | | 吸烟行为识别 | PP-YOLOE | mAP: 39.7 | 单人 2.0ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/ppyoloe_crn_s_80e_smoking_visdrone.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/ppyoloe_crn_s_80e_smoking_visdrone.zip) | 注: 1. 检测/跟踪模型精度为[MOT17](https://motchallenge.net/),[CrowdHuman](http://www.crowdhuman.org/),[HIEVE](http://humaninevents.org/)和部分业务数据融合训练测试得到。 2. 抽烟行为识别模型使用业务数据进行训练和测试。 3. 预测速度为NVIDIA T4 机器上使用TensorRT FP16时的速度, 速度包含数据预处理、模型预测、后处理全流程。 ### 配置说明 [配置文件](../../config/infer_cfg_pphuman.yml)中相关的参数如下: ``` ID_BASED_DETACTION: # 基于检测的行为识别模型配置 model_dir: output_inference/ppyoloe_crn_s_80e_smoking_visdrone # 模型所在路径 batch_size: 8 # 预测批大小 threshold: 0.4 # 识别为对应行为的阈值 display_frames: 80 # 显示帧数。当识别到对应动作时,在对应人物ID中显示状态的持续时间。 enable: False # 是否开启该功能 ``` ### 使用方法 1. 从`模型库`中下载`行人检测/跟踪`、`抽烟行为识别`两个预测部署模型并解压到`./output_inference`路径下;默认自动下载模型,如果手动下载,需要修改模型文件夹为模型存放路径。 2. 修改配置文件`deploy/pipeline/config/infer_cfg_pphuman.yml`中`ID_BASED_DETACTION`下的`enable`为`True`; 3. 仅支持输入视频,启动命令如下: ``` python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ --video_file=test_video.mp4 \ --device=gpu ``` 4. 启动命令中的完整参数说明,请参考[参数说明](./PPHuman_QUICK_STARTED.md)。 ### 方案说明 1. 使用目标检测与多目标跟踪获取视频输入中的行人检测框及跟踪ID序号,模型方案为PP-YOLOE,详细文档参考[PP-YOLOE](../../../../configs/ppyoloe/README_cn.md),跟踪方案为OC-SORT,详细文档参考[OC-SORT](../../../../configs/mot/ocsort)。 2. 通过行人检测框的坐标在输入视频的对应帧中截取每个行人。 3. 通过在帧级别的行人图像中检测该行为的典型特定目标实现。当检测到特定目标(在这里即烟头)以后,即认为在一定时间段内该人物处于该行为状态中。该任务使用[PP-YOLOE](../../../../configs/ppyoloe/README_cn.md)实现,当前版本模型支持吸烟行为的识别,预测得到的`class id`对应关系为: ``` 0: 吸烟, 1: 其他 ``` ## 基于行人轨迹的行为识别 应用行为:闯入识别 <div align="center"> <img src="https://user-images.githubusercontent.com/22989727/178769370-03ab1965-cfd1-401b-9902-82620a06e43c.gif" width='600'/> </div> 具体使用请参照[PP-Human检测跟踪模块](pphuman_mot.md)的`5. 区域闯入判断和计数`。 ### 方案说明 1. 使用多目标跟踪获取视频输入中的行人检测框及跟踪ID序号,模型方案为PP-YOLOE,详细文档参考[PP-YOLOE](../../../../configs/ppyoloe/README_cn.md),跟踪方案为OC-SORT,详细文档参考[OC-SORT](../../../../configs/mot/ocsort)。 2. 通过行人检测框的下边界中点在相邻帧位于用户所选区域的内外位置,来识别是否闯入所选区域。 ## 基于视频分类的行为识别 应用行为:打架识别 <div align="center"> <img src="https://user-images.githubusercontent.com/22989727/205597198-8b4333b3-6c39-472c-a25c-018dac908867.gif" width='600'/><br> <center>数据来源及版权归属:Surveillance Camera Fight Dataset。</center> </div> 该方案关注的场景为监控摄像头下的打架行为识别。打架行为涉及多人,基于骨骼点技术的方案更适用于单人的行为识别。此外,打架行为对时序信息依赖较强,基于检测和分类的方案也不太适用。由于监控场景背景复杂,人的密集程度、光线、拍摄角度等都会对识别造成影响,本方案采用基于视频分类的方式判断视频中是否存在打架行为。针对摄像头距离人较远的情况,通过增大输入图像分辨率优化。由于训练数据有限,采用数据增强的方式提升模型的泛化性能。 ### 模型库 在这里,我们提供了打架识别的预训练模型,用户可以直接下载使用。 | 任务 | 算法 | 精度 | 预测速度(ms) | 模型权重 | 预测部署模型 | |:---------------------|:---------:|:------:|:------:| :------: |:---------------------------------------------------------------------------------: | | 打架识别 | PP-TSM | 准确率:89.06% | 2s视频 128ms | [下载链接](https://videotag.bj.bcebos.com/PaddleVideo-release2.3/ppTSM_fight.pdparams) | [下载链接](https://videotag.bj.bcebos.com/PaddleVideo-release2.3/ppTSM_fight.zip) | 注: 1. 打架识别模型基于6个公开数据集训练得到:Surveillance Camera Fight Dataset、A Dataset for Automatic Violence Detection in Videos、Hockey Fight Detection Dataset、Video Fight Detection Dataset、Real Life Violence Situations Dataset、UBI Abnormal Event Detection Dataset。 2. 预测速度为NVIDIA T4 机器上使用TensorRT FP16时的速度, 速度包含数据预处理、模型预测、后处理全流程。 ### 配置说明 [配置文件](../../config/infer_cfg_pphuman.yml)中与行为识别相关的参数如下: ``` VIDEO_ACTION: # 基于视频分类的行为识别模型配置 model_dir: output_inference/ppTSM # 模型所在路径 batch_size: 1 # 预测批大小。当前仅支持为1进行推理 frame_len: 8 # 累计抽样帧数量,达到该数量后执行一次识别 sample_freq: 7 # 抽样频率,即间隔多少帧抽样一帧 short_size: 340 # 视频帧尺度变换最小边的长度 target_size: 320 # 目标视频帧的大小 enable: False # 是否开启该功能 ``` ### 使用方法 1. 从上表链接中下载`打架识别`任务的预测部署模型并解压到`./output_inference`路径下;默认自动下载模型,如果手动下载,需要修改模型文件夹为模型存放路径。 2. 修改配置文件`deploy/pphuman/config/infer_cfg_pphuman.yml`中`VIDEO_ACTION`下的`enable`为`True`; 3. 仅支持输入视频,启动命令如下: ``` python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ --video_file=test_video.mp4 \ --device=gpu ``` 4. 启动命令中的完整参数说明,请参考[参数说明](./PPHuman_QUICK_STARTED.md)。 ### 方案说明 目前打架识别模型使用的是[PP-TSM](https://github.com/PaddlePaddle/PaddleVideo/blob/develop/docs/zh-CN/model_zoo/recognition/pp-tsm.md),并在PP-TSM视频分类模型训练流程的基础上修改适配,完成模型训练。对于输入的视频或者视频流,进行等间隔抽帧,当视频帧累计到指定数目时,输入到视频分类模型中判断是否存在打架行为。 ## 参考文献 ``` @inproceedings{stgcn2018aaai, title = {Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition}, author = {Sijie Yan and Yuanjun Xiong and Dahua Lin}, booktitle = {AAAI}, year = {2018}, } `````
PaddleDetection/deploy/pipeline/docs/tutorials/pphuman_action.md/0
{ "file_path": "PaddleDetection/deploy/pipeline/docs/tutorials/pphuman_action.md", "repo_id": "PaddleDetection", "token_count": 11948 }
47
[English](ppvehicle_press_en.md) | 简体中文 # PP-Vehicle压实线识别模块 车辆压实线识别在智慧城市,智慧交通等方向具有广泛应用。在PP-Vehicle中,集成了车辆压实线识别模块,可识别车辆是否违章压实线。 | 任务 | 算法 | 精度 | 预测速度 | 下载链接| |-----------|------|-----------|----------|---------------| | 车辆检测/跟踪 | PP-YOLOE | mAP 63.9 | 38.67ms | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | | 车道线识别 | PP-liteseg | mIou 32.69 | 47 ms | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/pipeline/pp_lite_stdc2_bdd100k.zip) | 注意: 1. 车辆检测/跟踪模型预测速度是基于NVIDIA T4, 开启TensorRT FP16得到。模型预测速度包含数据预处理、模型预测、后处理部分。 2. 车辆检测/跟踪模型的训练和精度测试均基于[VeRi数据集](https://www.v7labs.com/open-datasets/veri-dataset)。 3. 车道线模型预测速度基于Tesla P40,python端预测,模型预测速度包含数据预处理、模型预测、后处理部分。 4. 车道线模型训练和精度测试均基于[BDD100K-LaneSeg](https://bdd-data.berkeley.edu/portal.html#download)和[Apollo Scape](http://apolloscape.auto/lane_segmentation.html#to_dataset_href),两个数据集车道线分割[标签](https://bj.bcebos.com/v1/paddledet/data/mot/bdd100k/lane_dataset_label.zip) ## 使用方法 ### 配置项说明 [配置文件](../../config/infer_cfg_ppvehicle.yml)中与车辆压线相关的参数如下: ``` VEHICLE_PRESSING: enable: True #是否开启功能 LANE_SEG: lane_seg_config: deploy/pipeline/config/lane_seg_config.yml #车道线提取配置文件 model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/pp_lite_stdc2_bdd100k.zip #模型文件路径 ``` [车道线配置文件](../../config/lane_seg_config.yml)中与车道线提取相关的参数如下: ``` type: PLSLaneseg #选择分割模型 PLSLaneseg: batch_size: 1 #图片batch_size device: gpu #选择gpu还是cpu filter_flag: True #是否过滤水平方向道路线 horizontal_filtration_degree: 23 #过滤水平方向车道线阈值,当分割出来的车道线最大倾斜角与 #最小倾斜角差值小于阈值时,不进行过滤 horizontal_filtering_threshold: 0.25 #确定竖直方向与水平方向分开阈值 #thr = (min_degree+max_degree)*0.25 #根据车道线倾斜角与thr的大小比较,将车道线分为垂直方向与水平方向 ``` ### 使用命令 1. 从模型库下载`车辆检测/跟踪`, `车道线识别`两个预测部署模型并解压到`./output_inference`路径下;默认会自动下载模型,如果手动下载,需要修改模型文件夹为模型存放路径。 2. 修改配置文件中`VEHICLE_PRESSING`项的`enable: True`,以启用该功能。 3. 图片输入时,启动命令如下(更多命令参数说明,请参考[快速开始-参数说明](./PPVehicle_QUICK_STARTED.md)): ```bash # 预测单张图片文件 python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml \ -o VEHICLE_PRESSING.enable=true --image_file=test_image.jpg \ --device=gpu # 预测包含一张或多张图片的文件夹 python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml \ -o VEHICLE_PRESSING.enable=true --image_dir=images/ \ --device=gpu ``` 4. 视频输入时,启动命令如下: ```bash #预测单个视频文件 python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml \ -o VEHICLE_PRESSING.enable=true --video_file=test_video.mp4 \ --device=gpu #预测包含一个或多个视频的文件夹 python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml \ --video_dir=test_videos/ \ -o VEHICLE_PRESSING.enable=true --device=gpu ``` 5. 若修改模型路径,有以下两种方式: - 方法一:`./deploy/pipeline/config/infer_cfg_ppvehicle.yml`下可以配置不同模型路径,车道线识别模型修改`LANE_SEG`字段下配置 - 方法二:直接在命令行中增加`-o`,以覆盖配置文件中的默认模型路径: ```bash python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml \ --video_file=test_video.mp4 \ --device=gpu \ -o VEHICLE_PRESSING.enable=true LANE_SEG.model_dir=output_inference ``` 测试效果如下: <div width="1000" align="center"> <img src="https://raw.githubusercontent.com/LokeZhou/PaddleDetection/develop/deploy/pipeline/docs/images/vehicle_press.gif"/> </div> ## 方案说明 1.车道线识别模型使用了[PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg) 的超轻量分割方案。训练样本[标签](https://bj.bcebos.com/v1/paddledet/data/mot/bdd100k/lane_dataset_label.zip)分为4类: 0 背景 1 双黄线 2 实线 3 虚线 车辆压线分析过滤虚线类; 2.车道线通过对分割结果聚类得到,且默认过滤水平方向车道线,若不过滤可在[车道线配置文件](../../config/lane_seg_config.yml)修改`filter_flag`参数; 3.车辆压线判断条件:车辆的检测框底边线与车道线是否有交点; **性能优化措施** 1.因摄像头视角原因,可以根据实际情况决定是否过滤水平方向车道线;
PaddleDetection/deploy/pipeline/docs/tutorials/ppvehicle_press.md/0
{ "file_path": "PaddleDetection/deploy/pipeline/docs/tutorials/ppvehicle_press.md", "repo_id": "PaddleDetection", "token_count": 4158 }
48
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class KeyPointSequence(object): def __init__(self, max_size=100): self.frames = 0 self.kpts = [] self.bboxes = [] self.max_size = max_size def save(self, kpt, bbox): self.kpts.append(kpt) self.bboxes.append(bbox) self.frames += 1 if self.frames == self.max_size: return True return False class KeyPointBuff(object): def __init__(self, max_size=100): self.flag_track_interrupt = False self.keypoint_saver = dict() self.max_size = max_size self.id_to_pop = set() self.flag_to_pop = False def get_state(self): return self.flag_to_pop def update(self, kpt_res, mot_res): kpts = kpt_res.get('keypoint')[0] bboxes = kpt_res.get('bbox') mot_bboxes = mot_res.get('boxes') updated_id = set() for idx in range(len(kpts)): tracker_id = mot_bboxes[idx, 0] updated_id.add(tracker_id) kpt_seq = self.keypoint_saver.get(tracker_id, KeyPointSequence(self.max_size)) is_full = kpt_seq.save(kpts[idx], bboxes[idx]) self.keypoint_saver[tracker_id] = kpt_seq #Scene1: result should be popped when frames meet max size if is_full: self.id_to_pop.add(tracker_id) self.flag_to_pop = True #Scene2: result of a lost tracker should be popped interrupted_id = set(self.keypoint_saver.keys()) - updated_id if len(interrupted_id) > 0: self.flag_to_pop = True self.id_to_pop.update(interrupted_id) def get_collected_keypoint(self): """ Output (List): List of keypoint results for Skeletonbased Recognition task, where the format of each element is [tracker_id, KeyPointSequence of tracker_id] """ output = [] for tracker_id in self.id_to_pop: output.append([tracker_id, self.keypoint_saver[tracker_id]]) del (self.keypoint_saver[tracker_id]) self.flag_to_pop = False self.id_to_pop.clear() return output class ActionVisualHelper(object): def __init__(self, frame_life=20): self.frame_life = frame_life self.action_history = {} def get_visualize_ids(self): id_detected = self.check_detected() return id_detected def check_detected(self): id_detected = set() deperate_id = [] for mot_id in self.action_history: self.action_history[mot_id]["life_remain"] -= 1 if int(self.action_history[mot_id]["class"]) == 0: id_detected.add(mot_id) if self.action_history[mot_id]["life_remain"] == 0: deperate_id.append(mot_id) for mot_id in deperate_id: del (self.action_history[mot_id]) return id_detected def update(self, action_res_list): for mot_id, action_res in action_res_list: if mot_id in self.action_history: if int(action_res["class"]) != 0 and int(self.action_history[ mot_id]["class"]) == 0: continue action_info = self.action_history.get(mot_id, {}) action_info["class"] = action_res["class"] action_info["life_remain"] = self.frame_life self.action_history[mot_id] = action_info
PaddleDetection/deploy/pipeline/pphuman/action_utils.py/0
{ "file_path": "PaddleDetection/deploy/pipeline/pphuman/action_utils.py", "repo_id": "PaddleDetection", "token_count": 1910 }
49
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import yaml import glob from functools import reduce import time import cv2 import numpy as np import math import paddle import sys parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3))) sys.path.insert(0, parent_path) from python.infer import get_test_images from python.preprocess import preprocess, NormalizeImage, Permute, Resize_Mult32 from pipeline.ppvehicle.vehicle_plateutils import create_predictor, get_infer_gpuid, get_rotate_crop_image, draw_boxes from pipeline.ppvehicle.vehicleplate_postprocess import build_post_process from pipeline.cfg_utils import merge_cfg, print_arguments, argsparser class PlateDetector(object): def __init__(self, args, cfg): self.args = args self.pre_process_list = { 'Resize_Mult32': { 'limit_side_len': cfg['det_limit_side_len'], 'limit_type': cfg['det_limit_type'], }, 'NormalizeImage': { 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'is_scale': True, }, 'Permute': {} } postprocess_params = {} postprocess_params['name'] = 'DBPostProcess' postprocess_params["thresh"] = 0.3 postprocess_params["box_thresh"] = 0.6 postprocess_params["max_candidates"] = 1000 postprocess_params["unclip_ratio"] = 1.5 postprocess_params["use_dilation"] = False postprocess_params["score_mode"] = "fast" self.postprocess_op = build_post_process(postprocess_params) self.predictor, self.input_tensor, self.output_tensors, self.config = create_predictor( args, cfg, 'det') def preprocess(self, im_path): preprocess_ops = [] for op_type, new_op_info in self.pre_process_list.items(): preprocess_ops.append(eval(op_type)(**new_op_info)) input_im_lst = [] input_im_info_lst = [] im, im_info = preprocess(im_path, preprocess_ops) input_im_lst.append(im) input_im_info_lst.append(im_info['im_shape'] / im_info['scale_factor']) return np.stack(input_im_lst, axis=0), input_im_info_lst def order_points_clockwise(self, pts): rect = np.zeros((4, 2), dtype="float32") s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def clip_det_res(self, points, img_height, img_width): for pno in range(points.shape[0]): points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) return points def filter_tag_det_res(self, dt_boxes, image_shape): img_height, img_width = image_shape[0:2] dt_boxes_new = [] for box in dt_boxes: box = self.order_points_clockwise(box) box = self.clip_det_res(box, img_height, img_width) rect_width = int(np.linalg.norm(box[0] - box[1])) rect_height = int(np.linalg.norm(box[0] - box[3])) if rect_width <= 3 or rect_height <= 3: continue dt_boxes_new.append(box) dt_boxes = np.array(dt_boxes_new) return dt_boxes def filter_tag_det_res_only_clip(self, dt_boxes, image_shape): img_height, img_width = image_shape[0:2] dt_boxes_new = [] for box in dt_boxes: box = self.clip_det_res(box, img_height, img_width) dt_boxes_new.append(box) dt_boxes = np.array(dt_boxes_new) return dt_boxes def predict_image(self, img_list): st = time.time() dt_batch_boxes = [] for image in img_list: img, shape_list = self.preprocess(image) if img is None: return None, 0 self.input_tensor.copy_from_cpu(img) self.predictor.run() outputs = [] for output_tensor in self.output_tensors: output = output_tensor.copy_to_cpu() outputs.append(output) preds = {} preds['maps'] = outputs[0] #self.predictor.try_shrink_memory() post_result = self.postprocess_op(preds, shape_list) # print("post_result length:{}".format(len(post_result))) org_shape = image.shape dt_boxes = post_result[0]['points'] dt_boxes = self.filter_tag_det_res(dt_boxes, org_shape) dt_batch_boxes.append(dt_boxes) et = time.time() return dt_batch_boxes, et - st class TextRecognizer(object): def __init__(self, args, cfg, use_gpu=True): self.rec_image_shape = cfg['rec_image_shape'] self.rec_batch_num = cfg['rec_batch_num'] word_dict_path = cfg['word_dict_path'] use_space_char = True postprocess_params = { 'name': 'CTCLabelDecode', "character_dict_path": word_dict_path, "use_space_char": use_space_char } self.postprocess_op = build_post_process(postprocess_params) self.predictor, self.input_tensor, self.output_tensors, self.config = \ create_predictor(args, cfg, 'rec') self.use_onnx = False def resize_norm_img(self, img, max_wh_ratio): imgC, imgH, imgW = self.rec_image_shape assert imgC == img.shape[2] imgW = int((imgH * max_wh_ratio)) if self.use_onnx: w = self.input_tensor.shape[3:][0] if w is not None and w > 0: imgW = w h, w = img.shape[:2] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im def predict_text(self, img_list): img_num = len(img_list) # Calculate the aspect ratio of all text bars width_list = [] for img in img_list: width_list.append(img.shape[1] / float(img.shape[0])) # Sorting can speed up the recognition process indices = np.argsort(np.array(width_list)) rec_res = [['', 0.0]] * img_num batch_num = self.rec_batch_num st = time.time() for beg_img_no in range(0, img_num, batch_num): end_img_no = min(img_num, beg_img_no + batch_num) norm_img_batch = [] imgC, imgH, imgW = self.rec_image_shape max_wh_ratio = imgW / imgH # max_wh_ratio = 0 for ino in range(beg_img_no, end_img_no): h, w = img_list[indices[ino]].shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) for ino in range(beg_img_no, end_img_no): norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = norm_img_batch.copy() if self.use_onnx: input_dict = {} input_dict[self.input_tensor.name] = norm_img_batch outputs = self.predictor.run(self.output_tensors, input_dict) preds = outputs[0] else: self.input_tensor.copy_from_cpu(norm_img_batch) self.predictor.run() outputs = [] for output_tensor in self.output_tensors: output = output_tensor.copy_to_cpu() outputs.append(output) if len(outputs) != 1: preds = outputs else: preds = outputs[0] rec_result = self.postprocess_op(preds) for rno in range(len(rec_result)): rec_res[indices[beg_img_no + rno]] = rec_result[rno] return rec_res, time.time() - st class PlateRecognizer(object): def __init__(self, args, cfg): use_gpu = args.device.lower() == "gpu" self.platedetector = PlateDetector(args, cfg) self.textrecognizer = TextRecognizer(args, cfg, use_gpu=use_gpu) def get_platelicense(self, image_list): plate_text_list = [] plateboxes, det_time = self.platedetector.predict_image(image_list) for idx, boxes_pcar in enumerate(plateboxes): plate_pcar_list = [] for box in boxes_pcar: plate_images = get_rotate_crop_image(image_list[idx], box) plate_texts = self.textrecognizer.predict_text([plate_images]) plate_pcar_list.append(plate_texts) plate_text_list.append(plate_pcar_list) return self.check_plate(plate_text_list) def check_plate(self, text_list): plate_all = {"plate": []} for text_pcar in text_list: platelicense = "" for text_info in text_pcar: text = text_info[0][0][0] if len(text) > 2 and len(text) < 10: platelicense = self.replace_cn_code(text) plate_all["plate"].append(platelicense) return plate_all def replace_cn_code(self, text): simcode = { '浙': 'ZJ-', '粤': 'GD-', '京': 'BJ-', '津': 'TJ-', '冀': 'HE-', '晋': 'SX-', '蒙': 'NM-', '辽': 'LN-', '黑': 'HLJ-', '沪': 'SH-', '吉': 'JL-', '苏': 'JS-', '皖': 'AH-', '赣': 'JX-', '鲁': 'SD-', '豫': 'HA-', '鄂': 'HB-', '湘': 'HN-', '桂': 'GX-', '琼': 'HI-', '渝': 'CQ-', '川': 'SC-', '贵': 'GZ-', '云': 'YN-', '藏': 'XZ-', '陕': 'SN-', '甘': 'GS-', '青': 'QH-', '宁': 'NX-', '闽': 'FJ-', '·': ' ' } for _char in text: if _char in simcode: text = text.replace(_char, simcode[_char]) return text def main(): cfg = merge_cfg(FLAGS) print_arguments(cfg) vehicleplate_cfg = cfg['VEHICLE_PLATE'] detector = PlateRecognizer(FLAGS, vehicleplate_cfg) # predict from image img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file) for img in img_list: image = cv2.imread(img) results = detector.get_platelicense([image]) print(results) if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() FLAGS.device = FLAGS.device.upper() assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU' ], "device should be CPU, GPU, NPU or XPU" main()
PaddleDetection/deploy/pipeline/ppvehicle/vehicle_plate.py/0
{ "file_path": "PaddleDetection/deploy/pipeline/ppvehicle/vehicle_plate.py", "repo_id": "PaddleDetection", "token_count": 6183 }
50
# C++端预测部署 在PaddlePaddle中预测引擎和训练引擎底层有着不同的优化方法, 预测引擎使用了AnalysisPredictor,专门针对推理进行了优化,该引擎可以对模型进行多项图优化,减少不必要的内存拷贝。如果用户在部署已训练模型的过程中对性能有较高的要求,我们提供了独立于PaddleDetection的预测脚本,方便用户直接集成部署。当前C++部署支持基于Fairmot的单镜头类别预测部署,并支持人流量统计、出入口计数功能。 主要包含三个步骤: - 准备环境 - 导出预测模型 - C++预测 ## 一、准备环境 环境要求: - GCC 8.2 - CUDA 10.1/10.2/11.1; CUDNN 7.6/8.1 - CMake 3.0+ - TensorRT 6/7 NVIDIA Jetson用户请参考[Jetson平台编译指南](../../cpp/docs/Jetson_build.md#jetson环境搭建)完成JetPack安装 ### 1. 下载代码 ``` git clone https://github.com/PaddlePaddle/PaddleDetection.git # C++部署代码与其他目录代码独立 cd deploy/pptracking/cpp ``` ### 2. 下载或编译PaddlePaddle C++预测库 请根据环境选择适当的预测库进行下载,参考[C++预测库下载列表](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html) 下载并解压后`./paddle_inference`目录包含内容为: ``` paddle_inference ├── paddle # paddle核心库和头文件 | ├── third_party # 第三方依赖库和头文件 | └── version.txt # 版本和编译信息 ``` **注意:** 如果用户环境与官网提供环境不一致(如cuda 、cudnn、tensorrt版本不一致等),或对飞桨源代码有修改需求,或希望进行定制化构建,可参考[文档](https://paddleinference.paddlepaddle.org.cn/user_guides/source_compile.html)自行源码编译预测库。 ### 3. 编译 <details> <summary>Linux编译:</summary> 编译`cmake`的命令在`scripts/build.sh`中,请根据实际情况修改主要参数,其主要内容说明如下: ``` # 是否使用GPU(即是否使用 CUDA) WITH_GPU=ON # 是否使用MKL or openblas,TX2需要设置为OFF WITH_MKL=OFF # 是否集成 TensorRT(仅WITH_GPU=ON 有效) WITH_TENSORRT=ON # TensorRT 的include路径 TENSORRT_INC_DIR=/path/to/TensorRT/include # TensorRT 的lib路径 TENSORRT_LIB_DIR=/path/to/TensorRT/lib # Paddle 预测库路径 PADDLE_DIR=/path/to/paddle_inference/ # Paddle 预测库名称 PADDLE_LIB_NAME=libpaddle_inference # CUDA 的 lib 路径 CUDA_LIB=/path/to/cuda/lib # CUDNN 的 lib 路径 CUDNN_LIB=/path/to/cudnn/lib # OPENCV路径 OPENCV_DIR=/path/to/opencv ``` 修改脚本设置好主要参数后,执行```build.sh```脚本: ``` sh ./scripts/build.sh ``` </details> <details> <summary>Windows编译:</summary> - 安装配置OpenCV 1. 在OpenCV官网下载适用于Windows平台的3.4.6版本,[下载地址](https://sourceforge.net/projects/opencvlibrary/files/3.4.6/opencv-3.4.6-vc14_vc15.exe/download) 2. 运行下载的可执行文件,将OpenCV解压至指定目录,如`D:\projects\opencv` 3. 配置环境变量,如下流程所示(如果使用全局绝对路径,可以不用设置环境变量) - 我的电脑->属性->高级系统设置->环境变量 - 在系统变量中找到Path(如没有,自行创建),并双击编辑 - 新建,将opencv路径填入并保存,如`D:\projects\opencv\build\x64\vc14\bin` - 使用CMake生成项目文件 执行如下命令项目文件: ``` cmake . -G "Visual Studio 16 2019" -A x64 -T host=x64 -DWITH_GPU=ON -DWITH_MKL=ON -DCMAKE_BUILD_TYPE=Release -DCUDA_LIB=path_to_cuda_lib -DCUDNN_LIB=path_to_cudnn_lib -DPADDLE_DIR=path_to_paddle_lib -DPADDLE_LIB_NAME=paddle_inference -DOPENCV_DIR=path_to_opencv -DWITH_KEYPOINT=ON ``` - 编译 用`Visual Studio 2019`打开`cpp`文件夹下的`PaddleObjectDetector.sln`,将编译模式设置为`Release`,点击`生成`->`全部生成 编译产出的可执行文件在`Release`目录下 </details> **注意:** 1. `TX2`平台的`CUDA`、`CUDNN`需要通过`JetPack`安装。 2. 已提供linux和tx2平台的opencv下载方式,其他环境请自行安装[opencv](https://opencv.org/) 3. Windows用户推荐使用Visual Studio 2019编译 ## 二、导出预测模型 将训练保存的权重导出为预测库需要的模型格式,使用PaddleDetection下的```tools/export_model.py```导出模型 ``` python tools/export_model.py -c configs/mot/fairmot/fairmot_hrnetv2_w18_dlafpn_30e_576x320.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320.pdparams ``` 预测模型会默认导出到```output_inference/fairmot_hrnetv2_w18_dlafpn_30e_576x320```目录下,包括```infer_cfg.yml```, ```model.pdiparams```, ```model.pdiparams.info```, ```model.pdmodel``` 导出模型也可以通过[预测模型列表](../README.md)中'算法介绍部分'直接下载使用 ## 三、C++预测 完成以上步骤后,可以通过```build/main```(Linux)或```main.exe```(Windows)进行预测,参数列表如下: | 参数 | 说明 | | ---- | ---- | | --track_model_dir | 导出的跟踪预测模型所在路径 | | --video_file | 要预测的视频文件路径 | | --device | 运行时的设备,可选择`CPU/GPU/XPU`,默认为`CPU`| | --gpu_id | 指定进行推理的GPU device id(默认值为0)| | --run_mode | 使用GPU时,默认为paddle, 可选(paddle/trt_fp32/trt_fp16/trt_int8)| | --output_dir | 输出图片所在的文件夹, 默认为output | | --use_mkldnn | CPU预测中是否开启MKLDNN加速 | | --cpu_threads | 设置cpu线程数,默认为1 | | --do_entrance_counting | 是否进行出入口流量统计,默认为否 | | --save_result | 是否保存跟踪结果 | 样例一: ```shell # 使用CPU测试视频 `test.mp4` , 模型和测试视频均移至`build`目录下 ./main --track_model_dir=./fairmot_hrnetv2_w18_dlafpn_30e_576x320 --video_file=test.mp4 # 视频可视化预测结果默认保存在当前目录下output/test.mp4文件中 ``` 样例二: ```shell # 使用GPU测试视频 `test.mp4` , 模型和测试视频均移至`build`目录下,实现出入口计数功能,并保存跟踪结果 ./main -video_file=test.mp4 -track_model_dir=./fairmot_dla34_30e_1088x608/ --device=gpu --do_entrance_counting=True --save_result=True # 视频可视化预测结果默认保存在当前目录下`output/test.mp4`中 # 跟踪结果保存在`output/mot_output.txt`中 # 计数结果保存在`output/flow_statistic.txt`中 ```
PaddleDetection/deploy/pptracking/cpp/README.md/0
{ "file_path": "PaddleDetection/deploy/pptracking/cpp/README.md", "repo_id": "PaddleDetection", "token_count": 3966 }
51
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <glog/logging.h> #include <math.h> #include <sys/types.h> #include <algorithm> #include <iostream> #include <numeric> #include <string> #include <vector> #ifdef _WIN32 #include <direct.h> #include <io.h> #else #include <stdarg.h> #include <sys/stat.h> #endif #include <gflags/gflags.h> #include "include/pipeline.h" DEFINE_string(video_file, "", "Path of input video."); DEFINE_string(video_other_file, "", "Path of other input video used for MTMCT."); DEFINE_string(device, "CPU", "Choose the device you want to run, it can be: CPU/GPU/XPU, " "default is CPU."); DEFINE_double(threshold, 0.5, "Threshold of score."); DEFINE_string(output_dir, "output", "Directory of output visualization files."); DEFINE_string(run_mode, "paddle", "Mode of running(paddle/trt_fp32/trt_fp16/trt_int8)"); DEFINE_int32(gpu_id, 0, "Device id of GPU to execute"); DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU"); DEFINE_int32(cpu_threads, 1, "Num of threads with CPU"); DEFINE_bool(trt_calib_mode, false, "If the model is produced by TRT offline quantitative calibration, " "trt_calib_mode need to set True"); DEFINE_bool(tiny_obj, false, "Whether tracking tiny object"); DEFINE_bool(do_entrance_counting, false, "Whether counting the numbers of identifiers entering " "or getting out from the entrance."); DEFINE_int32(secs_interval, 10, "The seconds interval to count after tracking"); DEFINE_bool(save_result, false, "Whether saving result after tracking"); DEFINE_string( scene, "", "scene of tracking system, it can be : pedestrian/vehicle/multiclass"); DEFINE_bool(is_mtmct, false, "Whether use multi-target multi-camera tracking"); DEFINE_string(track_model_dir, "", "Path of tracking model"); DEFINE_string(det_model_dir, "", "Path of detection model"); DEFINE_string(reid_model_dir, "", "Path of reid model"); static std::string DirName(const std::string& filepath) { auto pos = filepath.rfind(OS_PATH_SEP); if (pos == std::string::npos) { return ""; } return filepath.substr(0, pos); } static bool PathExists(const std::string& path) { #ifdef _WIN32 struct _stat buffer; return (_stat(path.c_str(), &buffer) == 0); #else struct stat buffer; return (stat(path.c_str(), &buffer) == 0); #endif // !_WIN32 } static void MkDir(const std::string& path) { if (PathExists(path)) return; int ret = 0; #ifdef _WIN32 ret = _mkdir(path.c_str()); #else ret = mkdir(path.c_str(), 0755); #endif // !_WIN32 if (ret != 0) { std::string path_error(path); path_error += " mkdir failed!"; throw std::runtime_error(path_error); } } static void MkDirs(const std::string& path) { if (path.empty()) return; if (PathExists(path)) return; MkDirs(DirName(path)); MkDir(path); } int main(int argc, char** argv) { // Parsing command-line google::ParseCommandLineFlags(&argc, &argv, true); bool has_model_dir = !(FLAGS_track_model_dir.empty() && FLAGS_det_model_dir.empty() && FLAGS_reid_model_dir.empty()); if (FLAGS_video_file.empty() || (FLAGS_scene.empty() && !has_model_dir)) { LOG(ERROR) << "Usage: \n" << "1. ./main -video_file=/PATH/TO/INPUT/IMAGE/ " << "-scene=pedestrian/vehicle/multiclass\n" << "2. ./main -video_file=/PATH/TO/INPUT/IMAGE/ " << "-track_model_dir=/PATH/TO/MODEL_DIR" << std::endl; return -1; } if (!(FLAGS_run_mode == "paddle" || FLAGS_run_mode == "trt_fp32" || FLAGS_run_mode == "trt_fp16" || FLAGS_run_mode == "trt_int8")) { LOG(ERROR) << "run_mode should be 'paddle', 'trt_fp32', 'trt_fp16' or 'trt_int8'."; return -1; } transform(FLAGS_device.begin(), FLAGS_device.end(), FLAGS_device.begin(), ::toupper); if (!(FLAGS_device == "CPU" || FLAGS_device == "GPU" || FLAGS_device == "XPU")) { LOG(ERROR) << "device should be 'CPU', 'GPU' or 'XPU'."; return -1; } if (!PathExists(FLAGS_output_dir)) { MkDirs(FLAGS_output_dir); } PaddleDetection::Pipeline pipeline(FLAGS_device, FLAGS_threshold, FLAGS_output_dir, FLAGS_run_mode, FLAGS_gpu_id, FLAGS_use_mkldnn, FLAGS_cpu_threads, FLAGS_trt_calib_mode, FLAGS_do_entrance_counting, FLAGS_save_result, FLAGS_scene, FLAGS_tiny_obj, FLAGS_is_mtmct, FLAGS_secs_interval, FLAGS_track_model_dir, FLAGS_det_model_dir, FLAGS_reid_model_dir); pipeline.SetInput(FLAGS_video_file); if (!FLAGS_video_other_file.empty()) { pipeline.SetInput(FLAGS_video_other_file); } pipeline.Run(); return 0; }
PaddleDetection/deploy/pptracking/cpp/src/main.cc/0
{ "file_path": "PaddleDetection/deploy/pptracking/cpp/src/main.cc", "repo_id": "PaddleDetection", "token_count": 2768 }
52
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is based on https://github.com/LCFractal/AIC21-MTMC/tree/main/reid/reid-matching/tools """ import os import re import cv2 import gc import numpy as np import pandas as pd from tqdm import tqdm import warnings warnings.filterwarnings("ignore") __all__ = [ 'parse_pt', 'parse_bias', 'get_dire', 'parse_pt_gt', 'compare_dataframes_mtmc', 'get_sim_matrix', 'get_labels', 'getData', 'gen_new_mot' ] def parse_pt(mot_feature, zones=None): mot_list = dict() for line in mot_feature: fid = int(re.sub('[a-z,A-Z]', "", mot_feature[line]['frame'])) tid = mot_feature[line]['id'] bbox = list(map(lambda x: int(float(x)), mot_feature[line]['bbox'])) if tid not in mot_list: mot_list[tid] = dict() out_dict = mot_feature[line] if zones is not None: out_dict['zone'] = zones.get_zone(bbox) else: out_dict['zone'] = None mot_list[tid][fid] = out_dict return mot_list def gen_new_mot(mot_list): out_dict = dict() for tracklet in mot_list: tracklet = mot_list[tracklet] for f in tracklet: out_dict[tracklet[f]['imgname']] = tracklet[f] return out_dict def mergesetfeat1_notrk(P, neg_vector, in_feats, in_labels): out_feats = [] for i in range(in_feats.shape[0]): camera_id = in_labels[i, 1] feat = in_feats[i] - neg_vector[camera_id] feat = P[camera_id].dot(feat) feat = feat / np.linalg.norm(feat, ord=2) out_feats.append(feat) out_feats = np.vstack(out_feats) return out_feats def compute_P2(prb_feats, gal_feats, gal_labels, la=3.0): X = gal_feats neg_vector = {} u_labels = np.unique(gal_labels[:, 1]) P = {} for label in u_labels: curX = gal_feats[gal_labels[:, 1] == label, :] neg_vector[label] = np.mean(curX, axis=0) P[label] = np.linalg.inv( curX.T.dot(curX) + curX.shape[0] * la * np.eye(X.shape[1])) return P, neg_vector def parse_bias(cameras_bias): cid_bias = dict() for cameras in cameras_bias.keys(): cameras_id = re.sub('[a-z,A-Z]', "", cameras) cameras_id = int(cameras_id) bias = cameras_bias[cameras] cid_bias[cameras_id] = float(bias) return cid_bias def get_dire(zone_list, cid): zs, ze = zone_list[0], zone_list[-1] return (zs, ze) def intracam_ignore(st_mask, cid_tids): count = len(cid_tids) for i in range(count): for j in range(count): if cid_tids[i][0] == cid_tids[j][0]: st_mask[i, j] = 0. return st_mask def mergesetfeat(in_feats, in_labels, in_tracks): trackset = list(set(list(in_tracks))) out_feats = [] out_labels = [] for track in trackset: feat = np.mean(in_feats[in_tracks == track], axis=0) feat = feat / np.linalg.norm(feat, ord=2) label = in_labels[in_tracks == track][0] out_feats.append(feat) out_labels.append(label) out_feats = np.vstack(out_feats) out_labels = np.vstack(out_labels) return out_feats, out_labels def mergesetfeat3(X, labels, gX, glabels, beta=0.08, knn=20, lr=0.5): for i in range(0, X.shape[0]): if i % 1000 == 0: print('feat3:%d/%d' % (i, X.shape[0])) knnX = gX[glabels[:, 1] != labels[i, 1], :] sim = knnX.dot(X[i, :]) knnX = knnX[sim > 0, :] sim = sim[sim > 0] if len(sim) > 0: idx = np.argsort(-sim) if len(sim) > 2 * knn: sim = sim[idx[:2 * knn]] knnX = knnX[idx[:2 * knn], :] else: sim = sim[idx] knnX = knnX[idx, :] knn = min(knn, len(sim)) knn_pos_weight = np.exp((sim[:knn] - 1) / beta) knn_neg_weight = np.ones(len(sim) - knn) knn_pos_prob = knn_pos_weight / np.sum(knn_pos_weight) knn_neg_prob = knn_neg_weight / np.sum(knn_neg_weight) X[i, :] += lr * (knn_pos_prob.dot(knnX[:knn, :]) - knn_neg_prob.dot(knnX[knn:, :])) X[i, :] /= np.linalg.norm(X[i, :]) return X def run_fic(prb_feats, gal_feats, prb_labels, gal_labels, la=3.0): P, neg_vector = compute_P2(prb_feats, gal_feats, gal_labels, la) prb_feats_new = mergesetfeat1_notrk(P, neg_vector, prb_feats, prb_labels) gal_feats_new = mergesetfeat1_notrk(P, neg_vector, gal_feats, gal_labels) return prb_feats_new, gal_feats_new def run_fac(prb_feats, gal_feats, prb_labels, gal_labels, beta=0.08, knn=20, lr=0.5, prb_epoch=2, gal_epoch=3): gal_feats_new = gal_feats.copy() for i in range(prb_epoch): gal_feats_new = mergesetfeat3(gal_feats_new, gal_labels, gal_feats, gal_labels, beta, knn, lr) prb_feats_new = prb_feats.copy() for i in range(gal_epoch): prb_feats_new = mergesetfeat3(prb_feats_new, prb_labels, gal_feats_new, gal_labels, beta, knn, lr) return prb_feats_new, gal_feats_new def euclidean_distance(qf, gf): m = qf.shape[0] n = gf.shape[0] dist_mat = 2 - 2 * np.matmul(qf, gf.T) return dist_mat def find_topk(a, k, axis=-1, largest=True, sorted=True): if axis is None: axis_size = a.size else: axis_size = a.shape[axis] assert 1 <= k <= axis_size a = np.asanyarray(a) if largest: index_array = np.argpartition(a, axis_size - k, axis=axis) topk_indices = np.take(index_array, -np.arange(k) - 1, axis=axis) else: index_array = np.argpartition(a, k - 1, axis=axis) topk_indices = np.take(index_array, np.arange(k), axis=axis) topk_values = np.take_along_axis(a, topk_indices, axis=axis) if sorted: sorted_indices_in_topk = np.argsort(topk_values, axis=axis) if largest: sorted_indices_in_topk = np.flip(sorted_indices_in_topk, axis=axis) sorted_topk_values = np.take_along_axis( topk_values, sorted_indices_in_topk, axis=axis) sorted_topk_indices = np.take_along_axis( topk_indices, sorted_indices_in_topk, axis=axis) return sorted_topk_values, sorted_topk_indices return topk_values, topk_indices def batch_numpy_topk(qf, gf, k1, N=6000): m = qf.shape[0] n = gf.shape[0] initial_rank = [] for j in range(n // N + 1): temp_gf = gf[j * N:j * N + N] temp_qd = [] for i in range(m // N + 1): temp_qf = qf[i * N:i * N + N] temp_d = euclidean_distance(temp_qf, temp_gf) temp_qd.append(temp_d) temp_qd = np.concatenate(temp_qd, axis=0) temp_qd = temp_qd / (np.max(temp_qd, axis=0)[0]) temp_qd = temp_qd.T initial_rank.append( find_topk( temp_qd, k=k1, axis=1, largest=False, sorted=True)[1]) del temp_qd del temp_gf del temp_qf del temp_d initial_rank = np.concatenate(initial_rank, axis=0) return initial_rank def batch_euclidean_distance(qf, gf, N=6000): m = qf.shape[0] n = gf.shape[0] dist_mat = [] for j in range(n // N + 1): temp_gf = gf[j * N:j * N + N] temp_qd = [] for i in range(m // N + 1): temp_qf = qf[i * N:i * N + N] temp_d = euclidean_distance(temp_qf, temp_gf) temp_qd.append(temp_d) temp_qd = np.concatenate(temp_qd, axis=0) temp_qd = temp_qd / (np.max(temp_qd, axis=0)[0]) dist_mat.append(temp_qd.T) del temp_qd del temp_gf del temp_qf del temp_d dist_mat = np.concatenate(dist_mat, axis=0) return dist_mat def batch_v(feat, R, all_num): V = np.zeros((all_num, all_num), dtype=np.float32) m = feat.shape[0] for i in tqdm(range(m)): temp_gf = feat[i].reshape(1, -1) temp_qd = euclidean_distance(temp_gf, feat) temp_qd = temp_qd / (np.max(temp_qd)) temp_qd = temp_qd.reshape(-1) temp_qd = temp_qd[R[i].tolist()] weight = np.exp(-temp_qd) weight = weight / np.sum(weight) V[i, R[i]] = weight.astype(np.float32) return V def k_reciprocal_neigh(initial_rank, i, k1): forward_k_neigh_index = initial_rank[i, :k1 + 1] backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1] fi = np.where(backward_k_neigh_index == i)[0] return forward_k_neigh_index[fi] def ReRank2(probFea, galFea, k1=20, k2=6, lambda_value=0.3): query_num = probFea.shape[0] all_num = query_num + galFea.shape[0] feat = np.concatenate((probFea, galFea), axis=0) initial_rank = batch_numpy_topk(feat, feat, k1 + 1, N=6000) del probFea del galFea gc.collect() # empty memory R = [] for i in tqdm(range(all_num)): # k-reciprocal neighbors k_reciprocal_index = k_reciprocal_neigh(initial_rank, i, k1) k_reciprocal_expansion_index = k_reciprocal_index for j in range(len(k_reciprocal_index)): candidate = k_reciprocal_index[j] candidate_k_reciprocal_index = k_reciprocal_neigh( initial_rank, candidate, int(np.around(k1 / 2))) if len( np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)) > 2. / 3 * len( candidate_k_reciprocal_index): k_reciprocal_expansion_index = np.append( k_reciprocal_expansion_index, candidate_k_reciprocal_index) k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index) R.append(k_reciprocal_expansion_index) gc.collect() # empty memory V = batch_v(feat, R, all_num) del R gc.collect() # empty memory initial_rank = initial_rank[:, :k2] # Faster version if k2 != 1: V_qe = np.zeros_like(V, dtype=np.float16) for i in range(all_num): V_qe[i, :] = np.mean(V[initial_rank[i], :], axis=0) V = V_qe del V_qe del initial_rank gc.collect() # empty memory invIndex = [] for i in range(all_num): invIndex.append(np.where(V[:, i] != 0)[0]) jaccard_dist = np.zeros((query_num, all_num), dtype=np.float32) for i in tqdm(range(query_num)): temp_min = np.zeros(shape=[1, all_num], dtype=np.float32) indNonZero = np.where(V[i, :] != 0)[0] indImages = [invIndex[ind] for ind in indNonZero] for j in range(len(indNonZero)): temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum( V[i, indNonZero[j]], V[indImages[j], indNonZero[j]]) jaccard_dist[i] = 1 - temp_min / (2. - temp_min) del V gc.collect() # empty memory original_dist = batch_euclidean_distance(feat, feat[:query_num, :]) final_dist = jaccard_dist * (1 - lambda_value ) + original_dist * lambda_value del original_dist del jaccard_dist final_dist = final_dist[:query_num, query_num:] return final_dist def visual_rerank(prb_feats, gal_feats, cid_tids, use_ff=False, use_rerank=False): """Rerank by visual cures.""" gal_labels = np.array([[0, item[0]] for item in cid_tids]) prb_labels = gal_labels.copy() if use_ff: print('current use ff finetuned parameters....') # Step1-1: fic. finetuned parameters: [la] prb_feats, gal_feats = run_fic(prb_feats, gal_feats, prb_labels, gal_labels, 3.0) # Step1=2: fac. finetuned parameters: [beta,knn,lr,prb_epoch,gal_epoch] prb_feats, gal_feats = run_fac(prb_feats, gal_feats, prb_labels, gal_labels, 0.08, 20, 0.5, 1, 1) if use_rerank: print('current use rerank finetuned parameters....') # Step2: k-reciprocal. finetuned parameters: [k1,k2,lambda_value] sims = ReRank2(prb_feats, gal_feats, 20, 3, 0.3) else: sims = 1.0 - np.dot(prb_feats, gal_feats.T) # NOTE: sims here is actually dist, the smaller the more similar return 1.0 - sims def normalize(nparray, axis=0): try: from sklearn import preprocessing except Exception as e: raise RuntimeError( 'Unable to use sklearn in MTMCT in PP-Tracking, please install sklearn, for example: `pip install sklearn`' ) nparray = preprocessing.normalize(nparray, norm='l2', axis=axis) return nparray def get_match(cluster_labels): cluster_dict = dict() cluster = list() for i, l in enumerate(cluster_labels): if l in list(cluster_dict.keys()): cluster_dict[l].append(i) else: cluster_dict[l] = [i] for idx in cluster_dict: cluster.append(cluster_dict[idx]) return cluster def get_cid_tid(cluster_labels, cid_tids): cluster = list() for labels in cluster_labels: cid_tid_list = list() for label in labels: cid_tid_list.append(cid_tids[label]) cluster.append(cid_tid_list) return cluster def combin_feature(cid_tid_dict, sub_cluster): for sub_ct in sub_cluster: if len(sub_ct) < 2: continue mean_feat = np.array([cid_tid_dict[i]['mean_feat'] for i in sub_ct]) for i in sub_ct: cid_tid_dict[i]['mean_feat'] = mean_feat.mean(axis=0) return cid_tid_dict def combin_cluster(sub_labels, cid_tids): cluster = list() for sub_c_to_c in sub_labels: if len(cluster) < 1: cluster = sub_labels[sub_c_to_c] continue for c_ts in sub_labels[sub_c_to_c]: is_add = False for i_c, c_set in enumerate(cluster): if len(set(c_ts) & set(c_set)) > 0: new_list = list(set(c_ts) | set(c_set)) cluster[i_c] = new_list is_add = True break if not is_add: cluster.append(c_ts) labels = list() num_tr = 0 for c_ts in cluster: label_list = list() for c_t in c_ts: label_list.append(cid_tids.index(c_t)) num_tr += 1 label_list.sort() labels.append(label_list) return labels, cluster def parse_pt_gt(mot_feature): img_rects = dict() for line in mot_feature: fid = int(re.sub('[a-z,A-Z]', "", mot_feature[line]['frame'])) tid = mot_feature[line]['id'] rect = list(map(lambda x: int(float(x)), mot_feature[line]['bbox'])) if fid not in img_rects: img_rects[fid] = list() rect.insert(0, tid) img_rects[fid].append(rect) return img_rects # eval result def compare_dataframes_mtmc(gts, ts): try: import motmetrics as mm except Exception as e: raise RuntimeError( 'Unable to use motmetrics in MTMCT in PP-Tracking, please install motmetrics, for example: `pip install motmetrics`, see https://github.com/longcw/py-motmetrics' ) """Compute ID-based evaluation metrics for MTMCT Return: df (pandas.DataFrame): Results of the evaluations in a df with only the 'idf1', 'idp', and 'idr' columns. """ gtds = [] tsds = [] gtcams = gts['CameraId'].drop_duplicates().tolist() tscams = ts['CameraId'].drop_duplicates().tolist() maxFrameId = 0 for k in sorted(gtcams): gtd = gts.query('CameraId == %d' % k) gtd = gtd[['FrameId', 'Id', 'X', 'Y', 'Width', 'Height']] # max FrameId in gtd only mfid = gtd['FrameId'].max() gtd['FrameId'] += maxFrameId gtd = gtd.set_index(['FrameId', 'Id']) gtds.append(gtd) if k in tscams: tsd = ts.query('CameraId == %d' % k) tsd = tsd[['FrameId', 'Id', 'X', 'Y', 'Width', 'Height']] # max FrameId among both gtd and tsd mfid = max(mfid, tsd['FrameId'].max()) tsd['FrameId'] += maxFrameId tsd = tsd.set_index(['FrameId', 'Id']) tsds.append(tsd) maxFrameId += mfid # compute multi-camera tracking evaluation stats multiCamAcc = mm.utils.compare_to_groundtruth( pd.concat(gtds), pd.concat(tsds), 'iou') metrics = list(mm.metrics.motchallenge_metrics) metrics.extend(['num_frames', 'idfp', 'idfn', 'idtp']) mh = mm.metrics.create() summary = mh.compute(multiCamAcc, metrics=metrics, name='MultiCam') return summary def get_sim_matrix(cid_tid_dict, cid_tids, use_ff=True, use_rerank=True, use_st_filter=False): # Note: camera independent get_sim_matrix function, # which is different from the one in camera_utils.py. count = len(cid_tids) q_arr = np.array( [cid_tid_dict[cid_tids[i]]['mean_feat'] for i in range(count)]) g_arr = np.array( [cid_tid_dict[cid_tids[i]]['mean_feat'] for i in range(count)]) q_arr = normalize(q_arr, axis=1) g_arr = normalize(g_arr, axis=1) st_mask = np.ones((count, count), dtype=np.float32) st_mask = intracam_ignore(st_mask, cid_tids) visual_sim_matrix = visual_rerank( q_arr, g_arr, cid_tids, use_ff=use_ff, use_rerank=use_rerank) visual_sim_matrix = visual_sim_matrix.astype('float32') np.set_printoptions(precision=3) sim_matrix = visual_sim_matrix * st_mask np.fill_diagonal(sim_matrix, 0) return sim_matrix def get_labels(cid_tid_dict, cid_tids, use_ff=True, use_rerank=True, use_st_filter=False): try: from sklearn.cluster import AgglomerativeClustering except Exception as e: raise RuntimeError( 'Unable to use sklearn in MTMCT in PP-Tracking, please install sklearn, for example: `pip install sklearn`' ) # 1st cluster sim_matrix = get_sim_matrix( cid_tid_dict, cid_tids, use_ff=use_ff, use_rerank=use_rerank, use_st_filter=use_st_filter) cluster_labels = AgglomerativeClustering( n_clusters=None, distance_threshold=0.5, affinity='precomputed', linkage='complete').fit_predict(1 - sim_matrix) labels = get_match(cluster_labels) sub_cluster = get_cid_tid(labels, cid_tids) # 2nd cluster cid_tid_dict_new = combin_feature(cid_tid_dict, sub_cluster) sim_matrix = get_sim_matrix( cid_tid_dict_new, cid_tids, use_ff=use_ff, use_rerank=use_rerank, use_st_filter=use_st_filter) cluster_labels = AgglomerativeClustering( n_clusters=None, distance_threshold=0.9, affinity='precomputed', linkage='complete').fit_predict(1 - sim_matrix) labels = get_match(cluster_labels) sub_cluster = get_cid_tid(labels, cid_tids) return labels def getData(fpath, names=None, sep='\s+|\t+|,'): """ Get the necessary track data from a file handle. Args: fpath (str) : Original path of file reading from. names (list[str]): List of column names for the data. sep (str): Allowed separators regular expression string. Return: df (pandas.DataFrame): Data frame containing the data loaded from the stream with optionally assigned column names. No index is set on the data. """ try: df = pd.read_csv( fpath, sep=sep, index_col=None, skipinitialspace=True, header=None, names=names, engine='python') return df except Exception as e: raise ValueError("Could not read input from %s. Error: %s" % (fpath, repr(e)))
PaddleDetection/deploy/pptracking/python/mot/mtmct/utils.py/0
{ "file_path": "PaddleDetection/deploy/pptracking/python/mot/mtmct/utils.py", "repo_id": "PaddleDetection", "token_count": 10456 }
53
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import yaml import glob from functools import reduce from PIL import Image import cv2 import math import numpy as np import paddle import sys # add deploy path of PaddleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..']))) sys.path.insert(0, parent_path) from preprocess import preprocess, NormalizeImage, Permute from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop from keypoint_postprocess import HrHRNetPostProcess, HRNetPostProcess from visualize import visualize_pose from paddle.inference import Config from paddle.inference import create_predictor from utils import argsparser, Timer, get_current_memory_mb from benchmark_utils import PaddleInferBenchmark from infer import Detector, get_test_images, print_arguments # Global dictionary KEYPOINT_SUPPORT_MODELS = { 'HigherHRNet': 'keypoint_bottomup', 'HRNet': 'keypoint_topdown' } class KeyPointDetector(Detector): """ Args: model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU run_mode (str): mode of running(paddle/trt_fp32/trt_fp16) batch_size (int): size of pre batch in inference trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True cpu_threads (int): cpu threads enable_mkldnn (bool): whether to open MKLDNN use_dark(bool): whether to use postprocess in DarkPose """ def __init__(self, model_dir, device='CPU', run_mode='paddle', batch_size=1, trt_min_shape=1, trt_max_shape=1280, trt_opt_shape=640, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False, output_dir='output', threshold=0.5, use_dark=True, use_fd_format=False): super(KeyPointDetector, self).__init__( model_dir=model_dir, device=device, run_mode=run_mode, batch_size=batch_size, trt_min_shape=trt_min_shape, trt_max_shape=trt_max_shape, trt_opt_shape=trt_opt_shape, trt_calib_mode=trt_calib_mode, cpu_threads=cpu_threads, enable_mkldnn=enable_mkldnn, output_dir=output_dir, threshold=threshold, use_fd_format=use_fd_format) self.use_dark = use_dark def set_config(self, model_dir, use_fd_format): return PredictConfig_KeyPoint(model_dir, use_fd_format=use_fd_format) def get_person_from_rect(self, image, results): # crop the person result from image self.det_times.preprocess_time_s.start() valid_rects = results['boxes'] rect_images = [] new_rects = [] org_rects = [] for rect in valid_rects: rect_image, new_rect, org_rect = expand_crop(image, rect) if rect_image is None or rect_image.size == 0: continue rect_images.append(rect_image) new_rects.append(new_rect) org_rects.append(org_rect) self.det_times.preprocess_time_s.end() return rect_images, new_rects, org_rects def postprocess(self, inputs, result): np_heatmap = result['heatmap'] np_masks = result['masks'] # postprocess output of predictor if KEYPOINT_SUPPORT_MODELS[ self.pred_config.arch] == 'keypoint_bottomup': results = {} h, w = inputs['im_shape'][0] preds = [np_heatmap] if np_masks is not None: preds += np_masks preds += [h, w] keypoint_postprocess = HrHRNetPostProcess() kpts, scores = keypoint_postprocess(*preds) results['keypoint'] = kpts results['score'] = scores return results elif KEYPOINT_SUPPORT_MODELS[ self.pred_config.arch] == 'keypoint_topdown': results = {} imshape = inputs['im_shape'][:, ::-1] center = np.round(imshape / 2.) scale = imshape / 200. keypoint_postprocess = HRNetPostProcess(use_dark=self.use_dark) kpts, scores = keypoint_postprocess(np_heatmap, center, scale) results['keypoint'] = kpts results['score'] = scores return results else: raise ValueError("Unsupported arch: {}, expect {}".format( self.pred_config.arch, KEYPOINT_SUPPORT_MODELS)) def predict(self, repeats=1): ''' Args: repeats (int): repeat number for prediction Returns: results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape: [N, im_h, im_w] ''' # model prediction np_heatmap, np_masks = None, None for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() heatmap_tensor = self.predictor.get_output_handle(output_names[0]) np_heatmap = heatmap_tensor.copy_to_cpu() if self.pred_config.tagmap: masks_tensor = self.predictor.get_output_handle(output_names[1]) heat_k = self.predictor.get_output_handle(output_names[2]) inds_k = self.predictor.get_output_handle(output_names[3]) np_masks = [ masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(), inds_k.copy_to_cpu() ] result = dict(heatmap=np_heatmap, masks=np_masks) return result def predict_image(self, image_list, run_benchmark=False, repeats=1, visual=True): results = [] batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size) for i in range(batch_loop_cnt): start_index = i * self.batch_size end_index = min((i + 1) * self.batch_size, len(image_list)) batch_image_list = image_list[start_index:end_index] if run_benchmark: # preprocess inputs = self.preprocess(batch_image_list) # warmup self.det_times.preprocess_time_s.start() inputs = self.preprocess(batch_image_list) self.det_times.preprocess_time_s.end() # model prediction result_warmup = self.predict(repeats=repeats) # warmup self.det_times.inference_time_s.start() result = self.predict(repeats=repeats) self.det_times.inference_time_s.end(repeats=repeats) # postprocess result_warmup = self.postprocess(inputs, result) # warmup self.det_times.postprocess_time_s.start() result = self.postprocess(inputs, result) self.det_times.postprocess_time_s.end() self.det_times.img_num += len(batch_image_list) cm, gm, gu = get_current_memory_mb() self.cpu_mem += cm self.gpu_mem += gm self.gpu_util += gu else: # preprocess self.det_times.preprocess_time_s.start() inputs = self.preprocess(batch_image_list) self.det_times.preprocess_time_s.end() # model prediction self.det_times.inference_time_s.start() result = self.predict() self.det_times.inference_time_s.end() # postprocess self.det_times.postprocess_time_s.start() result = self.postprocess(inputs, result) self.det_times.postprocess_time_s.end() self.det_times.img_num += len(batch_image_list) if visual: if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) visualize( batch_image_list, result, visual_thresh=self.threshold, save_dir=self.output_dir) results.append(result) if visual: print('Test iter {}'.format(i)) results = self.merge_batch_result(results) return results def predict_video(self, video_file, camera_id): video_name = 'output.mp4' if camera_id != -1: capture = cv2.VideoCapture(camera_id) else: capture = cv2.VideoCapture(video_file) video_name = os.path.split(video_file)[-1] # Get Video info : resolution, fps, frame count width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(capture.get(cv2.CAP_PROP_FPS)) frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) print("fps: %d, frame_count: %d" % (fps, frame_count)) if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) out_path = os.path.join(self.output_dir, video_name) fourcc = cv2.VideoWriter_fourcc(* 'mp4v') writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height)) index = 1 while (1): ret, frame = capture.read() if not ret: break print('detect frame: %d' % (index)) index += 1 results = self.predict_image([frame[:, :, ::-1]], visual=False) im_results = {} im_results['keypoint'] = [results['keypoint'], results['score']] im = visualize_pose( frame, im_results, visual_thresh=self.threshold, returnimg=True) writer.write(im) if camera_id != -1: cv2.imshow('Mask Detection', im) if cv2.waitKey(1) & 0xFF == ord('q'): break writer.release() def create_inputs(imgs, im_info): """generate input for different model type Args: imgs (list(numpy)): list of image (np.ndarray) im_info (list(dict)): list of image info Returns: inputs (dict): input of model """ inputs = {} inputs['image'] = np.stack(imgs, axis=0).astype('float32') im_shape = [] for e in im_info: im_shape.append(np.array((e['im_shape'])).astype('float32')) inputs['im_shape'] = np.stack(im_shape, axis=0) return inputs class PredictConfig_KeyPoint(): """set config of preprocess, postprocess and visualize Args: model_dir (str): root path of model.yml """ def __init__(self, model_dir, use_fd_format=False): # parsing Yaml config for Preprocess fd_deploy_file = os.path.join(model_dir, 'inference.yml') ppdet_deploy_file = os.path.join(model_dir, 'infer_cfg.yml') if use_fd_format: if not os.path.exists(fd_deploy_file) and os.path.exists( ppdet_deploy_file): raise RuntimeError( "Non-FD format model detected. Please set `use_fd_format` to False." ) deploy_file = fd_deploy_file else: if not os.path.exists(ppdet_deploy_file) and os.path.exists( fd_deploy_file): raise RuntimeError( "FD format model detected. Please set `use_fd_format` to False." ) deploy_file = ppdet_deploy_file with open(deploy_file) as f: yml_conf = yaml.safe_load(f) self.check_model(yml_conf) self.arch = yml_conf['arch'] self.archcls = KEYPOINT_SUPPORT_MODELS[yml_conf['arch']] self.preprocess_infos = yml_conf['Preprocess'] self.min_subgraph_size = yml_conf['min_subgraph_size'] self.labels = yml_conf['label_list'] self.tagmap = False self.use_dynamic_shape = yml_conf['use_dynamic_shape'] if 'keypoint_bottomup' == self.archcls: self.tagmap = True self.print_config() def check_model(self, yml_conf): """ Raises: ValueError: loaded model not in supported model type """ for support_model in KEYPOINT_SUPPORT_MODELS: if support_model in yml_conf['arch']: return True raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[ 'arch'], KEYPOINT_SUPPORT_MODELS)) def print_config(self): print('----------- Model Configuration -----------') print('%s: %s' % ('Model Arch', self.arch)) print('%s: ' % ('Transform Order')) for op_info in self.preprocess_infos: print('--%s: %s' % ('transform op', op_info['type'])) print('--------------------------------------------') def visualize(image_list, results, visual_thresh=0.6, save_dir='output'): im_results = {} for i, image_file in enumerate(image_list): skeletons = results['keypoint'] scores = results['score'] skeleton = skeletons[i:i + 1] score = scores[i:i + 1] im_results['keypoint'] = [skeleton, score] visualize_pose( image_file, im_results, visual_thresh=visual_thresh, save_dir=save_dir) def main(): detector = KeyPointDetector( FLAGS.model_dir, device=FLAGS.device, run_mode=FLAGS.run_mode, batch_size=FLAGS.batch_size, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn, threshold=FLAGS.threshold, output_dir=FLAGS.output_dir, use_dark=FLAGS.use_dark, use_fd_format=FLAGS.use_fd_format) # predict from video file or camera video stream if FLAGS.video_file is not None or FLAGS.camera_id != -1: detector.predict_video(FLAGS.video_file, FLAGS.camera_id) else: # predict from image img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file) detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10) if not FLAGS.run_benchmark: detector.det_times.info(average=True) else: mems = { 'cpu_rss_mb': detector.cpu_mem / len(img_list), 'gpu_rss_mb': detector.gpu_mem / len(img_list), 'gpu_util': detector.gpu_util * 100 / len(img_list) } perf_info = detector.det_times.report(average=True) model_dir = FLAGS.model_dir mode = FLAGS.run_mode model_info = { 'model_name': model_dir.strip('/').split('/')[-1], 'precision': mode.split('_')[-1] } data_info = { 'batch_size': 1, 'shape': "dynamic_shape", 'data_num': perf_info['img_num'] } det_log = PaddleInferBenchmark(detector.config, model_info, data_info, perf_info, mems) det_log('KeyPoint') if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() print_arguments(FLAGS) FLAGS.device = FLAGS.device.upper() assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU' ], "device should be CPU, GPU, XPU or NPU" assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device" main()
PaddleDetection/deploy/python/keypoint_infer.py/0
{ "file_path": "PaddleDetection/deploy/python/keypoint_infer.py", "repo_id": "PaddleDetection", "token_count": 8388 }
54
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "core/general-server/op/mask_rcnn_r50_fpn_1x_coco.h" #include "core/predictor/framework/infer.h" #include "core/predictor/framework/memory.h" #include "core/predictor/framework/resource.h" #include "core/util/include/timer.h" #include <algorithm> #include <iostream> #include <memory> #include <sstream> namespace baidu { namespace paddle_serving { namespace serving { using baidu::paddle_serving::Timer; using baidu::paddle_serving::predictor::InferManager; using baidu::paddle_serving::predictor::MempoolWrapper; using baidu::paddle_serving::predictor::PaddleGeneralModelConfig; using baidu::paddle_serving::predictor::general_model::Request; using baidu::paddle_serving::predictor::general_model::Response; using baidu::paddle_serving::predictor::general_model::Tensor; int mask_rcnn_r50_fpn_1x_coco::inference() { VLOG(2) << "Going to run inference"; const std::vector<std::string> pre_node_names = pre_names(); if (pre_node_names.size() != 1) { LOG(ERROR) << "This op(" << op_name() << ") can only have one predecessor op, but received " << pre_node_names.size(); return -1; } const std::string pre_name = pre_node_names[0]; const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name); if (!input_blob) { LOG(ERROR) << "input_blob is nullptr,error"; return -1; } uint64_t log_id = input_blob->GetLogId(); VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name; GeneralBlob *output_blob = mutable_data<GeneralBlob>(); if (!output_blob) { LOG(ERROR) << "output_blob is nullptr,error"; return -1; } output_blob->SetLogId(log_id); if (!input_blob) { LOG(ERROR) << "(logid=" << log_id << ") Failed mutable depended argument, op:" << pre_name; return -1; } const TensorVector *in = &input_blob->tensor_vector; TensorVector *out = &output_blob->tensor_vector; int batch_size = input_blob->_batch_size; output_blob->_batch_size = batch_size; VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size; Timer timeline; int64_t start = timeline.TimeStampUS(); timeline.Start(); // only support string type char *total_input_ptr = static_cast<char *>(in->at(0).data.data()); std::string base64str = total_input_ptr; cv::Mat img = Base2Mat(base64str); cv::cvtColor(img, img, cv::COLOR_BGR2RGB); // preprocess Resize(&img, scale_factor_h, scale_factor_w, im_shape_h, im_shape_w); Normalize(&img, mean_, scale_, is_scale_); PadStride(&img, 32); int input_shape_h = img.rows; int input_shape_w = img.cols; std::vector<float> input(1 * 3 * input_shape_h * input_shape_w, 0.0f); Permute(img, input.data()); // create real_in TensorVector *real_in = new TensorVector(); if (!real_in) { LOG(ERROR) << "real_in is nullptr,error"; return -1; } int in_num = 0; size_t databuf_size = 0; void *databuf_data = NULL; char *databuf_char = NULL; // im_shape std::vector<float> im_shape{static_cast<float>(im_shape_h), static_cast<float>(im_shape_w)}; databuf_size = 2 * sizeof(float); databuf_data = MempoolWrapper::instance().malloc(databuf_size); if (!databuf_data) { LOG(ERROR) << "Malloc failed, size: " << databuf_size; return -1; } memcpy(databuf_data, im_shape.data(), databuf_size); databuf_char = reinterpret_cast<char *>(databuf_data); paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size); paddle::PaddleTensor tensor_in_0; tensor_in_0.name = "im_shape"; tensor_in_0.dtype = paddle::PaddleDType::FLOAT32; tensor_in_0.shape = {1, 2}; tensor_in_0.lod = in->at(0).lod; tensor_in_0.data = paddleBuf_0; real_in->push_back(tensor_in_0); // image in_num = 1 * 3 * input_shape_h * input_shape_w; databuf_size = in_num * sizeof(float); databuf_data = MempoolWrapper::instance().malloc(databuf_size); if (!databuf_data) { LOG(ERROR) << "Malloc failed, size: " << databuf_size; return -1; } memcpy(databuf_data, input.data(), databuf_size); databuf_char = reinterpret_cast<char *>(databuf_data); paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size); paddle::PaddleTensor tensor_in_1; tensor_in_1.name = "image"; tensor_in_1.dtype = paddle::PaddleDType::FLOAT32; tensor_in_1.shape = {1, 3, input_shape_h, input_shape_w}; tensor_in_1.lod = in->at(0).lod; tensor_in_1.data = paddleBuf_1; real_in->push_back(tensor_in_1); // scale_factor std::vector<float> scale_factor{scale_factor_h, scale_factor_w}; databuf_size = 2 * sizeof(float); databuf_data = MempoolWrapper::instance().malloc(databuf_size); if (!databuf_data) { LOG(ERROR) << "Malloc failed, size: " << databuf_size; return -1; } memcpy(databuf_data, scale_factor.data(), databuf_size); databuf_char = reinterpret_cast<char *>(databuf_data); paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size); paddle::PaddleTensor tensor_in_2; tensor_in_2.name = "scale_factor"; tensor_in_2.dtype = paddle::PaddleDType::FLOAT32; tensor_in_2.shape = {1, 2}; tensor_in_2.lod = in->at(0).lod; tensor_in_2.data = paddleBuf_2; real_in->push_back(tensor_in_2); if (InferManager::instance().infer(engine_name().c_str(), real_in, out, batch_size)) { LOG(ERROR) << "(logid=" << log_id << ") Failed do infer in fluid model: " << engine_name().c_str(); return -1; } int64_t end = timeline.TimeStampUS(); CopyBlobInfo(input_blob, output_blob); AddBlobInfo(output_blob, start); AddBlobInfo(output_blob, end); return 0; } void mask_rcnn_r50_fpn_1x_coco::Resize(cv::Mat *img, float &scale_factor_h, float &scale_factor_w, int &im_shape_h, int &im_shape_w) { // keep_ratio int im_size_max = std::max(img->rows, img->cols); int im_size_min = std::min(img->rows, img->cols); int target_size_max = std::max(im_shape_h, im_shape_w); int target_size_min = std::min(im_shape_h, im_shape_w); float scale_min = static_cast<float>(target_size_min) / static_cast<float>(im_size_min); float scale_max = static_cast<float>(target_size_max) / static_cast<float>(im_size_max); float scale_ratio = std::min(scale_min, scale_max); // scale_factor scale_factor_h = scale_ratio; scale_factor_w = scale_ratio; // Resize cv::resize(*img, *img, cv::Size(), scale_ratio, scale_ratio, 2); im_shape_h = img->rows; im_shape_w = img->cols; } void mask_rcnn_r50_fpn_1x_coco::Normalize(cv::Mat *img, const std::vector<float> &mean, const std::vector<float> &scale, const bool is_scale) { // Normalize double e = 1.0; if (is_scale) { e /= 255.0; } (*img).convertTo(*img, CV_32FC3, e); for (int h = 0; h < img->rows; h++) { for (int w = 0; w < img->cols; w++) { img->at<cv::Vec3f>(h, w)[0] = (img->at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0]; img->at<cv::Vec3f>(h, w)[1] = (img->at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1]; img->at<cv::Vec3f>(h, w)[2] = (img->at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2]; } } } void mask_rcnn_r50_fpn_1x_coco::PadStride(cv::Mat *img, int stride_) { // PadStride if (stride_ <= 0) return; int rh = img->rows; int rw = img->cols; int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_; int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_; cv::copyMakeBorder(*img, *img, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT, cv::Scalar(0)); } void mask_rcnn_r50_fpn_1x_coco::Permute(const cv::Mat &img, float *data) { // Permute int rh = img.rows; int rw = img.cols; int rc = img.channels(); for (int i = 0; i < rc; ++i) { cv::extractChannel(img, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i); } } cv::Mat mask_rcnn_r50_fpn_1x_coco::Base2Mat(std::string &base64_data) { cv::Mat img; std::string s_mat; s_mat = base64Decode(base64_data.data(), base64_data.size()); std::vector<char> base64_img(s_mat.begin(), s_mat.end()); img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR return img; } std::string mask_rcnn_r50_fpn_1x_coco::base64Decode(const char *Data, int DataByte) { const char DecodeTable[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, // '+' 0, 0, 0, 63, // '/' 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9' 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z' 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z' }; std::string strDecode; int nValue; int i = 0; while (i < DataByte) { if (*Data != '\r' && *Data != '\n') { nValue = DecodeTable[*Data++] << 18; nValue += DecodeTable[*Data++] << 12; strDecode += (nValue & 0x00FF0000) >> 16; if (*Data != '=') { nValue += DecodeTable[*Data++] << 6; strDecode += (nValue & 0x0000FF00) >> 8; if (*Data != '=') { nValue += DecodeTable[*Data++]; strDecode += nValue & 0x000000FF; } } i += 4; } else // 回车换行,跳过 { Data++; i++; } } return strDecode; } DEFINE_OP(mask_rcnn_r50_fpn_1x_coco); } // namespace serving } // namespace paddle_serving } // namespace baidu
PaddleDetection/deploy/serving/cpp/preprocess/mask_rcnn_r50_fpn_1x_coco.cpp/0
{ "file_path": "PaddleDetection/deploy/serving/cpp/preprocess/mask_rcnn_r50_fpn_1x_coco.cpp", "repo_id": "PaddleDetection", "token_count": 4814 }
55
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG ##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num worker_num: 20 #http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port http_port: 18093 rpc_port: 9993 dag: #op资源类型, True, 为线程模型;False,为进程模型 is_thread_op: False op: #op名称,与web_service中的TIPCExampleService初始化name参数一致 ppdet: #并发数,is_thread_op=True时,为线程并发;否则为进程并发 concurrency: 1 #当op配置没有server_endpoints时,从local_service_conf读取本地服务配置 local_service_conf: #uci模型路径 model_config: "./serving_server" #计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu device_type: #计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡 devices: "0" # "0,1" #client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测 client_type: local_predictor
PaddleDetection/deploy/serving/python/config.yml/0
{ "file_path": "PaddleDetection/deploy/serving/python/config.yml", "repo_id": "PaddleDetection", "token_count": 856 }
56
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <tvm/runtime/c_runtime_api.h> #include <tvm/runtime/crt/stack_allocator.h> #ifdef __cplusplus extern "C" { #endif void __attribute__((noreturn)) TVMPlatformAbort(tvm_crt_error_t error_code) { printf("TVMPlatformAbort: %d\n", error_code); printf("EXITTHESIM\n"); exit(-1); } tvm_crt_error_t TVMPlatformMemoryAllocate(size_t num_bytes, DLDevice dev, void **out_ptr) { return kTvmErrorFunctionCallNotImplemented; } tvm_crt_error_t TVMPlatformMemoryFree(void *ptr, DLDevice dev) { return kTvmErrorFunctionCallNotImplemented; } void TVMLogf(const char *msg, ...) { va_list args; va_start(args, msg); vfprintf(stdout, msg, args); va_end(args); } TVM_DLL int TVMFuncRegisterGlobal(const char *name, TVMFunctionHandle f, int override) { return 0; } #ifdef __cplusplus } #endif
PaddleDetection/deploy/third_engine/demo_avh/include/tvm_runtime.h/0
{ "file_path": "PaddleDetection/deploy/third_engine/demo_avh/include/tvm_runtime.h", "repo_id": "PaddleDetection", "token_count": 629 }
57
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // reference from https://github.com/RangiLyu/nanodet/tree/main/demo_mnn #include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include "keypoint_detector.h" #include "picodet_mnn.h" #define __SAVE_RESULT__ // if defined save drawed results to ../results, else // show it in windows using namespace PaddleDetection; struct object_rect { int x; int y; int width; int height; }; int resize_uniform(cv::Mat& src, cv::Mat& dst, cv::Size dst_size, object_rect& effect_area) { int w = src.cols; int h = src.rows; int dst_w = dst_size.width; int dst_h = dst_size.height; dst = cv::Mat(cv::Size(dst_w, dst_h), CV_8UC3, cv::Scalar(0)); float ratio_src = w * 1.0 / h; float ratio_dst = dst_w * 1.0 / dst_h; int tmp_w = 0; int tmp_h = 0; if (ratio_src > ratio_dst) { tmp_w = dst_w; tmp_h = floor((dst_w * 1.0 / w) * h); } else if (ratio_src < ratio_dst) { tmp_h = dst_h; tmp_w = floor((dst_h * 1.0 / h) * w); } else { cv::resize(src, dst, dst_size); effect_area.x = 0; effect_area.y = 0; effect_area.width = dst_w; effect_area.height = dst_h; return 0; } cv::Mat tmp; cv::resize(src, tmp, cv::Size(tmp_w, tmp_h)); if (tmp_w != dst_w) { int index_w = floor((dst_w - tmp_w) / 2.0); for (int i = 0; i < dst_h; i++) { memcpy(dst.data + i * dst_w * 3 + index_w * 3, tmp.data + i * tmp_w * 3, tmp_w * 3); } effect_area.x = index_w; effect_area.y = 0; effect_area.width = tmp_w; effect_area.height = tmp_h; } else if (tmp_h != dst_h) { int index_h = floor((dst_h - tmp_h) / 2.0); memcpy(dst.data + index_h * dst_w * 3, tmp.data, tmp_w * tmp_h * 3); effect_area.x = 0; effect_area.y = index_h; effect_area.width = tmp_w; effect_area.height = tmp_h; } else { printf("error\n"); } return 0; } const int color_list[80][3] = { {216, 82, 24}, {236, 176, 31}, {125, 46, 141}, {118, 171, 47}, {76, 189, 237}, {238, 19, 46}, {76, 76, 76}, {153, 153, 153}, {255, 0, 0}, {255, 127, 0}, {190, 190, 0}, {0, 255, 0}, {0, 0, 255}, {170, 0, 255}, {84, 84, 0}, {84, 170, 0}, {84, 255, 0}, {170, 84, 0}, {170, 170, 0}, {170, 255, 0}, {255, 84, 0}, {255, 170, 0}, {255, 255, 0}, {0, 84, 127}, {0, 170, 127}, {0, 255, 127}, {84, 0, 127}, {84, 84, 127}, {84, 170, 127}, {84, 255, 127}, {170, 0, 127}, {170, 84, 127}, {170, 170, 127}, {170, 255, 127}, {255, 0, 127}, {255, 84, 127}, {255, 170, 127}, {255, 255, 127}, {0, 84, 255}, {0, 170, 255}, {0, 255, 255}, {84, 0, 255}, {84, 84, 255}, {84, 170, 255}, {84, 255, 255}, {170, 0, 255}, {170, 84, 255}, {170, 170, 255}, {170, 255, 255}, {255, 0, 255}, {255, 84, 255}, {255, 170, 255}, {42, 0, 0}, {84, 0, 0}, {127, 0, 0}, {170, 0, 0}, {212, 0, 0}, {255, 0, 0}, {0, 42, 0}, {0, 84, 0}, {0, 127, 0}, {0, 170, 0}, {0, 212, 0}, {0, 255, 0}, {0, 0, 42}, {0, 0, 84}, {0, 0, 127}, {0, 0, 170}, {0, 0, 212}, {0, 0, 255}, {0, 0, 0}, {36, 36, 36}, {72, 72, 72}, {109, 109, 109}, {145, 145, 145}, {182, 182, 182}, {218, 218, 218}, {0, 113, 188}, {80, 182, 188}, {127, 127, 0}, }; void draw_bboxes(const cv::Mat& bgr, const std::vector<BoxInfo>& bboxes, object_rect effect_roi, std::string save_path = "None") { static const char* class_names[] = { "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"}; cv::Mat image = bgr.clone(); int src_w = image.cols; int src_h = image.rows; int dst_w = effect_roi.width; int dst_h = effect_roi.height; float width_ratio = (float)src_w / (float)dst_w; float height_ratio = (float)src_h / (float)dst_h; for (size_t i = 0; i < bboxes.size(); i++) { const BoxInfo& bbox = bboxes[i]; cv::Scalar color = cv::Scalar(color_list[bbox.label][0], color_list[bbox.label][1], color_list[bbox.label][2]); cv::rectangle(image, cv::Rect(cv::Point((bbox.x1 - effect_roi.x) * width_ratio, (bbox.y1 - effect_roi.y) * height_ratio), cv::Point((bbox.x2 - effect_roi.x) * width_ratio, (bbox.y2 - effect_roi.y) * height_ratio)), color); char text[256]; sprintf(text, "%s %.1f%%", class_names[bbox.label], bbox.score * 100); int baseLine = 0; cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.4, 1, &baseLine); int x = (bbox.x1 - effect_roi.x) * width_ratio; int y = (bbox.y1 - effect_roi.y) * height_ratio - label_size.height - baseLine; if (y < 0) y = 0; if (x + label_size.width > image.cols) x = image.cols - label_size.width; cv::rectangle( image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), color, -1); cv::putText(image, text, cv::Point(x, y + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(255, 255, 255)); } if (save_path == "None") { cv::imshow("image", image); } else { cv::imwrite(save_path, image); std::cout << save_path << std::endl; } } std::vector<BoxInfo> coordsback(const cv::Mat image, const object_rect effect_roi, const std::vector<BoxInfo>& bboxes) { int src_w = image.cols; int src_h = image.rows; int dst_w = effect_roi.width; int dst_h = effect_roi.height; float width_ratio = (float)src_w / (float)dst_w; float height_ratio = (float)src_h / (float)dst_h; std::vector<BoxInfo> bboxes_oimg; for (int i = 0; i < bboxes.size(); i++) { auto bbox = bboxes[i]; bbox.x1 = (bbox.x1 - effect_roi.x) * width_ratio; bbox.y1 = (bbox.y1 - effect_roi.y) * height_ratio; bbox.x2 = (bbox.x2 - effect_roi.x) * width_ratio; bbox.y2 = (bbox.y2 - effect_roi.y) * height_ratio; bboxes_oimg.emplace_back(bbox); } return bboxes_oimg; } void image_infer_kpts(KeyPointDetector* kpts_detector, cv::Mat image, const object_rect effect_roi, const std::vector<BoxInfo>& results, std::string img_name = "kpts_vis", bool save_img = true) { std::vector<cv::Mat> cropimgs; std::vector<std::vector<float>> center_bs; std::vector<std::vector<float>> scale_bs; std::vector<KeyPointResult> kpts_results; auto results_oimg = coordsback(image, effect_roi, results); for (int i = 0; i < results_oimg.size(); i++) { auto rect = results_oimg[i]; if (rect.label == 0) { cv::Mat cropimg; std::vector<float> center, scale; std::vector<int> area = {static_cast<int>(rect.x1), static_cast<int>(rect.y1), static_cast<int>(rect.x2), static_cast<int>(rect.y2)}; CropImg(image, cropimg, area, center, scale); // cv::imwrite("./test_crop_"+std::to_string(i)+".jpg", cropimg); cropimgs.emplace_back(cropimg); center_bs.emplace_back(center); scale_bs.emplace_back(scale); } if (cropimgs.size() == 1 || (cropimgs.size() > 0 && i == results_oimg.size() - 1)) { kpts_detector->Predict(cropimgs, center_bs, scale_bs, &kpts_results); cropimgs.clear(); center_bs.clear(); scale_bs.clear(); } } std::vector<int> compression_params; compression_params.push_back(cv::IMWRITE_JPEG_QUALITY); compression_params.push_back(95); std::string kpts_savepath = "keypoint_" + img_name.substr(img_name.find_last_of('/') + 1); cv::Mat kpts_vis_img = VisualizeKptsResult(image, kpts_results, {0, 255, 0}, 0.3); if (save_img) { cv::imwrite(kpts_savepath, kpts_vis_img, compression_params); printf("Visualized output saved as %s\n", kpts_savepath.c_str()); } else { cv::imshow("image", kpts_vis_img); } } int image_demo(PicoDet& detector, KeyPointDetector* kpts_detector, const char* imagepath) { std::vector<cv::String> filenames; cv::glob(imagepath, filenames, false); for (auto img_name : filenames) { cv::Mat image = cv::imread(img_name); if (image.empty()) { fprintf(stderr, "cv::imread %s failed\n", img_name.c_str()); return -1; } object_rect effect_roi; cv::Mat resized_img; resize_uniform(image, resized_img, cv::Size(320, 320), effect_roi); std::vector<BoxInfo> results; detector.detect(resized_img, results); if (kpts_detector) { image_infer_kpts(kpts_detector, image, effect_roi, results, img_name); } } return 0; } int webcam_demo(PicoDet& detector, KeyPointDetector* kpts_detector, int cam_id) { cv::Mat image; cv::VideoCapture cap(cam_id); while (true) { cap >> image; object_rect effect_roi; cv::Mat resized_img; resize_uniform(image, resized_img, cv::Size(320, 320), effect_roi); std::vector<BoxInfo> results; detector.detect(resized_img, results); if (kpts_detector) { image_infer_kpts(kpts_detector, image, effect_roi, results, "", false); } } return 0; } int video_demo(PicoDet& detector, KeyPointDetector* kpts_detector, const char* path) { cv::Mat image; cv::VideoCapture cap(path); while (true) { cap >> image; object_rect effect_roi; cv::Mat resized_img; resize_uniform(image, resized_img, cv::Size(320, 320), effect_roi); std::vector<BoxInfo> results; detector.detect(resized_img, results); if (kpts_detector) { image_infer_kpts(kpts_detector, image, effect_roi, results, "", false); } } return 0; } int benchmark(KeyPointDetector* kpts_detector) { int loop_num = 100; int warm_up = 8; double time_min = DBL_MAX; double time_max = -DBL_MAX; double time_avg = 0; cv::Mat image(256, 192, CV_8UC3, cv::Scalar(1, 1, 1)); std::vector<float> center = {128, 96}; std::vector<float> scale = {256, 192}; std::vector<cv::Mat> cropimgs = {image}; std::vector<std::vector<float>> center_bs = {center}; std::vector<std::vector<float>> scale_bs = {scale}; std::vector<KeyPointResult> kpts_results; for (int i = 0; i < warm_up + loop_num; i++) { auto start = std::chrono::steady_clock::now(); std::vector<BoxInfo> results; kpts_detector->Predict(cropimgs, center_bs, scale_bs, &kpts_results); auto end = std::chrono::steady_clock::now(); std::chrono::duration<double> elapsed = end - start; double time = elapsed.count(); if (i >= warm_up) { time_min = (std::min)(time_min, time); time_max = (std::max)(time_max, time); time_avg += time; } } time_avg /= loop_num; fprintf(stderr, "%20s min = %7.2f max = %7.2f avg = %7.2f\n", "tinypose", time_min, time_max, time_avg); return 0; } int main(int argc, char** argv) { if (argc != 3) { fprintf(stderr, "usage: %s [mode] [path]. \n For webcam mode=0, path is cam id; \n " "For image demo, mode=1, path=xxx/xxx/*.jpg; \n For video, mode=2; " "\n For benchmark, mode=3 path=0.\n", argv[0]); return -1; } PicoDet detector = PicoDet("../weight/picodet_m_416.mnn", 416, 416, 4, 0.45, 0.3); KeyPointDetector* kpts_detector = new KeyPointDetector("../weight/tinypose256.mnn", 4, 256, 192); int mode = atoi(argv[1]); switch (mode) { case 0: { int cam_id = atoi(argv[2]); webcam_demo(detector, kpts_detector, cam_id); break; } case 1: { const char* images = argv[2]; image_demo(detector, kpts_detector, images); break; } case 2: { const char* path = argv[2]; video_demo(detector, kpts_detector, path); break; } case 3: { benchmark(kpts_detector); break; } default: { fprintf(stderr, "usage: %s [mode] [path]. \n For webcam mode=0, path is cam id; " "\n For image demo, mode=1, path=xxx/xxx/*.jpg; \n For video, " "mode=2; \n For benchmark, mode=3 path=0.\n", argv[0]); break; } } delete kpts_detector; kpts_detector = nullptr; }
PaddleDetection/deploy/third_engine/demo_mnn_kpts/main.cpp/0
{ "file_path": "PaddleDetection/deploy/third_engine/demo_mnn_kpts/main.cpp", "repo_id": "PaddleDetection", "token_count": 7319 }
58
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np import argparse import onnxruntime as ort from pathlib import Path from tqdm import tqdm class PicoDet(): def __init__(self, model_pb_path, label_path, prob_threshold=0.4, iou_threshold=0.3): self.classes = list( map(lambda x: x.strip(), open(label_path, 'r').readlines())) self.num_classes = len(self.classes) self.prob_threshold = prob_threshold self.iou_threshold = iou_threshold self.mean = np.array( [103.53, 116.28, 123.675], dtype=np.float32).reshape(1, 1, 3) self.std = np.array( [57.375, 57.12, 58.395], dtype=np.float32).reshape(1, 1, 3) so = ort.SessionOptions() so.log_severity_level = 3 self.net = ort.InferenceSession(model_pb_path, so) inputs_name = [a.name for a in self.net.get_inputs()] inputs_shape = { k: v.shape for k, v in zip(inputs_name, self.net.get_inputs()) } self.input_shape = inputs_shape['image'][2:] def _normalize(self, img): img = img.astype(np.float32) img = (img / 255.0 - self.mean / 255.0) / (self.std / 255.0) return img def resize_image(self, srcimg, keep_ratio=False): top, left, newh, neww = 0, 0, self.input_shape[0], self.input_shape[1] origin_shape = srcimg.shape[:2] im_scale_y = newh / float(origin_shape[0]) im_scale_x = neww / float(origin_shape[1]) img_shape = np.array([ [float(self.input_shape[0]), float(self.input_shape[1])] ]).astype('float32') scale_factor = np.array([[im_scale_y, im_scale_x]]).astype('float32') if keep_ratio and srcimg.shape[0] != srcimg.shape[1]: hw_scale = srcimg.shape[0] / srcimg.shape[1] if hw_scale > 1: newh, neww = self.input_shape[0], int(self.input_shape[1] / hw_scale) img = cv2.resize( srcimg, (neww, newh), interpolation=cv2.INTER_AREA) left = int((self.input_shape[1] - neww) * 0.5) img = cv2.copyMakeBorder( img, 0, 0, left, self.input_shape[1] - neww - left, cv2.BORDER_CONSTANT, value=0) # add border else: newh, neww = int(self.input_shape[0] * hw_scale), self.input_shape[1] img = cv2.resize( srcimg, (neww, newh), interpolation=cv2.INTER_AREA) top = int((self.input_shape[0] - newh) * 0.5) img = cv2.copyMakeBorder( img, top, self.input_shape[0] - newh - top, 0, 0, cv2.BORDER_CONSTANT, value=0) else: img = cv2.resize( srcimg, self.input_shape, interpolation=cv2.INTER_LINEAR) return img, img_shape, scale_factor def get_color_map_list(self, num_classes): color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map def detect(self, srcimg): img, im_shape, scale_factor = self.resize_image(srcimg) img = self._normalize(img) blob = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0) inputs_dict = { 'im_shape': im_shape, 'image': blob, 'scale_factor': scale_factor } inputs_name = [a.name for a in self.net.get_inputs()] net_inputs = {k: inputs_dict[k] for k in inputs_name} outs = self.net.run(None, net_inputs) outs = np.array(outs[0]) expect_boxes = (outs[:, 1] > 0.5) & (outs[:, 0] > -1) np_boxes = outs[expect_boxes, :] color_list = self.get_color_map_list(self.num_classes) clsid2color = {} for i in range(np_boxes.shape[0]): classid, conf = int(np_boxes[i, 0]), np_boxes[i, 1] xmin, ymin, xmax, ymax = int(np_boxes[i, 2]), int(np_boxes[ i, 3]), int(np_boxes[i, 4]), int(np_boxes[i, 5]) if classid not in clsid2color: clsid2color[classid] = color_list[classid] color = tuple(clsid2color[classid]) cv2.rectangle( srcimg, (xmin, ymin), (xmax, ymax), color, thickness=2) print(self.classes[classid] + ': ' + str(round(conf, 3))) cv2.putText( srcimg, self.classes[classid] + ':' + str(round(conf, 3)), (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), thickness=2) return srcimg def detect_folder(self, img_fold, result_path): img_fold = Path(img_fold) result_path = Path(result_path) result_path.mkdir(parents=True, exist_ok=True) img_name_list = filter( lambda x: str(x).endswith(".png") or str(x).endswith(".jpg"), img_fold.iterdir(), ) img_name_list = list(img_name_list) print(f"find {len(img_name_list)} images") for img_path in tqdm(img_name_list): img = cv2.imread(str(img_path), 1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) srcimg = net.detect(img) save_path = str(result_path / img_path.name.replace(".png", ".jpg")) cv2.imwrite(save_path, srcimg) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--modelpath', type=str, default='onnx_file/picodet_s_320_lcnet_postprocessed.onnx', help="onnx filepath") parser.add_argument( '--classfile', type=str, default='coco_label.txt', help="classname filepath") parser.add_argument( '--confThreshold', default=0.5, type=float, help='class confidence') parser.add_argument( '--nmsThreshold', default=0.6, type=float, help='nms iou thresh') parser.add_argument( "--img_fold", dest="img_fold", type=str, default="./imgs") parser.add_argument( "--result_fold", dest="result_fold", type=str, default="results") args = parser.parse_args() net = PicoDet( args.modelpath, args.classfile, prob_threshold=args.confThreshold, iou_threshold=args.nmsThreshold) net.detect_folder(args.img_fold, args.result_fold) print( f'infer results in ./deploy/third_engine/demo_onnxruntime/{args.result_fold}' )
PaddleDetection/deploy/third_engine/demo_onnxruntime/infer_demo.py/0
{ "file_path": "PaddleDetection/deploy/third_engine/demo_onnxruntime/infer_demo.py", "repo_id": "PaddleDetection", "token_count": 4119 }
59
简体中文 | [English](./pphuman_mtmct_en.md) # 跨镜跟踪任务二次开发 ## 数据准备 ### 数据格式 跨镜跟踪使用行人REID技术实现,其训练方式采用多分类模型训练,使用时取分类softmax头部前的特征作为检索特征向量。 因此其格式与多分类任务相同。每一个行人分配一个专属id,不同行人id不同,同一行人在不同图片中的id相同。 例如图片0001.jpg、0003.jpg是同一个人,0002.jpg、0004.jpg是不同的其他行人。则标注id为: ``` 0001.jpg 00001 0002.jpg 00002 0003.jpg 00001 0004.jpg 00003 ... ``` 依次类推。 ### 数据标注 理解了上面`标注`格式的含义后,就可以进行数据标注的工作。其本质是:每张单人图建立一个标注项,对应该行人分配的id。 举例: 对于一张原始图片, 1) 使用检测框,标注图片中每一个人的位置。 2) 每一个检测框(对应每一个人),包含一个int类型的id属性。例如,上述举例中的0001.jpg中的人,对应id:1. 标注完成后利用检测框将每一个人截取成单人图,其图片与id属性标注建立对应关系。也可先截成单人图再进行标注,效果相同。 ## 模型训练 数据标注完成后,就可以拿来做模型的训练,完成自定义模型的优化工作。 其主要有两步工作需要完成:1)将数据与标注数据整理成训练格式。2)修改配置文件开始训练。 ### 训练数据格式 训练数据包括训练使用的图片和一个训练列表bounding_box_train.txt,其具体位置在训练配置中指定,其放置方式示例如下: ``` REID/ |-- data 训练图片文件夹 | |-- 00001.jpg | |-- 00002.jpg | `-- 0000x.jpg `-- bounding_box_train.txt 训练数据列表 ``` bounding_box_train.txt文件内为所有训练图片名称(相对于根路径的文件路径)+ 1个id标注值 其每一行表示一个人的图片和id标注结果。其格式为: ``` 0001.jpg 00001 0002.jpg 00002 0003.jpg 00001 0004.jpg 00003 ``` 注意:图片与标注值之间是以Tab[\t]符号隔开。该格式不能错,否则解析失败。 ### 修改配置开始训练 首先执行以下命令下载训练代码(更多环境问题请参考[Install_PaddleClas](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/en/installation/install_paddleclas_en.md)): ```shell git clone https://github.com/PaddlePaddle/PaddleClas ``` 需要在配置文件[softmax_triplet_with_center.yaml](https://github.com/PaddlePaddle/PaddleClas/blob/develop/ppcls/configs/reid/strong_baseline/softmax_triplet_with_center.yaml)中,修改的配置项如下: ``` Head: name: "FC" embedding_size: *feat_dim class_num: &class_num 751 #行人id总数量 DataLoader: Train: dataset: name: "Market1501" image_root: "./dataset/" #训练图片根路径 cls_label_path: "bounding_box_train" #训练文件列表 Eval: Query: dataset: name: "Market1501" image_root: "./dataset/" #评估图片根路径 cls_label_path: "query" #评估文件列表 ``` 注意: 1. 这里image_root路径+bounding_box_train.txt中图片相对路径,对应图片存放的完整路径。 然后运行以下命令开始训练。 ``` #多卡训练 export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ -c ./ppcls/configs/reid/strong_baseline/softmax_triplet_with_center.yaml #单卡训练 python3 tools/train.py \ -c ./ppcls/configs/reid/strong_baseline/softmax_triplet_with_center.yaml ``` 训练完成后可以执行以下命令进行性能评估: ``` #多卡评估 export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/eval.py \ -c ./ppcls/configs/reid/strong_baseline/softmax_triplet_with_center.yaml \ -o Global.pretrained_model=./output/strong_baseline/best_model #单卡评估 python3 tools/eval.py \ -c ./ppcls/configs/reid/strong_baseline/softmax_triplet_with_center.yaml \ -o Global.pretrained_model=./output/strong_baseline/best_model ``` ### 模型导出 使用下述命令将训练好的模型导出为预测部署模型。 ``` python3 tools/export_model.py \ -c ./ppcls/configs/reid/strong_baseline/softmax_triplet_with_center.yaml \ -o Global.pretrained_model=./output/strong_baseline/best_model \ -o Global.save_inference_dir=deploy/models/strong_baseline_inference ``` 导出模型后,下载[infer_cfg.yml](https://bj.bcebos.com/v1/paddledet/models/pipeline/REID/infer_cfg.yml)文件到新导出的模型文件夹'strong_baseline_inference'中。 使用时在PP-Human中的配置文件infer_cfg_pphuman.yml中修改模型路径`model_dir`并开启功能`enable`。 ``` REID: model_dir: [YOUR_DEPLOY_MODEL_DIR]/strong_baseline_inference/ enable: True ``` 然后可以使用。至此完成模型开发。
PaddleDetection/docs/advanced_tutorials/customization/pphuman_mtmct.md/0
{ "file_path": "PaddleDetection/docs/advanced_tutorials/customization/pphuman_mtmct.md", "repo_id": "PaddleDetection", "token_count": 3061 }
60
English | [简体中文](GETTING_STARTED_cn.md) # Getting Started ## Installation For setting up the running environment, please refer to [installation instructions](INSTALL_cn.md). ## Data preparation - Please refer to [PrepareDetDataSet](./data/PrepareDetDataSet_en.md) for data preparation - Please set the data path for data configuration file in ```configs/datasets``` ## Training & Evaluation & Inference PaddleDetection provides scripts for training, evalution and inference with various features according to different configure. And for more distribued training details see [DistributedTraining].(./DistributedTraining_en.md) ```bash # training on single-GPU export CUDA_VISIBLE_DEVICES=0 python tools/train.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml # training on multi-GPU export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml # training on multi-machines and multi-GPUs export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 $fleetrun --ips="10.127.6.17,10.127.5.142,10.127.45.13,10.127.44.151" --selected_gpu 0,1,2,3,4,5,6,7 tools/train.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml # GPU evaluation export CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams # Inference python tools/infer.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml --infer_img=demo/000000570688.jpg -o weights=https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams ``` ### Other argument list list below can be viewed by `--help` | FLAG | script supported | description | default | remark | | :----------------------: | :------------: | :---------------: | :--------------: | :-----------------: | | -c | ALL | Select config file | None | **required**, such as `-c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml` | | -o | ALL | Set parameters in configure file | None | `-o` has higher priority to file configured by `-c`. Such as `-o use_gpu=False` | | --eval | train | Whether to perform evaluation in training | False | set `--eval` if needed | | -r/--resume_checkpoint | train | Checkpoint path for resuming training | None | such as `-r output/faster_rcnn_r50_1x_coco/10000` | | --slim_config | ALL | Configure file of slim method | None | such as `--slim_config configs/slim/prune/yolov3_prune_l1_norm.yml` | | --use_vdl | train/infer | Whether to record the data with [VisualDL](https://github.com/paddlepaddle/visualdl), so as to display in VisualDL | False | VisualDL requires Python>=3.5 | | --vdl\_log_dir | train/infer | VisualDL logging directory for image | train:`vdl_log_dir/scalar` infer: `vdl_log_dir/image` | VisualDL requires Python>=3.5 | | --output_eval | eval | Directory for storing the evaluation output | None | such as `--output_eval=eval_output`, default is current directory | | --json_eval | eval | Whether to evaluate with already existed bbox.json or mask.json | False | set `--json_eval` if needed and json path is set in `--output_eval` | | --classwise | eval | Whether to eval AP for each class and draw PR curve | False | set `--classwise` if needed | | --output_dir | infer | Directory for storing the output visualization files | `./output` | such as `--output_dir output` | | --draw_threshold | infer | Threshold to reserve the result for visualization | 0.5 | such as `--draw_threshold 0.7` | | --infer_dir | infer | Directory for images to perform inference on | None | One of `infer_dir` and `infer_img` is requied | | --infer_img | infer | Image path | None | One of `infer_dir` and `infer_img` is requied, `infer_img` has higher priority over `infer_dir` | | --save_results | infer | Whether to save detection results to file | False | Optional ## Examples ### Training - Perform evaluation in training ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml --eval ``` Perform training and evalution alternatively and evaluate at each end of epoch. Meanwhile, the best model with highest MAP is saved at each epoch which has the same path as `model_final`. If evaluation dataset is large, we suggest modifing `snapshot_epoch` in `configs/runtime.yml` to decrease evaluation times or evaluating after training. - Fine-tune other task When using pre-trained model to fine-tune other task, pretrain\_weights can be used directly. The parameters with different shape will be ignored automatically. For example: ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # If the shape of parameters in program is different from pretrain_weights, # then PaddleDetection will not use such parameters. python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml \ -o pretrain_weights=output/faster_rcnn_r50_1x_coco/model_final \ ``` ##### NOTES - `CUDA_VISIBLE_DEVICES` can specify different gpu numbers. Such as: `export CUDA_VISIBLE_DEVICES=0,1,2,3`. - Dataset will be downloaded automatically and cached in `~/.cache/paddle/dataset` if not be found locally. - Pretrained model is downloaded automatically and cached in `~/.cache/paddle/weights`. - Checkpoints are saved in `output` by default, and can be revised from `save_dir` in `configs/runtime.yml`. ### Evaluation - Evaluate by specified weights path and dataset path ```bash export CUDA_VISIBLE_DEVICES=0 python -u tools/eval.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml \ -o weights=https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams ``` The path of model to be evaluted can be both local path and link in [MODEL_ZOO](../MODEL_ZOO_cn.md). - Evaluate with json ```bash export CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml \ --json_eval \ -output_eval evaluation/ ``` The json file must be named bbox.json or mask.json, placed in the `evaluation/` directory. ### Inference - Output specified directory && Set up threshold ```bash export CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml \ --infer_img=demo/000000570688.jpg \ --output_dir=infer_output/ \ --draw_threshold=0.5 \ -o weights=output/faster_rcnn_r50_fpn_1x_coco/model_final \ --use_vdl=True ``` `--draw_threshold` is an optional argument. Default is 0.5. Different thresholds will produce different results depending on the calculation of [NMS](https://ieeexplore.ieee.org/document/1699659). ## Deployment Please refer to [depolyment](../../deploy/README_en.md) ## Model Compression Please refer to [slim](../../configs/slim/README_en.md)
PaddleDetection/docs/tutorials/GETTING_STARTED.md/0
{ "file_path": "PaddleDetection/docs/tutorials/GETTING_STARTED.md", "repo_id": "PaddleDetection", "token_count": 3061 }
61
简体中文 | [English](DetAnnoTools_en.md) # 目标检测标注工具 ## 目录 [LabelMe](#LabelMe) * [使用说明](#使用说明) * [安装](#LabelMe安装) * [图片标注过程](#LabelMe图片标注过程) * [标注格式](#LabelMe标注格式) * [导出数据格式](#LabelMe导出数据格式) * [格式转化总结](#格式转化总结) * [标注文件(json)-->VOC](#标注文件(json)-->VOC数据集) * [标注文件(json)-->COCO](#标注文件(json)-->COCO数据集) [LabelImg](#LabelImg) * [使用说明](#使用说明) * [LabelImg安装](#LabelImg安装) * [安装注意事项](#安装注意事项) * [图片标注过程](#LabelImg图片标注过程) * [标注格式](#LabelImg标注格式) * [导出数据格式](#LabelImg导出数据格式) * [格式转换注意事项](#格式转换注意事项) ## [LabelMe](https://github.com/wkentaro/labelme) ### 使用说明 #### LabelMe安装 具体安装操作请参考[LabelMe官方教程](https://github.com/wkentaro/labelme)中的Installation <details> <summary><b> Ubuntu</b></summary> ``` sudo apt-get install labelme # or sudo pip3 install labelme # or install standalone executable from: # https://github.com/wkentaro/labelme/releases ``` </details> <details> <summary><b> macOS</b></summary> ``` brew install pyqt # maybe pyqt5 pip install labelme # or brew install wkentaro/labelme/labelme # command line interface # brew install --cask wkentaro/labelme/labelme # app # or install standalone executable/app from: # https://github.com/wkentaro/labelme/releases ``` </details> 推荐使用Anaconda的安装方式 ``` conda create –name=labelme python=3 conda activate labelme pip install pyqt5 pip install labelme ``` #### LabelMe图片标注过程 启动labelme后,选择图片文件或者图片所在文件夹 左侧编辑栏选择`create polygons` 绘制标注区域如下图所示(右击图像区域可以选择不同的标注形状),绘制好区域后按下回车,弹出新的框填入标注区域对应的标签,如:people 左侧菜单栏点击保存,生成`json`形式的**标注文件** ![](https://media3.giphy.com/media/XdnHZgge5eynRK3ATK/giphy.gif?cid=790b7611192e4c0ec2b5e6990b6b0f65623154ffda66b122&rid=giphy.gif&ct=g) ### LabelMe标注格式 #### LabelMe导出数据格式 ``` #生成标注文件 png/jpeg/jpg-->labelme标注-->json ``` #### 格式转化总结 ``` #标注文件转化为VOC数据集格式 json-->labelme2voc.py-->VOC数据集 #标注文件转化为COCO数据集格式 json-->labelme2coco.py-->COCO数据集 ``` #### 标注文件(json)-->VOC数据集 使用[官方给出的labelme2voc.py](https://github.com/wkentaro/labelme/blob/main/examples/bbox_detection/labelme2voc.py)这份脚本 下载该脚本,在命令行中使用 ```Te python labelme2voc.py data_annotated(标注文件所在文件夹) data_dataset_voc(输出文件夹) --labels labels.txt ``` 运行后,在指定的输出文件夹中会如下的目录 ``` # It generates: # - data_dataset_voc/JPEGImages # - data_dataset_voc/Annotations # - data_dataset_voc/AnnotationsVisualization ``` #### 标注文件(json)-->COCO数据集 使用[PaddleDetection提供的x2coco.py](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/tools/x2coco.py) 将labelme标注的数据转换为COCO数据集形式 ```bash python tools/x2coco.py \ --dataset_type labelme \ --json_input_dir ./labelme_annos/ \ --image_input_dir ./labelme_imgs/ \ --output_dir ./cocome/ \ --train_proportion 0.8 \ --val_proportion 0.2 \ --test_proportion 0.0 ``` 用户数据集转成COCO数据后目录结构如下(注意数据集中路径名、文件名尽量不要使用中文,避免中文编码问题导致出错): ``` dataset/xxx/ ├── annotations │ ├── train.json # coco数据的标注文件 │ ├── valid.json # coco数据的标注文件 ├── images │ ├── xxx1.jpg │ ├── xxx2.jpg │ ├── xxx3.jpg │ | ... ... ``` ## [LabelImg](https://github.com/tzutalin/labelImg) ### 使用说明 #### LabelImg安装 安装操作请参考[LabelImg官方教程](https://github.com/tzutalin/labelImg) <details> <summary><b> Ubuntu</b></summary> ``` sudo apt-get install pyqt5-dev-tools sudo pip3 install -r requirements/requirements-linux-python3.txt make qt5py3 python3 labelImg.py python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE] ``` </details> <details> <summary><b>macOS</b></summary> ``` brew install qt # Install qt-5.x.x by Homebrew brew install libxml2 or using pip pip3 install pyqt5 lxml # Install qt and lxml by pip make qt5py3 python3 labelImg.py python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE] ``` </details> 推荐使用Anaconda的安装方式 首先下载并进入 [labelImg](https://github.com/tzutalin/labelImg#labelimg) 的目录 ``` conda install pyqt=5 conda install -c anaconda lxml pyrcc5 -o libs/resources.py resources.qrc python labelImg.py python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE] ``` #### 安装注意事项 以Anaconda安装方式为例,比Labelme配置要麻烦一些 启动方式是通过python运行脚本`python labelImg.py <图片路径>` #### LabelImg图片标注过程 启动labelImg后,选择图片文件或者图片所在文件夹 左侧编辑栏选择`创建区块` 绘制标注区,在弹出新的框选择对应的标签 左侧菜单栏点击保存,可以选择VOC/YOLO/CreateML三种类型的标注文件 ![](https://user-images.githubusercontent.com/34162360/177526022-fd9c63d8-e476-4b63-ae02-76d032bb7656.gif) ### LabelImg标注格式 #### LabelImg导出数据格式 ``` #生成标注文件 png/jpeg/jpg-->labelImg标注-->xml/txt/json ``` #### 格式转换注意事项 **PaddleDetection支持VOC或COCO格式的数据**,经LabelImg标注导出后的标注文件,需要修改为**VOC或COCO格式**,调整说明可以参考[准备训练数据](./PrepareDataSet.md#%E5%87%86%E5%A4%87%E8%AE%AD%E7%BB%83%E6%95%B0%E6%8D%AE)
PaddleDetection/docs/tutorials/data/DetAnnoTools.md/0
{ "file_path": "PaddleDetection/docs/tutorials/data/DetAnnoTools.md", "repo_id": "PaddleDetection", "token_count": 3367 }
62
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import (core, data, engine, modeling, model_zoo, optimizer, metrics, utils, slim) try: from .version import full_version as __version__ from .version import commit as __git_commit__ except ImportError: import sys sys.stderr.write("Warning: import ppdet from source directory " \ "without installing, run 'python setup.py install' to " \ "install ppdet firstly\n")
PaddleDetection/ppdet/__init__.py/0
{ "file_path": "PaddleDetection/ppdet/__init__.py", "repo_id": "PaddleDetection", "token_count": 318 }
63
from ppdet.core.workspace import register, serializable import cv2 import os import tarfile import numpy as np import os.path as osp from ppdet.data.source.dataset import DetDataset from imgaug.augmentables.lines import LineStringsOnImage from imgaug.augmentables.segmaps import SegmentationMapsOnImage from ppdet.data.culane_utils import lane_to_linestrings import pickle as pkl from ppdet.utils.logger import setup_logger try: from collections.abc import Sequence except Exception: from collections import Sequence from .dataset import DetDataset, _make_dataset, _is_valid_file from ppdet.utils.download import download_dataset logger = setup_logger(__name__) @register @serializable class CULaneDataSet(DetDataset): def __init__( self, dataset_dir, cut_height, list_path, split='train', data_fields=['image'], video_file=None, frame_rate=-1, ): super(CULaneDataSet, self).__init__( dataset_dir=dataset_dir, cut_height=cut_height, split=split, data_fields=data_fields) self.dataset_dir = dataset_dir self.list_path = osp.join(dataset_dir, list_path) self.cut_height = cut_height self.data_fields = data_fields self.split = split self.training = 'train' in split self.data_infos = [] self.video_file = video_file self.frame_rate = frame_rate self._imid2path = {} self.predict_dir = None def __len__(self): return len(self.data_infos) def check_or_download_dataset(self): if not osp.exists(self.dataset_dir): download_dataset("dataset", dataset="culane") # extract .tar files in self.dataset_dir for fname in os.listdir(self.dataset_dir): logger.info("Decompressing {}...".format(fname)) # ignore .* files if fname.startswith('.'): continue if fname.find('.tar.gz') >= 0: with tarfile.open(osp.join(self.dataset_dir, fname)) as tf: tf.extractall(path=self.dataset_dir) logger.info("Dataset files are ready.") def parse_dataset(self): logger.info('Loading CULane annotations...') if self.predict_dir is not None: logger.info('switch to predict mode') return # Waiting for the dataset to load is tedious, let's cache it os.makedirs('cache', exist_ok=True) cache_path = 'cache/culane_paddle_{}.pkl'.format(self.split) if os.path.exists(cache_path): with open(cache_path, 'rb') as cache_file: self.data_infos = pkl.load(cache_file) self.max_lanes = max( len(anno['lanes']) for anno in self.data_infos) return with open(self.list_path) as list_file: for line in list_file: infos = self.load_annotation(line.split()) self.data_infos.append(infos) # cache data infos to file with open(cache_path, 'wb') as cache_file: pkl.dump(self.data_infos, cache_file) def load_annotation(self, line): infos = {} img_line = line[0] img_line = img_line[1 if img_line[0] == '/' else 0::] img_path = os.path.join(self.dataset_dir, img_line) infos['img_name'] = img_line infos['img_path'] = img_path if len(line) > 1: mask_line = line[1] mask_line = mask_line[1 if mask_line[0] == '/' else 0::] mask_path = os.path.join(self.dataset_dir, mask_line) infos['mask_path'] = mask_path if len(line) > 2: exist_list = [int(l) for l in line[2:]] infos['lane_exist'] = np.array(exist_list) anno_path = img_path[: -3] + 'lines.txt' # remove sufix jpg and add lines.txt with open(anno_path, 'r') as anno_file: data = [ list(map(float, line.split())) for line in anno_file.readlines() ] lanes = [[(lane[i], lane[i + 1]) for i in range(0, len(lane), 2) if lane[i] >= 0 and lane[i + 1] >= 0] for lane in data] lanes = [list(set(lane)) for lane in lanes] # remove duplicated points lanes = [lane for lane in lanes if len(lane) > 2] # remove lanes with less than 2 points lanes = [sorted( lane, key=lambda x: x[1]) for lane in lanes] # sort by y infos['lanes'] = lanes return infos def set_images(self, images): self.predict_dir = images self.data_infos = self._load_images() def _find_images(self): predict_dir = self.predict_dir if not isinstance(predict_dir, Sequence): predict_dir = [predict_dir] images = [] for im_dir in predict_dir: if os.path.isdir(im_dir): im_dir = os.path.join(self.predict_dir, im_dir) images.extend(_make_dataset(im_dir)) elif os.path.isfile(im_dir) and _is_valid_file(im_dir): images.append(im_dir) return images def _load_images(self): images = self._find_images() ct = 0 records = [] for image in images: assert image != '' and os.path.isfile(image), \ "Image {} not found".format(image) if self.sample_num > 0 and ct >= self.sample_num: break rec = { 'im_id': np.array([ct]), "img_path": os.path.abspath(image), "img_name": os.path.basename(image), "lanes": [] } self._imid2path[ct] = image ct += 1 records.append(rec) assert len(records) > 0, "No image file found" return records def get_imid2path(self): return self._imid2path def __getitem__(self, idx): data_info = self.data_infos[idx] img = cv2.imread(data_info['img_path']) img = img[self.cut_height:, :, :] sample = data_info.copy() sample.update({'image': img}) img_org = sample['image'] if self.training: label = cv2.imread(sample['mask_path'], cv2.IMREAD_UNCHANGED) if len(label.shape) > 2: label = label[:, :, 0] label = label.squeeze() label = label[self.cut_height:, :] sample.update({'mask': label}) if self.cut_height != 0: new_lanes = [] for i in sample['lanes']: lanes = [] for p in i: lanes.append((p[0], p[1] - self.cut_height)) new_lanes.append(lanes) sample.update({'lanes': new_lanes}) sample['mask'] = SegmentationMapsOnImage( sample['mask'], shape=img_org.shape) sample['full_img_path'] = data_info['img_path'] sample['img_name'] = data_info['img_name'] sample['im_id'] = np.array([idx]) sample['image'] = sample['image'].copy().astype(np.uint8) sample['lanes'] = lane_to_linestrings(sample['lanes']) sample['lanes'] = LineStringsOnImage( sample['lanes'], shape=img_org.shape) sample['seg'] = np.zeros(img_org.shape) return sample
PaddleDetection/ppdet/data/source/culane.py/0
{ "file_path": "PaddleDetection/ppdet/data/source/culane.py", "repo_id": "PaddleDetection", "token_count": 3779 }
64
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function try: from collections.abc import Sequence except Exception: from collections import Sequence from numbers import Integral import cv2 import copy import numpy as np import random import math from .operators import BaseOperator, register_op from .batch_operators import Gt2TTFTarget from ppdet.modeling.bbox_utils import bbox_iou_np_expand from ppdet.utils.logger import setup_logger from .op_helper import gaussian_radius logger = setup_logger(__name__) __all__ = [ 'RGBReverse', 'LetterBoxResize', 'MOTRandomAffine', 'Gt2JDETargetThres', 'Gt2JDETargetMax', 'Gt2FairMOTTarget' ] @register_op class RGBReverse(BaseOperator): """RGB to BGR, or BGR to RGB, sensitive to MOTRandomAffine """ def __init__(self): super(RGBReverse, self).__init__() def apply(self, sample, context=None): im = sample['image'] sample['image'] = np.ascontiguousarray(im[:, :, ::-1]) return sample @register_op class LetterBoxResize(BaseOperator): def __init__(self, target_size): """ Resize image to target size, convert normalized xywh to pixel xyxy format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]). Args: target_size (int|list): image target size. """ super(LetterBoxResize, self).__init__() if not isinstance(target_size, (Integral, Sequence)): raise TypeError( "Type of target_size is invalid. Must be Integer or List or Tuple, now is {}". format(type(target_size))) if isinstance(target_size, Integral): target_size = [target_size, target_size] self.target_size = target_size def apply_image(self, img, height, width, color=(127.5, 127.5, 127.5)): # letterbox: resize a rectangular image to a padded rectangular shape = img.shape[:2] # [height, width] ratio_h = float(height) / shape[0] ratio_w = float(width) / shape[1] ratio = min(ratio_h, ratio_w) new_shape = (round(shape[1] * ratio), round(shape[0] * ratio)) # [width, height] padw = (width - new_shape[0]) / 2 padh = (height - new_shape[1]) / 2 top, bottom = round(padh - 0.1), round(padh + 0.1) left, right = round(padw - 0.1), round(padw + 0.1) img = cv2.resize( img, new_shape, interpolation=cv2.INTER_AREA) # resized, no border img = cv2.copyMakeBorder( img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # padded rectangular return img, ratio, padw, padh def apply_bbox(self, bbox0, h, w, ratio, padw, padh): bboxes = bbox0.copy() bboxes[:, 0] = ratio * w * (bbox0[:, 0] - bbox0[:, 2] / 2) + padw bboxes[:, 1] = ratio * h * (bbox0[:, 1] - bbox0[:, 3] / 2) + padh bboxes[:, 2] = ratio * w * (bbox0[:, 0] + bbox0[:, 2] / 2) + padw bboxes[:, 3] = ratio * h * (bbox0[:, 1] + bbox0[:, 3] / 2) + padh return bboxes def apply(self, sample, context=None): """ Resize the image numpy. """ im = sample['image'] h, w = sample['im_shape'] if not isinstance(im, np.ndarray): raise TypeError("{}: image type is not numpy.".format(self)) if len(im.shape) != 3: from PIL import UnidentifiedImageError raise UnidentifiedImageError( '{}: image is not 3-dimensional.'.format(self)) # apply image height, width = self.target_size img, ratio, padw, padh = self.apply_image( im, height=height, width=width) sample['image'] = img new_shape = (round(h * ratio), round(w * ratio)) sample['im_shape'] = np.asarray(new_shape, dtype=np.float32) sample['scale_factor'] = np.asarray([ratio, ratio], dtype=np.float32) # apply bbox if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], h, w, ratio, padw, padh) return sample @register_op class MOTRandomAffine(BaseOperator): """ Affine transform to image and coords to achieve the rotate, scale and shift effect for training image. Args: degrees (list[2]): the rotate range to apply, transform range is [min, max] translate (list[2]): the translate range to apply, transform range is [min, max] scale (list[2]): the scale range to apply, transform range is [min, max] shear (list[2]): the shear range to apply, transform range is [min, max] borderValue (list[3]): value used in case of a constant border when appling the perspective transformation reject_outside (bool): reject warped bounding bboxes outside of image Returns: records(dict): contain the image and coords after tranformed """ def __init__(self, degrees=(-5, 5), translate=(0.10, 0.10), scale=(0.50, 1.20), shear=(-2, 2), borderValue=(127.5, 127.5, 127.5), reject_outside=True): super(MOTRandomAffine, self).__init__() self.degrees = degrees self.translate = translate self.scale = scale self.shear = shear self.borderValue = borderValue self.reject_outside = reject_outside def apply(self, sample, context=None): # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4 border = 0 # width of added border (optional) img = sample['image'] height, width = img.shape[0], img.shape[1] # Rotation and Scale R = np.eye(3) a = random.random() * (self.degrees[1] - self.degrees[0] ) + self.degrees[0] s = random.random() * (self.scale[1] - self.scale[0]) + self.scale[0] R[:2] = cv2.getRotationMatrix2D( angle=a, center=(width / 2, height / 2), scale=s) # Translation T = np.eye(3) T[0, 2] = ( random.random() * 2 - 1 ) * self.translate[0] * height + border # x translation (pixels) T[1, 2] = ( random.random() * 2 - 1 ) * self.translate[1] * width + border # y translation (pixels) # Shear S = np.eye(3) S[0, 1] = math.tan((random.random() * (self.shear[1] - self.shear[0]) + self.shear[0]) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan((random.random() * (self.shear[1] - self.shear[0]) + self.shear[0]) * math.pi / 180) # y shear (deg) M = S @T @R # Combined rotation matrix. ORDER IS IMPORTANT HERE!! imw = cv2.warpPerspective( img, M, dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=self.borderValue) # BGR order borderValue if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: targets = sample['gt_bbox'] n = targets.shape[0] points = targets.copy() area0 = (points[:, 2] - points[:, 0]) * ( points[:, 3] - points[:, 1]) # warp points xy = np.ones((n * 4, 3)) xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape( n * 4, 2) # x1y1, x2y2, x1y2, x2y1 xy = (xy @M.T)[:, :2].reshape(n, 8) # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate( (x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # apply angle-based reduction radians = a * math.pi / 180 reduction = max(abs(math.sin(radians)), abs(math.cos(radians)))**0.5 x = (xy[:, 2] + xy[:, 0]) / 2 y = (xy[:, 3] + xy[:, 1]) / 2 w = (xy[:, 2] - xy[:, 0]) * reduction h = (xy[:, 3] - xy[:, 1]) * reduction xy = np.concatenate( (x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T # reject warped points outside of image if self.reject_outside: np.clip(xy[:, 0], 0, width, out=xy[:, 0]) np.clip(xy[:, 2], 0, width, out=xy[:, 2]) np.clip(xy[:, 1], 0, height, out=xy[:, 1]) np.clip(xy[:, 3], 0, height, out=xy[:, 3]) w = xy[:, 2] - xy[:, 0] h = xy[:, 3] - xy[:, 1] area = w * h ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) i = (w > 4) & (h > 4) & (area / (area0 + 1e-16) > 0.1) & (ar < 10) if sum(i) > 0: sample['gt_bbox'] = xy[i].astype(sample['gt_bbox'].dtype) sample['gt_class'] = sample['gt_class'][i] if 'difficult' in sample: sample['difficult'] = sample['difficult'][i] if 'gt_ide' in sample: sample['gt_ide'] = sample['gt_ide'][i] if 'is_crowd' in sample: sample['is_crowd'] = sample['is_crowd'][i] sample['image'] = imw return sample else: return sample @register_op class Gt2JDETargetThres(BaseOperator): __shared__ = ['num_classes'] """ Generate JDE targets by groud truth data when training Args: anchors (list): anchors of JDE model anchor_masks (list): anchor_masks of JDE model downsample_ratios (list): downsample ratios of JDE model ide_thresh (float): thresh of identity, higher is groud truth fg_thresh (float): thresh of foreground, higher is foreground bg_thresh (float): thresh of background, lower is background num_classes (int): number of classes """ def __init__(self, anchors, anchor_masks, downsample_ratios, ide_thresh=0.5, fg_thresh=0.5, bg_thresh=0.4, num_classes=1): super(Gt2JDETargetThres, self).__init__() self.anchors = anchors self.anchor_masks = anchor_masks self.downsample_ratios = downsample_ratios self.ide_thresh = ide_thresh self.fg_thresh = fg_thresh self.bg_thresh = bg_thresh self.num_classes = num_classes def generate_anchor(self, nGh, nGw, anchor_hw): nA = len(anchor_hw) yy, xx = np.meshgrid(np.arange(nGh), np.arange(nGw)) mesh = np.stack([xx.T, yy.T], axis=0) # [2, nGh, nGw] mesh = np.repeat(mesh[None, :], nA, axis=0) # [nA, 2, nGh, nGw] anchor_offset_mesh = anchor_hw[:, :, None][:, :, :, None] anchor_offset_mesh = np.repeat(anchor_offset_mesh, nGh, axis=-2) anchor_offset_mesh = np.repeat(anchor_offset_mesh, nGw, axis=-1) anchor_mesh = np.concatenate( [mesh, anchor_offset_mesh], axis=1) # [nA, 4, nGh, nGw] return anchor_mesh def encode_delta(self, gt_box_list, fg_anchor_list): px, py, pw, ph = fg_anchor_list[:, 0], fg_anchor_list[:,1], \ fg_anchor_list[:, 2], fg_anchor_list[:,3] gx, gy, gw, gh = gt_box_list[:, 0], gt_box_list[:, 1], \ gt_box_list[:, 2], gt_box_list[:, 3] dx = (gx - px) / pw dy = (gy - py) / ph dw = np.log(gw / pw) dh = np.log(gh / ph) return np.stack([dx, dy, dw, dh], axis=1) def pad_box(self, sample, num_max): assert 'gt_bbox' in sample bbox = sample['gt_bbox'] gt_num = len(bbox) pad_bbox = np.zeros((num_max, 4), dtype=np.float32) if gt_num > 0: pad_bbox[:gt_num, :] = bbox[:gt_num, :] sample['gt_bbox'] = pad_bbox if 'gt_score' in sample: pad_score = np.zeros((num_max, ), dtype=np.float32) if gt_num > 0: pad_score[:gt_num] = sample['gt_score'][:gt_num, 0] sample['gt_score'] = pad_score if 'difficult' in sample: pad_diff = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_diff[:gt_num] = sample['difficult'][:gt_num, 0] sample['difficult'] = pad_diff if 'is_crowd' in sample: pad_crowd = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0] sample['is_crowd'] = pad_crowd if 'gt_ide' in sample: pad_ide = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_ide[:gt_num] = sample['gt_ide'][:gt_num, 0] sample['gt_ide'] = pad_ide return sample def __call__(self, samples, context=None): assert len(self.anchor_masks) == len(self.downsample_ratios), \ "anchor_masks', and 'downsample_ratios' should have same length." h, w = samples[0]['image'].shape[1:3] num_max = 0 for sample in samples: num_max = max(num_max, len(sample['gt_bbox'])) for sample in samples: gt_bbox = sample['gt_bbox'] gt_ide = sample['gt_ide'] for i, (anchor_hw, downsample_ratio ) in enumerate(zip(self.anchors, self.downsample_ratios)): anchor_hw = np.array( anchor_hw, dtype=np.float32) / downsample_ratio nA = len(anchor_hw) nGh, nGw = int(h / downsample_ratio), int(w / downsample_ratio) tbox = np.zeros((nA, nGh, nGw, 4), dtype=np.float32) tconf = np.zeros((nA, nGh, nGw), dtype=np.float32) tid = -np.ones((nA, nGh, nGw, 1), dtype=np.float32) gxy, gwh = gt_bbox[:, 0:2].copy(), gt_bbox[:, 2:4].copy() gxy[:, 0] = gxy[:, 0] * nGw gxy[:, 1] = gxy[:, 1] * nGh gwh[:, 0] = gwh[:, 0] * nGw gwh[:, 1] = gwh[:, 1] * nGh gxy[:, 0] = np.clip(gxy[:, 0], 0, nGw - 1) gxy[:, 1] = np.clip(gxy[:, 1], 0, nGh - 1) tboxes = np.concatenate([gxy, gwh], axis=1) anchor_mesh = self.generate_anchor(nGh, nGw, anchor_hw) anchor_list = np.transpose(anchor_mesh, (0, 2, 3, 1)).reshape(-1, 4) iou_pdist = bbox_iou_np_expand( anchor_list, tboxes, x1y1x2y2=False) iou_max = np.max(iou_pdist, axis=1) max_gt_index = np.argmax(iou_pdist, axis=1) iou_map = iou_max.reshape(nA, nGh, nGw) gt_index_map = max_gt_index.reshape(nA, nGh, nGw) id_index = iou_map > self.ide_thresh fg_index = iou_map > self.fg_thresh bg_index = iou_map < self.bg_thresh ign_index = (iou_map < self.fg_thresh) * ( iou_map > self.bg_thresh) tconf[fg_index] = 1 tconf[bg_index] = 0 tconf[ign_index] = -1 gt_index = gt_index_map[fg_index] gt_box_list = tboxes[gt_index] gt_id_list = gt_ide[gt_index_map[id_index]] if np.sum(fg_index) > 0: tid[id_index] = gt_id_list fg_anchor_list = anchor_list.reshape(nA, nGh, nGw, 4)[fg_index] delta_target = self.encode_delta(gt_box_list, fg_anchor_list) tbox[fg_index] = delta_target sample['tbox{}'.format(i)] = tbox sample['tconf{}'.format(i)] = tconf sample['tide{}'.format(i)] = tid sample.pop('gt_class') sample = self.pad_box(sample, num_max) return samples @register_op class Gt2JDETargetMax(BaseOperator): __shared__ = ['num_classes'] """ Generate JDE targets by groud truth data when evaluating Args: anchors (list): anchors of JDE model anchor_masks (list): anchor_masks of JDE model downsample_ratios (list): downsample ratios of JDE model max_iou_thresh (float): iou thresh for high quality anchor num_classes (int): number of classes """ def __init__(self, anchors, anchor_masks, downsample_ratios, max_iou_thresh=0.60, num_classes=1): super(Gt2JDETargetMax, self).__init__() self.anchors = anchors self.anchor_masks = anchor_masks self.downsample_ratios = downsample_ratios self.max_iou_thresh = max_iou_thresh self.num_classes = num_classes def __call__(self, samples, context=None): assert len(self.anchor_masks) == len(self.downsample_ratios), \ "anchor_masks', and 'downsample_ratios' should have same length." h, w = samples[0]['image'].shape[1:3] for sample in samples: gt_bbox = sample['gt_bbox'] gt_ide = sample['gt_ide'] for i, (anchor_hw, downsample_ratio ) in enumerate(zip(self.anchors, self.downsample_ratios)): anchor_hw = np.array( anchor_hw, dtype=np.float32) / downsample_ratio nA = len(anchor_hw) nGh, nGw = int(h / downsample_ratio), int(w / downsample_ratio) tbox = np.zeros((nA, nGh, nGw, 4), dtype=np.float32) tconf = np.zeros((nA, nGh, nGw), dtype=np.float32) tid = -np.ones((nA, nGh, nGw, 1), dtype=np.float32) gxy, gwh = gt_bbox[:, 0:2].copy(), gt_bbox[:, 2:4].copy() gxy[:, 0] = gxy[:, 0] * nGw gxy[:, 1] = gxy[:, 1] * nGh gwh[:, 0] = gwh[:, 0] * nGw gwh[:, 1] = gwh[:, 1] * nGh gi = np.clip(gxy[:, 0], 0, nGw - 1).astype(int) gj = np.clip(gxy[:, 1], 0, nGh - 1).astype(int) # iou of targets-anchors (using wh only) box1 = gwh box2 = anchor_hw[:, None, :] inter_area = np.minimum(box1, box2).prod(2) iou = inter_area / ( box1.prod(1) + box2.prod(2) - inter_area + 1e-16) # Select best iou_pred and anchor iou_best = iou.max(0) # best anchor [0-2] for each target a = np.argmax(iou, axis=0) # Select best unique target-anchor combinations iou_order = np.argsort(-iou_best) # best to worst # Unique anchor selection u = np.stack((gi, gj, a), 0)[:, iou_order] _, first_unique = np.unique(u, axis=1, return_index=True) mask = iou_order[first_unique] # best anchor must share significant commonality (iou) with target # TODO: examine arbitrary threshold idx = mask[iou_best[mask] > self.max_iou_thresh] if len(idx) > 0: a_i, gj_i, gi_i = a[idx], gj[idx], gi[idx] t_box = gt_bbox[idx] t_id = gt_ide[idx] if len(t_box.shape) == 1: t_box = t_box.reshape(1, 4) gxy, gwh = t_box[:, 0:2].copy(), t_box[:, 2:4].copy() gxy[:, 0] = gxy[:, 0] * nGw gxy[:, 1] = gxy[:, 1] * nGh gwh[:, 0] = gwh[:, 0] * nGw gwh[:, 1] = gwh[:, 1] * nGh # XY coordinates tbox[:, :, :, 0:2][a_i, gj_i, gi_i] = gxy - gxy.astype(int) # Width and height in yolo method tbox[:, :, :, 2:4][a_i, gj_i, gi_i] = np.log(gwh / anchor_hw[a_i]) tconf[a_i, gj_i, gi_i] = 1 tid[a_i, gj_i, gi_i] = t_id sample['tbox{}'.format(i)] = tbox sample['tconf{}'.format(i)] = tconf sample['tide{}'.format(i)] = tid class Gt2FairMOTTarget(Gt2TTFTarget): __shared__ = ['num_classes'] """ Generate FairMOT targets by ground truth data. Difference between Gt2FairMOTTarget and Gt2TTFTarget are: 1. the gaussian kernal radius to generate a heatmap. 2. the targets needed during training. Args: num_classes(int): the number of classes. down_ratio(int): the down ratio from images to heatmap, 4 by default. max_objs(int): the maximum number of ground truth objects in a image, 500 by default. """ def __init__(self, num_classes=1, down_ratio=4, max_objs=500): super(Gt2TTFTarget, self).__init__() self.down_ratio = down_ratio self.num_classes = num_classes self.max_objs = max_objs def __call__(self, samples, context=None): for b_id, sample in enumerate(samples): output_h = sample['image'].shape[1] // self.down_ratio output_w = sample['image'].shape[2] // self.down_ratio heatmap = np.zeros( (self.num_classes, output_h, output_w), dtype='float32') bbox_size = np.zeros((self.max_objs, 4), dtype=np.float32) center_offset = np.zeros((self.max_objs, 2), dtype=np.float32) index = np.zeros((self.max_objs, ), dtype=np.int64) index_mask = np.zeros((self.max_objs, ), dtype=np.int32) reid = np.zeros((self.max_objs, ), dtype=np.int64) bbox_xys = np.zeros((self.max_objs, 4), dtype=np.float32) if self.num_classes > 1: # each category corresponds to a set of track ids cls_tr_ids = np.zeros( (self.num_classes, output_h, output_w), dtype=np.int64) cls_id_map = np.full((output_h, output_w), -1, dtype=np.int64) gt_bbox = sample['gt_bbox'] gt_class = sample['gt_class'] gt_ide = sample['gt_ide'] for k in range(len(gt_bbox)): cls_id = gt_class[k][0] bbox = gt_bbox[k] ide = gt_ide[k][0] bbox[[0, 2]] = bbox[[0, 2]] * output_w bbox[[1, 3]] = bbox[[1, 3]] * output_h bbox_amodal = copy.deepcopy(bbox) bbox_amodal[0] = bbox_amodal[0] - bbox_amodal[2] / 2. bbox_amodal[1] = bbox_amodal[1] - bbox_amodal[3] / 2. bbox_amodal[2] = bbox_amodal[0] + bbox_amodal[2] bbox_amodal[3] = bbox_amodal[1] + bbox_amodal[3] bbox[0] = np.clip(bbox[0], 0, output_w - 1) bbox[1] = np.clip(bbox[1], 0, output_h - 1) h = bbox[3] w = bbox[2] bbox_xy = copy.deepcopy(bbox) bbox_xy[0] = bbox_xy[0] - bbox_xy[2] / 2 bbox_xy[1] = bbox_xy[1] - bbox_xy[3] / 2 bbox_xy[2] = bbox_xy[0] + bbox_xy[2] bbox_xy[3] = bbox_xy[1] + bbox_xy[3] if h > 0 and w > 0: radius = gaussian_radius((math.ceil(h), math.ceil(w)), 0.7) radius = max(0, int(radius)) ct = np.array([bbox[0], bbox[1]], dtype=np.float32) ct_int = ct.astype(np.int32) self.draw_truncate_gaussian(heatmap[cls_id], ct_int, radius, radius) bbox_size[k] = ct[0] - bbox_amodal[0], ct[1] - bbox_amodal[1], \ bbox_amodal[2] - ct[0], bbox_amodal[3] - ct[1] index[k] = ct_int[1] * output_w + ct_int[0] center_offset[k] = ct - ct_int index_mask[k] = 1 reid[k] = ide bbox_xys[k] = bbox_xy if self.num_classes > 1: cls_id_map[ct_int[1], ct_int[0]] = cls_id cls_tr_ids[cls_id][ct_int[1]][ct_int[0]] = ide - 1 # track id start from 0 sample['heatmap'] = heatmap sample['index'] = index sample['offset'] = center_offset sample['size'] = bbox_size sample['index_mask'] = index_mask sample['reid'] = reid if self.num_classes > 1: sample['cls_id_map'] = cls_id_map sample['cls_tr_ids'] = cls_tr_ids sample['bbox_xys'] = bbox_xys sample.pop('is_crowd', None) sample.pop('difficult', None) sample.pop('gt_class', None) sample.pop('gt_bbox', None) sample.pop('gt_score', None) sample.pop('gt_ide', None) return samples
PaddleDetection/ppdet/data/transform/mot_operators.py/0
{ "file_path": "PaddleDetection/ppdet/data/transform/mot_operators.py", "repo_id": "PaddleDetection", "token_count": 14062 }
65
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "../rbox_iou/rbox_iou_utils.h" #include "paddle/extension.h" template <typename T> void nms_rotated_cpu_kernel(const T *boxes_data, const float threshold, const int64_t num_boxes, int64_t *num_keep_boxes, int64_t *output_data) { int num_masks = CeilDiv(num_boxes, 64); std::vector<int64_t> masks(num_masks, 0); for (int64_t i = 0; i < num_boxes; ++i) { if (masks[i / 64] & 1ULL << (i % 64)) continue; T box_1[5]; for (int k = 0; k < 5; ++k) { box_1[k] = boxes_data[i * 5 + k]; } for (int64_t j = i + 1; j < num_boxes; ++j) { if (masks[j / 64] & 1ULL << (j % 64)) continue; T box_2[5]; for (int k = 0; k < 5; ++k) { box_2[k] = boxes_data[j * 5 + k]; } if (rbox_iou_single<T>(box_1, box_2) > threshold) { masks[j / 64] |= 1ULL << (j % 64); } } } int64_t output_data_idx = 0; for (int64_t i = 0; i < num_boxes; ++i) { if (masks[i / 64] & 1ULL << (i % 64)) continue; output_data[output_data_idx++] = i; } *num_keep_boxes = output_data_idx; for (; output_data_idx < num_boxes; ++output_data_idx) { output_data[output_data_idx] = 0; } } #define CHECK_INPUT_CPU(x) \ PD_CHECK(x.is_cpu(), #x " must be a CPU Tensor.") std::vector<paddle::Tensor> NMSRotatedCPUForward(const paddle::Tensor &boxes, const paddle::Tensor &scores, float threshold) { CHECK_INPUT_CPU(boxes); CHECK_INPUT_CPU(scores); auto num_boxes = boxes.shape()[0]; auto order_t = std::get<1>(paddle::argsort(scores, /* axis=*/0, /* descending=*/true)); auto boxes_sorted = paddle::gather(boxes, order_t, /* axis=*/0); auto keep = paddle::empty({num_boxes}, paddle::DataType::INT64, paddle::CPUPlace()); int64_t num_keep_boxes = 0; PD_DISPATCH_FLOATING_TYPES(boxes.type(), "nms_rotated_cpu_kernel", ([&] { nms_rotated_cpu_kernel<data_t>( boxes_sorted.data<data_t>(), threshold, num_boxes, &num_keep_boxes, keep.data<int64_t>()); })); keep = keep.slice(0, num_keep_boxes); return {paddle::gather(order_t, keep, /* axis=*/0)}; } #ifdef PADDLE_WITH_CUDA std::vector<paddle::Tensor> NMSRotatedCUDAForward(const paddle::Tensor &boxes, const paddle::Tensor &scores, float threshold); #endif std::vector<paddle::Tensor> NMSRotatedForward(const paddle::Tensor &boxes, const paddle::Tensor &scores, float threshold) { if (boxes.is_cpu()) { return NMSRotatedCPUForward(boxes, scores, threshold); #ifdef PADDLE_WITH_CUDA } else if (boxes.is_gpu()) { return NMSRotatedCUDAForward(boxes, scores, threshold); #endif } } std::vector<std::vector<int64_t>> NMSRotatedInferShape(std::vector<int64_t> boxes_shape, std::vector<int64_t> scores_shape) { return {{-1}}; } std::vector<paddle::DataType> NMSRotatedInferDtype(paddle::DataType t1, paddle::DataType t2) { return {paddle::DataType::INT64}; } PD_BUILD_OP(nms_rotated) .Inputs({"Boxes", "Scores"}) .Outputs({"Output"}) .Attrs({"threshold: float"}) .SetKernelFn(PD_KERNEL(NMSRotatedForward)) .SetInferShapeFn(PD_INFER_SHAPE(NMSRotatedInferShape)) .SetInferDtypeFn(PD_INFER_DTYPE(NMSRotatedInferDtype));
PaddleDetection/ppdet/ext_op/csrc/nms_rotated/nms_rotated.cc/0
{ "file_path": "PaddleDetection/ppdet/ext_op/csrc/nms_rotated/nms_rotated.cc", "repo_id": "PaddleDetection", "token_count": 2171 }
66
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import copy import sys import math from collections import defaultdict import numpy as np from ppdet.modeling.bbox_utils import bbox_iou_np_expand from .map_utils import ap_per_class from .metrics import Metric from .munkres import Munkres try: import motmetrics as mm mm.lap.default_solver = 'lap' except: print( 'Warning: Unable to use MOT metric, please install motmetrics, for example: `pip install motmetrics`, see https://github.com/longcw/py-motmetrics' ) pass from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) __all__ = ['MOTEvaluator', 'MOTMetric', 'JDEDetMetric', 'KITTIMOTMetric'] def read_mot_results(filename, is_gt=False, is_ignore=False): valid_label = [1] ignore_labels = [2, 7, 8, 12] # only in motchallenge datasets like 'MOT16' if is_gt: logger.info( "In MOT16/17 dataset the valid_label of ground truth is '{}', " "in other dataset it should be '0' for single classs MOT.".format( valid_label[0])) results_dict = dict() if os.path.isfile(filename): with open(filename, 'r') as f: for line in f.readlines(): linelist = line.split(',') if len(linelist) < 7: continue fid = int(linelist[0]) if fid < 1: continue results_dict.setdefault(fid, list()) if is_gt: label = int(float(linelist[7])) mark = int(float(linelist[6])) if mark == 0 or label not in valid_label: continue score = 1 elif is_ignore: if 'MOT16-' in filename or 'MOT17-' in filename or 'MOT15-' in filename or 'MOT20-' in filename: label = int(float(linelist[7])) vis_ratio = float(linelist[8]) if label not in ignore_labels and vis_ratio >= 0: continue else: continue score = 1 else: score = float(linelist[6]) tlwh = tuple(map(float, linelist[2:6])) target_id = int(linelist[1]) results_dict[fid].append((tlwh, target_id, score)) return results_dict """ MOT dataset label list, see in https://motchallenge.net labels={'ped', ... % 1 'person_on_vhcl', ... % 2 'car', ... % 3 'bicycle', ... % 4 'mbike', ... % 5 'non_mot_vhcl', ... % 6 'static_person', ... % 7 'distractor', ... % 8 'occluder', ... % 9 'occluder_on_grnd', ... % 10 'occluder_full', ... % 11 'reflection', ... % 12 'crowd' ... % 13 }; """ def unzip_objs(objs): if len(objs) > 0: tlwhs, ids, scores = zip(*objs) else: tlwhs, ids, scores = [], [], [] tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4) return tlwhs, ids, scores class MOTEvaluator(object): def __init__(self, data_root, seq_name, data_type): self.data_root = data_root self.seq_name = seq_name self.data_type = data_type self.load_annotations() try: import motmetrics as mm mm.lap.default_solver = 'lap' except Exception as e: raise RuntimeError( 'Unable to use MOT metric, please install motmetrics, for example: `pip install motmetrics`, see https://github.com/longcw/py-motmetrics' ) self.reset_accumulator() def load_annotations(self): assert self.data_type == 'mot' gt_filename = os.path.join(self.data_root, self.seq_name, 'gt', 'gt.txt') if not os.path.exists(gt_filename): logger.warning( "gt_filename '{}' of MOTEvaluator is not exist, so the MOTA will be -INF." ) self.gt_frame_dict = read_mot_results(gt_filename, is_gt=True) self.gt_ignore_frame_dict = read_mot_results( gt_filename, is_ignore=True) def reset_accumulator(self): self.acc = mm.MOTAccumulator(auto_id=True) def eval_frame(self, frame_id, trk_tlwhs, trk_ids, rtn_events=False): # results trk_tlwhs = np.copy(trk_tlwhs) trk_ids = np.copy(trk_ids) # gts gt_objs = self.gt_frame_dict.get(frame_id, []) gt_tlwhs, gt_ids = unzip_objs(gt_objs)[:2] # ignore boxes ignore_objs = self.gt_ignore_frame_dict.get(frame_id, []) ignore_tlwhs = unzip_objs(ignore_objs)[0] # remove ignored results keep = np.ones(len(trk_tlwhs), dtype=bool) iou_distance = mm.distances.iou_matrix( ignore_tlwhs, trk_tlwhs, max_iou=0.5) if len(iou_distance) > 0: match_is, match_js = mm.lap.linear_sum_assignment(iou_distance) match_is, match_js = map(lambda a: np.asarray(a, dtype=int), [match_is, match_js]) match_ious = iou_distance[match_is, match_js] match_js = np.asarray(match_js, dtype=int) match_js = match_js[np.logical_not(np.isnan(match_ious))] keep[match_js] = False trk_tlwhs = trk_tlwhs[keep] trk_ids = trk_ids[keep] # get distance matrix iou_distance = mm.distances.iou_matrix(gt_tlwhs, trk_tlwhs, max_iou=0.5) # acc self.acc.update(gt_ids, trk_ids, iou_distance) if rtn_events and iou_distance.size > 0 and hasattr(self.acc, 'last_mot_events'): events = self.acc.last_mot_events # only supported by https://github.com/longcw/py-motmetrics else: events = None return events def eval_file(self, filename): self.reset_accumulator() result_frame_dict = read_mot_results(filename, is_gt=False) frames = sorted(list(set(result_frame_dict.keys()))) for frame_id in frames: trk_objs = result_frame_dict.get(frame_id, []) trk_tlwhs, trk_ids = unzip_objs(trk_objs)[:2] self.eval_frame(frame_id, trk_tlwhs, trk_ids, rtn_events=False) return self.acc @staticmethod def get_summary(accs, names, metrics=('mota', 'num_switches', 'idp', 'idr', 'idf1', 'precision', 'recall')): names = copy.deepcopy(names) if metrics is None: metrics = mm.metrics.motchallenge_metrics metrics = copy.deepcopy(metrics) mh = mm.metrics.create() summary = mh.compute_many( accs, metrics=metrics, names=names, generate_overall=True) return summary @staticmethod def save_summary(summary, filename): import pandas as pd writer = pd.ExcelWriter(filename) summary.to_excel(writer) writer.save() class MOTMetric(Metric): def __init__(self, save_summary=False): self.save_summary = save_summary self.MOTEvaluator = MOTEvaluator self.result_root = None self.reset() def reset(self): self.accs = [] self.seqs = [] def update(self, data_root, seq, data_type, result_root, result_filename): evaluator = self.MOTEvaluator(data_root, seq, data_type) self.accs.append(evaluator.eval_file(result_filename)) self.seqs.append(seq) self.result_root = result_root def accumulate(self): metrics = mm.metrics.motchallenge_metrics mh = mm.metrics.create() summary = self.MOTEvaluator.get_summary(self.accs, self.seqs, metrics) self.strsummary = mm.io.render_summary( summary, formatters=mh.formatters, namemap=mm.io.motchallenge_metric_names) if self.save_summary: self.MOTEvaluator.save_summary( summary, os.path.join(self.result_root, 'summary.xlsx')) def log(self): print(self.strsummary) def get_results(self): return self.strsummary class JDEDetMetric(Metric): # Note this detection AP metric is different from COCOMetric or VOCMetric, # and the bboxes coordinates are not scaled to the original image def __init__(self, overlap_thresh=0.5): self.overlap_thresh = overlap_thresh self.reset() def reset(self): self.AP_accum = np.zeros(1) self.AP_accum_count = np.zeros(1) def update(self, inputs, outputs): bboxes = outputs['bbox'][:, 2:].numpy() scores = outputs['bbox'][:, 1].numpy() labels = outputs['bbox'][:, 0].numpy() bbox_lengths = outputs['bbox_num'].numpy() if bboxes.shape[0] == 1 and bboxes.sum() == 0.0: return gt_boxes = inputs['gt_bbox'].numpy()[0] gt_labels = inputs['gt_class'].numpy()[0] if gt_labels.shape[0] == 0: return correct = [] detected = [] for i in range(bboxes.shape[0]): obj_pred = 0 pred_bbox = bboxes[i].reshape(1, 4) # Compute iou with target boxes iou = bbox_iou_np_expand(pred_bbox, gt_boxes, x1y1x2y2=True)[0] # Extract index of largest overlap best_i = np.argmax(iou) # If overlap exceeds threshold and classification is correct mark as correct if iou[best_i] > self.overlap_thresh and obj_pred == gt_labels[ best_i] and best_i not in detected: correct.append(1) detected.append(best_i) else: correct.append(0) # Compute Average Precision (AP) per class target_cls = list(gt_labels.T[0]) AP, AP_class, R, P = ap_per_class( tp=correct, conf=scores, pred_cls=np.zeros_like(scores), target_cls=target_cls) self.AP_accum_count += np.bincount(AP_class, minlength=1) self.AP_accum += np.bincount(AP_class, minlength=1, weights=AP) def accumulate(self): logger.info("Accumulating evaluatation results...") self.map_stat = self.AP_accum[0] / (self.AP_accum_count[0] + 1E-16) def log(self): map_stat = 100. * self.map_stat logger.info("mAP({:.2f}) = {:.2f}%".format(self.overlap_thresh, map_stat)) def get_results(self): return self.map_stat """ Following code is borrow from https://github.com/xingyizhou/CenterTrack/blob/master/src/tools/eval_kitti_track/evaluate_tracking.py """ class tData: """ Utility class to load data. """ def __init__(self,frame=-1,obj_type="unset",truncation=-1,occlusion=-1,\ obs_angle=-10,x1=-1,y1=-1,x2=-1,y2=-1,w=-1,h=-1,l=-1,\ X=-1000,Y=-1000,Z=-1000,yaw=-10,score=-1000,track_id=-1): """ Constructor, initializes the object given the parameters. """ self.frame = frame self.track_id = track_id self.obj_type = obj_type self.truncation = truncation self.occlusion = occlusion self.obs_angle = obs_angle self.x1 = x1 self.y1 = y1 self.x2 = x2 self.y2 = y2 self.w = w self.h = h self.l = l self.X = X self.Y = Y self.Z = Z self.yaw = yaw self.score = score self.ignored = False self.valid = False self.tracker = -1 def __str__(self): attrs = vars(self) return '\n'.join("%s: %s" % item for item in attrs.items()) class KITTIEvaluation(object): """ KITTI tracking statistics (CLEAR MOT, id-switches, fragments, ML/PT/MT, precision/recall) MOTA - Multi-object tracking accuracy in [0,100] MOTP - Multi-object tracking precision in [0,100] (3D) / [td,100] (2D) MOTAL - Multi-object tracking accuracy in [0,100] with log10(id-switches) id-switches - number of id switches fragments - number of fragmentations MT, PT, ML - number of mostly tracked, partially tracked and mostly lost trajectories recall - recall = percentage of detected targets precision - precision = percentage of correctly detected targets FAR - number of false alarms per frame falsepositives - number of false positives (FP) missed - number of missed targets (FN) """ def __init__(self, result_path, gt_path, min_overlap=0.5, max_truncation = 0,\ min_height = 25, max_occlusion = 2, cls="car",\ n_frames=[], seqs=[], n_sequences=0): # get number of sequences and # get number of frames per sequence from test mapping # (created while extracting the benchmark) self.gt_path = os.path.join(gt_path, "../labels") self.n_frames = n_frames self.sequence_name = seqs self.n_sequences = n_sequences self.cls = cls # class to evaluate, i.e. pedestrian or car self.result_path = result_path # statistics and numbers for evaluation self.n_gt = 0 # number of ground truth detections minus ignored false negatives and true positives self.n_igt = 0 # number of ignored ground truth detections self.n_gts = [ ] # number of ground truth detections minus ignored false negatives and true positives PER SEQUENCE self.n_igts = [ ] # number of ground ignored truth detections PER SEQUENCE self.n_gt_trajectories = 0 self.n_gt_seq = [] self.n_tr = 0 # number of tracker detections minus ignored tracker detections self.n_trs = [ ] # number of tracker detections minus ignored tracker detections PER SEQUENCE self.n_itr = 0 # number of ignored tracker detections self.n_itrs = [] # number of ignored tracker detections PER SEQUENCE self.n_igttr = 0 # number of ignored ground truth detections where the corresponding associated tracker detection is also ignored self.n_tr_trajectories = 0 self.n_tr_seq = [] self.MOTA = 0 self.MOTP = 0 self.MOTAL = 0 self.MODA = 0 self.MODP = 0 self.MODP_t = [] self.recall = 0 self.precision = 0 self.F1 = 0 self.FAR = 0 self.total_cost = 0 self.itp = 0 # number of ignored true positives self.itps = [] # number of ignored true positives PER SEQUENCE self.tp = 0 # number of true positives including ignored true positives! self.tps = [ ] # number of true positives including ignored true positives PER SEQUENCE self.fn = 0 # number of false negatives WITHOUT ignored false negatives self.fns = [ ] # number of false negatives WITHOUT ignored false negatives PER SEQUENCE self.ifn = 0 # number of ignored false negatives self.ifns = [] # number of ignored false negatives PER SEQUENCE self.fp = 0 # number of false positives # a bit tricky, the number of ignored false negatives and ignored true positives # is subtracted, but if both tracker detection and ground truth detection # are ignored this number is added again to avoid double counting self.fps = [] # above PER SEQUENCE self.mme = 0 self.fragments = 0 self.id_switches = 0 self.MT = 0 self.PT = 0 self.ML = 0 self.min_overlap = min_overlap # minimum bounding box overlap for 3rd party metrics self.max_truncation = max_truncation # maximum truncation of an object for evaluation self.max_occlusion = max_occlusion # maximum occlusion of an object for evaluation self.min_height = min_height # minimum height of an object for evaluation self.n_sample_points = 500 # this should be enough to hold all groundtruth trajectories # is expanded if necessary and reduced in any case self.gt_trajectories = [[] for x in range(self.n_sequences)] self.ign_trajectories = [[] for x in range(self.n_sequences)] def loadGroundtruth(self): try: self._loadData(self.gt_path, cls=self.cls, loading_groundtruth=True) except IOError: return False return True def loadTracker(self): try: if not self._loadData( self.result_path, cls=self.cls, loading_groundtruth=False): return False except IOError: return False return True def _loadData(self, root_dir, cls, min_score=-1000, loading_groundtruth=False): """ Generic loader for ground truth and tracking data. Use loadGroundtruth() or loadTracker() to load this data. Loads detections in KITTI format from textfiles. """ # construct objectDetections object to hold detection data t_data = tData() data = [] eval_2d = True eval_3d = True seq_data = [] n_trajectories = 0 n_trajectories_seq = [] for seq, s_name in enumerate(self.sequence_name): i = 0 filename = os.path.join(root_dir, "%s.txt" % s_name) f = open(filename, "r") f_data = [ [] for x in range(self.n_frames[seq]) ] # current set has only 1059 entries, sufficient length is checked anyway ids = [] n_in_seq = 0 id_frame_cache = [] for line in f: # KITTI tracking benchmark data format: # (frame,tracklet_id,objectType,truncation,occlusion,alpha,x1,y1,x2,y2,h,w,l,X,Y,Z,ry) line = line.strip() fields = line.split(" ") # classes that should be loaded (ignored neighboring classes) if "car" in cls.lower(): classes = ["car", "van"] elif "pedestrian" in cls.lower(): classes = ["pedestrian", "person_sitting"] else: classes = [cls.lower()] classes += ["dontcare"] if not any([s for s in classes if s in fields[2].lower()]): continue # get fields from table t_data.frame = int(float(fields[0])) # frame t_data.track_id = int(float(fields[1])) # id t_data.obj_type = fields[ 2].lower() # object type [car, pedestrian, cyclist, ...] t_data.truncation = int( float(fields[3])) # truncation [-1,0,1,2] t_data.occlusion = int( float(fields[4])) # occlusion [-1,0,1,2] t_data.obs_angle = float(fields[5]) # observation angle [rad] t_data.x1 = float(fields[6]) # left [px] t_data.y1 = float(fields[7]) # top [px] t_data.x2 = float(fields[8]) # right [px] t_data.y2 = float(fields[9]) # bottom [px] t_data.h = float(fields[10]) # height [m] t_data.w = float(fields[11]) # width [m] t_data.l = float(fields[12]) # length [m] t_data.X = float(fields[13]) # X [m] t_data.Y = float(fields[14]) # Y [m] t_data.Z = float(fields[15]) # Z [m] t_data.yaw = float(fields[16]) # yaw angle [rad] if not loading_groundtruth: if len(fields) == 17: t_data.score = -1 elif len(fields) == 18: t_data.score = float(fields[17]) # detection score else: logger.info("file is not in KITTI format") return # do not consider objects marked as invalid if t_data.track_id is -1 and t_data.obj_type != "dontcare": continue idx = t_data.frame # check if length for frame data is sufficient if idx >= len(f_data): print("extend f_data", idx, len(f_data)) f_data += [[] for x in range(max(500, idx - len(f_data)))] try: id_frame = (t_data.frame, t_data.track_id) if id_frame in id_frame_cache and not loading_groundtruth: logger.info( "track ids are not unique for sequence %d: frame %d" % (seq, t_data.frame)) logger.info( "track id %d occurred at least twice for this frame" % t_data.track_id) logger.info("Exiting...") #continue # this allows to evaluate non-unique result files return False id_frame_cache.append(id_frame) f_data[t_data.frame].append(copy.copy(t_data)) except: print(len(f_data), idx) raise if t_data.track_id not in ids and t_data.obj_type != "dontcare": ids.append(t_data.track_id) n_trajectories += 1 n_in_seq += 1 # check if uploaded data provides information for 2D and 3D evaluation if not loading_groundtruth and eval_2d is True and ( t_data.x1 == -1 or t_data.x2 == -1 or t_data.y1 == -1 or t_data.y2 == -1): eval_2d = False if not loading_groundtruth and eval_3d is True and ( t_data.X == -1000 or t_data.Y == -1000 or t_data.Z == -1000): eval_3d = False # only add existing frames n_trajectories_seq.append(n_in_seq) seq_data.append(f_data) f.close() if not loading_groundtruth: self.tracker = seq_data self.n_tr_trajectories = n_trajectories self.eval_2d = eval_2d self.eval_3d = eval_3d self.n_tr_seq = n_trajectories_seq if self.n_tr_trajectories == 0: return False else: # split ground truth and DontCare areas self.dcareas = [] self.groundtruth = [] for seq_idx in range(len(seq_data)): seq_gt = seq_data[seq_idx] s_g, s_dc = [], [] for f in range(len(seq_gt)): all_gt = seq_gt[f] g, dc = [], [] for gg in all_gt: if gg.obj_type == "dontcare": dc.append(gg) else: g.append(gg) s_g.append(g) s_dc.append(dc) self.dcareas.append(s_dc) self.groundtruth.append(s_g) self.n_gt_seq = n_trajectories_seq self.n_gt_trajectories = n_trajectories return True def boxoverlap(self, a, b, criterion="union"): """ boxoverlap computes intersection over union for bbox a and b in KITTI format. If the criterion is 'union', overlap = (a inter b) / a union b). If the criterion is 'a', overlap = (a inter b) / a, where b should be a dontcare area. """ x1 = max(a.x1, b.x1) y1 = max(a.y1, b.y1) x2 = min(a.x2, b.x2) y2 = min(a.y2, b.y2) w = x2 - x1 h = y2 - y1 if w <= 0. or h <= 0.: return 0. inter = w * h aarea = (a.x2 - a.x1) * (a.y2 - a.y1) barea = (b.x2 - b.x1) * (b.y2 - b.y1) # intersection over union overlap if criterion.lower() == "union": o = inter / float(aarea + barea - inter) elif criterion.lower() == "a": o = float(inter) / float(aarea) else: raise TypeError("Unkown type for criterion") return o def compute3rdPartyMetrics(self): """ Computes the metrics defined in - Stiefelhagen 2008: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics MOTA, MOTAL, MOTP - Nevatia 2008: Global Data Association for Multi-Object Tracking Using Network Flows MT/PT/ML """ # construct Munkres object for Hungarian Method association hm = Munkres() max_cost = 1e9 # go through all frames and associate ground truth and tracker results # groundtruth and tracker contain lists for every single frame containing lists of KITTI format detections fr, ids = 0, 0 for seq_idx in range(len(self.groundtruth)): seq_gt = self.groundtruth[seq_idx] seq_dc = self.dcareas[seq_idx] # don't care areas seq_tracker = self.tracker[seq_idx] seq_trajectories = defaultdict(list) seq_ignored = defaultdict(list) # statistics over the current sequence, check the corresponding # variable comments in __init__ to get their meaning seqtp = 0 seqitp = 0 seqfn = 0 seqifn = 0 seqfp = 0 seqigt = 0 seqitr = 0 last_ids = [[], []] n_gts = 0 n_trs = 0 for f in range(len(seq_gt)): g = seq_gt[f] dc = seq_dc[f] t = seq_tracker[f] # counting total number of ground truth and tracker objects self.n_gt += len(g) self.n_tr += len(t) n_gts += len(g) n_trs += len(t) # use hungarian method to associate, using boxoverlap 0..1 as cost # build cost matrix cost_matrix = [] this_ids = [[], []] for gg in g: # save current ids this_ids[0].append(gg.track_id) this_ids[1].append(-1) gg.tracker = -1 gg.id_switch = 0 gg.fragmentation = 0 cost_row = [] for tt in t: # overlap == 1 is cost ==0 c = 1 - self.boxoverlap(gg, tt) # gating for boxoverlap if c <= self.min_overlap: cost_row.append(c) else: cost_row.append(max_cost) # = 1e9 cost_matrix.append(cost_row) # all ground truth trajectories are initially not associated # extend groundtruth trajectories lists (merge lists) seq_trajectories[gg.track_id].append(-1) seq_ignored[gg.track_id].append(False) if len(g) is 0: cost_matrix = [[]] # associate association_matrix = hm.compute(cost_matrix) # tmp variables for sanity checks and MODP computation tmptp = 0 tmpfp = 0 tmpfn = 0 tmpc = 0 # this will sum up the overlaps for all true positives tmpcs = [0] * len( g) # this will save the overlaps for all true positives # the reason is that some true positives might be ignored # later such that the corrsponding overlaps can # be subtracted from tmpc for MODP computation # mapping for tracker ids and ground truth ids for row, col in association_matrix: # apply gating on boxoverlap c = cost_matrix[row][col] if c < max_cost: g[row].tracker = t[col].track_id this_ids[1][row] = t[col].track_id t[col].valid = True g[row].distance = c self.total_cost += 1 - c tmpc += 1 - c tmpcs[row] = 1 - c seq_trajectories[g[row].track_id][-1] = t[col].track_id # true positives are only valid associations self.tp += 1 tmptp += 1 else: g[row].tracker = -1 self.fn += 1 tmpfn += 1 # associate tracker and DontCare areas # ignore tracker in neighboring classes nignoredtracker = 0 # number of ignored tracker detections ignoredtrackers = dict() # will associate the track_id with -1 # if it is not ignored and 1 if it is # ignored; # this is used to avoid double counting ignored # cases, see the next loop for tt in t: ignoredtrackers[tt.track_id] = -1 # ignore detection if it belongs to a neighboring class or is # smaller or equal to the minimum height tt_height = abs(tt.y1 - tt.y2) if ((self.cls == "car" and tt.obj_type == "van") or (self.cls == "pedestrian" and tt.obj_type == "person_sitting") or tt_height <= self.min_height) and not tt.valid: nignoredtracker += 1 tt.ignored = True ignoredtrackers[tt.track_id] = 1 continue for d in dc: overlap = self.boxoverlap(tt, d, "a") if overlap > 0.5 and not tt.valid: tt.ignored = True nignoredtracker += 1 ignoredtrackers[tt.track_id] = 1 break # check for ignored FN/TP (truncation or neighboring object class) ignoredfn = 0 # the number of ignored false negatives nignoredtp = 0 # the number of ignored true positives nignoredpairs = 0 # the number of ignored pairs, i.e. a true positive # which is ignored but where the associated tracker # detection has already been ignored gi = 0 for gg in g: if gg.tracker < 0: if gg.occlusion>self.max_occlusion or gg.truncation>self.max_truncation\ or (self.cls=="car" and gg.obj_type=="van") or (self.cls=="pedestrian" and gg.obj_type=="person_sitting"): seq_ignored[gg.track_id][-1] = True gg.ignored = True ignoredfn += 1 elif gg.tracker >= 0: if gg.occlusion>self.max_occlusion or gg.truncation>self.max_truncation\ or (self.cls=="car" and gg.obj_type=="van") or (self.cls=="pedestrian" and gg.obj_type=="person_sitting"): seq_ignored[gg.track_id][-1] = True gg.ignored = True nignoredtp += 1 # if the associated tracker detection is already ignored, # we want to avoid double counting ignored detections if ignoredtrackers[gg.tracker] > 0: nignoredpairs += 1 # for computing MODP, the overlaps from ignored detections # are subtracted tmpc -= tmpcs[gi] gi += 1 # the below might be confusion, check the comments in __init__ # to see what the individual statistics represent # correct TP by number of ignored TP due to truncation # ignored TP are shown as tracked in visualization tmptp -= nignoredtp # count the number of ignored true positives self.itp += nignoredtp # adjust the number of ground truth objects considered self.n_gt -= (ignoredfn + nignoredtp) # count the number of ignored ground truth objects self.n_igt += ignoredfn + nignoredtp # count the number of ignored tracker objects self.n_itr += nignoredtracker # count the number of ignored pairs, i.e. associated tracker and # ground truth objects that are both ignored self.n_igttr += nignoredpairs # false negatives = associated gt bboxes exceding association threshold + non-associated gt bboxes tmpfn += len(g) - len(association_matrix) - ignoredfn self.fn += len(g) - len(association_matrix) - ignoredfn self.ifn += ignoredfn # false positives = tracker bboxes - associated tracker bboxes # mismatches (mme_t) tmpfp += len( t) - tmptp - nignoredtracker - nignoredtp + nignoredpairs self.fp += len( t) - tmptp - nignoredtracker - nignoredtp + nignoredpairs # update sequence data seqtp += tmptp seqitp += nignoredtp seqfp += tmpfp seqfn += tmpfn seqifn += ignoredfn seqigt += ignoredfn + nignoredtp seqitr += nignoredtracker # sanity checks # - the number of true positives minues ignored true positives # should be greater or equal to 0 # - the number of false negatives should be greater or equal to 0 # - the number of false positives needs to be greater or equal to 0 # otherwise ignored detections might be counted double # - the number of counted true positives (plus ignored ones) # and the number of counted false negatives (plus ignored ones) # should match the total number of ground truth objects # - the number of counted true positives (plus ignored ones) # and the number of counted false positives # plus the number of ignored tracker detections should # match the total number of tracker detections; note that # nignoredpairs is subtracted here to avoid double counting # of ignored detection sin nignoredtp and nignoredtracker if tmptp < 0: print(tmptp, nignoredtp) raise NameError("Something went wrong! TP is negative") if tmpfn < 0: print(tmpfn, len(g), len(association_matrix), ignoredfn, nignoredpairs) raise NameError("Something went wrong! FN is negative") if tmpfp < 0: print(tmpfp, len(t), tmptp, nignoredtracker, nignoredtp, nignoredpairs) raise NameError("Something went wrong! FP is negative") if tmptp + tmpfn is not len(g) - ignoredfn - nignoredtp: print("seqidx", seq_idx) print("frame ", f) print("TP ", tmptp) print("FN ", tmpfn) print("FP ", tmpfp) print("nGT ", len(g)) print("nAss ", len(association_matrix)) print("ign GT", ignoredfn) print("ign TP", nignoredtp) raise NameError( "Something went wrong! nGroundtruth is not TP+FN") if tmptp + tmpfp + nignoredtp + nignoredtracker - nignoredpairs is not len( t): print(seq_idx, f, len(t), tmptp, tmpfp) print(len(association_matrix), association_matrix) raise NameError( "Something went wrong! nTracker is not TP+FP") # check for id switches or fragmentations for i, tt in enumerate(this_ids[0]): if tt in last_ids[0]: idx = last_ids[0].index(tt) tid = this_ids[1][i] lid = last_ids[1][idx] if tid != lid and lid != -1 and tid != -1: if g[i].truncation < self.max_truncation: g[i].id_switch = 1 ids += 1 if tid != lid and lid != -1: if g[i].truncation < self.max_truncation: g[i].fragmentation = 1 fr += 1 # save current index last_ids = this_ids # compute MOTP_t MODP_t = 1 if tmptp != 0: MODP_t = tmpc / float(tmptp) self.MODP_t.append(MODP_t) # remove empty lists for current gt trajectories self.gt_trajectories[seq_idx] = seq_trajectories self.ign_trajectories[seq_idx] = seq_ignored # gather statistics for "per sequence" statistics. self.n_gts.append(n_gts) self.n_trs.append(n_trs) self.tps.append(seqtp) self.itps.append(seqitp) self.fps.append(seqfp) self.fns.append(seqfn) self.ifns.append(seqifn) self.n_igts.append(seqigt) self.n_itrs.append(seqitr) # compute MT/PT/ML, fragments, idswitches for all groundtruth trajectories n_ignored_tr_total = 0 for seq_idx, ( seq_trajectories, seq_ignored ) in enumerate(zip(self.gt_trajectories, self.ign_trajectories)): if len(seq_trajectories) == 0: continue tmpMT, tmpML, tmpPT, tmpId_switches, tmpFragments = [0] * 5 n_ignored_tr = 0 for g, ign_g in zip(seq_trajectories.values(), seq_ignored.values()): # all frames of this gt trajectory are ignored if all(ign_g): n_ignored_tr += 1 n_ignored_tr_total += 1 continue # all frames of this gt trajectory are not assigned to any detections if all([this == -1 for this in g]): tmpML += 1 self.ML += 1 continue # compute tracked frames in trajectory last_id = g[0] # first detection (necessary to be in gt_trajectories) is always tracked tracked = 1 if g[0] >= 0 else 0 lgt = 0 if ign_g[0] else 1 for f in range(1, len(g)): if ign_g[f]: last_id = -1 continue lgt += 1 if last_id != g[f] and last_id != -1 and g[f] != -1 and g[ f - 1] != -1: tmpId_switches += 1 self.id_switches += 1 if f < len(g) - 1 and g[f - 1] != g[ f] and last_id != -1 and g[f] != -1 and g[f + 1] != -1: tmpFragments += 1 self.fragments += 1 if g[f] != -1: tracked += 1 last_id = g[f] # handle last frame; tracked state is handled in for loop (g[f]!=-1) if len(g) > 1 and g[f - 1] != g[f] and last_id != -1 and g[ f] != -1 and not ign_g[f]: tmpFragments += 1 self.fragments += 1 # compute MT/PT/ML tracking_ratio = tracked / float(len(g) - sum(ign_g)) if tracking_ratio > 0.8: tmpMT += 1 self.MT += 1 elif tracking_ratio < 0.2: tmpML += 1 self.ML += 1 else: # 0.2 <= tracking_ratio <= 0.8 tmpPT += 1 self.PT += 1 if (self.n_gt_trajectories - n_ignored_tr_total) == 0: self.MT = 0. self.PT = 0. self.ML = 0. else: self.MT /= float(self.n_gt_trajectories - n_ignored_tr_total) self.PT /= float(self.n_gt_trajectories - n_ignored_tr_total) self.ML /= float(self.n_gt_trajectories - n_ignored_tr_total) # precision/recall etc. if (self.fp + self.tp) == 0 or (self.tp + self.fn) == 0: self.recall = 0. self.precision = 0. else: self.recall = self.tp / float(self.tp + self.fn) self.precision = self.tp / float(self.fp + self.tp) if (self.recall + self.precision) == 0: self.F1 = 0. else: self.F1 = 2. * (self.precision * self.recall) / ( self.precision + self.recall) if sum(self.n_frames) == 0: self.FAR = "n/a" else: self.FAR = self.fp / float(sum(self.n_frames)) # compute CLEARMOT if self.n_gt == 0: self.MOTA = -float("inf") self.MODA = -float("inf") else: self.MOTA = 1 - (self.fn + self.fp + self.id_switches ) / float(self.n_gt) self.MODA = 1 - (self.fn + self.fp) / float(self.n_gt) if self.tp == 0: self.MOTP = float("inf") else: self.MOTP = self.total_cost / float(self.tp) if self.n_gt != 0: if self.id_switches == 0: self.MOTAL = 1 - (self.fn + self.fp + self.id_switches ) / float(self.n_gt) else: self.MOTAL = 1 - (self.fn + self.fp + math.log10(self.id_switches) ) / float(self.n_gt) else: self.MOTAL = -float("inf") if sum(self.n_frames) == 0: self.MODP = "n/a" else: self.MODP = sum(self.MODP_t) / float(sum(self.n_frames)) return True def createSummary(self): summary = "" summary += "tracking evaluation summary".center(80, "=") + "\n" summary += self.printEntry("Multiple Object Tracking Accuracy (MOTA)", self.MOTA) + "\n" summary += self.printEntry("Multiple Object Tracking Precision (MOTP)", self.MOTP) + "\n" summary += self.printEntry("Multiple Object Tracking Accuracy (MOTAL)", self.MOTAL) + "\n" summary += self.printEntry("Multiple Object Detection Accuracy (MODA)", self.MODA) + "\n" summary += self.printEntry("Multiple Object Detection Precision (MODP)", self.MODP) + "\n" summary += "\n" summary += self.printEntry("Recall", self.recall) + "\n" summary += self.printEntry("Precision", self.precision) + "\n" summary += self.printEntry("F1", self.F1) + "\n" summary += self.printEntry("False Alarm Rate", self.FAR) + "\n" summary += "\n" summary += self.printEntry("Mostly Tracked", self.MT) + "\n" summary += self.printEntry("Partly Tracked", self.PT) + "\n" summary += self.printEntry("Mostly Lost", self.ML) + "\n" summary += "\n" summary += self.printEntry("True Positives", self.tp) + "\n" #summary += self.printEntry("True Positives per Sequence", self.tps) + "\n" summary += self.printEntry("Ignored True Positives", self.itp) + "\n" #summary += self.printEntry("Ignored True Positives per Sequence", self.itps) + "\n" summary += self.printEntry("False Positives", self.fp) + "\n" #summary += self.printEntry("False Positives per Sequence", self.fps) + "\n" summary += self.printEntry("False Negatives", self.fn) + "\n" #summary += self.printEntry("False Negatives per Sequence", self.fns) + "\n" summary += self.printEntry("ID-switches", self.id_switches) + "\n" self.fp = self.fp / self.n_gt self.fn = self.fn / self.n_gt self.id_switches = self.id_switches / self.n_gt summary += self.printEntry("False Positives Ratio", self.fp) + "\n" #summary += self.printEntry("False Positives per Sequence", self.fps) + "\n" summary += self.printEntry("False Negatives Ratio", self.fn) + "\n" #summary += self.printEntry("False Negatives per Sequence", self.fns) + "\n" summary += self.printEntry("Ignored False Negatives Ratio", self.ifn) + "\n" #summary += self.printEntry("Ignored False Negatives per Sequence", self.ifns) + "\n" summary += self.printEntry("Missed Targets", self.fn) + "\n" summary += self.printEntry("ID-switches", self.id_switches) + "\n" summary += self.printEntry("Fragmentations", self.fragments) + "\n" summary += "\n" summary += self.printEntry("Ground Truth Objects (Total)", self.n_gt + self.n_igt) + "\n" #summary += self.printEntry("Ground Truth Objects (Total) per Sequence", self.n_gts) + "\n" summary += self.printEntry("Ignored Ground Truth Objects", self.n_igt) + "\n" #summary += self.printEntry("Ignored Ground Truth Objects per Sequence", self.n_igts) + "\n" summary += self.printEntry("Ground Truth Trajectories", self.n_gt_trajectories) + "\n" summary += "\n" summary += self.printEntry("Tracker Objects (Total)", self.n_tr) + "\n" #summary += self.printEntry("Tracker Objects (Total) per Sequence", self.n_trs) + "\n" summary += self.printEntry("Ignored Tracker Objects", self.n_itr) + "\n" #summary += self.printEntry("Ignored Tracker Objects per Sequence", self.n_itrs) + "\n" summary += self.printEntry("Tracker Trajectories", self.n_tr_trajectories) + "\n" #summary += "\n" #summary += self.printEntry("Ignored Tracker Objects with Associated Ignored Ground Truth Objects", self.n_igttr) + "\n" summary += "=" * 80 return summary def printEntry(self, key, val, width=(70, 10)): """ Pretty print an entry in a table fashion. """ s_out = key.ljust(width[0]) if type(val) == int: s = "%%%dd" % width[1] s_out += s % val elif type(val) == float: s = "%%%df" % (width[1]) s_out += s % val else: s_out += ("%s" % val).rjust(width[1]) return s_out def saveToStats(self, save_summary): """ Save the statistics in a whitespace separate file. """ summary = self.createSummary() if save_summary: filename = os.path.join(self.result_path, "summary_%s.txt" % self.cls) dump = open(filename, "w+") dump.write(summary) dump.close() return summary class KITTIMOTMetric(Metric): def __init__(self, save_summary=True): self.save_summary = save_summary self.MOTEvaluator = KITTIEvaluation self.result_root = None self.reset() def reset(self): self.seqs = [] self.n_sequences = 0 self.n_frames = [] self.strsummary = '' def update(self, data_root, seq, data_type, result_root, result_filename): assert data_type == 'kitti', "data_type should 'kitti'" self.result_root = result_root self.gt_path = data_root gt_path = '{}/../labels/{}.txt'.format(data_root, seq) gt = open(gt_path, "r") max_frame = 0 for line in gt: line = line.strip() line_list = line.split(" ") if int(line_list[0]) > max_frame: max_frame = int(line_list[0]) rs = open(result_filename, "r") for line in rs: line = line.strip() line_list = line.split(" ") if int(line_list[0]) > max_frame: max_frame = int(line_list[0]) gt.close() rs.close() self.n_frames.append(max_frame + 1) self.seqs.append(seq) self.n_sequences += 1 def accumulate(self): logger.info("Processing Result for KITTI Tracking Benchmark") e = self.MOTEvaluator(result_path=self.result_root, gt_path=self.gt_path,\ n_frames=self.n_frames, seqs=self.seqs, n_sequences=self.n_sequences) try: if not e.loadTracker(): return logger.info("Loading Results - Success") logger.info("Evaluate Object Class: %s" % c.upper()) except: logger.info("Caught exception while loading result data.") if not e.loadGroundtruth(): raise ValueError("Ground truth not found.") logger.info("Loading Groundtruth - Success") # sanity checks if len(e.groundtruth) is not len(e.tracker): logger.info( "The uploaded data does not provide results for every sequence.") return False logger.info("Loaded %d Sequences." % len(e.groundtruth)) logger.info("Start Evaluation...") if e.compute3rdPartyMetrics(): self.strsummary = e.saveToStats(self.save_summary) else: logger.info( "There seem to be no true positives or false positives at all in the submitted data." ) def log(self): print(self.strsummary) def get_results(self): return self.strsummary
PaddleDetection/ppdet/metrics/mot_metrics.py/0
{ "file_path": "PaddleDetection/ppdet/metrics/mot_metrics.py", "repo_id": "PaddleDetection", "token_count": 27177 }
67
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import math import numpy as np import paddle from ppdet.core.workspace import register, create from .meta_arch import BaseArch from ..keypoint_utils import affine_transform from ppdet.data.transform.op_helper import gaussian_radius, gaussian2D, draw_umich_gaussian __all__ = ['CenterTrack'] @register class CenterTrack(BaseArch): """ CenterTrack network, see http://arxiv.org/abs/2004.01177 Args: detector (object): 'CenterNet' instance plugin_head (object): 'CenterTrackHead' instance tracker (object): 'CenterTracker' instance """ __category__ = 'architecture' __shared__ = ['mot_metric'] def __init__(self, detector='CenterNet', plugin_head='CenterTrackHead', tracker='CenterTracker', mot_metric=False): super(CenterTrack, self).__init__() self.detector = detector self.plugin_head = plugin_head self.tracker = tracker self.mot_metric = mot_metric self.pre_image = None self.deploy = False @classmethod def from_config(cls, cfg, *args, **kwargs): detector = create(cfg['detector']) detector_out_shape = detector.neck and detector.neck.out_shape or detector.backbone.out_shape kwargs = {'input_shape': detector_out_shape} plugin_head = create(cfg['plugin_head'], **kwargs) tracker = create(cfg['tracker']) return { 'detector': detector, 'plugin_head': plugin_head, 'tracker': tracker, } def _forward(self): if self.training: det_outs = self.detector(self.inputs) neck_feat = det_outs['neck_feat'] losses = {} for k, v in det_outs.items(): if 'loss' not in k: continue losses.update({k: v}) plugin_outs = self.plugin_head(neck_feat, self.inputs) for k, v in plugin_outs.items(): if 'loss' not in k: continue losses.update({k: v}) losses['loss'] = det_outs['det_loss'] + plugin_outs['plugin_loss'] return losses else: if not self.mot_metric: # detection, support bs>=1 det_outs = self.detector(self.inputs) return { 'bbox': det_outs['bbox'], 'bbox_num': det_outs['bbox_num'] } else: # MOT, only support bs=1 if not self.deploy: if self.pre_image is None: self.pre_image = self.inputs['image'] # initializing tracker for the first frame self.tracker.init_track([]) self.inputs['pre_image'] = self.pre_image self.pre_image = self.inputs[ 'image'] # Note: update for next image # render input heatmap from tracker status pre_hm = self.get_additional_inputs( self.tracker.tracks, self.inputs, with_hm=True) self.inputs['pre_hm'] = paddle.to_tensor(pre_hm) # model inference det_outs = self.detector(self.inputs) neck_feat = det_outs['neck_feat'] result = self.plugin_head( neck_feat, self.inputs, det_outs['bbox'], det_outs['bbox_inds'], det_outs['topk_clses'], det_outs['topk_ys'], det_outs['topk_xs']) if not self.deploy: # convert the cropped and 4x downsampled output coordinate system # back to the input image coordinate system result = self.plugin_head.centertrack_post_process( result, self.inputs, self.tracker.out_thresh) return result def get_pred(self): return self._forward() def get_loss(self): return self._forward() def reset_tracking(self): self.tracker.reset() self.pre_image = None def get_additional_inputs(self, dets, meta, with_hm=True): # Render input heatmap from previous trackings. trans_input = meta['trans_input'][0].numpy() inp_width, inp_height = int(meta['inp_width'][0]), int(meta[ 'inp_height'][0]) input_hm = np.zeros((1, inp_height, inp_width), dtype=np.float32) for det in dets: if det['score'] < self.tracker.pre_thresh: continue bbox = affine_transform_bbox(det['bbox'], trans_input, inp_width, inp_height) h, w = bbox[3] - bbox[1], bbox[2] - bbox[0] if (h > 0 and w > 0): radius = gaussian_radius( (math.ceil(h), math.ceil(w)), min_overlap=0.7) radius = max(0, int(radius)) ct = np.array( [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32) ct_int = ct.astype(np.int32) if with_hm: input_hm[0] = draw_umich_gaussian(input_hm[0], ct_int, radius) if with_hm: input_hm = input_hm[np.newaxis] return input_hm def affine_transform_bbox(bbox, trans, width, height): bbox = np.array(copy.deepcopy(bbox), dtype=np.float32) bbox[:2] = affine_transform(bbox[:2], trans) bbox[2:] = affine_transform(bbox[2:], trans) bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, width - 1) bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, height - 1) return bbox
PaddleDetection/ppdet/modeling/architectures/centertrack.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/architectures/centertrack.py", "repo_id": "PaddleDetection", "token_count": 3231 }
68
from typing import Dict from collections import OrderedDict from ppdet.modeling.architectures.meta_arch import BaseArch class MultiSteamDetector(BaseArch): def __init__(self, model: Dict[str, BaseArch], train_cfg=None, test_cfg=None): super(MultiSteamDetector, self).__init__() self.submodules = list(model.keys()) for k, v in model.items(): setattr(self, k, v) self.train_cfg = train_cfg self.test_cfg = test_cfg self.inference_on = self.test_cfg.get("inference_on", self.submodules[0]) self.first_load = True def forward(self, inputs, return_loss=True, **kwargs): """Calls either :func:`forward_train` or :func:`forward_test` depending on whether ``return_loss`` is ``True``. Note this setting will change the expected inputs. When ``return_loss=True``, img and img_meta are single-nested (i.e. Tensor and List[dict]), and when ``resturn_loss=False``, img and img_meta should be double nested (i.e. List[Tensor], List[List[dict]]), with the outer list indicating test time augmentations. """ if return_loss: return self.forward_train(inputs, **kwargs) else: return self.forward_test(inputs, **kwargs) def get_loss(self, **kwargs): # losses = self(**data) return self.forward_train(self, **kwargs) def model(self, **kwargs) -> BaseArch: if "submodule" in kwargs: assert (kwargs["submodule"] in self.submodules ), "Detector does not contain submodule {}".format(kwargs[ "submodule"]) model: BaseArch = getattr(self, kwargs["submodule"]) else: model: BaseArch = getattr(self, self.inference_on) return model def freeze(self, model_ref: str): assert model_ref in self.submodules model = getattr(self, model_ref) model.eval() for param in model.parameters(): param.stop_gradient = True def update_ema_model(self, momentum=0.9996): # print(momentum) model_dict = self.student.state_dict() new_dict = OrderedDict() for key, value in self.teacher.state_dict().items(): if key in model_dict.keys(): new_dict[key] = (model_dict[key] * (1 - momentum) + value * momentum) else: raise Exception("{} is not found in student model".format(key)) self.teacher.set_dict(new_dict)
PaddleDetection/ppdet/modeling/architectures/multi_stream_detector.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/architectures/multi_stream_detector.py", "repo_id": "PaddleDetection", "token_count": 1230 }
69
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ..bbox_utils import iou_similarity, batch_iou_similarity from ..bbox_utils import bbox_center from .utils import (check_points_inside_bboxes, compute_max_iou_anchor, compute_max_iou_gt) __all__ = ['ATSSAssigner'] @register class ATSSAssigner(nn.Layer): """Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection """ __shared__ = ['num_classes'] def __init__(self, topk=9, num_classes=80, force_gt_matching=False, eps=1e-9, sm_use=False): super(ATSSAssigner, self).__init__() self.topk = topk self.num_classes = num_classes self.force_gt_matching = force_gt_matching self.eps = eps self.sm_use = sm_use def _gather_topk_pyramid(self, gt2anchor_distances, num_anchors_list, pad_gt_mask): gt2anchor_distances_list = paddle.split( gt2anchor_distances, num_anchors_list, axis=-1) num_anchors_index = np.cumsum(num_anchors_list).tolist() num_anchors_index = [0, ] + num_anchors_index[:-1] is_in_topk_list = [] topk_idxs_list = [] for distances, anchors_index in zip(gt2anchor_distances_list, num_anchors_index): num_anchors = distances.shape[-1] _, topk_idxs = paddle.topk( distances, self.topk, axis=-1, largest=False) topk_idxs_list.append(topk_idxs + anchors_index) is_in_topk = F.one_hot(topk_idxs, num_anchors).sum( axis=-2).astype(gt2anchor_distances.dtype) is_in_topk_list.append(is_in_topk * pad_gt_mask) is_in_topk_list = paddle.concat(is_in_topk_list, axis=-1) topk_idxs_list = paddle.concat(topk_idxs_list, axis=-1) return is_in_topk_list, topk_idxs_list @paddle.no_grad() def forward(self, anchor_bboxes, num_anchors_list, gt_labels, gt_bboxes, pad_gt_mask, bg_index, gt_scores=None, pred_bboxes=None): r"""This code is based on https://github.com/fcjian/TOOD/blob/master/mmdet/core/bbox/assigners/atss_assigner.py The assignment is done in following steps 1. compute iou between all bbox (bbox of all pyramid levels) and gt 2. compute center distance between all bbox and gt 3. on each pyramid level, for each gt, select k bbox whose center are closest to the gt center, so we total select k*l bbox as candidates for each gt 4. get corresponding iou for the these candidates, and compute the mean and std, set mean + std as the iou threshold 5. select these candidates whose iou are greater than or equal to the threshold as positive 6. limit the positive sample's center in gt 7. if an anchor box is assigned to multiple gts, the one with the highest iou will be selected. Args: anchor_bboxes (Tensor, float32): pre-defined anchors, shape(L, 4), "xmin, xmax, ymin, ymax" format num_anchors_list (List): num of anchors in each level gt_labels (Tensor, int64|int32): Label of gt_bboxes, shape(B, n, 1) gt_bboxes (Tensor, float32): Ground truth bboxes, shape(B, n, 4) pad_gt_mask (Tensor, float32): 1 means bbox, 0 means no bbox, shape(B, n, 1) bg_index (int): background index gt_scores (Tensor|None, float32) Score of gt_bboxes, shape(B, n, 1), if None, then it will initialize with one_hot label pred_bboxes (Tensor, float32, optional): predicted bounding boxes, shape(B, L, 4) Returns: assigned_labels (Tensor): (B, L) assigned_bboxes (Tensor): (B, L, 4) assigned_scores (Tensor): (B, L, C), if pred_bboxes is not None, then output ious """ assert gt_labels.ndim == gt_bboxes.ndim and \ gt_bboxes.ndim == 3 num_anchors, _ = anchor_bboxes.shape batch_size, num_max_boxes, _ = gt_bboxes.shape # negative batch if num_max_boxes == 0: assigned_labels = paddle.full( [batch_size, num_anchors], bg_index, dtype='int32') assigned_bboxes = paddle.zeros([batch_size, num_anchors, 4]) assigned_scores = paddle.zeros( [batch_size, num_anchors, self.num_classes]) return assigned_labels, assigned_bboxes, assigned_scores # 1. compute iou between gt and anchor bbox, [B, n, L] ious = iou_similarity(gt_bboxes.reshape([-1, 4]), anchor_bboxes) ious = ious.reshape([batch_size, -1, num_anchors]) # 2. compute center distance between all anchors and gt, [B, n, L] gt_centers = bbox_center(gt_bboxes.reshape([-1, 4])).unsqueeze(1) anchor_centers = bbox_center(anchor_bboxes) gt2anchor_distances = (gt_centers - anchor_centers.unsqueeze(0)) \ .norm(2, axis=-1).reshape([batch_size, -1, num_anchors]) # 3. on each pyramid level, selecting topk closest candidates # based on the center distance, [B, n, L] is_in_topk, topk_idxs = self._gather_topk_pyramid( gt2anchor_distances, num_anchors_list, pad_gt_mask) # 4. get corresponding iou for the these candidates, and compute the # mean and std, 5. set mean + std as the iou threshold iou_candidates = ious * is_in_topk iou_threshold = paddle.index_sample( iou_candidates.flatten(stop_axis=-2), topk_idxs.flatten(stop_axis=-2)) iou_threshold = iou_threshold.reshape([batch_size, num_max_boxes, -1]) iou_threshold = iou_threshold.mean(axis=-1, keepdim=True) + \ iou_threshold.std(axis=-1, keepdim=True) is_in_topk = paddle.where(iou_candidates > iou_threshold, is_in_topk, paddle.zeros_like(is_in_topk)) # 6. check the positive sample's center in gt, [B, n, L] if self.sm_use: is_in_gts = check_points_inside_bboxes( anchor_centers, gt_bboxes, sm_use=True) else: is_in_gts = check_points_inside_bboxes(anchor_centers, gt_bboxes) # select positive sample, [B, n, L] mask_positive = is_in_topk * is_in_gts * pad_gt_mask # 7. if an anchor box is assigned to multiple gts, # the one with the highest iou will be selected. mask_positive_sum = mask_positive.sum(axis=-2) if mask_positive_sum.max() > 1: mask_multiple_gts = ( mask_positive_sum.unsqueeze(1) > 1).astype('int32').tile( [1, num_max_boxes, 1]).astype('bool') if self.sm_use: is_max_iou = compute_max_iou_anchor(ious * mask_positive) else: is_max_iou = compute_max_iou_anchor(ious) mask_positive = paddle.where(mask_multiple_gts, is_max_iou, mask_positive) mask_positive_sum = mask_positive.sum(axis=-2) # 8. make sure every gt_bbox matches the anchor if self.force_gt_matching: is_max_iou = compute_max_iou_gt(ious) * pad_gt_mask mask_max_iou = (is_max_iou.sum(-2, keepdim=True) == 1).tile( [1, num_max_boxes, 1]) mask_positive = paddle.where(mask_max_iou, is_max_iou, mask_positive) mask_positive_sum = mask_positive.sum(axis=-2) assigned_gt_index = mask_positive.argmax(axis=-2) # assigned target batch_ind = paddle.arange( end=batch_size, dtype=gt_labels.dtype).unsqueeze(-1) assigned_gt_index = assigned_gt_index + batch_ind * num_max_boxes assigned_labels = paddle.gather( gt_labels.flatten(), assigned_gt_index.flatten(), axis=0) assigned_labels = assigned_labels.reshape([batch_size, num_anchors]) assigned_labels = paddle.where( mask_positive_sum > 0, assigned_labels, paddle.full_like(assigned_labels, bg_index)) assigned_bboxes = paddle.gather( gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0) assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4]) assigned_scores = F.one_hot(assigned_labels, self.num_classes + 1) ind = list(range(self.num_classes + 1)) ind.remove(bg_index) assigned_scores = paddle.index_select( assigned_scores, paddle.to_tensor(ind), axis=-1) if pred_bboxes is not None: # assigned iou ious = batch_iou_similarity(gt_bboxes, pred_bboxes) * mask_positive ious = ious.max(axis=-2).unsqueeze(-1) assigned_scores *= ious elif gt_scores is not None: gather_scores = paddle.gather( gt_scores.flatten(), assigned_gt_index.flatten(), axis=0) gather_scores = gather_scores.reshape([batch_size, num_anchors]) gather_scores = paddle.where(mask_positive_sum > 0, gather_scores, paddle.zeros_like(gather_scores)) assigned_scores *= gather_scores.unsqueeze(-1) return assigned_labels, assigned_bboxes, assigned_scores
PaddleDetection/ppdet/modeling/assigners/atss_assigner.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/assigners/atss_assigner.py", "repo_id": "PaddleDetection", "token_count": 4970 }
70
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.regularizer import L2Decay from ppdet.core.workspace import register, serializable from ppdet.modeling.initializer import conv_init_ from ..shape_spec import ShapeSpec __all__ = [ 'CSPDarkNet', 'BaseConv', 'DWConv', 'BottleNeck', 'SPPLayer', 'SPPFLayer' ] class BaseConv(nn.Layer): def __init__(self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act="silu"): super(BaseConv, self).__init__() self.conv = nn.Conv2D( in_channels, out_channels, kernel_size=ksize, stride=stride, padding=(ksize - 1) // 2, groups=groups, bias_attr=bias) self.bn = nn.BatchNorm2D( out_channels, weight_attr=ParamAttr(regularizer=L2Decay(0.0)), bias_attr=ParamAttr(regularizer=L2Decay(0.0))) self._init_weights() def _init_weights(self): conv_init_(self.conv) def forward(self, x): # use 'x * F.sigmoid(x)' replace 'silu' x = self.bn(self.conv(x)) y = x * F.sigmoid(x) return y class DWConv(nn.Layer): """Depthwise Conv""" def __init__(self, in_channels, out_channels, ksize, stride=1, bias=False, act="silu"): super(DWConv, self).__init__() self.dw_conv = BaseConv( in_channels, in_channels, ksize=ksize, stride=stride, groups=in_channels, bias=bias, act=act) self.pw_conv = BaseConv( in_channels, out_channels, ksize=1, stride=1, groups=1, bias=bias, act=act) def forward(self, x): return self.pw_conv(self.dw_conv(x)) class Focus(nn.Layer): """Focus width and height information into channel space, used in YOLOX.""" def __init__(self, in_channels, out_channels, ksize=3, stride=1, bias=False, act="silu"): super(Focus, self).__init__() self.conv = BaseConv( in_channels * 4, out_channels, ksize=ksize, stride=stride, bias=bias, act=act) def forward(self, inputs): # inputs [bs, C, H, W] -> outputs [bs, 4C, W/2, H/2] top_left = inputs[:, :, 0::2, 0::2] top_right = inputs[:, :, 0::2, 1::2] bottom_left = inputs[:, :, 1::2, 0::2] bottom_right = inputs[:, :, 1::2, 1::2] outputs = paddle.concat( [top_left, bottom_left, top_right, bottom_right], 1) return self.conv(outputs) class BottleNeck(nn.Layer): def __init__(self, in_channels, out_channels, shortcut=True, expansion=0.5, depthwise=False, bias=False, act="silu"): super(BottleNeck, self).__init__() hidden_channels = int(out_channels * expansion) Conv = DWConv if depthwise else BaseConv self.conv1 = BaseConv( in_channels, hidden_channels, ksize=1, stride=1, bias=bias, act=act) self.conv2 = Conv( hidden_channels, out_channels, ksize=3, stride=1, bias=bias, act=act) self.add_shortcut = shortcut and in_channels == out_channels def forward(self, x): y = self.conv2(self.conv1(x)) if self.add_shortcut: y = y + x return y class SPPLayer(nn.Layer): """Spatial Pyramid Pooling (SPP) layer used in YOLOv3-SPP and YOLOX""" def __init__(self, in_channels, out_channels, kernel_sizes=(5, 9, 13), bias=False, act="silu"): super(SPPLayer, self).__init__() hidden_channels = in_channels // 2 self.conv1 = BaseConv( in_channels, hidden_channels, ksize=1, stride=1, bias=bias, act=act) self.maxpoolings = nn.LayerList([ nn.MaxPool2D( kernel_size=ks, stride=1, padding=ks // 2) for ks in kernel_sizes ]) conv2_channels = hidden_channels * (len(kernel_sizes) + 1) self.conv2 = BaseConv( conv2_channels, out_channels, ksize=1, stride=1, bias=bias, act=act) def forward(self, x): x = self.conv1(x) x = paddle.concat([x] + [mp(x) for mp in self.maxpoolings], axis=1) x = self.conv2(x) return x class SPPFLayer(nn.Layer): """ Spatial Pyramid Pooling - Fast (SPPF) layer used in YOLOv5 by Glenn Jocher, equivalent to SPP(k=(5, 9, 13)) """ def __init__(self, in_channels, out_channels, ksize=5, bias=False, act='silu'): super(SPPFLayer, self).__init__() hidden_channels = in_channels // 2 self.conv1 = BaseConv( in_channels, hidden_channels, ksize=1, stride=1, bias=bias, act=act) self.maxpooling = nn.MaxPool2D( kernel_size=ksize, stride=1, padding=ksize // 2) conv2_channels = hidden_channels * 4 self.conv2 = BaseConv( conv2_channels, out_channels, ksize=1, stride=1, bias=bias, act=act) def forward(self, x): x = self.conv1(x) y1 = self.maxpooling(x) y2 = self.maxpooling(y1) y3 = self.maxpooling(y2) concats = paddle.concat([x, y1, y2, y3], axis=1) out = self.conv2(concats) return out class CSPLayer(nn.Layer): """CSP (Cross Stage Partial) layer with 3 convs, named C3 in YOLOv5""" def __init__(self, in_channels, out_channels, num_blocks=1, shortcut=True, expansion=0.5, depthwise=False, bias=False, act="silu"): super(CSPLayer, self).__init__() hidden_channels = int(out_channels * expansion) self.conv1 = BaseConv( in_channels, hidden_channels, ksize=1, stride=1, bias=bias, act=act) self.conv2 = BaseConv( in_channels, hidden_channels, ksize=1, stride=1, bias=bias, act=act) self.bottlenecks = nn.Sequential(* [ BottleNeck( hidden_channels, hidden_channels, shortcut=shortcut, expansion=1.0, depthwise=depthwise, bias=bias, act=act) for _ in range(num_blocks) ]) self.conv3 = BaseConv( hidden_channels * 2, out_channels, ksize=1, stride=1, bias=bias, act=act) def forward(self, x): x_1 = self.conv1(x) x_1 = self.bottlenecks(x_1) x_2 = self.conv2(x) x = paddle.concat([x_1, x_2], axis=1) x = self.conv3(x) return x @register @serializable class CSPDarkNet(nn.Layer): """ CSPDarkNet backbone. Args: arch (str): Architecture of CSPDarkNet, from {P5, P6, X}, default as X, and 'X' means used in YOLOX, 'P5/P6' means used in YOLOv5. depth_mult (float): Depth multiplier, multiply number of channels in each layer, default as 1.0. width_mult (float): Width multiplier, multiply number of blocks in CSPLayer, default as 1.0. depthwise (bool): Whether to use depth-wise conv layer. act (str): Activation function type, default as 'silu'. return_idx (list): Index of stages whose feature maps are returned. """ __shared__ = ['depth_mult', 'width_mult', 'act', 'trt'] # in_channels, out_channels, num_blocks, add_shortcut, use_spp(use_sppf) # 'X' means setting used in YOLOX, 'P5/P6' means setting used in YOLOv5. arch_settings = { 'X': [[64, 128, 3, True, False], [128, 256, 9, True, False], [256, 512, 9, True, False], [512, 1024, 3, False, True]], 'P5': [[64, 128, 3, True, False], [128, 256, 6, True, False], [256, 512, 9, True, False], [512, 1024, 3, True, True]], 'P6': [[64, 128, 3, True, False], [128, 256, 6, True, False], [256, 512, 9, True, False], [512, 768, 3, True, False], [768, 1024, 3, True, True]], } def __init__(self, arch='X', depth_mult=1.0, width_mult=1.0, depthwise=False, act='silu', trt=False, return_idx=[2, 3, 4]): super(CSPDarkNet, self).__init__() self.arch = arch self.return_idx = return_idx Conv = DWConv if depthwise else BaseConv arch_setting = self.arch_settings[arch] base_channels = int(arch_setting[0][0] * width_mult) # Note: differences between the latest YOLOv5 and the original YOLOX # 1. self.stem, use SPPF(in YOLOv5) or SPP(in YOLOX) # 2. use SPPF(in YOLOv5) or SPP(in YOLOX) # 3. put SPPF before(YOLOv5) or SPP after(YOLOX) the last cspdark block's CSPLayer # 4. whether SPPF(SPP)'CSPLayer add shortcut, True in YOLOv5, False in YOLOX if arch in ['P5', 'P6']: # in the latest YOLOv5, use Conv stem, and SPPF (fast, only single spp kernal size) self.stem = Conv( 3, base_channels, ksize=6, stride=2, bias=False, act=act) spp_kernal_sizes = 5 elif arch in ['X']: # in the original YOLOX, use Focus stem, and SPP (three spp kernal sizes) self.stem = Focus( 3, base_channels, ksize=3, stride=1, bias=False, act=act) spp_kernal_sizes = (5, 9, 13) else: raise AttributeError("Unsupported arch type: {}".format(arch)) _out_channels = [base_channels] layers_num = 1 self.csp_dark_blocks = [] for i, (in_channels, out_channels, num_blocks, shortcut, use_spp) in enumerate(arch_setting): in_channels = int(in_channels * width_mult) out_channels = int(out_channels * width_mult) _out_channels.append(out_channels) num_blocks = max(round(num_blocks * depth_mult), 1) stage = [] conv_layer = self.add_sublayer( 'layers{}.stage{}.conv_layer'.format(layers_num, i + 1), Conv( in_channels, out_channels, 3, 2, bias=False, act=act)) stage.append(conv_layer) layers_num += 1 if use_spp and arch in ['X']: # in YOLOX use SPPLayer spp_layer = self.add_sublayer( 'layers{}.stage{}.spp_layer'.format(layers_num, i + 1), SPPLayer( out_channels, out_channels, kernel_sizes=spp_kernal_sizes, bias=False, act=act)) stage.append(spp_layer) layers_num += 1 csp_layer = self.add_sublayer( 'layers{}.stage{}.csp_layer'.format(layers_num, i + 1), CSPLayer( out_channels, out_channels, num_blocks=num_blocks, shortcut=shortcut, depthwise=depthwise, bias=False, act=act)) stage.append(csp_layer) layers_num += 1 if use_spp and arch in ['P5', 'P6']: # in latest YOLOv5 use SPPFLayer instead of SPPLayer sppf_layer = self.add_sublayer( 'layers{}.stage{}.sppf_layer'.format(layers_num, i + 1), SPPFLayer( out_channels, out_channels, ksize=5, bias=False, act=act)) stage.append(sppf_layer) layers_num += 1 self.csp_dark_blocks.append(nn.Sequential(*stage)) self._out_channels = [_out_channels[i] for i in self.return_idx] self.strides = [[2, 4, 8, 16, 32, 64][i] for i in self.return_idx] def forward(self, inputs): x = inputs['image'] outputs = [] x = self.stem(x) for i, layer in enumerate(self.csp_dark_blocks): x = layer(x) if i + 1 in self.return_idx: outputs.append(x) return outputs @property def out_shape(self): return [ ShapeSpec( channels=c, stride=s) for c, s in zip(self._out_channels, self.strides) ]
PaddleDetection/ppdet/modeling/backbones/csp_darknet.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/backbones/csp_darknet.py", "repo_id": "PaddleDetection", "token_count": 7489 }
71
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from numbers import Integral import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register, serializable from ..shape_spec import ShapeSpec from .resnet import ConvNormLayer __all__ = ['Res2Net', 'Res2NetC5'] Res2Net_cfg = { 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], 200: [3, 12, 48, 3] } class BottleNeck(nn.Layer): def __init__(self, ch_in, ch_out, stride, shortcut, width, scales=4, variant='b', groups=1, lr=1.0, norm_type='bn', norm_decay=0., freeze_norm=True, dcn_v2=False): super(BottleNeck, self).__init__() self.shortcut = shortcut self.scales = scales self.stride = stride if not shortcut: if variant == 'd' and stride == 2: self.branch1 = nn.Sequential() self.branch1.add_sublayer( 'pool', nn.AvgPool2D( kernel_size=2, stride=2, padding=0, ceil_mode=True)) self.branch1.add_sublayer( 'conv', ConvNormLayer( ch_in=ch_in, ch_out=ch_out, filter_size=1, stride=1, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, lr=lr)) else: self.branch1 = ConvNormLayer( ch_in=ch_in, ch_out=ch_out, filter_size=1, stride=stride, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, lr=lr) self.branch2a = ConvNormLayer( ch_in=ch_in, ch_out=width * scales, filter_size=1, stride=stride if variant == 'a' else 1, groups=1, act='relu', norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, lr=lr) self.branch2b = nn.LayerList([ ConvNormLayer( ch_in=width, ch_out=width, filter_size=3, stride=1 if variant == 'a' else stride, groups=groups, act='relu', norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, lr=lr, dcn_v2=dcn_v2) for _ in range(self.scales - 1) ]) self.branch2c = ConvNormLayer( ch_in=width * scales, ch_out=ch_out, filter_size=1, stride=1, groups=1, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, lr=lr) def forward(self, inputs): out = self.branch2a(inputs) feature_split = paddle.split(out, self.scales, 1) out_split = [] for i in range(self.scales - 1): if i == 0 or self.stride == 2: out_split.append(self.branch2b[i](feature_split[i])) else: out_split.append(self.branch2b[i](paddle.add(feature_split[i], out_split[-1]))) if self.stride == 1: out_split.append(feature_split[-1]) else: out_split.append(F.avg_pool2d(feature_split[-1], 3, self.stride, 1)) out = self.branch2c(paddle.concat(out_split, 1)) if self.shortcut: short = inputs else: short = self.branch1(inputs) out = paddle.add(out, short) out = F.relu(out) return out class Blocks(nn.Layer): def __init__(self, ch_in, ch_out, count, stage_num, width, scales=4, variant='b', groups=1, lr=1.0, norm_type='bn', norm_decay=0., freeze_norm=True, dcn_v2=False): super(Blocks, self).__init__() self.blocks = nn.Sequential() for i in range(count): self.blocks.add_sublayer( str(i), BottleNeck( ch_in=ch_in if i == 0 else ch_out, ch_out=ch_out, stride=2 if i == 0 and stage_num != 2 else 1, shortcut=False if i == 0 else True, width=width * (2**(stage_num - 2)), scales=scales, variant=variant, groups=groups, lr=lr, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, dcn_v2=dcn_v2)) def forward(self, inputs): return self.blocks(inputs) @register @serializable class Res2Net(nn.Layer): """ Res2Net, see https://arxiv.org/abs/1904.01169 Args: depth (int): Res2Net depth, should be 50, 101, 152, 200. width (int): Res2Net width scales (int): Res2Net scale variant (str): Res2Net variant, supports 'a', 'b', 'c', 'd' currently lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5), lower learning rate ratio is need for pretrained model got using distillation(default as [1.0, 1.0, 1.0, 1.0]). groups (int): The groups number of the Conv Layer. norm_type (str): normalization type, 'bn' or 'sync_bn' norm_decay (float): weight decay for normalization layer weights freeze_norm (bool): freeze normalization layers freeze_at (int): freeze the backbone at which stage return_idx (list): index of stages whose feature maps are returned, index 0 stands for res2 dcn_v2_stages (list): index of stages who select deformable conv v2 num_stages (int): number of stages created """ __shared__ = ['norm_type'] def __init__(self, depth=50, width=26, scales=4, variant='b', lr_mult_list=[1.0, 1.0, 1.0, 1.0], groups=1, norm_type='bn', norm_decay=0., freeze_norm=True, freeze_at=0, return_idx=[0, 1, 2, 3], dcn_v2_stages=[-1], num_stages=4): super(Res2Net, self).__init__() self._model_type = 'Res2Net' if groups == 1 else 'Res2NeXt' assert depth in [50, 101, 152, 200], \ "depth {} not in [50, 101, 152, 200]" assert variant in ['a', 'b', 'c', 'd'], "invalid Res2Net variant" assert num_stages >= 1 and num_stages <= 4 self.depth = depth self.variant = variant self.norm_type = norm_type self.norm_decay = norm_decay self.freeze_norm = freeze_norm self.freeze_at = freeze_at if isinstance(return_idx, Integral): return_idx = [return_idx] assert max(return_idx) < num_stages, \ 'the maximum return index must smaller than num_stages, ' \ 'but received maximum return index is {} and num_stages ' \ 'is {}'.format(max(return_idx), num_stages) self.return_idx = return_idx self.num_stages = num_stages assert len(lr_mult_list) == 4, \ "lr_mult_list length must be 4 but got {}".format(len(lr_mult_list)) if isinstance(dcn_v2_stages, Integral): dcn_v2_stages = [dcn_v2_stages] assert max(dcn_v2_stages) < num_stages self.dcn_v2_stages = dcn_v2_stages block_nums = Res2Net_cfg[depth] # C1 stage if self.variant in ['c', 'd']: conv_def = [ [3, 32, 3, 2, "conv1_1"], [32, 32, 3, 1, "conv1_2"], [32, 64, 3, 1, "conv1_3"], ] else: conv_def = [[3, 64, 7, 2, "conv1"]] self.res1 = nn.Sequential() for (c_in, c_out, k, s, _name) in conv_def: self.res1.add_sublayer( _name, ConvNormLayer( ch_in=c_in, ch_out=c_out, filter_size=k, stride=s, groups=1, act='relu', norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, lr=1.0)) self._in_channels = [64, 256, 512, 1024] self._out_channels = [256, 512, 1024, 2048] self._out_strides = [4, 8, 16, 32] # C2-C5 stages self.res_layers = [] for i in range(num_stages): lr_mult = lr_mult_list[i] stage_num = i + 2 self.res_layers.append( self.add_sublayer( "res{}".format(stage_num), Blocks( self._in_channels[i], self._out_channels[i], count=block_nums[i], stage_num=stage_num, width=width, scales=scales, groups=groups, lr=lr_mult, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, dcn_v2=(i in self.dcn_v2_stages)))) @property def out_shape(self): return [ ShapeSpec( channels=self._out_channels[i], stride=self._out_strides[i]) for i in self.return_idx ] def forward(self, inputs): x = inputs['image'] res1 = self.res1(x) x = F.max_pool2d(res1, kernel_size=3, stride=2, padding=1) outs = [] for idx, stage in enumerate(self.res_layers): x = stage(x) if idx == self.freeze_at: x.stop_gradient = True if idx in self.return_idx: outs.append(x) return outs @register class Res2NetC5(nn.Layer): def __init__(self, depth=50, width=26, scales=4, variant='b'): super(Res2NetC5, self).__init__() feat_in, feat_out = [1024, 2048] self.res5 = Blocks( feat_in, feat_out, count=3, stage_num=5, width=width, scales=scales, variant=variant) self.feat_out = feat_out @property def out_shape(self): return [ShapeSpec( channels=self.feat_out, stride=32, )] def forward(self, roi_feat, stage=0): y = self.res5(roi_feat) return y
PaddleDetection/ppdet/modeling/backbones/res2net.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/backbones/res2net.py", "repo_id": "PaddleDetection", "token_count": 6869 }
72
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import Normal from ppdet.core.workspace import register from .bbox_head import BBoxHead, TwoFCHead, XConvNormHead from .roi_extractor import RoIAlign from ..shape_spec import ShapeSpec from ..bbox_utils import delta2bbox, clip_bbox, nonempty_bbox from ..cls_utils import _get_class_default_kwargs __all__ = ['CascadeTwoFCHead', 'CascadeXConvNormHead', 'CascadeHead'] @register class CascadeTwoFCHead(nn.Layer): __shared__ = ['num_cascade_stage'] """ Cascade RCNN bbox head with Two fc layers to extract feature Args: in_channel (int): Input channel which can be derived by from_config out_channel (int): Output channel resolution (int): Resolution of input feature map, default 7 num_cascade_stage (int): The number of cascade stage, default 3 """ def __init__(self, in_channel=256, out_channel=1024, resolution=7, num_cascade_stage=3): super(CascadeTwoFCHead, self).__init__() self.in_channel = in_channel self.out_channel = out_channel self.head_list = [] for stage in range(num_cascade_stage): head_per_stage = self.add_sublayer( str(stage), TwoFCHead(in_channel, out_channel, resolution)) self.head_list.append(head_per_stage) @classmethod def from_config(cls, cfg, input_shape): s = input_shape s = s[0] if isinstance(s, (list, tuple)) else s return {'in_channel': s.channels} @property def out_shape(self): return [ShapeSpec(channels=self.out_channel, )] def forward(self, rois_feat, stage=0): out = self.head_list[stage](rois_feat) return out @register class CascadeXConvNormHead(nn.Layer): __shared__ = ['norm_type', 'freeze_norm', 'num_cascade_stage'] """ Cascade RCNN bbox head with serveral convolution layers Args: in_channel (int): Input channels which can be derived by from_config num_convs (int): The number of conv layers conv_dim (int): The number of channels for the conv layers out_channel (int): Output channels resolution (int): Resolution of input feature map norm_type (string): Norm type, bn, gn, sync_bn are available, default `gn` freeze_norm (bool): Whether to freeze the norm num_cascade_stage (int): The number of cascade stage, default 3 """ def __init__(self, in_channel=256, num_convs=4, conv_dim=256, out_channel=1024, resolution=7, norm_type='gn', freeze_norm=False, num_cascade_stage=3): super(CascadeXConvNormHead, self).__init__() self.in_channel = in_channel self.out_channel = out_channel self.head_list = [] for stage in range(num_cascade_stage): head_per_stage = self.add_sublayer( str(stage), XConvNormHead( in_channel, num_convs, conv_dim, out_channel, resolution, norm_type, freeze_norm, stage_name='stage{}_'.format(stage))) self.head_list.append(head_per_stage) @classmethod def from_config(cls, cfg, input_shape): s = input_shape s = s[0] if isinstance(s, (list, tuple)) else s return {'in_channel': s.channels} @property def out_shape(self): return [ShapeSpec(channels=self.out_channel, )] def forward(self, rois_feat, stage=0): out = self.head_list[stage](rois_feat) return out @register class CascadeHead(BBoxHead): __shared__ = ['num_classes', 'num_cascade_stages'] __inject__ = ['bbox_assigner', 'bbox_loss'] """ Cascade RCNN bbox head Args: head (nn.Layer): Extract feature in bbox head in_channel (int): Input channel after RoI extractor roi_extractor (object): The module of RoI Extractor bbox_assigner (object): The module of Box Assigner, label and sample the box. num_classes (int): The number of classes bbox_weight (List[List[float]]): The weight to get the decode box and the length of weight is the number of cascade stage num_cascade_stages (int): THe number of stage to refine the box """ def __init__(self, head, in_channel, roi_extractor=_get_class_default_kwargs(RoIAlign), bbox_assigner='BboxAssigner', num_classes=80, bbox_weight=[[10., 10., 5., 5.], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0]], num_cascade_stages=3, bbox_loss=None, reg_class_agnostic=True, stage_loss_weights=None, loss_normalize_pos=False, add_gt_as_proposals=[True, False, False]): nn.Layer.__init__(self, ) self.head = head self.roi_extractor = roi_extractor if isinstance(roi_extractor, dict): self.roi_extractor = RoIAlign(**roi_extractor) self.bbox_assigner = bbox_assigner self.num_classes = num_classes self.bbox_weight = bbox_weight self.num_cascade_stages = num_cascade_stages self.bbox_loss = bbox_loss self.stage_loss_weights = [ 1. / num_cascade_stages for _ in range(num_cascade_stages) ] if stage_loss_weights is None else stage_loss_weights self.add_gt_as_proposals = add_gt_as_proposals assert len( self.stage_loss_weights ) == num_cascade_stages, f'stage_loss_weights({len(self.stage_loss_weights)}) do not equal to num_cascade_stages({num_cascade_stages})' self.reg_class_agnostic = reg_class_agnostic num_bbox_delta = 4 if reg_class_agnostic else 4 * num_classes self.loss_normalize_pos = loss_normalize_pos self.bbox_score_list = [] self.bbox_delta_list = [] for i in range(num_cascade_stages): score_name = 'bbox_score_stage{}'.format(i) delta_name = 'bbox_delta_stage{}'.format(i) bbox_score = self.add_sublayer( score_name, nn.Linear( in_channel, self.num_classes + 1, weight_attr=paddle.ParamAttr(initializer=Normal( mean=0.0, std=0.01)))) bbox_delta = self.add_sublayer( delta_name, nn.Linear( in_channel, num_bbox_delta, weight_attr=paddle.ParamAttr(initializer=Normal( mean=0.0, std=0.001)))) self.bbox_score_list.append(bbox_score) self.bbox_delta_list.append(bbox_delta) self.assigned_label = None self.assigned_rois = None def forward(self, body_feats=None, rois=None, rois_num=None, inputs=None): """ body_feats (list[Tensor]): Feature maps from backbone rois (Tensor): RoIs generated from RPN module rois_num (Tensor): The number of RoIs in each image inputs (dict{Tensor}): The ground-truth of image """ targets = [] if self.training: rois, rois_num, targets = self.bbox_assigner( rois, rois_num, inputs, add_gt_as_proposals=self.add_gt_as_proposals[0]) targets_list = [targets] self.assigned_rois = (rois, rois_num) self.assigned_targets = targets pred_bbox = None head_out_list = [] for i in range(self.num_cascade_stages): if i > 0: rois, rois_num = self._get_rois_from_boxes(pred_bbox, inputs['im_shape']) if self.training: rois, rois_num, targets = self.bbox_assigner( rois, rois_num, inputs, i, is_cascade=True, add_gt_as_proposals=self.add_gt_as_proposals[i]) targets_list.append(targets) rois_feat = self.roi_extractor(body_feats, rois, rois_num) bbox_feat = self.head(rois_feat, i) scores = self.bbox_score_list[i](bbox_feat) deltas = self.bbox_delta_list[i](bbox_feat) # TODO (lyuwenyu) Is it correct for only one class ? if not self.reg_class_agnostic and i < self.num_cascade_stages - 1: deltas = deltas.reshape([deltas.shape[0], self.num_classes, 4]) labels = scores[:, :-1].argmax(axis=-1) if self.training: deltas = deltas[paddle.arange(deltas.shape[0]), labels] else: deltas = deltas[((deltas + 10000) * F.one_hot( labels, num_classes=self.num_classes).unsqueeze(-1) != 0 ).nonzero(as_tuple=True)].reshape( [deltas.shape[0], 4]) head_out_list.append([scores, deltas, rois]) pred_bbox = self._get_pred_bbox(deltas, rois, self.bbox_weight[i]) if self.training: loss = {} for stage, value in enumerate(zip(head_out_list, targets_list)): (scores, deltas, rois), targets = value loss_stage = self.get_loss( scores, deltas, targets, rois, self.bbox_weight[stage], loss_normalize_pos=self.loss_normalize_pos) for k, v in loss_stage.items(): loss[k + "_stage{}".format( stage)] = v * self.stage_loss_weights[stage] return loss, bbox_feat else: scores, deltas, self.refined_rois = self.get_prediction( head_out_list) return (deltas, scores), self.head def _get_rois_from_boxes(self, boxes, im_shape): rois = [] for i, boxes_per_image in enumerate(boxes): clip_box = clip_bbox(boxes_per_image, im_shape[i]) if self.training: keep = nonempty_bbox(clip_box) if keep.shape[0] == 0: keep = paddle.zeros([1], dtype='int32') clip_box = paddle.gather(clip_box, keep) rois.append(clip_box) rois_num = paddle.concat([paddle.shape(r)[0:1] for r in rois]) return rois, rois_num def _get_pred_bbox(self, deltas, proposals, weights): pred_proposals = paddle.concat(proposals) if len( proposals) > 1 else proposals[0] pred_bbox = delta2bbox(deltas, pred_proposals, weights) pred_bbox = paddle.reshape(pred_bbox, [-1, deltas.shape[-1]]) num_prop = [] for p in proposals: num_prop.append(p.shape[0]) # NOTE(dev): num_prob will be tagged as LoDTensorArray because it # depends on batch_size under @to_static. However the argument # num_or_sections in paddle.split does not support LoDTensorArray, # so we use [-1] to replace it if num_prop is not list. The modification # This ensures the correctness of both dynamic and static graphs. if not isinstance(num_prop, list): num_prop = [-1] return pred_bbox.split(num_prop) def get_prediction(self, head_out_list): """ head_out_list(List[Tensor]): scores, deltas, rois """ pred_list = [] scores_list = [F.softmax(head[0]) for head in head_out_list] scores = paddle.add_n(scores_list) / self.num_cascade_stages # Get deltas and rois from the last stage _, deltas, rois = head_out_list[-1] return scores, deltas, rois def get_refined_rois(self, ): return self.refined_rois
PaddleDetection/ppdet/modeling/heads/cascade_head.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/heads/cascade_head.py", "repo_id": "PaddleDetection", "token_count": 6551 }
73
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.nn.initializer import Normal, Constant from ppdet.modeling.bbox_utils import bbox2delta, delta2bbox from ppdet.modeling.heads.fcos_head import FCOSFeat from ppdet.core.workspace import register __all__ = ['RetinaHead'] @register class RetinaFeat(FCOSFeat): """We use FCOSFeat to construct conv layers in RetinaNet. We rename FCOSFeat to RetinaFeat to avoid confusion. """ pass @register class RetinaHead(nn.Layer): """Used in RetinaNet proposed in paper https://arxiv.org/pdf/1708.02002.pdf """ __shared__ = ['num_classes'] __inject__ = [ 'conv_feat', 'anchor_generator', 'bbox_assigner', 'loss_class', 'loss_bbox', 'nms' ] def __init__(self, num_classes=80, conv_feat='RetinaFeat', anchor_generator='RetinaAnchorGenerator', bbox_assigner='MaxIoUAssigner', loss_class='FocalLoss', loss_bbox='SmoothL1Loss', nms='MultiClassNMS', prior_prob=0.01, nms_pre=1000, weights=[1., 1., 1., 1.]): super(RetinaHead, self).__init__() self.num_classes = num_classes self.conv_feat = conv_feat self.anchor_generator = anchor_generator self.bbox_assigner = bbox_assigner self.loss_class = loss_class self.loss_bbox = loss_bbox self.nms = nms self.nms_pre = nms_pre self.weights = weights bias_init_value = -math.log((1 - prior_prob) / prior_prob) num_anchors = self.anchor_generator.num_anchors self.retina_cls = nn.Conv2D( in_channels=self.conv_feat.feat_out, out_channels=self.num_classes * num_anchors, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(initializer=Normal( mean=0.0, std=0.01)), bias_attr=ParamAttr(initializer=Constant(value=bias_init_value))) self.retina_reg = nn.Conv2D( in_channels=self.conv_feat.feat_out, out_channels=4 * num_anchors, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(initializer=Normal( mean=0.0, std=0.01)), bias_attr=ParamAttr(initializer=Constant(value=0))) def forward(self, neck_feats, targets=None): cls_logits_list = [] bboxes_reg_list = [] for neck_feat in neck_feats: conv_cls_feat, conv_reg_feat = self.conv_feat(neck_feat) cls_logits = self.retina_cls(conv_cls_feat) bbox_reg = self.retina_reg(conv_reg_feat) cls_logits_list.append(cls_logits) bboxes_reg_list.append(bbox_reg) if self.training: return self.get_loss([cls_logits_list, bboxes_reg_list], targets) else: return [cls_logits_list, bboxes_reg_list] def get_loss(self, head_outputs, targets): """Here we calculate loss for a batch of images. We assign anchors to gts in each image and gather all the assigned postive and negative samples. Then loss is calculated on the gathered samples. """ cls_logits_list, bboxes_reg_list = head_outputs anchors = self.anchor_generator(cls_logits_list) anchors = paddle.concat(anchors) # matches: contain gt_inds # match_labels: -1(ignore), 0(neg) or 1(pos) matches_list, match_labels_list = [], [] # assign anchors to gts, no sampling is involved for gt_bbox in targets['gt_bbox']: matches, match_labels = self.bbox_assigner(anchors, gt_bbox) matches_list.append(matches) match_labels_list.append(match_labels) # reshape network outputs cls_logits = [ _.transpose([0, 2, 3, 1]).reshape([0, -1, self.num_classes]) for _ in cls_logits_list ] bboxes_reg = [ _.transpose([0, 2, 3, 1]).reshape([0, -1, 4]) for _ in bboxes_reg_list ] cls_logits = paddle.concat(cls_logits, axis=1) bboxes_reg = paddle.concat(bboxes_reg, axis=1) cls_pred_list, cls_tar_list = [], [] reg_pred_list, reg_tar_list = [], [] # find and gather preds and targets in each image for matches, match_labels, cls_logit, bbox_reg, gt_bbox, gt_class in \ zip(matches_list, match_labels_list, cls_logits, bboxes_reg, targets['gt_bbox'], targets['gt_class']): pos_mask = (match_labels == 1) neg_mask = (match_labels == 0) chosen_mask = paddle.logical_or(pos_mask, neg_mask) gt_class = gt_class.reshape([-1]) bg_class = paddle.to_tensor( [self.num_classes], dtype=gt_class.dtype) # a trick to assign num_classes to negative targets gt_class = paddle.concat([gt_class, bg_class], axis=-1) matches = paddle.where(neg_mask, paddle.full_like(matches, gt_class.size - 1), matches) cls_pred = cls_logit[chosen_mask] cls_tar = gt_class[matches[chosen_mask]] reg_pred = bbox_reg[pos_mask].reshape([-1, 4]) reg_tar = gt_bbox[matches[pos_mask]].reshape([-1, 4]) reg_tar = bbox2delta(anchors[pos_mask], reg_tar, self.weights) cls_pred_list.append(cls_pred) cls_tar_list.append(cls_tar) reg_pred_list.append(reg_pred) reg_tar_list.append(reg_tar) cls_pred = paddle.concat(cls_pred_list) cls_tar = paddle.concat(cls_tar_list) reg_pred = paddle.concat(reg_pred_list) reg_tar = paddle.concat(reg_tar_list) avg_factor = max(1.0, reg_pred.shape[0]) cls_loss = self.loss_class( cls_pred, cls_tar, reduction='sum') / avg_factor if reg_pred.shape[0] == 0: reg_loss = paddle.zeros([1]) reg_loss.stop_gradient = False else: reg_loss = self.loss_bbox( reg_pred, reg_tar, reduction='sum') / avg_factor loss = cls_loss + reg_loss out_dict = { 'loss_cls': cls_loss, 'loss_reg': reg_loss, 'loss': loss, } return out_dict def get_bboxes_single(self, anchors, cls_scores_list, bbox_preds_list, im_shape, scale_factor, rescale=True): assert len(cls_scores_list) == len(bbox_preds_list) mlvl_bboxes = [] mlvl_scores = [] for anchor, cls_score, bbox_pred in zip(anchors, cls_scores_list, bbox_preds_list): cls_score = cls_score.reshape([-1, self.num_classes]) bbox_pred = bbox_pred.reshape([-1, 4]) if self.nms_pre is not None and cls_score.shape[0] > self.nms_pre: max_score = cls_score.max(axis=1) _, topk_inds = max_score.topk(self.nms_pre) bbox_pred = bbox_pred.gather(topk_inds) anchor = anchor.gather(topk_inds) cls_score = cls_score.gather(topk_inds) bbox_pred = delta2bbox(bbox_pred, anchor, self.weights).squeeze() mlvl_bboxes.append(bbox_pred) mlvl_scores.append(F.sigmoid(cls_score)) mlvl_bboxes = paddle.concat(mlvl_bboxes) mlvl_bboxes = paddle.squeeze(mlvl_bboxes) if rescale: mlvl_bboxes = mlvl_bboxes / paddle.concat( [scale_factor[::-1], scale_factor[::-1]]) mlvl_scores = paddle.concat(mlvl_scores) mlvl_scores = mlvl_scores.transpose([1, 0]) return mlvl_bboxes, mlvl_scores def decode(self, anchors, cls_logits, bboxes_reg, im_shape, scale_factor): batch_bboxes = [] batch_scores = [] for img_id in range(cls_logits[0].shape[0]): num_lvls = len(cls_logits) cls_scores_list = [cls_logits[i][img_id] for i in range(num_lvls)] bbox_preds_list = [bboxes_reg[i][img_id] for i in range(num_lvls)] bboxes, scores = self.get_bboxes_single( anchors, cls_scores_list, bbox_preds_list, im_shape[img_id], scale_factor[img_id]) batch_bboxes.append(bboxes) batch_scores.append(scores) batch_bboxes = paddle.stack(batch_bboxes, axis=0) batch_scores = paddle.stack(batch_scores, axis=0) return batch_bboxes, batch_scores def post_process(self, head_outputs, im_shape, scale_factor): cls_logits_list, bboxes_reg_list = head_outputs anchors = self.anchor_generator(cls_logits_list) cls_logits = [_.transpose([0, 2, 3, 1]) for _ in cls_logits_list] bboxes_reg = [_.transpose([0, 2, 3, 1]) for _ in bboxes_reg_list] bboxes, scores = self.decode(anchors, cls_logits, bboxes_reg, im_shape, scale_factor) bbox_pred, bbox_num, nms_keep_idx = self.nms(bboxes, scores) return bbox_pred, bbox_num, nms_keep_idx def get_scores_single(self, cls_scores_list): mlvl_logits = [] for cls_score in cls_scores_list: cls_score = cls_score.reshape([-1, self.num_classes]) if self.nms_pre is not None and cls_score.shape[0] > self.nms_pre: max_score = cls_score.max(axis=1) _, topk_inds = max_score.topk(self.nms_pre) cls_score = cls_score.gather(topk_inds) mlvl_logits.append(cls_score) mlvl_logits = paddle.concat(mlvl_logits) mlvl_logits = mlvl_logits.transpose([1, 0]) return mlvl_logits def decode_cls_logits(self, cls_logits_list): cls_logits = [_.transpose([0, 2, 3, 1]) for _ in cls_logits_list] batch_logits = [] for img_id in range(cls_logits[0].shape[0]): num_lvls = len(cls_logits) cls_scores_list = [cls_logits[i][img_id] for i in range(num_lvls)] logits = self.get_scores_single(cls_scores_list) batch_logits.append(logits) batch_logits = paddle.stack(batch_logits, axis=0) return batch_logits
PaddleDetection/ppdet/modeling/heads/retina_head.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/heads/retina_head.py", "repo_id": "PaddleDetection", "token_count": 5719 }
74
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import six import numpy as np from numbers import Integral import paddle import paddle.nn as nn from paddle import ParamAttr from paddle import to_tensor import paddle.nn.functional as F from paddle.nn.initializer import Normal, Constant, XavierUniform from paddle.regularizer import L2Decay from ppdet.core.workspace import register, serializable from ppdet.modeling.bbox_utils import delta2bbox from . import ops from .initializer import xavier_uniform_, constant_ from paddle.vision.ops import DeformConv2D def _to_list(l): if isinstance(l, (list, tuple)): return list(l) return [l] class AlignConv(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size=3, groups=1): super(AlignConv, self).__init__() self.kernel_size = kernel_size self.align_conv = paddle.vision.ops.DeformConv2D( in_channels, out_channels, kernel_size=self.kernel_size, padding=(self.kernel_size - 1) // 2, groups=groups, weight_attr=ParamAttr(initializer=Normal(0, 0.01)), bias_attr=None) @paddle.no_grad() def get_offset(self, anchors, featmap_size, stride): """ Args: anchors: [B, L, 5] xc,yc,w,h,angle featmap_size: (feat_h, feat_w) stride: 8 Returns: """ batch = anchors.shape[0] dtype = anchors.dtype feat_h, feat_w = featmap_size pad = (self.kernel_size - 1) // 2 idx = paddle.arange(-pad, pad + 1, dtype=dtype) yy, xx = paddle.meshgrid(idx, idx) xx = paddle.reshape(xx, [-1]) yy = paddle.reshape(yy, [-1]) # get sampling locations of default conv xc = paddle.arange(0, feat_w, dtype=dtype) yc = paddle.arange(0, feat_h, dtype=dtype) yc, xc = paddle.meshgrid(yc, xc) xc = paddle.reshape(xc, [-1, 1]) yc = paddle.reshape(yc, [-1, 1]) x_conv = xc + xx y_conv = yc + yy # get sampling locations of anchors x_ctr, y_ctr, w, h, a = paddle.split(anchors, 5, axis=-1) x_ctr = x_ctr / stride y_ctr = y_ctr / stride w_s = w / stride h_s = h / stride cos, sin = paddle.cos(a), paddle.sin(a) dw, dh = w_s / self.kernel_size, h_s / self.kernel_size x, y = dw * xx, dh * yy xr = cos * x - sin * y yr = sin * x + cos * y x_anchor, y_anchor = xr + x_ctr, yr + y_ctr # get offset filed offset_x = x_anchor - x_conv offset_y = y_anchor - y_conv offset = paddle.stack([offset_y, offset_x], axis=-1) offset = offset.reshape( [batch, feat_h, feat_w, self.kernel_size * self.kernel_size * 2]) offset = offset.transpose([0, 3, 1, 2]) return offset def forward(self, x, refine_anchors, featmap_size, stride): batch = paddle.shape(x)[0].numpy() offset = self.get_offset(refine_anchors, featmap_size, stride) if self.training: x = F.relu(self.align_conv(x, offset.detach())) else: x = F.relu(self.align_conv(x, offset)) return x class DeformableConvV2(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, weight_attr=None, bias_attr=None, lr_scale=1, regularizer=None, skip_quant=False, dcn_bias_regularizer=L2Decay(0.), dcn_bias_lr_scale=2.): super(DeformableConvV2, self).__init__() self.offset_channel = 2 * kernel_size**2 self.mask_channel = kernel_size**2 if lr_scale == 1 and regularizer is None: offset_bias_attr = ParamAttr(initializer=Constant(0.)) else: offset_bias_attr = ParamAttr( initializer=Constant(0.), learning_rate=lr_scale, regularizer=regularizer) self.conv_offset = nn.Conv2D( in_channels, 3 * kernel_size**2, kernel_size, stride=stride, padding=(kernel_size - 1) // 2, weight_attr=ParamAttr(initializer=Constant(0.0)), bias_attr=offset_bias_attr) if skip_quant: self.conv_offset.skip_quant = True if bias_attr: # in FCOS-DCN head, specifically need learning_rate and regularizer dcn_bias_attr = ParamAttr( initializer=Constant(value=0), regularizer=dcn_bias_regularizer, learning_rate=dcn_bias_lr_scale) else: # in ResNet backbone, do not need bias dcn_bias_attr = False self.conv_dcn = DeformConv2D( in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size - 1) // 2 * dilation, dilation=dilation, groups=groups, weight_attr=weight_attr, bias_attr=dcn_bias_attr) def forward(self, x): offset_mask = self.conv_offset(x) offset, mask = paddle.split( offset_mask, num_or_sections=[self.offset_channel, self.mask_channel], axis=1) mask = F.sigmoid(mask) y = self.conv_dcn(x, offset, mask=mask) return y class ConvNormLayer(nn.Layer): def __init__(self, ch_in, ch_out, filter_size, stride, groups=1, norm_type='bn', norm_decay=0., norm_groups=32, use_dcn=False, bias_on=False, lr_scale=1., freeze_norm=False, initializer=Normal( mean=0., std=0.01), skip_quant=False, dcn_lr_scale=2., dcn_regularizer=L2Decay(0.)): super(ConvNormLayer, self).__init__() assert norm_type in ['bn', 'sync_bn', 'gn', None] if bias_on: bias_attr = ParamAttr( initializer=Constant(value=0.), learning_rate=lr_scale) else: bias_attr = False if not use_dcn: self.conv = nn.Conv2D( in_channels=ch_in, out_channels=ch_out, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, weight_attr=ParamAttr( initializer=initializer, learning_rate=1.), bias_attr=bias_attr) if skip_quant: self.conv.skip_quant = True else: # in FCOS-DCN head, specifically need learning_rate and regularizer self.conv = DeformableConvV2( in_channels=ch_in, out_channels=ch_out, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, weight_attr=ParamAttr( initializer=initializer, learning_rate=1.), bias_attr=True, lr_scale=dcn_lr_scale, regularizer=dcn_regularizer, dcn_bias_regularizer=dcn_regularizer, dcn_bias_lr_scale=dcn_lr_scale, skip_quant=skip_quant) norm_lr = 0. if freeze_norm else 1. param_attr = ParamAttr( learning_rate=norm_lr, regularizer=L2Decay(norm_decay) if norm_decay is not None else None) bias_attr = ParamAttr( learning_rate=norm_lr, regularizer=L2Decay(norm_decay) if norm_decay is not None else None) if norm_type in ['bn', 'sync_bn']: self.norm = nn.BatchNorm2D( ch_out, weight_attr=param_attr, bias_attr=bias_attr) elif norm_type == 'gn': self.norm = nn.GroupNorm( num_groups=norm_groups, num_channels=ch_out, weight_attr=param_attr, bias_attr=bias_attr) else: self.norm = None def forward(self, inputs): out = self.conv(inputs) if self.norm is not None: out = self.norm(out) return out class LiteConv(nn.Layer): def __init__(self, in_channels, out_channels, stride=1, with_act=True, norm_type='sync_bn', name=None): super(LiteConv, self).__init__() self.lite_conv = nn.Sequential() conv1 = ConvNormLayer( in_channels, in_channels, filter_size=5, stride=stride, groups=in_channels, norm_type=norm_type, initializer=XavierUniform()) conv2 = ConvNormLayer( in_channels, out_channels, filter_size=1, stride=stride, norm_type=norm_type, initializer=XavierUniform()) conv3 = ConvNormLayer( out_channels, out_channels, filter_size=1, stride=stride, norm_type=norm_type, initializer=XavierUniform()) conv4 = ConvNormLayer( out_channels, out_channels, filter_size=5, stride=stride, groups=out_channels, norm_type=norm_type, initializer=XavierUniform()) conv_list = [conv1, conv2, conv3, conv4] self.lite_conv.add_sublayer('conv1', conv1) self.lite_conv.add_sublayer('relu6_1', nn.ReLU6()) self.lite_conv.add_sublayer('conv2', conv2) if with_act: self.lite_conv.add_sublayer('relu6_2', nn.ReLU6()) self.lite_conv.add_sublayer('conv3', conv3) self.lite_conv.add_sublayer('relu6_3', nn.ReLU6()) self.lite_conv.add_sublayer('conv4', conv4) if with_act: self.lite_conv.add_sublayer('relu6_4', nn.ReLU6()) def forward(self, inputs): out = self.lite_conv(inputs) return out class DropBlock(nn.Layer): def __init__(self, block_size, keep_prob, name=None, data_format='NCHW'): """ DropBlock layer, see https://arxiv.org/abs/1810.12890 Args: block_size (int): block size keep_prob (int): keep probability name (str): layer name data_format (str): data format, NCHW or NHWC """ super(DropBlock, self).__init__() self.block_size = block_size self.keep_prob = keep_prob self.name = name self.data_format = data_format def forward(self, x): if not self.training or self.keep_prob == 1: return x else: gamma = (1. - self.keep_prob) / (self.block_size**2) if self.data_format == 'NCHW': shape = x.shape[2:] else: shape = x.shape[1:3] for s in shape: gamma *= s / (s - self.block_size + 1) matrix = paddle.cast(paddle.rand(x.shape) < gamma, x.dtype) mask_inv = F.max_pool2d( matrix, self.block_size, stride=1, padding=self.block_size // 2, data_format=self.data_format) mask = 1. - mask_inv mask = mask.astype('float32') x = x.astype('float32') y = x * mask * (mask.numel() / mask.sum()) return y @register @serializable class AnchorGeneratorSSD(object): def __init__(self, steps=[8, 16, 32, 64, 100, 300], aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]], min_ratio=15, max_ratio=90, base_size=300, min_sizes=[30.0, 60.0, 111.0, 162.0, 213.0, 264.0], max_sizes=[60.0, 111.0, 162.0, 213.0, 264.0, 315.0], offset=0.5, flip=True, clip=False, min_max_aspect_ratios_order=False): self.steps = steps self.aspect_ratios = aspect_ratios self.min_ratio = min_ratio self.max_ratio = max_ratio self.base_size = base_size self.min_sizes = min_sizes self.max_sizes = max_sizes self.offset = offset self.flip = flip self.clip = clip self.min_max_aspect_ratios_order = min_max_aspect_ratios_order if self.min_sizes == [] and self.max_sizes == []: num_layer = len(aspect_ratios) step = int( math.floor(((self.max_ratio - self.min_ratio)) / (num_layer - 2 ))) for ratio in six.moves.range(self.min_ratio, self.max_ratio + 1, step): self.min_sizes.append(self.base_size * ratio / 100.) self.max_sizes.append(self.base_size * (ratio + step) / 100.) self.min_sizes = [self.base_size * .10] + self.min_sizes self.max_sizes = [self.base_size * .20] + self.max_sizes self.num_priors = [] for aspect_ratio, min_size, max_size in zip( aspect_ratios, self.min_sizes, self.max_sizes): if isinstance(min_size, (list, tuple)): self.num_priors.append( len(_to_list(min_size)) + len(_to_list(max_size))) else: self.num_priors.append((len(aspect_ratio) * 2 + 1) * len( _to_list(min_size)) + len(_to_list(max_size))) def __call__(self, inputs, image): boxes = [] for input, min_size, max_size, aspect_ratio, step in zip( inputs, self.min_sizes, self.max_sizes, self.aspect_ratios, self.steps): box, _ = ops.prior_box( input=input, image=image, min_sizes=_to_list(min_size), max_sizes=_to_list(max_size), aspect_ratios=aspect_ratio, flip=self.flip, clip=self.clip, steps=[step, step], offset=self.offset, min_max_aspect_ratios_order=self.min_max_aspect_ratios_order) boxes.append(paddle.reshape(box, [-1, 4])) return boxes @register @serializable class RCNNBox(object): __shared__ = ['num_classes', 'export_onnx'] def __init__(self, prior_box_var=[10., 10., 5., 5.], code_type="decode_center_size", box_normalized=False, num_classes=80, export_onnx=False): super(RCNNBox, self).__init__() self.prior_box_var = prior_box_var self.code_type = code_type self.box_normalized = box_normalized self.num_classes = num_classes self.export_onnx = export_onnx def __call__(self, bbox_head_out, rois, im_shape, scale_factor): bbox_pred = bbox_head_out[0] cls_prob = bbox_head_out[1] roi = rois[0] rois_num = rois[1] if self.export_onnx: onnx_rois_num_per_im = rois_num[0] origin_shape = paddle.expand(im_shape[0, :], [onnx_rois_num_per_im, 2]) else: origin_shape_list = [] if isinstance(roi, list): batch_size = len(roi) else: batch_size = paddle.slice(paddle.shape(im_shape), [0], [0], [1]) # bbox_pred.shape: [N, C*4] for idx in range(batch_size): rois_num_per_im = rois_num[idx] expand_im_shape = paddle.expand(im_shape[idx, :], [rois_num_per_im, 2]) origin_shape_list.append(expand_im_shape) origin_shape = paddle.concat(origin_shape_list) # bbox_pred.shape: [N, C*4] # C=num_classes in faster/mask rcnn(bbox_head), C=1 in cascade rcnn(cascade_head) bbox = paddle.concat(roi) bbox = delta2bbox(bbox_pred, bbox, self.prior_box_var) scores = cls_prob[:, :-1] # bbox.shape: [N, C, 4] # bbox.shape[1] must be equal to scores.shape[1] total_num = bbox.shape[0] bbox_dim = bbox.shape[-1] bbox = paddle.expand(bbox, [total_num, self.num_classes, bbox_dim]) origin_h = paddle.unsqueeze(origin_shape[:, 0], axis=1) origin_w = paddle.unsqueeze(origin_shape[:, 1], axis=1) zeros = paddle.zeros_like(origin_h) x1 = paddle.maximum(paddle.minimum(bbox[:, :, 0], origin_w), zeros) y1 = paddle.maximum(paddle.minimum(bbox[:, :, 1], origin_h), zeros) x2 = paddle.maximum(paddle.minimum(bbox[:, :, 2], origin_w), zeros) y2 = paddle.maximum(paddle.minimum(bbox[:, :, 3], origin_h), zeros) bbox = paddle.stack([x1, y1, x2, y2], axis=-1) bboxes = (bbox, rois_num) return bboxes, scores @register @serializable class MultiClassNMS(object): def __init__(self, score_threshold=.05, nms_top_k=-1, keep_top_k=100, nms_threshold=.5, normalized=True, nms_eta=1.0, return_index=False, return_rois_num=True, trt=False): super(MultiClassNMS, self).__init__() self.score_threshold = score_threshold self.nms_top_k = nms_top_k self.keep_top_k = keep_top_k self.nms_threshold = nms_threshold self.normalized = normalized self.nms_eta = nms_eta self.return_index = return_index self.return_rois_num = return_rois_num self.trt = trt def __call__(self, bboxes, score, background_label=-1): """ bboxes (Tensor|List[Tensor]): 1. (Tensor) Predicted bboxes with shape [N, M, 4], N is the batch size and M is the number of bboxes 2. (List[Tensor]) bboxes and bbox_num, bboxes have shape of [M, C, 4], C is the class number and bbox_num means the number of bboxes of each batch with shape [N,] score (Tensor): Predicted scores with shape [N, C, M] or [M, C] background_label (int): Ignore the background label; For example, RCNN is num_classes and YOLO is -1. """ kwargs = self.__dict__.copy() if isinstance(bboxes, tuple): bboxes, bbox_num = bboxes kwargs.update({'rois_num': bbox_num}) if background_label > -1: kwargs.update({'background_label': background_label}) kwargs.pop('trt') # TODO(wangxinxin08): paddle version should be develop or 2.3 and above to run nms on tensorrt if self.trt and (int(paddle.version.major) == 0 or (int(paddle.version.major) >= 2 and int(paddle.version.minor) >= 3)): # TODO(wangxinxin08): tricky switch to run nms on tensorrt kwargs.update({'nms_eta': 1.1}) bbox, bbox_num, _ = ops.multiclass_nms(bboxes, score, **kwargs) bbox = bbox.reshape([1, -1, 6]) idx = paddle.nonzero(bbox[..., 0] != -1) bbox = paddle.gather_nd(bbox, idx) return bbox, bbox_num, None else: return ops.multiclass_nms(bboxes, score, **kwargs) @register @serializable class MatrixNMS(object): __append_doc__ = True def __init__(self, score_threshold=.05, post_threshold=.05, nms_top_k=-1, keep_top_k=100, use_gaussian=False, gaussian_sigma=2., normalized=False, background_label=0): super(MatrixNMS, self).__init__() self.score_threshold = score_threshold self.post_threshold = post_threshold self.nms_top_k = nms_top_k self.keep_top_k = keep_top_k self.normalized = normalized self.use_gaussian = use_gaussian self.gaussian_sigma = gaussian_sigma self.background_label = background_label def __call__(self, bbox, score, *args): return ops.matrix_nms( bboxes=bbox, scores=score, score_threshold=self.score_threshold, post_threshold=self.post_threshold, nms_top_k=self.nms_top_k, keep_top_k=self.keep_top_k, use_gaussian=self.use_gaussian, gaussian_sigma=self.gaussian_sigma, background_label=self.background_label, normalized=self.normalized) @register @serializable class YOLOBox(object): __shared__ = ['num_classes'] def __init__(self, num_classes=80, conf_thresh=0.005, downsample_ratio=32, clip_bbox=True, scale_x_y=1.): self.num_classes = num_classes self.conf_thresh = conf_thresh self.downsample_ratio = downsample_ratio self.clip_bbox = clip_bbox self.scale_x_y = scale_x_y def __call__(self, yolo_head_out, anchors, im_shape, scale_factor, var_weight=None): boxes_list = [] scores_list = [] origin_shape = im_shape / scale_factor origin_shape = paddle.cast(origin_shape, 'int32') for i, head_out in enumerate(yolo_head_out): boxes, scores = paddle.vision.ops.yolo_box( head_out, origin_shape, anchors[i], self.num_classes, self.conf_thresh, self.downsample_ratio // 2**i, self.clip_bbox, scale_x_y=self.scale_x_y) boxes_list.append(boxes) scores_list.append(paddle.transpose(scores, perm=[0, 2, 1])) yolo_boxes = paddle.concat(boxes_list, axis=1) yolo_scores = paddle.concat(scores_list, axis=2) return yolo_boxes, yolo_scores @register @serializable class SSDBox(object): def __init__(self, is_normalized=True, prior_box_var=[0.1, 0.1, 0.2, 0.2], use_fuse_decode=False): self.is_normalized = is_normalized self.norm_delta = float(not self.is_normalized) self.prior_box_var = prior_box_var self.use_fuse_decode = use_fuse_decode def __call__(self, preds, prior_boxes, im_shape, scale_factor, var_weight=None): boxes, scores = preds boxes = paddle.concat(boxes, axis=1) prior_boxes = paddle.concat(prior_boxes) if self.use_fuse_decode: output_boxes = ops.box_coder( prior_boxes, self.prior_box_var, boxes, code_type="decode_center_size", box_normalized=self.is_normalized) else: pb_w = prior_boxes[:, 2] - prior_boxes[:, 0] + self.norm_delta pb_h = prior_boxes[:, 3] - prior_boxes[:, 1] + self.norm_delta pb_x = prior_boxes[:, 0] + pb_w * 0.5 pb_y = prior_boxes[:, 1] + pb_h * 0.5 out_x = pb_x + boxes[:, :, 0] * pb_w * self.prior_box_var[0] out_y = pb_y + boxes[:, :, 1] * pb_h * self.prior_box_var[1] out_w = paddle.exp(boxes[:, :, 2] * self.prior_box_var[2]) * pb_w out_h = paddle.exp(boxes[:, :, 3] * self.prior_box_var[3]) * pb_h output_boxes = paddle.stack( [ out_x - out_w / 2., out_y - out_h / 2., out_x + out_w / 2., out_y + out_h / 2. ], axis=-1) if self.is_normalized: h = (im_shape[:, 0] / scale_factor[:, 0]).unsqueeze(-1) w = (im_shape[:, 1] / scale_factor[:, 1]).unsqueeze(-1) im_shape = paddle.stack([w, h, w, h], axis=-1) output_boxes *= im_shape else: output_boxes[..., -2:] -= 1.0 output_scores = F.softmax(paddle.concat( scores, axis=1)).transpose([0, 2, 1]) return output_boxes, output_scores @register class TTFBox(object): __shared__ = ['down_ratio'] def __init__(self, max_per_img=100, score_thresh=0.01, down_ratio=4): super(TTFBox, self).__init__() self.max_per_img = max_per_img self.score_thresh = score_thresh self.down_ratio = down_ratio def _simple_nms(self, heat, kernel=3): """ Use maxpool to filter the max score, get local peaks. """ pad = (kernel - 1) // 2 hmax = F.max_pool2d(heat, kernel, stride=1, padding=pad) keep = paddle.cast(hmax == heat, 'float32') return heat * keep def _topk(self, scores): """ Select top k scores and decode to get xy coordinates. """ k = self.max_per_img shape_fm = paddle.shape(scores) shape_fm.stop_gradient = True cat, height, width = shape_fm[1], shape_fm[2], shape_fm[3] # batch size is 1 scores_r = paddle.reshape(scores, [cat, -1]) topk_scores, topk_inds = paddle.topk(scores_r, k) topk_ys = topk_inds // width topk_xs = topk_inds % width topk_score_r = paddle.reshape(topk_scores, [-1]) topk_score, topk_ind = paddle.topk(topk_score_r, k) k_t = paddle.full(paddle.shape(topk_ind), k, dtype='int64') topk_clses = paddle.cast(paddle.floor_divide(topk_ind, k_t), 'float32') topk_inds = paddle.reshape(topk_inds, [-1]) topk_ys = paddle.reshape(topk_ys, [-1, 1]) topk_xs = paddle.reshape(topk_xs, [-1, 1]) topk_inds = paddle.gather(topk_inds, topk_ind) topk_ys = paddle.gather(topk_ys, topk_ind) topk_xs = paddle.gather(topk_xs, topk_ind) return topk_score, topk_inds, topk_clses, topk_ys, topk_xs def _decode(self, hm, wh, im_shape, scale_factor): heatmap = F.sigmoid(hm) heat = self._simple_nms(heatmap) scores, inds, clses, ys, xs = self._topk(heat) ys = paddle.cast(ys, 'float32') * self.down_ratio xs = paddle.cast(xs, 'float32') * self.down_ratio scores = paddle.tensor.unsqueeze(scores, [1]) clses = paddle.tensor.unsqueeze(clses, [1]) wh_t = paddle.transpose(wh, [0, 2, 3, 1]) wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]]) wh = paddle.gather(wh, inds) x1 = xs - wh[:, 0:1] y1 = ys - wh[:, 1:2] x2 = xs + wh[:, 2:3] y2 = ys + wh[:, 3:4] bboxes = paddle.concat([x1, y1, x2, y2], axis=1) scale_y = scale_factor[:, 0:1] scale_x = scale_factor[:, 1:2] scale_expand = paddle.concat( [scale_x, scale_y, scale_x, scale_y], axis=1) boxes_shape = paddle.shape(bboxes) boxes_shape.stop_gradient = True scale_expand = paddle.expand(scale_expand, shape=boxes_shape) bboxes = paddle.divide(bboxes, scale_expand) results = paddle.concat([clses, scores, bboxes], axis=1) # hack: append result with cls=-1 and score=1. to avoid all scores # are less than score_thresh which may cause error in gather. fill_r = paddle.to_tensor(np.array([[-1, 1, 0, 0, 0, 0]])) fill_r = paddle.cast(fill_r, results.dtype) results = paddle.concat([results, fill_r]) scores = results[:, 1] valid_ind = paddle.nonzero(scores > self.score_thresh) results = paddle.gather(results, valid_ind) return results, paddle.shape(results)[0:1] def __call__(self, hm, wh, im_shape, scale_factor): results = [] results_num = [] for i in range(scale_factor.shape[0]): result, num = self._decode(hm[i:i + 1, ], wh[i:i + 1, ], im_shape[i:i + 1, ], scale_factor[i:i + 1, ]) results.append(result) results_num.append(num) results = paddle.concat(results, axis=0) results_num = paddle.concat(results_num, axis=0) return results, results_num @register @serializable class JDEBox(object): __shared__ = ['num_classes'] def __init__(self, num_classes=1, conf_thresh=0.3, downsample_ratio=32): self.num_classes = num_classes self.conf_thresh = conf_thresh self.downsample_ratio = downsample_ratio def generate_anchor(self, nGh, nGw, anchor_wh): nA = len(anchor_wh) yv, xv = paddle.meshgrid([paddle.arange(nGh), paddle.arange(nGw)]) mesh = paddle.stack( (xv, yv), axis=0).cast(dtype='float32') # 2 x nGh x nGw meshs = paddle.tile(mesh, [nA, 1, 1, 1]) anchor_offset_mesh = anchor_wh[:, :, None][:, :, :, None].repeat( int(nGh), axis=-2).repeat( int(nGw), axis=-1) anchor_offset_mesh = paddle.to_tensor( anchor_offset_mesh.astype(np.float32)) # nA x 2 x nGh x nGw anchor_mesh = paddle.concat([meshs, anchor_offset_mesh], axis=1) anchor_mesh = paddle.transpose(anchor_mesh, [0, 2, 3, 1]) # (nA x nGh x nGw) x 4 return anchor_mesh def decode_delta(self, delta, fg_anchor_list): px, py, pw, ph = fg_anchor_list[:, 0], fg_anchor_list[:,1], \ fg_anchor_list[:, 2], fg_anchor_list[:,3] dx, dy, dw, dh = delta[:, 0], delta[:, 1], delta[:, 2], delta[:, 3] gx = pw * dx + px gy = ph * dy + py gw = pw * paddle.exp(dw) gh = ph * paddle.exp(dh) gx1 = gx - gw * 0.5 gy1 = gy - gh * 0.5 gx2 = gx + gw * 0.5 gy2 = gy + gh * 0.5 return paddle.stack([gx1, gy1, gx2, gy2], axis=1) def decode_delta_map(self, nA, nGh, nGw, delta_map, anchor_vec): anchor_mesh = self.generate_anchor(nGh, nGw, anchor_vec) anchor_mesh = paddle.unsqueeze(anchor_mesh, 0) pred_list = self.decode_delta( paddle.reshape( delta_map, shape=[-1, 4]), paddle.reshape( anchor_mesh, shape=[-1, 4])) pred_map = paddle.reshape(pred_list, shape=[nA * nGh * nGw, 4]) return pred_map def _postprocessing_by_level(self, nA, stride, head_out, anchor_vec): boxes_shape = head_out.shape # [nB, nA*6, nGh, nGw] nGh, nGw = boxes_shape[-2], boxes_shape[-1] nB = 1 # TODO: only support bs=1 now boxes_list, scores_list = [], [] for idx in range(nB): p = paddle.reshape( head_out[idx], shape=[nA, self.num_classes + 5, nGh, nGw]) p = paddle.transpose(p, perm=[0, 2, 3, 1]) # [nA, nGh, nGw, 6] delta_map = p[:, :, :, :4] boxes = self.decode_delta_map(nA, nGh, nGw, delta_map, anchor_vec) # [nA * nGh * nGw, 4] boxes_list.append(boxes * stride) p_conf = paddle.transpose( p[:, :, :, 4:6], perm=[3, 0, 1, 2]) # [2, nA, nGh, nGw] p_conf = F.softmax( p_conf, axis=0)[1, :, :, :].unsqueeze(-1) # [nA, nGh, nGw, 1] scores = paddle.reshape(p_conf, shape=[nA * nGh * nGw, 1]) scores_list.append(scores) boxes_results = paddle.stack(boxes_list) scores_results = paddle.stack(scores_list) return boxes_results, scores_results def __call__(self, yolo_head_out, anchors): bbox_pred_list = [] for i, head_out in enumerate(yolo_head_out): stride = self.downsample_ratio // 2**i anc_w, anc_h = anchors[i][0::2], anchors[i][1::2] anchor_vec = np.stack((anc_w, anc_h), axis=1) / stride nA = len(anc_w) boxes, scores = self._postprocessing_by_level(nA, stride, head_out, anchor_vec) bbox_pred_list.append(paddle.concat([boxes, scores], axis=-1)) yolo_boxes_scores = paddle.concat(bbox_pred_list, axis=1) boxes_idx_over_conf_thr = paddle.nonzero( yolo_boxes_scores[:, :, -1] > self.conf_thresh) boxes_idx_over_conf_thr.stop_gradient = True return boxes_idx_over_conf_thr, yolo_boxes_scores @register @serializable class MaskMatrixNMS(object): """ Matrix NMS for multi-class masks. Args: update_threshold (float): Updated threshold of categroy score in second time. pre_nms_top_n (int): Number of total instance to be kept per image before NMS post_nms_top_n (int): Number of total instance to be kept per image after NMS. kernel (str): 'linear' or 'gaussian'. sigma (float): std in gaussian method. Input: seg_preds (Variable): shape (n, h, w), segmentation feature maps seg_masks (Variable): shape (n, h, w), segmentation feature maps cate_labels (Variable): shape (n), mask labels in descending order cate_scores (Variable): shape (n), mask scores in descending order sum_masks (Variable): a float tensor of the sum of seg_masks Returns: Variable: cate_scores, tensors of shape (n) """ def __init__(self, update_threshold=0.05, pre_nms_top_n=500, post_nms_top_n=100, kernel='gaussian', sigma=2.0): super(MaskMatrixNMS, self).__init__() self.update_threshold = update_threshold self.pre_nms_top_n = pre_nms_top_n self.post_nms_top_n = post_nms_top_n self.kernel = kernel self.sigma = sigma def _sort_score(self, scores, top_num): if paddle.shape(scores)[0] > top_num: return paddle.topk(scores, top_num)[1] else: return paddle.argsort(scores, descending=True) def __call__(self, seg_preds, seg_masks, cate_labels, cate_scores, sum_masks=None): # sort and keep top nms_pre sort_inds = self._sort_score(cate_scores, self.pre_nms_top_n) seg_masks = paddle.gather(seg_masks, index=sort_inds) seg_preds = paddle.gather(seg_preds, index=sort_inds) sum_masks = paddle.gather(sum_masks, index=sort_inds) cate_scores = paddle.gather(cate_scores, index=sort_inds) cate_labels = paddle.gather(cate_labels, index=sort_inds) seg_masks = paddle.flatten(seg_masks, start_axis=1, stop_axis=-1) # inter. inter_matrix = paddle.mm(seg_masks, paddle.transpose(seg_masks, [1, 0])) n_samples = paddle.shape(cate_labels) # union. sum_masks_x = paddle.expand(sum_masks, shape=[n_samples, n_samples]) # iou. iou_matrix = (inter_matrix / ( sum_masks_x + paddle.transpose(sum_masks_x, [1, 0]) - inter_matrix)) iou_matrix = paddle.triu(iou_matrix, diagonal=1) # label_specific matrix. cate_labels_x = paddle.expand(cate_labels, shape=[n_samples, n_samples]) label_matrix = paddle.cast( (cate_labels_x == paddle.transpose(cate_labels_x, [1, 0])), 'float32') label_matrix = paddle.triu(label_matrix, diagonal=1) # IoU compensation compensate_iou = paddle.max((iou_matrix * label_matrix), axis=0) compensate_iou = paddle.expand( compensate_iou, shape=[n_samples, n_samples]) compensate_iou = paddle.transpose(compensate_iou, [1, 0]) # IoU decay decay_iou = iou_matrix * label_matrix # matrix nms if self.kernel == 'gaussian': decay_matrix = paddle.exp(-1 * self.sigma * (decay_iou**2)) compensate_matrix = paddle.exp(-1 * self.sigma * (compensate_iou**2)) decay_coefficient = paddle.min(decay_matrix / compensate_matrix, axis=0) elif self.kernel == 'linear': decay_matrix = (1 - decay_iou) / (1 - compensate_iou) decay_coefficient = paddle.min(decay_matrix, axis=0) else: raise NotImplementedError # update the score. cate_scores = cate_scores * decay_coefficient y = paddle.zeros(shape=paddle.shape(cate_scores), dtype='float32') keep = paddle.where(cate_scores >= self.update_threshold, cate_scores, y) keep = paddle.nonzero(keep) keep = paddle.squeeze(keep, axis=[1]) # Prevent empty and increase fake data keep = paddle.concat( [keep, paddle.cast(paddle.shape(cate_scores)[0:1] - 1, 'int64')]) seg_preds = paddle.gather(seg_preds, index=keep) cate_scores = paddle.gather(cate_scores, index=keep) cate_labels = paddle.gather(cate_labels, index=keep) # sort and keep top_k sort_inds = self._sort_score(cate_scores, self.post_nms_top_n) seg_preds = paddle.gather(seg_preds, index=sort_inds) cate_scores = paddle.gather(cate_scores, index=sort_inds) cate_labels = paddle.gather(cate_labels, index=sort_inds) return seg_preds, cate_scores, cate_labels def Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, weight_init=Normal(std=0.001), bias_init=Constant(0.)): weight_attr = paddle.framework.ParamAttr(initializer=weight_init) if bias: bias_attr = paddle.framework.ParamAttr(initializer=bias_init) else: bias_attr = False conv = nn.Conv2D( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, weight_attr=weight_attr, bias_attr=bias_attr) return conv def ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, weight_init=Normal(std=0.001), bias_init=Constant(0.)): weight_attr = paddle.framework.ParamAttr(initializer=weight_init) if bias: bias_attr = paddle.framework.ParamAttr(initializer=bias_init) else: bias_attr = False conv = nn.Conv2DTranspose( in_channels, out_channels, kernel_size, stride, padding, output_padding, dilation, groups, weight_attr=weight_attr, bias_attr=bias_attr) return conv def BatchNorm2d(num_features, eps=1e-05, momentum=0.9, affine=True): if not affine: weight_attr = False bias_attr = False else: weight_attr = None bias_attr = None batchnorm = nn.BatchNorm2D( num_features, momentum, eps, weight_attr=weight_attr, bias_attr=bias_attr) return batchnorm def ReLU(): return nn.ReLU() def Upsample(scale_factor=None, mode='nearest', align_corners=False): return nn.Upsample(None, scale_factor, mode, align_corners) def MaxPool(kernel_size, stride, padding, ceil_mode=False): return nn.MaxPool2D(kernel_size, stride, padding, ceil_mode=ceil_mode) class Concat(nn.Layer): def __init__(self, dim=0): super(Concat, self).__init__() self.dim = dim def forward(self, inputs): return paddle.concat(inputs, axis=self.dim) def extra_repr(self): return 'dim={}'.format(self.dim) def _convert_attention_mask(attn_mask, dtype): """ Convert the attention mask to the target dtype we expect. Parameters: attn_mask (Tensor, optional): A tensor used in multi-head attention to prevents attention to some unwanted positions, usually the paddings or the subsequent positions. It is a tensor with shape broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`. When the data type is bool, the unwanted positions have `False` values and the others have `True` values. When the data type is int, the unwanted positions have 0 values and the others have 1 values. When the data type is float, the unwanted positions have `-INF` values and the others have 0 values. It can be None when nothing wanted or needed to be prevented attention to. Default None. dtype (VarType): The target type of `attn_mask` we expect. Returns: Tensor: A Tensor with shape same as input `attn_mask`, with data type `dtype`. """ return nn.layer.transformer._convert_attention_mask(attn_mask, dtype) @register class MultiHeadAttention(nn.Layer): """ Attention mapps queries and a set of key-value pairs to outputs, and Multi-Head Attention performs multiple parallel attention to jointly attending to information from different representation subspaces. Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_ for more details. Parameters: embed_dim (int): The expected feature size in the input and output. num_heads (int): The number of heads in multi-head attention. dropout (float, optional): The dropout probability used on attention weights to drop some attention targets. 0 for no dropout. Default 0 kdim (int, optional): The feature size in key. If None, assumed equal to `embed_dim`. Default None. vdim (int, optional): The feature size in value. If None, assumed equal to `embed_dim`. Default None. need_weights (bool, optional): Indicate whether to return the attention weights. Default False. Examples: .. code-block:: python import paddle # encoder input: [batch_size, sequence_length, d_model] query = paddle.rand((2, 4, 128)) # self attention mask: [batch_size, num_heads, query_len, query_len] attn_mask = paddle.rand((2, 2, 4, 4)) multi_head_attn = paddle.nn.MultiHeadAttention(128, 2) output = multi_head_attn(query, None, None, attn_mask=attn_mask) # [2, 4, 128] """ def __init__(self, embed_dim, num_heads, dropout=0., kdim=None, vdim=None, need_weights=False): super(MultiHeadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.need_weights = need_weights self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim: self.in_proj_weight = self.create_parameter( shape=[embed_dim, 3 * embed_dim], attr=None, dtype=self._dtype, is_bias=False) self.in_proj_bias = self.create_parameter( shape=[3 * embed_dim], attr=None, dtype=self._dtype, is_bias=True) else: self.q_proj = nn.Linear(embed_dim, embed_dim) self.k_proj = nn.Linear(self.kdim, embed_dim) self.v_proj = nn.Linear(self.vdim, embed_dim) self.out_proj = nn.Linear(embed_dim, embed_dim) self._type_list = ('q_proj', 'k_proj', 'v_proj') self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: xavier_uniform_(p) else: constant_(p) def compute_qkv(self, tensor, index): if self._qkv_same_embed_dim: tensor = F.linear( x=tensor, weight=self.in_proj_weight[:, index * self.embed_dim:(index + 1) * self.embed_dim], bias=self.in_proj_bias[index * self.embed_dim:(index + 1) * self.embed_dim] if self.in_proj_bias is not None else None) else: tensor = getattr(self, self._type_list[index])(tensor) tensor = tensor.reshape( [0, 0, self.num_heads, self.head_dim]).transpose([0, 2, 1, 3]) return tensor def forward(self, query, key=None, value=None, attn_mask=None): r""" Applies multi-head attention to map queries and a set of key-value pairs to outputs. Parameters: query (Tensor): The queries for multi-head attention. It is a tensor with shape `[batch_size, query_length, embed_dim]`. The data type should be float32 or float64. key (Tensor, optional): The keys for multi-head attention. It is a tensor with shape `[batch_size, key_length, kdim]`. The data type should be float32 or float64. If None, use `query` as `key`. Default None. value (Tensor, optional): The values for multi-head attention. It is a tensor with shape `[batch_size, value_length, vdim]`. The data type should be float32 or float64. If None, use `query` as `value`. Default None. attn_mask (Tensor, optional): A tensor used in multi-head attention to prevents attention to some unwanted positions, usually the paddings or the subsequent positions. It is a tensor with shape broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`. When the data type is bool, the unwanted positions have `False` values and the others have `True` values. When the data type is int, the unwanted positions have 0 values and the others have 1 values. When the data type is float, the unwanted positions have `-INF` values and the others have 0 values. It can be None when nothing wanted or needed to be prevented attention to. Default None. Returns: Tensor|tuple: It is a tensor that has the same shape and data type \ as `query`, representing attention output. Or a tuple if \ `need_weights` is True or `cache` is not None. If `need_weights` \ is True, except for attention output, the tuple also includes \ the attention weights tensor shaped `[batch_size, num_heads, query_length, key_length]`. \ If `cache` is not None, the tuple then includes the new cache \ having the same type as `cache`, and if it is `StaticCache`, it \ is same as the input `cache`, if it is `Cache`, the new cache \ reserves tensors concatanating raw tensors with intermediate \ results of current query. """ key = query if key is None else key value = query if value is None else value # compute q ,k ,v q, k, v = (self.compute_qkv(t, i) for i, t in enumerate([query, key, value])) # scale dot product attention product = paddle.matmul(x=q, y=k, transpose_y=True) scaling = float(self.head_dim)**-0.5 product = product * scaling if attn_mask is not None: # Support bool or int mask attn_mask = _convert_attention_mask(attn_mask, product.dtype) product = product + attn_mask weights = F.softmax(product) if self.dropout: weights = F.dropout( weights, self.dropout, training=self.training, mode="upscale_in_train") out = paddle.matmul(weights, v) # combine heads out = paddle.transpose(out, perm=[0, 2, 1, 3]) out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]]) # project to output out = self.out_proj(out) outs = [out] if self.need_weights: outs.append(weights) return out if len(outs) == 1 else tuple(outs) @register class ConvMixer(nn.Layer): def __init__( self, dim, depth, kernel_size=3, ): super().__init__() self.dim = dim self.depth = depth self.kernel_size = kernel_size self.mixer = self.conv_mixer(dim, depth, kernel_size) def forward(self, x): return self.mixer(x) @staticmethod def conv_mixer( dim, depth, kernel_size, ): Seq, ActBn = nn.Sequential, lambda x: Seq(x, nn.GELU(), nn.BatchNorm2D(dim)) Residual = type('Residual', (Seq, ), {'forward': lambda self, x: self[0](x) + x}) return Seq(* [ Seq(Residual( ActBn( nn.Conv2D( dim, dim, kernel_size, groups=dim, padding="same"))), ActBn(nn.Conv2D(dim, dim, 1))) for i in range(depth) ])
PaddleDetection/ppdet/modeling/layers.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/layers.py", "repo_id": "PaddleDetection", "token_count": 26594 }
75
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle import paddle.nn.functional as F from ppdet.core.workspace import register, serializable __all__ = ['ProbIoULoss'] def gbb_form(boxes): xy, wh, angle = paddle.split(boxes, [2, 2, 1], axis=-1) return paddle.concat([xy, wh.pow(2) / 12., angle], axis=-1) def rotated_form(a_, b_, angles): cos_a = paddle.cos(angles) sin_a = paddle.sin(angles) a = a_ * paddle.pow(cos_a, 2) + b_ * paddle.pow(sin_a, 2) b = a_ * paddle.pow(sin_a, 2) + b_ * paddle.pow(cos_a, 2) c = (a_ - b_) * cos_a * sin_a return a, b, c def probiou_loss(pred, target, eps=1e-3, mode='l1'): """ pred -> a matrix [N,5](x,y,w,h,angle - in radians) containing ours predicted box ;in case of HBB angle == 0 target -> a matrix [N,5](x,y,w,h,angle - in radians) containing ours target box ;in case of HBB angle == 0 eps -> threshold to avoid infinite values mode -> ('l1' in [0,1] or 'l2' in [0,inf]) metrics according our paper """ gbboxes1 = gbb_form(pred) gbboxes2 = gbb_form(target) x1, y1, a1_, b1_, c1_ = gbboxes1[:, 0], gbboxes1[:, 1], gbboxes1[:, 2], gbboxes1[:, 3], gbboxes1[:, 4] x2, y2, a2_, b2_, c2_ = gbboxes2[:, 0], gbboxes2[:, 1], gbboxes2[:, 2], gbboxes2[:, 3], gbboxes2[:, 4] a1, b1, c1 = rotated_form(a1_, b1_, c1_) a2, b2, c2 = rotated_form(a2_, b2_, c2_) t1 = 0.25 * ((a1 + a2) * (paddle.pow(y1 - y2, 2)) + (b1 + b2) * (paddle.pow(x1 - x2, 2))) + \ 0.5 * ((c1+c2)*(x2-x1)*(y1-y2)) t2 = (a1 + a2) * (b1 + b2) - paddle.pow(c1 + c2, 2) t3_ = (a1 * b1 - c1 * c1) * (a2 * b2 - c2 * c2) t3 = 0.5 * paddle.log(t2 / (4 * paddle.sqrt(F.relu(t3_)) + eps)) B_d = (t1 / t2) + t3 # B_d = t1 + t2 + t3 B_d = paddle.clip(B_d, min=eps, max=100.0) l1 = paddle.sqrt(1.0 - paddle.exp(-B_d) + eps) l_i = paddle.pow(l1, 2.0) l2 = -paddle.log(1.0 - l_i + eps) if mode == 'l1': probiou = l1 if mode == 'l2': probiou = l2 return probiou @serializable @register class ProbIoULoss(object): """ ProbIoU Loss, refer to https://arxiv.org/abs/2106.06072 for details """ def __init__(self, mode='l1', eps=1e-3): super(ProbIoULoss, self).__init__() self.mode = mode self.eps = eps def __call__(self, pred_rboxes, assigned_rboxes): return probiou_loss(pred_rboxes, assigned_rboxes, self.eps, self.mode)
PaddleDetection/ppdet/modeling/losses/probiou_loss.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/losses/probiou_loss.py", "repo_id": "PaddleDetection", "token_count": 2050 }
76
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ this code is base on mmdet: git@github.com:open-mmlab/mmdetection.git """ import paddle.nn as nn from ppdet.core.workspace import register, serializable from ..backbones.hrnet import ConvNormLayer from ..shape_spec import ShapeSpec from ..initializer import xavier_uniform_, constant_ __all__ = ['ChannelMapper'] @register @serializable class ChannelMapper(nn.Layer): """Channel Mapper to reduce/increase channels of backbone features. This is used to reduce/increase channels of backbone features. Args: in_channels (List[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale). kernel_size (int, optional): kernel_size for reducing channels (used at each scale). Default: 3. conv_cfg (dict, optional): Config dict for convolution layer. Default: None. norm_cfg (dict, optional): Config dict for normalization layer. Default: None. act_cfg (dict, optional): Config dict for activation layer in ConvModule. Default: dict(type='ReLU'). num_outs (int, optional): Number of output feature maps. There would be extra_convs when num_outs larger than the length of in_channels. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channels, out_channels, kernel_size=3, norm_type="gn", norm_groups=32, act='relu', num_outs=None, init_cfg=dict( type='Xavier', layer='Conv2d', distribution='uniform')): super(ChannelMapper, self).__init__() assert isinstance(in_channels, list) self.extra_convs = None if num_outs is None: num_outs = len(in_channels) self.convs = nn.LayerList() for in_channel in in_channels: self.convs.append( ConvNormLayer( ch_in=in_channel, ch_out=out_channels, filter_size=kernel_size, norm_type='gn', norm_groups=32, act=act)) if num_outs > len(in_channels): self.extra_convs = nn.LayerList() for i in range(len(in_channels), num_outs): if i == len(in_channels): in_channel = in_channels[-1] else: in_channel = out_channels self.extra_convs.append( ConvNormLayer( ch_in=in_channel, ch_out=out_channels, filter_size=3, stride=2, norm_type='gn', norm_groups=32, act=act)) self.init_weights() def forward(self, inputs): """Forward function.""" assert len(inputs) == len(self.convs) outs = [self.convs[i](inputs[i]) for i in range(len(inputs))] if self.extra_convs: for i in range(len(self.extra_convs)): if i == 0: outs.append(self.extra_convs[0](inputs[-1])) else: outs.append(self.extra_convs[i](outs[-1])) return tuple(outs) @property def out_shape(self): return [ ShapeSpec( channels=self.out_channel, stride=1. / s) for s in self.spatial_scales ] def init_weights(self): """Initialize the transformer weights.""" for p in self.parameters(): if p.rank() > 1: xavier_uniform_(p) if hasattr(p, 'bias') and p.bias is not None: constant_(p.bais)
PaddleDetection/ppdet/modeling/necks/channel_mapper.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/necks/channel_mapper.py", "repo_id": "PaddleDetection", "token_count": 2193 }
77
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from ppdet.core.workspace import register, serializable from .. import ops @register @serializable class ProposalGenerator(object): """ Proposal generation module For more details, please refer to the document of generate_proposals in ppdet/modeing/ops.py Args: pre_nms_top_n (int): Number of total bboxes to be kept per image before NMS. default 6000 post_nms_top_n (int): Number of total bboxes to be kept per image after NMS. default 1000 nms_thresh (float): Threshold in NMS. default 0.5 min_size (flaot): Remove predicted boxes with either height or width < min_size. default 0.1 eta (float): Apply in adaptive NMS, if adaptive `threshold > 0.5`, `adaptive_threshold = adaptive_threshold * eta` in each iteration. default 1. topk_after_collect (bool): whether to adopt topk after batch collection. If topk_after_collect is true, box filter will not be used after NMS at each image in proposal generation. default false """ def __init__(self, pre_nms_top_n=12000, post_nms_top_n=2000, nms_thresh=.5, min_size=.1, eta=1., topk_after_collect=False): super(ProposalGenerator, self).__init__() self.pre_nms_top_n = pre_nms_top_n self.post_nms_top_n = post_nms_top_n self.nms_thresh = nms_thresh self.min_size = min_size self.eta = eta self.topk_after_collect = topk_after_collect def __call__(self, scores, bbox_deltas, anchors, im_shape): top_n = self.pre_nms_top_n if self.topk_after_collect else self.post_nms_top_n variances = paddle.ones_like(anchors) if hasattr(paddle.vision.ops, "generate_proposals"): generate_proposals = getattr(paddle.vision.ops, "generate_proposals") else: generate_proposals = ops.generate_proposals rpn_rois, rpn_rois_prob, rpn_rois_num = generate_proposals( scores, bbox_deltas, im_shape, anchors, variances, pre_nms_top_n=self.pre_nms_top_n, post_nms_top_n=top_n, nms_thresh=self.nms_thresh, min_size=self.min_size, eta=self.eta, return_rois_num=True) return rpn_rois, rpn_rois_prob, rpn_rois_num, self.post_nms_top_n
PaddleDetection/ppdet/modeling/proposal_generator/proposal_generator.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/proposal_generator/proposal_generator.py", "repo_id": "PaddleDetection", "token_count": 1433 }
78
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys import random import numpy as np import paddle # add python path of PaddleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 5))) if parent_path not in sys.path: sys.path.append(parent_path) from ppdet.modeling.transformers.utils import deformable_attention_core_func ms_deform_attn_core_paddle = deformable_attention_core_func try: gpu_index = int(sys.argv[1]) except: gpu_index = 0 print(f'Use gpu {gpu_index} to test...') paddle.set_device(f'gpu:{gpu_index}') try: from deformable_detr_ops import ms_deformable_attn except Exception as e: print('import deformable_detr_ops error', e) sys.exit(-1) paddle.seed(1) random.seed(1) np.random.seed(1) bs, n_heads, c = 2, 8, 8 query_length, n_levels, n_points = 2, 2, 2 spatial_shapes = paddle.to_tensor([(6, 4), (3, 2)], dtype=paddle.int64) level_start_index = paddle.concat((paddle.to_tensor( [0], dtype=paddle.int64), spatial_shapes.prod(1).cumsum(0)[:-1])) value_length = sum([(H * W).item() for H, W in spatial_shapes]) def get_test_tensors(channels): value = paddle.rand( [bs, value_length, n_heads, channels], dtype=paddle.float32) * 0.01 sampling_locations = paddle.rand( [bs, query_length, n_heads, n_levels, n_points, 2], dtype=paddle.float32) attention_weights = paddle.rand( [bs, query_length, n_heads, n_levels, n_points], dtype=paddle.float32) + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum( -2, keepdim=True) return [value, sampling_locations, attention_weights] @paddle.no_grad() def check_forward_equal_with_paddle_float(): value, sampling_locations, attention_weights = get_test_tensors(c) output_paddle = ms_deform_attn_core_paddle( value, spatial_shapes, level_start_index, sampling_locations, attention_weights).detach().cpu() output_cuda = ms_deformable_attn(value, spatial_shapes, level_start_index, sampling_locations, attention_weights).detach().cpu() fwdok = paddle.allclose( output_cuda, output_paddle, rtol=1e-2, atol=1e-3).item() max_abs_err = (output_cuda - output_paddle).abs().max().item() max_rel_err = ( (output_cuda - output_paddle).abs() / output_paddle.abs()).max().item() print( f'*{fwdok} check_forward_equal_with_paddle_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}' ) def check_gradient_numerical(channels=4): value_paddle, sampling_locations_paddle, attention_weights_paddle = get_test_tensors( channels) value_paddle.stop_gradient = False sampling_locations_paddle.stop_gradient = False attention_weights_paddle.stop_gradient = False value_cuda = value_paddle.detach().clone() sampling_locations_cuda = sampling_locations_paddle.detach().clone() attention_weights_cuda = attention_weights_paddle.detach().clone() value_cuda.stop_gradient = False sampling_locations_cuda.stop_gradient = False attention_weights_cuda.stop_gradient = False output_paddle = ms_deform_attn_core_paddle( value_paddle, spatial_shapes, level_start_index, sampling_locations_paddle, attention_weights_paddle) output_paddle.sum().backward() output_cuda = ms_deformable_attn(value_cuda, spatial_shapes, level_start_index, sampling_locations_cuda, attention_weights_cuda) output_cuda.sum().backward() res = paddle.allclose( value_paddle.grad, value_cuda.grad, rtol=1e-2, atol=1e-3).item() print(f'*tensor1 {res} check_gradient_numerical(D={channels})') res = paddle.allclose( sampling_locations_paddle.grad, sampling_locations_cuda.grad, rtol=1e-2, atol=1e-3).item() print(f'*tensor2 {res} check_gradient_numerical(D={channels})') res = paddle.allclose( attention_weights_paddle.grad, attention_weights_cuda.grad, rtol=1e-2, atol=1e-3).item() print(f'*tensor3 {res} check_gradient_numerical(D={channels})') if __name__ == '__main__': check_forward_equal_with_paddle_float() for channels in [30, 32, 64, 71, 128, 1024, 1025, 2048, 3096]: check_gradient_numerical(channels)
PaddleDetection/ppdet/modeling/transformers/ext_op/test_ms_deformable_attn_op.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/transformers/ext_op/test_ms_deformable_attn_op.py", "repo_id": "PaddleDetection", "token_count": 2100 }
79
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn from ppdet.core.workspace import register, create, load_config from ppdet.utils.checkpoint import load_pretrain_weight from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) __all__ = [ 'DistillModel', 'FGDDistillModel', 'CWDDistillModel', 'LDDistillModel', 'PPYOLOEDistillModel', ] @register class DistillModel(nn.Layer): """ Build common distill model. Args: cfg: The student config. slim_cfg: The teacher and distill config. """ def __init__(self, cfg, slim_cfg): super(DistillModel, self).__init__() self.arch = cfg.architecture self.stu_cfg = cfg self.student_model = create(self.stu_cfg.architecture) if 'pretrain_weights' in self.stu_cfg and self.stu_cfg.pretrain_weights: stu_pretrain = self.stu_cfg.pretrain_weights else: stu_pretrain = None slim_cfg = load_config(slim_cfg) self.tea_cfg = slim_cfg self.teacher_model = create(self.tea_cfg.architecture) if 'pretrain_weights' in self.tea_cfg and self.tea_cfg.pretrain_weights: tea_pretrain = self.tea_cfg.pretrain_weights else: tea_pretrain = None self.distill_cfg = slim_cfg # load pretrain weights self.is_inherit = False if stu_pretrain: if self.is_inherit and tea_pretrain: load_pretrain_weight(self.student_model, tea_pretrain) logger.debug( "Inheriting! loading teacher weights to student model!") load_pretrain_weight(self.student_model, stu_pretrain) logger.info("Student model has loaded pretrain weights!") if tea_pretrain: load_pretrain_weight(self.teacher_model, tea_pretrain) logger.info("Teacher model has loaded pretrain weights!") self.teacher_model.eval() for param in self.teacher_model.parameters(): param.trainable = False self.distill_loss = self.build_loss(self.distill_cfg) def build_loss(self, distill_cfg): if 'distill_loss' in distill_cfg and distill_cfg.distill_loss: return create(distill_cfg.distill_loss) else: return None def parameters(self): return self.student_model.parameters() def forward(self, inputs): if self.training: student_loss = self.student_model(inputs) with paddle.no_grad(): teacher_loss = self.teacher_model(inputs) loss = self.distill_loss(self.teacher_model, self.student_model) student_loss['distill_loss'] = loss student_loss['teacher_loss'] = teacher_loss['loss'] student_loss['loss'] += student_loss['distill_loss'] return student_loss else: return self.student_model(inputs) @register class FGDDistillModel(DistillModel): """ Build FGD distill model. Args: cfg: The student config. slim_cfg: The teacher and distill config. """ def __init__(self, cfg, slim_cfg): super(FGDDistillModel, self).__init__(cfg=cfg, slim_cfg=slim_cfg) assert self.arch in ['RetinaNet', 'PicoDet' ], 'Unsupported arch: {}'.format(self.arch) self.is_inherit = True def build_loss(self, distill_cfg): assert 'distill_loss_name' in distill_cfg and distill_cfg.distill_loss_name assert 'distill_loss' in distill_cfg and distill_cfg.distill_loss loss_func = dict() name_list = distill_cfg.distill_loss_name for name in name_list: loss_func[name] = create(distill_cfg.distill_loss) return loss_func def forward(self, inputs): if self.training: s_body_feats = self.student_model.backbone(inputs) s_neck_feats = self.student_model.neck(s_body_feats) with paddle.no_grad(): t_body_feats = self.teacher_model.backbone(inputs) t_neck_feats = self.teacher_model.neck(t_body_feats) loss_dict = {} for idx, k in enumerate(self.distill_loss): loss_dict[k] = self.distill_loss[k](s_neck_feats[idx], t_neck_feats[idx], inputs) if self.arch == "RetinaNet": loss = self.student_model.head(s_neck_feats, inputs) elif self.arch == "PicoDet": head_outs = self.student_model.head( s_neck_feats, self.student_model.export_post_process) loss_gfl = self.student_model.head.get_loss(head_outs, inputs) total_loss = paddle.add_n(list(loss_gfl.values())) loss = {} loss.update(loss_gfl) loss.update({'loss': total_loss}) else: raise ValueError(f"Unsupported model {self.arch}") for k in loss_dict: loss['loss'] += loss_dict[k] loss[k] = loss_dict[k] return loss else: body_feats = self.student_model.backbone(inputs) neck_feats = self.student_model.neck(body_feats) head_outs = self.student_model.head(neck_feats) if self.arch == "RetinaNet": bbox, bbox_num = self.student_model.head.post_process( head_outs, inputs['im_shape'], inputs['scale_factor']) return {'bbox': bbox, 'bbox_num': bbox_num} elif self.arch == "PicoDet": head_outs = self.student_model.head( neck_feats, self.student_model.export_post_process) scale_factor = inputs['scale_factor'] bboxes, bbox_num = self.student_model.head.post_process( head_outs, scale_factor, export_nms=self.student_model.export_nms) return {'bbox': bboxes, 'bbox_num': bbox_num} else: raise ValueError(f"Unsupported model {self.arch}") @register class CWDDistillModel(DistillModel): """ Build CWD distill model. Args: cfg: The student config. slim_cfg: The teacher and distill config. """ def __init__(self, cfg, slim_cfg): super(CWDDistillModel, self).__init__(cfg=cfg, slim_cfg=slim_cfg) assert self.arch in ['GFL', 'RetinaNet'], 'Unsupported arch: {}'.format( self.arch) def build_loss(self, distill_cfg): assert 'distill_loss_name' in distill_cfg and distill_cfg.distill_loss_name assert 'distill_loss' in distill_cfg and distill_cfg.distill_loss loss_func = dict() name_list = distill_cfg.distill_loss_name for name in name_list: loss_func[name] = create(distill_cfg.distill_loss) return loss_func def get_loss_retinanet(self, stu_fea_list, tea_fea_list, inputs): loss = self.student_model.head(stu_fea_list, inputs) loss_dict = {} for idx, k in enumerate(self.distill_loss): loss_dict[k] = self.distill_loss[k](stu_fea_list[idx], tea_fea_list[idx]) loss['loss'] += loss_dict[k] loss[k] = loss_dict[k] return loss def get_loss_gfl(self, stu_fea_list, tea_fea_list, inputs): loss = {} head_outs = self.student_model.head(stu_fea_list) loss_gfl = self.student_model.head.get_loss(head_outs, inputs) loss.update(loss_gfl) total_loss = paddle.add_n(list(loss.values())) loss.update({'loss': total_loss}) feat_loss = {} loss_dict = {} s_cls_feat, t_cls_feat = [], [] for s_neck_f, t_neck_f in zip(stu_fea_list, tea_fea_list): conv_cls_feat, _ = self.student_model.head.conv_feat(s_neck_f) cls_score = self.student_model.head.gfl_head_cls(conv_cls_feat) t_conv_cls_feat, _ = self.teacher_model.head.conv_feat(t_neck_f) t_cls_score = self.teacher_model.head.gfl_head_cls(t_conv_cls_feat) s_cls_feat.append(cls_score) t_cls_feat.append(t_cls_score) for idx, k in enumerate(self.distill_loss): loss_dict[k] = self.distill_loss[k](s_cls_feat[idx], t_cls_feat[idx]) feat_loss[f"neck_f_{idx}"] = self.distill_loss[k](stu_fea_list[idx], tea_fea_list[idx]) for k in feat_loss: loss['loss'] += feat_loss[k] loss[k] = feat_loss[k] for k in loss_dict: loss['loss'] += loss_dict[k] loss[k] = loss_dict[k] return loss def forward(self, inputs): if self.training: s_body_feats = self.student_model.backbone(inputs) s_neck_feats = self.student_model.neck(s_body_feats) with paddle.no_grad(): t_body_feats = self.teacher_model.backbone(inputs) t_neck_feats = self.teacher_model.neck(t_body_feats) if self.arch == "RetinaNet": loss = self.get_loss_retinanet(s_neck_feats, t_neck_feats, inputs) elif self.arch == "GFL": loss = self.get_loss_gfl(s_neck_feats, t_neck_feats, inputs) else: raise ValueError(f"unsupported arch {self.arch}") return loss else: body_feats = self.student_model.backbone(inputs) neck_feats = self.student_model.neck(body_feats) head_outs = self.student_model.head(neck_feats) if self.arch == "RetinaNet": bbox, bbox_num = self.student_model.head.post_process( head_outs, inputs['im_shape'], inputs['scale_factor']) return {'bbox': bbox, 'bbox_num': bbox_num} elif self.arch == "GFL": bbox_pred, bbox_num = head_outs output = {'bbox': bbox_pred, 'bbox_num': bbox_num} return output else: raise ValueError(f"unsupported arch {self.arch}") @register class LDDistillModel(DistillModel): """ Build LD distill model. Args: cfg: The student config. slim_cfg: The teacher and distill config. """ def __init__(self, cfg, slim_cfg): super(LDDistillModel, self).__init__(cfg=cfg, slim_cfg=slim_cfg) assert self.arch in ['GFL'], 'Unsupported arch: {}'.format(self.arch) def forward(self, inputs): if self.training: s_body_feats = self.student_model.backbone(inputs) s_neck_feats = self.student_model.neck(s_body_feats) s_head_outs = self.student_model.head(s_neck_feats) with paddle.no_grad(): t_body_feats = self.teacher_model.backbone(inputs) t_neck_feats = self.teacher_model.neck(t_body_feats) t_head_outs = self.teacher_model.head(t_neck_feats) soft_label_list = t_head_outs[0] soft_targets_list = t_head_outs[1] student_loss = self.student_model.head.get_loss( s_head_outs, inputs, soft_label_list, soft_targets_list) total_loss = paddle.add_n(list(student_loss.values())) student_loss['loss'] = total_loss return student_loss else: return self.student_model(inputs) @register class PPYOLOEDistillModel(DistillModel): """ Build PPYOLOE distill model, only used in PPYOLOE Args: cfg: The student config. slim_cfg: The teacher and distill config. """ def __init__(self, cfg, slim_cfg): super(PPYOLOEDistillModel, self).__init__(cfg=cfg, slim_cfg=slim_cfg) assert self.arch in ['PPYOLOE'], 'Unsupported arch: {}'.format( self.arch) def forward(self, inputs, alpha=0.125): if self.training: with paddle.no_grad(): teacher_loss = self.teacher_model(inputs) if hasattr(self.teacher_model.yolo_head, "assigned_labels"): self.student_model.yolo_head.assigned_labels, self.student_model.yolo_head.assigned_bboxes, self.student_model.yolo_head.assigned_scores = \ self.teacher_model.yolo_head.assigned_labels, self.teacher_model.yolo_head.assigned_bboxes, self.teacher_model.yolo_head.assigned_scores delattr(self.teacher_model.yolo_head, "assigned_labels") delattr(self.teacher_model.yolo_head, "assigned_bboxes") delattr(self.teacher_model.yolo_head, "assigned_scores") student_loss = self.student_model(inputs) logits_loss, feat_loss = self.distill_loss(self.teacher_model, self.student_model) det_total_loss = student_loss['loss'] total_loss = alpha * (det_total_loss + logits_loss + feat_loss) student_loss['loss'] = total_loss student_loss['det_loss'] = det_total_loss student_loss['logits_loss'] = logits_loss student_loss['feat_loss'] = feat_loss return student_loss else: return self.student_model(inputs)
PaddleDetection/ppdet/slim/distill_model.py/0
{ "file_path": "PaddleDetection/ppdet/slim/distill_model.py", "repo_id": "PaddleDetection", "token_count": 7632 }
80
## 1. 环境准备 本教程适用于test_tipc目录下基础功能测试的运行环境搭建。 推荐环境: - CUDA 10.1/10.2 - CUDNN 7.6/cudnn8.1 - TensorRT 6.1.0.5 / 7.1 / 7.2 环境配置可以选择docker镜像安装,或者在本地环境Python搭建环境。推荐使用docker镜像安装,避免不必要的环境配置。 ## 2. Docker 镜像安装 推荐docker镜像安装,按照如下命令创建镜像,当前目录映射到镜像中的`/paddle`目录下 ``` # 启动docker镜像 nvidia-docker run --name paddle -it -v $PWD:/paddle paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7-gcc82-dev /bin/bash cd /paddle ``` ``` # 编译安装Paddle git clone https://github.com/PaddlePaddle/Paddle.git cd Paddle mkdir build && cd build cmake .. \ -DWITH_MKL=ON \ -DWITH_MKLDNN=ON \ -DWITH_GPU=ON \ -DWITH_DISTRIBUTE=ON \ -DCMAKE_BUILD_TYPE=Release \ -DCUDA_ARCH_NAME=Auto \ -DPY_VERSION=3.7 \ -DON_INFER=ON \ -DWITH_TENSORRT=ON \ -DTENSORRT_ROOT=/usr/local/TensorRT6-cuda10.1-cudnn7 make -j 20 pip3.7 install python/dist/paddlepaddle_gpu-0.0.0-cp37-cp37m-linux_x86_64.whl cd ../../ ``` or ``` # 下载安装Paddle-2.2 wget https://paddle-inference-lib.bj.bcebos.com/2.2.0/python/Linux/GPU/x86-64_gcc8.2_avx_mkl_cuda10.1_cudnn7.6.5_trt6.0.1.5/paddlepaddle_gpu-2.2.0.post101-cp37-cp37m-linux_x86_64.whl pip3.7 install paddlepaddle_gpu-2.2.0.post101-cp37-cp37m-linux_x86_64.whl # 下载C++预测库用于C++ inference wget https://paddle-inference-lib.bj.bcebos.com/2.2.0/cxx_c/Linux/GPU/x86-64_gcc8.2_avx_mkl_cuda10.1_cudnn7.6.5_trt6.0.1.5/paddle_inference.tgz tar -xvf paddle_inference.tgz export PADDLE_DIR=/paddle/paddle_inference ``` ## 3 Python 环境构建 如果您已经通过docker方式构建环境,跳过该部分内容。非docker环境下,环境配置比较灵活,推荐环境组合配置: - CUDA10.1 + CUDNN7.6 + TensorRT 6 - CUDA10.2 + CUDNN8.1 + TensorRT 7 - CUDA11.1 + CUDNN8.1 + TensorRT 7 下面以 CUDA10.2 + CUDNN8.1 + TensorRT 7 配置为例,介绍环境配置的流程。 ### 3.1 安装CUDNN 如果当前环境满足CUDNN版本的要求,可以跳过此步骤。 以CUDNN8.1 安装安装为例,安装步骤如下,首先下载CUDNN,从[Nvidia官网](https://developer.nvidia.com/rdp/cudnn-archive)下载CUDNN8.1版本,下载符合当前系统版本的三个deb文件,分别是: - cuDNN Runtime Library ,如:libcudnn8_8.1.0.77-1+cuda10.2_amd64.deb - cuDNN Developer Library ,如:libcudnn8-dev_8.1.0.77-1+cuda10.2_amd64.deb - cuDNN Code Samples,如:libcudnn8-samples_8.1.0.77-1+cuda10.2_amd64.deb deb安装可以参考[官方文档](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-deb),安装方式如下 ``` # x.x.x表示下载的版本号 # $HOME为工作目录 sudo dpkg -i libcudnn8_x.x.x-1+cudax.x_arm64.deb sudo dpkg -i libcudnn8-dev_8.x.x.x-1+cudax.x_arm64.deb sudo dpkg -i libcudnn8-samples_8.x.x.x-1+cudax.x_arm64.deb # 验证是否正确安装 cp -r /usr/src/cudnn_samples_v8/ $HOME cd $HOME/cudnn_samples_v8/mnistCUDNN # 编译 make clean && make ./mnistCUDNN ``` 如果运行mnistCUDNN完后提示运行成功,则表示安装成功。如果运行后出现freeimage相关的报错,需要按照提示安装freeimage库: ``` sudo apt-get install libfreeimage-dev sudo apt-get install libfreeimage ``` ### 3.2 安装TensorRT 首先,从[Nvidia官网TensorRT板块](https://developer.nvidia.com/tensorrt-getting-started)下载TensorRT,这里选择7.1.3.4版本的TensorRT,注意选择适合自己系统版本和CUDA版本的TensorRT,另外建议下载TAR package的安装包。 以Ubuntu16.04+CUDA10.2为例,下载并解压后可以参考[官方文档](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-713/install-guide/index.html#installing-tar)的安装步骤,按照如下步骤安装: ``` # 以下安装命令中 '${version}' 为下载的TensorRT版本,如7.1.3.4 # 设置环境变量,<TensorRT-${version}/lib> 为解压后的TensorRT的lib目录 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<TensorRT-${version}/lib> # 安装TensorRT cd TensorRT-${version}/python pip3.7 install tensorrt-*-cp3x-none-linux_x86_64.whl # 安装graphsurgeon cd TensorRT-${version}/graphsurgeon ``` ### 3.3 安装PaddlePaddle 下载支持TensorRT版本的Paddle安装包,注意安装包的TensorRT版本需要与本地TensorRT一致,下载[链接](https://paddleinference.paddlepaddle.org.cn/master/user_guides/download_lib.html#python) 选择下载 linux-cuda10.2-trt7-gcc8.2 Python3.7版本的Paddle: ``` # 从下载链接中可以看到是paddle2.1.1-cuda10.2-cudnn8.1版本 wget https://paddle-wheel.bj.bcebos.com/with-trt/2.1.1-gpu-cuda10.2-cudnn8.1-mkl-gcc8.2/paddlepaddle_gpu-2.1.1-cp37-cp37m-linux_x86_64.whl pip3.7 install -U paddlepaddle_gpu-2.1.1-cp37-cp37m-linux_x86_64.whl ``` ## 4. 安装PaddleDetection依赖 ``` # 安装AutoLog git clone https://github.com/LDOUBLEV/AutoLog cd AutoLog pip3.7 install -r requirements.txt python3.7 setup.py bdist_wheel pip3.7 install ./dist/auto_log-1.0.0-py3-none-any.whl # 下载PaddleDetection代码 cd ../ git clone https://github.com/PaddlePaddle/PaddleDetection ``` 安装PaddleDetection依赖: ``` cd PaddleDetection pip3.7 install -r ./requirements.txt ``` ## FAQ : Q. You are using Paddle compiled with TensorRT, but TensorRT dynamic library is not found. Ignore this if TensorRT is not needed. A. 问题一般是当前安装paddle版本带TRT,但是本地环境找不到TensorRT的预测库,需要下载TensorRT库,解压后设置环境变量LD_LIBRARY_PATH; 如: ``` export LD_LIBRARY_PATH=/usr/local/python3.7.0/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/paddle/package/TensorRT-6.0.1.5/lib ``` 或者问题是下载的TensorRT版本和当前paddle中编译的TRT版本不匹配,需要下载版本相符的TensorRT重新安装。
PaddleDetection/test_tipc/docs/install.md/0
{ "file_path": "PaddleDetection/test_tipc/docs/install.md", "repo_id": "PaddleDetection", "token_count": 3323 }
81
#!/bin/bash source test_tipc/utils_func.sh FILENAME=$1 MODE="serving_infer" # parser model_name dataline=$(cat ${FILENAME}) IFS=$'\n' lines=(${dataline}) model_name=$(func_parser_value "${lines[1]}") echo "ppdet serving_cpp_infer: ${model_name}" python=$(func_parser_value "${lines[2]}") filename_key=$(func_parser_key "${lines[3]}") filename_value=$(func_parser_value "${lines[3]}") # parser export params save_export_key=$(func_parser_key "${lines[5]}") save_export_value=$(func_parser_value "${lines[5]}") export_weight_key=$(func_parser_key "${lines[6]}") export_weight_value=$(func_parser_value "${lines[6]}") norm_export=$(func_parser_value "${lines[7]}") pact_export=$(func_parser_value "${lines[8]}") fpgm_export=$(func_parser_value "${lines[9]}") distill_export=$(func_parser_value "${lines[10]}") export_key1=$(func_parser_key "${lines[11]}") export_value1=$(func_parser_value "${lines[11]}") export_key2=$(func_parser_key "${lines[12]}") export_value2=$(func_parser_value "${lines[12]}") kl_quant_export=$(func_parser_value "${lines[13]}") # parser serving params infer_mode_list=$(func_parser_value "${lines[15]}") infer_is_quant_list=$(func_parser_value "${lines[16]}") model_key=$(func_parser_key "${lines[17]}") op_key=$(func_parser_key "${lines[18]}") op_value=$(func_parser_value "${lines[18]}") port_key=$(func_parser_key "${lines[19]}") port_value=$(func_parser_value "${lines[19]}") gpu_ids_key=$(func_parser_key "${lines[20]}") gpu_ids_value=$(func_parser_value "${lines[20]}") web_service_key1=$(func_parser_key "${lines[21]}") web_service_value1=$(func_parser_value "${lines[21]}") http_client_py=$(func_parser_value "${lines[22]}") serving_client_key=$(func_parser_key "${lines[23]}") infer_image_key=$(func_parser_key "${lines[24]}") infer_image_value=$(func_parser_value "${lines[24]}") http_client_key1=$(func_parser_key "${lines[25]}") http_client_value1=$(func_parser_value "${lines[25]}") LOG_PATH="./test_tipc/output/${model_name}/${MODE}" mkdir -p ${LOG_PATH} status_log="${LOG_PATH}/results_serving_cpp.log" function func_serving_inference(){ IFS='|' _python=$1 _log_path=$2 _set_server_model_dir=$3 _set_client_model_dir=$4 _set_image_file=$5 set_op=$(func_set_params "${op_key}" "${op_value}") set_port=$(func_set_params "${port_key}" "${port_value}") set_web_service_params1=$(func_set_params "${web_service_key1}" "${web_service_value1}") set_http_client_params1=$(func_set_params "${http_client_key1}" "${http_client_value1}") # inference for gpu_ids in ${gpu_ids_value[*]}; do if [ ${gpu_ids} = "null" ];then server_log_path="${_log_path}/cpp_server_cpu.log" client_log_path="${_log_path}/cpp_client_cpu.log" else server_log_path="${_log_path}/cpp_server_gpu.log" client_log_path="${_log_path}/cpp_client_gpu.log" fi set_gpu_ids=$(func_set_params "${gpu_ids_key}" "${gpu_ids}") # run web service web_service_cmd="${_python} -m paddle_serving_server.serve ${_set_server_model_dir} ${set_op} ${set_port} ${set_gpu_ids} ${set_web_service_params1} > ${server_log_path} 2>&1 &" eval $web_service_cmd last_status=${PIPESTATUS[0]} cat ${server_log_path} status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}" "${server_log_path}" sleep 5s # run http client http_client_cmd="${_python} ${http_client_py} ${_set_client_model_dir} ${_set_image_file} ${set_http_client_params1} > ${client_log_path} 2>&1" eval $http_client_cmd last_status=${PIPESTATUS[0]} cat ${client_log_path} status_check $last_status "${http_client_cmd}" "${status_log}" "${model_name}" "${client_log_path}" ps ux | grep -i ${port_value} | awk '{print $2}' | xargs kill -s 9 sleep 2s done } # run serving infer Count=0 IFS="|" infer_quant_flag=(${infer_is_quant_list}) for infer_mode in ${infer_mode_list[*]}; do if [ ${infer_mode} != "null" ]; then # run export case ${infer_mode} in norm) run_export=${norm_export} ;; quant) run_export=${pact_export} ;; fpgm) run_export=${fpgm_export} ;; distill) run_export=${distill_export} ;; kl_quant) run_export=${kl_quant_export} ;; *) echo "Undefined infer_mode!"; exit 1; esac set_export_weight=$(func_set_params "${export_weight_key}" "${export_weight_value}") set_save_export_dir=$(func_set_params "${save_export_key}" "${save_export_value}") set_filename=$(func_set_params "${filename_key}" "${model_name}") export_log_path="${LOG_PATH}/export.log" export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} ${set_save_export_dir} " echo $export_cmd eval "${export_cmd} > ${export_log_path} 2>&1" status_export=$? cat ${export_log_path} status_check $status_export "${export_cmd}" "${status_log}" "${model_name}" "${export_log_path}" fi #run inference set_server_model_dir=$(func_set_params "${model_key}" "${save_export_value}/${model_name}/serving_server") set_client_model_dir=$(func_set_params "${serving_client_key}" "${save_export_value}/${model_name}/serving_client") set_infer_image_file=$(func_set_params "${infer_image_key}" "${infer_image_value}") is_quant=${infer_quant_flag[Count]} func_serving_inference "${python}" "${LOG_PATH}" "${set_server_model_dir}" "${set_client_model_dir}" ${set_infer_image_file} Count=$(($Count + 1)) done eval "unset CUDA_VISIBLE_DEVICES"
PaddleDetection/test_tipc/test_serving_infer_cpp.sh/0
{ "file_path": "PaddleDetection/test_tipc/test_serving_infer_cpp.sh", "repo_id": "PaddleDetection", "token_count": 2461 }
82
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # add python path of PaddleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) sys.path.insert(0, parent_path) # ignore warning log import warnings warnings.filterwarnings('ignore') import paddle from ppdet.core.workspace import load_config, merge_config from ppdet.utils.check import check_gpu, check_version, check_config from ppdet.utils.cli import ArgsParser from ppdet.engine import Trainer from ppdet.slim import build_slim_model from ppdet.utils.logger import setup_logger logger = setup_logger('post_quant') def parse_args(): parser = ArgsParser() parser.add_argument( "--output_dir", type=str, default="output_inference", help="Directory for storing the output model files.") parser.add_argument( "--slim_config", default=None, type=str, help="Configuration file of slim method.") args = parser.parse_args() return args def run(FLAGS, cfg): # build detector trainer = Trainer(cfg, mode='eval') # load weights if cfg.architecture in ['DeepSORT']: if cfg.det_weights != 'None': trainer.load_weights_sde(cfg.det_weights, cfg.reid_weights) else: trainer.load_weights_sde(None, cfg.reid_weights) else: trainer.load_weights(cfg.weights) # post quant model trainer.post_quant(FLAGS.output_dir) def main(): FLAGS = parse_args() cfg = load_config(FLAGS.config) # TODO: to be refined in the future if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn': FLAGS.opt['norm_type'] = 'bn' merge_config(FLAGS.opt) if FLAGS.slim_config: cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test') # FIXME: Temporarily solve the priority problem of FLAGS.opt merge_config(FLAGS.opt) check_config(cfg) if 'use_gpu' not in cfg: cfg.use_gpu = False check_gpu(cfg.use_gpu) check_version() run(FLAGS, cfg) if __name__ == '__main__': main()
PaddleDetection/tools/post_quant.py/0
{ "file_path": "PaddleDetection/tools/post_quant.py", "repo_id": "PaddleDetection", "token_count": 1027 }
83
<?xml version="1.0" encoding="UTF-8"?> <project version="4"> <component name="Black"> <option name="sdkName" value="Python 3.10" /> </component> <component name="ProjectRootManager" version="2" project-jdk-name="Remote Python 3.11.0rc1 Docker (tensorflow:runtime)" project-jdk-type="Python SDK" /> </project>
euryale/.idea/misc.xml/0
{ "file_path": "euryale/.idea/misc.xml", "repo_id": "euryale", "token_count": 108 }
84
#!/usr/bin/env python import argparse import torch from transformers import GPTJForCausalLM, GPTJConfig # Note: these need the git version of Transformers as of 7/22/2022 from transformers import CodeGenTokenizer, CodeGenForCausalLM # noqa: F401 from transformers import CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST parser = argparse.ArgumentParser('Convert SalesForce CodeGen model to GPT-J') parser.add_argument('--code_model', choices=CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST, default='Salesforce/codegen-350M-multi', help='which SalesForce model to convert' ) parser.add_argument('output_dir', help='where to store the converted model') args = parser.parse_args() print('Loading CodeGen model') cg_model = CodeGenForCausalLM.from_pretrained(args.code_model, torch_dtype="auto") cg_config = cg_model.config # Create empty GPTJ model print('Creating empty GPTJ model') config = GPTJConfig( vocab_size=cg_config.vocab_size, n_positions=cg_config.n_positions, n_embd=cg_config.n_embd, n_layer=cg_config.n_layer, n_head=cg_config.n_head, rotary_dim=cg_config.rotary_dim, n_inner=cg_config.n_inner, activation_function=cg_config.activation_function, resid_pdrop=cg_config.resid_pdrop, embd_pdrop=cg_config.embd_pdrop, attn_pdrop=cg_config.attn_pdrop, layer_norm_epsilon=cg_config.layer_norm_epsilon, initializer_range=cg_config.initializer_range, scale_attn_weights=cg_config.scale_attn_weights, use_cache=cg_config.use_cache, bos_token_id=cg_config.bos_token_id, eos_token_id=cg_config.eos_token_id, torch_dtype=cg_config.torch_dtype, ) # Fix tokenizer type config.tokenizer_class = 'CodeGenTokenizer' gptj_model = GPTJForCausalLM(config).half() embed_dim = config.n_embd def replace(model, weights, model_name): model.state_dict()[model_name].copy_(weights.detach()) def replace_by_name(dest_model, src_model, old_name, new_name): assert old_name in src_model.state_dict() assert new_name in dest_model.state_dict() replace(model=dest_model, weights=src_model.state_dict()[old_name], model_name=new_name) print('Converting...') # Copy weights from CodeGen model with torch.no_grad(): cg_model.eval() gptj_model.eval() for name, param in cg_model.named_parameters(): # print(f'Converting {name}') # Handle the qkv weights separately because we need to split them if 'qkv_proj' in name: qkv_proj = param.detach().clone() mp_num = 4 # number of cores on their TPU I guess? local_dim = embed_dim // mp_num # GPT-J and CodeGen slice up the qkv projection slightly differently. # After a great deal of pain, I figured out that this permutation on # the weights of the qkv_proj fixes it. base_permutation = [0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11] permutation = torch.cat([torch.arange(i * local_dim, (i + 1) * local_dim) for i in base_permutation]) # NB: we permute the *rows* here because the computation is xA.T new_qkv_proj = qkv_proj[permutation, :] # NB: the name QKV is misleading here; they are actually stored in # the order QVK query, value, key = torch.split(new_qkv_proj, embed_dim, dim=0) replace(gptj_model, query, name.replace('qkv_proj', 'q_proj')) replace(gptj_model, key, name.replace('qkv_proj', 'k_proj')) replace(gptj_model, value, name.replace('qkv_proj', 'v_proj')) else: replace_by_name(dest_model=gptj_model, src_model=cg_model, old_name=name, new_name=name) print('Conversion complete.') print(f"Saving model to {args.output_dir}...") gptj_model.save_pretrained(args.output_dir)
fauxpilot/converter/codegen_gptj_convert.py/0
{ "file_path": "fauxpilot/converter/codegen_gptj_convert.py", "repo_id": "fauxpilot", "token_count": 1648 }
85
#!/usr/bin/env python import argparse import os from string import Template from transformers import GPTJConfig, AutoTokenizer import torch def round_up(x, multiple): remainder = x % multiple return x if remainder == 0 else x + multiple - remainder SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) CONFIG_TEMPLATE_PATH = os.path.join(SCRIPT_DIR, 'config_template.pbtxt') # Generate a config file for a CodeGen model for use with Triton parser = argparse.ArgumentParser('Create Triton config files for CodeGen models') parser.add_argument('--template', default=CONFIG_TEMPLATE_PATH, help='Path to the config template') parser.add_argument('--model_store', required=True, help='Path to the Triton model store') parser.add_argument('--hf_model_dir', required=True, help='Path to HF model directory') parser.add_argument('--tokenizer', default='Salesforce/codegen-16B-multi', help='Name or path to the tokenizer') parser.add_argument('--rebase', default=None, help='Path to rebase the model store to (e.g. for Docker)') parser.add_argument('-n', '--num_gpu', help='Number of GPUs to use', type=int, default=1) args = parser.parse_args() # Vars we need to fill in: # name # tensor_para_size # max_seq_len # is_half # head_num # size_per_head # inter_size # vocab_size # start_id # end_id # decoder_layers # name # rotary_embedding # checkpoint_path # Global options if args.hf_model_dir.endswith('/'): args.hf_model_dir = args.hf_model_dir[:-1] config = GPTJConfig.from_pretrained(args.hf_model_dir) tokenizer = AutoTokenizer.from_pretrained(args.tokenizer) max_seq_len = config.n_positions is_half = '1' if config.torch_dtype == torch.float16 else '0' # Read in the template config file with open(args.template, 'r') as f: template = Template(f.read()) model_name = os.path.basename(args.hf_model_dir) version = '1' params = {} params['tensor_para_size'] = args.num_gpu params['name'] = model_name params['max_seq_len'] = max_seq_len params['is_half'] = is_half params['head_num'] = config.n_head params['size_per_head'] = config.n_embd // config.n_head params['inter_size'] = 4*config.n_embd # Vocab size *sometimes* gets rounded up to a multiple of 1024 params['vocab_size'] = tokenizer.vocab_size+len(tokenizer.get_added_vocab()) # round_up(tokenizer.vocab_size, 1024) params['start_id'] = tokenizer.eos_token_id params['end_id'] = tokenizer.eos_token_id params['decoder_layers'] = config.n_layer params['rotary_embedding'] = config.rotary_dim # NOTE: this assumes that the model dir follows the format used by the other conversion scripts model_dir = os.path.join(args.model_store, f'{model_name}-{args.num_gpu}gpu') weights_path = os.path.join(model_dir, 'fastertransformer', f'{version}', f'{args.num_gpu}-gpu') if args.rebase: rebased_model_dir = os.path.join(args.rebase, f'{model_name}-{args.num_gpu}gpu') rebased_weights_path = os.path.join(args.rebase, 'fastertransformer', f'{version}', f'{args.num_gpu}-gpu') else: rebased_model_dir = model_dir rebased_weights_path = weights_path params['checkpoint_path'] = rebased_weights_path triton_config = template.substitute(params) assert '${' not in triton_config # Make directory structure os.makedirs(weights_path, exist_ok=True) # Write config file config_path = os.path.join(model_dir, 'fastertransformer', 'config.pbtxt') with open(config_path, 'w') as f: f.write(triton_config) print('==========================================================') print(f'Created config file for {model_name}') print(f' Config: {config_path}') print(f' Weights: {weights_path}') print(f' Store: {args.model_store}') print(f' Rebase: {model_dir} => {args.rebase}') print(f' Weights: {rebased_weights_path}') print(f' Num GPU: {args.num_gpu}') print('==========================================================')
fauxpilot/converter/triton_config_gen.py/0
{ "file_path": "fauxpilot/converter/triton_config_gen.py", "repo_id": "fauxpilot", "token_count": 1378 }
86
import json import random import string import time import numpy as np import tritonclient.grpc as client_util from tokenizers import Tokenizer from tritonclient.utils import np_to_triton_dtype, InferenceServerException np.finfo(np.dtype("float32")) np.finfo(np.dtype("float64")) class CodeGenProxy: def __init__(self, host: str = 'triton', port: int = 8001, verbose: bool = False): self.tokenizer = Tokenizer.from_file('/python-docker/cgtok/tokenizer.json') self.client = client_util.InferenceServerClient(url=f'{host}:{port}', verbose=verbose) self.PAD_CHAR = 50256 # Max number of tokens the model can handle self.MAX_MODEL_LEN = 2048 class TokensExceedsMaximum(Exception): pass @staticmethod def prepare_tensor(name: str, tensor_input): t = client_util.InferInput( name, tensor_input.shape, np_to_triton_dtype(tensor_input.dtype)) t.set_data_from_numpy(tensor_input) return t @staticmethod def trim_with_stopwords(output: str, stopwords: list) -> str: for w in sorted(stopwords, key=len, reverse=True): if output.endswith(w): output = output[:-len(w)] break return output @staticmethod def to_word_list_format(word_dict, tokenizer): flat_ids = [] offsets = [] for word_dict_item in word_dict: item_flat_ids = [] item_offsets = [] for word in word_dict_item: ids = tokenizer.encode(word).ids if len(ids) == 0: continue item_flat_ids += ids item_offsets.append(len(ids)) # Hack, can we do this better? if word == '\n\n': item_flat_ids += [198, 198] item_offsets.append(2) flat_ids.append(np.array(item_flat_ids)) offsets.append(np.cumsum(np.array(item_offsets))) pad_to = max(1, max(len(ids) for ids in flat_ids)) for i, (ids, offs) in enumerate(zip(flat_ids, offsets)): flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0) offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1) return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2)) def generate(self, data): prompt = data['prompt'] n = data.get('n', 1) model_name = data["model"] # ugly hack to set the data type correctly. Huggingface models want int32, but fastertransformer needs uint32 # i could've done the conversion from uint32 to int32 in the model but that'd be inefficient. np_type = np.int32 if model_name.startswith("py-") else np.uint32 input_start_ids = np.expand_dims(self.tokenizer.encode(prompt).ids, 0) input_start_ids = np.repeat(input_start_ids, n, axis=0).astype(np_type) prompt_len = input_start_ids.shape[1] input_len = prompt_len * np.ones([input_start_ids.shape[0], 1]).astype(np_type) max_tokens = data.get('max_tokens', 16) prompt_tokens: int = input_len[0][0] requested_tokens = max_tokens + prompt_tokens if requested_tokens > self.MAX_MODEL_LEN: print(1) raise self.TokensExceedsMaximum( f"This model's maximum context length is {self.MAX_MODEL_LEN}, however you requested " f"{requested_tokens} tokens ({prompt_tokens} in your prompt; {max_tokens} for the completion). " f"Please reduce your prompt; or completion length." ) output_len = np.ones_like(input_len).astype(np_type) * max_tokens num_logprobs = data.get('logprobs', -1) if num_logprobs is None: num_logprobs = -1 want_logprobs = num_logprobs > 0 temperature = data.get('temperature', 0.2) if temperature == 0.0: temperature = 1.0 top_k = 1 else: top_k = data.get('top_k', 0) top_p = data.get('top_p', 1.0) frequency_penalty = data.get('frequency_penalty', 1.0) runtime_top_k = top_k * np.ones([input_start_ids.shape[0], 1]).astype(np_type) runtime_top_p = top_p * np.ones([input_start_ids.shape[0], 1]).astype(np.float32) beam_search_diversity_rate = 0.0 * np.ones([input_start_ids.shape[0], 1]).astype(np.float32) random_seed = np.random.randint(0, 2 ** 31 - 1, (input_start_ids.shape[0], 1), dtype=np.int32) temperature = temperature * np.ones([input_start_ids.shape[0], 1]).astype(np.float32) len_penalty = 1.0 * np.ones([input_start_ids.shape[0], 1]).astype(np.float32) repetition_penalty = frequency_penalty * np.ones([input_start_ids.shape[0], 1]).astype(np.float32) is_return_log_probs = want_logprobs * np.ones([input_start_ids.shape[0], 1]).astype(np.bool_) beam_width = (1 * np.ones([input_start_ids.shape[0], 1])).astype(np_type) start_ids = self.PAD_CHAR * np.ones([input_start_ids.shape[0], 1]).astype(np_type) end_ids = self.PAD_CHAR * np.ones([input_start_ids.shape[0], 1]).astype(np_type) stop_words = data.get('stop', []) if stop_words is None: stop_words = [] if stop_words: stop_word_list = np.repeat(self.to_word_list_format([stop_words], self.tokenizer), input_start_ids.shape[0], axis=0) else: stop_word_list = np.concatenate([np.zeros([input_start_ids.shape[0], 1, 1]).astype( np.int32), (-1 * np.ones([input_start_ids.shape[0], 1, 1])).astype(np.int32)], axis=1) # Not used bad_words_list = np.concatenate([np.zeros([input_start_ids.shape[0], 1, 1]).astype( np.int32), (-1 * np.ones([input_start_ids.shape[0], 1, 1])).astype(np.int32)], axis=1) inputs = [ self.prepare_tensor("input_ids", input_start_ids), self.prepare_tensor("input_lengths", input_len), self.prepare_tensor("request_output_len", output_len), self.prepare_tensor("runtime_top_k", runtime_top_k), self.prepare_tensor("runtime_top_p", runtime_top_p), self.prepare_tensor("beam_search_diversity_rate", beam_search_diversity_rate), self.prepare_tensor("random_seed", random_seed), self.prepare_tensor("temperature", temperature), self.prepare_tensor("len_penalty", len_penalty), self.prepare_tensor("repetition_penalty", repetition_penalty), self.prepare_tensor("is_return_log_probs", is_return_log_probs), self.prepare_tensor("beam_width", beam_width), self.prepare_tensor("start_id", start_ids), self.prepare_tensor("end_id", end_ids), self.prepare_tensor("bad_words_list", bad_words_list), self.prepare_tensor("stop_words_list", stop_word_list), ] result = self.client.infer(model_name, inputs) output_data = result.as_numpy("output_ids") if output_data is None: raise RuntimeError("No output data") # All of these squeeze(1)s are to remove the beam width dimension. output_data = output_data.squeeze(1) if want_logprobs: lp_data = result.as_numpy("output_log_probs").squeeze(1) # clp_data = result.as_numpy("cum_log_probs").squeeze(1) else: lp_data = [None] * output_data.shape[0] sequence_lengths = result.as_numpy("sequence_length").squeeze(1) gen_len = sequence_lengths - input_len.squeeze(1) decoded = self.tokenizer.decode_batch([out[prompt_len:prompt_len + g] for g, out in zip(gen_len, output_data)]) trimmed = [self.trim_with_stopwords(d, stop_words) for d in decoded] choices = [] for i, (text, tokens, lps, g) in enumerate(zip(trimmed, output_data, lp_data, gen_len)): reason = "length" if max_tokens == g else "stop" if lps is not None: tokens_str = [self.tokenizer.decode([t]) for t in tokens[prompt_len:prompt_len + g]] offsets = [len(prompt)] + (np.cumsum([len(t) for t in tokens_str]) + len(prompt)).tolist()[:-1] # Fake some log probs for top_logprobs top_logprobs = [] for ii, t in enumerate(tokens_str): fakedict = {} top_token_lp = float(lps[ii]) fakedict[t] = top_token_lp while len(fakedict) < num_logprobs: random_token = random.randint(0, self.tokenizer.get_vocab_size() - 1) random_token_str = self.tokenizer.decode([random_token]) if random_token_str in fakedict: continue random_token_lp = top_token_lp - random.random() fakedict[random_token_str] = random_token_lp top_logprobs.append(fakedict) lpdict = { 'token_logprobs': lps.tolist(), 'top_logprobs': top_logprobs, 'tokens': tokens_str, 'text_offset': offsets, } else: lpdict = None choice = { 'text': text, 'index': i, 'finish_reason': reason, 'logprobs': lpdict, } choices.append(choice) completion = { 'id': None, # fill in 'model': 'codegen', 'object': 'text_completion', 'created': int(time.time()), 'choices': None, # fill in 'usage': { 'completion_tokens': int(gen_len.sum()), 'prompt_tokens': int(prompt_len), 'total_tokens': int(gen_len.sum() + prompt_len), } } return completion, choices @staticmethod def random_completion_id(): return 'cmpl-' + ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(29)) def streamed_response(self, completion, choices): for c in choices: completion['id'] = self.random_completion_id() completion['choices'] = [c] yield f'{json.dumps(completion)}' yield '[DONE]' def non_streamed_response(self, completion, choices) -> str: completion['id'] = self.random_completion_id() completion['choices'] = choices return json.dumps(completion) def __call__(self, data: dict): st = time.time() try: completion, choices = self.generate(data) except InferenceServerException as exc: # status: unavailable -- this happens if the `model` string is invalid print(exc) if exc.status() == 'StatusCode.UNAVAILABLE': print( f"WARNING: Model '{data['model']}' is not available. Please ensure that " "`model` is set to either 'fastertransformer' or 'py-model' depending on " "your installation" ) completion = {} choices = [] ed = time.time() print(f"Returned completion in {(ed - st) * 1000} ms") if data.get('stream', False): return self.streamed_response(completion, choices) else: return self.non_streamed_response(completion, choices)
fauxpilot/copilot_proxy/utils/codegen.py/0
{ "file_path": "fauxpilot/copilot_proxy/utils/codegen.py", "repo_id": "fauxpilot", "token_count": 5675 }
87