text
stringlengths
3
11.2M
id
stringlengths
15
188
metadata
dict
__index_level_0__
int64
0
275
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn from paddle import ParamAttr import paddle.nn.functional as F from paddle.nn import Conv2D, MaxPool2D, AdaptiveAvgPool2D, BatchNorm2D from paddle.nn.initializer import KaimingNormal from paddle.regularizer import L2Decay from ppdet.core.workspace import register, serializable from numbers import Integral from ..shape_spec import ShapeSpec from ppdet.modeling.ops import channel_shuffle __all__ = ['ShuffleNetV2'] class ConvBNLayer(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, groups=1, act=None): super(ConvBNLayer, self).__init__() self._conv = Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False) self._batch_norm = BatchNorm2D( out_channels, weight_attr=ParamAttr(regularizer=L2Decay(0.0)), bias_attr=ParamAttr(regularizer=L2Decay(0.0))) if act == "hard_swish": act = 'hardswish' self.act = act def forward(self, inputs): y = self._conv(inputs) y = self._batch_norm(y) if self.act: y = getattr(F, self.act)(y) return y class InvertedResidual(nn.Layer): def __init__(self, in_channels, out_channels, stride, act="relu"): super(InvertedResidual, self).__init__() self._conv_pw = ConvBNLayer( in_channels=in_channels // 2, out_channels=out_channels // 2, kernel_size=1, stride=1, padding=0, groups=1, act=act) self._conv_dw = ConvBNLayer( in_channels=out_channels // 2, out_channels=out_channels // 2, kernel_size=3, stride=stride, padding=1, groups=out_channels // 2, act=None) self._conv_linear = ConvBNLayer( in_channels=out_channels // 2, out_channels=out_channels // 2, kernel_size=1, stride=1, padding=0, groups=1, act=act) def forward(self, inputs): x1, x2 = paddle.split( inputs, num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2], axis=1) x2 = self._conv_pw(x2) x2 = self._conv_dw(x2) x2 = self._conv_linear(x2) out = paddle.concat([x1, x2], axis=1) return channel_shuffle(out, 2) class InvertedResidualDS(nn.Layer): def __init__(self, in_channels, out_channels, stride, act="relu"): super(InvertedResidualDS, self).__init__() # branch1 self._conv_dw_1 = ConvBNLayer( in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels, act=None) self._conv_linear_1 = ConvBNLayer( in_channels=in_channels, out_channels=out_channels // 2, kernel_size=1, stride=1, padding=0, groups=1, act=act) # branch2 self._conv_pw_2 = ConvBNLayer( in_channels=in_channels, out_channels=out_channels // 2, kernel_size=1, stride=1, padding=0, groups=1, act=act) self._conv_dw_2 = ConvBNLayer( in_channels=out_channels // 2, out_channels=out_channels // 2, kernel_size=3, stride=stride, padding=1, groups=out_channels // 2, act=None) self._conv_linear_2 = ConvBNLayer( in_channels=out_channels // 2, out_channels=out_channels // 2, kernel_size=1, stride=1, padding=0, groups=1, act=act) def forward(self, inputs): x1 = self._conv_dw_1(inputs) x1 = self._conv_linear_1(x1) x2 = self._conv_pw_2(inputs) x2 = self._conv_dw_2(x2) x2 = self._conv_linear_2(x2) out = paddle.concat([x1, x2], axis=1) return channel_shuffle(out, 2) @register @serializable class ShuffleNetV2(nn.Layer): def __init__(self, scale=1.0, act="relu", feature_maps=[5, 13, 17]): super(ShuffleNetV2, self).__init__() self.scale = scale if isinstance(feature_maps, Integral): feature_maps = [feature_maps] self.feature_maps = feature_maps stage_repeats = [4, 8, 4] if scale == 0.25: stage_out_channels = [-1, 24, 24, 48, 96, 512] elif scale == 0.33: stage_out_channels = [-1, 24, 32, 64, 128, 512] elif scale == 0.5: stage_out_channels = [-1, 24, 48, 96, 192, 1024] elif scale == 1.0: stage_out_channels = [-1, 24, 116, 232, 464, 1024] elif scale == 1.5: stage_out_channels = [-1, 24, 176, 352, 704, 1024] elif scale == 2.0: stage_out_channels = [-1, 24, 244, 488, 976, 2048] else: raise NotImplementedError("This scale size:[" + str(scale) + "] is not implemented!") self._out_channels = [] self._feature_idx = 0 # 1. conv1 self._conv1 = ConvBNLayer( in_channels=3, out_channels=stage_out_channels[1], kernel_size=3, stride=2, padding=1, act=act) self._max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1) self._feature_idx += 1 # 2. bottleneck sequences self._block_list = [] for stage_id, num_repeat in enumerate(stage_repeats): for i in range(num_repeat): if i == 0: block = self.add_sublayer( name=str(stage_id + 2) + '_' + str(i + 1), sublayer=InvertedResidualDS( in_channels=stage_out_channels[stage_id + 1], out_channels=stage_out_channels[stage_id + 2], stride=2, act=act)) else: block = self.add_sublayer( name=str(stage_id + 2) + '_' + str(i + 1), sublayer=InvertedResidual( in_channels=stage_out_channels[stage_id + 2], out_channels=stage_out_channels[stage_id + 2], stride=1, act=act)) self._block_list.append(block) self._feature_idx += 1 self._update_out_channels(stage_out_channels[stage_id + 2], self._feature_idx, self.feature_maps) def _update_out_channels(self, channel, feature_idx, feature_maps): if feature_idx in feature_maps: self._out_channels.append(channel) def forward(self, inputs): y = self._conv1(inputs['image']) y = self._max_pool(y) outs = [] for i, inv in enumerate(self._block_list): y = inv(y) if i + 2 in self.feature_maps: outs.append(y) return outs @property def out_shape(self): return [ShapeSpec(channels=c) for c in self._out_channels]
PaddleDetection/ppdet/modeling/backbones/shufflenet_v2.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/backbones/shufflenet_v2.py", "repo_id": "PaddleDetection", "token_count": 4470 }
71
import math import paddle import numpy as np import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling.initializer import normal_ from ppdet.modeling.lane_utils import Lane from ppdet.modeling.losses import line_iou from ppdet.modeling.clrnet_utils import ROIGather, LinearModule, SegDecoder __all__ = ['CLRHead'] @register class CLRHead(nn.Layer): __inject__ = ['loss'] __shared__ = [ 'img_w', 'img_h', 'ori_img_h', 'num_classes', 'cut_height', 'num_points', "max_lanes" ] def __init__(self, num_points=72, prior_feat_channels=64, fc_hidden_dim=64, num_priors=192, img_w=800, img_h=320, ori_img_h=590, cut_height=270, num_classes=5, num_fc=2, refine_layers=3, sample_points=36, conf_threshold=0.4, nms_thres=0.5, max_lanes=4, loss='CLRNetLoss'): super(CLRHead, self).__init__() self.img_w = img_w self.img_h = img_h self.n_strips = num_points - 1 self.n_offsets = num_points self.num_priors = num_priors self.sample_points = sample_points self.refine_layers = refine_layers self.num_classes = num_classes self.fc_hidden_dim = fc_hidden_dim self.ori_img_h = ori_img_h self.cut_height = cut_height self.conf_threshold = conf_threshold self.nms_thres = nms_thres self.max_lanes = max_lanes self.prior_feat_channels = prior_feat_channels self.loss = loss self.register_buffer( name='sample_x_indexs', tensor=(paddle.linspace( start=0, stop=1, num=self.sample_points, dtype=paddle.float32) * self.n_strips).astype(dtype='int64')) self.register_buffer( name='prior_feat_ys', tensor=paddle.flip( x=(1 - self.sample_x_indexs.astype('float32') / self.n_strips), axis=[-1])) self.register_buffer( name='prior_ys', tensor=paddle.linspace( start=1, stop=0, num=self.n_offsets).astype('float32')) self.prior_feat_channels = prior_feat_channels self._init_prior_embeddings() init_priors, priors_on_featmap = self.generate_priors_from_embeddings() self.register_buffer(name='priors', tensor=init_priors) self.register_buffer(name='priors_on_featmap', tensor=priors_on_featmap) self.seg_decoder = SegDecoder(self.img_h, self.img_w, self.num_classes, self.prior_feat_channels, self.refine_layers) reg_modules = list() cls_modules = list() for _ in range(num_fc): reg_modules += [*LinearModule(self.fc_hidden_dim)] cls_modules += [*LinearModule(self.fc_hidden_dim)] self.reg_modules = nn.LayerList(sublayers=reg_modules) self.cls_modules = nn.LayerList(sublayers=cls_modules) self.roi_gather = ROIGather(self.prior_feat_channels, self.num_priors, self.sample_points, self.fc_hidden_dim, self.refine_layers) self.reg_layers = nn.Linear( in_features=self.fc_hidden_dim, out_features=self.n_offsets + 1 + 2 + 1, bias_attr=True) self.cls_layers = nn.Linear( in_features=self.fc_hidden_dim, out_features=2, bias_attr=True) self.init_weights() def init_weights(self): for m in self.cls_layers.parameters(): normal_(m, mean=0.0, std=0.001) for m in self.reg_layers.parameters(): normal_(m, mean=0.0, std=0.001) def pool_prior_features(self, batch_features, num_priors, prior_xs): """ pool prior feature from feature map. Args: batch_features (Tensor): Input feature maps, shape: (B, C, H, W) """ batch_size = batch_features.shape[0] prior_xs = prior_xs.reshape([batch_size, num_priors, -1, 1]) prior_ys = self.prior_feat_ys.tile(repeat_times=[ batch_size * num_priors ]).reshape([batch_size, num_priors, -1, 1]) prior_xs = prior_xs * 2.0 - 1.0 prior_ys = prior_ys * 2.0 - 1.0 grid = paddle.concat(x=(prior_xs, prior_ys), axis=-1) feature = F.grid_sample( x=batch_features, grid=grid, align_corners=True).transpose(perm=[0, 2, 1, 3]) feature = feature.reshape([ batch_size * num_priors, self.prior_feat_channels, self.sample_points, 1 ]) return feature def generate_priors_from_embeddings(self): predictions = self.prior_embeddings.weight # 2 scores, 1 start_y, 1 start_x, 1 theta, 1 length, 72 coordinates, score[0] = negative prob, score[1] = positive prob priors = paddle.zeros( (self.num_priors, 2 + 2 + 2 + self.n_offsets), dtype=predictions.dtype) priors[:, 2:5] = predictions.clone() priors[:, 6:] = ( priors[:, 3].unsqueeze(1).clone().tile([1, self.n_offsets]) * (self.img_w - 1) + ((1 - self.prior_ys.tile([self.num_priors, 1]) - priors[:, 2].unsqueeze(1).clone().tile([1, self.n_offsets])) * self.img_h / paddle.tan(x=priors[:, 4].unsqueeze(1).clone().tile( [1, self.n_offsets]) * math.pi + 1e-05))) / (self.img_w - 1) priors_on_featmap = paddle.index_select( priors, 6 + self.sample_x_indexs, axis=-1) return priors, priors_on_featmap def _init_prior_embeddings(self): self.prior_embeddings = nn.Embedding(self.num_priors, 3) bottom_priors_nums = self.num_priors * 3 // 4 left_priors_nums, _ = self.num_priors // 8, self.num_priors // 8 strip_size = 0.5 / (left_priors_nums // 2 - 1) bottom_strip_size = 1 / (bottom_priors_nums // 4 + 1) with paddle.no_grad(): for i in range(left_priors_nums): self.prior_embeddings.weight[i, 0] = i // 2 * strip_size self.prior_embeddings.weight[i, 1] = 0.0 self.prior_embeddings.weight[i, 2] = 0.16 if i % 2 == 0 else 0.32 for i in range(left_priors_nums, left_priors_nums + bottom_priors_nums): self.prior_embeddings.weight[i, 0] = 0.0 self.prior_embeddings.weight[i, 1] = ( (i - left_priors_nums) // 4 + 1) * bottom_strip_size self.prior_embeddings.weight[i, 2] = 0.2 * (i % 4 + 1) for i in range(left_priors_nums + bottom_priors_nums, self.num_priors): self.prior_embeddings.weight[i, 0] = ( i - left_priors_nums - bottom_priors_nums) // 2 * strip_size self.prior_embeddings.weight[i, 1] = 1.0 self.prior_embeddings.weight[i, 2] = 0.68 if i % 2 == 0 else 0.84 def forward(self, x, inputs=None): """ Take pyramid features as input to perform Cross Layer Refinement and finally output the prediction lanes. Each feature is a 4D tensor. Args: x: input features (list[Tensor]) Return: prediction_list: each layer's prediction result seg: segmentation result for auxiliary loss """ batch_features = list(x[len(x) - self.refine_layers:]) batch_features.reverse() batch_size = batch_features[-1].shape[0] if self.training: self.priors, self.priors_on_featmap = self.generate_priors_from_embeddings( ) priors, priors_on_featmap = self.priors.tile( [batch_size, 1, 1]), self.priors_on_featmap.tile([batch_size, 1, 1]) predictions_lists = [] prior_features_stages = [] for stage in range(self.refine_layers): num_priors = priors_on_featmap.shape[1] prior_xs = paddle.flip(x=priors_on_featmap, axis=[2]) batch_prior_features = self.pool_prior_features( batch_features[stage], num_priors, prior_xs) prior_features_stages.append(batch_prior_features) fc_features = self.roi_gather(prior_features_stages, batch_features[stage], stage) # return fc_features fc_features = fc_features.reshape( [num_priors, batch_size, -1]).reshape( [batch_size * num_priors, self.fc_hidden_dim]) cls_features = fc_features.clone() reg_features = fc_features.clone() for cls_layer in self.cls_modules: cls_features = cls_layer(cls_features) # return cls_features for reg_layer in self.reg_modules: reg_features = reg_layer(reg_features) cls_logits = self.cls_layers(cls_features) reg = self.reg_layers(reg_features) cls_logits = cls_logits.reshape( [batch_size, -1, cls_logits.shape[1]]) reg = reg.reshape([batch_size, -1, reg.shape[1]]) predictions = priors.clone() predictions[:, :, :2] = cls_logits predictions[:, :, 2:5] += reg[:, :, :3] predictions[:, :, 5] = reg[:, :, 3] def tran_tensor(t): return t.unsqueeze(axis=2).clone().tile([1, 1, self.n_offsets]) predictions[..., 6:] = ( tran_tensor(predictions[..., 3]) * (self.img_w - 1) + ((1 - self.prior_ys.tile([batch_size, num_priors, 1]) - tran_tensor(predictions[..., 2])) * self.img_h / paddle.tan( tran_tensor(predictions[..., 4]) * math.pi + 1e-05))) / ( self.img_w - 1) prediction_lines = predictions.clone() predictions[..., 6:] += reg[..., 4:] predictions_lists.append(predictions) if stage != self.refine_layers - 1: priors = prediction_lines.detach().clone() priors_on_featmap = priors.index_select( 6 + self.sample_x_indexs, axis=-1) if self.training: seg = None seg_features = paddle.concat( [ F.interpolate( feature, size=[ batch_features[-1].shape[2], batch_features[-1].shape[3] ], mode='bilinear', align_corners=False) for feature in batch_features ], axis=1) seg = self.seg_decoder(seg_features) output = {'predictions_lists': predictions_lists, 'seg': seg} return self.loss(output, inputs) return predictions_lists[-1] def predictions_to_pred(self, predictions): """ Convert predictions to internal Lane structure for evaluation. """ self.prior_ys = paddle.to_tensor(self.prior_ys) self.prior_ys = self.prior_ys.astype('float64') lanes = [] for lane in predictions: lane_xs = lane[6:].clone() start = min( max(0, int(round(lane[2].item() * self.n_strips))), self.n_strips) length = int(round(lane[5].item())) end = start + length - 1 end = min(end, len(self.prior_ys) - 1) if start > 0: mask = ((lane_xs[:start] >= 0.) & (lane_xs[:start] <= 1.)).cpu().detach().numpy()[::-1] mask = ~((mask.cumprod()[::-1]).astype(np.bool)) lane_xs[:start][mask] = -2 if end < len(self.prior_ys) - 1: lane_xs[end + 1:] = -2 lane_ys = self.prior_ys[lane_xs >= 0].clone() lane_xs = lane_xs[lane_xs >= 0] lane_xs = lane_xs.flip(axis=0).astype('float64') lane_ys = lane_ys.flip(axis=0) lane_ys = (lane_ys * (self.ori_img_h - self.cut_height) + self.cut_height ) / self.ori_img_h if len(lane_xs) <= 1: continue points = paddle.stack( x=(lane_xs.reshape([-1, 1]), lane_ys.reshape([-1, 1])), axis=1).squeeze(axis=2) lane = Lane( points=points.cpu().numpy(), metadata={ 'start_x': lane[3], 'start_y': lane[2], 'conf': lane[1] }) lanes.append(lane) return lanes def lane_nms(self, predictions, scores, nms_overlap_thresh, top_k): """ NMS for lane detection. predictions: paddle.Tensor [num_lanes,conf,y,x,lenght,72offsets] [12,77] scores: paddle.Tensor [num_lanes] nms_overlap_thresh: float top_k: int """ # sort by scores to get idx idx = scores.argsort(descending=True) keep = [] condidates = predictions.clone() condidates = condidates.index_select(idx) while len(condidates) > 0: keep.append(idx[0]) if len(keep) >= top_k or len(condidates) == 1: break ious = [] for i in range(1, len(condidates)): ious.append(1 - line_iou( condidates[i].unsqueeze(0), condidates[0].unsqueeze(0), img_w=self.img_w, length=15)) ious = paddle.to_tensor(ious) mask = ious <= nms_overlap_thresh id = paddle.where(mask == False)[0] if id.shape[0] == 0: break condidates = condidates[1:].index_select(id) idx = idx[1:].index_select(id) keep = paddle.stack(keep) return keep def get_lanes(self, output, as_lanes=True): """ Convert model output to lanes. """ softmax = nn.Softmax(axis=1) decoded = [] for predictions in output: threshold = self.conf_threshold scores = softmax(predictions[:, :2])[:, 1] keep_inds = scores >= threshold predictions = predictions[keep_inds] scores = scores[keep_inds] if predictions.shape[0] == 0: decoded.append([]) continue nms_predictions = predictions.detach().clone() nms_predictions = paddle.concat( x=[nms_predictions[..., :4], nms_predictions[..., 5:]], axis=-1) nms_predictions[..., 4] = nms_predictions[..., 4] * self.n_strips nms_predictions[..., 5:] = nms_predictions[..., 5:] * ( self.img_w - 1) keep = self.lane_nms( nms_predictions[..., 5:], scores, nms_overlap_thresh=self.nms_thres, top_k=self.max_lanes) predictions = predictions.index_select(keep) if predictions.shape[0] == 0: decoded.append([]) continue predictions[:, 5] = paddle.round(predictions[:, 5] * self.n_strips) if as_lanes: pred = self.predictions_to_pred(predictions) else: pred = predictions decoded.append(pred) return decoded
PaddleDetection/ppdet/modeling/heads/clrnet_head.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/heads/clrnet_head.py", "repo_id": "PaddleDetection", "token_count": 8628 }
72
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The code is based on: # https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/yolox_head.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from functools import partial import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.nn.initializer import Normal, Constant from ppdet.core.workspace import register from ppdet.modeling.bbox_utils import distance2bbox, bbox2distance from ppdet.data.transform.atss_assigner import bbox_overlaps from .gfl_head import GFLHead @register class OTAHead(GFLHead): """ OTAHead Args: conv_feat (object): Instance of 'FCOSFeat' num_classes (int): Number of classes fpn_stride (list): The stride of each FPN Layer prior_prob (float): Used to set the bias init for the class prediction layer loss_qfl (object): Instance of QualityFocalLoss. loss_dfl (object): Instance of DistributionFocalLoss. loss_bbox (object): Instance of bbox loss. assigner (object): Instance of label assigner. reg_max: Max value of integral set :math: `{0, ..., reg_max}` n QFL setting. Default: 16. """ __inject__ = [ 'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox', 'assigner', 'nms' ] __shared__ = ['num_classes'] def __init__(self, conv_feat='FCOSFeat', dgqp_module=None, num_classes=80, fpn_stride=[8, 16, 32, 64, 128], prior_prob=0.01, loss_class='QualityFocalLoss', loss_dfl='DistributionFocalLoss', loss_bbox='GIoULoss', assigner='SimOTAAssigner', reg_max=16, feat_in_chan=256, nms=None, nms_pre=1000, cell_offset=0): super(OTAHead, self).__init__( conv_feat=conv_feat, dgqp_module=dgqp_module, num_classes=num_classes, fpn_stride=fpn_stride, prior_prob=prior_prob, loss_class=loss_class, loss_dfl=loss_dfl, loss_bbox=loss_bbox, reg_max=reg_max, feat_in_chan=feat_in_chan, nms=nms, nms_pre=nms_pre, cell_offset=cell_offset) self.conv_feat = conv_feat self.dgqp_module = dgqp_module self.num_classes = num_classes self.fpn_stride = fpn_stride self.prior_prob = prior_prob self.loss_qfl = loss_class self.loss_dfl = loss_dfl self.loss_bbox = loss_bbox self.reg_max = reg_max self.feat_in_chan = feat_in_chan self.nms = nms self.nms_pre = nms_pre self.cell_offset = cell_offset self.use_sigmoid = self.loss_qfl.use_sigmoid self.assigner = assigner def _get_target_single(self, flatten_cls_pred, flatten_center_and_stride, flatten_bbox, gt_bboxes, gt_labels): """Compute targets for priors in a single image. """ pos_num, label, label_weight, bbox_target = self.assigner( F.sigmoid(flatten_cls_pred), flatten_center_and_stride, flatten_bbox, gt_bboxes, gt_labels) return (pos_num, label, label_weight, bbox_target) def get_loss(self, head_outs, gt_meta): cls_scores, bbox_preds = head_outs num_level_anchors = [ featmap.shape[-2] * featmap.shape[-1] for featmap in cls_scores ] num_imgs = gt_meta['im_id'].shape[0] featmap_sizes = [[featmap.shape[-2], featmap.shape[-1]] for featmap in cls_scores] decode_bbox_preds = [] center_and_strides = [] for featmap_size, stride, bbox_pred in zip(featmap_sizes, self.fpn_stride, bbox_preds): # center in origin image yy, xx = self.get_single_level_center_point(featmap_size, stride, self.cell_offset) center_and_stride = paddle.stack([xx, yy, stride, stride], -1).tile( [num_imgs, 1, 1]) center_and_strides.append(center_and_stride) center_in_feature = center_and_stride.reshape( [-1, 4])[:, :-2] / stride bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape( [num_imgs, -1, 4 * (self.reg_max + 1)]) pred_distances = self.distribution_project(bbox_pred) decode_bbox_pred_wo_stride = distance2bbox( center_in_feature, pred_distances).reshape([num_imgs, -1, 4]) decode_bbox_preds.append(decode_bbox_pred_wo_stride * stride) flatten_cls_preds = [ cls_pred.transpose([0, 2, 3, 1]).reshape( [num_imgs, -1, self.cls_out_channels]) for cls_pred in cls_scores ] flatten_cls_preds = paddle.concat(flatten_cls_preds, axis=1) flatten_bboxes = paddle.concat(decode_bbox_preds, axis=1) flatten_center_and_strides = paddle.concat(center_and_strides, axis=1) gt_boxes, gt_labels = gt_meta['gt_bbox'], gt_meta['gt_class'] pos_num_l, label_l, label_weight_l, bbox_target_l = [], [], [], [] for flatten_cls_pred,flatten_center_and_stride,flatten_bbox,gt_box, gt_label \ in zip(flatten_cls_preds.detach(),flatten_center_and_strides.detach(), \ flatten_bboxes.detach(),gt_boxes, gt_labels): pos_num, label, label_weight, bbox_target = self._get_target_single( flatten_cls_pred, flatten_center_and_stride, flatten_bbox, gt_box, gt_label) pos_num_l.append(pos_num) label_l.append(label) label_weight_l.append(label_weight) bbox_target_l.append(bbox_target) labels = paddle.to_tensor(np.stack(label_l, axis=0)) label_weights = paddle.to_tensor(np.stack(label_weight_l, axis=0)) bbox_targets = paddle.to_tensor(np.stack(bbox_target_l, axis=0)) center_and_strides_list = self._images_to_levels( flatten_center_and_strides, num_level_anchors) labels_list = self._images_to_levels(labels, num_level_anchors) label_weights_list = self._images_to_levels(label_weights, num_level_anchors) bbox_targets_list = self._images_to_levels(bbox_targets, num_level_anchors) num_total_pos = sum(pos_num_l) try: paddle.distributed.all_reduce(paddle.to_tensor(num_total_pos)) num_total_pos = paddle.clip( num_total_pos / paddle.distributed.get_world_size(), min=1.) except: num_total_pos = max(num_total_pos, 1) loss_bbox_list, loss_dfl_list, loss_qfl_list, avg_factor = [], [], [], [] for cls_score, bbox_pred, center_and_strides, labels, label_weights, bbox_targets, stride in zip( cls_scores, bbox_preds, center_and_strides_list, labels_list, label_weights_list, bbox_targets_list, self.fpn_stride): center_and_strides = center_and_strides.reshape([-1, 4]) cls_score = cls_score.transpose([0, 2, 3, 1]).reshape( [-1, self.cls_out_channels]) bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape( [-1, 4 * (self.reg_max + 1)]) bbox_targets = bbox_targets.reshape([-1, 4]) labels = labels.reshape([-1]) label_weights = label_weights.reshape([-1]) bg_class_ind = self.num_classes pos_inds = paddle.nonzero( paddle.logical_and((labels >= 0), (labels < bg_class_ind)), as_tuple=False).squeeze(1) score = np.zeros(labels.shape) if len(pos_inds) > 0: pos_bbox_targets = paddle.gather(bbox_targets, pos_inds, axis=0) pos_bbox_pred = paddle.gather(bbox_pred, pos_inds, axis=0) pos_centers = paddle.gather( center_and_strides[:, :-2], pos_inds, axis=0) / stride weight_targets = F.sigmoid(cls_score.detach()) weight_targets = paddle.gather( weight_targets.max(axis=1, keepdim=True), pos_inds, axis=0) pos_bbox_pred_corners = self.distribution_project(pos_bbox_pred) pos_decode_bbox_pred = distance2bbox(pos_centers, pos_bbox_pred_corners) pos_decode_bbox_targets = pos_bbox_targets / stride bbox_iou = bbox_overlaps( pos_decode_bbox_pred.detach().numpy(), pos_decode_bbox_targets.detach().numpy(), is_aligned=True) score[pos_inds.numpy()] = bbox_iou pred_corners = pos_bbox_pred.reshape([-1, self.reg_max + 1]) target_corners = bbox2distance(pos_centers, pos_decode_bbox_targets, self.reg_max).reshape([-1]) # regression loss loss_bbox = paddle.sum( self.loss_bbox(pos_decode_bbox_pred, pos_decode_bbox_targets) * weight_targets) # dfl loss loss_dfl = self.loss_dfl( pred_corners, target_corners, weight=weight_targets.expand([-1, 4]).reshape([-1]), avg_factor=4.0) else: loss_bbox = bbox_pred.sum() * 0 loss_dfl = bbox_pred.sum() * 0 weight_targets = paddle.to_tensor([0], dtype='float32') # qfl loss score = paddle.to_tensor(score) loss_qfl = self.loss_qfl( cls_score, (labels, score), weight=label_weights, avg_factor=num_total_pos) loss_bbox_list.append(loss_bbox) loss_dfl_list.append(loss_dfl) loss_qfl_list.append(loss_qfl) avg_factor.append(weight_targets.sum()) avg_factor = sum(avg_factor) try: paddle.distributed.all_reduce(paddle.to_tensor(avg_factor)) avg_factor = paddle.clip( avg_factor / paddle.distributed.get_world_size(), min=1) except: avg_factor = max(avg_factor.item(), 1) if avg_factor <= 0: loss_qfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False) loss_bbox = paddle.to_tensor( 0, dtype='float32', stop_gradient=False) loss_dfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False) else: losses_bbox = list(map(lambda x: x / avg_factor, loss_bbox_list)) losses_dfl = list(map(lambda x: x / avg_factor, loss_dfl_list)) loss_qfl = sum(loss_qfl_list) loss_bbox = sum(losses_bbox) loss_dfl = sum(losses_dfl) loss_states = dict( loss_qfl=loss_qfl, loss_bbox=loss_bbox, loss_dfl=loss_dfl) return loss_states @register class OTAVFLHead(OTAHead): __inject__ = [ 'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox', 'assigner', 'nms' ] __shared__ = ['num_classes'] def __init__(self, conv_feat='FCOSFeat', dgqp_module=None, num_classes=80, fpn_stride=[8, 16, 32, 64, 128], prior_prob=0.01, loss_class='VarifocalLoss', loss_dfl='DistributionFocalLoss', loss_bbox='GIoULoss', assigner='SimOTAAssigner', reg_max=16, feat_in_chan=256, nms=None, nms_pre=1000, cell_offset=0): super(OTAVFLHead, self).__init__( conv_feat=conv_feat, dgqp_module=dgqp_module, num_classes=num_classes, fpn_stride=fpn_stride, prior_prob=prior_prob, loss_class=loss_class, loss_dfl=loss_dfl, loss_bbox=loss_bbox, reg_max=reg_max, feat_in_chan=feat_in_chan, nms=nms, nms_pre=nms_pre, cell_offset=cell_offset) self.conv_feat = conv_feat self.dgqp_module = dgqp_module self.num_classes = num_classes self.fpn_stride = fpn_stride self.prior_prob = prior_prob self.loss_vfl = loss_class self.loss_dfl = loss_dfl self.loss_bbox = loss_bbox self.reg_max = reg_max self.feat_in_chan = feat_in_chan self.nms = nms self.nms_pre = nms_pre self.cell_offset = cell_offset self.use_sigmoid = self.loss_vfl.use_sigmoid self.assigner = assigner def get_loss(self, head_outs, gt_meta): cls_scores, bbox_preds = head_outs num_level_anchors = [ featmap.shape[-2] * featmap.shape[-1] for featmap in cls_scores ] num_imgs = gt_meta['im_id'].shape[0] featmap_sizes = [[featmap.shape[-2], featmap.shape[-1]] for featmap in cls_scores] decode_bbox_preds = [] center_and_strides = [] for featmap_size, stride, bbox_pred in zip(featmap_sizes, self.fpn_stride, bbox_preds): # center in origin image yy, xx = self.get_single_level_center_point(featmap_size, stride, self.cell_offset) strides = paddle.full((len(xx), ), stride) center_and_stride = paddle.stack([xx, yy, strides, strides], -1).tile([num_imgs, 1, 1]) center_and_strides.append(center_and_stride) center_in_feature = center_and_stride.reshape( [-1, 4])[:, :-2] / stride bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape( [num_imgs, -1, 4 * (self.reg_max + 1)]) pred_distances = self.distribution_project(bbox_pred) decode_bbox_pred_wo_stride = distance2bbox( center_in_feature, pred_distances).reshape([num_imgs, -1, 4]) decode_bbox_preds.append(decode_bbox_pred_wo_stride * stride) flatten_cls_preds = [ cls_pred.transpose([0, 2, 3, 1]).reshape( [num_imgs, -1, self.cls_out_channels]) for cls_pred in cls_scores ] flatten_cls_preds = paddle.concat(flatten_cls_preds, axis=1) flatten_bboxes = paddle.concat(decode_bbox_preds, axis=1) flatten_center_and_strides = paddle.concat(center_and_strides, axis=1) gt_boxes, gt_labels = gt_meta['gt_bbox'], gt_meta['gt_class'] pos_num_l, label_l, label_weight_l, bbox_target_l = [], [], [], [] for flatten_cls_pred, flatten_center_and_stride, flatten_bbox,gt_box,gt_label \ in zip(flatten_cls_preds.detach(), flatten_center_and_strides.detach(), \ flatten_bboxes.detach(),gt_boxes,gt_labels): pos_num, label, label_weight, bbox_target = self._get_target_single( flatten_cls_pred, flatten_center_and_stride, flatten_bbox, gt_box, gt_label) pos_num_l.append(pos_num) label_l.append(label) label_weight_l.append(label_weight) bbox_target_l.append(bbox_target) labels = paddle.to_tensor(np.stack(label_l, axis=0)) label_weights = paddle.to_tensor(np.stack(label_weight_l, axis=0)) bbox_targets = paddle.to_tensor(np.stack(bbox_target_l, axis=0)) center_and_strides_list = self._images_to_levels( flatten_center_and_strides, num_level_anchors) labels_list = self._images_to_levels(labels, num_level_anchors) label_weights_list = self._images_to_levels(label_weights, num_level_anchors) bbox_targets_list = self._images_to_levels(bbox_targets, num_level_anchors) num_total_pos = sum(pos_num_l) try: paddle.distributed.all_reduce(paddle.to_tensor(num_total_pos)) num_total_pos = paddle.clip( num_total_pos / paddle.distributed.get_world_size(), min=1.) except: num_total_pos = max(num_total_pos, 1) loss_bbox_list, loss_dfl_list, loss_vfl_list, avg_factor = [], [], [], [] for cls_score, bbox_pred, center_and_strides, labels, label_weights, bbox_targets, stride in zip( cls_scores, bbox_preds, center_and_strides_list, labels_list, label_weights_list, bbox_targets_list, self.fpn_stride): center_and_strides = center_and_strides.reshape([-1, 4]) cls_score = cls_score.transpose([0, 2, 3, 1]).reshape( [-1, self.cls_out_channels]) bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape( [-1, 4 * (self.reg_max + 1)]) bbox_targets = bbox_targets.reshape([-1, 4]) labels = labels.reshape([-1]) bg_class_ind = self.num_classes pos_inds = paddle.nonzero( paddle.logical_and((labels >= 0), (labels < bg_class_ind)), as_tuple=False).squeeze(1) # vfl vfl_score = np.zeros(cls_score.shape) if len(pos_inds) > 0: pos_bbox_targets = paddle.gather(bbox_targets, pos_inds, axis=0) pos_bbox_pred = paddle.gather(bbox_pred, pos_inds, axis=0) pos_centers = paddle.gather( center_and_strides[:, :-2], pos_inds, axis=0) / stride weight_targets = F.sigmoid(cls_score.detach()) weight_targets = paddle.gather( weight_targets.max(axis=1, keepdim=True), pos_inds, axis=0) pos_bbox_pred_corners = self.distribution_project(pos_bbox_pred) pos_decode_bbox_pred = distance2bbox(pos_centers, pos_bbox_pred_corners) pos_decode_bbox_targets = pos_bbox_targets / stride bbox_iou = bbox_overlaps( pos_decode_bbox_pred.detach().numpy(), pos_decode_bbox_targets.detach().numpy(), is_aligned=True) # vfl pos_labels = paddle.gather(labels, pos_inds, axis=0) vfl_score[pos_inds.numpy(), pos_labels] = bbox_iou pred_corners = pos_bbox_pred.reshape([-1, self.reg_max + 1]) target_corners = bbox2distance(pos_centers, pos_decode_bbox_targets, self.reg_max).reshape([-1]) # regression loss loss_bbox = paddle.sum( self.loss_bbox(pos_decode_bbox_pred, pos_decode_bbox_targets) * weight_targets) # dfl loss loss_dfl = self.loss_dfl( pred_corners, target_corners, weight=weight_targets.expand([-1, 4]).reshape([-1]), avg_factor=4.0) else: loss_bbox = bbox_pred.sum() * 0 loss_dfl = bbox_pred.sum() * 0 weight_targets = paddle.to_tensor([0], dtype='float32') # vfl loss num_pos_avg_per_gpu = num_total_pos vfl_score = paddle.to_tensor(vfl_score) loss_vfl = self.loss_vfl( cls_score, vfl_score, avg_factor=num_pos_avg_per_gpu) loss_bbox_list.append(loss_bbox) loss_dfl_list.append(loss_dfl) loss_vfl_list.append(loss_vfl) avg_factor.append(weight_targets.sum()) avg_factor = sum(avg_factor) try: paddle.distributed.all_reduce(paddle.to_tensor(avg_factor)) avg_factor = paddle.clip( avg_factor / paddle.distributed.get_world_size(), min=1) except: avg_factor = max(avg_factor.item(), 1) if avg_factor <= 0: loss_vfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False) loss_bbox = paddle.to_tensor( 0, dtype='float32', stop_gradient=False) loss_dfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False) else: losses_bbox = list(map(lambda x: x / avg_factor, loss_bbox_list)) losses_dfl = list(map(lambda x: x / avg_factor, loss_dfl_list)) loss_vfl = sum(loss_vfl_list) loss_bbox = sum(losses_bbox) loss_dfl = sum(losses_dfl) loss_states = dict( loss_vfl=loss_vfl, loss_bbox=loss_bbox, loss_dfl=loss_dfl) return loss_states
PaddleDetection/ppdet/modeling/heads/simota_head.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/heads/simota_head.py", "repo_id": "PaddleDetection", "token_count": 12041 }
73
import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling.clrnet_utils import accuracy from ppdet.modeling.assigners.clrnet_assigner import assign from ppdet.modeling.losses.clrnet_line_iou_loss import liou_loss __all__ = ['CLRNetLoss'] class SoftmaxFocalLoss(nn.Layer): def __init__(self, gamma, ignore_lb=255, *args, **kwargs): super(SoftmaxFocalLoss, self).__init__() self.gamma = gamma self.nll = nn.NLLLoss(ignore_index=ignore_lb) def forward(self, logits, labels): scores = F.softmax(logits, dim=1) factor = paddle.pow(1. - scores, self.gamma) log_score = F.log_softmax(logits, dim=1) log_score = factor * log_score loss = self.nll(log_score, labels) return loss def focal_loss(input: paddle.Tensor, target: paddle.Tensor, alpha: float, gamma: float=2.0, reduction: str='none', eps: float=1e-8) -> paddle.Tensor: r"""Function that computes Focal loss. See :class:`~kornia.losses.FocalLoss` for details. """ if not paddle.is_tensor(input): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(input))) if not len(input.shape) >= 2: raise ValueError("Invalid input shape, we expect BxCx*. Got: {}".format( input.shape)) if input.shape[0] != target.shape[0]: raise ValueError( 'Expected input batch_size ({}) to match target batch_size ({}).'. format(input.shape[0], target.shape[0])) n = input.shape[0] out_size = (n, ) + tuple(input.shape[2:]) if target.shape[1:] != input.shape[2:]: raise ValueError('Expected target size {}, got {}'.format(out_size, target.shape)) if (isinstance(input.place, paddle.CUDAPlace) and isinstance(target.place, paddle.CPUPlace)) | (isinstance( input.place, paddle.CPUPlace) and isinstance(target.place, paddle.CUDAPlace)): raise ValueError( "input and target must be in the same device. Got: {} and {}". format(input.place, target.place)) # compute softmax over the classes axis input_soft: paddle.Tensor = F.softmax(input, axis=1) + eps # create the labels one hot tensor target_one_hot: paddle.Tensor = paddle.to_tensor( F.one_hot( target, num_classes=input.shape[1]).cast(input.dtype), place=input.place) # compute the actual focal loss weight = paddle.pow(-input_soft + 1., gamma) focal = -alpha * weight * paddle.log(input_soft) loss_tmp = paddle.sum(target_one_hot * focal, axis=1) if reduction == 'none': loss = loss_tmp elif reduction == 'mean': loss = paddle.mean(loss_tmp) elif reduction == 'sum': loss = paddle.sum(loss_tmp) else: raise NotImplementedError("Invalid reduction mode: {}".format( reduction)) return loss class FocalLoss(nn.Layer): r"""Criterion that computes Focal loss. According to [1], the Focal loss is computed as follows: .. math:: \text{FL}(p_t) = -\alpha_t (1 - p_t)^{\gamma} \, \text{log}(p_t) where: - :math:`p_t` is the model's estimated probability for each class. Arguments: alpha (float): Weighting factor :math:`\alpha \in [0, 1]`. gamma (float): Focusing parameter :math:`\gamma >= 0`. reduction (str, optional): Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Default: ‘none’. Shape: - Input: :math:`(N, C, *)` where C = number of classes. - Target: :math:`(N, *)` where each value is :math:`0 ≤ targets[i] ≤ C−1`. Examples: >>> N = 5 # num_classes >>> kwargs = {"alpha": 0.5, "gamma": 2.0, "reduction": 'mean'} >>> loss = kornia.losses.FocalLoss(**kwargs) >>> input = torch.randn(1, N, 3, 5, requires_grad=True) >>> target = torch.empty(1, 3, 5, dtype=torch.long).random_(N) >>> output = loss(input, target) >>> output.backward() References: [1] https://arxiv.org/abs/1708.02002 """ def __init__(self, alpha: float, gamma: float=2.0, reduction: str='none') -> None: super(FocalLoss, self).__init__() self.alpha: float = alpha self.gamma: float = gamma self.reduction: str = reduction self.eps: float = 1e-6 def forward( # type: ignore self, input: paddle.Tensor, target: paddle.Tensor) -> paddle.Tensor: return focal_loss(input, target, self.alpha, self.gamma, self.reduction, self.eps) @register class CLRNetLoss(nn.Layer): __shared__ = ['img_w', 'img_h', 'num_classes', 'num_points'] def __init__(self, cls_loss_weight=2.0, xyt_loss_weight=0.2, iou_loss_weight=2.0, seg_loss_weight=1.0, refine_layers=3, num_points=72, img_w=800, img_h=320, num_classes=5, ignore_label=255, bg_weight=0.4): super(CLRNetLoss, self).__init__() self.cls_loss_weight = cls_loss_weight self.xyt_loss_weight = xyt_loss_weight self.iou_loss_weight = iou_loss_weight self.seg_loss_weight = seg_loss_weight self.refine_layers = refine_layers self.img_w = img_w self.img_h = img_h self.n_strips = num_points - 1 self.num_classes = num_classes self.ignore_label = ignore_label weights = paddle.ones(shape=[self.num_classes]) weights[0] = bg_weight self.criterion = nn.NLLLoss( ignore_index=self.ignore_label, weight=weights) def forward(self, output, batch): predictions_lists = output['predictions_lists'] targets = batch['lane_line'].clone() cls_criterion = FocalLoss(alpha=0.25, gamma=2.0) cls_loss = paddle.to_tensor(0.0) reg_xytl_loss = paddle.to_tensor(0.0) iou_loss = paddle.to_tensor(0.0) cls_acc = [] cls_acc_stage = [] for stage in range(self.refine_layers): predictions_list = predictions_lists[stage] for predictions, target in zip(predictions_list, targets): target = target[target[:, 1] == 1] if len(target) == 0: # If there are no targets, all predictions have to be negatives (i.e., 0 confidence) cls_target = paddle.zeros( [predictions.shape[0]], dtype='int64') cls_pred = predictions[:, :2] cls_loss = cls_loss + cls_criterion(cls_pred, cls_target).sum() continue with paddle.no_grad(): matched_row_inds, matched_col_inds = assign( predictions, target, self.img_w, self.img_h) # classification targets cls_target = paddle.zeros([predictions.shape[0]], dtype='int64') cls_target[matched_row_inds] = 1 cls_pred = predictions[:, :2] # regression targets -> [start_y, start_x, theta] (all transformed to absolute values), only on matched pairs reg_yxtl = predictions.index_select(matched_row_inds)[..., 2:6] reg_yxtl[:, 0] *= self.n_strips reg_yxtl[:, 1] *= (self.img_w - 1) reg_yxtl[:, 2] *= 180 reg_yxtl[:, 3] *= self.n_strips target_yxtl = target.index_select(matched_col_inds)[..., 2: 6].clone() # regression targets -> S coordinates (all transformed to absolute values) reg_pred = predictions.index_select(matched_row_inds)[..., 6:] reg_pred *= (self.img_w - 1) reg_targets = target.index_select(matched_col_inds)[..., 6:].clone() with paddle.no_grad(): predictions_starts = paddle.clip( (predictions.index_select(matched_row_inds)[..., 2] * self.n_strips).round().cast("int64"), min=0, max=self. n_strips) # ensure the predictions starts is valid target_starts = ( target.index_select(matched_col_inds)[..., 2] * self.n_strips).round().cast("int64") target_yxtl[:, -1] -= ( predictions_starts - target_starts) # reg length # Loss calculation cls_loss = cls_loss + cls_criterion( cls_pred, cls_target).sum() / target.shape[0] target_yxtl[:, 0] *= self.n_strips target_yxtl[:, 2] *= 180 reg_xytl_loss = reg_xytl_loss + F.smooth_l1_loss( input=reg_yxtl, label=target_yxtl, reduction='none').mean() iou_loss = iou_loss + liou_loss( reg_pred, reg_targets, self.img_w, length=15) cls_accuracy = accuracy(cls_pred, cls_target) cls_acc_stage.append(cls_accuracy) cls_acc.append(sum(cls_acc_stage) / (len(cls_acc_stage) + 1e-5)) # extra segmentation loss seg_loss = self.criterion( F.log_softmax( output['seg'], axis=1), batch['seg'].cast('int64')) cls_loss /= (len(targets) * self.refine_layers) reg_xytl_loss /= (len(targets) * self.refine_layers) iou_loss /= (len(targets) * self.refine_layers) loss = cls_loss * self.cls_loss_weight \ + reg_xytl_loss * self.xyt_loss_weight \ + seg_loss * self.seg_loss_weight \ + iou_loss * self.iou_loss_weight return_value = { 'loss': loss, 'cls_loss': cls_loss * self.cls_loss_weight, 'reg_xytl_loss': reg_xytl_loss * self.xyt_loss_weight, 'seg_loss': seg_loss * self.seg_loss_weight, 'iou_loss': iou_loss * self.iou_loss_weight } for i in range(self.refine_layers): if not isinstance(cls_acc[i], paddle.Tensor): cls_acc[i] = paddle.to_tensor(cls_acc[i]) return_value['stage_{}_acc'.format(i)] = cls_acc[i] return return_value
PaddleDetection/ppdet/modeling/losses/clrnet_loss.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/losses/clrnet_loss.py", "repo_id": "PaddleDetection", "token_count": 5651 }
74
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn.functional as F from ppdet.core.workspace import register, serializable __all__ = ['SOLOv2Loss'] @register @serializable class SOLOv2Loss(object): """ SOLOv2Loss Args: ins_loss_weight (float): Weight of instance loss. focal_loss_gamma (float): Gamma parameter for focal loss. focal_loss_alpha (float): Alpha parameter for focal loss. """ def __init__(self, ins_loss_weight=3.0, focal_loss_gamma=2.0, focal_loss_alpha=0.25): self.ins_loss_weight = ins_loss_weight self.focal_loss_gamma = focal_loss_gamma self.focal_loss_alpha = focal_loss_alpha def _dice_loss(self, input, target): input = paddle.reshape(input, shape=(paddle.shape(input)[0], -1)) target = paddle.reshape(target, shape=(paddle.shape(target)[0], -1)) a = paddle.sum(input * target, axis=1) b = paddle.sum(input * input, axis=1) + 0.001 c = paddle.sum(target * target, axis=1) + 0.001 d = (2 * a) / (b + c) return 1 - d def __call__(self, ins_pred_list, ins_label_list, cate_preds, cate_labels, num_ins): """ Get loss of network of SOLOv2. Args: ins_pred_list (list): Variable list of instance branch output. ins_label_list (list): List of instance labels pre batch. cate_preds (list): Concat Variable list of categroy branch output. cate_labels (list): Concat list of categroy labels pre batch. num_ins (int): Number of positive samples in a mini-batch. Returns: loss_ins (Variable): The instance loss Variable of SOLOv2 network. loss_cate (Variable): The category loss Variable of SOLOv2 network. """ #1. Ues dice_loss to calculate instance loss loss_ins = [] total_weights = paddle.zeros(shape=[1], dtype='float32') for input, target in zip(ins_pred_list, ins_label_list): if input is None: continue target = paddle.cast(target, 'float32') target = paddle.reshape( target, shape=[-1, paddle.shape(input)[-2], paddle.shape(input)[-1]]) weights = paddle.cast( paddle.sum(target, axis=[1, 2]) > 0, 'float32') input = F.sigmoid(input) dice_out = paddle.multiply(self._dice_loss(input, target), weights) total_weights += paddle.sum(weights) loss_ins.append(dice_out) loss_ins = paddle.sum(paddle.concat(loss_ins)) / total_weights loss_ins = loss_ins * self.ins_loss_weight #2. Ues sigmoid_focal_loss to calculate category loss # expand onehot labels num_classes = cate_preds.shape[-1] cate_labels_bin = F.one_hot(cate_labels, num_classes=num_classes + 1) cate_labels_bin = cate_labels_bin[:, 1:] loss_cate = F.sigmoid_focal_loss( cate_preds, label=cate_labels_bin, normalizer=num_ins + 1., gamma=self.focal_loss_gamma, alpha=self.focal_loss_alpha) return loss_ins, loss_cate
PaddleDetection/ppdet/modeling/losses/solov2_loss.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/losses/solov2_loss.py", "repo_id": "PaddleDetection", "token_count": 1704 }
75
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import copy import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register, serializable from ppdet.modeling.layers import DropBlock, MultiHeadAttention from ppdet.modeling.ops import get_act_fn from ..backbones.cspresnet import ConvBNLayer, BasicBlock from ..shape_spec import ShapeSpec from ..initializer import linear_init_ __all__ = ['CustomCSPPAN'] def _get_clones(module, N): return nn.LayerList([copy.deepcopy(module) for _ in range(N)]) class SPP(nn.Layer): def __init__(self, ch_in, ch_out, k, pool_size, act='swish', data_format='NCHW'): super(SPP, self).__init__() self.pool = [] self.data_format = data_format for i, size in enumerate(pool_size): pool = self.add_sublayer( 'pool{}'.format(i), nn.MaxPool2D( kernel_size=size, stride=1, padding=size // 2, data_format=data_format, ceil_mode=False)) self.pool.append(pool) self.conv = ConvBNLayer(ch_in, ch_out, k, padding=k // 2, act=act) def forward(self, x): outs = [x] for pool in self.pool: outs.append(pool(x)) if self.data_format == 'NCHW': y = paddle.concat(outs, axis=1) else: y = paddle.concat(outs, axis=-1) y = self.conv(y) return y class CSPStage(nn.Layer): def __init__(self, block_fn, ch_in, ch_out, n, act='swish', spp=False, use_alpha=False): super(CSPStage, self).__init__() ch_mid = int(ch_out // 2) self.conv1 = ConvBNLayer(ch_in, ch_mid, 1, act=act) self.conv2 = ConvBNLayer(ch_in, ch_mid, 1, act=act) self.convs = nn.Sequential() next_ch_in = ch_mid for i in range(n): self.convs.add_sublayer( str(i), eval(block_fn)(next_ch_in, ch_mid, act=act, shortcut=False, use_alpha=use_alpha)) if i == (n - 1) // 2 and spp: self.convs.add_sublayer( 'spp', SPP(ch_mid * 4, ch_mid, 1, [5, 9, 13], act=act)) next_ch_in = ch_mid self.conv3 = ConvBNLayer(ch_mid * 2, ch_out, 1, act=act) def forward(self, x): y1 = self.conv1(x) y2 = self.conv2(x) y2 = self.convs(y2) y = paddle.concat([y1, y2], axis=1) y = self.conv3(y) return y class TransformerEncoderLayer(nn.Layer): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", attn_dropout=None, act_dropout=None, normalize_before=False): super(TransformerEncoderLayer, self).__init__() attn_dropout = dropout if attn_dropout is None else attn_dropout act_dropout = dropout if act_dropout is None else act_dropout self.normalize_before = normalize_before self.self_attn = MultiHeadAttention(d_model, nhead, attn_dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(act_dropout, mode="upscale_in_train") self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout, mode="upscale_in_train") self.dropout2 = nn.Dropout(dropout, mode="upscale_in_train") self.activation = getattr(F, activation) self._reset_parameters() def _reset_parameters(self): linear_init_(self.linear1) linear_init_(self.linear2) @staticmethod def with_pos_embed(tensor, pos_embed): return tensor if pos_embed is None else tensor + pos_embed def forward(self, src, src_mask=None, pos_embed=None): residual = src if self.normalize_before: src = self.norm1(src) q = k = self.with_pos_embed(src, pos_embed) src = self.self_attn(q, k, value=src, attn_mask=src_mask) src = residual + self.dropout1(src) if not self.normalize_before: src = self.norm1(src) residual = src if self.normalize_before: src = self.norm2(src) src = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = residual + self.dropout2(src) if not self.normalize_before: src = self.norm2(src) return src class TransformerEncoder(nn.Layer): def __init__(self, encoder_layer, num_layers, norm=None): super(TransformerEncoder, self).__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.norm = norm def forward(self, src, src_mask=None, pos_embed=None): output = src for layer in self.layers: output = layer(output, src_mask=src_mask, pos_embed=pos_embed) if self.norm is not None: output = self.norm(output) return output @register @serializable class CustomCSPPAN(nn.Layer): __shared__ = [ 'norm_type', 'data_format', 'width_mult', 'depth_mult', 'trt', 'eval_size' ] def __init__(self, in_channels=[256, 512, 1024], out_channels=[1024, 512, 256], norm_type='bn', act='leaky', stage_fn='CSPStage', block_fn='BasicBlock', stage_num=1, block_num=3, drop_block=False, block_size=3, keep_prob=0.9, spp=False, data_format='NCHW', width_mult=1.0, depth_mult=1.0, use_alpha=False, trt=False, dim_feedforward=2048, dropout=0.1, activation='gelu', nhead=4, num_layers=4, attn_dropout=None, act_dropout=None, normalize_before=False, use_trans=False, eval_size=None): super(CustomCSPPAN, self).__init__() out_channels = [max(round(c * width_mult), 1) for c in out_channels] block_num = max(round(block_num * depth_mult), 1) act = get_act_fn( act, trt=trt) if act is None or isinstance(act, (str, dict)) else act self.num_blocks = len(in_channels) self.data_format = data_format self._out_channels = out_channels self.hidden_dim = in_channels[-1] in_channels = in_channels[::-1] self.use_trans = use_trans self.eval_size = eval_size if use_trans: if eval_size is not None: self.pos_embed = self.build_2d_sincos_position_embedding( eval_size[1] // 32, eval_size[0] // 32, embed_dim=self.hidden_dim) else: self.pos_embed = None encoder_layer = TransformerEncoderLayer( self.hidden_dim, nhead, dim_feedforward, dropout, activation, attn_dropout, act_dropout, normalize_before) encoder_norm = nn.LayerNorm( self.hidden_dim) if normalize_before else None self.encoder = TransformerEncoder(encoder_layer, num_layers, encoder_norm) fpn_stages = [] fpn_routes = [] for i, (ch_in, ch_out) in enumerate(zip(in_channels, out_channels)): if i > 0: ch_in += ch_pre // 2 stage = nn.Sequential() for j in range(stage_num): stage.add_sublayer( str(j), eval(stage_fn)(block_fn, ch_in if j == 0 else ch_out, ch_out, block_num, act=act, spp=(spp and i == 0), use_alpha=use_alpha)) if drop_block: stage.add_sublayer('drop', DropBlock(block_size, keep_prob)) fpn_stages.append(stage) if i < self.num_blocks - 1: fpn_routes.append( ConvBNLayer( ch_in=ch_out, ch_out=ch_out // 2, filter_size=1, stride=1, padding=0, act=act)) ch_pre = ch_out self.fpn_stages = nn.LayerList(fpn_stages) self.fpn_routes = nn.LayerList(fpn_routes) pan_stages = [] pan_routes = [] for i in reversed(range(self.num_blocks - 1)): pan_routes.append( ConvBNLayer( ch_in=out_channels[i + 1], ch_out=out_channels[i + 1], filter_size=3, stride=2, padding=1, act=act)) ch_in = out_channels[i] + out_channels[i + 1] ch_out = out_channels[i] stage = nn.Sequential() for j in range(stage_num): stage.add_sublayer( str(j), eval(stage_fn)(block_fn, ch_in if j == 0 else ch_out, ch_out, block_num, act=act, spp=False, use_alpha=use_alpha)) if drop_block: stage.add_sublayer('drop', DropBlock(block_size, keep_prob)) pan_stages.append(stage) self.pan_stages = nn.LayerList(pan_stages[::-1]) self.pan_routes = nn.LayerList(pan_routes[::-1]) def build_2d_sincos_position_embedding( self, w, h, embed_dim=1024, temperature=10000., ): grid_w = paddle.arange(int(w), dtype=paddle.float32) grid_h = paddle.arange(int(h), dtype=paddle.float32) grid_w, grid_h = paddle.meshgrid(grid_w, grid_h) assert embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding' pos_dim = embed_dim // 4 omega = paddle.arange(pos_dim, dtype=paddle.float32) / pos_dim omega = 1. / (temperature**omega) out_w = grid_w.flatten()[..., None] @omega[None] out_h = grid_h.flatten()[..., None] @omega[None] pos_emb = paddle.concat( [ paddle.sin(out_w), paddle.cos(out_w), paddle.sin(out_h), paddle.cos(out_h) ], axis=1)[None, :, :] return pos_emb def forward(self, blocks, for_mot=False): if self.use_trans: last_feat = blocks[-1] n, c, h, w = last_feat.shape # flatten [B, C, H, W] to [B, HxW, C] src_flatten = last_feat.flatten(2).transpose([0, 2, 1]) if self.eval_size is not None and not self.training: pos_embed = self.pos_embed else: pos_embed = self.build_2d_sincos_position_embedding( w=w, h=h, embed_dim=self.hidden_dim) memory = self.encoder(src_flatten, pos_embed=pos_embed) last_feat_encode = memory.transpose([0, 2, 1]).reshape([n, c, h, w]) blocks[-1] = last_feat_encode blocks = blocks[::-1] fpn_feats = [] for i, block in enumerate(blocks): if i > 0: block = paddle.concat([route, block], axis=1) route = self.fpn_stages[i](block) fpn_feats.append(route) if i < self.num_blocks - 1: route = self.fpn_routes[i](route) route = F.interpolate( route, scale_factor=2., data_format=self.data_format) pan_feats = [fpn_feats[-1], ] route = fpn_feats[-1] for i in reversed(range(self.num_blocks - 1)): block = fpn_feats[i] route = self.pan_routes[i](route) block = paddle.concat([route, block], axis=1) route = self.pan_stages[i](block) pan_feats.append(route) return pan_feats[::-1] @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape], } @property def out_shape(self): return [ShapeSpec(channels=c) for c in self._out_channels]
PaddleDetection/ppdet/modeling/necks/custom_pan.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/necks/custom_pan.py", "repo_id": "PaddleDetection", "token_count": 7674 }
76
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import paddle from ppdet.core.workspace import register, serializable from .target import rpn_anchor_target, generate_proposal_target, generate_mask_target, libra_generate_proposal_target import numpy as np @register @serializable class RPNTargetAssign(object): __shared__ = ['assign_on_cpu'] """ RPN targets assignment module The assignment consists of three steps: 1. Match anchor and ground-truth box, label the anchor with foreground or background sample 2. Sample anchors to keep the properly ratio between foreground and background 3. Generate the targets for classification and regression branch Args: batch_size_per_im (int): Total number of RPN samples per image. default 256 fg_fraction (float): Fraction of anchors that is labeled foreground, default 0.5 positive_overlap (float): Minimum overlap required between an anchor and ground-truth box for the (anchor, gt box) pair to be a foreground sample. default 0.7 negative_overlap (float): Maximum overlap allowed between an anchor and ground-truth box for the (anchor, gt box) pair to be a background sample. default 0.3 ignore_thresh(float): Threshold for ignoring the is_crowd ground-truth if the value is larger than zero. use_random (bool): Use random sampling to choose foreground and background boxes, default true. assign_on_cpu (bool): In case the number of gt box is too large, compute IoU on CPU, default false. """ def __init__(self, batch_size_per_im=256, fg_fraction=0.5, positive_overlap=0.7, negative_overlap=0.3, ignore_thresh=-1., use_random=True, assign_on_cpu=False): super(RPNTargetAssign, self).__init__() self.batch_size_per_im = batch_size_per_im self.fg_fraction = fg_fraction self.positive_overlap = positive_overlap self.negative_overlap = negative_overlap self.ignore_thresh = ignore_thresh self.use_random = use_random self.assign_on_cpu = assign_on_cpu def __call__(self, inputs, anchors): """ inputs: ground-truth instances. anchor_box (Tensor): [num_anchors, 4], num_anchors are all anchors in all feature maps. """ gt_boxes = inputs['gt_bbox'] is_crowd = inputs.get('is_crowd', None) batch_size = len(gt_boxes) tgt_labels, tgt_bboxes, tgt_deltas = rpn_anchor_target( anchors, gt_boxes, self.batch_size_per_im, self.positive_overlap, self.negative_overlap, self.fg_fraction, self.use_random, batch_size, self.ignore_thresh, is_crowd, assign_on_cpu=self.assign_on_cpu) norm = self.batch_size_per_im * batch_size return tgt_labels, tgt_bboxes, tgt_deltas, norm @register class BBoxAssigner(object): __shared__ = ['num_classes', 'assign_on_cpu'] """ RCNN targets assignment module The assignment consists of three steps: 1. Match RoIs and ground-truth box, label the RoIs with foreground or background sample 2. Sample anchors to keep the properly ratio between foreground and background 3. Generate the targets for classification and regression branch Args: batch_size_per_im (int): Total number of RoIs per image. default 512 fg_fraction (float): Fraction of RoIs that is labeled foreground, default 0.25 fg_thresh (float): Minimum overlap required between a RoI and ground-truth box for the (roi, gt box) pair to be a foreground sample. default 0.5 bg_thresh (float): Maximum overlap allowed between a RoI and ground-truth box for the (roi, gt box) pair to be a background sample. default 0.5 ignore_thresh(float): Threshold for ignoring the is_crowd ground-truth if the value is larger than zero. use_random (bool): Use random sampling to choose foreground and background boxes, default true cascade_iou (list[iou]): The list of overlap to select foreground and background of each stage, which is only used In Cascade RCNN. num_classes (int): The number of class. assign_on_cpu (bool): In case the number of gt box is too large, compute IoU on CPU, default false. """ def __init__(self, batch_size_per_im=512, fg_fraction=.25, fg_thresh=.5, bg_thresh=.5, ignore_thresh=-1., use_random=True, cascade_iou=[0.5, 0.6, 0.7], num_classes=80, assign_on_cpu=False): super(BBoxAssigner, self).__init__() self.batch_size_per_im = batch_size_per_im self.fg_fraction = fg_fraction self.fg_thresh = fg_thresh self.bg_thresh = bg_thresh self.ignore_thresh = ignore_thresh self.use_random = use_random self.cascade_iou = cascade_iou self.num_classes = num_classes self.assign_on_cpu = assign_on_cpu def __call__(self, rpn_rois, rpn_rois_num, inputs, stage=0, is_cascade=False, add_gt_as_proposals=True): gt_classes = inputs['gt_class'] gt_boxes = inputs['gt_bbox'] is_crowd = inputs.get('is_crowd', None) # rois, tgt_labels, tgt_bboxes, tgt_gt_inds # new_rois_num outs = generate_proposal_target( rpn_rois, gt_classes, gt_boxes, self.batch_size_per_im, self.fg_fraction, self.fg_thresh, self.bg_thresh, self.num_classes, self.ignore_thresh, is_crowd, self.use_random, is_cascade, self.cascade_iou[stage], self.assign_on_cpu, add_gt_as_proposals) rois = outs[0] rois_num = outs[-1] # tgt_labels, tgt_bboxes, tgt_gt_inds targets = outs[1:4] return rois, rois_num, targets @register class BBoxLibraAssigner(object): __shared__ = ['num_classes'] """ Libra-RCNN targets assignment module The assignment consists of three steps: 1. Match RoIs and ground-truth box, label the RoIs with foreground or background sample 2. Sample anchors to keep the properly ratio between foreground and background 3. Generate the targets for classification and regression branch Args: batch_size_per_im (int): Total number of RoIs per image. default 512 fg_fraction (float): Fraction of RoIs that is labeled foreground, default 0.25 fg_thresh (float): Minimum overlap required between a RoI and ground-truth box for the (roi, gt box) pair to be a foreground sample. default 0.5 bg_thresh (float): Maximum overlap allowed between a RoI and ground-truth box for the (roi, gt box) pair to be a background sample. default 0.5 use_random (bool): Use random sampling to choose foreground and background boxes, default true cascade_iou (list[iou]): The list of overlap to select foreground and background of each stage, which is only used In Cascade RCNN. num_classes (int): The number of class. num_bins (int): The number of libra_sample. """ def __init__(self, batch_size_per_im=512, fg_fraction=.25, fg_thresh=.5, bg_thresh=.5, use_random=True, cascade_iou=[0.5, 0.6, 0.7], num_classes=80, num_bins=3): super(BBoxLibraAssigner, self).__init__() self.batch_size_per_im = batch_size_per_im self.fg_fraction = fg_fraction self.fg_thresh = fg_thresh self.bg_thresh = bg_thresh self.use_random = use_random self.cascade_iou = cascade_iou self.num_classes = num_classes self.num_bins = num_bins def __call__(self, rpn_rois, rpn_rois_num, inputs, stage=0, is_cascade=False): gt_classes = inputs['gt_class'] gt_boxes = inputs['gt_bbox'] # rois, tgt_labels, tgt_bboxes, tgt_gt_inds outs = libra_generate_proposal_target( rpn_rois, gt_classes, gt_boxes, self.batch_size_per_im, self.fg_fraction, self.fg_thresh, self.bg_thresh, self.num_classes, self.use_random, is_cascade, self.cascade_iou[stage], self.num_bins) rois = outs[0] rois_num = outs[-1] # tgt_labels, tgt_bboxes, tgt_gt_inds targets = outs[1:4] return rois, rois_num, targets @register @serializable class MaskAssigner(object): __shared__ = ['num_classes', 'mask_resolution'] """ Mask targets assignment module The assignment consists of three steps: 1. Select RoIs labels with foreground. 2. Encode the RoIs and corresponding gt polygons to generate mask target Args: num_classes (int): The number of class mask_resolution (int): The resolution of mask target, default 14 """ def __init__(self, num_classes=80, mask_resolution=14): super(MaskAssigner, self).__init__() self.num_classes = num_classes self.mask_resolution = mask_resolution def __call__(self, rois, tgt_labels, tgt_gt_inds, inputs): gt_segms = inputs['gt_poly'] outs = generate_mask_target(gt_segms, rois, tgt_labels, tgt_gt_inds, self.num_classes, self.mask_resolution) # mask_rois, mask_rois_num, tgt_classes, tgt_masks, mask_index, tgt_weights return outs @register class RBoxAssigner(object): """ assigner of rbox Args: pos_iou_thr (float): threshold of pos samples neg_iou_thr (float): threshold of neg samples min_iou_thr (float): the min threshold of samples ignore_iof_thr (int): the ignored threshold """ def __init__(self, pos_iou_thr=0.5, neg_iou_thr=0.4, min_iou_thr=0.0, ignore_iof_thr=-2): super(RBoxAssigner, self).__init__() self.pos_iou_thr = pos_iou_thr self.neg_iou_thr = neg_iou_thr self.min_iou_thr = min_iou_thr self.ignore_iof_thr = ignore_iof_thr def anchor_valid(self, anchors): """ Args: anchor: M x 4 Returns: """ if anchors.ndim == 3: anchors = anchors.reshape(-1, anchors.shape[-1]) assert anchors.ndim == 2 anchor_num = anchors.shape[0] anchor_valid = np.ones((anchor_num), np.int32) anchor_inds = np.arange(anchor_num) return anchor_inds def rbox2delta(self, proposals, gt, means=[0, 0, 0, 0, 0], stds=[1, 1, 1, 1, 1]): """ Args: proposals: tensor [N, 5] gt: gt [N, 5] means: means [5] stds: stds [5] Returns: """ proposals = proposals.astype(np.float64) PI = np.pi gt_widths = gt[..., 2] gt_heights = gt[..., 3] gt_angle = gt[..., 4] proposals_widths = proposals[..., 2] proposals_heights = proposals[..., 3] proposals_angle = proposals[..., 4] coord = gt[..., 0:2] - proposals[..., 0:2] dx = (np.cos(proposals[..., 4]) * coord[..., 0] + np.sin(proposals[..., 4]) * coord[..., 1]) / proposals_widths dy = (-np.sin(proposals[..., 4]) * coord[..., 0] + np.cos(proposals[..., 4]) * coord[..., 1]) / proposals_heights dw = np.log(gt_widths / proposals_widths) dh = np.log(gt_heights / proposals_heights) da = (gt_angle - proposals_angle) da = (da + PI / 4) % PI - PI / 4 da /= PI deltas = np.stack([dx, dy, dw, dh, da], axis=-1) means = np.array(means, dtype=deltas.dtype) stds = np.array(stds, dtype=deltas.dtype) deltas = (deltas - means) / stds deltas = deltas.astype(np.float32) return deltas def assign_anchor(self, anchors, gt_bboxes, gt_labels, pos_iou_thr, neg_iou_thr, min_iou_thr=0.0, ignore_iof_thr=-2): assert anchors.shape[1] == 4 or anchors.shape[1] == 5 assert gt_bboxes.shape[1] == 4 or gt_bboxes.shape[1] == 5 anchors_xc_yc = anchors gt_bboxes_xc_yc = gt_bboxes # calc rbox iou anchors_xc_yc = anchors_xc_yc.astype(np.float32) gt_bboxes_xc_yc = gt_bboxes_xc_yc.astype(np.float32) anchors_xc_yc = paddle.to_tensor(anchors_xc_yc) gt_bboxes_xc_yc = paddle.to_tensor(gt_bboxes_xc_yc) try: from ext_op import rbox_iou except Exception as e: print("import custom_ops error, try install ext_op " \ "following ppdet/ext_op/README.md", e) sys.stdout.flush() sys.exit(-1) iou = rbox_iou(gt_bboxes_xc_yc, anchors_xc_yc) iou = iou.numpy() iou = iou.T # every gt's anchor's index gt_bbox_anchor_inds = iou.argmax(axis=0) gt_bbox_anchor_iou = iou[gt_bbox_anchor_inds, np.arange(iou.shape[1])] gt_bbox_anchor_iou_inds = np.where(iou == gt_bbox_anchor_iou)[0] # every anchor's gt bbox's index anchor_gt_bbox_inds = iou.argmax(axis=1) anchor_gt_bbox_iou = iou[np.arange(iou.shape[0]), anchor_gt_bbox_inds] # (1) set labels=-2 as default labels = np.ones((iou.shape[0], ), dtype=np.int32) * ignore_iof_thr # (2) assign ignore labels[anchor_gt_bbox_iou < min_iou_thr] = ignore_iof_thr # (3) assign neg_ids -1 assign_neg_ids1 = anchor_gt_bbox_iou >= min_iou_thr assign_neg_ids2 = anchor_gt_bbox_iou < neg_iou_thr assign_neg_ids = np.logical_and(assign_neg_ids1, assign_neg_ids2) labels[assign_neg_ids] = -1 # anchor_gt_bbox_iou_inds # (4) assign max_iou as pos_ids >=0 anchor_gt_bbox_iou_inds = anchor_gt_bbox_inds[gt_bbox_anchor_iou_inds] # gt_bbox_anchor_iou_inds = np.logical_and(gt_bbox_anchor_iou_inds, anchor_gt_bbox_iou >= min_iou_thr) labels[gt_bbox_anchor_iou_inds] = gt_labels[anchor_gt_bbox_iou_inds] # (5) assign >= pos_iou_thr as pos_ids iou_pos_iou_thr_ids = anchor_gt_bbox_iou >= pos_iou_thr iou_pos_iou_thr_ids_box_inds = anchor_gt_bbox_inds[iou_pos_iou_thr_ids] labels[iou_pos_iou_thr_ids] = gt_labels[iou_pos_iou_thr_ids_box_inds] return anchor_gt_bbox_inds, anchor_gt_bbox_iou, labels def __call__(self, anchors, gt_bboxes, gt_labels, is_crowd): assert anchors.ndim == 2 assert anchors.shape[1] == 5 assert gt_bboxes.ndim == 2 assert gt_bboxes.shape[1] == 5 pos_iou_thr = self.pos_iou_thr neg_iou_thr = self.neg_iou_thr min_iou_thr = self.min_iou_thr ignore_iof_thr = self.ignore_iof_thr anchor_num = anchors.shape[0] gt_bboxes = gt_bboxes is_crowd_slice = is_crowd not_crowd_inds = np.where(is_crowd_slice == 0) # Step1: match anchor and gt_bbox anchor_gt_bbox_inds, anchor_gt_bbox_iou, labels = self.assign_anchor( anchors, gt_bboxes, gt_labels.reshape(-1), pos_iou_thr, neg_iou_thr, min_iou_thr, ignore_iof_thr) # Step2: sample anchor pos_inds = np.where(labels >= 0)[0] neg_inds = np.where(labels == -1)[0] # Step3: make output anchors_num = anchors.shape[0] bbox_targets = np.zeros_like(anchors) bbox_weights = np.zeros_like(anchors) bbox_gt_bboxes = np.zeros_like(anchors) pos_labels = np.zeros(anchors_num, dtype=np.int32) pos_labels_weights = np.zeros(anchors_num, dtype=np.float32) pos_sampled_anchors = anchors[pos_inds] pos_sampled_gt_boxes = gt_bboxes[anchor_gt_bbox_inds[pos_inds]] if len(pos_inds) > 0: pos_bbox_targets = self.rbox2delta(pos_sampled_anchors, pos_sampled_gt_boxes) bbox_targets[pos_inds, :] = pos_bbox_targets bbox_gt_bboxes[pos_inds, :] = pos_sampled_gt_boxes bbox_weights[pos_inds, :] = 1.0 pos_labels[pos_inds] = labels[pos_inds] pos_labels_weights[pos_inds] = 1.0 if len(neg_inds) > 0: pos_labels_weights[neg_inds] = 1.0 return (pos_labels, pos_labels_weights, bbox_targets, bbox_weights, bbox_gt_bboxes, pos_inds, neg_inds)
PaddleDetection/ppdet/modeling/proposal_generator/target_layer.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/proposal_generator/target_layer.py", "repo_id": "PaddleDetection", "token_count": 8951 }
77
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import ppdet class TestFasterRCNN(unittest.TestCase): def setUp(self): self.set_config() def set_config(self): self.cfg_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml' def test_trainer(self): # Trainer __init__ will build model and DataLoader # 'train' and 'eval' mode include dataset loading # use 'test' mode to simplify tests cfg = ppdet.core.workspace.load_config(self.cfg_file) trainer = ppdet.engine.Trainer(cfg, mode='test') class TestMaskRCNN(TestFasterRCNN): def set_config(self): self.cfg_file = 'configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.yml' class TestCascadeRCNN(TestFasterRCNN): def set_config(self): self.cfg_file = 'configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.yml' class TestYolov3(TestFasterRCNN): def set_config(self): self.cfg_file = 'configs/yolov3/yolov3_darknet53_270e_coco.yml' class TestSSD(TestFasterRCNN): def set_config(self): self.cfg_file = 'configs/ssd/ssd_vgg16_300_240e_voc.yml' class TestGFL(TestFasterRCNN): def set_config(self): self.cfg_file = 'configs/gfl/gfl_r50_fpn_1x_coco.yml' class TestPicoDet(TestFasterRCNN): def set_config(self): self.cfg_file = 'configs/picodet/picodet_s_320_coco_lcnet.yml' if __name__ == '__main__': unittest.main()
PaddleDetection/ppdet/modeling/tests/test_architectures.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/tests/test_architectures.py", "repo_id": "PaddleDetection", "token_count": 831 }
78
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Modified from Deformable-DETR (https://github.com/fundamentalvision/Deformable-DETR) # Copyright (c) 2020 SenseTime. All Rights Reserved. # Modified from detrex (https://github.com/IDEA-Research/detrex) # Copyright 2022 The IDEA Authors. All rights reserved. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.regularizer import L2Decay from ppdet.core.workspace import register from .position_encoding import PositionEmbedding from ..heads.detr_head import MLP from .deformable_transformer import (DeformableTransformerEncoderLayer, DeformableTransformerEncoder) from .dino_transformer import (DINOTransformerDecoderLayer) from ..initializer import (linear_init_, constant_, xavier_uniform_, bias_init_with_prob) from .utils import (_get_clones, get_valid_ratio, get_denoising_training_group, get_sine_pos_embed, inverse_sigmoid, mask_to_box_coordinate) __all__ = ['MaskDINO'] class ConvGNBlock(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride=1, groups=1, num_groups=32, bias=False, act=None): super(ConvGNBlock, self).__init__() self.conv = nn.Conv2D( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, groups=groups, bias_attr=bias) self.norm = nn.GroupNorm( num_groups, out_channels, weight_attr=ParamAttr(regularizer=L2Decay(0.0)), bias_attr=ParamAttr(regularizer=L2Decay(0.0))) self.act = getattr(F, act) if act is not None else None self._init_weights() def _init_weights(self): xavier_uniform_(self.conv.weight) def forward(self, x): x = self.norm(self.conv(x)) if self.act is not None: x = self.act(x) return x class MaskDINOTransformerDecoder(nn.Layer): def __init__(self, hidden_dim, decoder_layer, num_layers): super(MaskDINOTransformerDecoder, self).__init__() self.layers = _get_clones(decoder_layer, num_layers) self.hidden_dim = hidden_dim self.num_layers = num_layers def forward(self, tgt, ref_points_unact, memory, memory_spatial_shapes, memory_level_start_index, bbox_head, query_pos_head, dec_norm, valid_ratios=None, attn_mask=None, memory_mask=None): if valid_ratios is None: valid_ratios = paddle.ones( [memory.shape[0], memory_spatial_shapes.shape[0], 2]) output = tgt intermediate = [] inter_bboxes = [] ref_points = F.sigmoid(ref_points_unact) for i, layer in enumerate(self.layers): reference_points_input = ref_points.detach().unsqueeze( 2) * valid_ratios.tile([1, 1, 2]).unsqueeze(1) query_pos_embed = get_sine_pos_embed( reference_points_input[..., 0, :], self.hidden_dim // 2) query_pos_embed = query_pos_head(query_pos_embed) output = layer(output, reference_points_input, memory, memory_spatial_shapes, memory_level_start_index, attn_mask, memory_mask, query_pos_embed) ref_points = F.sigmoid( bbox_head(output) + inverse_sigmoid(ref_points.detach())) intermediate.append(dec_norm(output)) inter_bboxes.append(ref_points) return paddle.stack(intermediate), paddle.stack(inter_bboxes) @register class MaskDINO(nn.Layer): __shared__ = ['num_classes', 'hidden_dim'] def __init__(self, num_classes=80, hidden_dim=256, num_queries=300, position_embed_type='sine', in_feats_channel=[256, 512, 1024, 2048], num_levels=3, num_encoder_points=4, num_decoder_points=4, nhead=8, num_encoder_layers=6, num_decoder_layers=9, enc_dim_feedforward=1024, dec_dim_feedforward=2048, dropout=0., activation="relu", lr_mult=1.0, pe_temperature=10000, pe_offset=-0.5, num_denoising=100, label_noise_ratio=0.4, box_noise_scale=0.4, learnt_init_query=False, mask_enhanced=True, eps=1e-2): super(MaskDINO, self).__init__() assert position_embed_type in ['sine', 'learned'], \ f'ValueError: position_embed_type not supported {position_embed_type}!' feat0_dim = in_feats_channel.pop(0) assert len(in_feats_channel) <= num_levels self.hidden_dim = hidden_dim self.nhead = nhead self.num_levels = num_levels self.num_classes = num_classes self.num_queries = num_queries self.eps = eps self.num_decoder_layers = num_decoder_layers self.mask_enhanced = mask_enhanced weight_attr = ParamAttr(regularizer=L2Decay(0.0)) bias_attr = ParamAttr(regularizer=L2Decay(0.0)) # backbone feature projection self._build_input_proj_layer(in_feats_channel, weight_attr, bias_attr) # Transformer module encoder_layer = DeformableTransformerEncoderLayer( hidden_dim, nhead, enc_dim_feedforward, dropout, activation, num_levels, num_encoder_points, lr_mult, weight_attr, bias_attr) self.encoder = DeformableTransformerEncoder(encoder_layer, num_encoder_layers) decoder_layer = DINOTransformerDecoderLayer( hidden_dim, nhead, dec_dim_feedforward, dropout, activation, num_levels, num_decoder_points, lr_mult, weight_attr, bias_attr) self.decoder = MaskDINOTransformerDecoder(hidden_dim, decoder_layer, num_decoder_layers) # denoising part self.denoising_class_embed = nn.Embedding( num_classes, hidden_dim, weight_attr=ParamAttr(initializer=nn.initializer.Normal())) self.num_denoising = num_denoising self.label_noise_ratio = label_noise_ratio self.box_noise_scale = box_noise_scale # position embedding self.position_embedding = PositionEmbedding( hidden_dim // 2, temperature=pe_temperature, normalize=True if position_embed_type == 'sine' else False, embed_type=position_embed_type, offset=pe_offset) self.level_embed = nn.Embedding( num_levels, hidden_dim, weight_attr=ParamAttr(initializer=nn.initializer.Normal())) # decoder embedding self.learnt_init_query = learnt_init_query if learnt_init_query: self.tgt_embed = nn.Embedding(num_queries, hidden_dim) self.query_pos_head = MLP(2 * hidden_dim, hidden_dim, hidden_dim, num_layers=2) # mask embedding self.mask_query_head = MLP(hidden_dim, hidden_dim, hidden_dim, num_layers=3) # encoder mask head self.enc_mask_lateral = ConvGNBlock(feat0_dim, hidden_dim, 1) self.enc_mask_output = nn.Sequential( ConvGNBlock( hidden_dim, hidden_dim, 3, act=activation), nn.Conv2D(hidden_dim, hidden_dim, 1)) # encoder head self.enc_output = nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.LayerNorm( hidden_dim, weight_attr=weight_attr, bias_attr=bias_attr)) # decoder norm layer self.dec_norm = nn.LayerNorm( hidden_dim, weight_attr=weight_attr, bias_attr=bias_attr) # shared prediction head self.class_head = nn.Linear(hidden_dim, num_classes) self.bbox_head = MLP(hidden_dim, hidden_dim, 4, num_layers=3) self._reset_parameters() def _reset_parameters(self): # class and bbox head init bias_cls = bias_init_with_prob(0.01) linear_init_(self.class_head) constant_(self.class_head.bias, bias_cls) constant_(self.bbox_head.layers[-1].weight) constant_(self.bbox_head.layers[-1].bias) xavier_uniform_(self.enc_mask_output[1].weight) linear_init_(self.enc_output[0]) xavier_uniform_(self.enc_output[0].weight) if self.learnt_init_query: xavier_uniform_(self.tgt_embed.weight) xavier_uniform_(self.query_pos_head.layers[0].weight) xavier_uniform_(self.query_pos_head.layers[1].weight) for l in self.input_proj: xavier_uniform_(l[0].weight) @classmethod def from_config(cls, cfg, input_shape): return {'in_feats_channel': [i.channels for i in input_shape], } def _build_input_proj_layer(self, in_feats_channel, weight_attr=None, bias_attr=None): self.input_proj = nn.LayerList() for in_channels in in_feats_channel: self.input_proj.append( nn.Sequential( ('conv', nn.Conv2D( in_channels, self.hidden_dim, kernel_size=1)), ( 'norm', nn.GroupNorm( 32, self.hidden_dim, weight_attr=weight_attr, bias_attr=bias_attr)))) in_channels = in_feats_channel[-1] for _ in range(self.num_levels - len(in_feats_channel)): self.input_proj.append( nn.Sequential( ('conv', nn.Conv2D( in_channels, self.hidden_dim, kernel_size=3, stride=2, padding=1)), ('norm', nn.GroupNorm( 32, self.hidden_dim, weight_attr=weight_attr, bias_attr=bias_attr)))) in_channels = self.hidden_dim def _get_encoder_input(self, feats, pad_mask=None): # get projection features proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)] if self.num_levels > len(proj_feats): len_srcs = len(proj_feats) for i in range(len_srcs, self.num_levels): if i == len_srcs: proj_feats.append(self.input_proj[i](feats[-1])) else: proj_feats.append(self.input_proj[i](proj_feats[-1])) # get encoder inputs feat_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] valid_ratios = [] for i, feat in enumerate(proj_feats): bs, _, h, w = paddle.shape(feat) spatial_shapes.append(paddle.concat([h, w])) # [b,c,h,w] -> [b,h*w,c] feat_flatten.append(feat.flatten(2).transpose([0, 2, 1])) if pad_mask is not None: mask = F.interpolate(pad_mask.unsqueeze(0), size=(h, w))[0] else: mask = paddle.ones([bs, h, w]) valid_ratios.append(get_valid_ratio(mask)) # [b, h*w, c] pos_embed = self.position_embedding(mask).flatten(1, 2) lvl_pos_embed = pos_embed + self.level_embed.weight[i] lvl_pos_embed_flatten.append(lvl_pos_embed) if pad_mask is not None: # [b, h*w] mask_flatten.append(mask.flatten(1)) # [b, l, c] feat_flatten = paddle.concat(feat_flatten, 1) # [b, l] mask_flatten = None if pad_mask is None else paddle.concat(mask_flatten, 1) # [b, l, c] lvl_pos_embed_flatten = paddle.concat(lvl_pos_embed_flatten, 1) # [num_levels, 2] spatial_shapes = paddle.to_tensor( paddle.stack(spatial_shapes).astype('int64')) # [l], 每一个level的起始index level_start_index = paddle.concat([ paddle.zeros( [1], dtype='int64'), spatial_shapes.prod(1).cumsum(0)[:-1] ]) # [b, num_levels, 2] valid_ratios = paddle.stack(valid_ratios, 1) return (feat_flatten, spatial_shapes, level_start_index, mask_flatten, lvl_pos_embed_flatten, valid_ratios) def forward(self, feats, pad_mask=None, gt_meta=None): feat0 = feats.pop(0) # input projection and embedding (feat_flatten, spatial_shapes, level_start_index, mask_flatten, lvl_pos_embed_flatten, valid_ratios) = self._get_encoder_input(feats, pad_mask) # encoder memory = self.encoder(feat_flatten, spatial_shapes, level_start_index, mask_flatten, lvl_pos_embed_flatten, valid_ratios) mask_feat = self._get_encoder_mask_feature(feat0, memory, spatial_shapes) # prepare denoising training if self.training: denoising_class, denoising_bbox_unact, attn_mask, dn_meta = \ get_denoising_training_group(gt_meta, self.num_classes, self.num_queries, self.denoising_class_embed.weight, self.num_denoising, self.label_noise_ratio, self.box_noise_scale) else: denoising_class, denoising_bbox_unact, attn_mask, dn_meta = None, None, None, None target, init_ref_points_unact, enc_out, init_out = \ self._get_decoder_input( memory, mask_feat, spatial_shapes, mask_flatten, denoising_class, denoising_bbox_unact) # decoder inter_feats, inter_bboxes = self.decoder( target, init_ref_points_unact, memory, spatial_shapes, level_start_index, self.bbox_head, self.query_pos_head, self.dec_norm, valid_ratios, attn_mask, mask_flatten) out_logits = [] out_bboxes = [] out_masks = [] for i in range(self.num_decoder_layers): if self.training or i == self.num_decoder_layers - 1: logits_, masks_ = self._get_pred_class_and_mask(inter_feats[i], mask_feat) else: continue out_logits.append(logits_) out_masks.append(masks_) if i == 0: out_bboxes.append( F.sigmoid( self.bbox_head(inter_feats[i]) + init_ref_points_unact)) else: out_bboxes.append( F.sigmoid( self.bbox_head(inter_feats[i]) + inverse_sigmoid( inter_bboxes[i - 1]))) out_bboxes = paddle.stack(out_bboxes) out_logits = paddle.stack(out_logits) out_masks = paddle.stack(out_masks) return (out_logits, out_bboxes, out_masks, enc_out, init_out, dn_meta) def _get_encoder_mask_feature(self, in_feat, memory, spatial_shapes): memory_feat0 = memory.split( spatial_shapes.prod(1).split(self.num_levels), axis=1)[0] h, w = spatial_shapes[0] memory_feat0 = memory_feat0.reshape( [0, h, w, self.hidden_dim]).transpose([0, 3, 1, 2]) out = self.enc_mask_lateral(in_feat) + F.interpolate( memory_feat0, scale_factor=2.0, mode='bilinear', align_corners=False) return self.enc_mask_output(out) def _get_encoder_output_anchors(self, memory, spatial_shapes, memory_mask=None, grid_size=0.05): output_anchors = [] idx = 0 for lvl, (h, w) in enumerate(spatial_shapes): if memory_mask is not None: mask_ = memory_mask[:, idx:idx + h * w].reshape([-1, h, w]) valid_H = paddle.sum(mask_[:, :, 0], 1) valid_W = paddle.sum(mask_[:, 0, :], 1) else: valid_H, valid_W = h, w grid_y, grid_x = paddle.meshgrid( paddle.arange(end=h), paddle.arange(end=w)) grid_xy = paddle.stack([grid_x, grid_y], -1).astype(memory.dtype) valid_WH = paddle.stack([valid_W, valid_H], -1).reshape( [-1, 1, 1, 2]).astype(grid_xy.dtype) grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH wh = paddle.ones_like(grid_xy) * grid_size * (2.0**lvl) output_anchors.append( paddle.concat([grid_xy, wh], -1).reshape([-1, h * w, 4])) idx += h * w output_anchors = paddle.concat(output_anchors, 1) valid_mask = ((output_anchors > self.eps) * (output_anchors < 1 - self.eps)).all(-1, keepdim=True) output_anchors = paddle.log(output_anchors / (1 - output_anchors)) if memory_mask is not None: valid_mask = (valid_mask * (memory_mask.unsqueeze(-1) > 0)) > 0 output_anchors = paddle.where(valid_mask, output_anchors, paddle.to_tensor(float("inf"))) memory = paddle.where(valid_mask, memory, paddle.to_tensor(0.)) output_memory = self.enc_output(memory) return output_memory, output_anchors def _get_decoder_input(self, memory, mask_feat, spatial_shapes, memory_mask=None, denoising_class=None, denoising_bbox_unact=None): # prepare input for decoder bs, _, _ = memory.shape output_memory, output_anchors = self._get_encoder_output_anchors( memory, spatial_shapes, memory_mask) enc_logits_unact = self.class_head(output_memory) enc_bboxes_unact = self.bbox_head(output_memory) + output_anchors # get topk index _, topk_ind = paddle.topk( enc_logits_unact.max(-1), self.num_queries, axis=1) batch_ind = paddle.arange(end=bs).astype(topk_ind.dtype) batch_ind = batch_ind.unsqueeze(-1).tile([1, self.num_queries]) topk_ind = paddle.stack([batch_ind, topk_ind], axis=-1) # extract content and position query embedding target = paddle.gather_nd(output_memory, topk_ind) reference_points_unact = paddle.gather_nd(enc_bboxes_unact, topk_ind) # unsigmoided. # get encoder output: {logits, bboxes, masks} enc_out_logits, enc_out_masks = self._get_pred_class_and_mask(target, mask_feat) enc_out_bboxes = F.sigmoid(reference_points_unact) enc_out = (enc_out_logits, enc_out_bboxes, enc_out_masks) # concat denoising query if self.learnt_init_query: target = self.tgt_embed.weight.unsqueeze(0).tile([bs, 1, 1]) else: target = target.detach() if denoising_class is not None: target = paddle.concat([denoising_class, target], 1) if self.mask_enhanced: # use mask-enhanced anchor box initialization reference_points = mask_to_box_coordinate( enc_out_masks > 0, normalize=True, format="xywh") reference_points_unact = inverse_sigmoid(reference_points) if denoising_bbox_unact is not None: reference_points_unact = paddle.concat( [denoising_bbox_unact, reference_points_unact], 1) # direct prediction from the matching and denoising part in the begining if self.training and denoising_class is not None: init_out_logits, init_out_masks = self._get_pred_class_and_mask( target, mask_feat) init_out_bboxes = F.sigmoid(reference_points_unact) init_out = (init_out_logits, init_out_bboxes, init_out_masks) else: init_out = None return target, reference_points_unact.detach(), enc_out, init_out def _get_pred_class_and_mask(self, query_embed, mask_feat): out_query = self.dec_norm(query_embed) out_logits = self.class_head(out_query) mask_query_embed = self.mask_query_head(out_query) _, _, h, w = paddle.shape(mask_feat) # [b, q, c] x [b, c, h, w] -> [b, q, h, w] out_mask = paddle.bmm(mask_query_embed, mask_feat.flatten(2)).reshape( [0, 0, h, w]) return out_logits, out_mask
PaddleDetection/ppdet/modeling/transformers/mask_dino_transformer.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/transformers/mask_dino_transformer.py", "repo_id": "PaddleDetection", "token_count": 12018 }
79
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle.utils import try_import from ppdet.core.workspace import register, serializable from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) @register @serializable class QAT(object): def __init__(self, quant_config, print_model): super(QAT, self).__init__() self.quant_config = quant_config self.print_model = print_model def __call__(self, model): paddleslim = try_import('paddleslim') self.quanter = paddleslim.dygraph.quant.QAT(config=self.quant_config) if self.print_model: logger.info("Model before quant:") logger.info(model) # For PP-YOLOE, convert model to deploy firstly. for layer in model.sublayers(): if hasattr(layer, 'convert_to_deploy'): layer.convert_to_deploy() self.quanter.quantize(model) if self.print_model: logger.info("Quantized model:") logger.info(model) return model def save_quantized_model(self, layer, path, input_spec=None, **config): self.quanter.save_quantized_model( model=layer, path=path, input_spec=input_spec, **config) @register @serializable class PTQ(object): def __init__(self, ptq_config, quant_batch_num=10, output_dir='output_inference', fuse=True, fuse_list=None): super(PTQ, self).__init__() self.ptq_config = ptq_config self.quant_batch_num = quant_batch_num self.output_dir = output_dir self.fuse = fuse self.fuse_list = fuse_list def __call__(self, model): paddleslim = try_import('paddleslim') self.ptq = paddleslim.PTQ(**self.ptq_config) model.eval() quant_model = self.ptq.quantize( model, fuse=self.fuse, fuse_list=self.fuse_list) return quant_model def save_quantized_model(self, quant_model, quantize_model_path, input_spec=None): self.ptq.save_quantized_model(quant_model, quantize_model_path, input_spec)
PaddleDetection/ppdet/slim/quant.py/0
{ "file_path": "PaddleDetection/ppdet/slim/quant.py", "repo_id": "PaddleDetection", "token_count": 1282 }
80
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import os.path as osp import re import random __all__ = ['create_list'] def create_list(devkit_dir, years, output_dir): """ create following list: 1. trainval.txt 2. test.txt """ trainval_list = [] test_list = [] for year in years: trainval, test = _walk_voc_dir(devkit_dir, year, output_dir) trainval_list.extend(trainval) test_list.extend(test) random.shuffle(trainval_list) with open(osp.join(output_dir, 'trainval.txt'), 'w') as ftrainval: for item in trainval_list: ftrainval.write(item[0] + ' ' + item[1] + '\n') with open(osp.join(output_dir, 'test.txt'), 'w') as fval: ct = 0 for item in test_list: ct += 1 fval.write(item[0] + ' ' + item[1] + '\n') def _get_voc_dir(devkit_dir, year, type): return osp.join(devkit_dir, 'VOC' + year, type) def _walk_voc_dir(devkit_dir, year, output_dir): filelist_dir = _get_voc_dir(devkit_dir, year, 'ImageSets/Main') annotation_dir = _get_voc_dir(devkit_dir, year, 'Annotations') img_dir = _get_voc_dir(devkit_dir, year, 'JPEGImages') trainval_list = [] test_list = [] added = set() for _, _, files in os.walk(filelist_dir): for fname in files: img_ann_list = [] if re.match(r'[a-z]+_trainval\.txt', fname): img_ann_list = trainval_list elif re.match(r'[a-z]+_test\.txt', fname): img_ann_list = test_list else: continue fpath = osp.join(filelist_dir, fname) for line in open(fpath): name_prefix = line.strip().split()[0] if name_prefix in added: continue added.add(name_prefix) ann_path = osp.join( osp.relpath(annotation_dir, output_dir), name_prefix + '.xml') img_path = osp.join( osp.relpath(img_dir, output_dir), name_prefix + '.jpg') img_ann_list.append((img_path, ann_path)) return trainval_list, test_list
PaddleDetection/ppdet/utils/voc_utils.py/0
{ "file_path": "PaddleDetection/ppdet/utils/voc_utils.py", "repo_id": "PaddleDetection", "token_count": 1288 }
81
# C++预测功能测试 C++预测功能测试的主程序为`test_inference_cpp.sh`,可以测试基于C++预测库的模型推理功能。 ## 1. 测试结论汇总 基于训练是否使用量化,进行本测试的模型可以分为`正常模型`和`量化模型`,这两类模型对应的C++预测功能汇总如下: | 模型类型 |device | batchsize | tensorrt | mkldnn | cpu多线程 | | ---- | ---- | ---- | :----: | :----: | :----: | | 正常模型 | GPU | 1/8 | fp32/fp16 | - | - | | 正常模型 | CPU | 1/8 | - | fp32 | 支持 | | 量化模型 | GPU | 1/8 | int8 | - | - | | 量化模型 | CPU | 1/8 | - | int8 | 支持 | ## 2. 测试流程 运行环境配置请参考[文档](./install.md)的内容配置TIPC的运行环境。 ``` # 请设置paddle_inference环境变量,如: export PADDLE_INFER_DIR=/path/to/paddle_inference # 若不设置paddle_inference环境变量,也可通过指定参数的方式使脚本自动下载paddle_inference.tgz,如: bash test_tipc/test_inference_cpp.sh test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_model_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt 'https://paddle-inference-lib.bj.bcebos.com/2.3.0/cxx_c/Linux/GPU/x86-64_gcc8.2_avx_mkl_cuda10.1_cudnn7.6.5_trt6.0.1.5/paddle_inference.tgz' # 若未使用docker镜像: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7-gcc82-dev # 请设置TensorRT环境变量,如: export TENSORRT_ROOT=/usr/local/TensorRT6-cuda10.1-cudnn7 ``` ### 2.1 功能测试 先运行`prepare.sh`准备数据和模型,然后运行`test_inference_cpp.sh`进行测试,最终在```test_tipc/output```目录下生成`cpp_infer_*.log`后缀的日志文件。 ```shell bash test_tipc/prepare.sh ./test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_model_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt "cpp_infer" # 用法1: bash test_tipc/test_inference_cpp.sh test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_model_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt # 用法2: 指定下载paddle_inference.tgz链接,第二个传入参数为下载链接 bash test_tipc/test_inference_cpp.sh test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_model_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt 'https://paddle-inference-lib.bj.bcebos.com/2.3.0/cxx_c/Linux/GPU/x86-64_gcc8.2_avx_mkl_cuda10.1_cudnn7.6.5_trt6.0.1.5/paddle_inference.tgz' # 用法3: 同时指定下载paddle_inference.tgz链接和指定GPU卡预测,第三个传入参数为GPU卡号 bash test_tipc/test_inference_cpp.sh test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_model_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt 'https://paddle-inference-lib.bj.bcebos.com/2.3.0/cxx_c/Linux/GPU/x86-64_gcc8.2_avx_mkl_cuda10.1_cudnn7.6.5_trt6.0.1.5/paddle_inference.tgz' '1' ``` 运行预测指令后,在`test_tipc/output`文件夹下自动会保存运行日志,包括以下文件: ```shell test_tipc/output/ |- results_cpp.log # 运行指令状态的日志 |- cpp_infer_cpu_usemkldnn_False_threads_1_precision_fluid_batchsize_1.log # CPU上不开启Mkldnn,线程数设置为1,测试batch_size=1条件下的预测运行日志 |- cpp_infer_cpu_usemkldnn_False_threads_6_precision_fluid_batchsize_1.log # CPU上不开启Mkldnn,线程数设置为6,测试batch_size=1条件下的预测运行日志 |- cpp_infer_gpu_precision_fluid_batchsize_1.log # GPU上不开启TensorRT,测试batch_size=1的fp32精度预测日志 |- cpp_infer_gpu_precision_trt_fp16_batchsize_1.log # GPU上开启TensorRT,测试batch_size=1的fp16精度预测日志 ...... ``` 其中results_cpp.log中包含了每条指令的运行状态,如果运行成功会输出: ``` Run successfully with command - python3.7 tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams filename=yolov3_darknet53_270e_coco --output_dir=./output_inference ! Run successfully with command - ./deploy/cpp/build/main --device=gpu --run_mode=fluid --model_dir=./output_inference/yolov3_darknet53_270e_coco --batch_size=8 --image_dir=./dataset/coco/test2017/ --run_benchmark=True > ./test_tipc/output/cpp_infer_gpu_precision_fluid_batchsize_8.log 2>&1 ! ...... ``` 如果运行失败,会输出: ``` Run failed with command - python3.7 tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams filename=yolov3_darknet53_270e_coco --output_dir=./output_inference ! Run failed with command - ./deploy/cpp/build/main --device=gpu --run_mode=fluid --model_dir=./output_inference/yolov3_darknet53_270e_coco --batch_size=8 --image_dir=./dataset/coco/test2017/ --run_benchmark=True > ./test_tipc/output/cpp_infer_gpu_precision_fluid_batchsize_8.log 2>&1 ! ...... ``` 可以很方便的根据results_cpp.log中的内容判定哪一个指令运行错误。 ### 2.2 精度测试 使用compare_results.py脚本比较模型预测的结果是否符合预期,主要步骤包括: - 提取日志中的预测坐标; - 从本地文件中提取保存好的坐标结果; - 比较上述两个结果是否符合精度预期,误差大于设置阈值时会报错。 #### 使用方式 运行命令: ```shell python3.7 test_tipc/compare_results.py --gt_file=./test_tipc/results/cpp_*.txt --log_file=./test_tipc/output/cpp_*.log --atol=1e-3 --rtol=1e-3 ``` 参数介绍: - gt_file: 指向事先保存好的预测结果路径,支持*.txt 结尾,会自动索引*.txt格式的文件,文件默认保存在test_tipc/result/ 文件夹下 - log_file: 指向运行test_tipc/test_inference_cpp.sh 脚本的infer模式保存的预测日志,预测日志中打印的有预测结果,比如:文本框,预测文本,类别等等,同样支持cpp_infer_*.log格式传入 - atol: 设置的绝对误差 - rtol: 设置的相对误差 #### 运行结果 正常运行效果如下图: <img src="compare_cpp_right.png" width="1000"> 出现不一致结果时的运行输出: <img src="compare_cpp_wrong.png" width="1000"> ## 3. 更多教程 本文档为功能测试用,更详细的c++预测使用教程请参考:[C++预测](../../deploy/cpp/README.md)
PaddleDetection/test_tipc/docs/test_inference_cpp.md/0
{ "file_path": "PaddleDetection/test_tipc/docs/test_inference_cpp.md", "repo_id": "PaddleDetection", "token_count": 3553 }
82
#!/bin/bash source test_tipc/utils_func.sh function readlinkf() { perl -MCwd -e 'print Cwd::abs_path shift' "$1"; } function func_parser_config() { strs=$1 IFS=" " array=(${strs}) tmp=${array[2]} echo ${tmp} } function func_parser_dir() { strs=$1 IFS="/" array=(${strs}) len=${#array[*]} dir="" count=1 for arr in ${array[*]}; do if [ ${len} = "${count}" ]; then continue; else dir="${dir}/${arr}" count=$((${count} + 1)) fi done echo "${dir}" } BASEDIR=$(dirname "$0") REPO_ROOT_PATH=$(readlinkf ${BASEDIR}/../) FILENAME=$1 # change gpu to npu in tipc txt configs sed -i "s/use_gpu:True/use_npu:True/g" $FILENAME sed -i "s/--device:gpu|cpu/--device:npu|cpu/g" $FILENAME sed -i "s/--device:gpu/--device:npu/g" $FILENAME sed -i "s/--device:cpu|gpu/--device:cpu|npu/g" $FILENAME sed -i "s/trainer:pact_train/trainer:norm_train/g" $FILENAME sed -i "s/trainer:fpgm_train/trainer:norm_train/g" $FILENAME sed -i "s/--slim_config _template_pact/ /g" $FILENAME sed -i "s/--slim_config _template_fpgm/ /g" $FILENAME sed -i "s/--slim_config _template_kl_quant/ /g" $FILENAME # python has been updated to version 3.9 for npu backend sed -i "s/python3.7/python3.9/g" $FILENAME sed -i 's/\"gpu\"/\"npu\"/g' test_tipc/test_train_inference_python.sh # parser params dataline=`cat $FILENAME` IFS=$'\n' lines=(${dataline}) # replace training config file grep -n '.yml' $FILENAME | cut -d ":" -f 1 \ | while read line_num ; do train_cmd=$(func_parser_value "${lines[line_num-1]}") trainer_config=$(func_parser_config ${train_cmd}) sed -i 's/use_gpu/use_npu/g' "$REPO_ROOT_PATH/$trainer_config" sed -i 's/aligned: True/aligned: False/g' "$REPO_ROOT_PATH/$trainer_config" # fine use_gpu in those included yaml sub_datalinee=`cat $REPO_ROOT_PATH/$trainer_config` IFS=$'\n' sub_lines=(${sub_datalinee}) grep -n '.yml' "$REPO_ROOT_PATH/$trainer_config" | cut -d ":" -f 1 \ | while read sub_line_num; do sub_config=${sub_lines[sub_line_num-1]} dst=${#sub_config}-5 sub_path=$(func_parser_dir "${trainer_config}") sub_config_name=$(echo "$sub_config" | awk -F"'" '{ print $2 }') sub_config_path="${REPO_ROOT_PATH}${sub_path}/${sub_config_name}" sed -i 's/use_gpu/use_npu/g' "$sub_config_path" sed -i 's/aligned: True/aligned: False/g' "$sub_config_path" done done # NPU lacks operators such as deformable_conv, depthwise_conv2d_transpose, # which will affects ips. Here, we reduce the number of coco training sets # for npu tipc bencnmark. This is a temporary hack. # # TODO(duanyanhui): add vision ops for npu train_img_num=`cat $REPO_ROOT_PATH/dataset/coco/annotations/instances_train2017.json | grep -o file_name | wc -l` exp_num=8 if [ ${train_img_num} != ${exp_num} ];then echo "Replace with npu tipc coco training annotations" mv $REPO_ROOT_PATH/dataset/coco/annotations/instances_train2017.json $REPO_ROOT_PATH/dataset/coco/annotations/instances_train2017_bak.json wget https://paddle-device.bj.bcebos.com/tipc/instances_train2017.json mv instances_train2017.json $REPO_ROOT_PATH/dataset/coco/annotations/ rm -f instances_train2017.json fi # pass parameters to test_train_inference_python.sh cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} $2" echo $cmd eval $cmd
PaddleDetection/test_tipc/test_train_inference_python_npu.sh/0
{ "file_path": "PaddleDetection/test_tipc/test_train_inference_python_npu.sh", "repo_id": "PaddleDetection", "token_count": 1530 }
83
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # add python path of PaddleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) sys.path.insert(0, parent_path) # ignore warning log import warnings warnings.filterwarnings('ignore') import paddle from ppdet.core.workspace import load_config, merge_config from ppdet.engine import Trainer, TrainerCot, init_parallel_env, set_random_seed, init_fleet_env from ppdet.engine.trainer_ssod import Trainer_DenseTeacher, Trainer_ARSL, Trainer_Semi_RTDETR from ppdet.slim import build_slim_model from ppdet.utils.cli import ArgsParser, merge_args import ppdet.utils.check as check from ppdet.utils.logger import setup_logger logger = setup_logger('train') def parse_args(): parser = ArgsParser() parser.add_argument( "--eval", action='store_true', default=False, help="Whether to perform evaluation in train") parser.add_argument( "-r", "--resume", default=None, help="weights path for resume") parser.add_argument( "--slim_config", default=None, type=str, help="Configuration file of slim method.") parser.add_argument( "--enable_ce", type=bool, default=False, help="If set True, enable continuous evaluation job." "This flag is only used for internal test.") parser.add_argument( "--amp", action='store_true', default=False, help="Enable auto mixed precision training.") parser.add_argument( "--fleet", action='store_true', default=False, help="Use fleet or not") parser.add_argument( "--use_vdl", type=bool, default=False, help="whether to record the data to VisualDL.") parser.add_argument( '--vdl_log_dir', type=str, default="vdl_log_dir/scalar", help='VisualDL logging directory for scalar.') parser.add_argument( "--use_wandb", type=bool, default=False, help="whether to record the data to wandb.") parser.add_argument( '--save_prediction_only', action='store_true', default=False, help='Whether to save the evaluation results only') parser.add_argument( '--profiler_options', type=str, default=None, help="The option of profiler, which should be in " "format \"key1=value1;key2=value2;key3=value3\"." "please see ppdet/utils/profiler.py for detail.") parser.add_argument( '--save_proposals', action='store_true', default=False, help='Whether to save the train proposals') parser.add_argument( '--proposals_path', type=str, default="sniper/proposals.json", help='Train proposals directory') parser.add_argument( "--to_static", action='store_true', default=False, help="Enable dy2st to train.") args = parser.parse_args() return args def run(FLAGS, cfg): # init fleet environment if cfg.fleet: init_fleet_env(cfg.get('find_unused_parameters', False)) else: # init parallel environment if nranks > 1 init_parallel_env() if FLAGS.enable_ce: set_random_seed(0) # build trainer ssod_method = cfg.get('ssod_method', None) if ssod_method is not None: if ssod_method == 'DenseTeacher': trainer = Trainer_DenseTeacher(cfg, mode='train') elif ssod_method == 'ARSL': trainer = Trainer_ARSL(cfg, mode='train') elif ssod_method == 'Semi_RTDETR': trainer = Trainer_Semi_RTDETR(cfg, mode='train') else: raise ValueError( "Semi-Supervised Object Detection only no support this method.") elif cfg.get('use_cot', False): trainer = TrainerCot(cfg, mode='train') else: trainer = Trainer(cfg, mode='train') # load weights if FLAGS.resume is not None: trainer.resume_weights(FLAGS.resume) elif 'pretrain_student_weights' in cfg and 'pretrain_teacher_weights' in cfg \ and cfg.pretrain_teacher_weights and cfg.pretrain_student_weights: trainer.load_semi_weights(cfg.pretrain_teacher_weights, cfg.pretrain_student_weights) elif 'pretrain_weights' in cfg and cfg.pretrain_weights: trainer.load_weights(cfg.pretrain_weights) # training trainer.train(FLAGS.eval) def main(): FLAGS = parse_args() cfg = load_config(FLAGS.config) merge_args(cfg, FLAGS) merge_config(FLAGS.opt) # disable npu in config by default if 'use_npu' not in cfg: cfg.use_npu = False # disable xpu in config by default if 'use_xpu' not in cfg: cfg.use_xpu = False if 'use_gpu' not in cfg: cfg.use_gpu = False # disable mlu in config by default if 'use_mlu' not in cfg: cfg.use_mlu = False if cfg.use_gpu: place = paddle.set_device('gpu') elif cfg.use_npu: place = paddle.set_device('npu') elif cfg.use_xpu: place = paddle.set_device('xpu') elif cfg.use_mlu: place = paddle.set_device('mlu') else: place = paddle.set_device('cpu') if FLAGS.slim_config: cfg = build_slim_model(cfg, FLAGS.slim_config) # FIXME: Temporarily solve the priority problem of FLAGS.opt merge_config(FLAGS.opt) check.check_config(cfg) check.check_gpu(cfg.use_gpu) check.check_npu(cfg.use_npu) check.check_xpu(cfg.use_xpu) check.check_mlu(cfg.use_mlu) check.check_version() run(FLAGS, cfg) if __name__ == "__main__": main()
PaddleDetection/tools/train.py/0
{ "file_path": "PaddleDetection/tools/train.py", "repo_id": "PaddleDetection", "token_count": 2681 }
84
FROM tensorflow/tensorflow:latest-gpu COPY requirements.txt / RUN pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple \ && pip install -r requirements.txt \
euryale/Dockerfile/0
{ "file_path": "euryale/Dockerfile", "repo_id": "euryale", "token_count": 64 }
85
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # Modified by Brendan Dolan-Gavitt, 2022 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import multiprocessing import numpy as np from pathlib import Path import torch import os import sys from transformers import GPTJForCausalLM dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../../..") sys.path.append(dir_path) def get_weight_data_type(data_type): if data_type == "fp32": return np.float32 elif data_type == "fp16": return np.float16 else: assert False, f"Invalid weight data type {data_type}" def split_and_convert_process(i, saved_dir, factor, key, val): if key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or \ key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or \ key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or \ key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1: # shared weights, only need to convert the weights of rank 0 if i == 0: saved_path = saved_dir + "/model." + key + ".bin" val.tofile(saved_path) elif key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1: split_vals = np.split(val, factor, axis=0) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) elif key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1: split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) elif key.find("attention.query_key_value.weight") != -1: split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) else: print("[ERROR] cannot find key '{}'".format(key)) def split_and_convert(args): saved_dir = args.saved_dir + "/%d-gpu/" % args.infer_gpu_num if os.path.exists(saved_dir) is False: os.makedirs(saved_dir) t_gpu_num = args.trained_gpu_num i_gpu_num = args.infer_gpu_num assert (i_gpu_num % t_gpu_num == 0) factor = (int)(i_gpu_num / t_gpu_num) model = GPTJForCausalLM.from_pretrained(args.in_file) try: config = configparser.ConfigParser() config["gpt"] = {} for key in vars(args): config["gpt"][key] = f"{vars(args)[key]}" for k, v in vars(model.config).items(): config["gpt"][k] = f"{v}" config["gpt"]["weight_data_type"] = args.weight_data_type with open((Path(saved_dir) / "config.ini").as_posix(), 'w') as configfile: config.write(configfile) except Exception: print("Fail to save the config in config.ini.") np_weight_data_type = get_weight_data_type(args.weight_data_type) huggingface_model_name_pattern = [ "ln_1.bias", "ln_1.weight", "attn.q_proj.weight", "attn.out_proj.weight", "mlp.fc_in.bias", "mlp.fc_in.weight", "mlp.fc_out.bias", "mlp.fc_out.weight", ] ft_model_name_pattern = [ "input_layernorm.bias", "input_layernorm.weight", "attention.query_key_value.weight", "attention.dense.weight", "mlp.dense_h_to_4h.bias", "mlp.dense_h_to_4h.weight", "mlp.dense_4h_to_h.bias", "mlp.dense_4h_to_h.weight", ] torch.multiprocessing.set_start_method("spawn") pool = multiprocessing.Pool(args.processes) for name, param in model.named_parameters(): if name.find("weight") == -1 and name.find("bias") == -1: continue print(name) if name == 'transformer.wte.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.wte.bin") elif name == 'transformer.ln_f.bias': param.detach().cpu().numpy().astype(np_weight_data_type).tofile( saved_dir + "model.final_layernorm.bias.bin") elif name == 'transformer.ln_f.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile( saved_dir + "model.final_layernorm.weight.bin") elif name == 'lm_head.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.lm_head.weight.bin") elif name == 'lm_head.bias': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.lm_head.bias.bin") else: for i in range(len(huggingface_model_name_pattern)): if name.find(huggingface_model_name_pattern[i]) != -1: # Special case for QKV weights if name.find("attn.q_proj.weight") != -1: layer = name.split('.')[2] base_k = f'transformer.h.{layer}.' w = model.state_dict() QKV_w = torch.stack([ w[base_k + "attn.q_proj.weight"], w[base_k + "attn.k_proj.weight"], w[base_k + "attn.v_proj.weight"], ]) # [qkv, n_heads * dim_head, latent_space] QKV_w = QKV_w.permute(2, 0, 1) weights = QKV_w.detach().cpu().numpy().astype(np_weight_data_type) else: weights = param.detach().cpu().numpy().astype(np_weight_data_type) # Some weights need to be transposed if name.find("mlp.fc_in.weight") != -1 or name.find("mlp.fc_out.weight") != -1 or \ name.find("attn.out_proj.weight") != -1: weights = weights.T new_name = name.replace("transformer.h.", "layers.").replace(huggingface_model_name_pattern[i], ft_model_name_pattern[i]) pool.starmap(split_and_convert_process, [(0, saved_dir, factor, new_name, weights)], ) pool.close() pool.join() if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-saved_dir', '-o', type=str, help='file name of output file', required=True) parser.add_argument('-in_file', '-i', type=str, help='HF model name or directory', required=True) parser.add_argument('-trained_gpu_num', '-t_g', type=int, help='How many gpus for training', default=1) parser.add_argument('-infer_gpu_num', '-i_g', type=int, help='How many gpus for inference', required=True) parser.add_argument("-processes", "-p", type=int, help="How many processes to spawn for conversion (default: 4)", default=4) parser.add_argument("-weight_data_type", type=str, default="fp32", choices=["fp32", "fp16"], help="output weight data type") args = parser.parse_args() print("\n=============== Argument ===============") for key in vars(args): print("{}: {}".format(key, vars(args)[key])) print("========================================") split_and_convert(args)
fauxpilot/converter/huggingface_gptj_convert.py/0
{ "file_path": "fauxpilot/converter/huggingface_gptj_convert.py", "repo_id": "fauxpilot", "token_count": 3931 }
86
We offer some ways to connect to the FauxPilot Server. For example, you can create a client by how to open the Openai API, Copilot Plugin, REST API. ## API Once everything is up and running, you should have a server listening for requests on `http://localhost:5000`. You can now talk to it using the standard [OpenAI API](https://beta.openai.com/docs/api-reference/) (although the full API isn't implemented yet). For example, from Python, using the [OpenAI Python bindings](https://github.com/openai/openai-python): ```python $ ipython Python 3.8.10 (default, Mar 15 2022, 12:22:08) Type 'copyright', 'credits' or 'license' for more information IPython 8.2.0 -- An enhanced Interactive Python. Type '?' for help. In [1]: import openai In [2]: openai.api_key = 'dummy' In [3]: openai.api_base = 'http://127.0.0.1:5000/v1' In [4]: result = openai.Completion.create(model='codegen', prompt='def hello', max_tokens=16, temperature=0.1, stop=["\n\n"]) In [5]: result Out[5]: <OpenAIObject text_completion id=cmpl-6hqu8Rcaq25078IHNJNVooU4xLY6w at 0x7f602c3d2f40> JSON: { "choices": [ { "finish_reason": "stop", "index": 0, "logprobs": null, "text": "() {\n return \"Hello, World!\";\n}" } ], "created": 1659492191, "id": "cmpl-6hqu8Rcaq25078IHNJNVooU4xLY6w", "model": "codegen", "object": "text_completion", "usage": { "completion_tokens": 15, "prompt_tokens": 2, "total_tokens": 17 } } ``` ## Curl with RESTful APIs ```bash $ curl -s -H "Accept: application/json" -H "Content-type: application/json" -X POST -d '{"prompt":"def hello","max_tokens":100,"temperature":0.1,"stop":["\n\n"]}' http://localhost:5000/v1/engines/codegen/completions ``` ## Copilot Plugin Perhaps more excitingly, you can configure the official [VSCode Copilot plugin](https://marketplace.visualstudio.com/items?itemName=GitHub.copilot) to use your local server. Just edit your `settings.json` to add: ```json "github.copilot.advanced": { "debug.overrideEngine": "codegen", "debug.testOverrideProxyUrl": "http://localhost:5000", "debug.overrideProxyUrl": "http://localhost:5000" } ``` And you should be able to use Copilot with your own locally hosted suggestions! Of course, probably a lot of stuff is subtly broken. In particular, the probabilities returned by the server are partly fake. Fixing this would require changing FasterTransformer so that it can return log-probabilities for the top k tokens rather that just the chosen token. Another issue with using the Copilot plugin is that its tokenizer (the component that turns text into a sequence of integers for the model) is slightly different from the one used by CodeGen, so the plugin will sometimes send a request that is longer than CodeGen can handle. You can work around this by replacing the `vocab.bpe` and `tokenizer.json` found in the Copilot extension (something like `.vscode/extensions/github.copilot-[version]/dist/`) with the ones found [here](https://github.com/moyix/fauxpilot/tree/main/copilot_proxy/cgtok/openai_format). Have fun!
fauxpilot/documentation/client.md/0
{ "file_path": "fauxpilot/documentation/client.md", "repo_id": "fauxpilot", "token_count": 1051 }
87
#!/usr/bin/env bash source .env # On newer versions, docker-compose is docker compose docker compose down --remove-orphans || docker-compose down --remove-orphans
fauxpilot/shutdown.sh/0
{ "file_path": "fauxpilot/shutdown.sh", "repo_id": "fauxpilot", "token_count": 48 }
88
1. Go to https://github.com/settings/tokens and create new token by clicking `Generate New Token` button. Give read access to public repositories. 2. Copy the access token and set the env variable via `export GH_ACCESS_TOKEN=<copied access token>`. 3. `cd dataset_creation` and Run `python clone_hf_repos.py` 4. The data in `hf_public_repos` folder in current repo should look like below: ``` accelerate candle datasets diffusers notebooks pytorch-image-models tokenizers trl alignment-handbook chat-ui deep-rl-class diffusion-models-class peft text-generation-inference transformers ``` 5. Download nltk punkt ```python import nltk nltk.download('punkt') ``` 6. Run Data Pipeline on a machine with 16 CPUs: ``` python pipeline.py ``` 7. Collate and push to hub: ``` python prepare_hf_dataset.py ```
get-data/README.md/0
{ "file_path": "get-data/README.md", "repo_id": "get-data", "token_count": 303 }
89
# coding=utf-8 # Copyright 2024 Sourab Mangrulkar. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json import re from typing import Callable from datatrove.pipeline.readers.base import BaseDiskReader from datatrove.io import DataFolderLike # Block the following formats. IMAGE = ["png", "jpg", "jpeg", "gif"] VIDEO = ["mp4", "jfif"] DOC = ["key", "PDF", "pdf", "docx", "xlsx", "pptx", "csv", "tsv", "txt"] AUDIO = ["flac", "ogg", "mid", "webm", "wav", "mp3"] ARCHIVE = ["jar", "aar", "gz", "zip", "bz2"] MODEL = ["onnx", "pickle", "model", "neuron"] OTHERS = [ "npy", "index", "inv", "index", "DS_Store", "rdb", "pack", "idx", "glb", "gltf", "len", "otf", "unitypackage", "ttf", "xz", "pcm", "opus", "package-lock.json", "yarn.lock", "Cargo.lock", "poetry.lock", "lock", ] ANTI_FOMATS = tuple(IMAGE + VIDEO + DOC + AUDIO + ARCHIVE + OTHERS) def segment_blocks(content): cells = [] cell_types = [] for cell in content["cells"]: if len(cell["source"]) > 0: output = "_____no_output_____" if "outputs" in cell.keys(): if len(cell["outputs"]) > 0: if "text" in cell["outputs"][0].keys(): output = cell["outputs"][0]["text"] cells.append(["".join(cell["source"]), "".join(output)]) cell_types.append(cell["cell_type"]) return cells, cell_types def segment(sample): try: content = json.loads(sample) if "py" in json.dumps(content["metadata"]): cells, types = segment_blocks(content) cell_type_groups = [list(g) for k, g in itertools.groupby(types)] cell_types = [k for k, g in itertools.groupby(types)] cell_groups = [] group_start = 0 for g in cell_type_groups: cell_groups.append(cells[group_start : group_start + len(g)]) group_start += len(g) else: cell_groups = [[["empty"]]] cell_types = ["empty"] cell_type_groups = [["empty"]] except: # noqa: E722 cell_groups = [[["empty"]]] cell_types = ["empty"] cell_type_groups = [["empty"]] content = parse_data(cell_groups, cell_types) return content def clean_markdown(text): text = re.sub(r"<.*?>", "", text) text = re.sub(r"\n+", "", text) text = text.replace("#", "") return text def parse_data(cells, types): """Parse data into markdown-code pairs""" content = "" if len(types) > 0: if types[0] == "code": # add dummy markdown cells.insert(0, [["empty"]]) types.insert(0, "markdown") if len(types) > 0: if types[-1] == "markdown": cells = cells[:-1] types = types[:-1] if len(cells) % 2 == 0: inner_markdowns = [cells[j] for j in range(len(cells)) if j % 2 == 0] inner_code_snippets = [ cells[j + 1] for j in range(len(cells) - 1) if j % 2 == 0 ] content += "<jupyter_start>" for markdown_block, code_snippet in zip( inner_markdowns, inner_code_snippets ): markdown_block = " ".join( [clean_markdown(block[0]) for block in markdown_block] ) code = "\n".join([snippet[0] for snippet in code_snippet]) output = [snippet[1] for snippet in code_snippet][-1] content += build_content(markdown_block, code, output) return content def build_content(markdown, code, output): # Define a regex pattern to match Markdown and HTML base64 image syntax image_pattern = re.compile(r"!\[.*?\]\(.*?\)|<img.*?>|data:image\/.*?;base64,.*?") markdown = re.sub(image_pattern, "", markdown) if len(output) > 1000: output_str = output[:1000] + "[...]" elif output == "_____no_output_____": output_str = "<empty_output>" else: output_str = output if markdown.strip() != "empty": content = f"<jupyter_text>{markdown.strip()}<jupyter_code>{code.strip()}<jupyter_output>{output_str.strip()}" else: content = f"<jupyter_code>{code.strip()}<jupyter_output>{output_str.strip()}" return content class PersonalCopilotDatasetReader(BaseDiskReader): name = "👾 PersonalCopilot" def __init__( self, data_folder: DataFolderLike, limit: int = -1, progress: bool = False, adapter: Callable = None, text_key: str = "text", id_key: str = "id", default_metadata: dict = None, recursive: bool = True, glob_pattern: str | None = None, ): super().__init__( data_folder, limit, progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, ) self.empty_warning = False def read_file(self, filepath: str): try: if filepath.endswith(ANTI_FOMATS) or any( k in filepath for k in [".git", "__pycache__", "xcodeproj"] ): content = "" else: with self.data_folder.open(filepath, "r", encoding="utf-8") as file: content = file.read() if filepath.endswith("ipynb"): content = segment(content) except Exception: content = "" if not content: content = "remove" data = {"text": content} with self.track_time(): document = self.get_document_from_dict(data, filepath, 0) document.metadata["file_path"] = document.metadata["file_path"].split( self.data_folder.path )[-1][1:] document.metadata["repo_id"] = document.metadata["file_path"].split("/")[0] yield document
get-data/reader.py/0
{ "file_path": "get-data/reader.py", "repo_id": "get-data", "token_count": 3189 }
90
import numpy as np from easydict import EasyDict as edict config = edict() #default training/dataset config config.num_classes = 68 config.record_img_size = 384 config.base_scale = 256 config.input_img_size = 128 config.output_label_size = 64 config.label_xfirst = False config.losstype = 'heatmap' config.net_coherent = False config.multiplier = 1.0 config.gaussian = 0 # network settings network = edict() network.hourglass = edict() network.hourglass.net_coherent = False network.hourglass.net_sta = 0 network.hourglass.net_n = 3 network.hourglass.net_dcn = 0 network.hourglass.net_stacks = 2 network.hourglass.net_block = 'resnet' network.hourglass.net_binarize = False network.hourglass.losstype = 'heatmap' network.sdu = edict() network.sdu.net_coherent = False network.sdu.net_sta = 1 network.sdu.net_n = 3 network.sdu.net_dcn = 3 network.sdu.net_stacks = 2 network.sdu.net_block = 'cab' network.sdu.net_binarize = False network.sdu.losstype = 'heatmap' # dataset settings dataset = edict() dataset.i2d = edict() dataset.i2d.dataset = '2D' dataset.i2d.landmark_type = '2d' dataset.i2d.dataset_path = './data_2d' dataset.i2d.num_classes = 68 dataset.i2d.record_img_size = 384 dataset.i2d.base_scale = 256 dataset.i2d.input_img_size = 128 dataset.i2d.output_label_size = 64 dataset.i2d.label_xfirst = False dataset.i2d.val_targets = ['ibug', 'cofw_testset', '300W'] dataset.i3d = edict() dataset.i3d.dataset = '3D' dataset.i3d.landmark_type = '3d' dataset.i3d.dataset_path = './data_3d' dataset.i3d.num_classes = 68 dataset.i3d.record_img_size = 384 dataset.i3d.base_scale = 256 dataset.i3d.input_img_size = 128 dataset.i3d.output_label_size = 64 dataset.i3d.label_xfirst = False dataset.i3d.val_targets = ['AFLW2000-3D'] # default settings default = edict() # default network default.network = 'hourglass' default.pretrained = '' default.pretrained_epoch = 0 # default dataset default.dataset = 'i2d' default.frequent = 20 default.verbose = 200 default.kvstore = 'device' default.prefix = 'model/A' default.end_epoch = 10000 default.lr = 0.00025 default.wd = 0.0 default.per_batch_size = 20 default.lr_step = '16000,24000,30000' def generate_config(_network, _dataset): for k, v in network[_network].items(): config[k] = v default[k] = v for k, v in dataset[_dataset].items(): config[k] = v default[k] = v config.network = _network config.dataset = _dataset
insightface/alignment/heatmap/sample_config.py/0
{ "file_path": "insightface/alignment/heatmap/sample_config.py", "repo_id": "insightface", "token_count": 1016 }
91
import sys from torch.utils.data import Dataset, DataLoader import os import os.path as osp import glob import numpy as np import random import cv2 import pickle as pkl import json import h5py import torch import matplotlib.pyplot as plt from lib.utils.misc import process_dataset_for_video class SurrealDataset(Dataset): def __init__(self, config, is_train=True): self.is_train = is_train self.frame_interval = config.DATA.FRAME_INTERVAL # randomization will lead to inferior performance # since diff will only be used when training self.data_path = config.DATA.TRAIN_PATH if self.is_train else config.DATA.VALID_PATH self.use_same_norm_2d = config.DATA.USE_SAME_NORM_2D self.use_same_norm_3d = config.DATA.USE_SAME_NORM_2D self.seed_set = False self.head_root_distance = 1 / config.TRAIN.CAMERA_SKELETON_DISTANCE # whether to use dataset adapted from k[MaÌ]inetics self.use_gt = config.USE_GT self.min_diff_dist = config.DATA.MIN_DIFF_DIST self.bound_azim = config.TRAIN.BOUND_AZIM # y axis rotation self.bound_elev = config.TRAIN.BOUND_ELEV self._load_data_set() def get_seqnames(self): return self.sequence_names def _load_data_set(self): # self.v3d_2d_to_ours = np.arange(17) if self.is_train: print('start loading surreal {} data.'.format("train" if self.is_train else "test")) key = "original_joint_2d_gt" if self.use_gt else "joint_2d_pre" assert self.use_gt fp = h5py.File(self.data_path, "r") self.kp2ds = np.array(fp[key]) self.kp2ds[:, :, 0] = (self.kp2ds[:, :, 0] - 160.0) / 160.0 self.kp2ds[:, :, 1] = (self.kp2ds[:, :, 1] - 160.0) / 160.0 # locate root at the origin # self.kp2ds[:, 12] = (self.kp2ds[:, 8] + self.kp2ds[:, 9]) / 2 self.kp2ds = self.kp2ds - self.kp2ds[:, 13:14] self.kp2ds[:, 13] = 1e-5 # imagenames will be used to sample frames self.imagenames = [name.decode() for name in fp['imagename'][:]] if 'seqname' not in fp.keys(): fp.close() print("Process corresponding dataset...") process_dataset_for_video(self.data_path, is_surreal=True) fp = h5py.File(self.data_path, "r") self.sequence_lens = np.array(fp['seqlen']) self.sequence_names = [name.decode() for name in fp['seqname'][:]] self.indices_in_seq = np.array(fp['index_in_seq']) # normlize again so that the mean distance of head and root is 1/c if not self.use_same_norm_2d: factor_gt = self.head_root_distance / (np.tile(np.linalg.norm(self.kp2ds[:, -1] - self.kp2ds[:, 13], axis=1).reshape(-1, 1, 1), (1, 17, 2)) + 1e-8) else: factor_gt = self.head_root_distance / np.linalg.norm(self.kp2ds[:, -1] - self.kp2ds[:, 13], axis=1).mean() self.kp2ds = self.kp2ds * factor_gt self.kp3ds = np.array(fp['joint_3d_gt']) # self.kp3ds[:, 12] = (self.kp3ds[:, 8] + self.kp3ds[:, 9]) / 2 factor_3d = np.linalg.norm(self.kp3ds[:, -1] - self.kp3ds[:, 13], axis=1).mean() factor_filename = "../data/surreal_{}_factor_3d.pkl".format("train" if self.is_train else "test") if not self.use_same_norm_3d and not osp.exists(factor_filename): factor_3d = (np.tile(np.linalg.norm(self.kp3ds[:, -1] - self.kp3ds[:, 13], axis=1).reshape(-1, 1, 1), (1, 17, 3)) + 1e-8) with open(factor_filename, "wb") as f: pkl.dump(factor_3d, f) fp.close() print('finished load surreal {} data, total {} samples'.format("train" if self.is_train else "test", \ self.kp2ds.shape[0])) # get random diff1 self.diff_indices = [] for index in range(self.kp2ds.shape[0]): index_in_seq = self.indices_in_seq[index] seq_len = self.sequence_lens[index] if seq_len == 1: diff1_index = index elif index_in_seq + self.frame_interval < seq_len: diff_index = index + self.frame_interval else: diff_index = index - self.frame_interval self.diff_indices.append(diff_index) # generate the rotation factors num_examples = self.kp2ds.shape[0] np.random.seed(2019) rotation_y = (2 * np.random.random_sample((num_examples, 1)) - 1) * self.bound_azim rotation_x = (2 * np.random.random_sample((num_examples, 1)) - 1) * self.bound_elev rotation_z = (2 * np.random.random_sample((num_examples, 1)) - 1) * self.bound_elev / 2 rotation_1 = np.concatenate((rotation_y, rotation_x, rotation_z), axis=1) rotation_2 = rotation_1.copy() rotation_2[:, 0] = rotation_2[:, 0] + np.pi self.rotation = np.concatenate((rotation_1, rotation_2), axis=0) np.random.shuffle(self.rotation) self.rotation = torch.from_numpy(self.rotation).float() self.kp2ds = torch.from_numpy(self.kp2ds).float() self.kp3ds = torch.from_numpy(self.kp3ds).float() def __len__(self): return self.kp2ds.shape[0] def __getitem__(self, index): if not self.seed_set: self.seed_set = True random.seed(index) np.random.seed(index) seq_len = self.sequence_lens[index] index_in_seq = self.indices_in_seq[index] kps_3d = self.kp3ds[index] rot = self.rotation[index] # index in its sequence kps_2d = self.kp2ds[index] kps_3d = self.kp3ds[index] diff1 = self.kp2ds[self.diff_indices[index]] if seq_len == 1: diff_dist = 0 else: diff_dist = np.random.randint(-index_in_seq, seq_len-index_in_seq) while abs(diff_dist) < self.min_diff_dist: diff_dist = np.random.randint(-index_in_seq, seq_len-index_in_seq) diff2_index = index + diff_dist diff2 = self.kp2ds[diff2_index] # current form: F * J * 2 # we need to swap the last two axis, so that the item will be in the form J * 2 * F where # J is the number of keypoints and F is the number of frames # kps_2d = kps_2d.permute(1, 2, 0).contiguous() # diff = self.diff[all_indices].permute(1, 2, 0).contiguous() kps_2d = self.kp2ds[index] rot = self.rotation[index] # the flag will always be 1 when no extra data is used # flag = self.flags[index] # for valdiation, simply ignore scale scale = 0 return kps_2d, kps_3d, rot, diff1, diff2, scale
insightface/body/human_pose/ambiguity_aware/lib/dataloader/surreal.py/0
{ "file_path": "insightface/body/human_pose/ambiguity_aware/lib/dataloader/surreal.py", "repo_id": "insightface", "token_count": 3253 }
92
## FRVT-Implementation <div align="left"> <img src="https://insightface.ai/assets/img/custom/logo3.jpg" width="240"/> </div> ## Introduction We provide a [FRVT-1:1](https://pages.nist.gov/frvt/html/frvt11.html) implementation example here. One can easily build FRVT-1:1 submission by simply putting insightface trained ONNX models into the codebase. Coming soon.
insightface/challenges/frvt-impl/README.md/0
{ "file_path": "insightface/challenges/frvt-impl/README.md", "repo_id": "insightface", "token_count": 126 }
93
cimport cython import numpy as np cimport numpy as np DTYPE = np.float32 ctypedef np.float32_t DTYPE_t def anchors_cython(int height, int width, int stride, np.ndarray[DTYPE_t, ndim=2] base_anchors): """ Parameters ---------- height: height of plane width: width of plane stride: stride ot the original image anchors_base: (A, 4) a base set of anchors Returns ------- all_anchors: (height, width, A, 4) ndarray of anchors spreading over the plane """ cdef unsigned int A = base_anchors.shape[0] cdef np.ndarray[DTYPE_t, ndim=4] all_anchors = np.zeros((height, width, A, 4), dtype=DTYPE) cdef unsigned int iw, ih cdef unsigned int k cdef unsigned int sh cdef unsigned int sw for iw in range(width): sw = iw * stride for ih in range(height): sh = ih * stride for k in range(A): all_anchors[ih, iw, k, 0] = base_anchors[k, 0] + sw all_anchors[ih, iw, k, 1] = base_anchors[k, 1] + sh all_anchors[ih, iw, k, 2] = base_anchors[k, 2] + sw all_anchors[ih, iw, k, 3] = base_anchors[k, 3] + sh return all_anchors
insightface/detection/retinaface/rcnn/cython/anchors.pyx/0
{ "file_path": "insightface/detection/retinaface/rcnn/cython/anchors.pyx", "repo_id": "insightface", "token_count": 546 }
94
import numpy as np from easydict import EasyDict as edict config = edict() # network related params config.PIXEL_MEANS = np.array([103.939, 116.779, 123.68]) config.PIXEL_STDS = np.array([1.0, 1.0, 1.0]) config.PIXEL_SCALE = 1.0 config.IMAGE_STRIDE = 0 # dataset related params config.NUM_CLASSES = 2 config.PRE_SCALES = [(1200, 1600) ] # first is scale (the shorter side); second is max size config.SCALES = [(640, 640) ] # first is scale (the shorter side); second is max size #config.SCALES = [(800, 800)] # first is scale (the shorter side); second is max size config.ORIGIN_SCALE = False _ratio = (1., ) RAC_SSH = { '32': { 'SCALES': (32, 16), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '16': { 'SCALES': (8, 4), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '8': { 'SCALES': (2, 1), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, } _ratio = (1., 1.5) RAC_SSH2 = { '32': { 'SCALES': (32, 16), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '16': { 'SCALES': (8, 4), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '8': { 'SCALES': (2, 1), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, } _ratio = (1., 1.5) RAC_SSH3 = { '32': { 'SCALES': (32, 16), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '16': { 'SCALES': (8, 4), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '8': { 'SCALES': (2, 1), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '4': { 'SCALES': (2, 1), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, } RAC_RETINA = {} _ratios = (1.0, ) _ass = 2.0**(1.0 / 3) _basescale = 1.0 for _stride in [4, 8, 16, 32, 64]: key = str(_stride) value = {'BASE_SIZE': 16, 'RATIOS': _ratios, 'ALLOWED_BORDER': 9999} scales = [] for _ in range(3): scales.append(_basescale) _basescale *= _ass value['SCALES'] = tuple(scales) RAC_RETINA[key] = value config.RPN_ANCHOR_CFG = RAC_SSH #default config.NET_MODE = 2 config.HEAD_MODULE = 'SSH' #config.HEAD_MODULE = 'RF' config.LR_MODE = 0 config.LANDMARK_LR_MULT = 2.0 config.HEAD_FILTER_NUM = 256 config.CONTEXT_FILTER_RATIO = 1 config.max_feat_channel = 9999 config.USE_CROP = True config.USE_FPN = True config.USE_DCN = 0 config.FACE_LANDMARK = True config.USE_OCCLUSION = False config.USE_BLUR = False config.MORE_SMALL_BOX = True config.LAYER_FIX = False config.CASCADE = 0 config.CASCADE_MODE = 1 #config.CASCADE_CLS_STRIDES = [16,8,4] #config.CASCADE_BBOX_STRIDES = [64,32] config.CASCADE_CLS_STRIDES = [64, 32, 16, 8, 4] config.CASCADE_BBOX_STRIDES = [64, 32, 16, 8, 4] #config.CASCADE_BBOX_STRIDES = [64,32,16,8] config.HEAD_BOX = False config.DENSE_ANCHOR = False config.USE_MAXOUT = 0 config.SHARE_WEIGHT_BBOX = False config.SHARE_WEIGHT_LANDMARK = False config.RANDOM_FEAT_STRIDE = False config.NUM_CPU = 4 config.MIXUP = 0.0 config.USE_3D = False #config.BBOX_MASK_THRESH = 0 config.COLOR_MODE = 2 config.COLOR_JITTERING = 0.125 #config.COLOR_JITTERING = 0 #config.COLOR_JITTERING = 0.2 config.TRAIN = edict() config.TRAIN.IMAGE_ALIGN = 0 config.TRAIN.MIN_BOX_SIZE = 0 config.BBOX_MASK_THRESH = config.TRAIN.MIN_BOX_SIZE # R-CNN and RPN # size of images for each device, 2 for rcnn, 1 for rpn and e2e config.TRAIN.BATCH_IMAGES = 8 # e2e changes behavior of anchor loader and metric config.TRAIN.END2END = True # group images with similar aspect ratio config.TRAIN.ASPECT_GROUPING = False # RPN anchor loader # rpn anchors batch size config.TRAIN.RPN_ENABLE_OHEM = 2 config.TRAIN.OHEM_MODE = 1 config.TRAIN.RPN_BATCH_SIZE = 256 # rpn anchors sampling params config.TRAIN.RPN_FG_FRACTION = 0.25 config.TRAIN.RPN_POSITIVE_OVERLAP = 0.5 config.TRAIN.RPN_NEGATIVE_OVERLAP = 0.3 if config.CASCADE > 0: config.TRAIN.RPN_POSITIVE_OVERLAP = 0.7 config.TRAIN.CASCADE_OVERLAP = [0.4, 0.5] config.TRAIN.RPN_CLOBBER_POSITIVES = False config.TRAIN.RPN_FORCE_POSITIVE = False # rpn bounding box regression params config.TRAIN.BBOX_STDS = (1.0, 1.0, 1.0, 1.0) config.TRAIN.LANDMARK_STD = 1.0 config.TEST = edict() # R-CNN testing # use rpn to generate proposal config.TEST.HAS_RPN = False # size of images for each device config.TEST.BATCH_IMAGES = 1 # RPN proposal config.TEST.CXX_PROPOSAL = True config.TEST.RPN_NMS_THRESH = 0.3 config.TEST.RPN_PRE_NMS_TOP_N = 1000 config.TEST.RPN_POST_NMS_TOP_N = 3000 #config.TEST.RPN_MIN_SIZE = config.RPN_FEAT_STRIDE #config.TEST.RPN_MIN_SIZE = [0,0,0] # RCNN nms config.TEST.NMS = 0.3 config.TEST.SCORE_THRESH = 0.05 config.TEST.IOU_THRESH = 0.5 # network settings network = edict() network.ssh = edict() network.mnet = edict() #network.mnet.pretrained = 'model/mnasnet' #network.mnet.pretrained = 'model/mobilenetv2_0_5' #network.mnet.pretrained = 'model/mobilenet_0_5' #network.mnet.MULTIPLIER = 0.5 #network.mnet.pretrained = 'model/mobilenet_0_25' #network.mnet.pretrained_epoch = 0 #network.mnet.PIXEL_MEANS = np.array([0.406, 0.456, 0.485]) #network.mnet.PIXEL_STDS = np.array([0.225, 0.224, 0.229]) #network.mnet.PIXEL_SCALE = 255.0 network.mnet.FIXED_PARAMS = ['^stage1', '^.*upsampling'] network.mnet.BATCH_IMAGES = 16 network.mnet.HEAD_FILTER_NUM = 64 network.mnet.CONTEXT_FILTER_RATIO = 1 network.mnet.PIXEL_MEANS = np.array([0.0, 0.0, 0.0]) network.mnet.PIXEL_STDS = np.array([1.0, 1.0, 1.0]) network.mnet.PIXEL_SCALE = 1.0 #network.mnet.pretrained = 'model/mobilenetfd_0_25' #78 #network.mnet.pretrained = 'model/mobilenetfd2' #75 network.mnet.pretrained = 'model/mobilenet025fd0' #78 #network.mnet.pretrained = 'model/mobilenet025fd1' #75 #network.mnet.pretrained = 'model/mobilenet025fd2' # network.mnet.pretrained_epoch = 0 network.mnet.max_feat_channel = 8888 network.mnet.COLOR_MODE = 1 network.mnet.USE_CROP = True network.mnet.RPN_ANCHOR_CFG = RAC_SSH network.mnet.LAYER_FIX = True network.mnet.LANDMARK_LR_MULT = 2.5 network.resnet = edict() #network.resnet.pretrained = 'model/ResNet50_v1d' #network.resnet.pretrained = 'model/resnet-50' network.resnet.pretrained = 'model/resnet-152' #network.resnet.pretrained = 'model/senet154' #network.resnet.pretrained = 'model/densenet161' network.resnet.pretrained_epoch = 0 #network.mnet.PIXEL_MEANS = np.array([103.939, 116.779, 123.68]) #network.mnet.PIXEL_STDS = np.array([57.375, 57.12, 58.393]) #network.resnet.PIXEL_MEANS = np.array([0.406, 0.456, 0.485]) #network.resnet.PIXEL_STDS = np.array([0.225, 0.224, 0.229]) #network.resnet.PIXEL_SCALE = 255.0 network.resnet.lr_step = '1,2,3,4,5,55,68,80' network.resnet.lr = 0.001 network.resnet.PIXEL_MEANS = np.array([0.0, 0.0, 0.0]) network.resnet.PIXEL_STDS = np.array([1.0, 1.0, 1.0]) network.resnet.PIXEL_SCALE = 1.0 network.resnet.FIXED_PARAMS = ['^stage1', '^.*upsampling'] network.resnet.BATCH_IMAGES = 8 network.resnet.HEAD_FILTER_NUM = 256 network.resnet.CONTEXT_FILTER_RATIO = 1 network.resnet.USE_DCN = 2 network.resnet.RPN_BATCH_SIZE = 256 network.resnet.RPN_ANCHOR_CFG = RAC_RETINA network.resnet.USE_DCN = 0 network.resnet.pretrained = 'model/resnet-50' network.resnet.RPN_ANCHOR_CFG = RAC_SSH # dataset settings dataset = edict() dataset.widerface = edict() dataset.widerface.dataset = 'widerface' dataset.widerface.image_set = 'train' dataset.widerface.test_image_set = 'val' dataset.widerface.root_path = 'data' dataset.widerface.dataset_path = 'data/widerface' dataset.widerface.NUM_CLASSES = 2 dataset.retinaface = edict() dataset.retinaface.dataset = 'retinaface' dataset.retinaface.image_set = 'train' dataset.retinaface.test_image_set = 'val' dataset.retinaface.root_path = 'data' dataset.retinaface.dataset_path = 'data/retinaface' dataset.retinaface.NUM_CLASSES = 2 # default settings default = edict() config.FIXED_PARAMS = ['^conv1', '^conv2', '^conv3', '^.*upsampling'] #config.FIXED_PARAMS = ['^.*upsampling'] #config.FIXED_PARAMS = ['^conv1', '^conv2', '^conv3'] #config.FIXED_PARAMS = ['^conv0', '^stage1', 'gamma', 'beta'] #for resnet # default network default.network = 'resnet' default.pretrained = 'model/resnet-152' #default.network = 'resnetssh' default.pretrained_epoch = 0 # default dataset default.dataset = 'retinaface' default.image_set = 'train' default.test_image_set = 'val' default.root_path = 'data' default.dataset_path = 'data/retinaface' # default training default.frequent = 20 default.kvstore = 'device' # default e2e default.prefix = 'model/retinaface' default.end_epoch = 10000 default.lr_step = '55,68,80' default.lr = 0.01 default.wd = 0.0005 def generate_config(_network, _dataset): for k, v in network[_network].items(): if k in config: config[k] = v elif k in default: default[k] = v if k in config.TRAIN: config.TRAIN[k] = v for k, v in dataset[_dataset].items(): if k in config: config[k] = v elif k in default: default[k] = v if k in config.TRAIN: config.TRAIN[k] = v config.network = _network config.dataset = _dataset config.RPN_FEAT_STRIDE = [] num_anchors = [] for k in config.RPN_ANCHOR_CFG: config.RPN_FEAT_STRIDE.append(int(k)) _num_anchors = len(config.RPN_ANCHOR_CFG[k]['SCALES']) * len( config.RPN_ANCHOR_CFG[k]['RATIOS']) if config.DENSE_ANCHOR: _num_anchors *= 2 config.RPN_ANCHOR_CFG[k]['NUM_ANCHORS'] = _num_anchors num_anchors.append(_num_anchors) config.RPN_FEAT_STRIDE = sorted(config.RPN_FEAT_STRIDE, reverse=True) for j in range(1, len(num_anchors)): assert num_anchors[0] == num_anchors[j] config.NUM_ANCHORS = num_anchors[0]
insightface/detection/retinaface/rcnn/sample_config.py/0
{ "file_path": "insightface/detection/retinaface/rcnn/sample_config.py", "repo_id": "insightface", "token_count": 4775 }
95
from .load_model import load_checkpoint from .save_model import save_checkpoint def combine_model(prefix1, epoch1, prefix2, epoch2, prefix_out, epoch_out): args1, auxs1 = load_checkpoint(prefix1, epoch1) args2, auxs2 = load_checkpoint(prefix2, epoch2) arg_names = args1.keys() + args2.keys() aux_names = auxs1.keys() + auxs2.keys() args = dict() for arg in arg_names: if arg in args1: args[arg] = args1[arg] else: args[arg] = args2[arg] auxs = dict() for aux in aux_names: if aux in auxs1: auxs[aux] = auxs1[aux] else: auxs[aux] = auxs2[aux] save_checkpoint(prefix_out, epoch_out, args, auxs)
insightface/detection/retinaface/rcnn/utils/combine_model.py/0
{ "file_path": "insightface/detection/retinaface/rcnn/utils/combine_model.py", "repo_id": "insightface", "token_count": 335 }
96
from __future__ import print_function import sys import os import datetime import time import numpy as np import mxnet as mx from mxnet import ndarray as nd import cv2 #from rcnn import config #from rcnn.processing.bbox_transform import nonlinear_pred, clip_boxes, landmark_pred from rcnn.processing.bbox_transform import clip_boxes from rcnn.processing.generate_anchor import generate_anchors_fpn, anchors_plane from rcnn.processing.nms import gpu_nms_wrapper, cpu_nms_wrapper from rcnn.processing.bbox_transform import bbox_overlaps class RetinaFaceCoV: def __init__(self, prefix, epoch, ctx_id=0, network='net3', nms=0.4, nocrop=False): self.ctx_id = ctx_id self.network = network self.nms_threshold = nms self.nocrop = nocrop self.debug = False self.fpn_keys = [] self.anchor_cfg = None pixel_means = [0.0, 0.0, 0.0] pixel_stds = [1.0, 1.0, 1.0] pixel_scale = 1.0 self.bbox_stds = [1.0, 1.0, 1.0, 1.0] self.landmark_std = 1.0 self.preprocess = False _ratio = (1., ) fmc = 3 if network == 'ssh' or network == 'vgg': pixel_means = [103.939, 116.779, 123.68] self.preprocess = True elif network == 'net3': _ratio = (1., ) elif network == 'net3l': _ratio = (1., ) self.landmark_std = 0.2 elif network == 'net3a': _ratio = (1., 1.5) elif network == 'net6': #like pyramidbox or s3fd fmc = 6 elif network == 'net5': #retinaface fmc = 5 elif network == 'net5a': fmc = 5 _ratio = (1., 1.5) elif network == 'net4': fmc = 4 elif network == 'net4a': fmc = 4 _ratio = (1., 1.5) elif network == 'x5': fmc = 5 pixel_means = [103.52, 116.28, 123.675] pixel_stds = [57.375, 57.12, 58.395] elif network == 'x3': fmc = 3 pixel_means = [103.52, 116.28, 123.675] pixel_stds = [57.375, 57.12, 58.395] elif network == 'x3a': fmc = 3 _ratio = (1., 1.5) pixel_means = [103.52, 116.28, 123.675] pixel_stds = [57.375, 57.12, 58.395] else: assert False, 'network setting error %s' % network if fmc == 3: self._feat_stride_fpn = [32, 16, 8] self.anchor_cfg = { '32': { 'SCALES': (32, 16), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '16': { 'SCALES': (8, 4), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '8': { 'SCALES': (2, 1), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, } elif fmc == 4: self._feat_stride_fpn = [32, 16, 8, 4] self.anchor_cfg = { '32': { 'SCALES': (32, 16), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '16': { 'SCALES': (8, 4), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '8': { 'SCALES': (2, 1), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '4': { 'SCALES': (2, 1), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, } elif fmc == 6: self._feat_stride_fpn = [128, 64, 32, 16, 8, 4] self.anchor_cfg = { '128': { 'SCALES': (32, ), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '64': { 'SCALES': (16, ), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '32': { 'SCALES': (8, ), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '16': { 'SCALES': (4, ), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '8': { 'SCALES': (2, ), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, '4': { 'SCALES': (1, ), 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 }, } elif fmc == 5: self._feat_stride_fpn = [64, 32, 16, 8, 4] self.anchor_cfg = {} _ass = 2.0**(1.0 / 3) _basescale = 1.0 for _stride in [4, 8, 16, 32, 64]: key = str(_stride) value = { 'BASE_SIZE': 16, 'RATIOS': _ratio, 'ALLOWED_BORDER': 9999 } scales = [] for _ in range(3): scales.append(_basescale) _basescale *= _ass value['SCALES'] = tuple(scales) self.anchor_cfg[key] = value #print(self._feat_stride_fpn, self.anchor_cfg) for s in self._feat_stride_fpn: self.fpn_keys.append('stride%s' % s) dense_anchor = False #self._anchors_fpn = dict(zip(self.fpn_keys, generate_anchors_fpn(base_size=fpn_base_size, scales=self._scales, ratios=self._ratios))) self._anchors_fpn = dict( zip( self.fpn_keys, generate_anchors_fpn(dense_anchor=dense_anchor, cfg=self.anchor_cfg))) for k in self._anchors_fpn: v = self._anchors_fpn[k].astype(np.float32) self._anchors_fpn[k] = v self._num_anchors = dict( zip(self.fpn_keys, [anchors.shape[0] for anchors in self._anchors_fpn.values()])) #self._bbox_pred = nonlinear_pred #self._landmark_pred = landmark_pred sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) if self.ctx_id >= 0: self.ctx = mx.gpu(self.ctx_id) self.nms = gpu_nms_wrapper(self.nms_threshold, self.ctx_id) else: self.ctx = mx.cpu() self.nms = cpu_nms_wrapper(self.nms_threshold) self.pixel_means = np.array(pixel_means, dtype=np.float32) self.pixel_stds = np.array(pixel_stds, dtype=np.float32) self.pixel_scale = float(pixel_scale) #print('means', self.pixel_means) self.use_landmarks = True #print('use_landmarks', self.use_landmarks) self.cascade = 0 if self.debug: c = len(sym) // len(self._feat_stride_fpn) sym = sym[(c * 0):] self._feat_stride_fpn = [32, 16, 8] #print('sym size:', len(sym)) image_size = (640, 640) self.model = mx.mod.Module(symbol=sym, context=self.ctx, label_names=None) self.model.bind(data_shapes=[('data', (1, 3, image_size[0], image_size[1]))], for_training=False) self.model.set_params(arg_params, aux_params) def get_input(self, img): im = img.astype(np.float32) im_tensor = np.zeros((1, 3, im.shape[0], im.shape[1])) for i in range(3): im_tensor[ 0, i, :, :] = (im[:, :, 2 - i] / self.pixel_scale - self.pixel_means[2 - i]) / self.pixel_stds[2 - i] #if self.debug: # timeb = datetime.datetime.now() # diff = timeb - timea # print('X2 uses', diff.total_seconds(), 'seconds') data = nd.array(im_tensor) return data def detect(self, img, threshold=0.5, scales=[1.0], do_flip=False): #print('in_detect', threshold, scales, do_flip, do_nms) proposals_list = [] scores_list = [] mask_scores_list = [] landmarks_list = [] strides_list = [] timea = datetime.datetime.now() flips = [0] if do_flip: flips = [0, 1] imgs = [img] if isinstance(img, list): imgs = img for img in imgs: for im_scale in scales: for flip in flips: if im_scale != 1.0: im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) else: im = img.copy() if flip: im = im[:, ::-1, :] if self.nocrop: if im.shape[0] % 32 == 0: h = im.shape[0] else: h = (im.shape[0] // 32 + 1) * 32 if im.shape[1] % 32 == 0: w = im.shape[1] else: w = (im.shape[1] // 32 + 1) * 32 _im = np.zeros((h, w, 3), dtype=np.float32) _im[0:im.shape[0], 0:im.shape[1], :] = im im = _im else: im = im.astype(np.float32) if self.debug: timeb = datetime.datetime.now() diff = timeb - timea print('X1 uses', diff.total_seconds(), 'seconds') #self.model.bind(data_shapes=[('data', (1, 3, image_size[0], image_size[1]))], for_training=False) #im_info = [im.shape[0], im.shape[1], im_scale] im_info = [im.shape[0], im.shape[1]] im_tensor = np.zeros((1, 3, im.shape[0], im.shape[1])) for i in range(3): im_tensor[0, i, :, :] = ( im[:, :, 2 - i] / self.pixel_scale - self.pixel_means[2 - i]) / self.pixel_stds[2 - i] if self.debug: timeb = datetime.datetime.now() diff = timeb - timea print('X2 uses', diff.total_seconds(), 'seconds') data = nd.array(im_tensor) db = mx.io.DataBatch(data=(data, ), provide_data=[('data', data.shape)]) if self.debug: timeb = datetime.datetime.now() diff = timeb - timea print('X3 uses', diff.total_seconds(), 'seconds') self.model.forward(db, is_train=False) net_out = self.model.get_outputs() #post_nms_topN = self._rpn_post_nms_top_n #min_size_dict = self._rpn_min_size_fpn sym_idx = 0 for _idx, s in enumerate(self._feat_stride_fpn): #if len(scales)>1 and s==32 and im_scale==scales[-1]: # continue _key = 'stride%s' % s stride = int(s) is_cascade = False #if self.vote and stride==4 and len(scales)>2 and (im_scale==scales[0]): # continue #print('getting', im_scale, stride, idx, len(net_out), data.shape, file=sys.stderr) scores = net_out[sym_idx].asnumpy() type_scores = net_out[sym_idx + 3].asnumpy() print(scores.shape, type_scores.shape) if self.debug: timeb = datetime.datetime.now() diff = timeb - timea print('A uses', diff.total_seconds(), 'seconds') A = self._num_anchors['stride%s' % s] #print(scores.shape) #print('scores',stride, scores.shape, file=sys.stderr) scores = scores[:, A:, :, :] mask_scores = type_scores[:, A * 2:, :, :] #x, A, x, x bbox_deltas = net_out[sym_idx + 1].asnumpy() #if DEBUG: # print 'im_size: ({}, {})'.format(im_info[0], im_info[1]) # print 'scale: {}'.format(im_info[2]) #_height, _width = int(im_info[0] / stride), int(im_info[1] / stride) height, width = bbox_deltas.shape[ 2], bbox_deltas.shape[3] K = height * width anchors_fpn = self._anchors_fpn['stride%s' % s] anchors = anchors_plane(height, width, stride, anchors_fpn) #print((height, width), (_height, _width), anchors.shape, bbox_deltas.shape, scores.shape, file=sys.stderr) anchors = anchors.reshape((K * A, 4)) #print('num_anchors', self._num_anchors['stride%s'%s], file=sys.stderr) #print('HW', (height, width), file=sys.stderr) #print('anchors_fpn', anchors_fpn.shape, file=sys.stderr) #print('anchors', anchors.shape, file=sys.stderr) #print('bbox_deltas', bbox_deltas.shape, file=sys.stderr) #print('scores', scores.shape, file=sys.stderr) #scores = self._clip_pad(scores, (height, width)) scores = scores.transpose((0, 2, 3, 1)).reshape( (-1, 1)) mask_scores = mask_scores.transpose( (0, 2, 3, 1)).reshape((-1, 1)) #print('pre', bbox_deltas.shape, height, width) #bbox_deltas = self._clip_pad(bbox_deltas, (height, width)) #print('after', bbox_deltas.shape, height, width) bbox_deltas = bbox_deltas.transpose((0, 2, 3, 1)) bbox_pred_len = bbox_deltas.shape[3] // A #print(bbox_deltas.shape) bbox_deltas = bbox_deltas.reshape((-1, bbox_pred_len)) bbox_deltas[:, 0::4] = bbox_deltas[:, 0:: 4] * self.bbox_stds[0] bbox_deltas[:, 1::4] = bbox_deltas[:, 1:: 4] * self.bbox_stds[1] bbox_deltas[:, 2::4] = bbox_deltas[:, 2:: 4] * self.bbox_stds[2] bbox_deltas[:, 3::4] = bbox_deltas[:, 3:: 4] * self.bbox_stds[3] proposals = self.bbox_pred(anchors, bbox_deltas) proposals = clip_boxes(proposals, im_info[:2]) #if self.vote: # if im_scale>1.0: # keep = self._filter_boxes2(proposals, 160*im_scale, -1) # else: # keep = self._filter_boxes2(proposals, -1, 100*im_scale) # if stride==4: # keep = self._filter_boxes2(proposals, 12*im_scale, -1) # proposals = proposals[keep, :] # scores = scores[keep] #keep = self._filter_boxes(proposals, min_size_dict['stride%s'%s] * im_info[2]) #proposals = proposals[keep, :] #scores = scores[keep] #print('333', proposals.shape) if stride == 4 and self.decay4 < 1.0: scores *= self.decay4 scores_ravel = scores.ravel() #mask_scores_ravel = mask_scores.ravel() #print('__shapes', proposals.shape, scores_ravel.shape) #print('max score', np.max(scores_ravel)) order = np.where(scores_ravel >= threshold)[0] #_scores = scores_ravel[order] #_order = _scores.argsort()[::-1] #order = order[_order] proposals = proposals[order, :] scores = scores[order] mask_scores = mask_scores[order] if flip: oldx1 = proposals[:, 0].copy() oldx2 = proposals[:, 2].copy() proposals[:, 0] = im.shape[1] - oldx2 - 1 proposals[:, 2] = im.shape[1] - oldx1 - 1 proposals[:, 0:4] /= im_scale proposals_list.append(proposals) scores_list.append(scores) mask_scores_list.append(mask_scores) landmark_deltas = net_out[sym_idx + 2].asnumpy() #landmark_deltas = self._clip_pad(landmark_deltas, (height, width)) landmark_pred_len = landmark_deltas.shape[1] // A landmark_deltas = landmark_deltas.transpose( (0, 2, 3, 1)).reshape( (-1, 5, landmark_pred_len // 5)) landmark_deltas *= self.landmark_std #print(landmark_deltas.shape, landmark_deltas) landmarks = self.landmark_pred(anchors, landmark_deltas) landmarks = landmarks[order, :] if flip: landmarks[:, :, 0] = im.shape[1] - landmarks[:, :, 0] - 1 #for a in range(5): # oldx1 = landmarks[:, a].copy() # landmarks[:,a] = im.shape[1] - oldx1 - 1 order = [1, 0, 2, 4, 3] flandmarks = landmarks.copy() for idx, a in enumerate(order): flandmarks[:, idx, :] = landmarks[:, a, :] #flandmarks[:, idx*2] = landmarks[:,a*2] #flandmarks[:, idx*2+1] = landmarks[:,a*2+1] landmarks = flandmarks landmarks[:, :, 0:2] /= im_scale #landmarks /= im_scale #landmarks = landmarks.reshape( (-1, landmark_pred_len) ) landmarks_list.append(landmarks) #proposals = np.hstack((proposals, landmarks)) sym_idx += 4 if self.debug: timeb = datetime.datetime.now() diff = timeb - timea print('B uses', diff.total_seconds(), 'seconds') proposals = np.vstack(proposals_list) landmarks = None if proposals.shape[0] == 0: landmarks = np.zeros((0, 5, 2)) return np.zeros((0, 6)), landmarks scores = np.vstack(scores_list) mask_scores = np.vstack(mask_scores_list) #print('shapes', proposals.shape, scores.shape) scores_ravel = scores.ravel() order = scores_ravel.argsort()[::-1] #if config.TEST.SCORE_THRESH>0.0: # _count = np.sum(scores_ravel>config.TEST.SCORE_THRESH) # order = order[:_count] proposals = proposals[order, :] scores = scores[order] mask_scores = mask_scores[order] landmarks = np.vstack(landmarks_list) landmarks = landmarks[order].astype(np.float32, copy=False) pre_det = np.hstack((proposals[:, 0:4], scores)).astype(np.float32, copy=False) keep = self.nms(pre_det) det = np.hstack((pre_det, mask_scores)) det = det[keep, :] landmarks = landmarks[keep] if self.debug: timeb = datetime.datetime.now() diff = timeb - timea print('C uses', diff.total_seconds(), 'seconds') return det, landmarks def detect_center(self, img, threshold=0.5, scales=[1.0], do_flip=False): det, landmarks = self.detect(img, threshold, scales, do_flip) if det.shape[0] == 0: return None, None bindex = 0 if det.shape[0] > 1: img_size = np.asarray(img.shape)[0:2] bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) bindex = np.argmax(bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering bbox = det[bindex, :] landmark = landmarks[bindex, :, :] return bbox, landmark @staticmethod def check_large_pose(landmark, bbox): assert landmark.shape == (5, 2) assert len(bbox) == 4 def get_theta(base, x, y): vx = x - base vy = y - base vx[1] *= -1 vy[1] *= -1 tx = np.arctan2(vx[1], vx[0]) ty = np.arctan2(vy[1], vy[0]) d = ty - tx d = np.degrees(d) #print(vx, tx, vy, ty, d) #if d<-1.*math.pi: # d+=2*math.pi #elif d>math.pi: # d-=2*math.pi if d < -180.0: d += 360. elif d > 180.0: d -= 360.0 return d landmark = landmark.astype(np.float32) theta1 = get_theta(landmark[0], landmark[3], landmark[2]) theta2 = get_theta(landmark[1], landmark[2], landmark[4]) #print(va, vb, theta2) theta3 = get_theta(landmark[0], landmark[2], landmark[1]) theta4 = get_theta(landmark[1], landmark[0], landmark[2]) theta5 = get_theta(landmark[3], landmark[4], landmark[2]) theta6 = get_theta(landmark[4], landmark[2], landmark[3]) theta7 = get_theta(landmark[3], landmark[2], landmark[0]) theta8 = get_theta(landmark[4], landmark[1], landmark[2]) #print(theta1, theta2, theta3, theta4, theta5, theta6, theta7, theta8) left_score = 0.0 right_score = 0.0 up_score = 0.0 down_score = 0.0 if theta1 <= 0.0: left_score = 10.0 elif theta2 <= 0.0: right_score = 10.0 else: left_score = theta2 / theta1 right_score = theta1 / theta2 if theta3 <= 10.0 or theta4 <= 10.0: up_score = 10.0 else: up_score = max(theta1 / theta3, theta2 / theta4) if theta5 <= 10.0 or theta6 <= 10.0: down_score = 10.0 else: down_score = max(theta7 / theta5, theta8 / theta6) mleft = (landmark[0][0] + landmark[3][0]) / 2 mright = (landmark[1][0] + landmark[4][0]) / 2 box_center = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2) ret = 0 if left_score >= 3.0: ret = 1 if ret == 0 and left_score >= 2.0: if mright <= box_center[0]: ret = 1 if ret == 0 and right_score >= 3.0: ret = 2 if ret == 0 and right_score >= 2.0: if mleft >= box_center[0]: ret = 2 if ret == 0 and up_score >= 2.0: ret = 3 if ret == 0 and down_score >= 5.0: ret = 4 return ret, left_score, right_score, up_score, down_score @staticmethod def _filter_boxes(boxes, min_size): """ Remove all boxes with any side smaller than min_size """ ws = boxes[:, 2] - boxes[:, 0] + 1 hs = boxes[:, 3] - boxes[:, 1] + 1 keep = np.where((ws >= min_size) & (hs >= min_size))[0] return keep @staticmethod def _filter_boxes2(boxes, max_size, min_size): """ Remove all boxes with any side smaller than min_size """ ws = boxes[:, 2] - boxes[:, 0] + 1 hs = boxes[:, 3] - boxes[:, 1] + 1 if max_size > 0: keep = np.where(np.minimum(ws, hs) < max_size)[0] elif min_size > 0: keep = np.where(np.maximum(ws, hs) > min_size)[0] return keep @staticmethod def _clip_pad(tensor, pad_shape): """ Clip boxes of the pad area. :param tensor: [n, c, H, W] :param pad_shape: [h, w] :return: [n, c, h, w] """ H, W = tensor.shape[2:] h, w = pad_shape if h < H or w < W: tensor = tensor[:, :, :h, :w].copy() return tensor @staticmethod def bbox_pred(boxes, box_deltas): """ Transform the set of class-agnostic boxes into class-specific boxes by applying the predicted offsets (box_deltas) :param boxes: !important [N 4] :param box_deltas: [N, 4 * num_classes] :return: [N 4 * num_classes] """ if boxes.shape[0] == 0: return np.zeros((0, box_deltas.shape[1])) boxes = boxes.astype(np.float, copy=False) widths = boxes[:, 2] - boxes[:, 0] + 1.0 heights = boxes[:, 3] - boxes[:, 1] + 1.0 ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0) ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0) dx = box_deltas[:, 0:1] dy = box_deltas[:, 1:2] dw = box_deltas[:, 2:3] dh = box_deltas[:, 3:4] pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis] pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis] pred_w = np.exp(dw) * widths[:, np.newaxis] pred_h = np.exp(dh) * heights[:, np.newaxis] pred_boxes = np.zeros(box_deltas.shape) # x1 pred_boxes[:, 0:1] = pred_ctr_x - 0.5 * (pred_w - 1.0) # y1 pred_boxes[:, 1:2] = pred_ctr_y - 0.5 * (pred_h - 1.0) # x2 pred_boxes[:, 2:3] = pred_ctr_x + 0.5 * (pred_w - 1.0) # y2 pred_boxes[:, 3:4] = pred_ctr_y + 0.5 * (pred_h - 1.0) if box_deltas.shape[1] > 4: pred_boxes[:, 4:] = box_deltas[:, 4:] return pred_boxes @staticmethod def landmark_pred(boxes, landmark_deltas): if boxes.shape[0] == 0: return np.zeros((0, landmark_deltas.shape[1])) boxes = boxes.astype(np.float, copy=False) widths = boxes[:, 2] - boxes[:, 0] + 1.0 heights = boxes[:, 3] - boxes[:, 1] + 1.0 ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0) ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0) pred = landmark_deltas.copy() for i in range(5): pred[:, i, 0] = landmark_deltas[:, i, 0] * widths + ctr_x pred[:, i, 1] = landmark_deltas[:, i, 1] * heights + ctr_y return pred #preds = [] #for i in range(landmark_deltas.shape[1]): # if i%2==0: # pred = (landmark_deltas[:,i]*widths + ctr_x) # else: # pred = (landmark_deltas[:,i]*heights + ctr_y) # preds.append(pred) #preds = np.vstack(preds).transpose() #return preds def vote(self, det): #order = det[:, 4].ravel().argsort()[::-1] #det = det[order, :] if det.shape[0] == 0: return np.zeros((0, 5)) #dets = np.array([[10, 10, 20, 20, 0.002]]) #det = np.empty(shape=[0, 5]) dets = None while det.shape[0] > 0: if dets is not None and dets.shape[0] >= 750: break # IOU area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1) xx1 = np.maximum(det[0, 0], det[:, 0]) yy1 = np.maximum(det[0, 1], det[:, 1]) xx2 = np.minimum(det[0, 2], det[:, 2]) yy2 = np.minimum(det[0, 3], det[:, 3]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h o = inter / (area[0] + area[:] - inter) # nms merge_index = np.where(o >= self.nms_threshold)[0] det_accu = det[merge_index, :] det = np.delete(det, merge_index, 0) if merge_index.shape[0] <= 1: if det.shape[0] == 0: try: dets = np.row_stack((dets, det_accu)) except: dets = det_accu continue det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4)) max_score = np.max(det_accu[:, 4]) det_accu_sum = np.zeros((1, 5)) det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4], axis=0) / np.sum( det_accu[:, -1:]) det_accu_sum[:, 4] = max_score if dets is None: dets = det_accu_sum else: dets = np.row_stack((dets, det_accu_sum)) dets = dets[0:750, :] return dets
insightface/detection/retinaface_anticov/retinaface_cov.py/0
{ "file_path": "insightface/detection/retinaface_anticov/retinaface_cov.py", "repo_id": "insightface", "token_count": 19079 }
97
# model settings model = dict( type='CascadeRCNN', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='CascadeRoIHead', num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=dict( type='FCNMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=2000, nms_thr=0.7, min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5))
insightface/detection/scrfd/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py/0
{ "file_path": "insightface/detection/scrfd/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py", "repo_id": "insightface", "token_count": 4251 }
98
from .approx_max_iou_assigner import ApproxMaxIoUAssigner from .assign_result import AssignResult from .atss_assigner import ATSSAssigner from .base_assigner import BaseAssigner from .center_region_assigner import CenterRegionAssigner from .grid_assigner import GridAssigner from .hungarian_assigner import HungarianAssigner from .max_iou_assigner import MaxIoUAssigner from .point_assigner import PointAssigner __all__ = [ 'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult', 'PointAssigner', 'ATSSAssigner', 'CenterRegionAssigner', 'GridAssigner', 'HungarianAssigner' ]
insightface/detection/scrfd/mmdet/core/bbox/assigners/__init__.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/core/bbox/assigners/__init__.py", "repo_id": "insightface", "token_count": 224 }
99
from ..builder import BBOX_CODERS from .base_bbox_coder import BaseBBoxCoder @BBOX_CODERS.register_module() class PseudoBBoxCoder(BaseBBoxCoder): """Pseudo bounding box coder.""" def __init__(self, **kwargs): super(BaseBBoxCoder, self).__init__(**kwargs) def encode(self, bboxes, gt_bboxes): """torch.Tensor: return the given ``bboxes``""" return gt_bboxes def decode(self, bboxes, pred_bboxes): """torch.Tensor: return the given ``pred_bboxes``""" return pred_bboxes
insightface/detection/scrfd/mmdet/core/bbox/coder/pseudo_bbox_coder.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/core/bbox/coder/pseudo_bbox_coder.py", "repo_id": "insightface", "token_count": 222 }
100
import torch from mmcv.ops import nms_match from ..builder import BBOX_SAMPLERS from ..transforms import bbox2roi from .base_sampler import BaseSampler from .sampling_result import SamplingResult @BBOX_SAMPLERS.register_module() class ScoreHLRSampler(BaseSampler): r"""Importance-based Sample Reweighting (ISR_N), described in `Prime Sample Attention in Object Detection <https://arxiv.org/abs/1904.04821>`_. Score hierarchical local rank (HLR) differentiates with RandomSampler in negative part. It firstly computes Score-HLR in a two-step way, then linearly maps score hlr to the loss weights. Args: num (int): Total number of sampled RoIs. pos_fraction (float): Fraction of positive samples. context (:class:`BaseRoIHead`): RoI head that the sampler belongs to. neg_pos_ub (int): Upper bound of the ratio of num negative to num positive, -1 means no upper bound. add_gt_as_proposals (bool): Whether to add ground truth as proposals. k (float): Power of the non-linear mapping. bias (float): Shift of the non-linear mapping. score_thr (float): Minimum score that a negative sample is to be considered as valid bbox. """ def __init__(self, num, pos_fraction, context, neg_pos_ub=-1, add_gt_as_proposals=True, k=0.5, bias=0, score_thr=0.05, iou_thr=0.5, **kwargs): super().__init__(num, pos_fraction, neg_pos_ub, add_gt_as_proposals) self.k = k self.bias = bias self.score_thr = score_thr self.iou_thr = iou_thr self.context = context # context of cascade detectors is a list, so distinguish them here. if not hasattr(context, 'num_stages'): self.bbox_roi_extractor = context.bbox_roi_extractor self.bbox_head = context.bbox_head self.with_shared_head = context.with_shared_head if self.with_shared_head: self.shared_head = context.shared_head else: self.bbox_roi_extractor = context.bbox_roi_extractor[ context.current_stage] self.bbox_head = context.bbox_head[context.current_stage] @staticmethod def random_choice(gallery, num): """Randomly select some elements from the gallery. If `gallery` is a Tensor, the returned indices will be a Tensor; If `gallery` is a ndarray or list, the returned indices will be a ndarray. Args: gallery (Tensor | ndarray | list): indices pool. num (int): expected sample num. Returns: Tensor or ndarray: sampled indices. """ assert len(gallery) >= num is_tensor = isinstance(gallery, torch.Tensor) if not is_tensor: if torch.cuda.is_available(): device = torch.cuda.current_device() else: device = 'cpu' gallery = torch.tensor(gallery, dtype=torch.long, device=device) perm = torch.randperm(gallery.numel(), device=gallery.device)[:num] rand_inds = gallery[perm] if not is_tensor: rand_inds = rand_inds.cpu().numpy() return rand_inds def _sample_pos(self, assign_result, num_expected, **kwargs): """Randomly sample some positive samples.""" pos_inds = torch.nonzero(assign_result.gt_inds > 0).flatten() if pos_inds.numel() <= num_expected: return pos_inds else: return self.random_choice(pos_inds, num_expected) def _sample_neg(self, assign_result, num_expected, bboxes, feats=None, img_meta=None, **kwargs): """Sample negative samples. Score-HLR sampler is done in the following steps: 1. Take the maximum positive score prediction of each negative samples as s_i. 2. Filter out negative samples whose s_i <= score_thr, the left samples are called valid samples. 3. Use NMS-Match to divide valid samples into different groups, samples in the same group will greatly overlap with each other 4. Rank the matched samples in two-steps to get Score-HLR. (1) In the same group, rank samples with their scores. (2) In the same score rank across different groups, rank samples with their scores again. 5. Linearly map Score-HLR to the final label weights. Args: assign_result (:obj:`AssignResult`): result of assigner. num_expected (int): Expected number of samples. bboxes (Tensor): bbox to be sampled. feats (Tensor): Features come from FPN. img_meta (dict): Meta information dictionary. """ neg_inds = torch.nonzero(assign_result.gt_inds == 0).flatten() num_neg = neg_inds.size(0) if num_neg == 0: return neg_inds, None with torch.no_grad(): neg_bboxes = bboxes[neg_inds] neg_rois = bbox2roi([neg_bboxes]) bbox_result = self.context._bbox_forward(feats, neg_rois) cls_score, bbox_pred = bbox_result['cls_score'], bbox_result[ 'bbox_pred'] ori_loss = self.bbox_head.loss( cls_score=cls_score, bbox_pred=None, rois=None, labels=neg_inds.new_full((num_neg, ), self.bbox_head.num_classes), label_weights=cls_score.new_ones(num_neg), bbox_targets=None, bbox_weights=None, reduction_override='none')['loss_cls'] # filter out samples with the max score lower than score_thr max_score, argmax_score = cls_score.softmax(-1)[:, :-1].max(-1) valid_inds = (max_score > self.score_thr).nonzero().view(-1) invalid_inds = (max_score <= self.score_thr).nonzero().view(-1) num_valid = valid_inds.size(0) num_invalid = invalid_inds.size(0) num_expected = min(num_neg, num_expected) num_hlr = min(num_valid, num_expected) num_rand = num_expected - num_hlr if num_valid > 0: valid_rois = neg_rois[valid_inds] valid_max_score = max_score[valid_inds] valid_argmax_score = argmax_score[valid_inds] valid_bbox_pred = bbox_pred[valid_inds] # valid_bbox_pred shape: [num_valid, #num_classes, 4] valid_bbox_pred = valid_bbox_pred.view( valid_bbox_pred.size(0), -1, 4) selected_bbox_pred = valid_bbox_pred[range(num_valid), valid_argmax_score] pred_bboxes = self.bbox_head.bbox_coder.decode( valid_rois[:, 1:], selected_bbox_pred) pred_bboxes_with_score = torch.cat( [pred_bboxes, valid_max_score[:, None]], -1) group = nms_match(pred_bboxes_with_score, self.iou_thr) # imp: importance imp = cls_score.new_zeros(num_valid) for g in group: g_score = valid_max_score[g] # g_score has already sorted rank = g_score.new_tensor(range(g_score.size(0))) imp[g] = num_valid - rank + g_score _, imp_rank_inds = imp.sort(descending=True) _, imp_rank = imp_rank_inds.sort() hlr_inds = imp_rank_inds[:num_expected] if num_rand > 0: rand_inds = torch.randperm(num_invalid)[:num_rand] select_inds = torch.cat( [valid_inds[hlr_inds], invalid_inds[rand_inds]]) else: select_inds = valid_inds[hlr_inds] neg_label_weights = cls_score.new_ones(num_expected) up_bound = max(num_expected, num_valid) imp_weights = (up_bound - imp_rank[hlr_inds].float()) / up_bound neg_label_weights[:num_hlr] = imp_weights neg_label_weights[num_hlr:] = imp_weights.min() neg_label_weights = (self.bias + (1 - self.bias) * neg_label_weights).pow( self.k) ori_selected_loss = ori_loss[select_inds] new_loss = ori_selected_loss * neg_label_weights norm_ratio = ori_selected_loss.sum() / new_loss.sum() neg_label_weights *= norm_ratio else: neg_label_weights = cls_score.new_ones(num_expected) select_inds = torch.randperm(num_neg)[:num_expected] return neg_inds[select_inds], neg_label_weights def sample(self, assign_result, bboxes, gt_bboxes, gt_labels=None, img_meta=None, **kwargs): """Sample positive and negative bboxes. This is a simple implementation of bbox sampling given candidates, assigning results and ground truth bboxes. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. bboxes (Tensor): Boxes to be sampled from. gt_bboxes (Tensor): Ground truth bboxes. gt_labels (Tensor, optional): Class labels of ground truth bboxes. Returns: tuple[:obj:`SamplingResult`, Tensor]: Sampling result and negetive label weights. """ bboxes = bboxes[:, :4] gt_flags = bboxes.new_zeros((bboxes.shape[0], ), dtype=torch.uint8) if self.add_gt_as_proposals: bboxes = torch.cat([gt_bboxes, bboxes], dim=0) assign_result.add_gt_(gt_labels) gt_ones = bboxes.new_ones(gt_bboxes.shape[0], dtype=torch.uint8) gt_flags = torch.cat([gt_ones, gt_flags]) num_expected_pos = int(self.num * self.pos_fraction) pos_inds = self.pos_sampler._sample_pos( assign_result, num_expected_pos, bboxes=bboxes, **kwargs) num_sampled_pos = pos_inds.numel() num_expected_neg = self.num - num_sampled_pos if self.neg_pos_ub >= 0: _pos = max(1, num_sampled_pos) neg_upper_bound = int(self.neg_pos_ub * _pos) if num_expected_neg > neg_upper_bound: num_expected_neg = neg_upper_bound neg_inds, neg_label_weights = self.neg_sampler._sample_neg( assign_result, num_expected_neg, bboxes, img_meta=img_meta, **kwargs) return SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags), neg_label_weights
insightface/detection/scrfd/mmdet/core/bbox/samplers/score_hlr_sampler.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/core/bbox/samplers/score_hlr_sampler.py", "repo_id": "insightface", "token_count": 5703 }
101
import mmcv import numpy as np import pycocotools.mask as mask_util def split_combined_polys(polys, poly_lens, polys_per_mask): """Split the combined 1-D polys into masks. A mask is represented as a list of polys, and a poly is represented as a 1-D array. In dataset, all masks are concatenated into a single 1-D tensor. Here we need to split the tensor into original representations. Args: polys (list): a list (length = image num) of 1-D tensors poly_lens (list): a list (length = image num) of poly length polys_per_mask (list): a list (length = image num) of poly number of each mask Returns: list: a list (length = image num) of list (length = mask num) of \ list (length = poly num) of numpy array. """ mask_polys_list = [] for img_id in range(len(polys)): polys_single = polys[img_id] polys_lens_single = poly_lens[img_id].tolist() polys_per_mask_single = polys_per_mask[img_id].tolist() split_polys = mmcv.slice_list(polys_single, polys_lens_single) mask_polys = mmcv.slice_list(split_polys, polys_per_mask_single) mask_polys_list.append(mask_polys) return mask_polys_list # TODO: move this function to more proper place def encode_mask_results(mask_results): """Encode bitmap mask to RLE code. Args: mask_results (list | tuple[list]): bitmap mask results. In mask scoring rcnn, mask_results is a tuple of (segm_results, segm_cls_score). Returns: list | tuple: RLE encoded mask. """ if isinstance(mask_results, tuple): # mask scoring cls_segms, cls_mask_scores = mask_results else: cls_segms = mask_results num_classes = len(cls_segms) encoded_mask_results = [[] for _ in range(num_classes)] for i in range(len(cls_segms)): for cls_segm in cls_segms[i]: encoded_mask_results[i].append( mask_util.encode( np.array( cls_segm[:, :, np.newaxis], order='F', dtype='uint8'))[0]) # encoded with RLE if isinstance(mask_results, tuple): return encoded_mask_results, cls_mask_scores else: return encoded_mask_results
insightface/detection/scrfd/mmdet/core/mask/utils.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/core/mask/utils.py", "repo_id": "insightface", "token_count": 1012 }
102
import copy import cv2 import mmcv import numpy as np from ..builder import PIPELINES from .compose import Compose _MAX_LEVEL = 10 def level_to_value(level, max_value): """Map from level to values based on max_value.""" return (level / _MAX_LEVEL) * max_value def enhance_level_to_value(level, a=1.8, b=0.1): """Map from level to values.""" return (level / _MAX_LEVEL) * a + b def random_negative(value, random_negative_prob): """Randomly negate value based on random_negative_prob.""" return -value if np.random.rand() < random_negative_prob else value def bbox2fields(): """The key correspondence from bboxes to labels, masks and segmentations.""" bbox2label = { 'gt_bboxes': 'gt_labels', 'gt_bboxes_ignore': 'gt_labels_ignore' } bbox2mask = { 'gt_bboxes': 'gt_masks', 'gt_bboxes_ignore': 'gt_masks_ignore' } bbox2seg = { 'gt_bboxes': 'gt_semantic_seg', } return bbox2label, bbox2mask, bbox2seg @PIPELINES.register_module() class AutoAugment(object): """Auto augmentation. This data augmentation is proposed in `Learning Data Augmentation Strategies for Object Detection <https://arxiv.org/pdf/1906.11172>`_. TODO: Implement 'Shear', 'Sharpness' and 'Rotate' transforms Args: policies (list[list[dict]]): The policies of auto augmentation. Each policy in ``policies`` is a specific augmentation policy, and is composed by several augmentations (dict). When AutoAugment is called, a random policy in ``policies`` will be selected to augment images. Examples: >>> replace = (104, 116, 124) >>> policies = [ >>> [ >>> dict(type='Sharpness', prob=0.0, level=8), >>> dict( >>> type='Shear', >>> prob=0.4, >>> level=0, >>> replace=replace, >>> axis='x') >>> ], >>> [ >>> dict( >>> type='Rotate', >>> prob=0.6, >>> level=10, >>> replace=replace), >>> dict(type='Color', prob=1.0, level=6) >>> ] >>> ] >>> augmentation = AutoAugment(policies) >>> img = np.ones(100, 100, 3) >>> gt_bboxes = np.ones(10, 4) >>> results = dict(img=img, gt_bboxes=gt_bboxes) >>> results = augmentation(results) """ def __init__(self, policies): assert isinstance(policies, list) and len(policies) > 0, \ 'Policies must be a non-empty list.' for policy in policies: assert isinstance(policy, list) and len(policy) > 0, \ 'Each policy in policies must be a non-empty list.' for augment in policy: assert isinstance(augment, dict) and 'type' in augment, \ 'Each specific augmentation must be a dict with key' \ ' "type".' self.policies = copy.deepcopy(policies) self.transforms = [Compose(policy) for policy in self.policies] def __call__(self, results): transform = np.random.choice(self.transforms) return transform(results) def __repr__(self): return f'{self.__class__.__name__}(policies={self.policies})' @PIPELINES.register_module() class Shear(object): """Apply Shear Transformation to image (and its corresponding bbox, mask, segmentation). Args: level (int | float): The level should be in range [0,_MAX_LEVEL]. img_fill_val (int | float | tuple): The filled values for image border. If float, the same fill value will be used for all the three channels of image. If tuple, the should be 3 elements. seg_ignore_label (int): The fill value used for segmentation map. Note this value must equals ``ignore_label`` in ``semantic_head`` of the corresponding config. Default 255. prob (float): The probability for performing Shear and should be in range [0, 1]. direction (str): The direction for shear, either "horizontal" or "vertical". max_shear_magnitude (float): The maximum magnitude for Shear transformation. random_negative_prob (float): The probability that turns the offset negative. Should be in range [0,1] interpolation (str): Same as in :func:`mmcv.imshear`. """ def __init__(self, level, img_fill_val=128, seg_ignore_label=255, prob=0.5, direction='horizontal', max_shear_magnitude=0.3, random_negative_prob=0.5, interpolation='bilinear'): assert isinstance(level, (int, float)), 'The level must be type ' \ f'int or float, got {type(level)}.' assert 0 <= level <= _MAX_LEVEL, 'The level should be in range ' \ f'[0,{_MAX_LEVEL}], got {level}.' if isinstance(img_fill_val, (float, int)): img_fill_val = tuple([float(img_fill_val)] * 3) elif isinstance(img_fill_val, tuple): assert len(img_fill_val) == 3, 'img_fill_val as tuple must ' \ f'have 3 elements. got {len(img_fill_val)}.' img_fill_val = tuple([float(val) for val in img_fill_val]) else: raise ValueError( 'img_fill_val must be float or tuple with 3 elements.') assert np.all([0 <= val <= 255 for val in img_fill_val]), 'all ' \ 'elements of img_fill_val should between range [0,255].' \ f'got {img_fill_val}.' assert 0 <= prob <= 1.0, 'The probability of shear should be in ' \ f'range [0,1]. got {prob}.' assert direction in ('horizontal', 'vertical'), 'direction must ' \ f'in be either "horizontal" or "vertical". got {direction}.' assert isinstance(max_shear_magnitude, float), 'max_shear_magnitude ' \ f'should be type float. got {type(max_shear_magnitude)}.' assert 0. <= max_shear_magnitude <= 1., 'Defaultly ' \ 'max_shear_magnitude should be in range [0,1]. ' \ f'got {max_shear_magnitude}.' self.level = level self.magnitude = level_to_value(level, max_shear_magnitude) self.img_fill_val = img_fill_val self.seg_ignore_label = seg_ignore_label self.prob = prob self.direction = direction self.max_shear_magnitude = max_shear_magnitude self.random_negative_prob = random_negative_prob self.interpolation = interpolation def _shear_img(self, results, magnitude, direction='horizontal', interpolation='bilinear'): """Shear the image. Args: results (dict): Result dict from loading pipeline. magnitude (int | float): The magnitude used for shear. direction (str): The direction for shear, either "horizontal" or "vertical". interpolation (str): Same as in :func:`mmcv.imshear`. """ for key in results.get('img_fields', ['img']): img = results[key] img_sheared = mmcv.imshear( img, magnitude, direction, border_value=self.img_fill_val, interpolation=interpolation) results[key] = img_sheared.astype(img.dtype) def _shear_bboxes(self, results, magnitude): """Shear the bboxes.""" h, w, c = results['img_shape'] if self.direction == 'horizontal': shear_matrix = np.stack([[1, magnitude], [0, 1]]).astype(np.float32) # [2, 2] else: shear_matrix = np.stack([[1, 0], [magnitude, 1]]).astype(np.float32) for key in results.get('bbox_fields', []): min_x, min_y, max_x, max_y = np.split( results[key], results[key].shape[-1], axis=-1) coordinates = np.stack([[min_x, min_y], [max_x, min_y], [min_x, max_y], [max_x, max_y]]) # [4, 2, nb_box, 1] coordinates = coordinates[..., 0].transpose( (2, 1, 0)).astype(np.float32) # [nb_box, 2, 4] new_coords = np.matmul(shear_matrix[None, :, :], coordinates) # [nb_box, 2, 4] min_x = np.min(new_coords[:, 0, :], axis=-1) min_y = np.min(new_coords[:, 1, :], axis=-1) max_x = np.max(new_coords[:, 0, :], axis=-1) max_y = np.max(new_coords[:, 1, :], axis=-1) min_x = np.clip(min_x, a_min=0, a_max=w) min_y = np.clip(min_y, a_min=0, a_max=h) max_x = np.clip(max_x, a_min=min_x, a_max=w) max_y = np.clip(max_y, a_min=min_y, a_max=h) results[key] = np.stack([min_x, min_y, max_x, max_y], axis=-1).astype(results[key].dtype) def _shear_masks(self, results, magnitude, direction='horizontal', fill_val=0, interpolation='bilinear'): """Shear the masks.""" h, w, c = results['img_shape'] for key in results.get('mask_fields', []): masks = results[key] results[key] = masks.shear((h, w), magnitude, direction, border_value=fill_val, interpolation=interpolation) def _shear_seg(self, results, magnitude, direction='horizontal', fill_val=255, interpolation='bilinear'): """Shear the segmentation maps.""" for key in results.get('seg_fields', []): seg = results[key] results[key] = mmcv.imshear( seg, magnitude, direction, border_value=fill_val, interpolation=interpolation).astype(seg.dtype) def _filter_invalid(self, results, min_bbox_size=0): """Filter bboxes and corresponding masks too small after shear augmentation.""" bbox2label, bbox2mask, _ = bbox2fields() for key in results.get('bbox_fields', []): bbox_w = results[key][:, 2] - results[key][:, 0] bbox_h = results[key][:, 3] - results[key][:, 1] valid_inds = (bbox_w > min_bbox_size) & (bbox_h > min_bbox_size) valid_inds = np.nonzero(valid_inds)[0] results[key] = results[key][valid_inds] # label fields. e.g. gt_labels and gt_labels_ignore label_key = bbox2label.get(key) if label_key in results: results[label_key] = results[label_key][valid_inds] # mask fields, e.g. gt_masks and gt_masks_ignore mask_key = bbox2mask.get(key) if mask_key in results: results[mask_key] = results[mask_key][valid_inds] def __call__(self, results): """Call function to shear images, bounding boxes, masks and semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Sheared results. """ if np.random.rand() > self.prob: return results magnitude = random_negative(self.magnitude, self.random_negative_prob) self._shear_img(results, magnitude, self.direction, self.interpolation) self._shear_bboxes(results, magnitude) # fill_val set to 0 for background of mask. self._shear_masks( results, magnitude, self.direction, fill_val=0, interpolation=self.interpolation) self._shear_seg( results, magnitude, self.direction, fill_val=self.seg_ignore_label, interpolation=self.interpolation) self._filter_invalid(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(level={self.level}, ' repr_str += f'img_fill_val={self.img_fill_val}, ' repr_str += f'seg_ignore_label={self.seg_ignore_label}, ' repr_str += f'prob={self.prob}, ' repr_str += f'direction={self.direction}, ' repr_str += f'max_shear_magnitude={self.max_shear_magnitude}, ' repr_str += f'random_negative_prob={self.random_negative_prob}, ' repr_str += f'interpolation={self.interpolation})' return repr_str @PIPELINES.register_module() class Rotate(object): """Apply Rotate Transformation to image (and its corresponding bbox, mask, segmentation). Args: level (int | float): The level should be in range (0,_MAX_LEVEL]. scale (int | float): Isotropic scale factor. Same in ``mmcv.imrotate``. center (int | float | tuple[float]): Center point (w, h) of the rotation in the source image. If None, the center of the image will be used. Same in ``mmcv.imrotate``. img_fill_val (int | float | tuple): The fill value for image border. If float, the same value will be used for all the three channels of image. If tuple, the should be 3 elements (e.g. equals the number of channels for image). seg_ignore_label (int): The fill value used for segmentation map. Note this value must equals ``ignore_label`` in ``semantic_head`` of the corresponding config. Default 255. prob (float): The probability for perform transformation and should be in range 0 to 1. max_rotate_angle (int | float): The maximum angles for rotate transformation. random_negative_prob (float): The probability that turns the offset negative. """ def __init__(self, level, scale=1, center=None, img_fill_val=128, seg_ignore_label=255, prob=0.5, max_rotate_angle=30, random_negative_prob=0.5): assert isinstance(level, (int, float)), \ f'The level must be type int or float. got {type(level)}.' assert 0 <= level <= _MAX_LEVEL, \ f'The level should be in range (0,{_MAX_LEVEL}]. got {level}.' assert isinstance(scale, (int, float)), \ f'The scale must be type int or float. got type {type(scale)}.' if isinstance(center, (int, float)): center = (center, center) elif isinstance(center, tuple): assert len(center) == 2, 'center with type tuple must have '\ f'2 elements. got {len(center)} elements.' else: assert center is None, 'center must be None or type int, '\ f'float or tuple, got type {type(center)}.' if isinstance(img_fill_val, (float, int)): img_fill_val = tuple([float(img_fill_val)] * 3) elif isinstance(img_fill_val, tuple): assert len(img_fill_val) == 3, 'img_fill_val as tuple must '\ f'have 3 elements. got {len(img_fill_val)}.' img_fill_val = tuple([float(val) for val in img_fill_val]) else: raise ValueError( 'img_fill_val must be float or tuple with 3 elements.') assert np.all([0 <= val <= 255 for val in img_fill_val]), \ 'all elements of img_fill_val should between range [0,255]. '\ f'got {img_fill_val}.' assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. '\ 'got {prob}.' assert isinstance(max_rotate_angle, (int, float)), 'max_rotate_angle '\ f'should be type int or float. got type {type(max_rotate_angle)}.' self.level = level self.scale = scale # Rotation angle in degrees. Positive values mean # clockwise rotation. self.angle = level_to_value(level, max_rotate_angle) self.center = center self.img_fill_val = img_fill_val self.seg_ignore_label = seg_ignore_label self.prob = prob self.max_rotate_angle = max_rotate_angle self.random_negative_prob = random_negative_prob def _rotate_img(self, results, angle, center=None, scale=1.0): """Rotate the image. Args: results (dict): Result dict from loading pipeline. angle (float): Rotation angle in degrees, positive values mean clockwise rotation. Same in ``mmcv.imrotate``. center (tuple[float], optional): Center point (w, h) of the rotation. Same in ``mmcv.imrotate``. scale (int | float): Isotropic scale factor. Same in ``mmcv.imrotate``. """ for key in results.get('img_fields', ['img']): img = results[key].copy() img_rotated = mmcv.imrotate( img, angle, center, scale, border_value=self.img_fill_val) results[key] = img_rotated.astype(img.dtype) def _rotate_bboxes(self, results, rotate_matrix): """Rotate the bboxes.""" h, w, c = results['img_shape'] for key in results.get('bbox_fields', []): min_x, min_y, max_x, max_y = np.split( results[key], results[key].shape[-1], axis=-1) coordinates = np.stack([[min_x, min_y], [max_x, min_y], [min_x, max_y], [max_x, max_y]]) # [4, 2, nb_bbox, 1] # pad 1 to convert from format [x, y] to homogeneous # coordinates format [x, y, 1] coordinates = np.concatenate( (coordinates, np.ones((4, 1, coordinates.shape[2], 1), coordinates.dtype)), axis=1) # [4, 3, nb_bbox, 1] coordinates = coordinates.transpose( (2, 0, 1, 3)) # [nb_bbox, 4, 3, 1] rotated_coords = np.matmul(rotate_matrix, coordinates) # [nb_bbox, 4, 2, 1] rotated_coords = rotated_coords[..., 0] # [nb_bbox, 4, 2] min_x, min_y = np.min( rotated_coords[:, :, 0], axis=1), np.min( rotated_coords[:, :, 1], axis=1) max_x, max_y = np.max( rotated_coords[:, :, 0], axis=1), np.max( rotated_coords[:, :, 1], axis=1) min_x, min_y = np.clip( min_x, a_min=0, a_max=w), np.clip( min_y, a_min=0, a_max=h) max_x, max_y = np.clip( max_x, a_min=min_x, a_max=w), np.clip( max_y, a_min=min_y, a_max=h) results[key] = np.stack([min_x, min_y, max_x, max_y], axis=-1).astype(results[key].dtype) def _rotate_masks(self, results, angle, center=None, scale=1.0, fill_val=0): """Rotate the masks.""" h, w, c = results['img_shape'] for key in results.get('mask_fields', []): masks = results[key] results[key] = masks.rotate((h, w), angle, center, scale, fill_val) def _rotate_seg(self, results, angle, center=None, scale=1.0, fill_val=255): """Rotate the segmentation map.""" for key in results.get('seg_fields', []): seg = results[key].copy() results[key] = mmcv.imrotate( seg, angle, center, scale, border_value=fill_val).astype(seg.dtype) def _filter_invalid(self, results, min_bbox_size=0): """Filter bboxes and corresponding masks too small after rotate augmentation.""" bbox2label, bbox2mask, _ = bbox2fields() for key in results.get('bbox_fields', []): bbox_w = results[key][:, 2] - results[key][:, 0] bbox_h = results[key][:, 3] - results[key][:, 1] valid_inds = (bbox_w > min_bbox_size) & (bbox_h > min_bbox_size) valid_inds = np.nonzero(valid_inds)[0] results[key] = results[key][valid_inds] # label fields. e.g. gt_labels and gt_labels_ignore label_key = bbox2label.get(key) if label_key in results: results[label_key] = results[label_key][valid_inds] # mask fields, e.g. gt_masks and gt_masks_ignore mask_key = bbox2mask.get(key) if mask_key in results: results[mask_key] = results[mask_key][valid_inds] def __call__(self, results): """Call function to rotate images, bounding boxes, masks and semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Rotated results. """ if np.random.rand() > self.prob: return results h, w = results['img'].shape[:2] center = self.center if center is None: center = ((w - 1) * 0.5, (h - 1) * 0.5) angle = random_negative(self.angle, self.random_negative_prob) self._rotate_img(results, angle, center, self.scale) rotate_matrix = cv2.getRotationMatrix2D(center, -angle, self.scale) self._rotate_bboxes(results, rotate_matrix) self._rotate_masks(results, angle, center, self.scale, fill_val=0) self._rotate_seg( results, angle, center, self.scale, fill_val=self.seg_ignore_label) self._filter_invalid(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(level={self.level}, ' repr_str += f'scale={self.scale}, ' repr_str += f'center={self.center}, ' repr_str += f'img_fill_val={self.img_fill_val}, ' repr_str += f'seg_ignore_label={self.seg_ignore_label}, ' repr_str += f'prob={self.prob}, ' repr_str += f'max_rotate_angle={self.max_rotate_angle}, ' repr_str += f'random_negative_prob={self.random_negative_prob})' return repr_str @PIPELINES.register_module() class Translate(object): """Translate the images, bboxes, masks and segmentation maps horizontally or vertically. Args: level (int | float): The level for Translate and should be in range [0,_MAX_LEVEL]. prob (float): The probability for performing translation and should be in range [0, 1]. img_fill_val (int | float | tuple): The filled value for image border. If float, the same fill value will be used for all the three channels of image. If tuple, the should be 3 elements (e.g. equals the number of channels for image). seg_ignore_label (int): The fill value used for segmentation map. Note this value must equals ``ignore_label`` in ``semantic_head`` of the corresponding config. Default 255. direction (str): The translate direction, either "horizontal" or "vertical". max_translate_offset (int | float): The maximum pixel's offset for Translate. random_negative_prob (float): The probability that turns the offset negative. min_size (int | float): The minimum pixel for filtering invalid bboxes after the translation. """ def __init__(self, level, prob=0.5, img_fill_val=128, seg_ignore_label=255, direction='horizontal', max_translate_offset=250., random_negative_prob=0.5, min_size=0): assert isinstance(level, (int, float)), \ 'The level must be type int or float.' assert 0 <= level <= _MAX_LEVEL, \ 'The level used for calculating Translate\'s offset should be ' \ 'in range [0,_MAX_LEVEL]' assert 0 <= prob <= 1.0, \ 'The probability of translation should be in range [0, 1].' if isinstance(img_fill_val, (float, int)): img_fill_val = tuple([float(img_fill_val)] * 3) elif isinstance(img_fill_val, tuple): assert len(img_fill_val) == 3, \ 'img_fill_val as tuple must have 3 elements.' img_fill_val = tuple([float(val) for val in img_fill_val]) else: raise ValueError('img_fill_val must be type float or tuple.') assert np.all([0 <= val <= 255 for val in img_fill_val]), \ 'all elements of img_fill_val should between range [0,255].' assert direction in ('horizontal', 'vertical'), \ 'direction should be "horizontal" or "vertical".' assert isinstance(max_translate_offset, (int, float)), \ 'The max_translate_offset must be type int or float.' # the offset used for translation self.offset = int(level_to_value(level, max_translate_offset)) self.level = level self.prob = prob self.img_fill_val = img_fill_val self.seg_ignore_label = seg_ignore_label self.direction = direction self.max_translate_offset = max_translate_offset self.random_negative_prob = random_negative_prob self.min_size = min_size def _translate_img(self, results, offset, direction='horizontal'): """Translate the image. Args: results (dict): Result dict from loading pipeline. offset (int | float): The offset for translate. direction (str): The translate direction, either "horizontal" or "vertical". """ for key in results.get('img_fields', ['img']): img = results[key].copy() results[key] = mmcv.imtranslate( img, offset, direction, self.img_fill_val).astype(img.dtype) def _translate_bboxes(self, results, offset): """Shift bboxes horizontally or vertically, according to offset.""" h, w, c = results['img_shape'] for key in results.get('bbox_fields', []): min_x, min_y, max_x, max_y = np.split( results[key], results[key].shape[-1], axis=-1) if self.direction == 'horizontal': min_x = np.maximum(0, min_x + offset) max_x = np.minimum(w, max_x + offset) elif self.direction == 'vertical': min_y = np.maximum(0, min_y + offset) max_y = np.minimum(h, max_y + offset) # the boxs translated outside of image will be filtered along with # the corresponding masks, by invoking ``_filter_invalid``. results[key] = np.concatenate([min_x, min_y, max_x, max_y], axis=-1) def _translate_masks(self, results, offset, direction='horizontal', fill_val=0): """Translate masks horizontally or vertically.""" h, w, c = results['img_shape'] for key in results.get('mask_fields', []): masks = results[key] results[key] = masks.translate((h, w), offset, direction, fill_val) def _translate_seg(self, results, offset, direction='horizontal', fill_val=255): """Translate segmentation maps horizontally or vertically.""" for key in results.get('seg_fields', []): seg = results[key].copy() results[key] = mmcv.imtranslate(seg, offset, direction, fill_val).astype(seg.dtype) def _filter_invalid(self, results, min_size=0): """Filter bboxes and masks too small or translated out of image.""" bbox2label, bbox2mask, _ = bbox2fields() for key in results.get('bbox_fields', []): bbox_w = results[key][:, 2] - results[key][:, 0] bbox_h = results[key][:, 3] - results[key][:, 1] valid_inds = (bbox_w > min_size) & (bbox_h > min_size) valid_inds = np.nonzero(valid_inds)[0] results[key] = results[key][valid_inds] # label fields. e.g. gt_labels and gt_labels_ignore label_key = bbox2label.get(key) if label_key in results: results[label_key] = results[label_key][valid_inds] # mask fields, e.g. gt_masks and gt_masks_ignore mask_key = bbox2mask.get(key) if mask_key in results: results[mask_key] = results[mask_key][valid_inds] return results def __call__(self, results): """Call function to translate images, bounding boxes, masks and semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Translated results. """ if np.random.rand() > self.prob: return results offset = random_negative(self.offset, self.random_negative_prob) self._translate_img(results, offset, self.direction) self._translate_bboxes(results, offset) # fill_val defaultly 0 for BitmapMasks and None for PolygonMasks. self._translate_masks(results, offset, self.direction) # fill_val set to ``seg_ignore_label`` for the ignored value # of segmentation map. self._translate_seg( results, offset, self.direction, fill_val=self.seg_ignore_label) self._filter_invalid(results, min_size=self.min_size) return results @PIPELINES.register_module() class ColorTransform(object): """Apply Color transformation to image. The bboxes, masks, and segmentations are not modified. Args: level (int | float): Should be in range [0,_MAX_LEVEL]. prob (float): The probability for performing Color transformation. """ def __init__(self, level, prob=0.5): assert isinstance(level, (int, float)), \ 'The level must be type int or float.' assert 0 <= level <= _MAX_LEVEL, \ 'The level should be in range [0,_MAX_LEVEL].' assert 0 <= prob <= 1.0, \ 'The probability should be in range [0,1].' self.level = level self.prob = prob self.factor = enhance_level_to_value(level) def _adjust_color_img(self, results, factor=1.0): """Apply Color transformation to image.""" for key in results.get('img_fields', ['img']): # NOTE defaultly the image should be BGR format img = results[key] results[key] = mmcv.adjust_color(img, factor).astype(img.dtype) def __call__(self, results): """Call function for Color transformation. Args: results (dict): Result dict from loading pipeline. Returns: dict: Colored results. """ if np.random.rand() > self.prob: return results self._adjust_color_img(results, self.factor) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(level={self.level}, ' repr_str += f'prob={self.prob})' return repr_str @PIPELINES.register_module() class EqualizeTransform(object): """Apply Equalize transformation to image. The bboxes, masks and segmentations are not modified. Args: prob (float): The probability for performing Equalize transformation. """ def __init__(self, prob=0.5): assert 0 <= prob <= 1.0, \ 'The probability should be in range [0,1].' self.prob = prob def _imequalize(self, results): """Equalizes the histogram of one image.""" for key in results.get('img_fields', ['img']): img = results[key] results[key] = mmcv.imequalize(img).astype(img.dtype) def __call__(self, results): """Call function for Equalize transformation. Args: results (dict): Results dict from loading pipeline. Returns: dict: Results after the transformation. """ if np.random.rand() > self.prob: return results self._imequalize(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob})' @PIPELINES.register_module() class BrightnessTransform(object): """Apply Brightness transformation to image. The bboxes, masks and segmentations are not modified. Args: level (int | float): Should be in range [0,_MAX_LEVEL]. prob (float): The probability for performing Brightness transformation. """ def __init__(self, level, prob=0.5): assert isinstance(level, (int, float)), \ 'The level must be type int or float.' assert 0 <= level <= _MAX_LEVEL, \ 'The level should be in range [0,_MAX_LEVEL].' assert 0 <= prob <= 1.0, \ 'The probability should be in range [0,1].' self.level = level self.prob = prob self.factor = enhance_level_to_value(level) def _adjust_brightness_img(self, results, factor=1.0): """Adjust the brightness of image.""" for key in results.get('img_fields', ['img']): img = results[key] results[key] = mmcv.adjust_brightness(img, factor).astype(img.dtype) def __call__(self, results): """Call function for Brightness transformation. Args: results (dict): Results dict from loading pipeline. Returns: dict: Results after the transformation. """ if np.random.rand() > self.prob: return results self._adjust_brightness_img(results, self.factor) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(level={self.level}, ' repr_str += f'prob={self.prob})' return repr_str @PIPELINES.register_module() class ContrastTransform(object): """Apply Contrast transformation to image. The bboxes, masks and segmentations are not modified. Args: level (int | float): Should be in range [0,_MAX_LEVEL]. prob (float): The probability for performing Contrast transformation. """ def __init__(self, level, prob=0.5): assert isinstance(level, (int, float)), \ 'The level must be type int or float.' assert 0 <= level <= _MAX_LEVEL, \ 'The level should be in range [0,_MAX_LEVEL].' assert 0 <= prob <= 1.0, \ 'The probability should be in range [0,1].' self.level = level self.prob = prob self.factor = enhance_level_to_value(level) def _adjust_contrast_img(self, results, factor=1.0): """Adjust the image contrast.""" for key in results.get('img_fields', ['img']): img = results[key] results[key] = mmcv.adjust_contrast(img, factor).astype(img.dtype) def __call__(self, results): """Call function for Contrast transformation. Args: results (dict): Results dict from loading pipeline. Returns: dict: Results after the transformation. """ if np.random.rand() > self.prob: return results self._adjust_contrast_img(results, self.factor) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(level={self.level}, ' repr_str += f'prob={self.prob})' return repr_str
insightface/detection/scrfd/mmdet/datasets/pipelines/auto_augment.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/datasets/pipelines/auto_augment.py", "repo_id": "insightface", "token_count": 17497 }
103
from .darknet import Darknet from .detectors_resnet import DetectoRS_ResNet from .detectors_resnext import DetectoRS_ResNeXt from .hourglass import HourglassNet from .hrnet import HRNet from .regnet import RegNet from .res2net import Res2Net from .resnest import ResNeSt from .resnet import ResNet, ResNetV1d, ResNetV1e from .resnext import ResNeXt from .ssd_vgg import SSDVGG from .trident_resnet import TridentResNet from .mobilenet import MobileNetV1 __all__ = [ 'RegNet', 'ResNet', 'ResNetV1d', 'ResNetV1e', 'ResNeXt', 'SSDVGG', 'HRNet', 'Res2Net', 'HourglassNet', 'DetectoRS_ResNet', 'DetectoRS_ResNeXt', 'Darknet', 'ResNeSt', 'TridentResNet', 'MobileNetV1' ]
insightface/detection/scrfd/mmdet/models/backbones/__init__.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/backbones/__init__.py", "repo_id": "insightface", "token_count": 262 }
104
from abc import abstractmethod import torch import torch.nn as nn from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init from mmcv.runner import force_fp32 from mmdet.core import multi_apply from ..builder import HEADS, build_loss from .base_dense_head import BaseDenseHead from .dense_test_mixins import BBoxTestMixin @HEADS.register_module() class AnchorFreeHead(BaseDenseHead, BBoxTestMixin): """Anchor-free head (FCOS, Fovea, RepPoints, etc.). Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. feat_channels (int): Number of hidden channels. Used in child classes. stacked_convs (int): Number of stacking convs of the head. strides (tuple): Downsample factor of each feature map. dcn_on_last_conv (bool): If true, use dcn in the last layer of towers. Default: False. conv_bias (bool | str): If specified as `auto`, it will be decided by the norm_cfg. Bias of conv will be set as True if `norm_cfg` is None, otherwise False. Default: "auto". loss_cls (dict): Config of classification loss. loss_bbox (dict): Config of localization loss. conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Config dict for normalization layer. Default: None. train_cfg (dict): Training config of anchor head. test_cfg (dict): Testing config of anchor head. """ # noqa: W605 _version = 1 def __init__(self, num_classes, in_channels, feat_channels=256, stacked_convs=4, strides=(4, 8, 16, 32, 64), dcn_on_last_conv=False, conv_bias='auto', loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), conv_cfg=None, norm_cfg=None, train_cfg=None, test_cfg=None): super(AnchorFreeHead, self).__init__() self.num_classes = num_classes self.cls_out_channels = num_classes self.in_channels = in_channels self.feat_channels = feat_channels self.stacked_convs = stacked_convs self.strides = strides self.dcn_on_last_conv = dcn_on_last_conv assert conv_bias == 'auto' or isinstance(conv_bias, bool) self.conv_bias = conv_bias self.loss_cls = build_loss(loss_cls) self.loss_bbox = build_loss(loss_bbox) self.train_cfg = train_cfg self.test_cfg = test_cfg self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.fp16_enabled = False self._init_layers() def _init_layers(self): """Initialize layers of the head.""" self._init_cls_convs() self._init_reg_convs() self._init_predictor() def _init_cls_convs(self): """Initialize classification conv layers of the head.""" self.cls_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels if self.dcn_on_last_conv and i == self.stacked_convs - 1: conv_cfg = dict(type='DCNv2') else: conv_cfg = self.conv_cfg self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=conv_cfg, norm_cfg=self.norm_cfg, bias=self.conv_bias)) def _init_reg_convs(self): """Initialize bbox regression conv layers of the head.""" self.reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels if self.dcn_on_last_conv and i == self.stacked_convs - 1: conv_cfg = dict(type='DCNv2') else: conv_cfg = self.conv_cfg self.reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=conv_cfg, norm_cfg=self.norm_cfg, bias=self.conv_bias)) def _init_predictor(self): """Initialize predictor layers of the head.""" self.conv_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1) self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) def init_weights(self): """Initialize weights of the head.""" for m in self.cls_convs: if isinstance(m.conv, nn.Conv2d): normal_init(m.conv, std=0.01) for m in self.reg_convs: if isinstance(m.conv, nn.Conv2d): normal_init(m.conv, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.conv_cls, std=0.01, bias=bias_cls) normal_init(self.conv_reg, std=0.01) def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): """Hack some keys of the model state dict so that can load checkpoints of previous version.""" version = local_metadata.get('version', None) if version is None: # the key is different in early versions # for example, 'fcos_cls' become 'conv_cls' now bbox_head_keys = [ k for k in state_dict.keys() if k.startswith(prefix) ] ori_predictor_keys = [] new_predictor_keys = [] # e.g. 'fcos_cls' or 'fcos_reg' for key in bbox_head_keys: ori_predictor_keys.append(key) key = key.split('.') conv_name = None if key[1].endswith('cls'): conv_name = 'conv_cls' elif key[1].endswith('reg'): conv_name = 'conv_reg' elif key[1].endswith('centerness'): conv_name = 'conv_centerness' else: assert NotImplementedError if conv_name is not None: key[1] = conv_name new_predictor_keys.append('.'.join(key)) else: ori_predictor_keys.pop(-1) for i in range(len(new_predictor_keys)): state_dict[new_predictor_keys[i]] = state_dict.pop( ori_predictor_keys[i]) super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually contain classification scores and bbox predictions. cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4. """ return multi_apply(self.forward_single, feats)[:2] def forward_single(self, x): """Forward features of a single scale levle. Args: x (Tensor): FPN feature maps of the specified stride. Returns: tuple: Scores for each class, bbox predictions, features after classification and regression conv layers, some models needs these features like FCOS. """ cls_feat = x reg_feat = x for cls_layer in self.cls_convs: cls_feat = cls_layer(cls_feat) cls_score = self.conv_cls(cls_feat) for reg_layer in self.reg_convs: reg_feat = reg_layer(reg_feat) bbox_pred = self.conv_reg(reg_feat) return cls_score, bbox_pred, cls_feat, reg_feat @abstractmethod @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def loss(self, cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute loss of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. """ raise NotImplementedError @abstractmethod @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def get_bboxes(self, cls_scores, bbox_preds, img_metas, cfg=None, rescale=None): """Transform network output for a batch into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_points * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_points * 4, H, W) img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used rescale (bool): If True, return boxes in original image space """ raise NotImplementedError @abstractmethod def get_targets(self, points, gt_bboxes_list, gt_labels_list): """Compute regression, classification and centerss targets for points in multiple images. Args: points (list[Tensor]): Points of each fpn level, each has shape (num_points, 2). gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, each has shape (num_gt, 4). gt_labels_list (list[Tensor]): Ground truth labels of each box, each has shape (num_gt,). """ raise NotImplementedError def _get_points_single(self, featmap_size, stride, dtype, device, flatten=False): """Get points of a single scale level.""" h, w = featmap_size x_range = torch.arange(w, dtype=dtype, device=device) y_range = torch.arange(h, dtype=dtype, device=device) y, x = torch.meshgrid(y_range, x_range) if flatten: y = y.flatten() x = x.flatten() return y, x def get_points(self, featmap_sizes, dtype, device, flatten=False): """Get points according to feature map sizes. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. dtype (torch.dtype): Type of points. device (torch.device): Device of points. Returns: tuple: points of each image. """ mlvl_points = [] for i in range(len(featmap_sizes)): mlvl_points.append( self._get_points_single(featmap_sizes[i], self.strides[i], dtype, device, flatten)) return mlvl_points def aug_test(self, feats, img_metas, rescale=False): """Test function with test time augmentation. Args: feats (list[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains features for all images in the batch. img_metas (list[list[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. each dict has image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[ndarray]: bbox results of each class """ return self.aug_test_bboxes(feats, img_metas, rescale=rescale)
insightface/detection/scrfd/mmdet/models/dense_heads/anchor_free_head.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/dense_heads/anchor_free_head.py", "repo_id": "insightface", "token_count": 6891 }
105
import numpy as np import torch from mmcv.runner import force_fp32 from mmdet.core import multi_apply, multiclass_nms from mmdet.core.bbox.iou_calculators import bbox_overlaps from mmdet.models import HEADS from mmdet.models.dense_heads import ATSSHead EPS = 1e-12 try: import sklearn.mixture as skm except ImportError: skm = None def levels_to_images(mlvl_tensor): """Concat multi-level feature maps by image. [feature_level0, feature_level1...] -> [feature_image0, feature_image1...] Convert the shape of each element in mlvl_tensor from (N, C, H, W) to (N, H*W , C), then split the element to N elements with shape (H*W, C), and concat elements in same image of all level along first dimension. Args: mlvl_tensor (list[torch.Tensor]): list of Tensor which collect from corresponding level. Each element is of shape (N, C, H, W) Returns: list[torch.Tensor]: A list that contains N tensors and each tensor is of shape (num_elements, C) """ batch_size = mlvl_tensor[0].size(0) batch_list = [[] for _ in range(batch_size)] channels = mlvl_tensor[0].size(1) for t in mlvl_tensor: t = t.permute(0, 2, 3, 1) t = t.view(batch_size, -1, channels).contiguous() for img in range(batch_size): batch_list[img].append(t[img]) return [torch.cat(item, 0) for item in batch_list] @HEADS.register_module() class PAAHead(ATSSHead): """Head of PAAAssignment: Probabilistic Anchor Assignment with IoU Prediction for Object Detection. Code is modified from the `official github repo <https://github.com/kkhoot/PAA/blob/master/paa_core /modeling/rpn/paa/loss.py>`_. More details can be found in the `paper <https://arxiv.org/abs/2007.08103>`_ . Args: topk (int): Select topk samples with smallest loss in each level. score_voting (bool): Whether to use score voting in post-process. covariance_type : String describing the type of covariance parameters to be used in :class:`sklearn.mixture.GaussianMixture`. It must be one of: - 'full': each component has its own general covariance matrix - 'tied': all components share the same general covariance matrix - 'diag': each component has its own diagonal covariance matrix - 'spherical': each component has its own single variance Default: 'diag'. From 'full' to 'spherical', the gmm fitting process is faster yet the performance could be influenced. For most cases, 'diag' should be a good choice. """ def __init__(self, *args, topk=9, score_voting=True, covariance_type='diag', **kwargs): # topk used in paa reassign process self.topk = topk self.with_score_voting = score_voting self.covariance_type = covariance_type super(PAAHead, self).__init__(*args, **kwargs) @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'iou_preds')) def loss(self, cls_scores, bbox_preds, iou_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute losses of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W) iou_preds (list[Tensor]): iou_preds for each scale level with shape (N, num_anchors * 1, H, W) gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (list[Tensor] | None): Specify which bounding boxes can be ignored when are computing the loss. Returns: dict[str, Tensor]: A dictionary of loss gmm_assignment. """ featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.anchor_generator.num_levels device = cls_scores[0].device anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, img_metas, device=device) label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 cls_reg_targets = self.get_targets( anchor_list, valid_flag_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=gt_labels, label_channels=label_channels, ) (labels, labels_weight, bboxes_target, bboxes_weight, pos_inds, pos_gt_index) = cls_reg_targets cls_scores = levels_to_images(cls_scores) cls_scores = [ item.reshape(-1, self.cls_out_channels) for item in cls_scores ] bbox_preds = levels_to_images(bbox_preds) bbox_preds = [item.reshape(-1, 4) for item in bbox_preds] iou_preds = levels_to_images(iou_preds) iou_preds = [item.reshape(-1, 1) for item in iou_preds] pos_losses_list, = multi_apply(self.get_pos_loss, anchor_list, cls_scores, bbox_preds, labels, labels_weight, bboxes_target, bboxes_weight, pos_inds) with torch.no_grad(): labels, label_weights, bbox_weights, num_pos = multi_apply( self.paa_reassign, pos_losses_list, labels, labels_weight, bboxes_weight, pos_inds, pos_gt_index, anchor_list, ) num_pos = sum(num_pos) # convert all tensor list to a flatten tensor cls_scores = torch.cat(cls_scores, 0).view(-1, cls_scores[0].size(-1)) bbox_preds = torch.cat(bbox_preds, 0).view(-1, bbox_preds[0].size(-1)) iou_preds = torch.cat(iou_preds, 0).view(-1, iou_preds[0].size(-1)) labels = torch.cat(labels, 0).view(-1) flatten_anchors = torch.cat( [torch.cat(item, 0) for item in anchor_list]) labels_weight = torch.cat(labels_weight, 0).view(-1) bboxes_target = torch.cat(bboxes_target, 0).view(-1, bboxes_target[0].size(-1)) pos_inds_flatten = ((labels >= 0) & (labels < self.num_classes)).nonzero().reshape(-1) losses_cls = self.loss_cls( cls_scores, labels, labels_weight, avg_factor=max(num_pos, len(img_metas))) # avoid num_pos=0 if num_pos: pos_bbox_pred = self.bbox_coder.decode( flatten_anchors[pos_inds_flatten], bbox_preds[pos_inds_flatten]) pos_bbox_target = bboxes_target[pos_inds_flatten] iou_target = bbox_overlaps( pos_bbox_pred.detach(), pos_bbox_target, is_aligned=True) losses_iou = self.loss_centerness( iou_preds[pos_inds_flatten], iou_target.unsqueeze(-1), avg_factor=num_pos) losses_bbox = self.loss_bbox( pos_bbox_pred, pos_bbox_target, iou_target.clamp(min=EPS), avg_factor=iou_target.sum()) else: losses_iou = iou_preds.sum() * 0 losses_bbox = bbox_preds.sum() * 0 return dict( loss_cls=losses_cls, loss_bbox=losses_bbox, loss_iou=losses_iou) def get_pos_loss(self, anchors, cls_score, bbox_pred, label, label_weight, bbox_target, bbox_weight, pos_inds): """Calculate loss of all potential positive samples obtained from first match process. Args: anchors (list[Tensor]): Anchors of each scale. cls_score (Tensor): Box scores of single image with shape (num_anchors, num_classes) bbox_pred (Tensor): Box energies / deltas of single image with shape (num_anchors, 4) label (Tensor): classification target of each anchor with shape (num_anchors,) label_weight (Tensor): Classification loss weight of each anchor with shape (num_anchors). bbox_target (dict): Regression target of each anchor with shape (num_anchors, 4). bbox_weight (Tensor): Bbox weight of each anchor with shape (num_anchors, 4). pos_inds (Tensor): Index of all positive samples got from first assign process. Returns: Tensor: Losses of all positive samples in single image. """ if not len(pos_inds): return cls_score.new([]), anchors_all_level = torch.cat(anchors, 0) pos_scores = cls_score[pos_inds] pos_bbox_pred = bbox_pred[pos_inds] pos_label = label[pos_inds] pos_label_weight = label_weight[pos_inds] pos_bbox_target = bbox_target[pos_inds] pos_bbox_weight = bbox_weight[pos_inds] pos_anchors = anchors_all_level[pos_inds] pos_bbox_pred = self.bbox_coder.decode(pos_anchors, pos_bbox_pred) # to keep loss dimension loss_cls = self.loss_cls( pos_scores, pos_label, pos_label_weight, avg_factor=self.loss_cls.loss_weight, reduction_override='none') loss_bbox = self.loss_bbox( pos_bbox_pred, pos_bbox_target, pos_bbox_weight, avg_factor=self.loss_cls.loss_weight, reduction_override='none') loss_cls = loss_cls.sum(-1) pos_loss = loss_bbox + loss_cls return pos_loss, def paa_reassign(self, pos_losses, label, label_weight, bbox_weight, pos_inds, pos_gt_inds, anchors): """Fit loss to GMM distribution and separate positive, ignore, negative samples again with GMM model. Args: pos_losses (Tensor): Losses of all positive samples in single image. label (Tensor): classification target of each anchor with shape (num_anchors,) label_weight (Tensor): Classification loss weight of each anchor with shape (num_anchors). bbox_weight (Tensor): Bbox weight of each anchor with shape (num_anchors, 4). pos_inds (Tensor): Index of all positive samples got from first assign process. pos_gt_inds (Tensor): Gt_index of all positive samples got from first assign process. anchors (list[Tensor]): Anchors of each scale. Returns: tuple: Usually returns a tuple containing learning targets. - label (Tensor): classification target of each anchor after paa assign, with shape (num_anchors,) - label_weight (Tensor): Classification loss weight of each anchor after paa assign, with shape (num_anchors). - bbox_weight (Tensor): Bbox weight of each anchor with shape (num_anchors, 4). - num_pos (int): The number of positive samples after paa assign. """ if not len(pos_inds): return label, label_weight, bbox_weight, 0 num_gt = pos_gt_inds.max() + 1 num_level = len(anchors) num_anchors_each_level = [item.size(0) for item in anchors] num_anchors_each_level.insert(0, 0) inds_level_interval = np.cumsum(num_anchors_each_level) pos_level_mask = [] for i in range(num_level): mask = (pos_inds >= inds_level_interval[i]) & ( pos_inds < inds_level_interval[i + 1]) pos_level_mask.append(mask) pos_inds_after_paa = [label.new_tensor([])] ignore_inds_after_paa = [label.new_tensor([])] for gt_ind in range(num_gt): pos_inds_gmm = [] pos_loss_gmm = [] gt_mask = pos_gt_inds == gt_ind for level in range(num_level): level_mask = pos_level_mask[level] level_gt_mask = level_mask & gt_mask value, topk_inds = pos_losses[level_gt_mask].topk( min(level_gt_mask.sum(), self.topk), largest=False) pos_inds_gmm.append(pos_inds[level_gt_mask][topk_inds]) pos_loss_gmm.append(value) pos_inds_gmm = torch.cat(pos_inds_gmm) pos_loss_gmm = torch.cat(pos_loss_gmm) # fix gmm need at least two sample if len(pos_inds_gmm) < 2: continue device = pos_inds_gmm.device pos_loss_gmm, sort_inds = pos_loss_gmm.sort() pos_inds_gmm = pos_inds_gmm[sort_inds] pos_loss_gmm = pos_loss_gmm.view(-1, 1).cpu().numpy() min_loss, max_loss = pos_loss_gmm.min(), pos_loss_gmm.max() means_init = np.array([min_loss, max_loss]).reshape(2, 1) weights_init = np.array([0.5, 0.5]) precisions_init = np.array([1.0, 1.0]).reshape(2, 1, 1) # full if self.covariance_type == 'spherical': precisions_init = precisions_init.reshape(2) elif self.covariance_type == 'diag': precisions_init = precisions_init.reshape(2, 1) elif self.covariance_type == 'tied': precisions_init = np.array([[1.0]]) if skm is None: raise ImportError('Please run "pip install sklearn" ' 'to install sklearn first.') gmm = skm.GaussianMixture( 2, weights_init=weights_init, means_init=means_init, precisions_init=precisions_init, covariance_type=self.covariance_type) gmm.fit(pos_loss_gmm) gmm_assignment = gmm.predict(pos_loss_gmm) scores = gmm.score_samples(pos_loss_gmm) gmm_assignment = torch.from_numpy(gmm_assignment).to(device) scores = torch.from_numpy(scores).to(device) pos_inds_temp, ignore_inds_temp = self.gmm_separation_scheme( gmm_assignment, scores, pos_inds_gmm) pos_inds_after_paa.append(pos_inds_temp) ignore_inds_after_paa.append(ignore_inds_temp) pos_inds_after_paa = torch.cat(pos_inds_after_paa) ignore_inds_after_paa = torch.cat(ignore_inds_after_paa) reassign_mask = (pos_inds.unsqueeze(1) != pos_inds_after_paa).all(1) reassign_ids = pos_inds[reassign_mask] label[reassign_ids] = self.num_classes label_weight[ignore_inds_after_paa] = 0 bbox_weight[reassign_ids] = 0 num_pos = len(pos_inds_after_paa) return label, label_weight, bbox_weight, num_pos def gmm_separation_scheme(self, gmm_assignment, scores, pos_inds_gmm): """A general separation scheme for gmm model. It separates a GMM distribution of candidate samples into three parts, 0 1 and uncertain areas, and you can implement other separation schemes by rewriting this function. Args: gmm_assignment (Tensor): The prediction of GMM which is of shape (num_samples,). The 0/1 value indicates the distribution that each sample comes from. scores (Tensor): The probability of sample coming from the fit GMM distribution. The tensor is of shape (num_samples,). pos_inds_gmm (Tensor): All the indexes of samples which are used to fit GMM model. The tensor is of shape (num_samples,) Returns: tuple[Tensor]: The indices of positive and ignored samples. - pos_inds_temp (Tensor): Indices of positive samples. - ignore_inds_temp (Tensor): Indices of ignore samples. """ # The implementation is (c) in Fig.3 in origin paper intead of (b). # You can refer to issues such as # https://github.com/kkhoot/PAA/issues/8 and # https://github.com/kkhoot/PAA/issues/9. fgs = gmm_assignment == 0 pos_inds_temp = fgs.new_tensor([], dtype=torch.long) ignore_inds_temp = fgs.new_tensor([], dtype=torch.long) if fgs.nonzero().numel(): _, pos_thr_ind = scores[fgs].topk(1) pos_inds_temp = pos_inds_gmm[fgs][:pos_thr_ind + 1] ignore_inds_temp = pos_inds_gmm.new_tensor([]) return pos_inds_temp, ignore_inds_temp def get_targets( self, anchor_list, valid_flag_list, gt_bboxes_list, img_metas, gt_bboxes_ignore_list=None, gt_labels_list=None, label_channels=1, unmap_outputs=True, ): """Get targets for PAA head. This method is almost the same as `AnchorHead.get_targets()`. We direct return the results from _get_targets_single instead map it to levels by images_to_levels function. Args: anchor_list (list[list[Tensor]]): Multi level anchors of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, 4). valid_flag_list (list[list[Tensor]]): Multi level valid flags of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, ) gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. img_metas (list[dict]): Meta info of each image. gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be ignored. gt_labels_list (list[Tensor]): Ground truth labels of each box. label_channels (int): Channel of label. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Returns: tuple: Usually returns a tuple containing learning targets. - labels (list[Tensor]): Labels of all anchors, each with shape (num_anchors,). - label_weights (list[Tensor]): Label weights of all anchor. each with shape (num_anchors,). - bbox_targets (list[Tensor]): BBox targets of all anchors. each with shape (num_anchors, 4). - bbox_weights (list[Tensor]): BBox weights of all anchors. each with shape (num_anchors, 4). - pos_inds (list[Tensor]): Contains all index of positive sample in all anchor. - gt_inds (list[Tensor]): Contains all gt_index of positive sample in all anchor. """ num_imgs = len(img_metas) assert len(anchor_list) == len(valid_flag_list) == num_imgs concat_anchor_list = [] concat_valid_flag_list = [] for i in range(num_imgs): assert len(anchor_list[i]) == len(valid_flag_list[i]) concat_anchor_list.append(torch.cat(anchor_list[i])) concat_valid_flag_list.append(torch.cat(valid_flag_list[i])) # compute targets for each image if gt_bboxes_ignore_list is None: gt_bboxes_ignore_list = [None for _ in range(num_imgs)] if gt_labels_list is None: gt_labels_list = [None for _ in range(num_imgs)] results = multi_apply( self._get_targets_single, concat_anchor_list, concat_valid_flag_list, gt_bboxes_list, gt_bboxes_ignore_list, gt_labels_list, img_metas, label_channels=label_channels, unmap_outputs=unmap_outputs) (labels, label_weights, bbox_targets, bbox_weights, valid_pos_inds, valid_neg_inds, sampling_result) = results # Due to valid flag of anchors, we have to calculate the real pos_inds # in origin anchor set. pos_inds = [] for i, single_labels in enumerate(labels): pos_mask = (0 <= single_labels) & ( single_labels < self.num_classes) pos_inds.append(pos_mask.nonzero().view(-1)) gt_inds = [item.pos_assigned_gt_inds for item in sampling_result] return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, gt_inds) def _get_targets_single(self, flat_anchors, valid_flags, gt_bboxes, gt_bboxes_ignore, gt_labels, img_meta, label_channels=1, unmap_outputs=True): """Compute regression and classification targets for anchors in a single image. This method is same as `AnchorHead._get_targets_single()`. """ assert unmap_outputs, 'We must map outputs back to the original' \ 'set of anchors in PAAhead' return super(ATSSHead, self)._get_targets_single( flat_anchors, valid_flags, gt_bboxes, gt_bboxes_ignore, gt_labels, img_meta, label_channels=1, unmap_outputs=True) def _get_bboxes_single(self, cls_scores, bbox_preds, iou_preds, mlvl_anchors, img_shape, scale_factor, cfg, rescale=False, with_nms=True): """Transform outputs for a single batch item into labeled boxes. This method is almost same as `ATSSHead._get_bboxes_single()`. We use sqrt(iou_preds * cls_scores) in NMS process instead of just cls_scores. Besides, score voting is used when `` score_voting`` is set to True. """ assert with_nms, 'PAA only supports "with_nms=True" now' assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors) mlvl_bboxes = [] mlvl_scores = [] mlvl_iou_preds = [] for cls_score, bbox_pred, iou_preds, anchors in zip( cls_scores, bbox_preds, iou_preds, mlvl_anchors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] scores = cls_score.permute(1, 2, 0).reshape( -1, self.cls_out_channels).sigmoid() bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) iou_preds = iou_preds.permute(1, 2, 0).reshape(-1).sigmoid() nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: max_scores, _ = (scores * iou_preds[:, None]).sqrt().max(dim=1) _, topk_inds = max_scores.topk(nms_pre) anchors = anchors[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] iou_preds = iou_preds[topk_inds] bboxes = self.bbox_coder.decode( anchors, bbox_pred, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_iou_preds.append(iou_preds) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) # Add a dummy background class to the backend when using sigmoid # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 # BG cat_id: num_class padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) mlvl_iou_preds = torch.cat(mlvl_iou_preds) mlvl_nms_scores = (mlvl_scores * mlvl_iou_preds[:, None]).sqrt() det_bboxes, det_labels = multiclass_nms( mlvl_bboxes, mlvl_nms_scores, cfg.score_thr, cfg.nms, cfg.max_per_img, score_factors=None) if self.with_score_voting: det_bboxes, det_labels = self.score_voting(det_bboxes, det_labels, mlvl_bboxes, mlvl_nms_scores, cfg.score_thr) return det_bboxes, det_labels def score_voting(self, det_bboxes, det_labels, mlvl_bboxes, mlvl_nms_scores, score_thr): """Implementation of score voting method works on each remaining boxes after NMS procedure. Args: det_bboxes (Tensor): Remaining boxes after NMS procedure, with shape (k, 5), each dimension means (x1, y1, x2, y2, score). det_labels (Tensor): The label of remaining boxes, with shape (k, 1),Labels are 0-based. mlvl_bboxes (Tensor): All boxes before the NMS procedure, with shape (num_anchors,4). mlvl_nms_scores (Tensor): The scores of all boxes which is used in the NMS procedure, with shape (num_anchors, num_class) mlvl_iou_preds (Tensot): The predictions of IOU of all boxes before the NMS procedure, with shape (num_anchors, 1) score_thr (float): The score threshold of bboxes. Returns: tuple: Usually returns a tuple containing voting results. - det_bboxes_voted (Tensor): Remaining boxes after score voting procedure, with shape (k, 5), each dimension means (x1, y1, x2, y2, score). - det_labels_voted (Tensor): Label of remaining bboxes after voting, with shape (num_anchors,). """ candidate_mask = mlvl_nms_scores > score_thr candidate_mask_nozeros = candidate_mask.nonzero() candidate_inds = candidate_mask_nozeros[:, 0] candidate_labels = candidate_mask_nozeros[:, 1] candidate_bboxes = mlvl_bboxes[candidate_inds] candidate_scores = mlvl_nms_scores[candidate_mask] det_bboxes_voted = [] det_labels_voted = [] for cls in range(self.cls_out_channels): candidate_cls_mask = candidate_labels == cls if not candidate_cls_mask.any(): continue candidate_cls_scores = candidate_scores[candidate_cls_mask] candidate_cls_bboxes = candidate_bboxes[candidate_cls_mask] det_cls_mask = det_labels == cls det_cls_bboxes = det_bboxes[det_cls_mask].view( -1, det_bboxes.size(-1)) det_candidate_ious = bbox_overlaps(det_cls_bboxes[:, :4], candidate_cls_bboxes) for det_ind in range(len(det_cls_bboxes)): single_det_ious = det_candidate_ious[det_ind] pos_ious_mask = single_det_ious > 0.01 pos_ious = single_det_ious[pos_ious_mask] pos_bboxes = candidate_cls_bboxes[pos_ious_mask] pos_scores = candidate_cls_scores[pos_ious_mask] pis = (torch.exp(-(1 - pos_ious)**2 / 0.025) * pos_scores)[:, None] voted_box = torch.sum( pis * pos_bboxes, dim=0) / torch.sum( pis, dim=0) voted_score = det_cls_bboxes[det_ind][-1:][None, :] det_bboxes_voted.append( torch.cat((voted_box[None, :], voted_score), dim=1)) det_labels_voted.append(cls) det_bboxes_voted = torch.cat(det_bboxes_voted, dim=0) det_labels_voted = det_labels.new_tensor(det_labels_voted) return det_bboxes_voted, det_labels_voted
insightface/detection/scrfd/mmdet/models/dense_heads/paa_head.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/dense_heads/paa_head.py", "repo_id": "insightface", "token_count": 14776 }
106
from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class ATSS(SingleStageDetector): """Implementation of `ATSS <https://arxiv.org/abs/1912.02424>`_.""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None): super(ATSS, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained)
insightface/detection/scrfd/mmdet/models/detectors/atss.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/detectors/atss.py", "repo_id": "insightface", "token_count": 288 }
107
from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class PAA(SingleStageDetector): """Implementation of `PAA <https://arxiv.org/pdf/2007.08103.pdf>`_.""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None): super(PAA, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained)
insightface/detection/scrfd/mmdet/models/detectors/paa.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/detectors/paa.py", "repo_id": "insightface", "token_count": 287 }
108
import torch import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES from .utils import weight_reduce_loss def cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None): """Calculate the CrossEntropy loss. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. reduction (str, optional): The method used to reduce the loss. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. Returns: torch.Tensor: The calculated loss """ # element-wise losses loss = F.cross_entropy(pred, label, weight=class_weight, reduction='none') # apply weights and do the reduction if weight is not None: weight = weight.float() loss = weight_reduce_loss( loss, weight=weight, reduction=reduction, avg_factor=avg_factor) return loss def _expand_onehot_labels(labels, label_weights, label_channels): bin_labels = labels.new_full((labels.size(0), label_channels), 0) inds = torch.nonzero( (labels >= 0) & (labels < label_channels), as_tuple=False).squeeze() if inds.numel() > 0: bin_labels[inds, labels[inds]] = 1 if label_weights is None: bin_label_weights = None else: bin_label_weights = label_weights.view(-1, 1).expand( label_weights.size(0), label_channels) return bin_labels, bin_label_weights def binary_cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None): """Calculate the binary CrossEntropy loss. Args: pred (torch.Tensor): The prediction with shape (N, 1). label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. Returns: torch.Tensor: The calculated loss """ if pred.dim() != label.dim(): label, weight = _expand_onehot_labels(label, weight, pred.size(-1)) # weighted element-wise losses if weight is not None: weight = weight.float() loss = F.binary_cross_entropy_with_logits( pred, label.float(), pos_weight=class_weight, reduction='none') # do the reduction for the weighted loss loss = weight_reduce_loss( loss, weight, reduction=reduction, avg_factor=avg_factor) return loss def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None, class_weight=None): """Calculate the CrossEntropy loss for masks. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. target (torch.Tensor): The learning label of the prediction. label (torch.Tensor): ``label`` indicates the class label of the mask' corresponding object. This will be used to select the mask in the of the class which the object belongs to when the mask prediction if not class-agnostic. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. Returns: torch.Tensor: The calculated loss """ # TODO: handle these two reserved arguments assert reduction == 'mean' and avg_factor is None num_rois = pred.size()[0] inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) pred_slice = pred[inds, label].squeeze(1) return F.binary_cross_entropy_with_logits( pred_slice, target, weight=class_weight, reduction='mean')[None] @LOSSES.register_module() class CrossEntropyLoss(nn.Module): def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean', class_weight=None, loss_weight=1.0): """CrossEntropyLoss. Args: use_sigmoid (bool, optional): Whether the prediction uses sigmoid of softmax. Defaults to False. use_mask (bool, optional): Whether to use mask cross entropy loss. Defaults to False. reduction (str, optional): . Defaults to 'mean'. Options are "none", "mean" and "sum". class_weight (list[float], optional): Weight of each class. Defaults to None. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. """ super(CrossEntropyLoss, self).__init__() assert (use_sigmoid is False) or (use_mask is False) self.use_sigmoid = use_sigmoid self.use_mask = use_mask self.reduction = reduction self.loss_weight = loss_weight self.class_weight = class_weight if self.use_sigmoid: self.cls_criterion = binary_cross_entropy elif self.use_mask: self.cls_criterion = mask_cross_entropy else: self.cls_criterion = cross_entropy def forward(self, cls_score, label, weight=None, avg_factor=None, reduction_override=None, **kwargs): """Forward function. Args: cls_score (torch.Tensor): The prediction. label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.class_weight is not None: class_weight = cls_score.new_tensor( self.class_weight, device=cls_score.device) else: class_weight = None loss_cls = self.loss_weight * self.cls_criterion( cls_score, label, weight, class_weight=class_weight, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_cls
insightface/detection/scrfd/mmdet/models/losses/cross_entropy_loss.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/losses/cross_entropy_loss.py", "repo_id": "insightface", "token_count": 3319 }
109
import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule, caffe2_xavier_init from torch.utils.checkpoint import checkpoint from ..builder import NECKS @NECKS.register_module() class HRFPN(nn.Module): """HRFPN (High Resolution Feature Pyrmamids) paper: `High-Resolution Representations for Labeling Pixels and Regions <https://arxiv.org/abs/1904.04514>`_. Args: in_channels (list): number of channels for each branch. out_channels (int): output channels of feature pyramids. num_outs (int): number of output stages. pooling_type (str): pooling for generating feature pyramids from {MAX, AVG}. conv_cfg (dict): dictionary to construct and config conv layer. norm_cfg (dict): dictionary to construct and config norm layer. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. stride (int): stride of 3x3 convolutional layers """ def __init__(self, in_channels, out_channels, num_outs=5, pooling_type='AVG', conv_cfg=None, norm_cfg=None, with_cp=False, stride=1): super(HRFPN, self).__init__() assert isinstance(in_channels, list) self.in_channels = in_channels self.out_channels = out_channels self.num_ins = len(in_channels) self.num_outs = num_outs self.with_cp = with_cp self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.reduction_conv = ConvModule( sum(in_channels), out_channels, kernel_size=1, conv_cfg=self.conv_cfg, act_cfg=None) self.fpn_convs = nn.ModuleList() for i in range(self.num_outs): self.fpn_convs.append( ConvModule( out_channels, out_channels, kernel_size=3, padding=1, stride=stride, conv_cfg=self.conv_cfg, act_cfg=None)) if pooling_type == 'MAX': self.pooling = F.max_pool2d else: self.pooling = F.avg_pool2d def init_weights(self): """Initialize the weights of module.""" for m in self.modules(): if isinstance(m, nn.Conv2d): caffe2_xavier_init(m) def forward(self, inputs): """Forward function.""" assert len(inputs) == self.num_ins outs = [inputs[0]] for i in range(1, self.num_ins): outs.append( F.interpolate(inputs[i], scale_factor=2**i, mode='bilinear')) out = torch.cat(outs, dim=1) if out.requires_grad and self.with_cp: out = checkpoint(self.reduction_conv, out) else: out = self.reduction_conv(out) outs = [out] for i in range(1, self.num_outs): outs.append(self.pooling(out, kernel_size=2**i, stride=2**i)) outputs = [] for i in range(self.num_outs): if outs[i].requires_grad and self.with_cp: tmp_out = checkpoint(self.fpn_convs[i], outs[i]) else: tmp_out = self.fpn_convs[i](outs[i]) outputs.append(tmp_out) return tuple(outputs)
insightface/detection/scrfd/mmdet/models/necks/hrfpn.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/necks/hrfpn.py", "repo_id": "insightface", "token_count": 1752 }
110
import numpy as np import torch from mmdet.core import bbox2roi from mmdet.models.losses import SmoothL1Loss from ..builder import HEADS from .standard_roi_head import StandardRoIHead EPS = 1e-15 @HEADS.register_module() class DynamicRoIHead(StandardRoIHead): """RoI head for `Dynamic R-CNN <https://arxiv.org/abs/2004.06002>`_.""" def __init__(self, **kwargs): super(DynamicRoIHead, self).__init__(**kwargs) assert isinstance(self.bbox_head.loss_bbox, SmoothL1Loss) # the IoU history of the past `update_iter_interval` iterations self.iou_history = [] # the beta history of the past `update_iter_interval` iterations self.beta_history = [] def forward_train(self, x, img_metas, proposal_list, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None): """Forward function for training. Args: x (list[Tensor]): list of multi-level img features. img_metas (list[dict]): list of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmdet/datasets/pipelines/formatting.py:Collect`. proposals (list[Tensors]): list of region proposals. gt_bboxes (list[Tensor]): each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. gt_masks (None | Tensor) : true segmentation masks for each box used if the architecture supports a segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ # assign gts and sample proposals if self.with_bbox or self.with_mask: num_imgs = len(img_metas) if gt_bboxes_ignore is None: gt_bboxes_ignore = [None for _ in range(num_imgs)] sampling_results = [] cur_iou = [] for i in range(num_imgs): assign_result = self.bbox_assigner.assign( proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i], gt_labels[i]) sampling_result = self.bbox_sampler.sample( assign_result, proposal_list[i], gt_bboxes[i], gt_labels[i], feats=[lvl_feat[i][None] for lvl_feat in x]) # record the `iou_topk`-th largest IoU in an image iou_topk = min(self.train_cfg.dynamic_rcnn.iou_topk, len(assign_result.max_overlaps)) ious, _ = torch.topk(assign_result.max_overlaps, iou_topk) cur_iou.append(ious[-1].item()) sampling_results.append(sampling_result) # average the current IoUs over images cur_iou = np.mean(cur_iou) self.iou_history.append(cur_iou) losses = dict() # bbox head forward and loss if self.with_bbox: bbox_results = self._bbox_forward_train(x, sampling_results, gt_bboxes, gt_labels, img_metas) losses.update(bbox_results['loss_bbox']) # mask head forward and loss if self.with_mask: mask_results = self._mask_forward_train(x, sampling_results, bbox_results['bbox_feats'], gt_masks, img_metas) losses.update(mask_results['loss_mask']) # update IoU threshold and SmoothL1 beta update_iter_interval = self.train_cfg.dynamic_rcnn.update_iter_interval if len(self.iou_history) % update_iter_interval == 0: new_iou_thr, new_beta = self.update_hyperparameters() return losses def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels, img_metas): num_imgs = len(img_metas) rois = bbox2roi([res.bboxes for res in sampling_results]) bbox_results = self._bbox_forward(x, rois) bbox_targets = self.bbox_head.get_targets(sampling_results, gt_bboxes, gt_labels, self.train_cfg) # record the `beta_topk`-th smallest target # `bbox_targets[2]` and `bbox_targets[3]` stand for bbox_targets # and bbox_weights, respectively pos_inds = bbox_targets[3][:, 0].nonzero().squeeze(1) num_pos = len(pos_inds) cur_target = bbox_targets[2][pos_inds, :2].abs().mean(dim=1) beta_topk = min(self.train_cfg.dynamic_rcnn.beta_topk * num_imgs, num_pos) cur_target = torch.kthvalue(cur_target, beta_topk)[0].item() self.beta_history.append(cur_target) loss_bbox = self.bbox_head.loss(bbox_results['cls_score'], bbox_results['bbox_pred'], rois, *bbox_targets) bbox_results.update(loss_bbox=loss_bbox) return bbox_results def update_hyperparameters(self): """Update hyperparameters like IoU thresholds for assigner and beta for SmoothL1 loss based on the training statistics. Returns: tuple[float]: the updated ``iou_thr`` and ``beta``. """ new_iou_thr = max(self.train_cfg.dynamic_rcnn.initial_iou, np.mean(self.iou_history)) self.iou_history = [] self.bbox_assigner.pos_iou_thr = new_iou_thr self.bbox_assigner.neg_iou_thr = new_iou_thr self.bbox_assigner.min_pos_iou = new_iou_thr if (np.median(self.beta_history) < EPS): # avoid 0 or too small value for new_beta new_beta = self.bbox_head.loss_bbox.beta else: new_beta = min(self.train_cfg.dynamic_rcnn.initial_beta, np.median(self.beta_history)) self.beta_history = [] self.bbox_head.loss_bbox.beta = new_beta return new_iou_thr, new_beta
insightface/detection/scrfd/mmdet/models/roi_heads/dynamic_roi_head.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/roi_heads/dynamic_roi_head.py", "repo_id": "insightface", "token_count": 3479 }
111
from mmcv.cnn.bricks import build_plugin_layer from mmcv.runner import force_fp32 from mmdet.models.builder import ROI_EXTRACTORS from .base_roi_extractor import BaseRoIExtractor @ROI_EXTRACTORS.register_module() class GenericRoIExtractor(BaseRoIExtractor): """Extract RoI features from all level feature maps levels. This is the implementation of `A novel Region of Interest Extraction Layer for Instance Segmentation <https://arxiv.org/abs/2004.13665>`_. Args: aggregation (str): The method to aggregate multiple feature maps. Options are 'sum', 'concat'. Default: 'sum'. pre_cfg (dict | None): Specify pre-processing modules. Default: None. post_cfg (dict | None): Specify post-processing modules. Default: None. kwargs (keyword arguments): Arguments that are the same as :class:`BaseRoIExtractor`. """ def __init__(self, aggregation='sum', pre_cfg=None, post_cfg=None, **kwargs): super(GenericRoIExtractor, self).__init__(**kwargs) assert aggregation in ['sum', 'concat'] self.aggregation = aggregation self.with_post = post_cfg is not None self.with_pre = pre_cfg is not None # build pre/post processing modules if self.with_post: self.post_module = build_plugin_layer(post_cfg, '_post_module')[1] if self.with_pre: self.pre_module = build_plugin_layer(pre_cfg, '_pre_module')[1] @force_fp32(apply_to=('feats', ), out_fp16=True) def forward(self, feats, rois, roi_scale_factor=None): """Forward function.""" if len(feats) == 1: return self.roi_layers[0](feats[0], rois) out_size = self.roi_layers[0].output_size num_levels = len(feats) roi_feats = feats[0].new_zeros( rois.size(0), self.out_channels, *out_size) # some times rois is an empty tensor if roi_feats.shape[0] == 0: return roi_feats if roi_scale_factor is not None: rois = self.roi_rescale(rois, roi_scale_factor) # mark the starting channels for concat mode start_channels = 0 for i in range(num_levels): roi_feats_t = self.roi_layers[i](feats[i], rois) end_channels = start_channels + roi_feats_t.size(1) if self.with_pre: # apply pre-processing to a RoI extracted from each layer roi_feats_t = self.pre_module(roi_feats_t) if self.aggregation == 'sum': # and sum them all roi_feats += roi_feats_t else: # and concat them along channel dimension roi_feats[:, start_channels:end_channels] = roi_feats_t # update channels starting position start_channels = end_channels # check if concat channels match at the end if self.aggregation == 'concat': assert start_channels == self.out_channels if self.with_post: # apply post-processing before return the result roi_feats = self.post_module(roi_feats) return roi_feats
insightface/detection/scrfd/mmdet/models/roi_heads/roi_extractors/generic_roi_extractor.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/roi_heads/roi_extractors/generic_roi_extractor.py", "repo_id": "insightface", "token_count": 1475 }
112
import asyncio import contextlib import logging import os import time from typing import List import torch logger = logging.getLogger(__name__) DEBUG_COMPLETED_TIME = bool(os.environ.get('DEBUG_COMPLETED_TIME', False)) @contextlib.asynccontextmanager async def completed(trace_name='', name='', sleep_interval=0.05, streams: List[torch.cuda.Stream] = None): """Async context manager that waits for work to complete on given CUDA streams.""" if not torch.cuda.is_available(): yield return stream_before_context_switch = torch.cuda.current_stream() if not streams: streams = [stream_before_context_switch] else: streams = [s if s else stream_before_context_switch for s in streams] end_events = [ torch.cuda.Event(enable_timing=DEBUG_COMPLETED_TIME) for _ in streams ] if DEBUG_COMPLETED_TIME: start = torch.cuda.Event(enable_timing=True) stream_before_context_switch.record_event(start) cpu_start = time.monotonic() logger.debug('%s %s starting, streams: %s', trace_name, name, streams) grad_enabled_before = torch.is_grad_enabled() try: yield finally: current_stream = torch.cuda.current_stream() assert current_stream == stream_before_context_switch if DEBUG_COMPLETED_TIME: cpu_end = time.monotonic() for i, stream in enumerate(streams): event = end_events[i] stream.record_event(event) grad_enabled_after = torch.is_grad_enabled() # observed change of torch.is_grad_enabled() during concurrent run of # async_test_bboxes code assert (grad_enabled_before == grad_enabled_after ), 'Unexpected is_grad_enabled() value change' are_done = [e.query() for e in end_events] logger.debug('%s %s completed: %s streams: %s', trace_name, name, are_done, streams) with torch.cuda.stream(stream_before_context_switch): while not all(are_done): await asyncio.sleep(sleep_interval) are_done = [e.query() for e in end_events] logger.debug( '%s %s completed: %s streams: %s', trace_name, name, are_done, streams, ) current_stream = torch.cuda.current_stream() assert current_stream == stream_before_context_switch if DEBUG_COMPLETED_TIME: cpu_time = (cpu_end - cpu_start) * 1000 stream_times_ms = '' for i, stream in enumerate(streams): elapsed_time = start.elapsed_time(end_events[i]) stream_times_ms += f' {stream} {elapsed_time:.2f} ms' logger.info('%s %s %.2f ms %s', trace_name, name, cpu_time, stream_times_ms) @contextlib.asynccontextmanager async def concurrent(streamqueue: asyncio.Queue, trace_name='concurrent', name='stream'): """Run code concurrently in different streams. :param streamqueue: asyncio.Queue instance. Queue tasks define the pool of streams used for concurrent execution. """ if not torch.cuda.is_available(): yield return initial_stream = torch.cuda.current_stream() with torch.cuda.stream(initial_stream): stream = await streamqueue.get() assert isinstance(stream, torch.cuda.Stream) try: with torch.cuda.stream(stream): logger.debug('%s %s is starting, stream: %s', trace_name, name, stream) yield current = torch.cuda.current_stream() assert current == stream logger.debug('%s %s has finished, stream: %s', trace_name, name, stream) finally: streamqueue.task_done() streamqueue.put_nowait(stream)
insightface/detection/scrfd/mmdet/utils/contextmanagers.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/utils/contextmanagers.py", "repo_id": "insightface", "token_count": 1885 }
113
import os, sys def train(group, prefix, idx, gpuid): assert idx>=0 cmd = "CUDA_VISIBLE_DEVICES='%d' PORT=%d bash ./tools/dist_train.sh ./configs/%s/%s_%d.py 1 --no-validate"%(gpuid,29100+idx, group, prefix, idx) print(cmd) os.system(cmd) gpuid = int(sys.argv[1]) idx_from = int(sys.argv[2]) idx_to = int(sys.argv[3]) group = 'scrfdgen' if len(sys.argv)>4: group = sys.argv[4] for idx in range(idx_from, idx_to): train(group, group, idx, gpuid)
insightface/detection/scrfd/search_tools/search_train.py/0
{ "file_path": "insightface/detection/scrfd/search_tools/search_train.py", "repo_id": "insightface", "token_count": 235 }
114
import argparse import os import os.path as osp import pickle import numpy as np import warnings import mmcv import torch from mmcv import Config, DictAction from mmcv.cnn import fuse_conv_bn from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, wrap_fp16_model) from mmdet.apis import multi_gpu_test, single_gpu_test from mmdet.datasets import (build_dataloader, build_dataset, replace_ImageToTensor) from mmdet.models import build_detector from mmdet.core.evaluation import wider_evaluation, get_widerface_gts def parse_args(): parser = argparse.ArgumentParser( description='MMDet test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--out', default='wout', help='output folder') parser.add_argument( '--eval', type=str, nargs='+', help='evaluation metrics, which depends on the dataset, e.g., "bbox",' ' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument('--save-preds', action='store_true', help='save results') parser.add_argument('--show-assign', action='store_true', help='show bbox assign') parser.add_argument('--debug', action='store_true', help='debug flag') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--show-score-thr', type=float, default=0.3, help='score threshold (default: 0.3)') parser.add_argument( '--thr', type=float, default=0.02, help='score threshold') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--mode', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None if cfg.model.get('neck'): if isinstance(cfg.model.neck, list): for neck_cfg in cfg.model.neck: if neck_cfg.get('rfp_backbone'): if neck_cfg.rfp_backbone.get('pretrained'): neck_cfg.rfp_backbone.pretrained = None elif cfg.model.neck.get('rfp_backbone'): if cfg.model.neck.rfp_backbone.get('pretrained'): cfg.model.neck.rfp_backbone.pretrained = None # in case the test dataset is concatenated if isinstance(cfg.data.test, dict): cfg.data.test.test_mode = True elif isinstance(cfg.data.test, list): for ds_cfg in cfg.data.test: ds_cfg.test_mode = True gt_path = os.path.join(os.path.dirname(cfg.data.test.ann_file), 'gt') pipelines = cfg.data.test.pipeline for pipeline in pipelines: if pipeline.type=='MultiScaleFlipAug': if args.mode==0: #640 scale pipeline.img_scale = (640, 640) elif args.mode==1: #for single scale in other pages pipeline.img_scale = (1100, 1650) elif args.mode==2: #original scale pipeline.img_scale = None pipeline.scale_factor = 1.0 elif args.mode>30: pipeline.img_scale = (args.mode, args.mode) transforms = pipeline.transforms for transform in transforms: if transform.type=='Pad': if args.mode!=2: transform.size = pipeline.img_scale else: transform.size = None transform.size_divisor = 32 print(cfg.data.test.pipeline) distributed = False # build the dataloader samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1) if samples_per_gpu > 1: # Replace 'ImageToTensor' to 'DefaultFormatBundle' cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) cfg.test_cfg.score_thr = args.thr # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) fp16_cfg = cfg.get('fp16', None) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if args.show_assign: gts_easy, gts_medium, gts_hard = get_widerface_gts(gt_path) assign_stat = [0, 0] gts_size = [] model = MMDataParallel(model, device_ids=[0]) model.eval() results = {} output_folder = args.out if not os.path.exists(output_folder): os.makedirs(output_folder) dataset = data_loader.dataset prog_bar = mmcv.ProgressBar(len(dataset)) for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) assert len(result)==1 batch_size = 1 result = result[0][0] img_metas = data['img_metas'][0].data[0][0] filepath = img_metas['ori_filename'] det_scale = img_metas['scale_factor'][0] #print(img_metas) ori_shape = img_metas['ori_shape'] img_width = ori_shape[1] img_height = ori_shape[0] _vec = filepath.split('/') pa, pb = _vec[-2], _vec[1] if pa not in results: results[pa] = {} xywh = result.copy() w = xywh[:,2] - xywh[:,0] h = xywh[:,3] - xywh[:,1] xywh[:,2] = w xywh[:,3] = h event_name = pa img_name = pb.rstrip('.jpg') results[event_name][img_name] = xywh if args.save_preds: out_dir = os.path.join(output_folder, pa) if not os.path.exists(out_dir): os.makedirs(out_dir) out_file = os.path.join(out_dir, pb.replace('jpg', 'txt')) boxes = result with open(out_file, 'w') as f: name = '/'.join([pa, pb]) f.write("%s\n"%(name)) f.write("%d\n"%(boxes.shape[0])) for b in range(boxes.shape[0]): box = boxes[b] f.write("%.5f %.5f %.5f %.5f %g\n"%(box[0], box[1], box[2]-box[0], box[3]-box[1], box[4])) if args.show_assign: assert args.mode==0 input_height, input_width = 640, 640 gt_hard = gts_hard[event_name][img_name] #print(event_name, img_name, gt_hard.shape) gt_bboxes = gt_hard * det_scale bbox_width = gt_bboxes[:,2] - gt_bboxes[:,0] bbox_height = gt_bboxes[:,3] - gt_bboxes[:,1] bbox_area = bbox_width * bbox_height gt_size = np.sqrt(bbox_area+0.0001) gts_size += list(gt_size) anchor_cxs = [] anchor_cys = [] for idx, stride in enumerate([8,16,32,64,128]): height = input_height // stride width = input_width // stride anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) anchor_centers = (anchor_centers * stride).reshape( (-1, 2) ) anchor_cx = anchor_centers[:,0] anchor_cy = anchor_centers[:,1] anchor_cxs += list(anchor_cx) anchor_cys += list(anchor_cy) anchor_cx = np.array(anchor_cxs, dtype=np.float32) anchor_cy = np.array(anchor_cys, dtype=np.float32) num_gts = gt_bboxes.shape[0] num_anchors = anchor_cx.shape[0] anchor_cx = np.broadcast_to(anchor_cx.reshape((1,-1)), (num_gts, num_anchors)).reshape(num_anchors, num_gts) anchor_cy = np.broadcast_to(anchor_cy.reshape((1,-1)), (num_gts, num_anchors)).reshape(num_anchors, num_gts) gt_x1 = gt_bboxes[:,0] gt_y1 = gt_bboxes[:,1] gt_x2 = gt_bboxes[:,2] gt_y2 = gt_bboxes[:,3] gt_cover = np.zeros( (gt_bboxes.shape[0], ), dtype=np.float32) l_ = anchor_cx - gt_x1 t_ = anchor_cy - gt_y1 r_ = gt_x2 - anchor_cx b_ = gt_y2 - anchor_cy dist = np.stack([l_, t_, r_, b_], axis=1).min(axis=1) gt_dist = dist.max(axis=0) gt_dist = gt_dist / gt_size center_thres = 0.01 #center_thres = -0.25 gt_cover_inds = np.where(gt_dist>center_thres)[0] num_assigned = len(gt_cover_inds) assign_stat[0] += num_gts assign_stat[1] += num_assigned for _ in range(batch_size): prog_bar.update() aps = wider_evaluation(results, gt_path, 0.5, args.debug) with open(os.path.join(output_folder, 'aps'), 'w') as f: f.write("%f,%f,%f\n"%(aps[0],aps[1],aps[2])) print('APS:', aps) if args.show_assign: print('ASSIGN:', assign_stat) gts_size = np.array(gts_size, dtype=np.float32) gts_size = np.sort(gts_size) assert len(gts_size)==assign_stat[0] print(gts_size[assign_stat[0]//2]) if __name__ == '__main__': main()
insightface/detection/scrfd/tools/test_widerface.py/0
{ "file_path": "insightface/detection/scrfd/tools/test_widerface.py", "repo_id": "insightface", "token_count": 5001 }
115
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ @Author : Qingping Zheng @Contact : qingpingzheng2014@gmail.com @File : datasets.py @Time : 10/01/21 00:00 PM @Desc : @License : Licensed under the Apache License, Version 2.0 (the "License"); @Copyright : Copyright 2015 The Authors. All Rights Reserved. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import numpy as np import os.path as osp import pickle import random import torch import torchvision.transforms.functional as TF from glob import glob from typing import Tuple from utils import transforms class FaceDataSet(torch.utils.data.Dataset): """Face data set for model training and validating Examples: ./CelebAMask |---test |---train |---images |---0.jpg |---1.jpg |---labels |---0.png |---1.png |---edges |---0.png |---1.png |---valid |---label_names.txt |---test_list.txt |---train_list.txt |---images/0.jpg labels/0.png |---images/1.jpg labels/1.png |---valid_list.txt Args: root: A string, training/validating dataset path, e.g. "./CelebAMask" dataset: A string, one of `"train"`, `"test"`, `"valid"`. crop_size: A list of two intergers. scale_factor: A float number. rotation_factor: An integer number. ignore_label: An integer number, default is 255. transformer: A function of torchvision.transforms.Compose([]) """ def __init__(self, root: str, dataset: str, crop_size: list=[473, 473], scale_factor: float=0.25, rotation_factor: int=30, ignore_label: int =255, transform=None) -> None: self.root = root self.dataset = dataset self.crop_size = np.asarray(crop_size) self.scale_factor = scale_factor self.rotation_factor = rotation_factor self.ignore_label = ignore_label self.transform = transform self.flip_prob = 0.5 self.flip_pairs = [[4, 5], [6, 7]] self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0] self.file_list_name = osp.join(root, dataset + '_list.txt') self.im_list = [line.split()[0][7:-4] for line in open(self.file_list_name).readlines()] self.number_samples = len(self.im_list) def __len__(self) -> int: return self.number_samples def _box2cs(self, box: list) -> tuple: x, y, w, h = box[:4] return self._xywh2cs(x, y, w, h) def _xywh2cs(self, x: float, y: float, w: float, h: float) -> tuple: center = np.zeros((2), dtype=np.float32) center[0] = x + w * 0.5 center[1] = y + h * 0.5 if w > self.aspect_ratio * h: h = w * 1.0 / self.aspect_ratio elif w < self.aspect_ratio * h: w = h * self.aspect_ratio scale = np.array([w * 1.0, h * 1.0], dtype=np.float32) return center, scale def __getitem__(self, index: int) -> tuple: # Load training image im_name = self.im_list[index] im_path = osp.join(self.root, self.dataset, 'images', im_name + '.jpg') im = cv2.imread(im_path, cv2.IMREAD_COLOR) h, w, _ = im.shape parsing_anno = np.zeros((h, w), dtype=np.long) # Get center and scale center, s = self._box2cs([0, 0, w - 1, h - 1]) r = 0 if self.dataset not in ['test', 'valid']: edge_path = osp.join(self.root, self.dataset, 'edges', im_name + '.png') edge = cv2.imread(edge_path, cv2.IMREAD_GRAYSCALE) parsing_anno_path = osp.join(self.root, self.dataset, 'labels', im_name + '.png') parsing_anno = cv2.imread(parsing_anno_path, cv2.IMREAD_GRAYSCALE) if self.dataset in 'train': sf = self.scale_factor rf = self.rotation_factor s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf) r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) \ if random.random() <= 0.6 else 0 trans = transforms.get_affine_transform(center, s, r, self.crop_size) image = cv2.warpAffine( im, trans, (int(self.crop_size[1]), int(self.crop_size[0])), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0)) if self.dataset not in ['test', 'valid']: edge = cv2.warpAffine( edge, trans, (int(self.crop_size[1]), int(self.crop_size[0])), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0)) if self.transform: image = self.transform(image) meta = { 'name': im_name, 'center': center, 'height': h, 'width': w, 'scale': s, 'rotation': r, 'origin': image } if self.dataset not in 'train': return image, meta else: label_parsing = cv2.warpAffine( parsing_anno, trans, (int(self.crop_size[1]), int(self.crop_size[0])), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT, borderValue=(255)) label_parsing = torch.from_numpy(label_parsing) return image, label_parsing, edge, meta
insightface/parsing/dml_csr/dataset/datasets.py/0
{ "file_path": "insightface/parsing/dml_csr/dataset/datasets.py", "repo_id": "insightface", "token_count": 3084 }
116
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ @Author : Qingping Zheng @Contact : qingpingzheng2014@gmail.com @File : transforms.py @Time : 10/01/21 00:00 PM @Desc : @License : Licensed under the Apache License, Version 2.0 (the "License"); @Copyright : Copyright 2022 The Authors. All Rights Reserved. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import cv2 def flip_back(output_flipped, matched_parts): ''' ouput_flipped: numpy.ndarray(batch_size, num_joints, height, width) ''' assert output_flipped.ndim == 4,\ 'output_flipped should be [batch_size, num_joints, height, width]' output_flipped = output_flipped[:, :, :, ::-1] for pair in matched_parts: tmp = output_flipped[:, pair[0], :, :].copy() output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :] output_flipped[:, pair[1], :, :] = tmp return output_flipped def transform_parsing(pred, center, scale, width, height, input_size): if center is not None: trans = get_affine_transform(center, scale, 0, input_size, inv=1) target_pred = cv2.warpAffine( pred, trans, (int(width), int(height)), #(int(width), int(height)), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT, borderValue=(0)) else: target_pred = cv2.resize(pred, (int(width), int(height)), interpolation=cv2.INTER_NEAREST) return target_pred def get_affine_transform(center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): print(scale) scale = np.array([scale, scale]) scale_tmp = scale src_w = scale_tmp[0] dst_w = output_size[1] dst_h = output_size[0] rot_rad = np.pi * rot / 180 src_dir = get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir src[2:, :] = get_3rd_point(src[0, :], src[1, :]) dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def affine_transform(pt, t): new_pt = np.array([pt[0], pt[1], 1.]).T new_pt = np.dot(t, new_pt) return new_pt[:2] def get_3rd_point(a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def get_dir(src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result def crop(img, center, scale, output_size, rot=0): trans = get_affine_transform(center, scale, rot, output_size) dst_img = cv2.warpAffine(img, trans, (int(output_size[1]), int(output_size[0])), flags=cv2.INTER_LINEAR) return dst_img
insightface/parsing/dml_csr/utils/transforms.py/0
{ "file_path": "insightface/parsing/dml_csr/utils/transforms.py", "repo_id": "insightface", "token_count": 1776 }
117
import os import os.path as osp import zipfile from .download import download_file BASE_REPO_URL = 'https://github.com/deepinsight/insightface/releases/download/v0.7' def download(sub_dir, name, force=False, root='~/.insightface'): _root = os.path.expanduser(root) dir_path = os.path.join(_root, sub_dir, name) if osp.exists(dir_path) and not force: return dir_path print('download_path:', dir_path) zip_file_path = os.path.join(_root, sub_dir, name + '.zip') model_url = "%s/%s.zip"%(BASE_REPO_URL, name) download_file(model_url, path=zip_file_path, overwrite=True) if not os.path.exists(dir_path): os.makedirs(dir_path) with zipfile.ZipFile(zip_file_path) as zf: zf.extractall(dir_path) #os.remove(zip_file_path) return dir_path def ensure_available(sub_dir, name, root='~/.insightface'): return download(sub_dir, name, force=False, root=root) def download_onnx(sub_dir, model_file, force=False, root='~/.insightface', download_zip=False): _root = os.path.expanduser(root) model_root = osp.join(_root, sub_dir) new_model_file = osp.join(model_root, model_file) if osp.exists(new_model_file) and not force: return new_model_file if not osp.exists(model_root): os.makedirs(model_root) print('download_path:', new_model_file) if not download_zip: model_url = "%s/%s"%(BASE_REPO_URL, model_file) download_file(model_url, path=new_model_file, overwrite=True) else: model_url = "%s/%s.zip"%(BASE_REPO_URL, model_file) zip_file_path = new_model_file+".zip" download_file(model_url, path=zip_file_path, overwrite=True) with zipfile.ZipFile(zip_file_path) as zf: zf.extractall(model_root) return new_model_file
insightface/python-package/insightface/utils/storage.py/0
{ "file_path": "insightface/python-package/insightface/utils/storage.py", "repo_id": "insightface", "token_count": 885 }
118
## I. CPP-Align - ## II. Face Mask Renderer We provide a simple tool to add masks on face images automatically. We can use this tool to do data augmentation while training our face recognition models. | Face Image | OP | Mask Image | Out | | ------- | ------ | --------- | ----------- | | <img src="https://github.com/deepinsight/insightface/blob/master/python-package/insightface/data/images/Tom_Hanks_54745.png" alt="face" height="112" /> | +F | <img src="https://github.com/nttstar/insightface-resources/blob/master/images/mask1.jpg" alt="mask" height="112" /> | <img src="https://github.com/nttstar/insightface-resources/blob/master/images/mask_out1.jpg?raw=true" alt="mask" height="112" /> | | <img src="https://github.com/deepinsight/insightface/blob/master/python-package/insightface/data/images/Tom_Hanks_54745.png" alt="face" height="112" /> | +F | <img src="https://github.com/nttstar/insightface-resources/blob/master/images/black-mask.png" alt="mask" height="112" /> | <img src="https://github.com/nttstar/insightface-resources/blob/master/images/mask_out3.jpg?raw=true" alt="mask" height="112" /> | | <img src="https://github.com/deepinsight/insightface/blob/master/python-package/insightface/data/images/Tom_Hanks_54745.png" alt="face" height="112" /> | +H | <img src="https://github.com/nttstar/insightface-resources/blob/master/images/mask2.jpg?raw=true" alt="mask" height="112" /> | <img src="https://github.com/nttstar/insightface-resources/blob/master/images/mask_out2h.jpg?raw=true" alt="mask" height="112" /> | **F** means FULL while **H** means HALF. ### Prepare - insightface package library ``pip install -U insightface`` - insightface model pack ``bash> insightface-cli model.download antelope`` - BFM models Please follow the tutorial of [https://github.com/YadiraF/face3d/tree/master/examples/Data/BFM](https://github.com/YadiraF/face3d/tree/master/examples/Data/BFM) to generate `BFM.mat` and `BFM_UV.mat`. Put them into the insightface model pack directory, such as ``~/.insightface/models/antelope/`` - mask images some mask images are included in insightface package, such as 'mask\_blue', 'mask\_white', 'mask\_black' and 'mask\_green'. ### Add Mask to Face Image Please refer to `make_renderer.py` for detail example. (1) init renderer: ``` import insightface from insightface.app import MaskRenderer tool = MaskRenderer() tool.prepare(ctx_id=0, det_size=(128,128)) #use gpu ``` (2) load face and mask images ``` from insightface.data import get_image as ins_get_image image = ins_get_image('Tom_Hanks_54745') mask_image = "mask_blue" ``` (3) build necessary params for face image, this can be done in offline. ``` params = tool.build_params(image) ``` (4) do mask render, it costs about `10ms` on 224x224 UV size, CPU single thread. ``` mask_out = tool.render_mask(image, mask_image, params) ``` (5) do half mask render. ``` mask_half_out = tool.render_mask(image, mask_image, params, positions=[0.1, 0.5, 0.9, 0.7]) ```
insightface/recognition/_tools_/README.md/0
{ "file_path": "insightface/recognition/_tools_/README.md", "repo_id": "insightface", "token_count": 1102 }
119
"""Helper for evaluation on the Labeled Faces in the Wild dataset """ # MIT License # # Copyright (c) 2016 David Sandberg # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import datetime import os import pickle import numpy as np import sklearn import oneflow as flow from scipy import interpolate from sklearn.decomposition import PCA from sklearn.model_selection import KFold import cv2 as cv import logging class LFold: def __init__(self, n_splits=2, shuffle=False): self.n_splits = n_splits if self.n_splits > 1: self.k_fold = KFold(n_splits=n_splits, shuffle=shuffle) def split(self, indices): if self.n_splits > 1: return self.k_fold.split(indices) else: return [(indices, indices)] def calculate_roc( thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10, pca=0 ): assert embeddings1.shape[0] == embeddings2.shape[0] assert embeddings1.shape[1] == embeddings2.shape[1] nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) k_fold = LFold(n_splits=nrof_folds, shuffle=False) tprs = np.zeros((nrof_folds, nrof_thresholds)) fprs = np.zeros((nrof_folds, nrof_thresholds)) accuracy = np.zeros((nrof_folds)) indices = np.arange(nrof_pairs) if pca == 0: diff = np.subtract(embeddings1, embeddings2) dist = np.sum(np.square(diff), 1) for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): if pca > 0: print("doing pca on", fold_idx) embed1_train = embeddings1[train_set] embed2_train = embeddings2[train_set] _embed_train = np.concatenate((embed1_train, embed2_train), axis=0) pca_model = PCA(n_components=pca) pca_model.fit(_embed_train) embed1 = pca_model.transform(embeddings1) embed2 = pca_model.transform(embeddings2) embed1 = sklearn.preprocessing.normalize(embed1) embed2 = sklearn.preprocessing.normalize(embed2) diff = np.subtract(embed1, embed2) dist = np.sum(np.square(diff), 1) # Find the best threshold for the fold acc_train = np.zeros((nrof_thresholds)) for threshold_idx, threshold in enumerate(thresholds): _, _, acc_train[threshold_idx] = calculate_accuracy( threshold, dist[train_set], actual_issame[train_set] ) best_threshold_index = np.argmax(acc_train) for threshold_idx, threshold in enumerate(thresholds): ( tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], _, ) = calculate_accuracy(threshold, dist[test_set], actual_issame[test_set]) _, _, accuracy[fold_idx] = calculate_accuracy( thresholds[best_threshold_index], dist[test_set], actual_issame[test_set] ) tpr = np.mean(tprs, 0) fpr = np.mean(fprs, 0) return tpr, fpr, accuracy def calculate_accuracy(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) tp = np.sum(np.logical_and(predict_issame, actual_issame)) fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) tn = np.sum( np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame)) ) fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame)) tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn) fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn) acc = float(tp + tn) / dist.size return tpr, fpr, acc def calculate_val( thresholds, embeddings1, embeddings2, actual_issame, far_target, nrof_folds=10 ): assert embeddings1.shape[0] == embeddings2.shape[0] assert embeddings1.shape[1] == embeddings2.shape[1] nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) k_fold = LFold(n_splits=nrof_folds, shuffle=False) val = np.zeros(nrof_folds) far = np.zeros(nrof_folds) diff = np.subtract(embeddings1, embeddings2) dist = np.sum(np.square(diff), 1) indices = np.arange(nrof_pairs) for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): # Find the threshold that gives FAR = far_target far_train = np.zeros(nrof_thresholds) for threshold_idx, threshold in enumerate(thresholds): _, far_train[threshold_idx] = calculate_val_far( threshold, dist[train_set], actual_issame[train_set] ) if np.max(far_train) >= far_target: f = interpolate.interp1d(far_train, thresholds, kind="slinear") threshold = f(far_target) else: threshold = 0.0 val[fold_idx], far[fold_idx] = calculate_val_far( threshold, dist[test_set], actual_issame[test_set] ) val_mean = np.mean(val) far_mean = np.mean(far) val_std = np.std(val) return val_mean, val_std, far_mean def calculate_val_far(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) true_accept = np.sum(np.logical_and(predict_issame, actual_issame)) false_accept = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) n_same = np.sum(actual_issame) n_diff = np.sum(np.logical_not(actual_issame)) # print(true_accept, false_accept) # print(n_same, n_diff) val = float(true_accept) / float(n_same) far = float(false_accept) / float(n_diff) return val, far def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0): # Calculate evaluation metrics thresholds = np.arange(0, 4, 0.01) embeddings1 = embeddings[0::2] embeddings2 = embeddings[1::2] tpr, fpr, accuracy = calculate_roc( thresholds, embeddings1, embeddings2, np.asarray(actual_issame), nrof_folds=nrof_folds, pca=pca, ) thresholds = np.arange(0, 4, 0.001) val, val_std, far = calculate_val( thresholds, embeddings1, embeddings2, np.asarray(actual_issame), 1e-3, nrof_folds=nrof_folds, ) return tpr, fpr, accuracy, val, val_std, far def load_bin_cv(path, image_size): bins, issame_list = pickle.load(open(path, "rb"), encoding="bytes") data_list = [] for flip in [0, 1]: data = flow.empty(len(issame_list) * 2, 3, image_size[0], image_size[1]) data_list.append(data) for i in range(len(issame_list) * 2): _bin = bins[i] img_ori = cv.imdecode(_bin, cv.IMREAD_COLOR)[:, :, ::-1] for flip in [0, 1]: img = img_ori.copy() if flip == 1: img = cv.flip(img, 1) img = np.array(img).transpose((2, 0, 1)) img = (img - 127.5) * 0.00784313725 data_list[flip][i] = flow.tensor(img, dtype=flow.float) if i % 1000 == 0: logging.info("loading bin:%d", i) logging.info(data_list[0].shape) return data_list, issame_list @flow.no_grad() def test(data_set, backbone, batch_size, nfolds=10, is_consistent=False): logging.info("testing verification..") data_list = data_set[0] issame_list = data_set[1] embeddings_list = [] time_consumed = 0.0 if is_consistent: placement = flow.env.all_device_placement("cpu") sbp = flow.sbp.split(0) for i in range(len(data_list)): data = data_list[i] embeddings = None ba = 0 while ba < data.shape[0]: bb = min(ba + batch_size, data.shape[0]) count = bb - ba img = data[bb - batch_size : bb] time0 = datetime.datetime.now() with flow.no_grad(): if is_consistent: img = img.to_consistent(placement=placement, sbp=sbp) net_out = backbone(img.to("cuda")) if is_consistent: _embeddings = net_out.to_local().numpy() else: _embeddings = net_out.detach().numpy() time_now = datetime.datetime.now() diff = time_now - time0 time_consumed += diff.total_seconds() if embeddings is None: embeddings = np.zeros((data.shape[0], _embeddings.shape[1])) embeddings[ba:bb, :] = _embeddings[(batch_size - count) :, :] ba = bb embeddings_list.append(embeddings) _xnorm = 0.0 _xnorm_cnt = 0 for embed in embeddings_list: for i in range(embed.shape[0]): _em = embed[i] _norm = np.linalg.norm(_em) _xnorm += _norm _xnorm_cnt += 1 _xnorm /= _xnorm_cnt embeddings = embeddings_list[0].copy() embeddings = sklearn.preprocessing.normalize(embeddings) acc1 = 0.0 std1 = 0.0 embeddings = embeddings_list[0] + embeddings_list[1] embeddings = sklearn.preprocessing.normalize(embeddings) logging.info(embeddings.shape) logging.info("infer time:%f" % time_consumed) _, _, accuracy, val, val_std, far = evaluate( embeddings, issame_list, nrof_folds=nfolds ) acc2, std2 = np.mean(accuracy), np.std(accuracy) return acc1, std1, acc2, std2, _xnorm, embeddings_list def dumpR(data_set, backbone, batch_size, name="", data_extra=None, label_shape=None): print("dump verification embedding..") data_list = data_set[0] issame_list = data_set[1] embeddings_list = [] time_consumed = 0.0 for i in range(len(data_list)): data = data_list[i] embeddings = None ba = 0 while ba < data.shape[0]: bb = min(ba + batch_size, data.shape[0]) count = bb - ba _data = nd.slice_axis(data, axis=0, begin=bb - batch_size, end=bb) time0 = datetime.datetime.now() if data_extra is None: db = mx.io.DataBatch(data=(_data,), label=(_label,)) else: db = mx.io.DataBatch(data=(_data, _data_extra), label=(_label,)) model.forward(db, is_train=False) net_out = model.get_outputs() _embeddings = net_out[0].asnumpy() time_now = datetime.datetime.now() diff = time_now - time0 time_consumed += diff.total_seconds() if embeddings is None: embeddings = np.zeros((data.shape[0], _embeddings.shape[1])) embeddings[ba:bb, :] = _embeddings[(batch_size - count) :, :] ba = bb embeddings_list.append(embeddings) embeddings = embeddings_list[0] + embeddings_list[1] embeddings = sklearn.preprocessing.normalize(embeddings) actual_issame = np.asarray(issame_list) outname = os.path.join("temp.bin") with open(outname, "wb") as f: pickle.dump((embeddings, issame_list), f, protocol=pickle.HIGHEST_PROTOCOL)
insightface/recognition/arcface_oneflow/eval/verification.py/0
{ "file_path": "insightface/recognition/arcface_oneflow/eval/verification.py", "repo_id": "insightface", "token_count": 5550 }
120
import oneflow as flow from utils.utils_callbacks import CallBackVerification from backbones import get_model from graph import TrainGraph, EvalGraph import logging import argparse from utils.utils_config import get_config def main(args): cfg = get_config(args.config) logging.basicConfig(level=logging.NOTSET) logging.info(args.model_path) backbone = get_model(cfg.network, dropout=0.0, num_features=cfg.embedding_size).to( "cuda" ) val_callback = CallBackVerification( 1, 0, cfg.val_targets, cfg.ofrecord_path) state_dict = flow.load(args.model_path) new_parameters = dict() for key, value in state_dict.items(): if "num_batches_tracked" not in key: if key == "fc.weight": continue new_key = key.replace("backbone.", "") new_parameters[new_key] = value backbone.load_state_dict(new_parameters) infer_graph = EvalGraph(backbone, cfg) val_callback(1000, backbone, infer_graph) if __name__ == "__main__": parser = argparse.ArgumentParser(description="OneFlow ArcFace val") parser.add_argument("config", type=str, help="py config file") parser.add_argument("--model_path", type=str, help="model path") main(parser.parse_args())
insightface/recognition/arcface_oneflow/val.py/0
{ "file_path": "insightface/recognition/arcface_oneflow/val.py", "repo_id": "insightface", "token_count": 494 }
121
# 基于PaddleServing的服务部署 (简体中文|[English](./README.md)) 本文档将介绍如何使用[PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)工具部署 Arcface 动态图模型的pipeline在线服务。 PaddleServing具备以下优点: - 支持客户端和服务端之间高并发和高效通信 - 支持 工业级的服务能力 例如模型管理,在线加载,在线A/B测试等 - 支持 多种编程语言 开发客户端,例如C++, Python和Java 更多有关PaddleServing服务化部署框架介绍和使用教程参考[文档](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)。 ## 目录 - [环境准备](#环境准备) - [模型转换](#模型转换) - [Paddle Serving pipeline部署](#部署) - [FAQ](#FAQ) <a name="环境准备"></a> ## 环境准备 需要准备 Arcface 的运行环境和Paddle Serving的运行环境。 - 准备 Arcface 的运行环境[链接](../../README_cn.md) 根据环境下载对应的paddle whl包,推荐安装2.2+版本 - 准备PaddleServing的运行环境,步骤如下 1. 安装serving,用于启动服务 ``` pip3 install paddle-serving-server==0.6.3 # for CPU pip3 install paddle-serving-server-gpu==0.6.3 # for GPU # 其他GPU环境需要确认环境再选择执行如下命令 pip3 install paddle-serving-server-gpu==0.6.3.post101 # GPU with CUDA10.1 + TensorRT6 pip3 install paddle-serving-server-gpu==0.6.3.post11 # GPU with CUDA11 + TensorRT7 ``` 2. 安装client,用于向服务发送请求 ``` pip3 install paddle_serving_client==0.6.3 ``` 3. 安装serving-app ``` pip3 install paddle-serving-app==0.6.3 ``` **Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md)。 <a name="模型转换"></a> ## 模型转换 使用PaddleServing做服务化部署时,需要将保存的inference模型转换为serving易于部署的模型。 首先,下载Arcface的inference模型 ``` # 下载并解压 Arcface 模型 wget -nc -P ./inference https://paddle-model-ecology.bj.bcebos.com/model/insight-face/mobileface_v1.0_infer.tar tar xf inference/mobileface_v1.0_infer.tar --strip-components 1 -C inference ``` 接下来,用安装的paddle_serving_client把下载的inference模型转换成易于server部署的模型格式。 ``` python3 -m paddle_serving_client.convert --dirname ./inference/ \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --serving_server ./MobileFaceNet_128_serving/ \ --serving_client ./MobileFaceNet_128_client/ ``` 检测模型转换完成后,会在当前文件夹多出`MobileFaceNet_128_serving/` 和`MobileFaceNet_128_client`的文件夹,具备如下格式: ``` MobileFaceNet_128_serving ├── __model__ ├── __params__ ├── serving_server_conf.prototxt └── serving_server_conf.stream.prototxt MobileFaceNet_128_client/ ├── serving_client_conf.prototxt └── serving_client_conf.stream.prototxt ``` <a name="部署"></a> ## Paddle Serving pipeline部署 1. 下载insightface代码,若已下载可跳过此步骤 ``` git clone https://github.com/deepinsight/insightface # 进入到工作目录 cd recognition/arcface_paddle/deploy/pdserving ``` pdserving目录包含启动pipeline服务和发送预测请求的代码,包括: ``` __init__.py config.yml # 启动服务的配置文件 pipeline_http_client.py # web方式发送pipeline预测请求的脚本 pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本 web_service.py # 启动pipeline服务端的脚本 ``` 2. 启动服务可运行如下命令: ``` # 启动服务,运行日志保存在log.txt python3 web_service.py &>log.txt & ``` 成功启动服务后,log.txt中会打印类似如下日志 ![](./imgs/start_server.png) 3. 发送服务请求: ``` python3 pipeline_http_client.py ``` 成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为: ![](./imgs/results.png) 调整 config.yml 中的并发个数获得最大的QPS, 一般检测和识别的并发数为2:1 ``` ArcFace: #并发数,is_thread_op=True时,为线程并发;否则为进程并发 concurrency: 8 ... ``` 有需要的话可以同时发送多个服务请求 预测性能数据会被自动写入 `PipelineServingLogs/pipeline.tracer` 文件中。 在700张真实图片上测试,V100 GPU 上 QPS 均值可达到57左右: ``` 2021-11-04 13:38:52,507 Op(ArcFace): 2021-11-04 13:38:52,507 in[135.4579597902098 ms] 2021-11-04 13:38:52,507 prep[0.9921311188811189 ms] 2021-11-04 13:38:52,507 midp[3.9232132867132865 ms] 2021-11-04 13:38:52,507 postp[0.12166258741258741 ms] 2021-11-04 13:38:52,507 out[0.9898286713286714 ms] 2021-11-04 13:38:52,508 idle[0.9643989520087675] 2021-11-04 13:38:52,508 DAGExecutor: 2021-11-04 13:38:52,508 Query count[573] 2021-11-04 13:38:52,508 QPS[57.3 q/s] 2021-11-04 13:38:52,509 Succ[0.9982547993019197] 2021-11-04 13:38:52,509 Error req[394] 2021-11-04 13:38:52,509 Latency: 2021-11-04 13:38:52,509 ave[11.52941186736475 ms] 2021-11-04 13:38:52,509 .50[11.492 ms] 2021-11-04 13:38:52,509 .60[11.658 ms] 2021-11-04 13:38:52,509 .70[11.95 ms] 2021-11-04 13:38:52,509 .80[12.251 ms] 2021-11-04 13:38:52,509 .90[12.736 ms] 2021-11-04 13:38:52,509 .95[13.21 ms] 2021-11-04 13:38:52,509 .99[13.987 ms] 2021-11-04 13:38:52,510 Channel (server worker num[10]): 2021-11-04 13:38:52,510 chl0(In: ['@DAGExecutor'], Out: ['ArcFace']) size[0/0] 2021-11-04 13:38:52,510 chl1(In: ['ArcFace'], Out: ['@DAGExecutor']) size[0/0] ``` <a name="FAQ"></a> ## FAQ **Q1**: 发送请求后没有结果返回或者提示输出解码报错 **A1**: 启动服务和发送请求时不要设置代理,可以在启动服务前和发送请求前关闭代理,关闭代理的命令是: ``` unset https_proxy unset http_proxy ```
insightface/recognition/arcface_paddle/deploy/pdserving/README_CN.md/0
{ "file_path": "insightface/recognition/arcface_paddle/deploy/pdserving/README_CN.md", "repo_id": "insightface", "token_count": 3699 }
122
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import os import sys import numpy as np import logging import paddle from visualdl import LogWriter from utils.logging import AverageMeter, init_logging, CallBackLogging from datasets import CommonDataset, SyntheticDataset from utils import losses from .utils.verification import CallBackVerification from .utils.io import Checkpoint from .utils.amp import LSCGradScaler from . import classifiers from . import backbones RELATED_FLAGS_SETTING = { 'FLAGS_cudnn_exhaustive_search': 1, 'FLAGS_cudnn_batchnorm_spatial_persistent': 1, 'FLAGS_max_inplace_grad_add': 8, 'FLAGS_fraction_of_gpu_memory_to_use': 0.9999, } paddle.fluid.set_flags(RELATED_FLAGS_SETTING) def train(args): writer = LogWriter(logdir=args.logdir) rank = int(os.getenv("PADDLE_TRAINER_ID", 0)) world_size = int(os.getenv("PADDLE_TRAINERS_NUM", 1)) gpu_id = int(os.getenv("FLAGS_selected_gpus", 0)) place = paddle.CUDAPlace(gpu_id) if world_size > 1: import paddle.distributed.fleet as fleet from .utils.data_parallel import sync_gradients, sync_params strategy = fleet.DistributedStrategy() strategy.without_graph_optimization = True fleet.init(is_collective=True, strategy=strategy) if args.use_synthetic_dataset: trainset = SyntheticDataset(args.num_classes, fp16=args.fp16) else: trainset = CommonDataset( root_dir=args.data_dir, label_file=args.label_file, fp16=args.fp16, is_bin=args.is_bin) num_image = len(trainset) total_batch_size = args.batch_size * world_size steps_per_epoch = num_image // total_batch_size if args.train_unit == 'epoch': warmup_steps = steps_per_epoch * args.warmup_num total_steps = steps_per_epoch * args.train_num decay_steps = [x * steps_per_epoch for x in args.decay_boundaries] total_epoch = args.train_num else: warmup_steps = args.warmup_num total_steps = args.train_num decay_steps = [x for x in args.decay_boundaries] total_epoch = (total_steps + steps_per_epoch - 1) // steps_per_epoch if rank == 0: logging.info('world_size: {}'.format(world_size)) logging.info('total_batch_size: {}'.format(total_batch_size)) logging.info('warmup_steps: {}'.format(warmup_steps)) logging.info('steps_per_epoch: {}'.format(steps_per_epoch)) logging.info('total_steps: {}'.format(total_steps)) logging.info('total_epoch: {}'.format(total_epoch)) logging.info('decay_steps: {}'.format(decay_steps)) base_lr = total_batch_size * args.lr / 512 lr_scheduler = paddle.optimizer.lr.PiecewiseDecay( boundaries=decay_steps, values=[ base_lr * (args.lr_decay**i) for i in range(len(decay_steps) + 1) ]) if warmup_steps > 0: lr_scheduler = paddle.optimizer.lr.LinearWarmup( lr_scheduler, warmup_steps, 0, base_lr) if args.fp16: paddle.set_default_dtype("float16") margin_loss_params = eval("losses.{}".format(args.loss))() backbone = eval("backbones.{}".format(args.backbone))( num_features=args.embedding_size, dropout=args.dropout) classifier = eval("classifiers.{}".format(args.classifier))( rank=rank, world_size=world_size, num_classes=args.num_classes, margin1=margin_loss_params.margin1, margin2=margin_loss_params.margin2, margin3=margin_loss_params.margin3, scale=margin_loss_params.scale, sample_ratio=args.sample_ratio, embedding_size=args.embedding_size, fp16=args.fp16) backbone.train() classifier.train() optimizer = paddle.optimizer.Momentum( parameters=[{ 'params': backbone.parameters(), }, { 'params': classifier.parameters(), }], learning_rate=lr_scheduler, momentum=args.momentum, weight_decay=args.weight_decay) if args.fp16: optimizer._dtype = 'float32' if world_size > 1: # sync backbone params for data parallel sync_params(backbone.parameters()) if args.do_validation_while_train: callback_verification = CallBackVerification( args.validation_interval_step, rank, args.batch_size, args.val_targets, args.data_dir, fp16=args.fp16, ) callback_logging = CallBackLogging(args.log_interval_step, rank, world_size, total_steps, args.batch_size, writer) checkpoint = Checkpoint( rank=rank, world_size=world_size, embedding_size=args.embedding_size, num_classes=args.num_classes, model_save_dir=os.path.join(args.output, args.backbone), checkpoint_dir=args.checkpoint_dir, max_num_last_checkpoint=args.max_num_last_checkpoint) start_epoch = 0 global_step = 0 loss_avg = AverageMeter() if args.resume: extra_info = checkpoint.load( backbone, classifier, optimizer, for_train=True) start_epoch = extra_info['epoch'] + 1 lr_state = extra_info['lr_state'] # there last_epoch means last_step in for PiecewiseDecay # since we always use step style for lr_scheduler global_step = lr_state['last_epoch'] lr_scheduler.set_state_dict(lr_state) train_loader = paddle.io.DataLoader( trainset, places=place, num_workers=args.num_workers, batch_sampler=paddle.io.DistributedBatchSampler( dataset=trainset, batch_size=args.batch_size, shuffle=True, drop_last=True)) scaler = LSCGradScaler( enable=args.fp16, init_loss_scaling=args.init_loss_scaling, incr_ratio=args.incr_ratio, decr_ratio=args.decr_ratio, incr_every_n_steps=args.incr_every_n_steps, decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf, use_dynamic_loss_scaling=args.use_dynamic_loss_scaling) for epoch in range(start_epoch, total_epoch): train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 reader_start = time.time() for step, (img, label) in enumerate(train_loader): train_reader_cost += time.time() - reader_start global_step += 1 train_start = time.time() with paddle.amp.auto_cast(enable=args.fp16): features = backbone(img) loss_v = classifier(features, label) scaler.scale(loss_v).backward() if world_size > 1: # data parallel sync backbone gradients sync_gradients(backbone.parameters()) scaler.step(optimizer) classifier.step(optimizer) optimizer.clear_grad() classifier.clear_grad() train_run_cost += time.time() - train_start total_samples += len(img) lr_value = optimizer.get_lr() loss_avg.update(loss_v.item(), 1) callback_logging( global_step, loss_avg, epoch, lr_value, avg_reader_cost=train_reader_cost / args.log_interval_step, avg_batch_cost=(train_reader_cost + train_run_cost) / args.log_interval_step, avg_samples=total_samples / args.log_interval_step, ips=total_samples / (train_reader_cost + train_run_cost)) if args.do_validation_while_train: callback_verification(global_step, backbone) lr_scheduler.step() if global_step >= total_steps: break sys.stdout.flush() if rank is 0 and global_step > 0 and global_step % args.log_interval_step == 0: train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 reader_start = time.time() checkpoint.save( backbone, classifier, optimizer, epoch=epoch, for_train=True) writer.close()
insightface/recognition/arcface_paddle/dynamic/train.py/0
{ "file_path": "insightface/recognition/arcface_paddle/dynamic/train.py", "repo_id": "insightface", "token_count": 4048 }
123
#!/bin/bash source test_tipc/common_func.sh FILENAME=$1 # MODE be one of ['lite_train_infer' 'serving_infer'] MODE=$2 dataline=$(cat ${FILENAME}) lines=(${dataline}) IFS=$'\n' # The training params model_name=$(func_parser_value "${lines[1]}") trainer_list=$(func_parser_value "${lines[14]}") MODE=$2 if [ ${MODE} = "lite_train_lite_infer" ];then rm -rf MS1M_v2; mkdir MS1M_v2 # pretrain lite train data tar xf test_tipc/data/small_dataset.tar --strip-components 1 -C MS1M_v2 # wget -nc -P ./MS1M_v2/ https://paddle-model-ecology.bj.bcebos.com/whole_chain/insight-face/lfw.bin cp test_tipc/data/small_lfw.bin MS1M_v2/lfw.bin elif [ ${MODE} = "serving_infer" ];then # prepare serving env python_name=$(func_parser_value "${lines[2]}") rm paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl wget https://paddle-serving.bj.bcebos.com/chain/paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl ${python_name} -m pip install install paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl ${python_name} -m pip install paddle_serving_client==0.6.3 ${python_name} -m pip install paddle-serving-app==0.6.3 ${python_name} -m pip install werkzeug==2.0.2 rm -rf ./inference wget -nc -P ./inference https://paddle-model-ecology.bj.bcebos.com/model/insight-face/mobileface_v1.0_infer.tar tar xf inference/mobileface_v1.0_infer.tar --strip-components 1 -C inference fi
insightface/recognition/arcface_paddle/test_tipc/prepare.sh/0
{ "file_path": "insightface/recognition/arcface_paddle/test_tipc/prepare.sh", "repo_id": "insightface", "token_count": 634 }
124
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import time class AverageMeter(object): """Computes and stores the average and current value """ def __init__(self): self.val = None self.avg = None self.sum = None self.count = None self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def init_logging(rank, models_root): if rank is 0: log_root = logging.getLogger() log_root.setLevel(logging.INFO) formatter = logging.Formatter("Training: %(asctime)s - %(message)s") handler_file = logging.FileHandler( os.path.join(models_root, "training.log")) handler_stream = logging.StreamHandler(sys.stdout) handler_file.setFormatter(formatter) handler_stream.setFormatter(formatter) log_root.addHandler(handler_file) log_root.addHandler(handler_stream) log_root.info('rank: %d' % rank) class CallBackLogging(object): def __init__(self, frequent, rank, world_size, total_step, batch_size, writer=None): self.frequent: int = frequent self.rank: int = rank self.world_size: int = world_size self.time_start = time.time() self.total_step: int = total_step self.batch_size: int = batch_size self.writer = writer self.tic = time.time() def __call__(self, global_step, loss: AverageMeter, epoch: int, lr_value, avg_reader_cost, avg_batch_cost, avg_samples, ips): if self.rank is 0 and global_step > 0 and global_step % self.frequent == 0: time_now = (time.time() - self.time_start) / 3600 time_total = time_now / ((global_step + 1) / self.total_step) time_for_end = time_total - time_now if self.writer is not None: self.writer.add_scalar('time_for_end', time_for_end, global_step) self.writer.add_scalar('loss', loss.avg, global_step) # ips is throughput msg = "loss %.4f, lr: %f, epoch: %d, step: %d, eta: %1.2f hours, avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f images/sec" % ( loss.avg, lr_value, epoch, global_step, time_for_end,avg_reader_cost, avg_batch_cost, avg_samples, ips * self.world_size) logging.info(msg) loss.reset() self.tic = time.time()
insightface/recognition/arcface_paddle/utils/logging.py/0
{ "file_path": "insightface/recognition/arcface_paddle/utils/logging.py", "repo_id": "insightface", "token_count": 1489 }
125
import logging import os import time from typing import List import torch from eval import verification from utils.utils_logging import AverageMeter from torch.utils.tensorboard import SummaryWriter from torch import distributed class CallBackVerification(object): def __init__(self, val_targets, rec_prefix, summary_writer=None, image_size=(112, 112), wandb_logger=None): self.rank: int = distributed.get_rank() self.highest_acc: float = 0.0 self.highest_acc_list: List[float] = [0.0] * len(val_targets) self.ver_list: List[object] = [] self.ver_name_list: List[str] = [] if self.rank is 0: self.init_dataset(val_targets=val_targets, data_dir=rec_prefix, image_size=image_size) self.summary_writer = summary_writer self.wandb_logger = wandb_logger def ver_test(self, backbone: torch.nn.Module, global_step: int): results = [] for i in range(len(self.ver_list)): acc1, std1, acc2, std2, xnorm, embeddings_list = verification.test( self.ver_list[i], backbone, 10, 10) logging.info('[%s][%d]XNorm: %f' % (self.ver_name_list[i], global_step, xnorm)) logging.info('[%s][%d]Accuracy-Flip: %1.5f+-%1.5f' % (self.ver_name_list[i], global_step, acc2, std2)) self.summary_writer: SummaryWriter self.summary_writer.add_scalar(tag=self.ver_name_list[i], scalar_value=acc2, global_step=global_step, ) if self.wandb_logger: import wandb self.wandb_logger.log({ f'Acc/val-Acc1 {self.ver_name_list[i]}': acc1, f'Acc/val-Acc2 {self.ver_name_list[i]}': acc2, # f'Acc/val-std1 {self.ver_name_list[i]}': std1, # f'Acc/val-std2 {self.ver_name_list[i]}': acc2, }) if acc2 > self.highest_acc_list[i]: self.highest_acc_list[i] = acc2 logging.info( '[%s][%d]Accuracy-Highest: %1.5f' % (self.ver_name_list[i], global_step, self.highest_acc_list[i])) results.append(acc2) def init_dataset(self, val_targets, data_dir, image_size): for name in val_targets: path = os.path.join(data_dir, name + ".bin") if os.path.exists(path): data_set = verification.load_bin(path, image_size) self.ver_list.append(data_set) self.ver_name_list.append(name) def __call__(self, num_update, backbone: torch.nn.Module): if self.rank is 0 and num_update > 0: backbone.eval() self.ver_test(backbone, num_update) backbone.train() class CallBackLogging(object): def __init__(self, frequent, total_step, batch_size, start_step=0,writer=None): self.frequent: int = frequent self.rank: int = distributed.get_rank() self.world_size: int = distributed.get_world_size() self.time_start = time.time() self.total_step: int = total_step self.start_step: int = start_step self.batch_size: int = batch_size self.writer = writer self.init = False self.tic = 0 def __call__(self, global_step: int, loss: AverageMeter, epoch: int, fp16: bool, learning_rate: float, grad_scaler: torch.cuda.amp.GradScaler): if self.rank == 0 and global_step > 0 and global_step % self.frequent == 0: if self.init: try: speed: float = self.frequent * self.batch_size / (time.time() - self.tic) speed_total = speed * self.world_size except ZeroDivisionError: speed_total = float('inf') #time_now = (time.time() - self.time_start) / 3600 #time_total = time_now / ((global_step + 1) / self.total_step) #time_for_end = time_total - time_now time_now = time.time() time_sec = int(time_now - self.time_start) time_sec_avg = time_sec / (global_step - self.start_step + 1) eta_sec = time_sec_avg * (self.total_step - global_step - 1) time_for_end = eta_sec/3600 if self.writer is not None: self.writer.add_scalar('time_for_end', time_for_end, global_step) self.writer.add_scalar('learning_rate', learning_rate, global_step) self.writer.add_scalar('loss', loss.avg, global_step) if fp16: msg = "Speed %.2f samples/sec Loss %.4f LearningRate %.6f Epoch: %d Global Step: %d " \ "Fp16 Grad Scale: %2.f Required: %1.f hours" % ( speed_total, loss.avg, learning_rate, epoch, global_step, grad_scaler.get_scale(), time_for_end ) else: msg = "Speed %.2f samples/sec Loss %.4f LearningRate %.6f Epoch: %d Global Step: %d " \ "Required: %1.f hours" % ( speed_total, loss.avg, learning_rate, epoch, global_step, time_for_end ) logging.info(msg) loss.reset() self.tic = time.time() else: self.init = True self.tic = time.time()
insightface/recognition/arcface_torch/utils/utils_callbacks.py/0
{ "file_path": "insightface/recognition/arcface_torch/utils/utils_callbacks.py", "repo_id": "insightface", "token_count": 2903 }
126
import argparse import os import pickle import timeit import warnings from pathlib import Path import cv2 import matplotlib import matplotlib.pyplot as plt import mxnet as mx import numpy as np import pandas as pd import sklearn from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap from mxnet.gluon.data import Dataset, DataLoader from prettytable import PrettyTable from skimage import transform as trans from sklearn import preprocessing from sklearn.metrics import roc_curve, auc from tqdm import tqdm matplotlib.use('Agg') warnings.filterwarnings("ignore") parser = argparse.ArgumentParser(description='do ijb test') # general parser.add_argument('--model-prefix', default='', help='path to load model.') parser.add_argument('--model-epoch', default=1, type=int, help='') parser.add_argument('--image-path', default='', type=str, help='') parser.add_argument('--result-dir', default='.', type=str, help='') parser.add_argument('--gpu', default='0', type=str, help='gpu id') parser.add_argument('--batch-size', default=128, type=int, help='') parser.add_argument('--job', default='insightface', type=str, help='job name') parser.add_argument('-es', '--emb-size', type=int, help='embedding size') parser.add_argument('--target', default='IJBC', type=str, help='target, set to IJBC or IJBB') args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu target = args.target model_path = args.model_prefix image_path = args.image_path result_dir = args.result_dir epoch = args.model_epoch use_norm_score = True # if Ture, TestMode(N1) use_detector_score = True # if Ture, TestMode(D1) use_flip_test = True # if Ture, TestMode(F1) job = args.job batch_size = args.batch_size class DatasetIJB(Dataset): def __init__(self, root, lines, align=True): self.src = np.array( [[30.2946, 51.6963], [65.5318, 51.5014], [48.0252, 71.7366], [33.5493, 92.3655], [62.7299, 92.2041]], dtype=np.float32) self.src[:, 0] += 8.0 self.lines = lines self.img_root = root self.align = align def __len__(self): return len(self.lines) def __getitem__(self, idx): each_line = self.lines[idx] name_lmk_score = each_line.strip().split(' ') # "name lmk score" img_name = os.path.join(self.img_root, name_lmk_score[0]) img = cv2.imread(img_name) if self.align: landmark = np.array([float(x) for x in name_lmk_score[1:-1]], dtype=np.float32) landmark = landmark.reshape((5, 2)) # assert landmark.shape[0] == 68 or landmark.shape[0] == 5 assert landmark.shape[1] == 2 if landmark.shape[0] == 68: landmark5 = np.zeros((5, 2), dtype=np.float32) landmark5[0] = (landmark[36] + landmark[39]) / 2 landmark5[1] = (landmark[42] + landmark[45]) / 2 landmark5[2] = landmark[30] landmark5[3] = landmark[48] landmark5[4] = landmark[54] else: landmark5 = landmark # tform = trans.SimilarityTransform() tform.estimate(landmark5, self.src) # M = tform.params[0:2, :] img = cv2.warpAffine(img, M, (112, 112), borderValue=0.0) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_flip = np.fliplr(img) img = np.transpose(img, (2, 0, 1)) # 3*112*112, RGB img_flip = np.transpose(img_flip, (2, 0, 1)) input_blob = np.zeros((2, 3, 112, 112), dtype=np.uint8) input_blob[0] = img input_blob[1] = img_flip return mx.nd.array(input_blob) def extract_parallel(prefix, epoch, dataset, batch_size, size): # init model_list = list() num_ctx = len(os.environ['CUDA_VISIBLE_DEVICES'].split(",")) num_iter = 0 feat_mat = mx.nd.zeros(shape=(len(dataset), 2 * size)) def batchify_fn(data): return mx.nd.concat(*data, dim=0) data_loader = DataLoader(dataset, batch_size, last_batch='keep', num_workers=8, thread_pool=True, prefetch=16, batchify_fn=batchify_fn) symbol, arg_params, aux_params = mx.module.module.load_checkpoint( prefix, epoch) all_layers = symbol.get_internals() symbol = all_layers['fc1_output'] # init model list for i in range(num_ctx): model = mx.mod.Module(symbol, context=mx.gpu(i), label_names=None) model.bind(for_training=False, data_shapes=[('data', (2 * batch_size, 3, 112, 112))]) model.set_params(arg_params, aux_params) model_list.append(model) # extract parallel and async num_model = len(model_list) for image in tqdm(data_loader): data_batch = mx.io.DataBatch(data=(image, )) model_list[num_iter % num_model].forward(data_batch, is_train=False) feat = model_list[num_iter % num_model].get_outputs(merge_multi_context=True)[0] feat = mx.nd.L2Normalization(feat) feat = mx.nd.reshape(feat, (-1, size * 2)) feat_mat[batch_size * num_iter:batch_size * num_iter + feat.shape[0], :] = feat.as_in_context(mx.cpu()) num_iter += 1 #if num_iter % 20 == 0: # mx.nd.waitall() return feat_mat.asnumpy() # 将一个list尽量均分成n份,限制len(list)==n,份数大于原list内元素个数则分配空list[] def divideIntoNstrand(listTemp, n): twoList = [[] for i in range(n)] for i, e in enumerate(listTemp): twoList[i % n].append(e) return twoList def read_template_media_list(path): ijb_meta = pd.read_csv(path, sep=' ', header=None).values templates = ijb_meta[:, 1].astype(np.int) medias = ijb_meta[:, 2].astype(np.int) return templates, medias def read_template_pair_list(path): pairs = pd.read_csv(path, sep=' ', header=None).values t1 = pairs[:, 0].astype(np.int) t2 = pairs[:, 1].astype(np.int) label = pairs[:, 2].astype(np.int) return t1, t2, label def read_image_feature(path): with open(path, 'rb') as fid: img_feats = pickle.load(fid) return img_feats def image2template_feature(img_feats=None, templates=None, medias=None): # ========================================================== # 1. face image feature l2 normalization. img_feats:[number_image x feats_dim] # 2. compute media feature. # 3. compute template feature. # ========================================================== unique_templates = np.unique(templates) template_feats = np.zeros((len(unique_templates), img_feats.shape[1])) for count_template, uqt in enumerate(unique_templates): (ind_t, ) = np.where(templates == uqt) face_norm_feats = img_feats[ind_t] face_medias = medias[ind_t] unique_medias, unique_media_counts = np.unique(face_medias, return_counts=True) media_norm_feats = [] for u, ct in zip(unique_medias, unique_media_counts): (ind_m, ) = np.where(face_medias == u) if ct == 1: media_norm_feats += [face_norm_feats[ind_m]] else: # image features from the same video will be aggregated into one feature media_norm_feats += [ np.mean(face_norm_feats[ind_m], axis=0, keepdims=True) ] media_norm_feats = np.array(media_norm_feats) # media_norm_feats = media_norm_feats / np.sqrt(np.sum(media_norm_feats ** 2, -1, keepdims=True)) template_feats[count_template] = np.sum(media_norm_feats, axis=0) if count_template % 2000 == 0: print('Finish Calculating {} template features.'.format( count_template)) # template_norm_feats = template_feats / np.sqrt(np.sum(template_feats ** 2, -1, keepdims=True)) template_norm_feats = sklearn.preprocessing.normalize(template_feats) # print(template_norm_feats.shape) return template_norm_feats, unique_templates # In[ ]: def verification(template_norm_feats=None, unique_templates=None, p1=None, p2=None): # ========================================================== # Compute set-to-set Similarity Score. # ========================================================== template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) for count_template, uqt in enumerate(unique_templates): template2id[uqt] = count_template score = np.zeros((len(p1), )) # save cosine distance between pairs total_pairs = np.array(range(len(p1))) batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation sublists = [ total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize) ] total_sublists = len(sublists) for c, s in enumerate(sublists): feat1 = template_norm_feats[template2id[p1[s]]] feat2 = template_norm_feats[template2id[p2[s]]] similarity_score = np.sum(feat1 * feat2, -1) score[s] = similarity_score.flatten() if c % 10 == 0: print('Finish {}/{} pairs.'.format(c, total_sublists)) return score # In[ ]: def verification2(template_norm_feats=None, unique_templates=None, p1=None, p2=None): template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) for count_template, uqt in enumerate(unique_templates): template2id[uqt] = count_template score = np.zeros((len(p1), )) # save cosine distance between pairs total_pairs = np.array(range(len(p1))) batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation sublists = [ total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize) ] total_sublists = len(sublists) for c, s in enumerate(sublists): feat1 = template_norm_feats[template2id[p1[s]]] feat2 = template_norm_feats[template2id[p2[s]]] similarity_score = np.sum(feat1 * feat2, -1) score[s] = similarity_score.flatten() if c % 10 == 0: print('Finish {}/{} pairs.'.format(c, total_sublists)) return score def read_score(path): with open(path, 'rb') as fid: img_feats = pickle.load(fid) return img_feats # # Step1: Load Meta Data assert target == 'IJBC' or target == 'IJBB' # ============================================================= # load image and template relationships for template feature embedding # tid --> template id, mid --> media id # format: # image_name tid mid # ============================================================= start = timeit.default_timer() templates, medias = read_template_media_list( os.path.join('%s/meta' % image_path, '%s_face_tid_mid.txt' % target.lower())) stop = timeit.default_timer() print('Time: %.2f s. ' % (stop - start)) # ============================================================= # load template pairs for template-to-template verification # tid : template id, label : 1/0 # format: # tid_1 tid_2 label # ============================================================= start = timeit.default_timer() p1, p2, label = read_template_pair_list( os.path.join('%s/meta' % image_path, '%s_template_pair_label.txt' % target.lower())) stop = timeit.default_timer() print('Time: %.2f s. ' % (stop - start)) # # Step 2: Get Image Features # ============================================================= # load image features # format: # img_feats: [image_num x feats_dim] (227630, 512) # ============================================================= start = timeit.default_timer() img_path = '%s/loose_crop' % image_path img_list_path = '%s/meta/%s_name_5pts_score.txt' % (image_path, target.lower()) img_list = open(img_list_path) files = img_list.readlines() dataset = DatasetIJB(root=img_path, lines=files, align=True) img_feats = extract_parallel(args.model_prefix, args.model_epoch, dataset, args.batch_size, size=args.emb_size) faceness_scores = [] for each_line in files: name_lmk_score = each_line.split() faceness_scores.append(name_lmk_score[-1]) faceness_scores = np.array(faceness_scores).astype(np.float32) stop = timeit.default_timer() print('Time: %.2f s. ' % (stop - start)) print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0], img_feats.shape[1])) # # Step3: Get Template Features # In[ ]: # ============================================================= # compute template features from image features. # ============================================================= start = timeit.default_timer() # ========================================================== # Norm feature before aggregation into template feature? # Feature norm from embedding network and faceness score are able to decrease weights for noise samples (not face). # ========================================================== # 1. FaceScore (Feature Norm) # 2. FaceScore (Detector) if use_flip_test: # concat --- F1 # img_input_feats = img_feats # add --- F2 img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2] + img_feats[:, img_feats.shape[1] // 2:] else: img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2] if use_norm_score: img_input_feats = img_input_feats else: # normalise features to remove norm information img_input_feats = img_input_feats / np.sqrt( np.sum(img_input_feats**2, -1, keepdims=True)) if use_detector_score: print(img_input_feats.shape, faceness_scores.shape) # img_input_feats = img_input_feats * np.matlib.repmat(faceness_scores[:,np.newaxis], 1, img_input_feats.shape[1]) img_input_feats = img_input_feats * faceness_scores[:, np.newaxis] else: img_input_feats = img_input_feats template_norm_feats, unique_templates = image2template_feature( img_input_feats, templates, medias) stop = timeit.default_timer() print('Time: %.2f s. ' % (stop - start)) # # Step 4: Get Template Similarity Scores # In[ ]: # ============================================================= # compute verification scores between template pairs. # ============================================================= start = timeit.default_timer() score = verification(template_norm_feats, unique_templates, p1, p2) stop = timeit.default_timer() print('Time: %.2f s. ' % (stop - start)) # In[ ]: save_path = result_dir + '/%s_result' % target if not os.path.exists(save_path): os.makedirs(save_path) score_save_file = os.path.join(save_path, "%s.npy" % job) np.save(score_save_file, score) # # Step 5: Get ROC Curves and TPR@FPR Table # In[ ]: files = [score_save_file] methods = [] scores = [] for file in files: methods.append(Path(file).stem) scores.append(np.load(file)) methods = np.array(methods) scores = dict(zip(methods, scores)) colours = dict( zip(methods, sample_colours_from_colourmap(methods.shape[0], 'Set2'))) # x_labels = [1/(10**x) for x in np.linspace(6, 0, 6)] x_labels = [10**-6, 10**-5, 10**-4, 10**-3, 10**-2, 10**-1] tpr_fpr_table = PrettyTable(['Methods'] + [str(x) for x in x_labels]) fig = plt.figure() for method in methods: fpr, tpr, _ = roc_curve(label, scores[method]) roc_auc = auc(fpr, tpr) fpr = np.flipud(fpr) tpr = np.flipud(tpr) # select largest tpr at same fpr plt.plot(fpr, tpr, color=colours[method], lw=1, label=('[%s (AUC = %0.4f %%)]' % (method.split('-')[-1], roc_auc * 100))) tpr_fpr_row = [] tpr_fpr_row.append("%s-%s" % (method, target)) for fpr_iter in np.arange(len(x_labels)): _, min_index = min( list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr))))) # tpr_fpr_row.append('%.4f' % tpr[min_index]) tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100)) tpr_fpr_table.add_row(tpr_fpr_row) plt.xlim([10**-6, 0.1]) plt.ylim([0.3, 1.0]) plt.grid(linestyle='--', linewidth=1) plt.xticks(x_labels) plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True)) plt.xscale('log') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC on IJB') plt.legend(loc="lower right") # plt.show() fig.savefig(os.path.join(save_path, '%s.pdf' % job)) print(tpr_fpr_table)
insightface/recognition/partial_fc/mxnet/evaluation/ijb.py/0
{ "file_path": "insightface/recognition/partial_fc/mxnet/evaluation/ijb.py", "repo_id": "insightface", "token_count": 7439 }
127
import os import shutil import datetime import sys from mxnet import ndarray as nd import mxnet as mx import random import argparse import numbers import cv2 import time import pickle import sklearn import sklearn.preprocessing from easydict import EasyDict as edict import numpy as np sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'common')) from rec_builder import * def get_embedding(args, imgrec, a, b, image_size, model): ocontents = [] for idx in range(a, b): s = imgrec.read_idx(idx) ocontents.append(s) embeddings = None #print(len(ocontents)) ba = 0 rlabel = -1 imgs = [] contents = [] while True: bb = min(ba + args.batch_size, len(ocontents)) if ba >= bb: break _batch_size = bb - ba #_batch_size2 = max(_batch_size, args.ctx_num) _batch_size2 = _batch_size if _batch_size % args.ctx_num != 0: _batch_size2 = ((_batch_size // args.ctx_num) + 1) * args.ctx_num data = np.zeros((_batch_size2, 3, image_size[0], image_size[1])) count = bb - ba ii = 0 for i in range(ba, bb): header, img = mx.recordio.unpack(ocontents[i]) contents.append(img) label = header.label if not isinstance(label, numbers.Number): label = label[0] if rlabel < 0: rlabel = int(label) img = mx.image.imdecode(img) rgb = img.asnumpy() bgr = rgb[:, :, ::-1] imgs.append(bgr) img = rgb.transpose((2, 0, 1)) data[ii] = img ii += 1 while ii < _batch_size2: data[ii] = data[0] ii += 1 nddata = nd.array(data) db = mx.io.DataBatch(data=(nddata, )) model.forward(db, is_train=False) net_out = model.get_outputs() net_out = net_out[0].asnumpy() if embeddings is None: embeddings = np.zeros((len(ocontents), net_out.shape[1])) embeddings[ba:bb, :] = net_out[0:_batch_size, :] ba = bb embeddings = sklearn.preprocessing.normalize(embeddings) return embeddings, rlabel, contents def main(args): print(args) image_size = (112, 112) print('image_size', image_size) vec = args.model.split(',') prefix = vec[0] epoch = int(vec[1]) print('loading', prefix, epoch) ctx = [] cvd = os.environ['CUDA_VISIBLE_DEVICES'].strip() if len(cvd) > 0: for i in range(len(cvd.split(','))): ctx.append(mx.gpu(i)) if len(ctx) == 0: ctx = [mx.cpu()] print('use cpu') else: print('gpu num:', len(ctx)) args.ctx_num = len(ctx) args.batch_size *= args.ctx_num sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) W = None i = 0 while True: key = 'fc7_%d_weight' % i i += 1 if key not in arg_params: break _W = arg_params[key].asnumpy() #_W = _W.reshape( (-1, 10, 512) ) if W is None: W = _W else: W = np.concatenate((W, _W), axis=0) K = args.k W = sklearn.preprocessing.normalize(W) W = W.reshape((-1, K, 512)) all_layers = sym.get_internals() sym = all_layers['fc1_output'] model = mx.mod.Module(symbol=sym, context=ctx, label_names=None) model.bind(data_shapes=[('data', (args.ctx_num, 3, image_size[0], image_size[1]))]) model.set_params(arg_params, aux_params) print('W:', W.shape) path_imgrec = os.path.join(args.data, 'train.rec') path_imgidx = os.path.join(args.data, 'train.idx') imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') # pylint: disable=redefined-variable-type id_list = [] s = imgrec.read_idx(0) header, _ = mx.recordio.unpack(s) assert header.flag > 0 print('header0 label', header.label) header0 = (int(header.label[0]), int(header.label[1])) #assert(header.flag==1) imgidx = range(1, int(header.label[0])) id2range = {} a, b = int(header.label[0]), int(header.label[1]) seq_identity = range(a, b) print(len(seq_identity)) image_count = 0 pp = 0 for wid, identity in enumerate(seq_identity): pp += 1 s = imgrec.read_idx(identity) header, _ = mx.recordio.unpack(s) contents = [] a, b = int(header.label[0]), int(header.label[1]) _count = b - a id_list.append((wid, a, b, _count)) image_count += _count pp = 0 if not os.path.exists(args.output): os.makedirs(args.output) ret = np.zeros((image_count, K + 1), dtype=np.float32) output_dir = args.output builder = SeqRecBuilder(output_dir) print(ret.shape) imid = 0 da = datetime.datetime.now() label = 0 num_images = 0 cos_thresh = np.cos(np.pi * args.threshold / 180.0) for id_item in id_list: wid = id_item[0] pp += 1 if pp % 40 == 0: db = datetime.datetime.now() print('processing id', pp, (db - da).total_seconds()) da = db x, _, contents = get_embedding(args, imgrec, id_item[1], id_item[2], image_size, model) subcenters = W[wid] K_stat = np.zeros((K, ), dtype=np.int) for i in range(x.shape[0]): _x = x[i] sim = np.dot(subcenters, _x) # len(sim)==K mc = np.argmax(sim) K_stat[mc] += 1 dominant_index = np.argmax(K_stat) dominant_center = subcenters[dominant_index] sim = np.dot(x, dominant_center) idx = np.where(sim > cos_thresh)[0] num_drop = x.shape[0] - len(idx) if len(idx) == 0: continue #print("labelid %d dropped %d, from %d to %d"% (wid, num_drop, x.shape[0], len(idx))) num_images += len(idx) for _idx in idx: c = contents[_idx] builder.add(label, c, is_image=False) label += 1 builder.close() print('total:', num_images) if __name__ == '__main__': parser = argparse.ArgumentParser(description='') # general parser.add_argument('--data', default='/bigdata/faces_ms1m_full', type=str, help='') parser.add_argument('--output', default='/bigdata/ms1m_full_k3drop075', type=str, help='') parser.add_argument( '--model', default= '../Evaluation/IJB/pretrained_models/r50-arcfacesc-msf-k3z/model,2', help='path to load model.') parser.add_argument('--batch-size', default=16, type=int, help='') parser.add_argument('--threshold', default=75, type=float, help='') parser.add_argument('--k', default=3, type=int, help='') args = parser.parse_args() main(args)
insightface/recognition/subcenter_arcface/drop.py/0
{ "file_path": "insightface/recognition/subcenter_arcface/drop.py", "repo_id": "insightface", "token_count": 3544 }
128
import torch import torch.nn as nn from utils import rend_util class RayTracing(nn.Module): def __init__( self, object_bounding_sphere=1.0, sdf_threshold=5.0e-5, line_search_step=0.5, line_step_iters=1, sphere_tracing_iters=10, n_steps=100, n_secant_steps=8, ): super().__init__() self.object_bounding_sphere = object_bounding_sphere self.sdf_threshold = sdf_threshold self.sphere_tracing_iters = sphere_tracing_iters self.line_step_iters = line_step_iters self.line_search_step = line_search_step self.n_steps = n_steps self.n_secant_steps = n_secant_steps def forward(self, sdf, cam_loc, object_mask, ray_directions ): batch_size, num_pixels, _ = ray_directions.shape sphere_intersections, mask_intersect = rend_util.get_sphere_intersection(cam_loc, ray_directions, r=self.object_bounding_sphere) curr_start_points, unfinished_mask_start, acc_start_dis, acc_end_dis, min_dis, max_dis = \ self.sphere_tracing(batch_size, num_pixels, sdf, cam_loc, ray_directions, mask_intersect, sphere_intersections) network_object_mask = (acc_start_dis < acc_end_dis) # The non convergent rays should be handled by the sampler sampler_mask = unfinished_mask_start sampler_net_obj_mask = torch.zeros_like(sampler_mask).bool().cuda() if sampler_mask.sum() > 0: sampler_min_max = torch.zeros((batch_size, num_pixels, 2)).cuda() sampler_min_max.reshape(-1, 2)[sampler_mask, 0] = acc_start_dis[sampler_mask] sampler_min_max.reshape(-1, 2)[sampler_mask, 1] = acc_end_dis[sampler_mask] sampler_pts, sampler_net_obj_mask, sampler_dists = self.ray_sampler(sdf, cam_loc, object_mask, ray_directions, sampler_min_max, sampler_mask ) curr_start_points[sampler_mask] = sampler_pts[sampler_mask] acc_start_dis[sampler_mask] = sampler_dists[sampler_mask] network_object_mask[sampler_mask] = sampler_net_obj_mask[sampler_mask] print('----------------------------------------------------------------') print('RayTracing: object = {0}/{1}, secant on {2}/{3}.' .format(network_object_mask.sum(), len(network_object_mask), sampler_net_obj_mask.sum(), sampler_mask.sum())) print('----------------------------------------------------------------') if not self.training: return curr_start_points, \ network_object_mask, \ acc_start_dis ray_directions = ray_directions.reshape(-1, 3) mask_intersect = mask_intersect.reshape(-1) in_mask = ~network_object_mask & object_mask & ~sampler_mask out_mask = ~object_mask & ~sampler_mask mask_left_out = (in_mask | out_mask) & ~mask_intersect if mask_left_out.sum() > 0: # project the origin to the not intersect points on the sphere cam_left_out = cam_loc.unsqueeze(1).repeat(1, num_pixels, 1).reshape(-1, 3)[mask_left_out] rays_left_out = ray_directions[mask_left_out] acc_start_dis[mask_left_out] = -torch.bmm(rays_left_out.view(-1, 1, 3), cam_left_out.view(-1, 3, 1)).squeeze() curr_start_points[mask_left_out] = cam_left_out + acc_start_dis[mask_left_out].unsqueeze(1) * rays_left_out mask = (in_mask | out_mask) & mask_intersect if mask.sum() > 0: min_dis[network_object_mask & out_mask] = acc_start_dis[network_object_mask & out_mask] min_mask_points, min_mask_dist = self.minimal_sdf_points(num_pixels, sdf, cam_loc, ray_directions, mask, min_dis, max_dis) curr_start_points[mask] = min_mask_points acc_start_dis[mask] = min_mask_dist return curr_start_points, \ network_object_mask, \ acc_start_dis def sphere_tracing(self, batch_size, num_pixels, sdf, cam_loc, ray_directions, mask_intersect, sphere_intersections): ''' Run sphere tracing algorithm for max iterations from both sides of unit sphere intersection ''' sphere_intersections_points = cam_loc.reshape(batch_size, 1, 1, 3) + sphere_intersections.unsqueeze(-1) * ray_directions.unsqueeze(2) unfinished_mask_start = mask_intersect.reshape(-1).clone() unfinished_mask_end = mask_intersect.reshape(-1).clone() # Initialize start current points curr_start_points = torch.zeros(batch_size * num_pixels, 3).cuda().float() curr_start_points[unfinished_mask_start] = sphere_intersections_points[:,:,0,:].reshape(-1,3)[unfinished_mask_start] acc_start_dis = torch.zeros(batch_size * num_pixels).cuda().float() acc_start_dis[unfinished_mask_start] = sphere_intersections.reshape(-1,2)[unfinished_mask_start,0] # Initialize end current points curr_end_points = torch.zeros(batch_size * num_pixels, 3).cuda().float() curr_end_points[unfinished_mask_end] = sphere_intersections_points[:,:,1,:].reshape(-1,3)[unfinished_mask_end] acc_end_dis = torch.zeros(batch_size * num_pixels).cuda().float() acc_end_dis[unfinished_mask_end] = sphere_intersections.reshape(-1,2)[unfinished_mask_end,1] # Initizliae min and max depth min_dis = acc_start_dis.clone() max_dis = acc_end_dis.clone() # Iterate on the rays (from both sides) till finding a surface iters = 0 next_sdf_start = torch.zeros_like(acc_start_dis).cuda() next_sdf_start[unfinished_mask_start] = sdf(curr_start_points[unfinished_mask_start]) next_sdf_end = torch.zeros_like(acc_end_dis).cuda() next_sdf_end[unfinished_mask_end] = sdf(curr_end_points[unfinished_mask_end]) while True: # Update sdf curr_sdf_start = torch.zeros_like(acc_start_dis).cuda() curr_sdf_start[unfinished_mask_start] = next_sdf_start[unfinished_mask_start] curr_sdf_start[curr_sdf_start <= self.sdf_threshold] = 0 curr_sdf_end = torch.zeros_like(acc_end_dis).cuda() curr_sdf_end[unfinished_mask_end] = next_sdf_end[unfinished_mask_end] curr_sdf_end[curr_sdf_end <= self.sdf_threshold] = 0 # Update masks unfinished_mask_start = unfinished_mask_start & (curr_sdf_start > self.sdf_threshold) unfinished_mask_end = unfinished_mask_end & (curr_sdf_end > self.sdf_threshold) if (unfinished_mask_start.sum() == 0 and unfinished_mask_end.sum() == 0) or iters == self.sphere_tracing_iters: break iters += 1 # Make step # Update distance acc_start_dis = acc_start_dis + curr_sdf_start acc_end_dis = acc_end_dis - curr_sdf_end # Update points curr_start_points = (cam_loc.unsqueeze(1) + acc_start_dis.reshape(batch_size, num_pixels, 1) * ray_directions).reshape(-1, 3) curr_end_points = (cam_loc.unsqueeze(1) + acc_end_dis.reshape(batch_size, num_pixels, 1) * ray_directions).reshape(-1, 3) # Fix points which wrongly crossed the surface next_sdf_start = torch.zeros_like(acc_start_dis).cuda() next_sdf_start[unfinished_mask_start] = sdf(curr_start_points[unfinished_mask_start]) next_sdf_end = torch.zeros_like(acc_end_dis).cuda() next_sdf_end[unfinished_mask_end] = sdf(curr_end_points[unfinished_mask_end]) not_projected_start = next_sdf_start < 0 not_projected_end = next_sdf_end < 0 not_proj_iters = 0 while (not_projected_start.sum() > 0 or not_projected_end.sum() > 0) and not_proj_iters < self.line_step_iters: # Step backwards acc_start_dis[not_projected_start] -= ((1 - self.line_search_step) / (2 ** not_proj_iters)) * curr_sdf_start[not_projected_start] curr_start_points[not_projected_start] = (cam_loc.unsqueeze(1) + acc_start_dis.reshape(batch_size, num_pixels, 1) * ray_directions).reshape(-1, 3)[not_projected_start] acc_end_dis[not_projected_end] += ((1 - self.line_search_step) / (2 ** not_proj_iters)) * curr_sdf_end[not_projected_end] curr_end_points[not_projected_end] = (cam_loc.unsqueeze(1) + acc_end_dis.reshape(batch_size, num_pixels, 1) * ray_directions).reshape(-1, 3)[not_projected_end] # Calc sdf next_sdf_start[not_projected_start] = sdf(curr_start_points[not_projected_start]) next_sdf_end[not_projected_end] = sdf(curr_end_points[not_projected_end]) # Update mask not_projected_start = next_sdf_start < 0 not_projected_end = next_sdf_end < 0 not_proj_iters += 1 unfinished_mask_start = unfinished_mask_start & (acc_start_dis < acc_end_dis) unfinished_mask_end = unfinished_mask_end & (acc_start_dis < acc_end_dis) return curr_start_points, unfinished_mask_start, acc_start_dis, acc_end_dis, min_dis, max_dis def ray_sampler(self, sdf, cam_loc, object_mask, ray_directions, sampler_min_max, sampler_mask): ''' Sample the ray in a given range and run secant on rays which have sign transition ''' batch_size, num_pixels, _ = ray_directions.shape n_total_pxl = batch_size * num_pixels sampler_pts = torch.zeros(n_total_pxl, 3).cuda().float() sampler_dists = torch.zeros(n_total_pxl).cuda().float() intervals_dist = torch.linspace(0, 1, steps=self.n_steps).cuda().view(1, 1, -1) pts_intervals = sampler_min_max[:, :, 0].unsqueeze(-1) + intervals_dist * (sampler_min_max[:, :, 1] - sampler_min_max[:, :, 0]).unsqueeze(-1) points = cam_loc.reshape(batch_size, 1, 1, 3) + pts_intervals.unsqueeze(-1) * ray_directions.unsqueeze(2) # Get the non convergent rays mask_intersect_idx = torch.nonzero(sampler_mask).flatten() points = points.reshape((-1, self.n_steps, 3))[sampler_mask, :, :] pts_intervals = pts_intervals.reshape((-1, self.n_steps))[sampler_mask] sdf_val_all = [] for pnts in torch.split(points.reshape(-1, 3), 100000, dim=0): sdf_val_all.append(sdf(pnts)) sdf_val = torch.cat(sdf_val_all).reshape(-1, self.n_steps) tmp = torch.sign(sdf_val) * torch.arange(self.n_steps, 0, -1).cuda().float().reshape((1, self.n_steps)) # Force argmin to return the first min value sampler_pts_ind = torch.argmin(tmp, -1) sampler_pts[mask_intersect_idx] = points[torch.arange(points.shape[0]), sampler_pts_ind, :] sampler_dists[mask_intersect_idx] = pts_intervals[torch.arange(pts_intervals.shape[0]), sampler_pts_ind] true_surface_pts = object_mask[sampler_mask] net_surface_pts = (sdf_val[torch.arange(sdf_val.shape[0]), sampler_pts_ind] < 0) # take points with minimal SDF value for P_out pixels p_out_mask = ~(true_surface_pts & net_surface_pts) n_p_out = p_out_mask.sum() if n_p_out > 0: out_pts_idx = torch.argmin(sdf_val[p_out_mask, :], -1) sampler_pts[mask_intersect_idx[p_out_mask]] = points[p_out_mask, :, :][torch.arange(n_p_out), out_pts_idx, :] sampler_dists[mask_intersect_idx[p_out_mask]] = pts_intervals[p_out_mask, :][torch.arange(n_p_out), out_pts_idx] # Get Network object mask sampler_net_obj_mask = sampler_mask.clone() sampler_net_obj_mask[mask_intersect_idx[~net_surface_pts]] = False # Run Secant method secant_pts = net_surface_pts & true_surface_pts if self.training else net_surface_pts n_secant_pts = secant_pts.sum() if n_secant_pts > 0: # Get secant z predictions z_high = pts_intervals[torch.arange(pts_intervals.shape[0]), sampler_pts_ind][secant_pts] sdf_high = sdf_val[torch.arange(sdf_val.shape[0]), sampler_pts_ind][secant_pts] z_low = pts_intervals[secant_pts][torch.arange(n_secant_pts), sampler_pts_ind[secant_pts] - 1] sdf_low = sdf_val[secant_pts][torch.arange(n_secant_pts), sampler_pts_ind[secant_pts] - 1] cam_loc_secant = cam_loc.unsqueeze(1).repeat(1, num_pixels, 1).reshape((-1, 3))[mask_intersect_idx[secant_pts]] ray_directions_secant = ray_directions.reshape((-1, 3))[mask_intersect_idx[secant_pts]] z_pred_secant = self.secant(sdf_low, sdf_high, z_low, z_high, cam_loc_secant, ray_directions_secant, sdf) # Get points sampler_pts[mask_intersect_idx[secant_pts]] = cam_loc_secant + z_pred_secant.unsqueeze(-1) * ray_directions_secant sampler_dists[mask_intersect_idx[secant_pts]] = z_pred_secant return sampler_pts, sampler_net_obj_mask, sampler_dists def secant(self, sdf_low, sdf_high, z_low, z_high, cam_loc, ray_directions, sdf): ''' Runs the secant method for interval [z_low, z_high] for n_secant_steps ''' z_pred = - sdf_low * (z_high - z_low) / (sdf_high - sdf_low) + z_low for i in range(self.n_secant_steps): p_mid = cam_loc + z_pred.unsqueeze(-1) * ray_directions sdf_mid = sdf(p_mid) ind_low = sdf_mid > 0 if ind_low.sum() > 0: z_low[ind_low] = z_pred[ind_low] sdf_low[ind_low] = sdf_mid[ind_low] ind_high = sdf_mid < 0 if ind_high.sum() > 0: z_high[ind_high] = z_pred[ind_high] sdf_high[ind_high] = sdf_mid[ind_high] z_pred = - sdf_low * (z_high - z_low) / (sdf_high - sdf_low) + z_low return z_pred def minimal_sdf_points(self, num_pixels, sdf, cam_loc, ray_directions, mask, min_dis, max_dis): ''' Find points with minimal SDF value on rays for P_out pixels ''' n_mask_points = mask.sum() n = self.n_steps # steps = torch.linspace(0.0, 1.0,n).cuda() steps = torch.empty(n).uniform_(0.0, 1.0).cuda() mask_max_dis = max_dis[mask].unsqueeze(-1) mask_min_dis = min_dis[mask].unsqueeze(-1) steps = steps.unsqueeze(0).repeat(n_mask_points, 1) * (mask_max_dis - mask_min_dis) + mask_min_dis mask_points = cam_loc.unsqueeze(1).repeat(1, num_pixels, 1).reshape(-1, 3)[mask] mask_rays = ray_directions[mask, :] mask_points_all = mask_points.unsqueeze(1).repeat(1, n, 1) + steps.unsqueeze(-1) * mask_rays.unsqueeze( 1).repeat(1, n, 1) points = mask_points_all.reshape(-1, 3) mask_sdf_all = [] for pnts in torch.split(points, 100000, dim=0): mask_sdf_all.append(sdf(pnts)) mask_sdf_all = torch.cat(mask_sdf_all).reshape(-1, n) min_vals, min_idx = mask_sdf_all.min(-1) min_mask_points = mask_points_all.reshape(-1, n, 3)[torch.arange(0, n_mask_points), min_idx] min_mask_dist = steps.reshape(-1, n)[torch.arange(0, n_mask_points), min_idx] return min_mask_points, min_mask_dist
insightface/reconstruction/PBIDR/code/model/ray_tracing.py/0
{ "file_path": "insightface/reconstruction/PBIDR/code/model/ray_tracing.py", "repo_id": "insightface", "token_count": 7753 }
129
import os import os.path as osp import numpy as np import menpo.io as mio def project_shape_in_image(verts, R_t, M_proj, M1): verts_homo = verts if verts_homo.shape[1] == 3: ones = np.ones([verts_homo.shape[0], 1]) verts_homo = np.concatenate([verts_homo, ones], axis=1) verts_out = verts_homo @ R_t @ M_proj @ M1 w_ = verts_out[:, [3]] verts_out = verts_out / w_ return verts_out class EyeDataset(): def __init__(self, root, load_data=True): eyes_info = mio.import_pickle(osp.join(root,'eyes3d.pkl')) idxs481 = eyes_info['mask481']['idxs'] tri481 = eyes_info['mask481']['trilist'] self.iris_idx_481 = eyes_info['mask481']['idxs_iris'] eyel_template = eyes_info['left_points'][idxs481] eyer_template = eyes_info['right_points'][idxs481] eyel_template_homo = np.append(eyel_template, np.ones((eyel_template.shape[0],1)), axis=1) eyer_template_homo = np.append(eyer_template, np.ones((eyer_template.shape[0],1)), axis=1) points = mio.import_pickle(osp.join(root,'eyespoints.pkl')) self.homol = eyel_template_homo.T self.homor = eyer_template_homo.T if load_data: self.worldl = {} self.worldr = {} #vector_norm = 0.035 for k in points: p = k.find('/') newk = k[p+1:] value = points[k] #el_inv = (value['left'] @ eyel_template_homo.T).T #er_inv = (value['right'] @ eyer_template_homo.T).T #print('V:', value['left'][:5,:]) #print('E:', el_inv[:5,:]) # gaze vector of left eye in world space #gl_vector = el_inv[iris_idx_481].mean(axis=0) - el_inv[-1] #gl_vector = (gl_vector / np.linalg.norm(gl_vector)) * vector_norm #gl_point = el_inv[iris_idx_481].mean(axis=0) + gl_vector ## gaze vector of right eye in world space #gr_vector = er_inv[iris_idx_481].mean(axis=0) - er_inv[-1] #gr_vector = (gr_vector / np.linalg.norm(gr_vector)) * vector_norm #gr_point = er_inv[iris_idx_481].mean(axis=0) + gr_vector #self.world[newk] = (el_inv, er_inv, gl_point, gr_point) self.worldl[newk] = value['left'] self.worldr[newk] = value['right'] #print(self.points.keys()) def get(self, key, to_homo=False): if key not in self.worldl: return None, None left = self.worldl[key] right = self.worldr[key] if to_homo: left = (left @ self.homol).T right = (right @ self.homor).T return left, right def to_homo(self, eyel, eyer): eyel = (eyel @ self.homol).T eyer = (eyer @ self.homor).T return eyel, eyer
insightface/reconstruction/jmlr/eye_dataset.py/0
{ "file_path": "insightface/reconstruction/jmlr/eye_dataset.py", "repo_id": "insightface", "token_count": 1513 }
130
import torch from PIL import Image from torchvision.transforms import transforms from FaceHairMask import deeplab_xception_transfer from FaceHairMask.graphonomy_inference import inference import numpy as np import cv2 def preprocess(image, size=256, normalize=1): if size is None: image = transforms.Resize((1024, 1024))(image) else: image = transforms.Resize((size, size))(image) image = transforms.ToTensor()(image) if normalize is not None: image = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])(image) return image def postProcess(faceMask, hairMask): hairMask = hairMask.cpu().permute(1,2,0).detach().numpy() faceMask = faceMask.cpu().permute(1,2,0).detach().numpy() return faceMask, hairMask class MaskExtractor: def __init__(self): #? Hair Face Extractors self.net = deeplab_xception_transfer.deeplab_xception_transfer_projection_savemem(n_classes=20, hidden_layers=128, source_classes=7) stateDict = torch.load("models/Graphonomy/inference.pth") self.net.load_source_model(stateDict) self.net.to("cuda") self.net.eval() def processInput4(self, image): preprocessedImage = preprocess(image, size=256, normalize=1) preprocessedImage = preprocessedImage.unsqueeze(0).to("cuda") return preprocessedImage def getMask(self, image): preprocessedImage = self.processInput4(image) _, hairMask, faceMask = inference(net=self.net, img=preprocessedImage, device="cuda") faceMask, hairMask = postProcess(faceMask, hairMask) return hairMask, faceMask def main(self, image): image = (image.pixels_with_channels_at_back()[:, :, ::-1] * 255).astype('uint8') hairMask, faceMask = self.getMask(Image.fromarray(image)) hairMask = transforms.Resize((Image.fromarray(image).size[1], Image.fromarray(image).size[0]))(Image.fromarray((hairMask[:,:,0]* 255).astype('uint8'))) faceMask = transforms.Resize((Image.fromarray(image).size[1], Image.fromarray(image).size[0]))(Image.fromarray((faceMask[:,:,0]* 255).astype('uint8'))) # Additional Morphology hairMask = np.array(hairMask) / 255 faceMask = np.array(faceMask) / 255 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10)) faceMask = cv2.erode(faceMask, kernel, iterations=1) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (35, 35)) hairMask = cv2.dilate(hairMask, kernel, iterations=1) faceMask = faceMask * (1 - hairMask) return hairMask, faceMask
insightface/reconstruction/ostec/external/graphonomy/FaceHairMask/MaskExtractor.py/0
{ "file_path": "insightface/reconstruction/ostec/external/graphonomy/FaceHairMask/MaskExtractor.py", "repo_id": "insightface", "token_count": 1092 }
131
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html FROM tensorflow/tensorflow:1.15.0-gpu-py3 RUN pip install scipy==1.3.3 RUN pip install requests==2.22.0 RUN pip install Pillow==6.2.1
insightface/reconstruction/ostec/external/stylegan2/Dockerfile/0
{ "file_path": "insightface/reconstruction/ostec/external/stylegan2/Dockerfile", "repo_id": "insightface", "token_count": 125 }
132
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html """Custom TensorFlow ops for efficient bias and activation.""" import os import numpy as np import tensorflow as tf from .. import custom_ops from ...util import EasyDict def _get_plugin(): return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu') #---------------------------------------------------------------------------- activation_funcs = { 'linear': EasyDict(func=lambda x, **_: x, def_alpha=None, def_gain=1.0, cuda_idx=1, ref='y', zero_2nd_grad=True), 'relu': EasyDict(func=lambda x, **_: tf.nn.relu(x), def_alpha=None, def_gain=np.sqrt(2), cuda_idx=2, ref='y', zero_2nd_grad=True), 'lrelu': EasyDict(func=lambda x, alpha, **_: tf.nn.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', zero_2nd_grad=True), 'tanh': EasyDict(func=lambda x, **_: tf.nn.tanh(x), def_alpha=None, def_gain=1.0, cuda_idx=4, ref='y', zero_2nd_grad=False), 'sigmoid': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x), def_alpha=None, def_gain=1.0, cuda_idx=5, ref='y', zero_2nd_grad=False), 'elu': EasyDict(func=lambda x, **_: tf.nn.elu(x), def_alpha=None, def_gain=1.0, cuda_idx=6, ref='y', zero_2nd_grad=False), 'selu': EasyDict(func=lambda x, **_: tf.nn.selu(x), def_alpha=None, def_gain=1.0, cuda_idx=7, ref='y', zero_2nd_grad=False), 'softplus': EasyDict(func=lambda x, **_: tf.nn.softplus(x), def_alpha=None, def_gain=1.0, cuda_idx=8, ref='y', zero_2nd_grad=False), 'swish': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x) * x, def_alpha=None, def_gain=np.sqrt(2), cuda_idx=9, ref='x', zero_2nd_grad=False), } #---------------------------------------------------------------------------- def fused_bias_act(x, b=None, axis=1, act='linear', alpha=None, gain=None, impl='cuda'): r"""Fused bias and activation function. Adds bias `b` to activation tensor `x`, evaluates activation function `act`, and scales the result by `gain`. Each of the steps is optional. In most cases, the fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports first and second order gradients, but not third order gradients. Args: x: Input activation tensor. Can have any shape, but if `b` is defined, the dimension corresponding to `axis`, as well as the rank, must be known. b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type as `x`. The shape must be known, and it must match the dimension of `x` corresponding to `axis`. axis: The dimension in `x` corresponding to the elements of `b`. The value of `axis` is ignored if `b` is not specified. act: Name of the activation function to evaluate, or `"linear"` to disable. Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc. See `activation_funcs` for a full list. `None` is not allowed. alpha: Shape parameter for the activation function, or `None` to use the default. gain: Scaling factor for the output tensor, or `None` to use default. See `activation_funcs` for the default scaling of each activation function. If unsure, consider specifying `1.0`. impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the same shape and datatype as `x`. """ impl_dict = { 'ref': _fused_bias_act_ref, 'cuda': _fused_bias_act_cuda, } return impl_dict[impl](x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain) #---------------------------------------------------------------------------- def _fused_bias_act_ref(x, b, axis, act, alpha, gain): """Slow reference implementation of `fused_bias_act()` using standard TensorFlow ops.""" # Validate arguments. x = tf.convert_to_tensor(x) b = tf.convert_to_tensor(b) if b is not None else tf.constant([], dtype=x.dtype) act_spec = activation_funcs[act] assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis]) assert b.shape[0] == 0 or 0 <= axis < x.shape.rank if alpha is None: alpha = act_spec.def_alpha if gain is None: gain = act_spec.def_gain # Add bias. if b.shape[0] != 0: x += tf.reshape(b, [-1 if i == axis else 1 for i in range(x.shape.rank)]) # Evaluate activation function. x = act_spec.func(x, alpha=alpha) # Scale by gain. if gain != 1: x *= gain return x #---------------------------------------------------------------------------- def _fused_bias_act_cuda(x, b, axis, act, alpha, gain): """Fast CUDA implementation of `fused_bias_act()` using custom ops.""" # Validate arguments. x = tf.convert_to_tensor(x) empty_tensor = tf.constant([], dtype=x.dtype) b = tf.convert_to_tensor(b) if b is not None else empty_tensor act_spec = activation_funcs[act] assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis]) assert b.shape[0] == 0 or 0 <= axis < x.shape.rank if alpha is None: alpha = act_spec.def_alpha if gain is None: gain = act_spec.def_gain # Special cases. if act == 'linear' and b is None and gain == 1.0: return x if act_spec.cuda_idx is None: return _fused_bias_act_ref(x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain) # CUDA kernel. cuda_kernel = _get_plugin().fused_bias_act cuda_kwargs = dict(axis=axis, act=act_spec.cuda_idx, alpha=alpha, gain=gain) # Forward pass: y = func(x, b). def func_y(x, b): y = cuda_kernel(x=x, b=b, ref=empty_tensor, grad=0, **cuda_kwargs) y.set_shape(x.shape) return y # Backward pass: dx, db = grad(dy, x, y) def grad_dx(dy, x, y): ref = {'x': x, 'y': y}[act_spec.ref] dx = cuda_kernel(x=dy, b=empty_tensor, ref=ref, grad=1, **cuda_kwargs) dx.set_shape(x.shape) return dx def grad_db(dx): if b.shape[0] == 0: return empty_tensor db = dx if axis < x.shape.rank - 1: db = tf.reduce_sum(db, list(range(axis + 1, x.shape.rank))) if axis > 0: db = tf.reduce_sum(db, list(range(axis))) db.set_shape(b.shape) return db # Second order gradients: d_dy, d_x = grad2(d_dx, d_db, x, y) def grad2_d_dy(d_dx, d_db, x, y): ref = {'x': x, 'y': y}[act_spec.ref] d_dy = cuda_kernel(x=d_dx, b=d_db, ref=ref, grad=1, **cuda_kwargs) d_dy.set_shape(x.shape) return d_dy def grad2_d_x(d_dx, d_db, x, y): ref = {'x': x, 'y': y}[act_spec.ref] d_x = cuda_kernel(x=d_dx, b=d_db, ref=ref, grad=2, **cuda_kwargs) d_x.set_shape(x.shape) return d_x # Fast version for piecewise-linear activation funcs. @tf.custom_gradient def func_zero_2nd_grad(x, b): y = func_y(x, b) @tf.custom_gradient def grad(dy): dx = grad_dx(dy, x, y) db = grad_db(dx) def grad2(d_dx, d_db): d_dy = grad2_d_dy(d_dx, d_db, x, y) return d_dy return (dx, db), grad2 return y, grad # Slow version for general activation funcs. @tf.custom_gradient def func_nonzero_2nd_grad(x, b): y = func_y(x, b) def grad_wrap(dy): @tf.custom_gradient def grad_impl(dy, x): dx = grad_dx(dy, x, y) db = grad_db(dx) def grad2(d_dx, d_db): d_dy = grad2_d_dy(d_dx, d_db, x, y) d_x = grad2_d_x(d_dx, d_db, x, y) return d_dy, d_x return (dx, db), grad2 return grad_impl(dy, x) return y, grad_wrap # Which version to use? if act_spec.zero_2nd_grad: return func_zero_2nd_grad(x, b) return func_nonzero_2nd_grad(x, b) #----------------------------------------------------------------------------
insightface/reconstruction/ostec/external/stylegan2/dnnlib/tflib/ops/fused_bias_act.py/0
{ "file_path": "insightface/reconstruction/ostec/external/stylegan2/dnnlib/tflib/ops/fused_bias_act.py", "repo_id": "insightface", "token_count": 3974 }
133
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html """Default metric definitions.""" from dnnlib import EasyDict #---------------------------------------------------------------------------- metric_defaults = EasyDict([(args.name, args) for args in [ EasyDict(name='fid50k', func_name='metrics.frechet_inception_distance.FID', num_images=50000, minibatch_per_gpu=8), EasyDict(name='is50k', func_name='metrics.inception_score.IS', num_images=50000, num_splits=10, minibatch_per_gpu=8), EasyDict(name='ppl_zfull', func_name='metrics.perceptual_path_length.PPL', num_samples=50000, epsilon=1e-4, space='z', sampling='full', crop=True, minibatch_per_gpu=4, Gs_overrides=dict(dtype='float32', mapping_dtype='float32')), EasyDict(name='ppl_wfull', func_name='metrics.perceptual_path_length.PPL', num_samples=50000, epsilon=1e-4, space='w', sampling='full', crop=True, minibatch_per_gpu=4, Gs_overrides=dict(dtype='float32', mapping_dtype='float32')), EasyDict(name='ppl_zend', func_name='metrics.perceptual_path_length.PPL', num_samples=50000, epsilon=1e-4, space='z', sampling='end', crop=True, minibatch_per_gpu=4, Gs_overrides=dict(dtype='float32', mapping_dtype='float32')), EasyDict(name='ppl_wend', func_name='metrics.perceptual_path_length.PPL', num_samples=50000, epsilon=1e-4, space='w', sampling='end', crop=True, minibatch_per_gpu=4, Gs_overrides=dict(dtype='float32', mapping_dtype='float32')), EasyDict(name='ppl2_wend', func_name='metrics.perceptual_path_length.PPL', num_samples=50000, epsilon=1e-4, space='w', sampling='end', crop=False, minibatch_per_gpu=4, Gs_overrides=dict(dtype='float32', mapping_dtype='float32')), EasyDict(name='ls', func_name='metrics.linear_separability.LS', num_samples=200000, num_keep=100000, attrib_indices=range(40), minibatch_per_gpu=4), EasyDict(name='pr50k3', func_name='metrics.precision_recall.PR', num_images=50000, nhood_size=3, minibatch_per_gpu=8, row_batch_size=10000, col_batch_size=10000), ]]) #----------------------------------------------------------------------------
insightface/reconstruction/ostec/external/stylegan2/metrics/metric_defaults.py/0
{ "file_path": "insightface/reconstruction/ostec/external/stylegan2/metrics/metric_defaults.py", "repo_id": "insightface", "token_count": 905 }
134
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html """Main training script.""" import numpy as np import tensorflow as tf import dnnlib import dnnlib.tflib as tflib from dnnlib.tflib.autosummary import autosummary from training import dataset from training import misc from metrics import metric_base #---------------------------------------------------------------------------- # Just-in-time processing of training images before feeding them to the networks. def process_reals(x, labels, lod, mirror_augment, drange_data, drange_net): with tf.name_scope('DynamicRange'): x = tf.cast(x, tf.float32) x = misc.adjust_dynamic_range(x, drange_data, drange_net) if mirror_augment: with tf.name_scope('MirrorAugment'): x = tf.where(tf.random_uniform([tf.shape(x)[0]]) < 0.5, x, tf.reverse(x, [3])) with tf.name_scope('FadeLOD'): # Smooth crossfade between consecutive levels-of-detail. s = tf.shape(x) y = tf.reshape(x, [-1, s[1], s[2]//2, 2, s[3]//2, 2]) y = tf.reduce_mean(y, axis=[3, 5], keepdims=True) y = tf.tile(y, [1, 1, 1, 2, 1, 2]) y = tf.reshape(y, [-1, s[1], s[2], s[3]]) x = tflib.lerp(x, y, lod - tf.floor(lod)) with tf.name_scope('UpscaleLOD'): # Upscale to match the expected input/output size of the networks. s = tf.shape(x) factor = tf.cast(2 ** tf.floor(lod), tf.int32) x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1]) x = tf.tile(x, [1, 1, 1, factor, 1, factor]) x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor]) return x, labels #---------------------------------------------------------------------------- # Evaluate time-varying training parameters. def training_schedule( cur_nimg, training_set, lod_initial_resolution = None, # Image resolution used at the beginning. lod_training_kimg = 600, # Thousands of real images to show before doubling the resolution. lod_transition_kimg = 600, # Thousands of real images to show when fading in new layers. minibatch_size_base = 32, # Global minibatch size. minibatch_size_dict = {}, # Resolution-specific overrides. minibatch_gpu_base = 4, # Number of samples processed at a time by one GPU. minibatch_gpu_dict = {}, # Resolution-specific overrides. G_lrate_base = 0.002, # Learning rate for the generator. G_lrate_dict = {}, # Resolution-specific overrides. D_lrate_base = 0.002, # Learning rate for the discriminator. D_lrate_dict = {}, # Resolution-specific overrides. lrate_rampup_kimg = 0, # Duration of learning rate ramp-up. tick_kimg_base = 4, # Default interval of progress snapshots. tick_kimg_dict = {8:28, 16:24, 32:20, 64:16, 128:12, 256:8, 512:6, 1024:4}): # Resolution-specific overrides. # Initialize result dict. s = dnnlib.EasyDict() s.kimg = cur_nimg / 1000.0 # Training phase. phase_dur = lod_training_kimg + lod_transition_kimg phase_idx = int(np.floor(s.kimg / phase_dur)) if phase_dur > 0 else 0 phase_kimg = s.kimg - phase_idx * phase_dur # Level-of-detail and resolution. if lod_initial_resolution is None: s.lod = 0.0 else: s.lod = training_set.resolution_log2 s.lod -= np.floor(np.log2(lod_initial_resolution)) s.lod -= phase_idx if lod_transition_kimg > 0: s.lod -= max(phase_kimg - lod_training_kimg, 0.0) / lod_transition_kimg s.lod = max(s.lod, 0.0) s.resolution = 2 ** (training_set.resolution_log2 - int(np.floor(s.lod))) # Minibatch size. s.minibatch_size = minibatch_size_dict.get(s.resolution, minibatch_size_base) s.minibatch_gpu = minibatch_gpu_dict.get(s.resolution, minibatch_gpu_base) # Learning rate. s.G_lrate = G_lrate_dict.get(s.resolution, G_lrate_base) s.D_lrate = D_lrate_dict.get(s.resolution, D_lrate_base) if lrate_rampup_kimg > 0: rampup = min(s.kimg / lrate_rampup_kimg, 1.0) s.G_lrate *= rampup s.D_lrate *= rampup # Other parameters. s.tick_kimg = tick_kimg_dict.get(s.resolution, tick_kimg_base) return s #---------------------------------------------------------------------------- # Main training script. def training_loop( G_args = {}, # Options for generator network. D_args = {}, # Options for discriminator network. G_opt_args = {}, # Options for generator optimizer. D_opt_args = {}, # Options for discriminator optimizer. G_loss_args = {}, # Options for generator loss. D_loss_args = {}, # Options for discriminator loss. dataset_args = {}, # Options for dataset.load_dataset(). sched_args = {}, # Options for train.TrainingSchedule. grid_args = {}, # Options for train.setup_snapshot_image_grid(). metric_arg_list = [], # Options for MetricGroup. tf_config = {}, # Options for tflib.init_tf(). data_dir = None, # Directory to load datasets from. G_smoothing_kimg = 10.0, # Half-life of the running average of generator weights. minibatch_repeats = 4, # Number of minibatches to run before adjusting training parameters. lazy_regularization = True, # Perform regularization as a separate training step? G_reg_interval = 4, # How often the perform regularization for G? Ignored if lazy_regularization=False. D_reg_interval = 16, # How often the perform regularization for D? Ignored if lazy_regularization=False. reset_opt_for_new_lod = True, # Reset optimizer internal state (e.g. Adam moments) when new layers are introduced? total_kimg = 25000, # Total length of the training, measured in thousands of real images. mirror_augment = False, # Enable mirror augment? drange_net = [-1,1], # Dynamic range used when feeding image data to the networks. image_snapshot_ticks = 50, # How often to save image snapshots? None = only save 'reals.png' and 'fakes-init.png'. network_snapshot_ticks = 50, # How often to save network snapshots? None = only save 'networks-final.pkl'. save_tf_graph = False, # Include full TensorFlow computation graph in the tfevents file? save_weight_histograms = False, # Include weight histograms in the tfevents file? resume_pkl = None, # Network pickle to resume training from, None = train from scratch. resume_kimg = 0.0, # Assumed training progress at the beginning. Affects reporting and training schedule. resume_time = 0.0, # Assumed wallclock time at the beginning. Affects reporting. resume_with_new_nets = False): # Construct new networks according to G_args and D_args before resuming training? # Initialize dnnlib and TensorFlow. tflib.init_tf(tf_config) num_gpus = dnnlib.submit_config.num_gpus # Load training set. training_set = dataset.load_dataset(data_dir=dnnlib.convert_path(data_dir), verbose=True, **dataset_args) grid_size, grid_reals, grid_labels = misc.setup_snapshot_image_grid(training_set, **grid_args) misc.save_image_grid(grid_reals, dnnlib.make_run_dir_path('reals.png'), drange=training_set.dynamic_range, grid_size=grid_size) # Construct or load networks. with tf.device('/gpu:0'): if resume_pkl is None or resume_with_new_nets: print('Constructing networks...') G = tflib.Network('G', num_channels=training_set.shape[0], resolution=training_set.shape[1], label_size=training_set.label_size, **G_args) D = tflib.Network('D', num_channels=training_set.shape[0], resolution=training_set.shape[1], label_size=training_set.label_size, **D_args) Gs = G.clone('Gs') if resume_pkl is not None: print('Loading networks from "%s"...' % resume_pkl) rG, rD, rGs = misc.load_pkl(resume_pkl) if resume_with_new_nets: G.copy_vars_from(rG); D.copy_vars_from(rD); Gs.copy_vars_from(rGs) else: G = rG; D = rD; Gs = rGs # Print layers and generate initial image snapshot. G.print_layers(); D.print_layers() sched = training_schedule(cur_nimg=total_kimg*1000, training_set=training_set, **sched_args) grid_latents = np.random.randn(np.prod(grid_size), *G.input_shape[1:]) grid_fakes = Gs.run(grid_latents, grid_labels, is_validation=True, minibatch_size=sched.minibatch_gpu) misc.save_image_grid(grid_fakes, dnnlib.make_run_dir_path('fakes_init.png'), drange=drange_net, grid_size=grid_size) # Setup training inputs. print('Building TensorFlow graph...') with tf.name_scope('Inputs'), tf.device('/cpu:0'): lod_in = tf.placeholder(tf.float32, name='lod_in', shape=[]) lrate_in = tf.placeholder(tf.float32, name='lrate_in', shape=[]) minibatch_size_in = tf.placeholder(tf.int32, name='minibatch_size_in', shape=[]) minibatch_gpu_in = tf.placeholder(tf.int32, name='minibatch_gpu_in', shape=[]) minibatch_multiplier = minibatch_size_in // (minibatch_gpu_in * num_gpus) Gs_beta = 0.5 ** tf.div(tf.cast(minibatch_size_in, tf.float32), G_smoothing_kimg * 1000.0) if G_smoothing_kimg > 0.0 else 0.0 # Setup optimizers. G_opt_args = dict(G_opt_args) D_opt_args = dict(D_opt_args) for args, reg_interval in [(G_opt_args, G_reg_interval), (D_opt_args, D_reg_interval)]: args['minibatch_multiplier'] = minibatch_multiplier args['learning_rate'] = lrate_in if lazy_regularization: mb_ratio = reg_interval / (reg_interval + 1) args['learning_rate'] *= mb_ratio if 'beta1' in args: args['beta1'] **= mb_ratio if 'beta2' in args: args['beta2'] **= mb_ratio G_opt = tflib.Optimizer(name='TrainG', **G_opt_args) D_opt = tflib.Optimizer(name='TrainD', **D_opt_args) G_reg_opt = tflib.Optimizer(name='RegG', share=G_opt, **G_opt_args) D_reg_opt = tflib.Optimizer(name='RegD', share=D_opt, **D_opt_args) # Build training graph for each GPU. data_fetch_ops = [] for gpu in range(num_gpus): with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu): # Create GPU-specific shadow copies of G and D. G_gpu = G if gpu == 0 else G.clone(G.name + '_shadow') D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow') # Fetch training data via temporary variables. with tf.name_scope('DataFetch'): sched = training_schedule(cur_nimg=int(resume_kimg*1000), training_set=training_set, **sched_args) reals_var = tf.Variable(name='reals', trainable=False, initial_value=tf.zeros([sched.minibatch_gpu] + training_set.shape)) labels_var = tf.Variable(name='labels', trainable=False, initial_value=tf.zeros([sched.minibatch_gpu, training_set.label_size])) reals_write, labels_write = training_set.get_minibatch_tf() reals_write, labels_write = process_reals(reals_write, labels_write, lod_in, mirror_augment, training_set.dynamic_range, drange_net) reals_write = tf.concat([reals_write, reals_var[minibatch_gpu_in:]], axis=0) labels_write = tf.concat([labels_write, labels_var[minibatch_gpu_in:]], axis=0) data_fetch_ops += [tf.assign(reals_var, reals_write)] data_fetch_ops += [tf.assign(labels_var, labels_write)] reals_read = reals_var[:minibatch_gpu_in] labels_read = labels_var[:minibatch_gpu_in] # Evaluate loss functions. lod_assign_ops = [] if 'lod' in G_gpu.vars: lod_assign_ops += [tf.assign(G_gpu.vars['lod'], lod_in)] if 'lod' in D_gpu.vars: lod_assign_ops += [tf.assign(D_gpu.vars['lod'], lod_in)] with tf.control_dependencies(lod_assign_ops): with tf.name_scope('G_loss'): G_loss, G_reg = dnnlib.util.call_func_by_name(G=G_gpu, D=D_gpu, opt=G_opt, training_set=training_set, minibatch_size=minibatch_gpu_in, **G_loss_args) with tf.name_scope('D_loss'): D_loss, D_reg = dnnlib.util.call_func_by_name(G=G_gpu, D=D_gpu, opt=D_opt, training_set=training_set, minibatch_size=minibatch_gpu_in, reals=reals_read, labels=labels_read, **D_loss_args) # Register gradients. if not lazy_regularization: if G_reg is not None: G_loss += G_reg if D_reg is not None: D_loss += D_reg else: if G_reg is not None: G_reg_opt.register_gradients(tf.reduce_mean(G_reg * G_reg_interval), G_gpu.trainables) if D_reg is not None: D_reg_opt.register_gradients(tf.reduce_mean(D_reg * D_reg_interval), D_gpu.trainables) G_opt.register_gradients(tf.reduce_mean(G_loss), G_gpu.trainables) D_opt.register_gradients(tf.reduce_mean(D_loss), D_gpu.trainables) # Setup training ops. data_fetch_op = tf.group(*data_fetch_ops) G_train_op = G_opt.apply_updates() D_train_op = D_opt.apply_updates() G_reg_op = G_reg_opt.apply_updates(allow_no_op=True) D_reg_op = D_reg_opt.apply_updates(allow_no_op=True) Gs_update_op = Gs.setup_as_moving_average_of(G, beta=Gs_beta) # Finalize graph. with tf.device('/gpu:0'): try: peak_gpu_mem_op = tf.contrib.memory_stats.MaxBytesInUse() except tf.errors.NotFoundError: peak_gpu_mem_op = tf.constant(0) tflib.init_uninitialized_vars() print('Initializing logs...') summary_log = tf.summary.FileWriter(dnnlib.make_run_dir_path()) if save_tf_graph: summary_log.add_graph(tf.get_default_graph()) if save_weight_histograms: G.setup_weight_histograms(); D.setup_weight_histograms() metrics = metric_base.MetricGroup(metric_arg_list) print('Training for %d kimg...\n' % total_kimg) dnnlib.RunContext.get().update('', cur_epoch=resume_kimg, max_epoch=total_kimg) maintenance_time = dnnlib.RunContext.get().get_last_update_interval() cur_nimg = int(resume_kimg * 1000) cur_tick = -1 tick_start_nimg = cur_nimg prev_lod = -1.0 running_mb_counter = 0 while cur_nimg < total_kimg * 1000: if dnnlib.RunContext.get().should_stop(): break # Choose training parameters and configure training ops. sched = training_schedule(cur_nimg=cur_nimg, training_set=training_set, **sched_args) assert sched.minibatch_size % (sched.minibatch_gpu * num_gpus) == 0 training_set.configure(sched.minibatch_gpu, sched.lod) if reset_opt_for_new_lod: if np.floor(sched.lod) != np.floor(prev_lod) or np.ceil(sched.lod) != np.ceil(prev_lod): G_opt.reset_optimizer_state(); D_opt.reset_optimizer_state() prev_lod = sched.lod # Run training ops. feed_dict = {lod_in: sched.lod, lrate_in: sched.G_lrate, minibatch_size_in: sched.minibatch_size, minibatch_gpu_in: sched.minibatch_gpu} for _repeat in range(minibatch_repeats): rounds = range(0, sched.minibatch_size, sched.minibatch_gpu * num_gpus) run_G_reg = (lazy_regularization and running_mb_counter % G_reg_interval == 0) run_D_reg = (lazy_regularization and running_mb_counter % D_reg_interval == 0) cur_nimg += sched.minibatch_size running_mb_counter += 1 # Fast path without gradient accumulation. if len(rounds) == 1: tflib.run([G_train_op, data_fetch_op], feed_dict) if run_G_reg: tflib.run(G_reg_op, feed_dict) tflib.run([D_train_op, Gs_update_op], feed_dict) if run_D_reg: tflib.run(D_reg_op, feed_dict) # Slow path with gradient accumulation. else: for _round in rounds: tflib.run(G_train_op, feed_dict) if run_G_reg: for _round in rounds: tflib.run(G_reg_op, feed_dict) tflib.run(Gs_update_op, feed_dict) for _round in rounds: tflib.run(data_fetch_op, feed_dict) tflib.run(D_train_op, feed_dict) if run_D_reg: for _round in rounds: tflib.run(D_reg_op, feed_dict) # Perform maintenance tasks once per tick. done = (cur_nimg >= total_kimg * 1000) if cur_tick < 0 or cur_nimg >= tick_start_nimg + sched.tick_kimg * 1000 or done: cur_tick += 1 tick_kimg = (cur_nimg - tick_start_nimg) / 1000.0 tick_start_nimg = cur_nimg tick_time = dnnlib.RunContext.get().get_time_since_last_update() total_time = dnnlib.RunContext.get().get_time_since_start() + resume_time # Report progress. print('tick %-5d kimg %-8.1f lod %-5.2f minibatch %-4d time %-12s sec/tick %-7.1f sec/kimg %-7.2f maintenance %-6.1f gpumem %.1f' % ( autosummary('Progress/tick', cur_tick), autosummary('Progress/kimg', cur_nimg / 1000.0), autosummary('Progress/lod', sched.lod), autosummary('Progress/minibatch', sched.minibatch_size), dnnlib.util.format_time(autosummary('Timing/total_sec', total_time)), autosummary('Timing/sec_per_tick', tick_time), autosummary('Timing/sec_per_kimg', tick_time / tick_kimg), autosummary('Timing/maintenance_sec', maintenance_time), autosummary('Resources/peak_gpu_mem_gb', peak_gpu_mem_op.eval() / 2**30))) autosummary('Timing/total_hours', total_time / (60.0 * 60.0)) autosummary('Timing/total_days', total_time / (24.0 * 60.0 * 60.0)) # Save snapshots. if image_snapshot_ticks is not None and (cur_tick % image_snapshot_ticks == 0 or done): grid_fakes = Gs.run(grid_latents, grid_labels, is_validation=True, minibatch_size=sched.minibatch_gpu) misc.save_image_grid(grid_fakes, dnnlib.make_run_dir_path('fakes%06d.png' % (cur_nimg // 1000)), drange=drange_net, grid_size=grid_size) if network_snapshot_ticks is not None and (cur_tick % network_snapshot_ticks == 0 or done): pkl = dnnlib.make_run_dir_path('network-snapshot-%06d.pkl' % (cur_nimg // 1000)) misc.save_pkl((G, D, Gs), pkl) metrics.run(pkl, run_dir=dnnlib.make_run_dir_path(), data_dir=dnnlib.convert_path(data_dir), num_gpus=num_gpus, tf_config=tf_config) # Update summaries and RunContext. metrics.update_autosummaries() tflib.autosummary.save_summaries(summary_log, cur_nimg) dnnlib.RunContext.get().update('%.2f' % sched.lod, cur_epoch=cur_nimg // 1000, max_epoch=total_kimg) maintenance_time = dnnlib.RunContext.get().get_last_update_interval() - tick_time # Save final snapshot. misc.save_pkl((G, D, Gs), dnnlib.make_run_dir_path('network-final.pkl')) # All done. summary_log.close() training_set.close() #----------------------------------------------------------------------------
insightface/reconstruction/ostec/external/stylegan2/training/training_loop.py/0
{ "file_path": "insightface/reconstruction/ostec/external/stylegan2/training/training_loop.py", "repo_id": "insightface", "token_count": 9171 }
135
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe import params as P import math import numpy as np from ._graph import Node, Graph from MyCaffe import Function as myf USE_DECONV_AS_UPSAMPLE = False def _compare(a, b, encoding="utf8"): #type: (Text, Text, Text) -> bool if isinstance(a, bytes): a = a.decode(encoding) if isinstance(b, bytes): b = b.decode(encoding) return a == b def make_input(input): name = input[0] output = input[0] output = [output] shape = input[2] shape = list(shape) input_layer = myf("Input", name, [], output, input_param=dict(shape=dict(dim=shape))) return input_layer def _convert_conv(node, graph, err): weight_name = node.inputs[1] input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) node_name = node.name W = None if weight_name in node.input_tensors: W = node.input_tensors[weight_name] else: err.missing_initializer(node, "Weight tensor: {} not found in the graph initializer".format(weight_name,)) is_deconv = False if node.op_type.endswith("Transpose"): is_deconv = True bias_flag = False bias = None if len(node.inputs) > 2: bias = node.input_tensors[node.inputs[2]] bias_flag = True dilations = node.attrs.get("dilations", [1, 1]) # groups = 1 groups = node.attrs.get("group", 1) kernel_shape = node.attrs["kernel_shape"] pads = node.attrs.get("pads", [0, 0, 0, 0]) strides = node.attrs["strides"] layer = myf("Convolution", node_name, [input_name], [output_name], kernel_h = kernel_shape[0],kernel_w = kernel_shape[1], stride_h=strides[0], stride_w = strides[1], group = groups, pad_h = pads[0], pad_w = pads[1], num_output=W.shape[0], dilation = dilations[0], bias_term = bias_flag) graph.channel_dims[output_name] = W.shape[0] return layer def _convert_relu(node,graph,err): input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) name = str(node.name) if input_name==output_name: inplace = True else: inplace = False layer = myf("ReLU",name,[input_name],[output_name],in_place=inplace) # l_top_relu1 = L.ReLU(l_bottom, name=name, in_place=True) graph.channel_dims[output_name] = graph.channel_dims[input_name] return layer def _convert_sigmoid(node,graph,err): input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) name = str(node.name) if input_name==output_name: inplace = True else: inplace = False layer = myf("Sigmoid",name,[input_name],[output_name],in_place=inplace) # l_top_relu1 = L.ReLU(l_bottom, name=name, in_place=True) graph.channel_dims[output_name] = graph.channel_dims[input_name] return layer def _convert_BatchNorm(node,graph,err): epsilon = node.attrs.get("epsilon", 1e-5) scale = node.input_tensors[node.inputs[1]] bias = node.input_tensors[node.inputs[2]] mean = node.input_tensors[node.inputs[3]] var = node.input_tensors[node.inputs[4]] node_name = node.name input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) if input_name==output_name: inplace = True else: inplace = False bn_layer = myf("BatchNorm", node_name+"_bn",[input_name],[output_name],eps = epsilon, use_global_stats = True, in_place=inplace) scale_layer = myf("Scale", node_name, [output_name],[output_name],in_place=True,bias_term=True) graph.channel_dims[output_name] = graph.channel_dims[input_name] return bn_layer,scale_layer def _convert_Add(node,graph,err): input_name_list = [str(i) for i in node.inputs] output_name = str(node.outputs[0]) node_name = node.name max_dim = 0 for name in input_name_list: if graph.channel_dims[name]>max_dim: max_dim = graph.channel_dims[name] if 'broadcast' in node.attrs: if node.attrs['broadcast'] == 1: input_node_number = len(input_name_list) if input_node_number !=2: return err.unsupported_op_configuration(node, "Broadcast Add must has 2 input, not {}".format(input_node_number)) axis = node.attrs['axis'] flat_layer = myf("Flatten",node_name+'_flat',[input_name_list[1]],[output_name+'_flat']) layer = myf("Bias", node_name, [input_name_list[0],output_name+'_flat'], [output_name], axis = axis) # layer = myf("Bias", node_name, input_name_list, [output_name], bias_term = False, axis = axis) graph.channel_dims[output_name] = graph.channel_dims[input_name_list[0]] return flat_layer,layer layer = myf("Eltwise",node_name,input_name_list,[output_name],operation=P.Eltwise.SUM) graph.channel_dims[output_name] = graph.channel_dims[input_name_list[0]] return layer def _convert_Mul(node,graph,err): input_name_list = [str(i) for i in node.inputs] output_name = str(node.outputs[0]) node_name = node.name print('Mul:', node.name, node.attrs, input_name_list, output_name) if len(node.attrs)==0: assert len(node.input_tensors)==1 assert len(input_name_list)==2 inp_tensor = node.input_tensors[input_name_list[1]] scale_value = float(inp_tensor) print(scale_value) layer = myf("Scale", node_name, [input_name_list[0]], [output_name], bias_term = False, scale_param = dict(filler = dict(value=scale_value), bias_term=False)) return layer #layer = myf("Reshape", node_name, [input_name], [output_name], reshape_param = dict(shape=dict(dim=list(shape)))) #print(len(node.input_tensors)) # max_dim = 0 # for name in input_name_list: # if graph.channel_dims[name]>max_dim: # max_dim = graph.channel_dims[name] if 'broadcast' in node.attrs: if node.attrs['broadcast'] == 1: input_node_number = len(input_name_list) if input_node_number !=2: return err.unsupported_op_configuration(node, "Broadcast Mul must has 2 input, not {}".format(input_node_number)) axis = node.attrs['axis'] flat_layer = myf("Flatten",node_name+'_flat',[input_name_list[1]],[output_name+'_flat']) layer = myf("Scale", node_name, [input_name_list[0],output_name+'_flat'], [output_name], bias_term = False, axis = axis) graph.channel_dims[output_name] = graph.channel_dims[input_name_list[0]] return flat_layer,layer layer = myf("Eltwise",node_name,input_name_list,[output_name],operation=P.Eltwise.PROD) graph.channel_dims[output_name] = graph.channel_dims[input_name_list[0]] return layer def _convert_Reshape(node,graph,err): node_name = node.name input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) if len(node.inputs)==1: shape = tuple(node.attrs.get('shape', ())) else: shape = tuple(node.input_tensors[node.inputs[1]]) # if shape == (): #print('reshape to', shape) if input_name==output_name: inplace = True else: inplace = False graph.channel_dims[output_name] = shape[1] layer = myf("Reshape", node_name, [input_name], [output_name], reshape_param = dict(shape=dict(dim=list(shape)))) return layer #if len(shape) == 2: # layer = myf("Flatten",node_name,[input_name],[output_name],in_place=inplace) # graph.channel_dims[output_name] = shape[1] # return layer #elif len(shape) == 4: # graph.channel_dims[output_name] = shape[1] # layer = myf("Reshape", node_name, [input_name], [output_name], reshape_param = dict(shape=dict(dim=list(shape)))) # return layer #else: # return err.unsupported_op_configuration(node, "Reshape dimention number shall be 2 or 4") def _convert_Flatten(node,graph,err): node_name = node.name input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) # shape = tuple(node.attrs.get('shape', ())) if input_name==output_name: inplace = True else: inplace = False layer = myf("Flatten", node_name, [input_name], [output_name], in_place=inplace) # graph.channel_dims[output_name] = shape[1] return layer def _convert_pool(node,graph,err): node_name = node.name input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) if node.op_type.endswith("MaxPool"): pool_type = P.Pooling.MAX elif node.op_type.endswith("AveragePool"): pool_type = P.Pooling.AVE else: return err.unsupported_op_configuration(node, "Unsupported pool type") kernel_shape = node.attrs["kernel_shape"] strides = node.attrs.get('strides', [1, 1]) pads = node.attrs.get('pads', [0, 0, 0, 0]) layer = myf("Pooling",node_name,[input_name],[output_name],pooling_param = dict(pool = pool_type, kernel_h = kernel_shape[0], kernel_w = kernel_shape[1], stride_h = strides[0], stride_w = strides[1], pad_h = pads[0], pad_w = pads[1])) graph.channel_dims[output_name] = graph.channel_dims[input_name] return layer def _convert_dropout(node,graph,err): node_name = node.name input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) ratio = node.attrs.get('ratio', 0.5) layer = myf("Dropout", node_name, [input_name], [output_name], dropout_ratio =ratio) graph.channel_dims[output_name] = graph.channel_dims[input_name] return layer def _convert_gemm(node,graph,err): node_name = node.name input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) weight_name = node.inputs[1] if weight_name in node.input_tensors: W = node.input_tensors[weight_name] else: err.missing_initializer(node, "Weight tensor: {} not found in the graph initializer".format(weight_name, )) return if node.attrs["broadcast"] != 1 or node.attrs["transB"] != 1: return err.unsupported_op_configuration(node,"Gemm is supported only for inner_product layer") b = None bias_flag = False if len(node.inputs) > 2: b = node.input_tensors[node.inputs[2]] if len(W.shape) != 2 or (b is not None and len(b.shape) != 1): return err.unsupported_op_configuration(node, "Gemm is supported only for inner_product layer") if b is not None: bias_flag = True if W.shape[0] != b.shape[0]: return err.unsupported_op_configuration(node, "Gemm is supported only for inner_product layer") layer = myf("InnerProduct",node_name,[input_name],[output_name],num_output = W.shape[0],bias_term = bias_flag) graph.channel_dims[output_name] = W.shape[0] return layer def _convert_upsample(node,graph,err): factor = int(node.attrs["height_scale"]) node_name = node.name input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) # input_shape = graph.shape_dict[input_name] # channels = input_shape[1] channels = graph.channel_dims[input_name] pad = int(math.ceil((factor - 1) / 2.)) # layer = myf("Deconvolution", node_name, [input_name], [output_name], # kernel_size=2 * factor - factor % 2, # stride=factor, group=channels, # pad = pad, num_output=channels, bias_term = False) mode = node.attrs["mode"] #https://github.com/pytorch/pytorch/issues/6900 if mode=="bilinear": layer = myf("Deconvolution", node_name, [input_name], [output_name], convolution_param=dict( num_output=channels, kernel_size=2 * factor - factor % 2, stride=factor, pad=pad, group=channels, bias_term=False, weight_filler=dict(type="bilinear_upsampling") )) else: layer = myf("Deconvolution", node_name, [input_name], [output_name], convolution_param=dict( num_output=channels, kernel_size=factor, stride=factor, group=channels, bias_term=False, )) graph.channel_dims[output_name] = graph.channel_dims[input_name] return layer def _convert_resize(node,graph,err): if not USE_DECONV_AS_UPSAMPLE: #print(node, graph) node_name = node.name input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) #print(node.attrs, node_name, input_name, output_name) layer = myf("Upsample", node_name, [input_name], [output_name], upsample_param=dict( scale = 2 )) graph.channel_dims[output_name] = graph.channel_dims[input_name] else: print('add resize deconv operator') factor = 2 node_name = node.name input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) # input_shape = graph.shape_dict[input_name] # channels = input_shape[1] channels = graph.channel_dims[input_name] pad = int(math.ceil((factor - 1) / 2.)) layer = myf("Deconvolution", node_name, [input_name], [output_name], convolution_param=dict( num_output=channels, kernel_size=factor, stride=factor, group=channels, bias_term=False, )) graph.channel_dims[output_name] = graph.channel_dims[input_name] return layer def _convert_transpose(node,graph,err): #print(node, graph) node_name = node.name input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) #print(node.attrs, node_name, input_name, output_name) layer = myf("Permute", node_name, [input_name], [output_name], permute_param=dict( order = node.attrs['perm'] )) graph.channel_dims[output_name] = graph.channel_dims[input_name] return layer def _convert_softmax(node,graph,err): #print(node, graph) node_name = node.name input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) #print(node.attrs, node_name, input_name, output_name) layer = myf("Softmax", node_name, [input_name], [output_name], softmax_param=dict( axis = node.attrs['axis'] )) graph.channel_dims[output_name] = graph.channel_dims[input_name] return layer def _convert_concat(node,graph,err): node_name = node.name input_name_list = [str(i) for i in node.inputs] output_name = str(node.outputs[0]) axis = node.attrs.get("axis", 1) layer = myf('Concat', node_name, input_name_list, [output_name], axis = axis) if axis == 1: dim = 0 for name in input_name_list: dim+=graph.channel_dims[name] graph.channel_dims[output_name] = dim else: graph.channel_dims[output_name] = graph.channel_dims[input_name_list[0]] return layer def _convert_conv_transpose(node,graph,err): input_name = str(node.inputs[0]) output_name = str(node.outputs[0]) node_name = node.name weight_name = node.inputs[1] W = None if weight_name in node.input_tensors: W = node.input_tensors[weight_name] else: err.missing_initializer(node, "Weight tensor: {} not found in the graph initializer".format(weight_name,)) bias_flag = False bias = None if len(node.inputs) > 2: bias = node.input_tensors[node.inputs[2]] bias_flag = True dilations = node.attrs.get("dilations", [1, 1]) # groups = 1 groups = node.attrs.get("group", 1) kernel_shape = node.attrs["kernel_shape"] pads = node.attrs.get("pads", [0, 0, 0, 0]) strides = node.attrs["strides"] layer = myf('Deconvolution', node_name, [input_name], [output_name], convolution_param=dict( num_output=W.shape[1], kernel_h=kernel_shape[0],kernel_w=kernel_shape[1], stride_h=strides[0],stride_w = strides[1], group=groups, pad_h=pads[0], pad_w=pads[1], bias_term=bias_flag, )) graph.channel_dims[output_name] = W.shape[1] return layer # l_top = L.Deconvolution( # l_bottom, # name=name, # convolution_param=dict( # num_output=W.shape[1], # kernel_h=kernel_h, # kernel_w=kernel_w, # stride_h=stride_h, # stride_w=stride_w, # pad_h=pad_h, # pad_w=pad_w, # group=groups, # bias_term=bias_term)) _ONNX_NODE_REGISTRY = { "Conv": _convert_conv, "Relu": _convert_relu, "BatchNormalization": _convert_BatchNorm, "Add": _convert_Add, "Mul": _convert_Mul, "Reshape": _convert_Reshape, "MaxPool": _convert_pool, "AveragePool": _convert_pool, "Dropout": _convert_dropout, "Gemm": _convert_gemm, "Upsample": _convert_upsample, "Concat": _convert_concat, "ConvTranspose": _convert_conv_transpose, "Sigmoid": _convert_sigmoid, "Flatten": _convert_Flatten, "Resize": _convert_resize, "Transpose": _convert_transpose, "Softmax": _convert_softmax, }
insightface/tools/onnx2caffe/onnx2caffe/_operators.py/0
{ "file_path": "insightface/tools/onnx2caffe/onnx2caffe/_operators.py", "repo_id": "insightface", "token_count": 8816 }
136
<?xml version="1.0" encoding="UTF-8"?> <project version="4"> <component name="ExternalStorageConfigurationManager" enabled="true" /> <component name="MavenProjectsManager"> <option name="originalFiles"> <list> <option value="$PROJECT_DIR$/pom.xml" /> </list> </option> </component> <component name="ProjectRootManager" version="2" languageLevel="JDK_21" default="true" project-jdk-name="graalvm-21" project-jdk-type="JavaSDK" /> </project>
mybatis-native-demo/.idea/misc.xml/0
{ "file_path": "mybatis-native-demo/.idea/misc.xml", "repo_id": "mybatis-native-demo", "token_count": 171 }
137
package com.example.nativedemo; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; @SpringBootApplication(proxyBeanMethods = false) public class NativeDemoApplication { public static void main(String[] args) { SpringApplication.run(NativeDemoApplication.class, args); } }
mybatis-native-demo/src/main/java/com/example/nativedemo/NativeDemoApplication.java/0
{ "file_path": "mybatis-native-demo/src/main/java/com/example/nativedemo/NativeDemoApplication.java", "repo_id": "mybatis-native-demo", "token_count": 106 }
138
[ "reflect-config.json", "resource-config.json" ]
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/ch.qos.logback/logback-classic/1.4.1/index.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/ch.qos.logback/logback-classic/1.4.1/index.json", "repo_id": "mybatis-native-demo", "token_count": 22 }
139
[ { "condition": { "typeReachable": "org.h2.mvstore.type.MetaType" }, "name": "org.h2.mvstore.db.LobStorageMap$BlobMeta$Type", "fields": [ { "name": "INSTANCE" } ] }, { "condition": { "typeReachable": "org.h2.mvstore.type.MetaType" }, "name": "org.h2.mvstore.db.LobStorageMap$BlobReference$Type", "fields": [ { "name": "INSTANCE" } ] }, { "condition": { "typeReachable": "org.h2.mvstore.type.MetaType" }, "name": "org.h2.mvstore.db.NullValueDataType", "fields": [ { "name": "INSTANCE" } ] }, { "condition": { "typeReachable": "org.h2.mvstore.tx.VersionedValueType$Factory" }, "name": "org.h2.mvstore.db.RowDataType$Factory", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.mvstore.type.MetaType" }, "name": "org.h2.mvstore.tx.VersionedValueType$Factory", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.mvstore.type.MetaType" }, "name": "org.h2.mvstore.type.ByteArrayDataType", "fields": [ { "name": "INSTANCE" } ] }, { "condition": { "typeReachable": "org.h2.mvstore.type.MetaType" }, "name": "org.h2.mvstore.type.LongDataType", "fields": [ { "name": "INSTANCE" } ] }, { "condition": { "typeReachable": "org.h2.store.fs.FilePath" }, "name": "org.h2.store.fs.async.FilePathAsync", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.store.fs.FilePath" }, "name": "org.h2.store.fs.disk.FilePathDisk", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.store.fs.FilePath" }, "name": "org.h2.store.fs.mem.FilePathMem", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.store.fs.FilePath" }, "name": "org.h2.store.fs.mem.FilePathMemLZF", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.store.fs.FilePath" }, "name": "org.h2.store.fs.niomapped.FilePathNioMapped", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.store.fs.FilePath" }, "name": "org.h2.store.fs.niomem.FilePathNioMem", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.store.fs.FilePath" }, "name": "org.h2.store.fs.niomem.FilePathNioMemLZF", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.store.fs.FilePath" }, "name": "org.h2.store.fs.retry.FilePathRetryOnInterrupt", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.store.fs.FilePath" }, "name": "org.h2.store.fs.split.FilePathSplit", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.store.fs.FilePath" }, "name": "org.h2.store.fs.zip.FilePathZip", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.util.MathUtils" }, "name": "sun.security.provider.SHA", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.h2.util.MathUtils" }, "name": "sun.security.provider.SecureRandom", "methods": [ { "name": "<init>", "parameterTypes": [] } ] } ]
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/com.h2database/h2/2.1.210/reflect-config.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/com.h2database/h2/2.1.210/reflect-config.json", "repo_id": "mybatis-native-demo", "token_count": 2317 }
140
[ { "latest": true, "override": true, "metadata-version": "4.1.80.Final", "module": "io.netty:netty-codec-http2", "tested-versions": [ "4.1.80.Final" ] } ]
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/io.netty/netty-codec-http2/index.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/io.netty/netty-codec-http2/index.json", "repo_id": "mybatis-native-demo", "token_count": 99 }
141
[ { "condition": { "typeReachable": "io.opentelemetry.exporter.logging.LoggingSpanExporter" }, "name": "io.opentelemetry.exporter.logging.LoggingSpanExporter" } ]
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/io.opentelemetry/opentelemetry-exporter-logging/1.19.0/reflect-config.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/io.opentelemetry/opentelemetry-exporter-logging/1.19.0/reflect-config.json", "repo_id": "mybatis-native-demo", "token_count": 83 }
142
{ "resources": { "includes": [ { "condition": { "typeReachable": "io.undertow.Version" }, "pattern": "\\Qio/undertow/version.properties\\E" }, { "condition": { "typeReachable": "io.undertow.Undertow" }, "pattern": "\\Qorg/jboss/threads/Version.properties\\E" }, { "condition": { "typeReachable": "io.undertow.Undertow" }, "pattern": "\\Qorg/xnio/Version.properties\\E" }, { "condition": { "typeReachable": "io.undertow.Undertow" }, "pattern": "\\Qorg/xnio/nio/Version.properties\\E" } ] } }
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/io.undertow/undertow-core/2.2.19.Final/resource-config.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/io.undertow/undertow-core/2.2.19.Final/resource-config.json", "repo_id": "mybatis-native-demo", "token_count": 377 }
143
[ { "latest": true, "metadata-version": "1.23.0", "module": "org.apache.commons:commons-compress", "tested-versions": [ "1.23.0" ] } ]
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.apache.commons/commons-compress/index.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.apache.commons/commons-compress/index.json", "repo_id": "mybatis-native-demo", "token_count": 84 }
144
[ { "latest": true, "metadata-version": "10.0.20", "module": "org.apache.tomcat.embed:tomcat-embed-core", "tested-versions": [ "10.0.20" ] } ]
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.apache.tomcat.embed/tomcat-embed-core/index.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.apache.tomcat.embed/tomcat-embed-core/index.json", "repo_id": "mybatis-native-demo", "token_count": 87 }
145
[ "reflect-config.json", "resource-config.json" ]
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.eclipse.jgit/org.eclipse.jgit/6.5.0.202303070854-r/index.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.eclipse.jgit/org.eclipse.jgit/6.5.0.202303070854-r/index.json", "repo_id": "mybatis-native-demo", "token_count": 22 }
146
{ "bundles": [ { "name": "com.sun.org.apache.xerces.internal.impl.msg.SAXMessages", "locales": [ "und", "zh-CN" ] }, { "name": "com.sun.org.apache.xerces.internal.impl.xpath.regex.message", "locales": [ "und", "zh-CN" ] }, { "name": "com.sun.org.apache.xml.internal.serializer.XMLEntities", "locales": [ "und" ] } ], "resources": { "includes": [ { "condition": { "typeReachable": "org.ehcache.config.builders.UserManagedCacheBuilder" }, "pattern": "\\QMETA-INF/services/org.ehcache.core.spi.service.ServiceFactory\\E" }, { "condition": { "typeReachable": "org.ehcache.core.EhcacheManager" }, "pattern": "\\QMETA-INF/services/org.ehcache.core.spi.service.ServiceFactory\\E" }, { "condition": { "typeReachable": "org.ehcache.core.spi.ServiceLocator$DependencySet" }, "pattern": "\\QMETA-INF/services/org.ehcache.core.spi.service.ServiceFactory\\E" }, { "condition": { "typeReachable": "org.ehcache.xml.XmlUtil" }, "pattern": "\\QMETA-INF/services/org.ehcache.xml.CacheManagerServiceConfigurationParser\\E" }, { "condition": { "typeReachable": "org.ehcache.xml.XmlUtil" }, "pattern": "\\QMETA-INF/services/org.ehcache.xml.CacheServiceConfigurationParser\\E" }, { "condition": { "typeReachable": "org.ehcache.jsr107.internal.Jsr107Parser" }, "pattern": "\\Qehcache-107-ext.xsd\\E" }, { "condition": { "typeReachable": "org.ehcache.xml.XmlConfiguration" }, "pattern": "\\Qehcache-core.xsd\\E" }, { "condition": { "typeReachable": "org.ehcache.xml.multi.XmlMultiConfiguration" }, "pattern": "\\Qehcache-multi.xsd\\E" } ] } }
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.ehcache/ehcache/3.10.8-jakarta/resource-config.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.ehcache/ehcache/3.10.8-jakarta/resource-config.json", "repo_id": "mybatis-native-demo", "token_count": 1059 }
147
[ { "condition": { "typeReachable": "java.util.ServiceLoader" }, "name": "java.util.ServiceLoader$Provider", "allPublicMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "[Ljakarta.xml.bind.annotation.XmlElement;" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "[Ljakarta.xml.bind.annotation.XmlElementRef;" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.model.Column" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversService" }, "name": "org.hibernate.envers.boot.internal.LegacyModifiedColumnNamingStrategy", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversService" }, "name": "org.hibernate.envers.boot.internal.ImprovedModifiedColumnNamingStrategy", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversService" }, "name": "org.hibernate.envers.strategy.DefaultAuditStrategy", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversService" }, "name": " org.hibernate.envers.strategy.internal.DefaultAuditStrategy", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversService" }, "name": "org.hibernate.envers.strategy.ValidityAuditStrategy", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversService" }, "name": " org.hibernate.envers.strategy.internal.ValidityAuditStrategy", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.Configuration" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.AbstractCollectionMetadataGenerator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.AuditEntityNameRegister" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.AuditMetadataGenerator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.CollectionMappedByResolver" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.IdMetadataGenerator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.JoinColumnCollectionMetadataGenerator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.MiddleTableCollectionMetadataGenerator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.enhanced.OrderedSequenceStructure$OrderedSequence" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPostInsertEventListenerImpl" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.exception.RevisionDoesNotExistException" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.id.QueryParameterData" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.id.VirtualEntitySingleIdMapper" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.MiddleMapKeyEnumeratedComponentMapper" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.component.MiddleEmbeddableComponentMapper" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.component.MiddleMapElementNotKeyComponentMapper" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.component.MiddleSimpleComponentMapper" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.CollectionProxy" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.MapProxy" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.query.AbstractRelationQueryGenerator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.query.OneAuditEntityQueryGenerator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.query.OneEntityQueryGenerator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.query.ThreeEntityQueryGenerator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.query.TwoEntityOneAuditedQueryGenerator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.query.TwoEntityQueryGenerator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.DefaultRevisionInfoGenerator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionInfoQueryCreator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionTimestampValueResolver" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.synchronization.AuditProcess" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.tools.ArgumentsTools" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.tools.MappingTools" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.tools.query.Parameters" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.tools.query.QueryBuilder" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.AuditQueryCreator" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.criteria.AggregatedAuditExpression" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.criteria.MatchMode$4" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.criteria.internal.CriteriaTools" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.criteria.internal.SimpleAuditExpression" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditAssociationQuery" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.EntitiesAtRevisionQuery" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.strategy.internal.DefaultAuditStrategy" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.strategy.internal.ValidityAuditStrategy" }, "name": "[Ljava.lang.Class;" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "[Ljava.lang.Object;" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "[Ljava.lang.annotation.Annotation;" }, { "condition": { "typeReachable": "org.hibernate.envers.enhanced.OrderedSequenceStructure$OrderedSequence" }, "name": "[Ljava.lang.invoke.LambdaForm$Name;" }, { "condition": { "typeReachable": "org.hibernate.envers.strategy.internal.DefaultAuditStrategy" }, "name": "[Ljava.lang.invoke.LambdaForm$Name;" }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.CollectionMappedByResolver" }, "name": "[Ljava.util.Iterator;" }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.reader.PersistentPropertiesSource$1" }, "name": "[Ljava.util.Iterator;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "[Ljava.util.Map$Entry;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.EntitiesAtRevisionQuery" }, "name": "[Ljava.util.Map$Entry;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "[Lorg.antlr.v4.runtime.atn.ATNConfig;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionInfoQueryCreator" }, "name": "[Lorg.antlr.v4.runtime.atn.ATNConfig;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.tools.query.QueryBuilder" }, "name": "[Lorg.antlr.v4.runtime.atn.ATNConfig;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "[Lorg.antlr.v4.runtime.atn.ATNConfig;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.EntitiesAtRevisionQuery" }, "name": "[Lorg.antlr.v4.runtime.atn.ATNConfig;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "[Lorg.antlr.v4.runtime.atn.PredictionContext;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionInfoQueryCreator" }, "name": "[Lorg.antlr.v4.runtime.atn.PredictionContext;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.tools.query.QueryBuilder" }, "name": "[Lorg.antlr.v4.runtime.atn.PredictionContext;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "[Lorg.antlr.v4.runtime.atn.PredictionContext;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.EntitiesAtRevisionQuery" }, "name": "[Lorg.antlr.v4.runtime.atn.PredictionContext;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "[Lorg.antlr.v4.runtime.dfa.DFAState$PredPrediction;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "[Lorg.antlr.v4.runtime.dfa.DFAState;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionInfoQueryCreator" }, "name": "[Lorg.antlr.v4.runtime.dfa.DFAState;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "[Lorg.antlr.v4.runtime.dfa.DFAState;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.EntitiesAtRevisionQuery" }, "name": "[Lorg.antlr.v4.runtime.dfa.DFAState;" }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.BaseEnversCollectionEventListener" }, "name": "[Lorg.h2.expression.Expression;" }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPostInsertEventListenerImpl" }, "name": "[Lorg.h2.expression.Expression;" }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPreUpdateEventListenerImpl" }, "name": "[Lorg.h2.expression.Expression;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "[Lorg.h2.expression.Expression;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.DefaultRevisionInfoGenerator" }, "name": "[Lorg.h2.expression.Expression;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.synchronization.AuditProcess" }, "name": "[Lorg.h2.expression.Expression;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "[Lorg.h2.expression.Expression;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.synchronization.AuditProcess" }, "name": "[Lorg.h2.table.Column;" }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.BaseEnversCollectionEventListener" }, "name": "[Lorg.h2.table.TableFilter;" }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPostInsertEventListenerImpl" }, "name": "[Lorg.h2.table.TableFilter;" }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPreUpdateEventListenerImpl" }, "name": "[Lorg.h2.table.TableFilter;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "[Lorg.h2.table.TableFilter;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.DefaultRevisionInfoGenerator" }, "name": "[Lorg.h2.table.TableFilter;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.synchronization.AuditProcess" }, "name": "[Lorg.h2.table.TableFilter;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "[Lorg.h2.table.TableFilter;" }, { "condition": { "typeReachable": "org.hibernate.envers.strategy.internal.ValidityAuditStrategy" }, "name": "[Lorg.h2.value.Value;" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversIntegrator" }, "name": "[Lorg.hibernate.event.spi.PostCollectionRecreateEventListener;" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversIntegrator" }, "name": "[Lorg.hibernate.event.spi.PostDeleteEventListener;" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversIntegrator" }, "name": "[Lorg.hibernate.event.spi.PostInsertEventListener;" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversIntegrator" }, "name": "[Lorg.hibernate.event.spi.PostUpdateEventListener;" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversIntegrator" }, "name": "[Lorg.hibernate.event.spi.PreCollectionRemoveEventListener;" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversIntegrator" }, "name": "[Lorg.hibernate.event.spi.PreCollectionUpdateEventListener;" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversIntegrator" }, "name": "[Lorg.hibernate.event.spi.PreUpdateEventListener;" }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.BaseEnversCollectionEventListener" }, "name": "[Lorg.hibernate.sql.ast.spi.SqlSelection;" }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPreUpdateEventListenerImpl" }, "name": "[Lorg.hibernate.sql.ast.spi.SqlSelection;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "[Lorg.hibernate.sql.ast.spi.SqlSelection;" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.tools.EntityTools" }, "name": "[Lorg.hibernate.sql.ast.spi.SqlSelection;" }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "[Lorg.hibernate.sql.ast.spi.SqlSelection;" }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.reader.AuditedPropertiesReader" }, "name": "ee.estonia.entities.Child", "allDeclaredFields": true, "queryAllDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPostCollectionRecreateEventListenerImpl" }, "name": "ee.estonia.entities.Child", "queryAllDeclaredMethods": true, "fields": [ { "name": "id" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.CollectionProxy" }, "name": "ee.estonia.entities.Child", "queryAllDeclaredMethods": true, "fields": [ { "name": "data" }, { "name": "id" } ], "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.reader.AuditedPropertiesReader" }, "name": "ee.estonia.entities.Parent", "allDeclaredFields": true, "queryAllDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "ee.estonia.entities.Parent", "queryAllDeclaredMethods": true, "fields": [ { "name": "collection" }, { "name": "data" } ], "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.JAXBElement" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlAccessType", "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlAccessorType", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "value", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlAttribute", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlElement", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "type", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlElement$DEFAULT" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlElementDecl", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "scope", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlElementDecl$GLOBAL" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlElementRef", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "type", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlElementRef$DEFAULT" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlElementRefs", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlElements", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "value", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlEnum", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "value", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlEnumValue", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "value", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlMixed", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlRootElement", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlSeeAlso", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "value", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlType", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "factoryClass", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlType$DEFAULT" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.XmlValue", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.adapters.XmlAdapter" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.adapters.XmlJavaTypeAdapter", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "type", "parameterTypes": [] }, { "name": "value", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jakarta.xml.bind.annotation.adapters.XmlJavaTypeAdapter$DEFAULT" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "jdk.internal.ValueBased", "queryAllDeclaredMethods": true, "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.engine.jdbc.dialect.internal.DialectFactoryImpl" }, "name": "org.glassfish.jaxb.runtime.v2.ContextFactory", "methods": [ { "name": "createContext", "parameterTypes": [ "[Ljava.lang.Class;", "java.util.Map" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.glassfish.jaxb.core.v2.model.nav.ReflectionNavigator", "methods": [ { "name": "getInstance", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.glassfish.jaxb.runtime.v2.ContextFactory", "methods": [ { "name": "createContext", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.glassfish.jaxb.runtime.v2.runtime.property.ArrayElementLeafProperty", "queryAllPublicConstructors": true, "methods": [ { "name": "<init>", "parameterTypes": [ "org.glassfish.jaxb.runtime.v2.runtime.JAXBContextImpl", "org.glassfish.jaxb.runtime.v2.model.runtime.RuntimeElementPropertyInfo" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.glassfish.jaxb.runtime.v2.runtime.property.ArrayElementNodeProperty", "queryAllPublicConstructors": true, "methods": [ { "name": "<init>", "parameterTypes": [ "org.glassfish.jaxb.runtime.v2.runtime.JAXBContextImpl", "org.glassfish.jaxb.runtime.v2.model.runtime.RuntimeElementPropertyInfo" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.glassfish.jaxb.runtime.v2.runtime.property.ArrayReferenceNodeProperty", "queryAllPublicConstructors": true, "methods": [ { "name": "<init>", "parameterTypes": [ "org.glassfish.jaxb.runtime.v2.runtime.JAXBContextImpl", "org.glassfish.jaxb.runtime.v2.model.runtime.RuntimeReferencePropertyInfo" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.glassfish.jaxb.runtime.v2.runtime.property.SingleElementLeafProperty", "queryAllPublicConstructors": true, "methods": [ { "name": "<init>", "parameterTypes": [ "org.glassfish.jaxb.runtime.v2.runtime.JAXBContextImpl", "org.glassfish.jaxb.runtime.v2.model.runtime.RuntimeElementPropertyInfo" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.glassfish.jaxb.runtime.v2.runtime.property.SingleElementNodeProperty", "queryAllPublicConstructors": true, "methods": [ { "name": "<init>", "parameterTypes": [ "org.glassfish.jaxb.runtime.v2.runtime.JAXBContextImpl", "org.glassfish.jaxb.runtime.v2.model.runtime.RuntimeElementPropertyInfo" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.glassfish.jaxb.runtime.v2.runtime.property.SingleMapNodeProperty", "queryAllPublicConstructors": true }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.glassfish.jaxb.runtime.v2.runtime.property.SingleReferenceNodeProperty", "queryAllPublicConstructors": true }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.CacheMode" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.FlushMode" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.LockMode" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.Adapter1", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.Adapter2", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.Adapter3", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.Adapter4", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.Adapter5", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.Adapter6", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.Adapter7", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.Adapter8", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.Adapter9", "methods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmAnyAssociationType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmAnyValueMappingType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmArrayType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmAuxiliaryDatabaseObjectType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmAuxiliaryDatabaseObjectType$JaxbHbmDefinition", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmBagCollectionType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmBaseVersionAttributeType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmBasicAttributeType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmBasicCollectionElementType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmCacheInclusionEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmCacheType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmClassRenameType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmCollectionIdType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmColumnType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmCompositeAttributeType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmCompositeCollectionElementType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmCompositeIdType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmCompositeIndexType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmCompositeKeyBasicAttributeType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmCompositeKeyManyToOneType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmConfigParameterContainer", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmConfigParameterType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmCustomSqlDmlType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmDialectScopeType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmDiscriminatorSubclassEntityType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmDynamicComponentType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmEntityBaseDefinition", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmEntityDiscriminatorType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmFetchProfileType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmFetchProfileType$JaxbHbmFetch", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmFetchStyleEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmFetchStyleWithSubselectEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmFilterAliasMappingType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmFilterDefinitionType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmFilterParameterType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmFilterType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmGeneratorSpecificationType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmHibernateMapping", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmIdBagCollectionType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmIdentifierGeneratorDefinitionType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmIndexManyToAnyType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmIndexManyToManyType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmIndexType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmJoinedSubclassEntityType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmKeyType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmLazyEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmLazyWithExtraEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmLazyWithNoProxyEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmListIndexType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmListType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmLoaderType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmManyToAnyCollectionElementType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmManyToManyCollectionElementType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmManyToOneType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmMapKeyBasicType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmMapKeyCompositeType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmMapKeyManyToManyType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmMapType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmMultiTenancyType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNamedNativeQueryType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNamedQueryType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNativeQueryCollectionLoadReturnType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNativeQueryJoinReturnType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNativeQueryPropertyReturnType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNativeQueryPropertyReturnType$JaxbHbmReturnColumn", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNativeQueryReturnType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNativeQueryReturnType$JaxbHbmReturnDiscriminator", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNativeQueryScalarReturnType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNaturalIdCacheType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNaturalIdType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNestedCompositeElementType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmNotFoundEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmOnDeleteEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmOneToManyCollectionElementType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmOneToOneType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmOuterJoinEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmParentType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmPolymorphismEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmPrimitiveArrayType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmPropertiesType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmQueryParamType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmResultSetMappingType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmRootEntityType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmSecondaryTableType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmSetType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmSimpleIdType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmSubclassEntityBaseDefinition", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmSynchronizeType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmTimestampAttributeType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmTimestampSourceEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmToolingHintContainer", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmToolingHintType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmTuplizerType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmTypeDefinitionType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmTypeSpecificationType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmUnionSubclassEntityType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmUnsavedValueCompositeIdEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmUnsavedValueTimestampEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmUnsavedValueVersionEnum", "allDeclaredFields": true, "methods": [ { "name": "values", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.JaxbHbmVersionAttributeType", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.ObjectFactory", "queryAllDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.PluralAttributeInfoIdBagAdapter", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.boot.jaxb.hbm.spi.PluralAttributeInfoPrimitiveArrayAdapter", "allDeclaredFields": true, "queryAllDeclaredMethods": true, "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.cache.spi.access.AccessType" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.engine.OptimisticLockStyle" }, { "condition": { "typeReachable": "org.hibernate.envers.internal.synchronization.AuditProcess" }, "name": "org.hibernate.engine.jdbc.batch.internal.BatchBuilderImpl", "queryAllPublicMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.strategy.internal.ValidityAuditStrategy" }, "name": "org.hibernate.engine.jdbc.batch.internal.BatchBuilderImpl", "queryAllPublicMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.engine.spi.ExecuteUpdateResultCheckStyle" }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.RevisionInfoConfiguration" }, "name": "org.hibernate.envers.DefaultRevisionEntity", "allDeclaredConstructors": true, "allDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.RevisionInfoConfiguration" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "allDeclaredConstructors": true, "allDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversServiceImpl$1" }, "name": "org.hibernate.envers.DefaultRevisionEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "timestamp" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.DefaultRevisionInfoGenerator" }, "name": "org.hibernate.envers.DefaultRevisionEntity", "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionInfoNumberReader" }, "name": "org.hibernate.envers.DefaultRevisionEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "id" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionTimestampValueResolver" }, "name": "org.hibernate.envers.DefaultRevisionEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "timestamp" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.EnversBootLogger" }, "name": "org.hibernate.envers.boot.EnversBootLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.TypeContributorImpl" }, "name": "org.hibernate.envers.boot.internal.EnversServiceImpl", "queryAllPublicMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.PersistentEntityInstantiator" }, "name": "org.hibernate.envers.boot.model.DiscriminatorPersistentEntity", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.configuration.internal.metadata.AuditTableData", "org.hibernate.mapping.PersistentClass" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.PersistentEntityInstantiator" }, "name": "org.hibernate.envers.boot.model.JoinedSubclassPersistentEntity", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.configuration.internal.metadata.AuditTableData", "org.hibernate.mapping.PersistentClass" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.PersistentEntityInstantiator" }, "name": "org.hibernate.envers.boot.model.RootPersistentEntity", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.configuration.internal.metadata.AuditTableData", "org.hibernate.mapping.PersistentClass" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.PersistentEntityInstantiator" }, "name": "org.hibernate.envers.boot.model.UnionSubclassPersistentEntity", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.configuration.internal.metadata.AuditTableData", "org.hibernate.mapping.PersistentClass" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversServiceImpl$1" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "timestamp" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "setId", "parameterTypes": [ "int" ] }, { "name": "setTimestamp", "parameterTypes": [ "long" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.CrossTypeRevisionChangesReaderImpl" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "methods": [ { "name": "setId", "parameterTypes": [ "int" ] }, { "name": "setTimestamp", "parameterTypes": [ "long" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.DefaultRevisionInfoGenerator" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "getTimestamp", "parameterTypes": [] }, { "name": "setId", "parameterTypes": [ "int" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionInfoNumberReader" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "id" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionTimestampValueResolver" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "timestamp" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.synchronization.AuditProcess" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "getId", "parameterTypes": [] }, { "name": "getTimestamp", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.synchronization.SessionCacheCleaner$1" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "methods": [ { "name": "getId", "parameterTypes": [] }, { "name": "getTimestamp", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.tools.ReflectionTools" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "timestamp" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.EntitiesModifiedAtRevisionQuery" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "methods": [ { "name": "getId", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.strategy.internal.DefaultAuditStrategy" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "methods": [ { "name": "getId", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.strategy.internal.ValidityAuditStrategy" }, "name": "org.hibernate.envers.enhanced.SequenceIdRevisionEntity", "methods": [ { "name": "getId", "parameterTypes": [] }, { "name": "getTimestamp", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversServiceImpl$1" }, "name": "org.hibernate.envers.enhanced.SequenceIdTrackingModifiedEntitiesRevisionEntity", "queryAllDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.CrossTypeRevisionChangesReaderImpl" }, "name": "org.hibernate.envers.enhanced.SequenceIdTrackingModifiedEntitiesRevisionEntity", "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "setModifiedEntityNames", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.DefaultTrackingModifiedEntitiesRevisionInfoGenerator" }, "name": "org.hibernate.envers.enhanced.SequenceIdTrackingModifiedEntitiesRevisionEntity", "queriedMethods": [ { "name": "<init>", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionInfoNumberReader" }, "name": "org.hibernate.envers.enhanced.SequenceIdTrackingModifiedEntitiesRevisionEntity", "queryAllDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionTimestampValueResolver" }, "name": "org.hibernate.envers.enhanced.SequenceIdTrackingModifiedEntitiesRevisionEntity", "queryAllDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.internal.synchronization.AuditProcess" }, "name": "org.hibernate.envers.enhanced.SequenceIdTrackingModifiedEntitiesRevisionEntity", "methods": [ { "name": "<init>", "parameterTypes": [] }, { "name": "getModifiedEntityNames", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.synchronization.SessionCacheCleaner$1" }, "name": "org.hibernate.envers.enhanced.SequenceIdTrackingModifiedEntitiesRevisionEntity", "methods": [ { "name": "getModifiedEntityNames", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.strategy.internal.ValidityAuditStrategy" }, "name": "org.hibernate.envers.enhanced.SequenceIdTrackingModifiedEntitiesRevisionEntity", "methods": [ { "name": "getModifiedEntityNames", "parameterTypes": [] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.ClassesAuditingData" }, "name": "org.hibernate.envers.internal.EnversMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.AuditMetadataGenerator" }, "name": "org.hibernate.envers.internal.EnversMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.CollectionMappedByResolver" }, "name": "org.hibernate.envers.internal.EnversMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.JoinColumnCollectionMetadataGenerator" }, "name": "org.hibernate.envers.internal.EnversMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.MiddleTableCollectionMetadataGenerator" }, "name": "org.hibernate.envers.internal.EnversMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.FirstLevelCache" }, "name": "org.hibernate.envers.internal.EnversMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.AbstractCollectionMetadataGenerator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.AuditMetadataGenerator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.JoinColumnCollectionMetadataGenerator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.MiddleTableCollectionMetadataGenerator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.EntityInstantiator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.ComponentPropertyMapper" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.AbstractCollectionMapper" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.BasicCollectionMapper" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.ListCollectionMapper" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.BasicCollectionInitializor" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.ListCollectionInitializor" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.RevisionsOfEntityQuery" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.ListProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.AuditMetadataGenerator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.MapProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.EntityInstantiator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.MapProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.AbstractCollectionMapper" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.MapProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.MapCollectionMapper" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.MapProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.CollectionProxy" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.MapProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.MapProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.RevisionsOfEntityQuery" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.MapProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.AuditMetadataGenerator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SetProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.JoinColumnCollectionMetadataGenerator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SetProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.MiddleTableCollectionMetadataGenerator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SetProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.EntityInstantiator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SetProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.AbstractCollectionMapper" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SetProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.BasicCollectionMapper" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SetProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.lazy.ToOneDelegateSessionImplementor" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SetProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.BasicCollectionInitializor" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SetProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.CollectionProxy" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SetProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SetProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.EntityInstantiator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SortedMapProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.SortedMapCollectionMapper" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SortedMapProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.EntityInstantiator" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SortedSetProxy", "methods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.SortedSetCollectionMapper" }, "name": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.SortedSetProxy", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "org.hibernate.envers.internal.entities.mapper.relation.lazy.initializor.Initializor" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversServiceImpl$1" }, "name": "org.hibernate.envers.test.entities.reventity.CustomLocalDateTimeRevEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "localDateTimestamp" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.reader.AuditedPropertiesReader" }, "name": "org.hibernate.envers.test.entities.reventity.CustomLocalDateTimeRevEntity", "allDeclaredFields": true, "queryAllDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionInfoNumberReader" }, "name": "org.hibernate.envers.test.entities.reventity.CustomLocalDateTimeRevEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "id" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionTimestampValueResolver" }, "name": "org.hibernate.envers.test.entities.reventity.CustomLocalDateTimeRevEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "localDateTimestamp" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.reader.AuditedPropertiesReader" }, "name": "org.hibernate.envers.test.integration.data.DateTestEntity", "allDeclaredFields": true, "queryAllDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.AbstractMapper" }, "name": "org.hibernate.envers.test.integration.data.DateTestEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "id" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.SinglePropertyMapper" }, "name": "org.hibernate.envers.test.integration.data.DateTestEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "dateValue" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.reader.AuditedPropertiesReader" }, "name": "org.hibernate.envers.test.integration.data.EnumTestEntity", "allDeclaredFields": true, "queryAllDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.AbstractMapper" }, "name": "org.hibernate.envers.test.integration.data.EnumTestEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "id" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.SinglePropertyMapper" }, "name": "org.hibernate.envers.test.integration.data.EnumTestEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "enum1" }, { "name": "enum2" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.reader.AuditedPropertiesReader" }, "name": "org.hibernate.envers.test.integration.data.LobSerializableTestEntity", "allDeclaredFields": true, "queryAllDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.AbstractMapper" }, "name": "org.hibernate.envers.test.integration.data.LobSerializableTestEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "id" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.SinglePropertyMapper" }, "name": "org.hibernate.envers.test.integration.data.LobSerializableTestEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "obj" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.EntitiesAtRevisionQuery" }, "name": "org.hibernate.envers.test.integration.data.SerObject" }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.reader.AuditedPropertiesReader" }, "name": "org.hibernate.envers.test.integration.data.SerializableTestEntity", "allDeclaredFields": true, "queryAllDeclaredMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.AbstractMapper" }, "name": "org.hibernate.envers.test.integration.data.SerializableTestEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "id" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.SinglePropertyMapper" }, "name": "org.hibernate.envers.test.integration.data.SerializableTestEntity", "queryAllDeclaredMethods": true, "fields": [ { "name": "obj" } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.AuditMetadataGenerator" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.configuration.internal.metadata.ValueMetadataGenerator" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.enhanced.OrderedSequenceGenerator" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPostInsertEventListenerImpl" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPreUpdateEventListenerImpl" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.DefaultRevisionInfoGenerator" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionInfoQueryCreator" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionTimestampValueResolver" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.synchronization.AuditProcess" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.synchronization.SessionCacheCleaner$1" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.tools.query.QueryBuilder" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.EntitiesAtRevisionQuery" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.strategy.internal.ValidityAuditStrategy" }, "name": "org.hibernate.internal.CoreMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.CollectionProxy" }, "name": "org.hibernate.internal.EntityManagerMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.entities.mapper.relation.lazy.proxy.MapProxy" }, "name": "org.hibernate.internal.EntityManagerMessageLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.metamodel.RepresentationMode" }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.EnversServiceImpl$1" }, "name": "org.hibernate.property.access.internal.PropertyAccessStrategyResolverStandardImpl", "queryAllPublicMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionTimestampValueResolver" }, "name": "org.hibernate.property.access.internal.PropertyAccessStrategyResolverStandardImpl", "queryAllPublicMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.internal.tools.ReflectionTools" }, "name": "org.hibernate.property.access.internal.PropertyAccessStrategyResolverStandardImpl", "queryAllPublicMethods": true }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "org.hibernate.query.hql.HqlLogging_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.revisioninfo.RevisionInfoQueryCreator" }, "name": "org.hibernate.query.hql.HqlLogging_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.tools.query.QueryBuilder" }, "name": "org.hibernate.query.hql.HqlLogging_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "org.hibernate.query.hql.HqlLogging_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.EntitiesAtRevisionQuery" }, "name": "org.hibernate.query.hql.HqlLogging_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.strategy.internal.ValidityAuditStrategy" }, "name": "org.hibernate.query.hql.HqlLogging_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPostInsertEventListenerImpl" }, "name": "org.hibernate.sql.exec.SqlExecLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPreUpdateEventListenerImpl" }, "name": "org.hibernate.sql.exec.SqlExecLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "org.hibernate.sql.exec.SqlExecLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "org.hibernate.sql.exec.SqlExecLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.EntitiesAtRevisionQuery" }, "name": "org.hibernate.sql.exec.SqlExecLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPostInsertEventListenerImpl" }, "name": "org.hibernate.sql.results.LoadingLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPreUpdateEventListenerImpl" }, "name": "org.hibernate.sql.results.LoadingLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "org.hibernate.sql.results.LoadingLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "org.hibernate.sql.results.LoadingLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.EntitiesAtRevisionQuery" }, "name": "org.hibernate.sql.results.LoadingLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPostInsertEventListenerImpl" }, "name": "org.hibernate.sql.results.ResultsLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.event.spi.EnversPreUpdateEventListenerImpl" }, "name": "org.hibernate.sql.results.ResultsLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.internal.reader.AuditReaderImpl" }, "name": "org.hibernate.sql.results.ResultsLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.AbstractAuditQuery" }, "name": "org.hibernate.sql.results.ResultsLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.query.internal.impl.EntitiesAtRevisionQuery" }, "name": "org.hibernate.sql.results.ResultsLogger_$logger", "methods": [ { "name": "<init>", "parameterTypes": [ "org.jboss.logging.Logger" ] } ] }, { "condition": { "typeReachable": "org.hibernate.envers.boot.internal.AdditionalJaxbMappingProducerImpl$1" }, "name": "org.hibernate.tuple.GenerationTiming" }, { "condition": { "typeReachable": "org.hibernate.envers.strategy.internal.ValidityAuditStrategy$QueryParameterBinding" }, "name": "sun.util.resources.provider.NonBaseLocaleDataMetaInfo", "methods": [ { "name": "<init>", "parameterTypes": [] } ] } ]
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.hibernate.orm/hibernate-envers/6.1.1.Final/reflect-config.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.hibernate.orm/hibernate-envers/6.1.1.Final/reflect-config.json", "repo_id": "mybatis-native-demo", "token_count": 56381 }
148
[ "reflect-config.json" ]
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.jboss.logging/jboss-logging/3.5.0.Final/index.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.jboss.logging/jboss-logging/3.5.0.Final/index.json", "repo_id": "mybatis-native-demo", "token_count": 13 }
149
[ { "condition": { "typeReachable": "org.jline.terminal.impl.jansi.JansiNativePty" }, "name": "java.io.FileDescriptor", "queriedMethods": [ { "name": "<init>", "parameterTypes": [ "int" ] } ] }, { "condition": { "typeReachable": "org.jline.terminal.TerminalBuilder" }, "methods": [ { "name": "current", "parameterTypes": [] }, { "name": "info", "parameterTypes": [] }, { "name": "parent", "parameterTypes": [] } ], "name": "java.lang.ProcessHandle" }, { "condition": { "typeReachable": "org.jline.terminal.TerminalBuilder" }, "methods": [ { "name": "command", "parameterTypes": [] } ], "name": "java.lang.ProcessHandle$Info" }, { "condition": { "typeReachable": "org.jline.builtins.Styles" }, "methods": [ { "name": "get", "parameterTypes": [] } ], "name": "org.jline.console.SystemRegistry" }, { "condition": { "typeReachable": "org.jline.utils.Signals" }, "methods": [ { "name": "<init>", "parameterTypes": [ "java.lang.String" ] }, { "name": "handle", "parameterTypes": [ "sun.misc.Signal", "sun.misc.SignalHandler" ] } ], "name": "sun.misc.Signal" }, { "condition": { "typeReachable": "org.jline.utils.Signals" }, "fields": [ { "name": "SIG_DFL" } ], "name": "sun.misc.SignalHandler" }, { "allDeclaredClasses": true, "allDeclaredConstructors": true, "allDeclaredMethods": true, "allPublicClasses": true, "allPublicConstructors": true, "allPublicMethods": true, "condition": { "typeReachable": "org.jline.terminal.TerminalBuilder" }, "name": "sun.misc.SignalHandler" } ]
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.jline/jline/3.21.0/reflect-config.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.jline/jline/3.21.0/reflect-config.json", "repo_id": "mybatis-native-demo", "token_count": 1045 }
150
[ { "condition": { "typeReachable": "org.mariadb.jdbc.Configuration" }, "name": "org.mariadb.jdbc.Configuration", "allDeclaredFields": true }, { "condition": { "typeReachable": "org.mariadb.jdbc.Configuration" }, "name": "org.mariadb.jdbc.Configuration$Builder", "allDeclaredFields": true }, { "condition": { "typeReachable": "org.mariadb.jdbc.plugin.authentication.standard.NativePasswordPlugin" }, "name": "sun.security.provider.SHA", "methods": [ { "name": "<init>", "parameterTypes": [] } ] } ]
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.mariadb.jdbc/mariadb-java-client/3.0.6/reflect-config.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.mariadb.jdbc/mariadb-java-client/3.0.6/reflect-config.json", "repo_id": "mybatis-native-demo", "token_count": 287 }
151
[ { "name": "org.thymeleaf.spring6.view.ThymeleafView", "allDeclaredConstructors": true, "condition": { "typeReachable": "org.thymeleaf.spring6.view.ThymeleafViewResolver" } }, { "name": "org.thymeleaf.spring6.view.reactive.ThymeleafReactiveView", "allDeclaredConstructors": true, "condition": { "typeReachable": "org.thymeleaf.spring6.view.reactive.ThymeleafReactiveViewResolver" } }, { "name": "org.thymeleaf.spring6.expression.Mvc$Spring41MvcUriComponentsBuilderDelegate", "allDeclaredConstructors": true, "condition": { "typeReachable": "org.thymeleaf.spring6.expression.Mvc" } }, { "name": "org.thymeleaf.spring6.expression.Fields", "allPublicMethods": true, "condition": { "typeReachable": "org.thymeleaf.spring6.expression.SPELVariableExpressionEvaluator" } } ]
mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.thymeleaf/thymeleaf-spring6/3.1.0.M2/reflect-config.json/0
{ "file_path": "mybatis-native-demo/target/graalvm-reachability-metadata/5c2bbae17873953cfd284011e1cedc9ce1396f45/org.thymeleaf/thymeleaf-spring6/3.1.0.M2/reflect-config.json", "repo_id": "mybatis-native-demo", "token_count": 367 }
152
/home/ubuntu/wensimin-work/mybatis-native-demo/src/test/java/com/example/nativedemo/NativeDemoApplicationTests.java
mybatis-native-demo/target/maven-status/maven-compiler-plugin/testCompile/default-testCompile/inputFiles.lst/0
{ "file_path": "mybatis-native-demo/target/maven-status/maven-compiler-plugin/testCompile/default-testCompile/inputFiles.lst", "repo_id": "mybatis-native-demo", "token_count": 44 }
153
package com.example.nativedemo; import com.baomidou.mybatisplus.extension.plugins.MybatisPlusInterceptor; import org.springframework.beans.factory.aot.BeanInstanceSupplier; import org.springframework.beans.factory.config.BeanDefinition; import org.springframework.beans.factory.support.RootBeanDefinition; import org.springframework.context.annotation.ConfigurationClassUtils; /** * Bean definitions for {@link MybatisPlusConfig}. */ public class MybatisPlusConfig__BeanDefinitions { /** * Get the bean definition for 'mybatisPlusConfig'. */ public static BeanDefinition getMybatisPlusConfigBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(MybatisPlusConfig.class); beanDefinition.setTargetType(MybatisPlusConfig.class); ConfigurationClassUtils.initializeConfigurationClass(MybatisPlusConfig.class); beanDefinition.setInstanceSupplier(MybatisPlusConfig$$SpringCGLIB$$0::new); return beanDefinition; } /** * Get the bean instance supplier for 'mybatisPlusInterceptor'. */ private static BeanInstanceSupplier<MybatisPlusInterceptor> getMybatisPlusInterceptorInstanceSupplier( ) { return BeanInstanceSupplier.<MybatisPlusInterceptor>forFactoryMethod(MybatisPlusConfig.class, "mybatisPlusInterceptor") .withGenerator((registeredBean) -> registeredBean.getBeanFactory().getBean(MybatisPlusConfig.class).mybatisPlusInterceptor()); } /** * Get the bean definition for 'mybatisPlusInterceptor'. */ public static BeanDefinition getMybatisPlusInterceptorBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(MybatisPlusInterceptor.class); beanDefinition.setInstanceSupplier(getMybatisPlusInterceptorInstanceSupplier()); return beanDefinition; } }
mybatis-native-demo/target/spring-aot/main/sources/com/example/nativedemo/MybatisPlusConfig__BeanDefinitions.java/0
{ "file_path": "mybatis-native-demo/target/spring-aot/main/sources/com/example/nativedemo/MybatisPlusConfig__BeanDefinitions.java", "repo_id": "mybatis-native-demo", "token_count": 543 }
154
package org.springframework.boot.autoconfigure.jdbc; import javax.sql.DataSource; import org.springframework.beans.factory.ObjectProvider; import org.springframework.beans.factory.aot.BeanInstanceSupplier; import org.springframework.beans.factory.config.BeanDefinition; import org.springframework.beans.factory.support.RootBeanDefinition; import org.springframework.core.env.Environment; import org.springframework.jdbc.datasource.DataSourceTransactionManager; /** * Bean definitions for {@link DataSourceTransactionManagerAutoConfiguration}. */ public class DataSourceTransactionManagerAutoConfiguration__BeanDefinitions { /** * Get the bean definition for 'dataSourceTransactionManagerAutoConfiguration'. */ public static BeanDefinition getDataSourceTransactionManagerAutoConfigurationBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(DataSourceTransactionManagerAutoConfiguration.class); beanDefinition.setInstanceSupplier(DataSourceTransactionManagerAutoConfiguration::new); return beanDefinition; } /** * Bean definitions for {@link DataSourceTransactionManagerAutoConfiguration.JdbcTransactionManagerConfiguration}. */ public static class JdbcTransactionManagerConfiguration { /** * Get the bean definition for 'jdbcTransactionManagerConfiguration'. */ public static BeanDefinition getJdbcTransactionManagerConfigurationBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(DataSourceTransactionManagerAutoConfiguration.JdbcTransactionManagerConfiguration.class); beanDefinition.setInstanceSupplier(DataSourceTransactionManagerAutoConfiguration.JdbcTransactionManagerConfiguration::new); return beanDefinition; } /** * Get the bean instance supplier for 'transactionManager'. */ private static BeanInstanceSupplier<DataSourceTransactionManager> getTransactionManagerInstanceSupplier( ) { return BeanInstanceSupplier.<DataSourceTransactionManager>forFactoryMethod(DataSourceTransactionManagerAutoConfiguration.JdbcTransactionManagerConfiguration.class, "transactionManager", Environment.class, DataSource.class, ObjectProvider.class) .withGenerator((registeredBean, args) -> registeredBean.getBeanFactory().getBean(DataSourceTransactionManagerAutoConfiguration.JdbcTransactionManagerConfiguration.class).transactionManager(args.get(0), args.get(1), args.get(2))); } /** * Get the bean definition for 'transactionManager'. */ public static BeanDefinition getTransactionManagerBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(DataSourceTransactionManager.class); beanDefinition.setInstanceSupplier(getTransactionManagerInstanceSupplier()); return beanDefinition; } } }
mybatis-native-demo/target/spring-aot/main/sources/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration__BeanDefinitions.java/0
{ "file_path": "mybatis-native-demo/target/spring-aot/main/sources/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration__BeanDefinitions.java", "repo_id": "mybatis-native-demo", "token_count": 753 }
155
package org.springframework.boot.autoconfigure.task; import java.lang.SuppressWarnings; import org.springframework.beans.factory.ObjectProvider; import org.springframework.beans.factory.aot.BeanInstanceSupplier; import org.springframework.beans.factory.config.BeanDefinition; import org.springframework.beans.factory.support.RootBeanDefinition; import org.springframework.boot.task.SimpleAsyncTaskSchedulerBuilder; import org.springframework.boot.task.TaskSchedulerBuilder; import org.springframework.boot.task.ThreadPoolTaskSchedulerBuilder; /** * Bean definitions for {@link TaskSchedulingConfigurations}. */ public class TaskSchedulingConfigurations__BeanDefinitions { /** * Bean definitions for {@link TaskSchedulingConfigurations.ThreadPoolTaskSchedulerBuilderConfiguration}. */ public static class ThreadPoolTaskSchedulerBuilderConfiguration { /** * Get the bean definition for 'threadPoolTaskSchedulerBuilderConfiguration'. */ public static BeanDefinition getThreadPoolTaskSchedulerBuilderConfigurationBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(TaskSchedulingConfigurations.ThreadPoolTaskSchedulerBuilderConfiguration.class); beanDefinition.setInstanceSupplier(TaskSchedulingConfigurations.ThreadPoolTaskSchedulerBuilderConfiguration::new); return beanDefinition; } /** * Get the bean instance supplier for 'threadPoolTaskSchedulerBuilder'. */ private static BeanInstanceSupplier<ThreadPoolTaskSchedulerBuilder> getThreadPoolTaskSchedulerBuilderInstanceSupplier( ) { return BeanInstanceSupplier.<ThreadPoolTaskSchedulerBuilder>forFactoryMethod(TaskSchedulingConfigurations.ThreadPoolTaskSchedulerBuilderConfiguration.class, "threadPoolTaskSchedulerBuilder", TaskSchedulingProperties.class, ObjectProvider.class, ObjectProvider.class) .withGenerator((registeredBean, args) -> registeredBean.getBeanFactory().getBean(TaskSchedulingConfigurations.ThreadPoolTaskSchedulerBuilderConfiguration.class).threadPoolTaskSchedulerBuilder(args.get(0), args.get(1), args.get(2))); } /** * Get the bean definition for 'threadPoolTaskSchedulerBuilder'. */ public static BeanDefinition getThreadPoolTaskSchedulerBuilderBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(ThreadPoolTaskSchedulerBuilder.class); beanDefinition.setInstanceSupplier(getThreadPoolTaskSchedulerBuilderInstanceSupplier()); return beanDefinition; } } /** * Bean definitions for {@link TaskSchedulingConfigurations.TaskSchedulerBuilderConfiguration}. */ public static class TaskSchedulerBuilderConfiguration { /** * Get the bean definition for 'taskSchedulerBuilderConfiguration'. */ public static BeanDefinition getTaskSchedulerBuilderConfigurationBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(TaskSchedulingConfigurations.TaskSchedulerBuilderConfiguration.class); beanDefinition.setInstanceSupplier(TaskSchedulingConfigurations.TaskSchedulerBuilderConfiguration::new); return beanDefinition; } /** * Get the bean instance supplier for 'taskSchedulerBuilder'. */ @SuppressWarnings("removal") private static BeanInstanceSupplier<TaskSchedulerBuilder> getTaskSchedulerBuilderInstanceSupplier( ) { return BeanInstanceSupplier.<TaskSchedulerBuilder>forFactoryMethod(TaskSchedulingConfigurations.TaskSchedulerBuilderConfiguration.class, "taskSchedulerBuilder", TaskSchedulingProperties.class, ObjectProvider.class) .withGenerator((registeredBean, args) -> registeredBean.getBeanFactory().getBean(TaskSchedulingConfigurations.TaskSchedulerBuilderConfiguration.class).taskSchedulerBuilder(args.get(0), args.get(1))); } /** * Get the bean definition for 'taskSchedulerBuilder'. */ @SuppressWarnings("removal") public static BeanDefinition getTaskSchedulerBuilderBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(TaskSchedulerBuilder.class); beanDefinition.setInstanceSupplier(getTaskSchedulerBuilderInstanceSupplier()); return beanDefinition; } } /** * Bean definitions for {@link TaskSchedulingConfigurations.SimpleAsyncTaskSchedulerBuilderConfiguration}. */ public static class SimpleAsyncTaskSchedulerBuilderConfiguration { /** * Get the bean instance supplier for 'org.springframework.boot.autoconfigure.task.TaskSchedulingConfigurations$SimpleAsyncTaskSchedulerBuilderConfiguration'. */ private static BeanInstanceSupplier<TaskSchedulingConfigurations.SimpleAsyncTaskSchedulerBuilderConfiguration> getSimpleAsyncTaskSchedulerBuilderConfigurationInstanceSupplier( ) { return BeanInstanceSupplier.<TaskSchedulingConfigurations.SimpleAsyncTaskSchedulerBuilderConfiguration>forConstructor(TaskSchedulingProperties.class, ObjectProvider.class) .withGenerator((registeredBean, args) -> new TaskSchedulingConfigurations.SimpleAsyncTaskSchedulerBuilderConfiguration(args.get(0), args.get(1))); } /** * Get the bean definition for 'simpleAsyncTaskSchedulerBuilderConfiguration'. */ public static BeanDefinition getSimpleAsyncTaskSchedulerBuilderConfigurationBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(TaskSchedulingConfigurations.SimpleAsyncTaskSchedulerBuilderConfiguration.class); beanDefinition.setInstanceSupplier(getSimpleAsyncTaskSchedulerBuilderConfigurationInstanceSupplier()); return beanDefinition; } /** * Get the bean instance supplier for 'simpleAsyncTaskSchedulerBuilder'. */ private static BeanInstanceSupplier<SimpleAsyncTaskSchedulerBuilder> getSimpleAsyncTaskSchedulerBuilderInstanceSupplier( ) { return BeanInstanceSupplier.<SimpleAsyncTaskSchedulerBuilder>forFactoryMethod(TaskSchedulingConfigurations.SimpleAsyncTaskSchedulerBuilderConfiguration.class, "simpleAsyncTaskSchedulerBuilderVirtualThreads") .withGenerator((registeredBean) -> registeredBean.getBeanFactory().getBean(TaskSchedulingConfigurations.SimpleAsyncTaskSchedulerBuilderConfiguration.class).simpleAsyncTaskSchedulerBuilderVirtualThreads()); } /** * Get the bean definition for 'simpleAsyncTaskSchedulerBuilder'. */ public static BeanDefinition getSimpleAsyncTaskSchedulerBuilderBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(SimpleAsyncTaskSchedulerBuilder.class); beanDefinition.setInstanceSupplier(getSimpleAsyncTaskSchedulerBuilderInstanceSupplier()); return beanDefinition; } } }
mybatis-native-demo/target/spring-aot/main/sources/org/springframework/boot/autoconfigure/task/TaskSchedulingConfigurations__BeanDefinitions.java/0
{ "file_path": "mybatis-native-demo/target/spring-aot/main/sources/org/springframework/boot/autoconfigure/task/TaskSchedulingConfigurations__BeanDefinitions.java", "repo_id": "mybatis-native-demo", "token_count": 1971 }
156
package org.springframework.boot.autoconfigure.web.servlet; import java.util.List; import org.springframework.beans.factory.aot.AutowiredMethodArgumentsResolver; import org.springframework.beans.factory.support.RegisteredBean; /** * Autowiring for {@link WebMvcAutoConfiguration.EnableWebMvcConfiguration}. */ public class WebMvcAutoConfiguration_EnableWebMvcConfiguration__Autowiring { /** * Apply the autowiring. */ public static WebMvcAutoConfiguration.EnableWebMvcConfiguration apply( RegisteredBean registeredBean, WebMvcAutoConfiguration.EnableWebMvcConfiguration instance) { AutowiredMethodArgumentsResolver.forMethod("setConfigurers", List.class).resolve(registeredBean, args -> instance.setConfigurers(args.get(0))); return instance; } }
mybatis-native-demo/target/spring-aot/main/sources/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration_EnableWebMvcConfiguration__Autowiring.java/0
{ "file_path": "mybatis-native-demo/target/spring-aot/main/sources/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration_EnableWebMvcConfiguration__Autowiring.java", "repo_id": "mybatis-native-demo", "token_count": 233 }
157
package org.springframework.cloud.client; import org.springframework.beans.factory.config.BeanDefinition; import org.springframework.beans.factory.support.RootBeanDefinition; /** * Bean definitions for {@link CommonsClientAutoConfiguration}. */ public class CommonsClientAutoConfiguration__BeanDefinitions { /** * Get the bean definition for 'commonsClientAutoConfiguration'. */ public static BeanDefinition getCommonsClientAutoConfigurationBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(CommonsClientAutoConfiguration.class); beanDefinition.setInstanceSupplier(CommonsClientAutoConfiguration::new); return beanDefinition; } }
mybatis-native-demo/target/spring-aot/main/sources/org/springframework/cloud/client/CommonsClientAutoConfiguration__BeanDefinitions.java/0
{ "file_path": "mybatis-native-demo/target/spring-aot/main/sources/org/springframework/cloud/client/CommonsClientAutoConfiguration__BeanDefinitions.java", "repo_id": "mybatis-native-demo", "token_count": 178 }
158
package org.springframework.cloud.configuration; import org.springframework.beans.factory.config.BeanDefinition; import org.springframework.beans.factory.support.RootBeanDefinition; /** * Bean definitions for {@link CompatibilityVerifierProperties}. */ public class CompatibilityVerifierProperties__BeanDefinitions { /** * Get the bean definition for 'compatibilityVerifierProperties'. */ public static BeanDefinition getCompatibilityVerifierPropertiesBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(CompatibilityVerifierProperties.class); beanDefinition.setInstanceSupplier(CompatibilityVerifierProperties::new); return beanDefinition; } }
mybatis-native-demo/target/spring-aot/main/sources/org/springframework/cloud/configuration/CompatibilityVerifierProperties__BeanDefinitions.java/0
{ "file_path": "mybatis-native-demo/target/spring-aot/main/sources/org/springframework/cloud/configuration/CompatibilityVerifierProperties__BeanDefinitions.java", "repo_id": "mybatis-native-demo", "token_count": 185 }
159
MYSQL_ROOT_PASSWORD=root MYSQL_DATABASE=nacos_devtest MYSQL_USER=nacos MYSQL_PASSWORD=nacos LANG=C.UTF-8
nacos-docker/env/mysql.env/0
{ "file_path": "nacos-docker/env/mysql.env", "repo_id": "nacos-docker", "token_count": 60 }
160
2024-06-22 00:07:09,988 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 00:07:47,948 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 00:16:49,565 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 00:37:09,988 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 00:37:47,948 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 00:46:49,565 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 01:07:09,988 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 01:07:47,948 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 01:16:49,565 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 01:37:09,988 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 01:37:47,948 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 01:46:49,565 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 02:07:09,988 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 02:07:47,948 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 1 ms. 2024-06-22 02:16:49,566 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 02:37:09,988 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 1 ms. 2024-06-22 02:37:47,948 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 02:46:49,566 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 03:07:09,989 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 1 ms. 2024-06-22 03:07:47,950 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 03:16:49,567 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 03:37:09,989 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 03:37:47,949 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 03:46:49,566 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 04:07:09,989 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 1 ms. 2024-06-22 04:07:47,949 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 1 ms. 2024-06-22 04:16:49,566 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 1 ms. 2024-06-22 04:37:09,989 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 04:37:47,949 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 04:46:49,567 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 05:07:09,990 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 05:07:47,950 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 05:16:49,567 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 05:37:09,990 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 05:37:47,950 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 05:46:49,567 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 06:07:09,990 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 06:07:47,950 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 06:16:49,567 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 06:37:09,990 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 06:37:47,950 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 1 ms. 2024-06-22 06:46:49,568 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 1 ms. 2024-06-22 07:07:09,990 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 1 ms. 2024-06-22 07:07:47,951 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 07:16:49,568 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 07:37:09,990 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 07:37:47,951 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 07:46:49,568 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 08:07:09,991 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 08:07:47,951 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 08:16:49,568 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 08:37:09,990 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 08:37:47,951 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 08:46:49,568 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 09:07:09,991 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 09:07:47,951 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 09:16:49,568 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 09:37:09,993 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 09:37:47,951 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 09:46:49,568 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 1 ms. 2024-06-22 10:07:09,991 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 10:07:47,952 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 10:16:49,569 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 10:37:09,991 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 1 ms. 2024-06-22 10:37:47,952 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 10:46:49,569 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 11:07:09,992 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 11:07:47,953 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 11:16:49,570 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 11:37:09,993 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 11:37:47,953 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 1 ms. 2024-06-22 11:46:49,570 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 12:07:09,992 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 12:07:47,953 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 12:16:49,570 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 12:37:09,993 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 12:37:47,953 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 12:46:49,570 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 13:07:09,993 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 13:07:47,953 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 13:16:49,570 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 13:37:09,993 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 13:37:47,954 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 13:46:49,571 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 14:07:09,993 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 14:07:47,954 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 14:16:49,570 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 14:37:09,994 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 14:37:47,954 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 14:46:49,572 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 15:07:09,994 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 15:07:47,954 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 15:16:49,571 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 15:37:09,993 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 15:37:47,954 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 15:46:49,571 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 16:07:09,993 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 16:07:47,955 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 16:16:49,571 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 16:37:09,994 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 16:37:47,954 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 16:46:49,571 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 17:07:09,994 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 17:07:47,955 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 17:16:49,571 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 1 ms. 2024-06-22 17:37:09,994 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 17:37:47,955 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 17:46:49,572 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 18:07:09,994 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_instance_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 18:07:47,954 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log from log index 3 to 3, cost 0 ms. 2024-06-22 18:16:49,572 INFO Truncated prefix logs in data path: /home/nacos/data/protocol/raft/naming_service_metadata/log from log index 3 to 3, cost 0 ms. 2024-06-22 18:18:32,626 INFO Node <naming_service_metadata/04806c39e732:7848> shutdown, currTerm=2 state=STATE_LEADER. 2024-06-22 18:18:32,629 INFO Fail to find the next candidate, group naming_service_metadata. 2024-06-22 18:18:32,629 INFO onLeaderStop: status=Status[ESHUTDOWN<1007>: Raft node is going to quit.]. 2024-06-22 18:18:32,649 INFO Save raft meta, path=/home/nacos/data/protocol/raft/naming_service_metadata/meta-data, term=2, votedFor=04806c39e732:7848, cost time=5 ms 2024-06-22 18:18:32,649 INFO Shutting down FSMCaller... 2024-06-22 18:18:32,650 INFO ThreadPool is terminated: JRaft-RPC-Processor, com.alipay.sofa.jraft.util.MetricThreadPoolExecutor@5515f2c9[Shutting down, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 0]. 2024-06-22 18:18:32,650 INFO ThreadPool is terminated: JRaft-Node-ScheduleThreadPool, com.alipay.sofa.jraft.util.MetricScheduledThreadPoolExecutor@7d8332a8[Shutting down, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 0]. 2024-06-22 18:18:32,650 INFO Destroy timer: RepeatedTimer{timeout=null, stopped=true, running=false, destroyed=true, invoking=false, timeoutMs=5000, name='JRaft-ElectionTimer-<naming_service_metadata/04806c39e732:7848>'}. 2024-06-22 18:18:32,650 INFO Destroy timer: RepeatedTimer{timeout=null, stopped=true, running=false, destroyed=true, invoking=false, timeoutMs=5000, name='JRaft-VoteTimer-<naming_service_metadata/04806c39e732:7848>'}. 2024-06-22 18:18:32,650 INFO Destroy timer: RepeatedTimer{timeout=null, stopped=true, running=false, destroyed=true, invoking=false, timeoutMs=2500, name='JRaft-StepDownTimer-<naming_service_metadata/04806c39e732:7848>'}. 2024-06-22 18:18:32,650 INFO Destroy timer: RepeatedTimer{timeout=null, stopped=true, running=false, destroyed=true, invoking=false, timeoutMs=1800000, name='JRaft-SnapshotTimer-<naming_service_metadata/04806c39e732:7848>'}. 2024-06-22 18:18:32,651 INFO onShutdown. 2024-06-22 18:18:32,651 INFO The number of active nodes decrement to 2. 2024-06-22 18:18:32,653 INFO Node <naming_service_metadata/04806c39e732:7848> shutdown, currTerm=2 state=STATE_SHUTTING. 2024-06-22 18:18:32,654 INFO Stop the RaftGroupService successfully. 2024-06-22 18:18:32,654 INFO Node <naming_instance_metadata/04806c39e732:7848> shutdown, currTerm=2 state=STATE_LEADER. 2024-06-22 18:18:32,655 INFO Fail to find the next candidate, group naming_instance_metadata. 2024-06-22 18:18:32,655 INFO onLeaderStop: status=Status[ESHUTDOWN<1007>: Raft node is going to quit.]. 2024-06-22 18:18:32,663 INFO DB destroyed, the db path is: /home/nacos/data/protocol/raft/naming_service_metadata/log. 2024-06-22 18:18:32,675 INFO Save raft meta, path=/home/nacos/data/protocol/raft/naming_instance_metadata/meta-data, term=2, votedFor=04806c39e732:7848, cost time=3 ms 2024-06-22 18:18:32,675 INFO Shutting down FSMCaller... 2024-06-22 18:18:32,676 INFO ThreadPool is terminated: JRaft-RPC-Processor, com.alipay.sofa.jraft.util.MetricThreadPoolExecutor@7ff61598[Shutting down, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 0]. 2024-06-22 18:18:32,676 INFO ThreadPool is terminated: JRaft-Node-ScheduleThreadPool, com.alipay.sofa.jraft.util.MetricScheduledThreadPoolExecutor@1b047ebc[Shutting down, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 0]. 2024-06-22 18:18:32,676 INFO onShutdown. 2024-06-22 18:18:32,676 INFO Destroy timer: RepeatedTimer{timeout=null, stopped=true, running=false, destroyed=true, invoking=false, timeoutMs=5000, name='JRaft-ElectionTimer-<naming_instance_metadata/04806c39e732:7848>'}. 2024-06-22 18:18:32,676 INFO Destroy timer: RepeatedTimer{timeout=null, stopped=true, running=false, destroyed=true, invoking=false, timeoutMs=5000, name='JRaft-VoteTimer-<naming_instance_metadata/04806c39e732:7848>'}. 2024-06-22 18:18:32,676 INFO Destroy timer: RepeatedTimer{timeout=null, stopped=true, running=false, destroyed=true, invoking=false, timeoutMs=2500, name='JRaft-StepDownTimer-<naming_instance_metadata/04806c39e732:7848>'}. 2024-06-22 18:18:32,676 INFO Destroy timer: RepeatedTimer{timeout=null, stopped=true, running=false, destroyed=true, invoking=false, timeoutMs=1800000, name='JRaft-SnapshotTimer-<naming_instance_metadata/04806c39e732:7848>'}. 2024-06-22 18:18:32,676 INFO The number of active nodes decrement to 1. 2024-06-22 18:18:32,677 INFO Node <naming_instance_metadata/04806c39e732:7848> shutdown, currTerm=2 state=STATE_SHUTTING. 2024-06-22 18:18:32,677 INFO Stop the RaftGroupService successfully. 2024-06-22 18:18:32,677 INFO Node <naming_persistent_service_v2/04806c39e732:7848> shutdown, currTerm=2 state=STATE_LEADER. 2024-06-22 18:18:32,679 INFO Fail to find the next candidate, group naming_persistent_service_v2. 2024-06-22 18:18:32,679 INFO onLeaderStop: status=Status[ESHUTDOWN<1007>: Raft node is going to quit.]. 2024-06-22 18:18:32,688 INFO DB destroyed, the db path is: /home/nacos/data/protocol/raft/naming_instance_metadata/log. 2024-06-22 18:18:32,694 INFO Save raft meta, path=/home/nacos/data/protocol/raft/naming_persistent_service_v2/meta-data, term=2, votedFor=04806c39e732:7848, cost time=3 ms 2024-06-22 18:18:32,694 INFO Shutting down FSMCaller... 2024-06-22 18:18:32,696 INFO ThreadPool is terminated: JRaft-RPC-Processor, com.alipay.sofa.jraft.util.MetricThreadPoolExecutor@2868c449[Shutting down, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 0]. 2024-06-22 18:18:32,696 INFO ThreadPool is terminated: JRaft-Node-ScheduleThreadPool, com.alipay.sofa.jraft.util.MetricScheduledThreadPoolExecutor@67fd4e09[Shutting down, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 0]. 2024-06-22 18:18:32,696 INFO onShutdown. 2024-06-22 18:18:32,696 INFO The number of active nodes decrement to 0. 2024-06-22 18:18:32,699 INFO ThreadPool is terminated: JRaft-Global-ElectionTimer, com.alipay.sofa.jraft.util.MetricScheduledThreadPoolExecutor@1275e742[Shutting down, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 3]. 2024-06-22 18:18:32,699 INFO Destroy timer: RepeatedTimer{timeout=null, stopped=true, running=false, destroyed=true, invoking=false, timeoutMs=5000, name='JRaft-ElectionTimer-<naming_persistent_service_v2/04806c39e732:7848>'}. 2024-06-22 18:18:32,701 INFO ThreadPool is terminated: JRaft-Global-VoteTimer, com.alipay.sofa.jraft.util.MetricScheduledThreadPoolExecutor@7ece1ea6[Shutting down, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 3]. 2024-06-22 18:18:32,701 INFO Destroy timer: RepeatedTimer{timeout=null, stopped=true, running=false, destroyed=true, invoking=false, timeoutMs=5000, name='JRaft-VoteTimer-<naming_persistent_service_v2/04806c39e732:7848>'}. 2024-06-22 18:18:32,712 INFO ThreadPool is terminated: JRaft-Global-StepDownTimer, com.alipay.sofa.jraft.util.MetricScheduledThreadPoolExecutor@7576e072[Shutting down, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 1676052]. 2024-06-22 18:18:32,713 INFO Destroy timer: RepeatedTimer{timeout=null, stopped=true, running=false, destroyed=true, invoking=false, timeoutMs=2500, name='JRaft-StepDownTimer-<naming_persistent_service_v2/04806c39e732:7848>'}. 2024-06-22 18:18:32,722 INFO ThreadPool is terminated: JRaft-Global-SnapshotTimer, com.alipay.sofa.jraft.util.MetricScheduledThreadPoolExecutor@37a53094[Shutting down, pool size = 2, active threads = 0, queued tasks = 0, completed tasks = 2328]. 2024-06-22 18:18:32,723 INFO Destroy timer: RepeatedTimer{timeout=null, stopped=true, running=false, destroyed=true, invoking=false, timeoutMs=1800000, name='JRaft-SnapshotTimer-<naming_persistent_service_v2/04806c39e732:7848>'}. 2024-06-22 18:18:32,724 INFO Node <naming_persistent_service_v2/04806c39e732:7848> shutdown, currTerm=2 state=STATE_SHUTTING. 2024-06-22 18:18:32,724 INFO Stop the RaftGroupService successfully. 2024-06-22 18:18:32,728 INFO Shutdown managed channel: 04806c39e732:7848, ManagedChannelOrphanWrapper{delegate=ManagedChannelImpl{logId=10, target=04806c39e732:7848}}. 2024-06-22 18:18:32,730 INFO The channel 04806c39e732:7848 is in state: SHUTDOWN. 2024-06-22 18:18:32,730 WARN This channel 04806c39e732:7848 has started shutting down. Any new RPCs should fail immediately. 2024-06-22 18:18:32,734 INFO DB destroyed, the db path is: /home/nacos/data/protocol/raft/naming_persistent_service_v2/log. 2024-06-22 18:18:32,736 INFO Connection disconnected: /172.27.0.2:38522 2024-06-22 18:18:32,747 INFO ThreadPool is terminated: JRaft-RPC-Processor, com.alipay.sofa.jraft.util.MetricThreadPoolExecutor@7421afc3[Shutting down, pool size = 10, active threads = 0, queued tasks = 0, completed tasks = 1114370].
nacos-docker/example/standalone-logs/alipay-jraft.log/0
{ "file_path": "nacos-docker/example/standalone-logs/alipay-jraft.log", "repo_id": "nacos-docker", "token_count": 9838 }
161
2024-06-22 18:18:32,467 WARN [NamingServerHttpClientManager] Start destroying HTTP-Client 2024-06-22 18:18:32,515 WARN [NamingServerHttpClientManager] Destruction of the end
nacos-docker/example/standalone-logs/naming-server.log/0
{ "file_path": "nacos-docker/example/standalone-logs/naming-server.log", "repo_id": "nacos-docker", "token_count": 56 }
162
<?xml version="1.0" encoding="UTF-8"?> <project version="4"> <component name="AutoImportSettings"> <option name="autoReloadType" value="SELECTIVE" /> </component> <component name="ChangeListManager"> <list default="true" id="33e5043c-5ffc-484f-9258-943e1d64b300" name="更改" comment="" /> <option name="SHOW_DIALOG" value="false" /> <option name="HIGHLIGHT_CONFLICTS" value="true" /> <option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" /> <option name="LAST_RESOLUTION" value="IGNORE" /> </component> <component name="ExternalProjectsData"> <projectState path="$PROJECT_DIR$"> <ProjectState /> </projectState> </component> <component name="ExternalProjectsManager"> <system id="GRADLE"> <state> <task path="$PROJECT_DIR$"> <activation /> </task> <projects_view> <tree_state> <expand> <path> <item name="" type="6a2764b6:ExternalProjectsStructure$RootNode" /> <item name="pgvector" type="f1a62948:ProjectNode" /> </path> <path> <item name="" type="6a2764b6:ExternalProjectsStructure$RootNode" /> <item name="pgvector" type="f1a62948:ProjectNode" /> <item name="Tasks" type="e4a08cd1:TasksNode" /> </path> <path> <item name="" type="6a2764b6:ExternalProjectsStructure$RootNode" /> <item name="pgvector" type="f1a62948:ProjectNode" /> <item name="Tasks" type="e4a08cd1:TasksNode" /> <item name="build" type="c8890929:TasksNode$1" /> </path> </expand> <select /> </tree_state> </projects_view> </state> </system> </component> <component name="FileTemplateManagerImpl"> <option name="RECENT_TEMPLATES"> <list> <option value="Kotlin Data Class" /> <option value="Class" /> <option value="Kotlin Class" /> </list> </option> </component> <component name="KubernetesApiPersistence">{}</component> <component name="KubernetesApiProvider">{ &quot;isMigrated&quot;: true }</component> <component name="ProblemsViewState"> <option name="selectedTabId" value="QODANA_PROBLEMS_VIEW_TAB" /> </component> <component name="ProjectColorInfo">{ &quot;associatedIndex&quot;: 6 }</component> <component name="ProjectId" id="2fFxSAzg7SDDhajyM2fxVrPjd4M" /> <component name="ProjectViewState"> <option name="hideEmptyMiddlePackages" value="true" /> <option name="showLibraryContents" value="true" /> </component> <component name="PropertiesComponent">{ &quot;keyToString&quot;: { &quot;Docker.depend-compose.yml.pg-vector: Compose 部署.executor&quot;: &quot;Run&quot;, &quot;Docker.depend-compose.yml: Compose 部署.executor&quot;: &quot;Run&quot;, &quot;Gradle.Build pgvector.executor&quot;: &quot;Run&quot;, &quot;Gradle.pgvector [bootBuildImage].executor&quot;: &quot;Run&quot;, &quot;Gradle.下载源代码.executor&quot;: &quot;Run&quot;, &quot;Gradle.构建 pgvector.executor&quot;: &quot;Run&quot;, &quot;RequestMappingsPanelOrder0&quot;: &quot;0&quot;, &quot;RequestMappingsPanelOrder1&quot;: &quot;1&quot;, &quot;RequestMappingsPanelWidth0&quot;: &quot;75&quot;, &quot;RequestMappingsPanelWidth1&quot;: &quot;75&quot;, &quot;RunOnceActivity.ShowReadmeOnStart&quot;: &quot;true&quot;, &quot;Spring Boot.PgVectorApplication.executor&quot;: &quot;Run&quot;, &quot;Spring Boot.PgvectorApplication.executor&quot;: &quot;Debug&quot;, &quot;ignore.virus.scanning.warn.message&quot;: &quot;true&quot;, &quot;kotlin-language-version-configured&quot;: &quot;true&quot;, &quot;node.js.detected.package.eslint&quot;: &quot;true&quot;, &quot;node.js.detected.package.tslint&quot;: &quot;true&quot;, &quot;node.js.selected.package.eslint&quot;: &quot;(autodetect)&quot;, &quot;node.js.selected.package.tslint&quot;: &quot;(autodetect)&quot;, &quot;nodejs_package_manager_path&quot;: &quot;npm&quot;, &quot;project.structure.last.edited&quot;: &quot;Project&quot;, &quot;project.structure.proportion&quot;: &quot;0.15&quot;, &quot;project.structure.side.proportion&quot;: &quot;0.0&quot;, &quot;settings.editor.selected.configurable&quot;: &quot;http.proxy&quot;, &quot;vue.rearranger.settings.migration&quot;: &quot;true&quot; }, &quot;keyToStringList&quot;: { &quot;DatabaseDriversLRU&quot;: [ &quot;postgresql&quot; ], &quot;kotlin-gradle-user-dirs&quot;: [ &quot;/home/ubuntu/.gradle&quot; ] } }</component> <component name="RdControllerToolWindowsLayoutState" isNewUi="true"> <layout> <window_info id="Bookmarks" show_stripe_button="false" side_tool="true" /> <window_info id="Merge Requests" show_stripe_button="false" /> <window_info id="Commit_Guest" show_stripe_button="false" /> <window_info id="Pull Requests" show_stripe_button="false" /> <window_info id="Persistence" side_tool="true" /> <window_info id="Learn" show_stripe_button="false" /> <window_info active="true" content_ui="combo" id="Project" order="0" visible="true" weight="0.25182292" /> <window_info id="Commit" order="1" weight="0.25" /> <window_info id="Structure" order="2" side_tool="true" weight="0.25" /> <window_info anchor="bottom" id="Database Changes" show_stripe_button="false" /> <window_info anchor="bottom" id="TypeScript" show_stripe_button="false" /> <window_info anchor="bottom" id="Profiler" show_stripe_button="false" /> <window_info anchor="bottom" id="TODO" show_stripe_button="false" /> <window_info anchor="bottom" id="File Transfer" show_stripe_button="false" /> <window_info anchor="bottom" id="Version Control" order="0" /> <window_info anchor="bottom" id="Problems" order="1" /> <window_info anchor="bottom" id="Problems View" order="2" /> <window_info anchor="bottom" id="Terminal" order="3" weight="0.3302257" /> <window_info anchor="bottom" id="Build" order="4" weight="0.3302257" /> <window_info anchor="bottom" id="Debug" order="5" weight="0.23895976" /> <window_info active="true" anchor="bottom" id="Run" order="6" visible="true" weight="0.5255152" /> <window_info anchor="bottom" id="Services" order="7" weight="0.23895976" /> <window_info anchor="right" id="Endpoints" show_stripe_button="false" /> <window_info anchor="right" id="Coverage" show_stripe_button="false" side_tool="true" /> <window_info anchor="right" id="Beans" /> <window_info anchor="right" content_ui="combo" id="Notifications" order="0" weight="0.25" /> <window_info anchor="right" id="AIAssistant" order="1" weight="0.25" /> <window_info anchor="right" id="Database" order="2" weight="0.25" /> <window_info active="true" anchor="right" id="Gradle" order="3" visible="true" weight="0.13046876" /> <window_info anchor="right" id="Maven" order="4" weight="0.25" /> <window_info anchor="right" id="Translation.Wordbook" order="5" show_stripe_button="false" side_tool="true" /> </layout> </component> <component name="ReactorSettings"> <option name="notificationShown" value="true" /> </component> <component name="RecentsManager"> <key name="MoveFile.RECENT_KEYS"> <recent name="C:\Users\hukai\IdeaProjects\pgvector\src\main\resources" /> <recent name="C:\Users\hukai\IdeaProjects\pgvector\src\main\kotlin\org\example\pgvector\entity" /> </key> <key name="MoveKotlinTopLevelDeclarationsDialog.RECENTS_KEY"> <recent name="org.example.pgvector.pojo" /> </key> <key name="CopyKotlinDeclarationDialog.RECENTS_KEY"> <recent name="org.example.pgvector.entity" /> </key> </component> <component name="RunManager" selected="Gradle.pgvector [bootBuildImage]"> <configuration name="pgvector [bootBuildImage]" type="GradleRunConfiguration" factoryName="Gradle" temporary="true"> <target name="@@@LOCAL@@@" /> <ExternalSystemSettings> <option name="executionName" /> <option name="externalProjectPath" value="$PROJECT_DIR$" /> <option name="externalSystemIdString" value="GRADLE" /> <option name="scriptParameters" value="" /> <option name="taskDescriptions"> <list /> </option> <option name="taskNames"> <list> <option value="bootBuildImage" /> </list> </option> <option name="vmOptions" /> </ExternalSystemSettings> <ExternalSystemDebugServerProcess>true</ExternalSystemDebugServerProcess> <ExternalSystemReattachDebugProcess>true</ExternalSystemReattachDebugProcess> <DebugAllEnabled>false</DebugAllEnabled> <RunAsTest>false</RunAsTest> <method v="2" /> </configuration> <configuration name="PgVectorApplication" type="SpringBootApplicationConfigurationType" factoryName="Spring Boot" nameIsGenerated="true"> <module name="pgvector.main" /> <option name="SHORTEN_COMMAND_LINE" value="ARGS_FILE" /> <option name="SPRING_BOOT_MAIN_CLASS" value="org.example.pgvector.PgVectorApplication" /> <method v="2"> <option name="Make" enabled="true" /> </method> </configuration> <configuration default="true" type="SpringBootApplicationConfigurationType" factoryName="Spring Boot"> <option name="SHORTEN_COMMAND_LINE" value="ARGS_FILE" /> <method v="2"> <option name="Make" enabled="true" /> </method> </configuration> <configuration default="true" type="docker-deploy" factoryName="docker-compose.yml" temporary="true"> <deployment type="docker-compose.yml"> <settings /> </deployment> <method v="2" /> </configuration> <configuration name="depend-compose.yml: Compose 部署" type="docker-deploy" factoryName="docker-compose.yml" temporary="true" server-name="Docker"> <deployment type="docker-compose.yml"> <settings> <option name="sourceFilePath" value="depend-compose.yml" /> </settings> </deployment> <method v="2" /> </configuration> <configuration name="depend-compose.yml.pg-vector: Compose 部署" type="docker-deploy" factoryName="docker-compose.yml" temporary="true" server-name="Docker"> <deployment type="docker-compose.yml"> <settings> <option name="services"> <list> <option value="pg-vector" /> </list> </option> <option name="sourceFilePath" value="depend-compose.yml" /> </settings> </deployment> <method v="2" /> </configuration> <list> <item itemvalue="Docker.depend-compose.yml.pg-vector: Compose 部署" /> <item itemvalue="Docker.depend-compose.yml: Compose 部署" /> <item itemvalue="Gradle.pgvector [bootBuildImage]" /> <item itemvalue="Spring Boot.PgVectorApplication" /> </list> <recent_temporary> <list> <item itemvalue="Gradle.pgvector [bootBuildImage]" /> <item itemvalue="Docker.depend-compose.yml: Compose 部署" /> <item itemvalue="Docker.depend-compose.yml.pg-vector: Compose 部署" /> </list> </recent_temporary> </component> <component name="SharedIndexes"> <attachedChunks> <set> <option value="bundled-jdk-9f38398b9061-39b83d9b5494-intellij.indexing.shared.core-IU-241.15989.21" /> <option value="bundled-js-predefined-1d06a55b98c1-3d8cd37a7330-JavaScript-IU-241.15989.21" /> </set> </attachedChunks> </component> <component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="应用程序级" UseSingleDictionary="true" transferred="true" /> <component name="TaskManager"> <task active="true" id="Default" summary="默认任务"> <changelist id="33e5043c-5ffc-484f-9258-943e1d64b300" name="更改" comment="" /> <created>1713410629103</created> <option name="number" value="Default" /> <option name="presentableId" value="Default" /> <updated>1713410629103</updated> <workItem from="1713410630147" duration="25775000" /> <workItem from="1713499289681" duration="6473000" /> <workItem from="1713510716569" duration="249000" /> <workItem from="1713510992574" duration="599000" /> <workItem from="1713515107901" duration="599000" /> <workItem from="1715051191561" duration="53000" /> </task> <servers /> </component> <component name="TypeScriptGeneratedFilesManager"> <option name="version" value="3" /> </component> <component name="XSLT-Support.FileAssociations.UIState"> <expand /> <select /> </component> </project>
pgvector/.idea/workspace.xml/0
{ "file_path": "pgvector/.idea/workspace.xml", "repo_id": "pgvector", "token_count": 5504 }
163
package org.springframework.boot.autoconfigure.context; import org.springframework.aot.generate.Generated; import org.springframework.beans.factory.config.BeanDefinition; import org.springframework.beans.factory.support.RootBeanDefinition; /** * Bean definitions for {@link LifecycleProperties}. */ @Generated public class LifecycleProperties__BeanDefinitions { /** * Get the bean definition for 'lifecycleProperties'. */ public static BeanDefinition getLifecyclePropertiesBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(LifecycleProperties.class); beanDefinition.setInstanceSupplier(LifecycleProperties::new); return beanDefinition; } }
pgvector/build/generated/aotSources/org/springframework/boot/autoconfigure/context/LifecycleProperties__BeanDefinitions.java/0
{ "file_path": "pgvector/build/generated/aotSources/org/springframework/boot/autoconfigure/context/LifecycleProperties__BeanDefinitions.java", "repo_id": "pgvector", "token_count": 201 }
164
package org.springframework.boot.autoconfigure.orm.jpa; import org.springframework.aot.generate.Generated; import org.springframework.beans.factory.config.BeanDefinition; import org.springframework.beans.factory.support.RootBeanDefinition; /** * Bean definitions for {@link JpaProperties}. */ @Generated public class JpaProperties__BeanDefinitions { /** * Get the bean definition for 'jpaProperties'. */ public static BeanDefinition getJpaPropertiesBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(JpaProperties.class); beanDefinition.setInstanceSupplier(JpaProperties::new); return beanDefinition; } }
pgvector/build/generated/aotSources/org/springframework/boot/autoconfigure/orm/jpa/JpaProperties__BeanDefinitions.java/0
{ "file_path": "pgvector/build/generated/aotSources/org/springframework/boot/autoconfigure/orm/jpa/JpaProperties__BeanDefinitions.java", "repo_id": "pgvector", "token_count": 201 }
165
package org.springframework.boot.autoconfigure.transaction; import org.springframework.aot.generate.Generated; import org.springframework.beans.factory.config.BeanDefinition; import org.springframework.beans.factory.support.RootBeanDefinition; /** * Bean definitions for {@link TransactionProperties}. */ @Generated public class TransactionProperties__BeanDefinitions { /** * Get the bean definition for 'transactionProperties'. */ public static BeanDefinition getTransactionPropertiesBeanDefinition() { RootBeanDefinition beanDefinition = new RootBeanDefinition(TransactionProperties.class); beanDefinition.setInstanceSupplier(TransactionProperties::new); return beanDefinition; } }
pgvector/build/generated/aotSources/org/springframework/boot/autoconfigure/transaction/TransactionProperties__BeanDefinitions.java/0
{ "file_path": "pgvector/build/generated/aotSources/org/springframework/boot/autoconfigure/transaction/TransactionProperties__BeanDefinitions.java", "repo_id": "pgvector", "token_count": 194 }
166
package org.springframework.data.jpa.repository.support; import org.springframework.aot.generate.Generated; import org.springframework.beans.factory.ObjectProvider; import org.springframework.beans.factory.aot.AutowiredMethodArgumentsResolver; import org.springframework.beans.factory.support.RegisteredBean; import org.springframework.data.jpa.repository.query.JpaQueryMethodFactory; /** * Autowiring for {@link JpaRepositoryFactoryBean}. */ @Generated public class JpaRepositoryFactoryBean__Autowiring { /** * Apply the autowiring. */ public static JpaRepositoryFactoryBean apply(RegisteredBean registeredBean, JpaRepositoryFactoryBean instance) { AutowiredMethodArgumentsResolver.forRequiredMethod("setEntityPathResolver", ObjectProvider.class).resolve(registeredBean, args -> instance.setEntityPathResolver(args.get(0))); AutowiredMethodArgumentsResolver.forRequiredMethod("setQueryMethodFactory", JpaQueryMethodFactory.class).resolve(registeredBean, args -> instance.setQueryMethodFactory(args.get(0))); return instance; } }
pgvector/build/generated/aotSources/org/springframework/data/jpa/repository/support/JpaRepositoryFactoryBean__Autowiring.java/0
{ "file_path": "pgvector/build/generated/aotSources/org/springframework/data/jpa/repository/support/JpaRepositoryFactoryBean__Autowiring.java", "repo_id": "pgvector", "token_count": 327 }
167
override=true
pgvector/build/native-reachability-metadata/META-INF/native-image/io.netty/netty-codec-http/4.1.107.Final/reachability-metadata.properties/0
{ "file_path": "pgvector/build/native-reachability-metadata/META-INF/native-image/io.netty/netty-codec-http/4.1.107.Final/reachability-metadata.properties", "repo_id": "pgvector", "token_count": 5 }
168
Args = -H:Class=org.example.pgvector.PgVectorApplicationKt \ --report-unsupported-elements-at-runtime \ --no-fallback \ --install-exit-handlers
pgvector/build/resources/aot/META-INF/native-image/org.example/pgvector/native-image.properties/0
{ "file_path": "pgvector/build/resources/aot/META-INF/native-image/org.example/pgvector/native-image.properties", "repo_id": "pgvector", "token_count": 49 }
169
package org.example.pgvector import com.alibaba.fastjson.JSONObject import com.fasterxml.jackson.databind.ObjectMapper import com.fasterxml.jackson.module.kotlin.readValue import io.milvus.client.MilvusClient import io.milvus.client.MilvusServiceClient import io.milvus.grpc.DataType import io.milvus.param.IndexType import io.milvus.param.MetricType import io.milvus.param.collection.* import io.milvus.param.dml.InsertParam import io.milvus.param.dml.SearchParam import io.milvus.param.index.CreateIndexParam import jakarta.annotation.PostConstruct import org.example.pgvector.dao.DatabaseRecordDao import org.example.pgvector.entity.DataRecord import org.example.pgvector.entity.DatabaseRecord import org.example.pgvector.entity.Id import org.example.pgvector.pojo.Vector import org.springframework.boot.autoconfigure.SpringBootApplication import org.springframework.boot.runApplication import org.springframework.core.io.ClassPathResource import org.springframework.web.bind.annotation.GetMapping import org.springframework.web.bind.annotation.RequestMapping import org.springframework.web.bind.annotation.RestController import kotlin.reflect.KClass import kotlin.reflect.full.hasAnnotation import kotlin.reflect.full.memberProperties @SpringBootApplication @RestController @RequestMapping class PgVectorApplication( objectMapper: ObjectMapper, val databaseRecordDao: DatabaseRecordDao, val milvusServiceClient: MilvusServiceClient ) { private lateinit var databaseRecords: ArrayList<DatabaseRecord> private lateinit var dataRecords: ArrayList<DataRecord> @GetMapping("a") fun queryA(index: Int) = databaseRecordDao.findByFeatures(databaseRecords[index].features.toString()) @GetMapping("b") fun queryB(index: Int): String { val search = SearchParam.newBuilder().withCollectionName(DataRecord::class.simpleName!!) .withTopK(10) .withVectorFieldName(DataRecord::features.name) .withVectors(listOf(dataRecords[index].features)) .withOutFields(listOf("id", "features", "quality", "groupId")) .build() return milvusServiceClient.search(search)?.data.toString() } init { val readValue = objectMapper.readValue<List<Map<Int, Vector>>>( ClassPathResource("result.json").file.inputStream() ) val vectors = ArrayList<Vector>() readValue.forEach { vectors.addAll(it.values) } databaseRecords = ArrayList() dataRecords = ArrayList() vectors.forEachIndexed { vIndex, v -> v.qualities.forEachIndexed { index, q -> databaseRecords.add(DatabaseRecord(null, v.features[index], q, vIndex)) dataRecords.add(DataRecord(null, v.features[index], q, vIndex)) } } } @PostConstruct fun init() { // 没数据则初始化数据 if (databaseRecordDao.count() == 0L) { databaseRecordDao.saveAll(databaseRecords) } } @PostConstruct fun initMilvus() { if (milvusServiceClient.hasCollection<DataRecord>()) { milvusServiceClient.dropCollection( DropCollectionParam.newBuilder().withCollectionName(DataRecord::class.simpleName!!).build() ) } milvusServiceClient.createEntity(DataRecord::class) milvusServiceClient.batchInsert(dataRecords) println("milvus version is ${milvusServiceClient.version}") } fun MilvusServiceClient.createEntity(kClass: KClass<out Any>) { val collectionName = kClass.simpleName!! val fields = kClass.memberProperties.map { field -> val ftb = FieldType.newBuilder() .withName(field.name) if (field.hasAnnotation<Id>()) { ftb.withAutoID(true) ftb.withPrimaryKey(true) } field.returnType is List<*> var datatype = when (field.returnType.classifier) { Int::class -> DataType.Int32 Long::class -> DataType.Int64 Double::class -> DataType.Double String::class -> DataType.String else -> { null } } // FIXME 应该使用注解 if (datatype == null) { datatype = DataType.FloatVector ftb.withDimension(256) } ftb.withDataType(datatype) ftb.build() } val schemaBuilder = CollectionSchemaParam.newBuilder().withFieldTypes(fields) val requestParam = CreateCollectionParam.newBuilder() .withCollectionName(collectionName) .withDescription("auto create") .withSchema(schemaBuilder.build()) .build() // 创建集合 val createCollection = this.createCollection(requestParam) println("createCollection : $createCollection") // 建立索引 FIXME 写死 val createIndex = this.createIndex( CreateIndexParam.newBuilder() .withCollectionName(collectionName) .withFieldName(DataRecord::features.name) .withIndexName("${DataRecord::features.name}_index") .withIndexType(IndexType.HNSW) .withMetricType(MetricType.L2) .withExtraParam( """ { "efConstruction": 100, "M": 10 } """.trimIndent() ) .withSyncMode(true) .build() ) println("createIndexMsg: $createIndex") // 加载集合 val loadCollection = this.loadCollection( LoadCollectionParam.newBuilder().withCollectionName(collectionName).withSyncLoad(true).build() ) println("loadCollection : $loadCollection") } } private inline fun <reified T> MilvusClient.batchInsert(data: List<T>) = this.batchInsert(data, T::class) private fun MilvusClient.batchInsert(data: List<*>, type: KClass<*>) { val collectionName = type.simpleName!! val props = type.memberProperties val rows = data.map { val row = JSONObject() props.forEach { prop -> val value = prop.getter.call(it) if (value != null) { row[prop.name] = value } } row } val insertParam = InsertParam.newBuilder().withCollectionName(collectionName).withRows(rows).build() this.insert(insertParam) } private inline fun <reified T> MilvusClient.hasCollection(): Boolean = this.hasCollection(T::class.simpleName!!) private fun MilvusClient.hasCollection(simpleName: String): Boolean = this.hasCollection(HasCollectionParam.newBuilder().withCollectionName(simpleName).build()).data fun main(args: Array<String>) { runApplication<PgVectorApplication>(*args) }
pgvector/src/main/kotlin/org/example/pgvector/PgVectorApplication.kt/0
{ "file_path": "pgvector/src/main/kotlin/org/example/pgvector/PgVectorApplication.kt", "repo_id": "pgvector", "token_count": 3041 }
170