text
stringlengths
3
11.2M
id
stringlengths
15
188
metadata
dict
__index_level_0__
int64
0
275
Global: reader_config: configs/rtdetr_reader.yml include_nms: True Evaluation: True model_dir: ./rtdetr_hgnetv2_l_6x_coco/ model_filename: model.pdmodel params_filename: model.pdiparams Distillation: alpha: 1.0 loss: soft_label QuantAware: onnx_format: true activation_quantize_type: 'moving_average_abs_max' quantize_op_types: - conv2d - depthwise_conv2d - matmul_v2 TrainConfig: train_iter: 200 eval_iter: 50 learning_rate: type: CosineAnnealingDecay learning_rate: 0.00003 T_max: 10000 optimizer_builder: optimizer: type: SGD weight_decay: 4.0e-05
PaddleDetection/deploy/auto_compression/configs/rtdetr_hgnetv2_l_qat_dis.yaml/0
{ "file_path": "PaddleDetection/deploy/auto_compression/configs/rtdetr_hgnetv2_l_qat_dis.yaml", "repo_id": "PaddleDetection", "token_count": 266 }
54
# All rights `PaddleDetection` reserved #!/bin/bash model_dir=$1 model_name=$2 export img_dir="demo" export log_path="output_pipeline" echo "model_dir : ${model_dir}" echo "img_dir: ${img_dir}" # TODO: support batch size>1 for run_mode in "trt_int8"; do echo "${model_name} ${model_dir}, run_mode: ${run_mode}" python deploy/python/infer.py \ --model_dir=${model_dir} \ --run_benchmark=True \ --device=GPU \ --run_mode=${run_mode} \ --image_dir=${img_dir} 2>&1 | tee ${log_path}/${model_name}_gpu_runmode_${run_mode}_bs1_infer.log done
PaddleDetection/deploy/benchmark/benchmark_quant.sh/0
{ "file_path": "PaddleDetection/deploy/benchmark/benchmark_quant.sh", "repo_id": "PaddleDetection", "token_count": 235 }
55
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // The code is based on: // https://github.com/CnybTseng/JDE/blob/master/platforms/common/jdetracker.h // Ths copyright of CnybTseng/JDE is as follows: // MIT License #pragma once #include <map> #include <vector> #include <opencv2/opencv.hpp> #include "trajectory.h" namespace PaddleDetection { typedef std::map<int, int> Match; typedef std::map<int, int>::iterator MatchIterator; struct Track { int id; float score; cv::Vec4f ltrb; }; class JDETracker { public: static JDETracker *instance(void); virtual bool update(const cv::Mat &dets, const cv::Mat &emb, std::vector<Track> &tracks); private: JDETracker(void); virtual ~JDETracker(void) {} cv::Mat motion_distance(const TrajectoryPtrPool &a, const TrajectoryPool &b); void linear_assignment(const cv::Mat &cost, float cost_limit, Match &matches, std::vector<int> &mismatch_row, std::vector<int> &mismatch_col); void remove_duplicate_trajectory(TrajectoryPool &a, TrajectoryPool &b, float iou_thresh=0.15f); private: static JDETracker *me; int timestamp; TrajectoryPool tracked_trajectories; TrajectoryPool lost_trajectories; TrajectoryPool removed_trajectories; int max_lost_time; float lambda; float det_thresh; }; } // namespace PaddleDetection
PaddleDetection/deploy/cpp/include/tracker.h/0
{ "file_path": "PaddleDetection/deploy/cpp/include/tracker.h", "repo_id": "PaddleDetection", "token_count": 672 }
56
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "include/utils.h" namespace PaddleDetection { void nms(std::vector<ObjectResult> &input_boxes, float nms_threshold) { std::sort(input_boxes.begin(), input_boxes.end(), [](ObjectResult a, ObjectResult b) { return a.confidence > b.confidence; }); std::vector<float> vArea(input_boxes.size()); for (int i = 0; i < int(input_boxes.size()); ++i) { vArea[i] = (input_boxes.at(i).rect[2] - input_boxes.at(i).rect[0] + 1) * (input_boxes.at(i).rect[3] - input_boxes.at(i).rect[1] + 1); } for (int i = 0; i < int(input_boxes.size()); ++i) { for (int j = i + 1; j < int(input_boxes.size());) { float xx1 = (std::max)(input_boxes[i].rect[0], input_boxes[j].rect[0]); float yy1 = (std::max)(input_boxes[i].rect[1], input_boxes[j].rect[1]); float xx2 = (std::min)(input_boxes[i].rect[2], input_boxes[j].rect[2]); float yy2 = (std::min)(input_boxes[i].rect[3], input_boxes[j].rect[3]); float w = (std::max)(float(0), xx2 - xx1 + 1); float h = (std::max)(float(0), yy2 - yy1 + 1); float inter = w * h; float ovr = inter / (vArea[i] + vArea[j] - inter); if (ovr >= nms_threshold) { input_boxes.erase(input_boxes.begin() + j); vArea.erase(vArea.begin() + j); } else { j++; } } } } } // namespace PaddleDetection
PaddleDetection/deploy/cpp/src/utils.cc/0
{ "file_path": "PaddleDetection/deploy/cpp/src/utils.cc", "repo_id": "PaddleDetection", "token_count": 782 }
57
import cv2 import os import fastdeploy as fd def parse_arguments(): import argparse parser = argparse.ArgumentParser() parser.add_argument( "--model_dir", required=True, help="Path of PaddleDetection model.") parser.add_argument( "--image_file", type=str, required=True, help="Path of test image file.") return parser.parse_args() args = parse_arguments() runtime_option = fd.RuntimeOption() runtime_option.use_ascend() if args.model_dir is None: model_dir = fd.download_model(name='ppyoloe_crn_l_300e_coco') else: model_dir = args.model_dir model_file = os.path.join(model_dir, "model.pdmodel") params_file = os.path.join(model_dir, "model.pdiparams") config_file = os.path.join(model_dir, "infer_cfg.yml") # settting for runtime model = fd.vision.detection.PPYOLOE( model_file, params_file, config_file, runtime_option=runtime_option) # predict if args.image_file is None: image_file = fd.utils.get_detection_test_image() else: image_file = args.image_file im = cv2.imread(image_file) result = model.predict(im) print(result) # visualize vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")
PaddleDetection/deploy/fastdeploy/ascend/python/infer.py/0
{ "file_path": "PaddleDetection/deploy/fastdeploy/ascend/python/infer.py", "repo_id": "PaddleDetection", "token_count": 487 }
58
[English](README.md) | 简体中文 # PaddleDetection 昆仑芯 XPU C++部署示例 本目录下提供`infer.cc`快速完成PPYOLOE模型包括PPYOLOE在昆仑芯 XPU加速部署的示例。 ## 1. 说明 PaddleDetection支持利用FastDeploy在NVIDIA GPU、X86 CPU、飞腾CPU、ARM CPU、Intel GPU(独立显卡/集成显卡)硬件上快速部署PaddleDetection模型。FastDeploy目前支持的模型系列,包括但不限于`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,`SSD`,`PaddleYOLOv5`,`PaddleYOLOv6`,`PaddleYOLOv7`,`RTMDet`,`CascadeRCNN`,`PSSDet`,`RetinaNet`,`PPYOLOESOD`,`FCOS`,`TTFNet`,`TOOD`,`GFL`所有类名的构造函数和预测函数在参数上完全一致。所有模型的调用,只需要参考PPYOLOE的示例,即可快速调用。 ## 2. 部署环境准备 在部署前,需自行编译基于昆仑芯XPU的预测库,参考文档[昆仑芯XPU部署环境编译安装](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#自行编译安装) ## 3. 部署模型准备 在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleDetection部署模型](../README.md)。 ## 4. 运行部署示例 以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.4以上(x.x.x>=1.0.4) ### 4.1 目标检测示例 ```bash # 下载部署示例代码 git clone https://github.com/PaddlePaddle/PaddleDetection.git cd PaddleDetection/deploy/fastdeploy/kunlunxin/cpp # 注意:如果当前分支找不到下面的fastdeploy测试代码,请切换到develop分支 # git checkout develop # 编译部署示例 mkdir build cd build # 使用编译完成的FastDeploy库编译infer_demo cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-kunlunxin make -j # 下载PPYOLOE模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg tar xvf ppyoloe_crn_l_300e_coco.tgz # 运行部署示例 ./infer_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg ``` 运行完成可视化结果如下图所示 <div align="center"> <img src="https://user-images.githubusercontent.com/19339784/184326520-7075e907-10ed-4fad-93f8-52d0e35d4964.jpg", width=480px, height=320px /> </div> ### 4.2 关键点检测示例 ```bash # 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-x.x.x.tgz tar xvf fastdeploy-linux-x64-gpu-x.x.x.tgz # 下载部署示例代码 git clone https://github.com/PaddlePaddle/PaddleDetection.git cd PaddleDetection/deploy/fastdeploy/kunlunxin/cpp # 注意:如果当前分支找不到下面的fastdeploy测试代码,请切换到develop分支 # git checkout develop # 编译部署示例 mkdir build && cd build mv ../fastdeploy-linux-x64-gpu-x.x.x . cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-gpu-x.x.x make -j # 下载PP-TinyPose模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz tar -xvf PP_TinyPose_256x192_infer.tgz wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg # 运行部署示例 ./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg ``` 运行完成可视化结果如下图所示 <div align="center"> <img src="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg", width=359px, height=423px /> </div> 关于如何进行多人关键点检测,请参考[PPTinyPose Pipeline示例](./det_keypoint_unite/) - 关于如何通过FastDeploy使用更多不同的推理后端,以及如何使用不同的硬件,请参考文档:[如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md) ## 5. PaddleDetection C++接口 FastDeploy目前支持的模型系列,包括但不限于`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,`SSD`,`PaddleYOLOv5`,`PaddleYOLOv6`,`PaddleYOLOv7`,`RTMDet`,`CascadeRCNN`,`PSSDet`,`RetinaNet`,`PPYOLOESOD`,`FCOS`,`TTFNet`,`TOOD`,`GFL`所有类名的构造函数和预测函数在参数上完全一致。所有模型的调用,只需要参考PPYOLOE的示例,即可快速调用。 ### 5.1 目标检测及实例分割模型 ```c++ fastdeploy::vision::detection::PicoDet(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::SOLOv2(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::PPYOLOE(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::PPYOLO(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::YOLOv3(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::PaddleYOLOX(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::FasterRCNN(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::MaskRCNN(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::SSD(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::PaddleYOLOv5(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::PaddleYOLOv6(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::PaddleYOLOv7(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::PaddleYOLOv8(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::CascadeRCNN(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::PSSDet(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::RetinaNet(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::PPYOLOESOD(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::FCOS(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::TOOD(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); fastdeploy::vision::detection::GFL(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); ``` ### 5.2 关键点检测模型 ```C++ fastdeploy::vision::keypointdetection::PPTinyPose(const string& model_file, const string& params_file, const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); ``` PaddleDetection模型加载和初始化,其中model_file, params_file为导出的Paddle部署模型格式, config_file为PaddleDetection同时导出的部署配置yaml文件 ## 6. 更多指南 - [PaddleDetection C++ API文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/cpp/html/namespacefastdeploy_1_1vision_1_1detection.html) - [FastDeploy部署PaddleDetection模型概览](../../) - [Python部署](../python) ## 7. 常见问题 - [如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md) - [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md) - [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md) - [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md) - [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)
PaddleDetection/deploy/fastdeploy/kunlunxin/cpp/README.md/0
{ "file_path": "PaddleDetection/deploy/fastdeploy/kunlunxin/cpp/README.md", "repo_id": "PaddleDetection", "token_count": 4524 }
59
[English](README.md) | 简体中文 # PaddleDetection RKNPU2 Python部署示例 本目录下用于展示PaddleDetection系列模型在RKNPU2上的部署,以下的部署过程以PPYOLOE为例子。 ## 1. 部署环境准备 在部署前,需确认以下步骤 - 1. 软硬件环境满足要求,RKNPU2环境部署等参考[FastDeploy环境要求](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/rknpu2/rknpu2.md) ## 2. 部署模型准备 模型转换代码请参考[模型转换文档](../README.md) ## 3. 运行部署示例 本目录下提供`infer.py`快速完成PPYOLOE在RKNPU上部署的示例。执行如下脚本即可完成 ```bash # 下载部署示例代码 git clone https://github.com/PaddlePaddle/PaddleDetection.git cd PaddleDetection/deploy/fastdeploy/rockchip/rknpu2/python # 注意:如果当前分支找不到下面的fastdeploy测试代码,请切换到develop分支 # git checkout develop # 下载图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/ppyoloe_plus_crn_s_80e_coco.zip unzip ppyoloe_plus_crn_s_80e_coco.zip wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg # 运行部署示例 python3 infer.py --model_file ./ppyoloe_plus_crn_s_80e_coco/ppyoloe_plus_crn_s_80e_coco_rk3588_quantized.rknn \ --config_file ./ppyoloe_plus_crn_s_80e_coco/infer_cfg.yml \ --image_file 000000014439.jpg ``` # 4. 更多指南 RKNPU上对模型的输入要求是使用NHWC格式,且图片归一化操作会在转RKNN模型时,内嵌到模型中,因此我们在使用FastDeploy部署时,需要先调用DisableNormalizeAndPermute(C++)或`disable_normalize_and_permute(Python),在预处理阶段禁用归一化以及数据格式的转换。 - [C++部署](../cpp) - [转换PaddleDetection RKNN模型文档](../README.md)
PaddleDetection/deploy/fastdeploy/rockchip/rknpu2/python/README.md/0
{ "file_path": "PaddleDetection/deploy/fastdeploy/rockchip/rknpu2/python/README.md", "repo_id": "PaddleDetection", "token_count": 1119 }
60
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import numpy as np import os import fastdeploy as fd # triton_python_backend_utils is available in every Triton Python model. You # need to use this module to create inference requests and responses. It also # contains some utility functions for extracting information from model_config # and converting Triton input/output types to numpy types. import triton_python_backend_utils as pb_utils class TritonPythonModel: """Your Python model must use the same class name. Every Python model that is created must have "TritonPythonModel" as the class name. """ def initialize(self, args): """`initialize` is called only once when the model is being loaded. Implementing `initialize` function is optional. This function allows the model to intialize any state associated with this model. Parameters ---------- args : dict Both keys and values are strings. The dictionary keys and values are: * model_config: A JSON string containing the model configuration * model_instance_kind: A string containing model instance kind * model_instance_device_id: A string containing model instance device ID * model_repository: Model repository path * model_version: Model version * model_name: Model name """ # You must parse model_config. JSON string is not parsed here self.model_config = json.loads(args['model_config']) print("model_config:", self.model_config) self.input_names = [] for input_config in self.model_config["input"]: self.input_names.append(input_config["name"]) print("preprocess input names:", self.input_names) self.output_names = [] self.output_dtype = [] for output_config in self.model_config["output"]: self.output_names.append(output_config["name"]) # dtype = pb_utils.triton_string_to_numpy(output_config["data_type"]) # self.output_dtype.append(dtype) self.output_dtype.append(output_config["data_type"]) print("preprocess output names:", self.output_names) # init PaddleClasPreprocess class yaml_path = os.path.abspath(os.path.dirname( __file__)) + "/infer_cfg.yml" self.preprocess_ = fd.vision.detection.PaddleDetPreprocessor(yaml_path) def execute(self, requests): """`execute` must be implemented in every Python model. `execute` function receives a list of pb_utils.InferenceRequest as the only argument. This function is called when an inference is requested for this model. Depending on the batching configuration (e.g. Dynamic Batching) used, `requests` may contain multiple requests. Every Python model, must create one pb_utils.InferenceResponse for every pb_utils.InferenceRequest in `requests`. If there is an error, you can set the error argument when creating a pb_utils.InferenceResponse. Parameters ---------- requests : list A list of pb_utils.InferenceRequest Returns ------- list A list of pb_utils.InferenceResponse. The length of this list must be the same as `requests` """ responses = [] for request in requests: data = pb_utils.get_input_tensor_by_name(request, self.input_names[0]) data = data.as_numpy() outputs = self.preprocess_.run(data) output_tensors = [] for idx, name in enumerate(self.output_names): dlpack_tensor = outputs[idx].to_dlpack() output_tensor = pb_utils.Tensor.from_dlpack(name, dlpack_tensor) output_tensors.append(output_tensor) inference_response = pb_utils.InferenceResponse( output_tensors=output_tensors) responses.append(inference_response) return responses def finalize(self): """`finalize` is called only once when the model is being unloaded. Implementing `finalize` function is optional. This function allows the model to perform any necessary clean ups before exit. """ print('Cleaning up...')
PaddleDetection/deploy/fastdeploy/serving/models/preprocess/1/model.py/0
{ "file_path": "PaddleDetection/deploy/fastdeploy/serving/models/preprocess/1/model.py", "repo_id": "PaddleDetection", "token_count": 1927 }
61
import yaml import json import sys yamlf = sys.argv[1] assert yamlf.endswith(".yml") with open(yamlf, 'r') as rf: yaml_data = yaml.safe_load(rf) jsonf = yamlf[:-4] + ".json" with open(jsonf, 'w') as wf: json.dump(yaml_data, wf, indent=4)
PaddleDetection/deploy/lite/convert_yml_to_json.py/0
{ "file_path": "PaddleDetection/deploy/lite/convert_yml_to_json.py", "repo_id": "PaddleDetection", "token_count": 122 }
62
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <string> #include <thread> #include <vector> #include "include/preprocess_op.h" namespace PaddleDetection { void InitInfo::Run(cv::Mat* im, ImageBlob* data) { data->im_shape_ = {static_cast<float>(im->rows), static_cast<float>(im->cols)}; data->scale_factor_ = {1., 1.}; data->in_net_shape_ = {static_cast<float>(im->rows), static_cast<float>(im->cols)}; } void NormalizeImage::Run(cv::Mat* im, ImageBlob* data) { double e = 1.0; if (is_scale_) { e *= 1./255.0; } (*im).convertTo(*im, CV_32FC3, e); for (int h = 0; h < im->rows; h++) { for (int w = 0; w < im->cols; w++) { im->at<cv::Vec3f>(h, w)[0] = (im->at<cv::Vec3f>(h, w)[0] - mean_[0]) / scale_[0]; im->at<cv::Vec3f>(h, w)[1] = (im->at<cv::Vec3f>(h, w)[1] - mean_[1]) / scale_[1]; im->at<cv::Vec3f>(h, w)[2] = (im->at<cv::Vec3f>(h, w)[2] - mean_[2]) / scale_[2]; } } } void Permute::Run(cv::Mat* im, ImageBlob* data) { (*im).convertTo(*im, CV_32FC3); int rh = im->rows; int rw = im->cols; int rc = im->channels(); (data->im_data_).resize(rc * rh * rw); float* base = (data->im_data_).data(); for (int i = 0; i < rc; ++i) { cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i); } } void Resize::Run(cv::Mat* im, ImageBlob* data) { auto resize_scale = GenerateScale(*im); data->im_shape_ = {static_cast<float>(im->cols * resize_scale.first), static_cast<float>(im->rows * resize_scale.second)}; data->in_net_shape_ = {static_cast<float>(im->cols * resize_scale.first), static_cast<float>(im->rows * resize_scale.second)}; cv::resize( *im, *im, cv::Size(), resize_scale.first, resize_scale.second, interp_); data->im_shape_ = { static_cast<float>(im->rows), static_cast<float>(im->cols), }; data->scale_factor_ = { resize_scale.second, resize_scale.first, }; } std::pair<float, float> Resize::GenerateScale(const cv::Mat& im) { std::pair<float, float> resize_scale; int origin_w = im.cols; int origin_h = im.rows; if (keep_ratio_) { int im_size_max = std::max(origin_w, origin_h); int im_size_min = std::min(origin_w, origin_h); int target_size_max = *std::max_element(target_size_.begin(), target_size_.end()); int target_size_min = *std::min_element(target_size_.begin(), target_size_.end()); float scale_min = static_cast<float>(target_size_min) / static_cast<float>(im_size_min); float scale_max = static_cast<float>(target_size_max) / static_cast<float>(im_size_max); float scale_ratio = std::min(scale_min, scale_max); resize_scale = {scale_ratio, scale_ratio}; } else { resize_scale.first = static_cast<float>(target_size_[1]) / static_cast<float>(origin_w); resize_scale.second = static_cast<float>(target_size_[0]) / static_cast<float>(origin_h); } return resize_scale; } void PadStride::Run(cv::Mat* im, ImageBlob* data) { if (stride_ <= 0) { return; } int rc = im->channels(); int rh = im->rows; int rw = im->cols; int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_; int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_; cv::copyMakeBorder( *im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT, cv::Scalar(0)); data->in_net_shape_ = { static_cast<float>(im->rows), static_cast<float>(im->cols), }; } void TopDownEvalAffine::Run(cv::Mat* im, ImageBlob* data) { cv::resize(*im, *im, cv::Size(trainsize_[0], trainsize_[1]), 0, 0, interp_); // todo: Simd::ResizeBilinear(); data->in_net_shape_ = { static_cast<float>(trainsize_[1]), static_cast<float>(trainsize_[0]), }; } // Preprocessor op running order const std::vector<std::string> Preprocessor::RUN_ORDER = {"InitInfo", "TopDownEvalAffine", "Resize", "NormalizeImage", "PadStride", "Permute"}; void Preprocessor::Run(cv::Mat* im, ImageBlob* data) { for (const auto& name : RUN_ORDER) { if (ops_.find(name) != ops_.end()) { ops_[name]->Run(im, data); } } } void CropImg(cv::Mat& img, cv::Mat& crop_img, std::vector<int>& area, std::vector<float>& center, std::vector<float>& scale, float expandratio) { int crop_x1 = std::max(0, area[0]); int crop_y1 = std::max(0, area[1]); int crop_x2 = std::min(img.cols - 1, area[2]); int crop_y2 = std::min(img.rows - 1, area[3]); int center_x = (crop_x1 + crop_x2) / 2.; int center_y = (crop_y1 + crop_y2) / 2.; int half_h = (crop_y2 - crop_y1) / 2.; int half_w = (crop_x2 - crop_x1) / 2.; if (half_h * 3 > half_w * 4) { half_w = static_cast<int>(half_h * 0.75); } else { half_h = static_cast<int>(half_w * 4 / 3); } crop_x1 = std::max(0, center_x - static_cast<int>(half_w * (1 + expandratio))); crop_y1 = std::max(0, center_y - static_cast<int>(half_h * (1 + expandratio))); crop_x2 = std::min(img.cols - 1, static_cast<int>(center_x + half_w * (1 + expandratio))); crop_y2 = std::min(img.rows - 1, static_cast<int>(center_y + half_h * (1 + expandratio))); crop_img = img(cv::Range(crop_y1, crop_y2 + 1), cv::Range(crop_x1, crop_x2 + 1)); center.clear(); center.emplace_back((crop_x1 + crop_x2) / 2); center.emplace_back((crop_y1 + crop_y2) / 2); scale.clear(); scale.emplace_back((crop_x2 - crop_x1)); scale.emplace_back((crop_y2 - crop_y1)); } } // namespace PaddleDetection
PaddleDetection/deploy/lite/src/preprocess_op.cc/0
{ "file_path": "PaddleDetection/deploy/lite/src/preprocess_op.cc", "repo_id": "PaddleDetection", "token_count": 3045 }
63
import ast import yaml import copy import argparse from argparse import ArgumentParser, RawDescriptionHelpFormatter class ArgsParser(ArgumentParser): def __init__(self): super(ArgsParser, self).__init__( formatter_class=RawDescriptionHelpFormatter) self.add_argument( "-o", "--opt", nargs='*', help="set configuration options") def parse_args(self, argv=None): args = super(ArgsParser, self).parse_args(argv) assert args.config is not None, \ "Please specify --config=configure_file_path." args.opt = self._parse_opt(args.opt) return args def _parse_opt(self, opts): config = {} if not opts: return config for s in opts: s = s.strip() k, v = s.split('=', 1) if '.' not in k: config[k] = yaml.load(v, Loader=yaml.Loader) else: keys = k.split('.') if keys[0] not in config: config[keys[0]] = {} cur = config[keys[0]] for idx, key in enumerate(keys[1:]): if idx == len(keys) - 2: cur[key] = yaml.load(v, Loader=yaml.Loader) else: cur[key] = {} cur = cur[key] return config def argsparser(): parser = ArgsParser() parser.add_argument( "--config", type=str, default=None, help=("Path of configure"), required=True) parser.add_argument( "--image_file", type=str, default=None, help="Path of image file.") parser.add_argument( "--image_dir", type=str, default=None, help="Dir of image file, `image_file` has a higher priority.") parser.add_argument( "--video_file", type=str, default=None, help="Path of video file, `video_file` or `camera_id` has a highest priority." ) parser.add_argument( "--video_dir", type=str, default=None, help="Dir of video file, `video_file` has a higher priority.") parser.add_argument( "--rtsp", type=str, nargs='+', default=None, help="list of rtsp inputs, for one or multiple rtsp input.") parser.add_argument( "--camera_id", type=int, default=-1, help="device id of camera to predict.") parser.add_argument( "--output_dir", type=str, default="output", help="Directory of output visualization files.") parser.add_argument( "--pushurl", type=str, default="", help="url of output visualization stream.") parser.add_argument( "--run_mode", type=str, default='paddle', help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)") parser.add_argument( "--device", type=str, default='cpu', help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU." ) parser.add_argument( "--enable_mkldnn", type=ast.literal_eval, default=False, help="Whether use mkldnn with CPU.") parser.add_argument( "--cpu_threads", type=int, default=1, help="Num of threads with CPU.") parser.add_argument( "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.") parser.add_argument( "--trt_max_shape", type=int, default=1280, help="max_shape for TensorRT.") parser.add_argument( "--trt_opt_shape", type=int, default=640, help="opt_shape for TensorRT.") parser.add_argument( "--trt_calib_mode", type=bool, default=False, help="If the model is produced by TRT offline quantitative " "calibration, trt_calib_mode need to set True.") parser.add_argument( "--do_entrance_counting", action='store_true', help="Whether counting the numbers of identifiers entering " "or getting out from the entrance. Note that only support single-class MOT." ) parser.add_argument( "--do_break_in_counting", action='store_true', help="Whether counting the numbers of identifiers break in " "the area. Note that only support single-class MOT and " "the video should be taken by a static camera.") parser.add_argument( "--illegal_parking_time", type=int, default=-1, help="illegal parking time which units are seconds, default is -1 which means not recognition illegal parking" ) parser.add_argument( "--region_type", type=str, default='horizontal', help="Area type for entrance counting or break in counting, 'horizontal' and " "'vertical' used when do entrance counting. 'custom' used when do break in counting. " "Note that only support single-class MOT, and the video should be taken by a static camera." ) parser.add_argument( '--region_polygon', nargs='+', type=int, default=[], help="Clockwise point coords (x0,y0,x1,y1...) of polygon of area when " "do_break_in_counting. Note that only support single-class MOT and " "the video should be taken by a static camera.") parser.add_argument( "--secs_interval", type=int, default=2, help="The seconds interval to count after tracking") parser.add_argument( "--draw_center_traj", action='store_true', help="Whether drawing the trajectory of center") return parser def merge_cfg(args): # load config with open(args.config) as f: pred_config = yaml.safe_load(f) def merge(cfg, arg): # update cfg from arg directly merge_cfg = copy.deepcopy(cfg) for k, v in cfg.items(): if k in arg: merge_cfg[k] = arg[k] else: if isinstance(v, dict): merge_cfg[k] = merge(v, arg) return merge_cfg def merge_opt(cfg, arg): merge_cfg = copy.deepcopy(cfg) # merge opt if 'opt' in arg.keys() and arg['opt']: for name, value in arg['opt'].items( ): # example: {'MOT': {'batch_size': 3}} if name not in merge_cfg.keys(): print("No", name, "in config file!") continue for sub_k, sub_v in value.items(): if sub_k not in merge_cfg[name].keys(): print("No", sub_k, "in config file of", name, "!") continue merge_cfg[name][sub_k] = sub_v return merge_cfg args_dict = vars(args) pred_config = merge(pred_config, args_dict) pred_config = merge_opt(pred_config, args_dict) return pred_config def print_arguments(cfg): print('----------- Running Arguments -----------') buffer = yaml.dump(cfg) print(buffer) print('------------------------------------------')
PaddleDetection/deploy/pipeline/cfg_utils.py/0
{ "file_path": "PaddleDetection/deploy/pipeline/cfg_utils.py", "repo_id": "PaddleDetection", "token_count": 3348 }
64
from typing import Optional from pgvector.sqlalchemy import Vector from sqlalchemy import Column from sqlalchemy.dialects.postgresql import JSON from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column class Base(DeclarativeBase): pass class Frame(Base): __tablename__ = "frame" id: Mapped[int] = mapped_column(primary_key=True) frame_id: Mapped[int] trace_id: Mapped[str] crop_image: Mapped[str] feature = mapped_column(Vector(256)) quality = Mapped[float] class Trace(Base): __tablename__ = "trace" trace_id: Mapped[str] = mapped_column(primary_key=True) reid: Mapped[Optional[int]] best_crop_image: Mapped[str] frame_range = Column(JSON) mean_feature = mapped_column(Vector(256)) class InOutRecord(Base): __tablename__ = "in_out_record" record_id: Mapped[int] = mapped_column(primary_key=True) trace_id: Mapped[str] action: Mapped[str] frame: Mapped[int]
PaddleDetection/deploy/pipeline/database_model.py/0
{ "file_path": "PaddleDetection/deploy/pipeline/database_model.py", "repo_id": "PaddleDetection", "token_count": 364 }
65
English | [简体中文](ppvehicle_attribute.md) # Attribute Recognition Module of PP-Vehicle Vehicle attribute recognition is widely used in smart cities, smart transportation and other scenarios. In PP-Vehicle, a vehicle attribute recognition module is integrated, which can identify vehicle color and model. | Task | Algorithm | Precision | Inference Speed | Download | |-----------|------|-----------|----------|---------------------| | Vehicle Detection/Tracking | PP-YOLOE | mAP 63.9 | 38.67ms | [Inference and Deployment Model](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | | Vehicle Attribute Recognition | PPLCNet | 90.81 | 7.31 ms | [Inference and Deployment Model](https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip) | Note: 1. The inference speed of the attribute model is obtained from the test on NVIDIA T4, with TensorRT FP16. The time includes data pre-process, model inference and post-process. 2. For introductions, please refer to [PP-LCNet Series](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/en/models/PP-LCNet_en.md). Related paper is available on PP-LCNet paper 3. The training and test phase of vehicle attribute recognition model are both obtained from [VeRi dataset](https://www.v7labs.com/open-datasets/veri-dataset). - The provided pre-trained model supports 10 colors and 9 models, which is the same with VeRi dataset. The details are as follows: ```yaml # Vehicle Colors - "yellow" - "orange" - "green" - "gray" - "red" - "blue" - "white" - "golden" - "brown" - "black" # Vehicle Models - "sedan" - "suv" - "van" - "hatchback" - "mpv" - "pickup" - "bus" - "truck" - "estate" ``` ## Instructions ### Description of Configuration Parameters related to vehicle attribute recognition in the [config file](../../config/infer_cfg_ppvehicle.yml) are as follows: ```yaml VEHICLE_ATTR: model_dir: output_inference/vehicle_attribute_infer/ # Path of the model batch_size: 8 # The size of the inference batch color_threshold: 0.5 # Threshold of color. Confidence is required to reach this threshold to determine the specific attribute, otherwise it will be 'Unknown‘. type_threshold: 0.5 # Threshold of vehicle model. Confidence is required to reach this threshold to determine the specific attribute, otherwise it will be 'Unknown‘. enable: False # Whether to enable this function ``` ### How to Use 1. Download models `Vehicle Detection/Tracking` and `Vehicle Attribute Recognition` from the links in `Model Zoo` and unzip them to ```./output_inference```. The models are automatically downloaded by default. If you download them manually, you need to modify the `model_dir` as the model storage path to use this function. 2. Set the "enable: True" of `VEHICLE_ATTR` in infer_cfg_ppvehicle.yml. 3. For image input, please run these commands. (Description of more parameters, please refer to [QUICK_STARTED - Parameter_Description](./PPVehicle_QUICK_STARTED.md). ```bash # For single image python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml \ --image_file=test_image.jpg \ --device=gpu # For folder contains one or multiple images python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml \ --image_dir=images/ \ --device=gpu ``` 4. For video input, please run these commands. ```bash # For single video python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml \ --video_file=test_video.mp4 \ --device=gpu # For folder contains one or multiple videos python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml \ --video_dir=test_videos/ \ --device=gpu ``` 5. There are two ways to modify the model path: - Method 1:Set paths of each model in `./deploy/pipeline/config/infer_cfg_ppvehicle.yml`. For vehicle attribute recognition, the path should be modified under the `VEHICLE_ATTR` field. - Method 2: Directly add `-o` in command line to override the default model path in the configuration file: ```bash python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml \ --video_file=test_video.mp4 \ --device=gpu \ -o VEHICLE_ATTR.model_dir=output_inference/vehicle_attribute_infer ``` The result is shown as follow: <div width="600" align="center"> <img src="https://user-images.githubusercontent.com/22989727/205599146-56abd72f-6e0a-4a21-bd11-f8bb421f2887.gif"/> </div> ### Features to the Solution The vehicle attribute recognition model adopts PULC, Practical Ultra Lightweight image Classification from [PaddleClas](https://github.com/PaddlePaddle/PaddleClas). For details on data preparation, training, and testing of the model, please refer to [PULC Recognition Model of Vehicle Attribute](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/en/PULC/PULC_vehicle_attribute_en.md). The vehicle attribute recognition model adopts the lightweight and high-precision PPLCNet. And on top of PPLCNet, our model optimized via:: - Improved about 0.5 percentage points accuracy by using the SSLD pre-trained model without changing the inference speed. - Improved 0.52 percentage points accuracy further by integrating EDA data augmentation strategy. - Improved 0.23 percentage points accuracy by using SKL-UGI knowledge distillation.
PaddleDetection/deploy/pipeline/docs/tutorials/ppvehicle_attribute_en.md/0
{ "file_path": "PaddleDetection/deploy/pipeline/docs/tutorials/ppvehicle_attribute_en.md", "repo_id": "PaddleDetection", "token_count": 2228 }
66
import os import sys import cv2 import numpy as np import argparse def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--video_file", type=str, default=None, help="Path of video file, `video_file` or `camera_id` has a highest priority." ) parser.add_argument( '--region_polygon', nargs='+', type=int, default=[], help="Clockwise point coords (x0,y0,x1,y1...) of polygon of area when " "do_break_in_counting. Note that only support single-class MOT and " "the video should be taken by a static camera.") return parser def get_video_info(video_file, region_polygon): entrance = [] assert len(region_polygon ) % 2 == 0, "region_polygon should be pairs of coords points." for i in range(0, len(region_polygon), 2): entrance.append([region_polygon[i], region_polygon[i + 1]]) if not os.path.exists(video_file): print("video path '{}' not exists".format(video_file)) sys.exit(-1) capture = cv2.VideoCapture(video_file) width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) print("video width: %d, height: %d" % (width, height)) np_masks = np.zeros((height, width, 1), np.uint8) entrance = np.array(entrance) cv2.fillPoly(np_masks, [entrance], 255) fps = int(capture.get(cv2.CAP_PROP_FPS)) frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) print("video fps: %d, frame_count: %d" % (fps, frame_count)) cnt = 0 while (1): ret, frame = capture.read() cnt += 1 if cnt == 3: break alpha = 0.3 img = np.array(frame).astype('float32') mask = np_masks[:, :, 0] color_mask = [0, 0, 255] idx = np.nonzero(mask) color_mask = np.array(color_mask) img[idx[0], idx[1], :] *= 1.0 - alpha img[idx[0], idx[1], :] += alpha * color_mask cv2.imwrite('region_vis.jpg', img) if __name__ == "__main__": parser = argsparser() FLAGS = parser.parse_args() get_video_info(FLAGS.video_file, FLAGS.region_polygon) # python get_video_info.py --video_file=demo.mp4 --region_polygon 200 200 400 200 300 400 100 400
PaddleDetection/deploy/pipeline/tools/get_video_info.py/0
{ "file_path": "PaddleDetection/deploy/pipeline/tools/get_video_info.py", "repo_id": "PaddleDetection", "token_count": 1003 }
67
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include <ctime> #include <memory> #include <string> #include <utility> #include <vector> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include "paddle_inference_api.h" // NOLINT #include "include/config_parser.h" #include "include/preprocess_op.h" #include "include/utils.h" using namespace paddle_infer; // NOLINT namespace PaddleDetection { class SDEPredictor { public: explicit SDEPredictor(const std::string& device, const std::string& det_model_dir = "", const std::string& reid_model_dir = "", const double threshold = -1., const std::string& run_mode = "paddle", const int gpu_id = 0, const bool use_mkldnn = false, const int cpu_threads = 1, bool trt_calib_mode = false, const int min_box_area = 200) { this->device_ = device; this->gpu_id_ = gpu_id; this->use_mkldnn_ = use_mkldnn; this->cpu_math_library_num_threads_ = cpu_threads; this->trt_calib_mode_ = trt_calib_mode; this->min_box_area_ = min_box_area; det_config_.load_config(det_model_dir); this->min_subgraph_size_ = det_config_.min_subgraph_size_; det_preprocessor_.Init(det_config_.preprocess_info_); reid_config_.load_config(reid_model_dir); reid_preprocessor_.Init(reid_config_.preprocess_info_); LoadModel(det_model_dir, reid_model_dir, run_mode); this->conf_thresh_ = det_config_.conf_thresh_; } // Load Paddle inference model void LoadModel(const std::string& det_model_dir, const std::string& reid_model_dir, const std::string& run_mode = "paddle"); // Run predictor void Predict(const std::vector<cv::Mat> imgs, const double threshold = 0.5, MOTResult* result = nullptr, std::vector<double>* times = nullptr); private: std::string device_ = "CPU"; float threhold = 0.5; int gpu_id_ = 0; bool use_mkldnn_ = false; int cpu_math_library_num_threads_ = 1; int min_subgraph_size_ = 3; bool trt_calib_mode_ = false; // Preprocess image and copy data to input buffer void Preprocess(const cv::Mat& image_mat); // Postprocess result void Postprocess(const cv::Mat dets, const cv::Mat emb, MOTResult* result); std::shared_ptr<Predictor> det_predictor_; std::shared_ptr<Predictor> reid_predictor_; Preprocessor det_preprocessor_; Preprocessor reid_preprocessor_; ImageBlob inputs_; std::vector<float> bbox_data_; std::vector<float> emb_data_; double threshold_; ConfigPaser det_config_; ConfigPaser reid_config_; float min_box_area_ = 200; float conf_thresh_; }; } // namespace PaddleDetection
PaddleDetection/deploy/pptracking/cpp/include/sde_predictor.h/0
{ "file_path": "PaddleDetection/deploy/pptracking/cpp/include/sde_predictor.h", "repo_id": "PaddleDetection", "token_count": 1423 }
68
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is based on https://github.com/noahcao/OC_SORT/blob/master/trackers/ocsort_tracker/association.py """ import os import numpy as np def iou_batch(bboxes1, bboxes2): """ From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2] """ bboxes2 = np.expand_dims(bboxes2, 0) bboxes1 = np.expand_dims(bboxes1, 1) xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0]) yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1]) xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2]) yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3]) w = np.maximum(0., xx2 - xx1) h = np.maximum(0., yy2 - yy1) wh = w * h o = wh / ((bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1]) + (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1]) - wh) return (o) def speed_direction_batch(dets, tracks): tracks = tracks[..., np.newaxis] CX1, CY1 = (dets[:, 0] + dets[:, 2]) / 2.0, (dets[:, 1] + dets[:, 3]) / 2.0 CX2, CY2 = (tracks[:, 0] + tracks[:, 2]) / 2.0, ( tracks[:, 1] + tracks[:, 3]) / 2.0 dx = CX1 - CX2 dy = CY1 - CY2 norm = np.sqrt(dx**2 + dy**2) + 1e-6 dx = dx / norm dy = dy / norm return dy, dx # size: num_track x num_det def linear_assignment(cost_matrix): try: import lap _, x, y = lap.lapjv(cost_matrix, extend_cost=True) match = np.array([[y[i], i] for i in x if i >= 0]) return match except ImportError: from scipy.optimize import linear_sum_assignment x, y = linear_sum_assignment(cost_matrix) return np.array(list(zip(x, y))) def associate(detections, trackers, iou_threshold, velocities, previous_obs, vdc_weight): if (len(trackers) == 0): return np.empty( (0, 2), dtype=int), np.arange(len(detections)), np.empty( (0, 5), dtype=int) Y, X = speed_direction_batch(detections, previous_obs) inertia_Y, inertia_X = velocities[:, 0], velocities[:, 1] inertia_Y = np.repeat(inertia_Y[:, np.newaxis], Y.shape[1], axis=1) inertia_X = np.repeat(inertia_X[:, np.newaxis], X.shape[1], axis=1) diff_angle_cos = inertia_X * X + inertia_Y * Y diff_angle_cos = np.clip(diff_angle_cos, a_min=-1, a_max=1) diff_angle = np.arccos(diff_angle_cos) diff_angle = (np.pi / 2.0 - np.abs(diff_angle)) / np.pi valid_mask = np.ones(previous_obs.shape[0]) valid_mask[np.where(previous_obs[:, 4] < 0)] = 0 iou_matrix = iou_batch(detections, trackers) scores = np.repeat( detections[:, -1][:, np.newaxis], trackers.shape[0], axis=1) # iou_matrix = iou_matrix * scores # a trick sometiems works, we don't encourage this valid_mask = np.repeat(valid_mask[:, np.newaxis], X.shape[1], axis=1) angle_diff_cost = (valid_mask * diff_angle) * vdc_weight angle_diff_cost = angle_diff_cost.T angle_diff_cost = angle_diff_cost * scores if min(iou_matrix.shape) > 0: a = (iou_matrix > iou_threshold).astype(np.int32) if a.sum(1).max() == 1 and a.sum(0).max() == 1: matched_indices = np.stack(np.where(a), axis=1) else: matched_indices = linear_assignment(-(iou_matrix + angle_diff_cost)) else: matched_indices = np.empty(shape=(0, 2)) unmatched_detections = [] for d, det in enumerate(detections): if (d not in matched_indices[:, 0]): unmatched_detections.append(d) unmatched_trackers = [] for t, trk in enumerate(trackers): if (t not in matched_indices[:, 1]): unmatched_trackers.append(t) # filter out matched with low IOU matches = [] for m in matched_indices: if (iou_matrix[m[0], m[1]] < iou_threshold): unmatched_detections.append(m[0]) unmatched_trackers.append(m[1]) else: matches.append(m.reshape(1, 2)) if (len(matches) == 0): matches = np.empty((0, 2), dtype=int) else: matches = np.concatenate(matches, axis=0) return matches, np.array(unmatched_detections), np.array(unmatched_trackers) def associate_only_iou(detections, trackers, iou_threshold): if (len(trackers) == 0): return np.empty( (0, 2), dtype=int), np.arange(len(detections)), np.empty( (0, 5), dtype=int) iou_matrix = iou_batch(detections, trackers) if min(iou_matrix.shape) > 0: a = (iou_matrix > iou_threshold).astype(np.int32) if a.sum(1).max() == 1 and a.sum(0).max() == 1: matched_indices = np.stack(np.where(a), axis=1) else: matched_indices = linear_assignment(-iou_matrix) else: matched_indices = np.empty(shape=(0, 2)) unmatched_detections = [] for d, det in enumerate(detections): if (d not in matched_indices[:, 0]): unmatched_detections.append(d) unmatched_trackers = [] for t, trk in enumerate(trackers): if (t not in matched_indices[:, 1]): unmatched_trackers.append(t) # filter out matched with low IOU matches = [] for m in matched_indices: if (iou_matrix[m[0], m[1]] < iou_threshold): unmatched_detections.append(m[0]) unmatched_trackers.append(m[1]) else: matches.append(m.reshape(1, 2)) if (len(matches) == 0): matches = np.empty((0, 2), dtype=int) else: matches = np.concatenate(matches, axis=0) return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
PaddleDetection/deploy/pptracking/python/mot/matching/ocsort_matching.py/0
{ "file_path": "PaddleDetection/deploy/pptracking/python/mot/matching/ocsort_matching.py", "repo_id": "PaddleDetection", "token_count": 2837 }
69
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np def decode_image(im_file, im_info): """read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ if isinstance(im_file, str): with open(im_file, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) else: im = im_file im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) return im, im_info class Resize(object): """resize image by target_size and max_size Args: target_size (int): the target size of image keep_ratio (bool): whether keep_ratio or not, default true interp (int): method of resize """ def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR): if isinstance(target_size, int): target_size = [target_size, target_size] self.target_size = target_size self.keep_ratio = keep_ratio self.interp = interp def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x class NormalizeImage(object): """normalize image Args: mean (list): im - mean std (list): im / std is_scale (bool): whether need im / 255 is_channel_first (bool): if True: image shape is CHW, else: HWC """ def __init__(self, mean, std, is_scale=True): self.mean = mean self.std = std self.is_scale = is_scale def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] if self.is_scale: im = im / 255.0 im -= mean im /= std return im, im_info class Permute(object): """permute image Args: to_bgr (bool): whether convert RGB to BGR channel_first (bool): whether convert HWC to CHW """ def __init__(self, ): super(Permute, self).__init__() def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info class PadStride(object): """ padding image for model with FPN, instead PadBatch(pad_to_stride) in original config Args: stride (bool): model with FPN need image shape % stride == 0 """ def __init__(self, stride=0): self.coarsest_stride = stride def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info class LetterBoxResize(object): def __init__(self, target_size): """ Resize image to target size, convert normalized xywh to pixel xyxy format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]). Args: target_size (int|list): image target size. """ super(LetterBoxResize, self).__init__() if isinstance(target_size, int): target_size = [target_size, target_size] self.target_size = target_size def letterbox(self, img, height, width, color=(127.5, 127.5, 127.5)): # letterbox: resize a rectangular image to a padded rectangular shape = img.shape[:2] # [height, width] ratio_h = float(height) / shape[0] ratio_w = float(width) / shape[1] ratio = min(ratio_h, ratio_w) new_shape = (round(shape[1] * ratio), round(shape[0] * ratio)) # [width, height] padw = (width - new_shape[0]) / 2 padh = (height - new_shape[1]) / 2 top, bottom = round(padh - 0.1), round(padh + 0.1) left, right = round(padw - 0.1), round(padw + 0.1) img = cv2.resize( img, new_shape, interpolation=cv2.INTER_AREA) # resized, no border img = cv2.copyMakeBorder( img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # padded rectangular return img, ratio, padw, padh def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 height, width = self.target_size h, w = im.shape[:2] im, ratio, padw, padh = self.letterbox(im, height=height, width=width) new_shape = [round(h * ratio), round(w * ratio)] im_info['im_shape'] = np.array(new_shape, dtype=np.float32) im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32) return im, im_info class Pad(object): def __init__(self, size, fill_value=[114.0, 114.0, 114.0]): """ Pad image to a specified size. Args: size (list[int]): image target size fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0) """ super(Pad, self).__init__() if isinstance(size, int): size = [size, size] self.size = size self.fill_value = fill_value def __call__(self, im, im_info): im_h, im_w = im.shape[:2] h, w = self.size if h == im_h and w == im_w: im = im.astype(np.float32) return im, im_info canvas = np.ones((h, w, 3), dtype=np.float32) canvas *= np.array(self.fill_value, dtype=np.float32) canvas[0:im_h, 0:im_w, :] = im.astype(np.float32) im = canvas return im, im_info def preprocess(im, preprocess_ops): # process image by preprocess_ops im_info = { 'scale_factor': np.array( [1., 1.], dtype=np.float32), 'im_shape': None, } im, im_info = decode_image(im, im_info) for operator in preprocess_ops: im, im_info = operator(im, im_info) return im, im_info
PaddleDetection/deploy/pptracking/python/preprocess.py/0
{ "file_path": "PaddleDetection/deploy/pptracking/python/preprocess.py", "repo_id": "PaddleDetection", "token_count": 4710 }
70
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np import imgaug.augmenters as iaa from keypoint_preprocess import get_affine_transform from PIL import Image def decode_image(im_file, im_info): """read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ if isinstance(im_file, str): with open(im_file, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) else: im = im_file im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) return im, im_info class Resize_Mult32(object): """resize image by target_size and max_size Args: target_size (int): the target size of image keep_ratio (bool): whether keep_ratio or not, default true interp (int): method of resize """ def __init__(self, limit_side_len, limit_type, interp=cv2.INTER_LINEAR): self.limit_side_len = limit_side_len self.limit_type = limit_type self.interp = interp def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info def generate_scale(self, img): """ Args: img (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ limit_side_len = self.limit_side_len h, w, c = img.shape # limit the max side if self.limit_type == 'max': if h > w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w elif self.limit_type == 'min': if h < w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w elif self.limit_type == 'resize_long': ratio = float(limit_side_len) / max(h, w) else: raise Exception('not support limit type, image ') resize_h = int(h * ratio) resize_w = int(w * ratio) resize_h = max(int(round(resize_h / 32) * 32), 32) resize_w = max(int(round(resize_w / 32) * 32), 32) im_scale_y = resize_h / float(h) im_scale_x = resize_w / float(w) return im_scale_y, im_scale_x class Resize(object): """resize image by target_size and max_size Args: target_size (int): the target size of image keep_ratio (bool): whether keep_ratio or not, default true interp (int): method of resize """ def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR): if isinstance(target_size, int): target_size = [target_size, target_size] self.target_size = target_size self.keep_ratio = keep_ratio self.interp = interp def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x class ShortSizeScale(object): """ Scale images by short size. Args: short_size(float | int): Short size of an image will be scaled to the short_size. fixed_ratio(bool): Set whether to zoom according to a fixed ratio. default: True do_round(bool): Whether to round up when calculating the zoom ratio. default: False backend(str): Choose pillow or cv2 as the graphics processing backend. default: 'pillow' """ def __init__(self, short_size, fixed_ratio=True, keep_ratio=None, do_round=False, backend='pillow'): self.short_size = short_size assert (fixed_ratio and not keep_ratio) or ( not fixed_ratio ), "fixed_ratio and keep_ratio cannot be true at the same time" self.fixed_ratio = fixed_ratio self.keep_ratio = keep_ratio self.do_round = do_round assert backend in [ 'pillow', 'cv2' ], "Scale's backend must be pillow or cv2, but get {backend}" self.backend = backend def __call__(self, img): """ Performs resize operations. Args: img (PIL.Image): a PIL.Image. return: resized_img: a PIL.Image after scaling. """ result_img = None if isinstance(img, np.ndarray): h, w, _ = img.shape elif isinstance(img, Image.Image): w, h = img.size else: raise NotImplementedError if w <= h: ow = self.short_size if self.fixed_ratio: # default is True oh = int(self.short_size * 4.0 / 3.0) elif not self.keep_ratio: # no oh = self.short_size else: scale_factor = self.short_size / w oh = int(h * float(scale_factor) + 0.5) if self.do_round else int(h * self.short_size / w) ow = int(w * float(scale_factor) + 0.5) if self.do_round else int(w * self.short_size / h) else: oh = self.short_size if self.fixed_ratio: ow = int(self.short_size * 4.0 / 3.0) elif not self.keep_ratio: # no ow = self.short_size else: scale_factor = self.short_size / h oh = int(h * float(scale_factor) + 0.5) if self.do_round else int(h * self.short_size / w) ow = int(w * float(scale_factor) + 0.5) if self.do_round else int(w * self.short_size / h) if type(img) == np.ndarray: img = Image.fromarray(img, mode='RGB') if self.backend == 'pillow': result_img = img.resize((ow, oh), Image.BILINEAR) elif self.backend == 'cv2' and (self.keep_ratio is not None): result_img = cv2.resize( img, (ow, oh), interpolation=cv2.INTER_LINEAR) else: result_img = Image.fromarray( cv2.resize( np.asarray(img), (ow, oh), interpolation=cv2.INTER_LINEAR)) return result_img class NormalizeImage(object): """normalize image Args: mean (list): im - mean std (list): im / std is_scale (bool): whether need im / 255 norm_type (str): type in ['mean_std', 'none'] """ def __init__(self, mean, std, is_scale=True, norm_type='mean_std'): self.mean = mean self.std = std self.is_scale = is_scale self.norm_type = norm_type def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std return im, im_info class Permute(object): """permute image Args: to_bgr (bool): whether convert RGB to BGR channel_first (bool): whether convert HWC to CHW """ def __init__(self, ): super(Permute, self).__init__() def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info class PadStride(object): """ padding image for model with FPN, instead PadBatch(pad_to_stride) in original config Args: stride (bool): model with FPN need image shape % stride == 0 """ def __init__(self, stride=0): self.coarsest_stride = stride def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info class LetterBoxResize(object): def __init__(self, target_size): """ Resize image to target size, convert normalized xywh to pixel xyxy format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]). Args: target_size (int|list): image target size. """ super(LetterBoxResize, self).__init__() if isinstance(target_size, int): target_size = [target_size, target_size] self.target_size = target_size def letterbox(self, img, height, width, color=(127.5, 127.5, 127.5)): # letterbox: resize a rectangular image to a padded rectangular shape = img.shape[:2] # [height, width] ratio_h = float(height) / shape[0] ratio_w = float(width) / shape[1] ratio = min(ratio_h, ratio_w) new_shape = (round(shape[1] * ratio), round(shape[0] * ratio)) # [width, height] padw = (width - new_shape[0]) / 2 padh = (height - new_shape[1]) / 2 top, bottom = round(padh - 0.1), round(padh + 0.1) left, right = round(padw - 0.1), round(padw + 0.1) img = cv2.resize( img, new_shape, interpolation=cv2.INTER_AREA) # resized, no border img = cv2.copyMakeBorder( img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # padded rectangular return img, ratio, padw, padh def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 height, width = self.target_size h, w = im.shape[:2] im, ratio, padw, padh = self.letterbox(im, height=height, width=width) new_shape = [round(h * ratio), round(w * ratio)] im_info['im_shape'] = np.array(new_shape, dtype=np.float32) im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32) return im, im_info class Pad(object): def __init__(self, size, fill_value=[114.0, 114.0, 114.0]): """ Pad image to a specified size. Args: size (list[int]): image target size fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0) """ super(Pad, self).__init__() if isinstance(size, int): size = [size, size] self.size = size self.fill_value = fill_value def __call__(self, im, im_info): im_h, im_w = im.shape[:2] h, w = self.size if h == im_h and w == im_w: im = im.astype(np.float32) return im, im_info canvas = np.ones((h, w, 3), dtype=np.float32) canvas *= np.array(self.fill_value, dtype=np.float32) canvas[0:im_h, 0:im_w, :] = im.astype(np.float32) im = canvas return im, im_info class WarpAffine(object): """Warp affine the image """ def __init__(self, keep_res=False, pad=31, input_h=512, input_w=512, scale=0.4, shift=0.1, down_ratio=4): self.keep_res = keep_res self.pad = pad self.input_h = input_h self.input_w = input_w self.scale = scale self.shift = shift self.down_ratio = down_ratio def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ img = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) h, w = img.shape[:2] if self.keep_res: # True in detection eval/infer input_h = (h | self.pad) + 1 input_w = (w | self.pad) + 1 s = np.array([input_w, input_h], dtype=np.float32) c = np.array([w // 2, h // 2], dtype=np.float32) else: # False in centertrack eval_mot/eval_mot s = max(h, w) * 1.0 input_h, input_w = self.input_h, self.input_w c = np.array([w / 2., h / 2.], dtype=np.float32) trans_input = get_affine_transform(c, s, 0, [input_w, input_h]) img = cv2.resize(img, (w, h)) inp = cv2.warpAffine( img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR) if not self.keep_res: out_h = input_h // self.down_ratio out_w = input_w // self.down_ratio trans_output = get_affine_transform(c, s, 0, [out_w, out_h]) im_info.update({ 'center': c, 'scale': s, 'out_height': out_h, 'out_width': out_w, 'inp_height': input_h, 'inp_width': input_w, 'trans_input': trans_input, 'trans_output': trans_output, }) return inp, im_info class CULaneResize(object): def __init__(self, img_h, img_w, cut_height, prob=0.5): super(CULaneResize, self).__init__() self.img_h = img_h self.img_w = img_w self.cut_height = cut_height self.prob = prob def __call__(self, im, im_info): # cut im = im[self.cut_height:, :, :] # resize transform = iaa.Sometimes(self.prob, iaa.Resize({ "height": self.img_h, "width": self.img_w })) im = transform(image=im.copy().astype(np.uint8)) im = im.astype(np.float32) / 255. # check transpose is need whether the func decode_image is equal to CULaneDataSet cv.imread im = im.transpose(2, 0, 1) return im, im_info def preprocess(im, preprocess_ops): # process image by preprocess_ops im_info = { 'scale_factor': np.array( [1., 1.], dtype=np.float32), 'im_shape': None, } im, im_info = decode_image(im, im_info) for operator in preprocess_ops: im, im_info = operator(im, im_info) return im, im_info
PaddleDetection/deploy/python/preprocess.py/0
{ "file_path": "PaddleDetection/deploy/python/preprocess.py", "repo_id": "PaddleDetection", "token_count": 9466 }
71
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import onnx import onnx_graphsurgeon import numpy as np from collections import OrderedDict from paddle2onnx.command import program2onnx parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--onnx_file', required=True, type=str, help='onnx model path') parser.add_argument( '--model_dir', type=str, default=None, help=("Directory include:'model.pdiparams', 'model.pdmodel', " "'infer_cfg.yml', created by tools/export_model.py.")) parser.add_argument( "--opset_version", type=int, default=11, help="set onnx opset version to export") parser.add_argument( '--topk_all', type=int, default=300, help='topk objects for every images') parser.add_argument( '--iou_thres', type=float, default=0.7, help='iou threshold for NMS') parser.add_argument( '--conf_thres', type=float, default=0.01, help='conf threshold for NMS') def main(FLAGS): assert os.path.exists(FLAGS.onnx_file) onnx_model = onnx.load(FLAGS.onnx_file) graph = onnx_graphsurgeon.import_onnx(onnx_model) graph.toposort() graph.fold_constants() graph.cleanup() num_anchors = graph.outputs[1].shape[2] num_classes = graph.outputs[1].shape[1] scores = onnx_graphsurgeon.Variable( name='scores', shape=[-1, num_anchors, num_classes], dtype=np.float32) graph.layer( op='Transpose', name='lastTranspose', inputs=[graph.outputs[1]], outputs=[scores], attrs=OrderedDict(perm=[0, 2, 1])) attrs = OrderedDict( plugin_version="1", background_class=-1, max_output_boxes=FLAGS.topk_all, score_threshold=FLAGS.conf_thres, iou_threshold=FLAGS.iou_thres, score_activation=False, box_coding=0, ) outputs = [ onnx_graphsurgeon.Variable("num_dets", np.int32, [-1, 1]), onnx_graphsurgeon.Variable("det_boxes", np.float32, [-1, FLAGS.topk_all, 4]), onnx_graphsurgeon.Variable("det_scores", np.float32, [-1, FLAGS.topk_all]), onnx_graphsurgeon.Variable("det_classes", np.int32, [-1, FLAGS.topk_all]) ] graph.layer( op='EfficientNMS_TRT', name="batched_nms", inputs=[graph.outputs[0], scores], outputs=outputs, attrs=attrs) graph.outputs = outputs graph.cleanup().toposort() onnx.save(onnx_graphsurgeon.export_onnx(graph), FLAGS.onnx_file) print(f"The modified onnx model is saved in {FLAGS.onnx_file}") if __name__ == '__main__': FLAGS = parser.parse_args() if FLAGS.model_dir is not None: assert os.path.exists(FLAGS.model_dir) program2onnx( model_dir=FLAGS.model_dir, save_file=FLAGS.onnx_file, model_filename="model.pdmodel", params_filename="model.pdiparams", opset_version=FLAGS.opset_version, enable_onnx_checker=True) main(FLAGS)
PaddleDetection/deploy/third_engine/demo_onnx_trt/onnx_custom.py/0
{ "file_path": "PaddleDetection/deploy/third_engine/demo_onnx_trt/onnx_custom.py", "repo_id": "PaddleDetection", "token_count": 1608 }
72
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np import argparse from scipy.special import softmax from openvino.runtime import Core def image_preprocess(img_path, re_shape): img = cv2.imread(img_path) img = cv2.resize( img, (re_shape, re_shape), interpolation=cv2.INTER_LANCZOS4) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = np.transpose(img, [2, 0, 1]) / 255 img = np.expand_dims(img, 0) img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) img -= img_mean img /= img_std return img.astype(np.float32) def get_color_map_list(num_classes): color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map def draw_box(srcimg, results, class_label): label_list = list( map(lambda x: x.strip(), open(class_label, 'r').readlines())) for i in range(len(results)): color_list = get_color_map_list(len(label_list)) clsid2color = {} classid, conf = int(results[i, 0]), results[i, 1] xmin, ymin, xmax, ymax = int(results[i, 2]), int(results[i, 3]), int( results[i, 4]), int(results[i, 5]) if classid not in clsid2color: clsid2color[classid] = color_list[classid] color = tuple(clsid2color[classid]) cv2.rectangle(srcimg, (xmin, ymin), (xmax, ymax), color, thickness=2) print(label_list[classid] + ': ' + str(round(conf, 3))) cv2.putText( srcimg, label_list[classid] + ':' + str(round(conf, 3)), (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), thickness=2) return srcimg def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): """ Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes """ scores = box_scores[:, -1] boxes = box_scores[:, :-1] picked = [] indexes = np.argsort(scores) indexes = indexes[-candidate_size:] while len(indexes) > 0: current = indexes[-1] picked.append(current) if 0 < top_k == len(picked) or len(indexes) == 1: break current_box = boxes[current, :] indexes = indexes[:-1] rest_boxes = boxes[indexes, :] iou = iou_of( rest_boxes, np.expand_dims( current_box, axis=0), ) indexes = indexes[iou <= iou_threshold] return box_scores[picked, :] def iou_of(boxes0, boxes1, eps=1e-5): """Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values. """ overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) overlap_area = area_of(overlap_left_top, overlap_right_bottom) area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) return overlap_area / (area0 + area1 - overlap_area + eps) def area_of(left_top, right_bottom): """Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area. """ hw = np.clip(right_bottom - left_top, 0.0, None) return hw[..., 0] * hw[..., 1] class PicoDetNMS(object): """ Args: input_shape (int): network input image size scale_factor (float): scale factor of ori image """ def __init__(self, input_shape, scale_x, scale_y, strides=[8, 16, 32, 64], score_threshold=0.4, nms_threshold=0.5, nms_top_k=1000, keep_top_k=100): self.input_shape = input_shape self.scale_x = scale_x self.scale_y = scale_y self.strides = strides self.score_threshold = score_threshold self.nms_threshold = nms_threshold self.nms_top_k = nms_top_k self.keep_top_k = keep_top_k def __call__(self, decode_boxes, select_scores): batch_size = 1 out_boxes_list = [] for batch_id in range(batch_size): # nms bboxes = np.concatenate(decode_boxes, axis=0) confidences = np.concatenate(select_scores, axis=0) picked_box_probs = [] picked_labels = [] for class_index in range(0, confidences.shape[1]): probs = confidences[:, class_index] mask = probs > self.score_threshold probs = probs[mask] if probs.shape[0] == 0: continue subset_boxes = bboxes[mask, :] box_probs = np.concatenate( [subset_boxes, probs.reshape(-1, 1)], axis=1) box_probs = hard_nms( box_probs, iou_threshold=self.nms_threshold, top_k=self.keep_top_k, ) picked_box_probs.append(box_probs) picked_labels.extend([class_index] * box_probs.shape[0]) if len(picked_box_probs) == 0: out_boxes_list.append(np.empty((0, 4))) else: picked_box_probs = np.concatenate(picked_box_probs) # resize output boxes picked_box_probs[:, 0] *= self.scale_x picked_box_probs[:, 2] *= self.scale_x picked_box_probs[:, 1] *= self.scale_y picked_box_probs[:, 3] *= self.scale_y # clas score box out_boxes_list.append( np.concatenate( [ np.expand_dims( np.array(picked_labels), axis=-1), np.expand_dims( picked_box_probs[:, 4], axis=-1), picked_box_probs[:, :4] ], axis=1)) out_boxes_list = np.concatenate(out_boxes_list, axis=0) return out_boxes_list def detect(img_file, compiled_model, class_label): output = compiled_model.infer_new_request({0: test_image}) result_ie = list(output.values()) decode_boxes = [] select_scores = [] num_outs = int(len(result_ie) / 2) for out_idx in range(num_outs): decode_boxes.append(result_ie[out_idx]) select_scores.append(result_ie[out_idx + num_outs]) image = cv2.imread(img_file, 1) scale_x = image.shape[1] / test_image.shape[3] scale_y = image.shape[0] / test_image.shape[2] nms = PicoDetNMS(test_image.shape[2:], scale_x, scale_y) np_boxes = nms(decode_boxes, select_scores) res_image = draw_box(image, np_boxes, class_label) cv2.imwrite('res.jpg', res_image) cv2.imshow("res", res_image) cv2.waitKey() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--img_path', type=str, default='../../demo_onnxruntime/imgs/bus.jpg', help="image path") parser.add_argument( '--onnx_path', type=str, default='out_onnxsim_infer/picodet_s_320_postproccesed_woNMS.onnx', help="onnx filepath") parser.add_argument('--in_shape', type=int, default=320, help="input_size") parser.add_argument( '--class_label', type=str, default='coco_label.txt', help="class label file") args = parser.parse_args() ie = Core() net = ie.read_model(args.onnx_path) test_image = image_preprocess(args.img_path, args.in_shape) compiled_model = ie.compile_model(net, 'CPU') detect(args.img_path, compiled_model, args.class_label)
PaddleDetection/deploy/third_engine/demo_openvino/python/openvino_infer.py/0
{ "file_path": "PaddleDetection/deploy/third_engine/demo_openvino/python/openvino_infer.py", "repo_id": "PaddleDetection", "token_count": 4564 }
73
# 模型库和基线 # 内容 - [基础设置](#基础设置) - [测试环境](#测试环境) - [通用设置](#通用设置) - [训练策略](#训练策略) - [ImageNet预训练模型](#ImageNet预训练模型) - [基线](#基线) - [目标检测](#目标检测) - [实例分割](#实例分割) - [PaddleYOLO](#PaddleYOLO) - [人脸检测](#人脸检测) - [旋转框检测](#旋转框检测) - [关键点检测](#关键点检测) - [多目标跟踪](#多目标跟踪) # 基础设置 ## 测试环境 - Python 3.7 - PaddlePaddle 每日版本 - CUDA 10.1 - cuDNN 7.5 - NCCL 2.4.8 ## 通用设置 - 所有模型均在COCO17数据集中训练和测试。 - [YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5)、[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov6)、[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov7)和[YOLOv8](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov8)这几类模型的代码在[PaddleYOLO](https://github.com/PaddlePaddle/PaddleYOLO)中,**PaddleYOLO库开源协议为GPL 3.0**。 - 除非特殊说明,所有ResNet骨干网络采用[ResNet-B](https://arxiv.org/pdf/1812.01187)结构。 - **推理时间(fps)**: 推理时间是在一张Tesla V100的GPU上通过'tools/eval.py'测试所有验证集得到,单位是fps(图片数/秒), cuDNN版本是7.5,包括数据加载、网络前向执行和后处理, batch size是1。 ## 训练策略 - 我们采用和[Detectron](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#training-schedules)相同的训练策略。 - 1x 策略表示:在总batch size为8时,初始学习率为0.01,在8 epoch和11 epoch后学习率分别下降10倍,最终训练12 epoch。 - 2x 策略为1x策略的两倍,同时学习率调整的epoch数位置也为1x的两倍。 ## ImageNet预训练模型 Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型均通过标准的Imagenet-1k数据集训练得到,ResNet和MobileNet等是采用余弦学习率调整策略或SSLD知识蒸馏训练得到的高精度预训练模型,可在[PaddleClas](https://github.com/PaddlePaddle/PaddleClas)查看模型细节。 # 基线 ## 目标检测 ### Faster R-CNN 请参考[Faster R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/) ### YOLOv3 请参考[YOLOv3](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/) ### PP-YOLOE/PP-YOLOE+ 请参考[PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe/) ### PP-YOLO/PP-YOLOv2 请参考[PP-YOLO](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/) ### PicoDet 请参考[PicoDet](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet) ### RetinaNet 请参考[RetinaNet](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/retinanet/) ### Cascade R-CNN 请参考[Cascade R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn) ### SSD/SSDLite 请参考[SSD](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ssd/) ### FCOS 请参考[FCOS](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/fcos/) ### CenterNet 请参考[CenterNet](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/) ### TTFNet/PAFNet 请参考[TTFNet](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ttfnet/) ### Group Normalization 请参考[Group Normalization](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gn/) ### Deformable ConvNets v2 请参考[Deformable ConvNets v2](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dcn/) ### HRNets 请参考[HRNets](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/hrnet/) ### Res2Net 请参考[Res2Net](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/res2net/) ### ConvNeXt 请参考[ConvNeXt](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/convnext/) ### GFL 请参考[GFL](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gfl) ### TOOD 请参考[TOOD](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/tood) ### PSS-DET(RCNN-Enhance) 请参考[PSS-DET](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rcnn_enhance) ### DETR 请参考[DETR](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/detr) ### Deformable DETR 请参考[Deformable DETR](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/deformable_detr) ### Sparse R-CNN 请参考[Sparse R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/sparse_rcnn) ### Vision Transformer 请参考[Vision Transformer](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/vitdet) ### DINO 请参考[DINO](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dino) ### YOLOX 请参考[YOLOX](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolox) ### YOLOF 请参考[YOLOF](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolof) ## 实例分割 ### Mask R-CNN 请参考[Mask R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/) ### Cascade R-CNN 请参考[Cascade R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn) ### SOLOv2 请参考[SOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/solov2/) ### QueryInst 请参考[QueryInst](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/queryinst) ## [PaddleYOLO](https://github.com/PaddlePaddle/PaddleYOLO) 请参考[PaddleYOLO模型库](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/docs/MODEL_ZOO_cn.md) ### YOLOv5 请参考[YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5) ### YOLOv6(v3.0) 请参考[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov6) ### YOLOv7 请参考[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov7) ### YOLOv8 请参考[YOLOv8](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov8) ### RTMDet 请参考[RTMDet](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/rtmdet) ## 人脸检测 请参考[人脸检测模型库](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/face_detection) ### BlazeFace 请参考[BlazeFace](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/face_detection/) ## 旋转框检测 请参考[旋转框检测模型库](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate) ### PP-YOLOE-R 请参考[PP-YOLOE-R](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/ppyoloe_r) ### FCOSR 请参考[FCOSR](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/fcosr) ### S2ANet 请参考[S2ANet](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet) ## 关键点检测 请参考[关键点检测模型库](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/keypoint) ### PP-TinyPose 请参考[PP-TinyPose](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/keypoint/tiny_pose) ### HRNet 请参考[HRNet](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/keypoint/hrnet) ### Lite-HRNet 请参考[Lite-HRNet](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/keypoint/lite_hrnet) ### HigherHRNet 请参考[HigherHRNet](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/keypoint/higherhrnet) ## 多目标跟踪 请参考[多目标跟踪模型库](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot) ### DeepSORT 请参考[DeepSORT](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort) ### ByteTrack 请参考[ByteTrack](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/bytetrack) ### OC-SORT 请参考[OC-SORT](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/ocsort) ### BoT-SORT 请参考[BoT-SORT](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/botsort) ### CenterTrack 请参考[CenterTrack](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/centertrack) ### FairMOT/MC-FairMOT 请参考[FairMOT](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/fairmot) ### JDE 请参考[JDE](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde)
PaddleDetection/docs/MODEL_ZOO_cn.md/0
{ "file_path": "PaddleDetection/docs/MODEL_ZOO_cn.md", "repo_id": "PaddleDetection", "token_count": 4345 }
74
[简体中文](./detection.md) | English # Customize Object Detection task In the practical application of object detection algorithms in a specific industry, additional training is often required for practical use. The project iteration will also need to modify categories. This document details how to use PaddleDetection for a customized object detection algorithm. The process includes data preparation, model optimization roadmap, and modifying the category development process. ## Data Preparation Customization starts with the preparation of the dataset. We need to collect suitable data for the scenario features, so as to improve the model effect and generalization performance. Then Labeme, LabelImg and other labeling tools will be used to label the object detection bouding boxes and convert the labeling results into COCO or VOC data format. Details please refer to [Data Preparation](../../tutorials/data/PrepareDetDataSet_en.md) ## Model Optimization ### 1. Use customized dataset for training Modify the corresponding path in the data configuration file based on the prepared data, for example: configs/dataset/coco_detection.yml`: ``` metric: COCO num_classes: 80 TrainDataset: !COCODataSet image_dir: train2017 # Path to the images of the training set relative to the dataset_dir anno_path: annotations/instances_train2017.json # Path to the annotation file of the training set relative to the dataset_dir dataset_dir: dataset/coco # Path to the dataset relative to the PaddleDetection path data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd'] EvalDataset: !COCODataSet image_dir: val2017 # Path to the images of the evaldataset set relative to the dataset_dir anno_path: annotations/instances_val2017.json # Path to the annotation file of the evaldataset relative to the dataset_dir dataset_dir: dataset/coco # Path to the dataset relative to the PaddleDetection path TestDataset: !ImageFolder anno_path: annotations/instances_val2017.json # also support txt (like VOC's label_list.txt) # Path to the annotation files relative to dataset_di. dataset_dir: dataset/coco # if set, anno_path will be 'dataset_dir/anno_path' # Path to the dataset relative to the PaddleDetection path ``` Once the configuration changes are completed, the training evaluation can be started with the following command ``` export CUDA_VISIBLE_DEVICES=0 python tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml --eval ``` More details please refer to [Getting Started for PaddleDetection](../../tutorials/GETTING_STARTED_cn.md) ### ### 2. Load the COCO model as pre-training The currently provided pre-trained models in PaddleDetection's configurations are weights from the ImageNet dataset, loaded into the backbone network of the detection algorithm. For practical use, it is recommended to load the weights trained on the COCO dataset, which can usually provide a large improvement to the model accuracy. The method is as follows. #### 1) Set pre-training weight path The trained model weights for the COCO dataset are saved in the configuration folder of each algorithm, for example, PP-YOLOE-l COCO dataset weights are provided under `configs/ppyoloe`: [Link](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams) The configuration file sets`pretrain_weights: https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams` #### 2) Modify hyperparameters After loading the COCO pre-training weights, the learning rate hyperparameters need to be modified, for example In `configs/ppyoloe/_base_/optimizer_300e.yml`: ``` epoch: 120 # The original configuration is 300 epoch, after loading COCO weights, the iteration number can be reduced appropriately LearningRate: base_lr: 0.005 # The original configuration is 0.025, after loading COCO weights, the learning rate should be reduced. schedulers: - !CosineDecay max_epochs: 144 # Modify based on the number of epochs - LinearWarmup start_factor: 0. epochs: 5 ``` ## Modify categories When the actual application scenario category changes, the data configuration file needs to be modified, for example in `configs/datasets/coco_detection.yml`: ``` metric: COCO num_classes: 10 # original class 80 ``` After the configuration changes are completed, the COCO pre-training weights can also be loaded. PaddleDetection supports automatic loading of shape-matching weights, and weights that do not match the shape are automatically ignored, so no other modifications are needed.
PaddleDetection/docs/advanced_tutorials/customization/detection_en.md/0
{ "file_path": "PaddleDetection/docs/advanced_tutorials/customization/detection_en.md", "repo_id": "PaddleDetection", "token_count": 1262 }
75
from collections import defaultdict from pathlib import Path import cv2 import numpy as np import paddle.vision.transforms as T from openvino.inference_engine import IECore from ppdet.modeling.mot.tracker import JDETracker from ppdet.modeling.mot.visualization import plot_tracking_dict root_path = Path(__file__).parent target_height = 320 target_width = 576 # ------------------------------- def get_net(): ie = IECore() model_path = root_path / "fairmot_576_320_v3.onnx" net = ie.read_network(model= str(model_path)) exec_net = ie.load_network(network=net, device_name="CPU") return net, exec_net def get_output_names(net): output_names = [key for key in net.outputs] return output_names def prepare_input(): transforms = [ T.Resize(size=(target_height, target_width)), T.Normalize(mean=(0,0,0), std=(1,1,1), data_format='HWC', to_rgb= True), T.Transpose() ] img_file = root_path / "street.jpeg" img = cv2.imread(str(img_file)) normalized_img = T.Compose(transforms)(img) normalized_img = normalized_img.astype(np.float32, copy=False) / 255.0 # add an new axis in front img_input = normalized_img[np.newaxis, :] # scale_factor is calculated as: im_shape / original_im_shape h_scale = target_height / img.shape[0] w_scale = target_width / img.shape[1] input = {"image": img_input, "im_shape": [target_height, target_width], "scale_factor": [h_scale, w_scale]} return input, img def predict(exec_net, input): result = exec_net.infer(input) return result def postprocess(pred_dets, pred_embs, threshold = 0.5): tracker = JDETracker() online_targets_dict = tracker.update(pred_dets, pred_embs) online_tlwhs = defaultdict(list) online_scores = defaultdict(list) online_ids = defaultdict(list) for cls_id in range(1): online_targets = online_targets_dict[cls_id] for t in online_targets: tlwh = t.tlwh tid = t.track_id tscore = t.score # make sure the tscore is no less then the threshold. if tscore < threshold: continue # make sure the target area is not less than the min_box_area. if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue # make sure the vertical ratio of a found target is within the range (1.6 as default ratio). if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[3] > tracker.vertical_ratio: continue online_tlwhs[cls_id].append(tlwh) online_ids[cls_id].append(tid) online_scores[cls_id].append(tscore) online_im = plot_tracking_dict( img, 1, online_tlwhs, online_ids, online_scores, frame_id=0) return online_im # ------------------------------- net, exec_net = get_net() output_names = get_output_names(net) del net input, img = prepare_input() result = predict(exec_net, input) pred_dets = result[output_names[0]] pred_embs = result[output_names[1]] processed_img = postprocess(pred_dets, pred_embs) tracked_img_file_path = root_path / "tracked.jpg" cv2.imwrite(str(tracked_img_file_path), processed_img)
PaddleDetection/docs/advanced_tutorials/openvino_inference/fairmot_onnx_openvino.py/0
{ "file_path": "PaddleDetection/docs/advanced_tutorials/openvino_inference/fairmot_onnx_openvino.py", "repo_id": "PaddleDetection", "token_count": 1355 }
76
[English](QUICK_STARTED.md) | 简体中文 # 快速开始 为了使得用户能够在很短时间内快速产出模型,掌握PaddleDetection的使用方式,这篇教程通过一个预训练检测模型对小数据集进行finetune。在较短时间内即可产出一个效果不错的模型。实际业务中,建议用户根据需要选择合适模型配置文件进行适配。 - **设置显卡** ```bash export CUDA_VISIBLE_DEVICES=0 ``` ## 一、快速体验 ``` # 用PP-YOLO算法在COCO数据集上预训练模型预测一张图片 python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o use_gpu=true weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_img=demo/000000014439.jpg ``` 结果如下图: ![demo image](../images/000000014439.jpg) ## 二、准备数据 数据集参考[Kaggle数据集](https://www.kaggle.com/andrewmvd/road-sign-detection) ,包含877张图像,数据类别4类:crosswalk,speedlimit,stop,trafficlight。 将数据划分为训练集701张图和测试集176张图,[下载链接](https://paddlemodels.bj.bcebos.com/object_detection/roadsign_voc.tar). ``` # 注意:可跳过这步下载,后面训练会自动下载 python dataset/roadsign_voc/download_roadsign_voc.py ``` ## 三、训练、评估、预测 ### 1、训练 ``` # 边训练边测试 CPU需要约1小时(use_gpu=false),1080Ti GPU需要约10分钟 # -c 参数表示指定使用哪个配置文件 # -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置),这里设置使用gpu # --eval 参数表示边训练边评估,最后会自动保存一个名为model_final.pdparams的模型 python tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml --eval -o use_gpu=true ``` 如果想通过VisualDL实时观察loss变化曲线,在训练命令中添加--use_vdl=true,以及通过--vdl_log_dir设置日志保存路径。 **但注意VisualDL需Python>=3.5** 首先安装[VisualDL](https://github.com/PaddlePaddle/VisualDL) ``` python -m pip install visualdl -i https://mirror.baidu.com/pypi/simple ``` ``` python -u tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml \ --use_vdl=true \ --vdl_log_dir=vdl_dir/scalar \ --eval ``` 通过visualdl命令实时查看变化曲线: ``` visualdl --logdir vdl_dir/scalar/ --host <host_IP> --port <port_num> ``` ### 2、评估 ``` # 评估 默认使用训练过程中保存的model_final.pdparams # -c 参数表示指定使用哪个配置文件 # -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置) # 目前只支持单卡评估 python tools/eval.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true ``` 最终模型精度在mAP=0.85左右,由于数据集较小因此每次训练结束后精度会有一定波动 ### 3、预测 ``` # -c 参数表示指定使用哪个配置文件 # -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置) # --infer_img 参数指定预测图像路径 # 预测结束后会在output文件夹中生成一张画有预测结果的同名图像 python tools/infer.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true --infer_img=demo/road554.png ``` 结果如下图: ![road554 image](../images/road554.png)
PaddleDetection/docs/tutorials/QUICK_STARTED_cn.md/0
{ "file_path": "PaddleDetection/docs/tutorials/QUICK_STARTED_cn.md", "repo_id": "PaddleDetection", "token_count": 2109 }
77
简体中文 | [English](PrepareMOTDataSet_en.md) # 多目标跟踪数据集准备 ## 目录 - [简介和模型选型](#简介和模型选型) - [MOT数据集准备](#MOT数据集准备) - [SDE数据集](#SDE数据集) - [JDE数据集](#JDE数据集) - [用户自定义数据集准备](#用户自定义数据集准备) - [SDE数据集](#SDE数据集) - [JDE数据集](#JDE数据集) - [引用](#引用) ## 简介和模型选型 PaddleDetection中提供了SDE和JDE两个系列的多种算法实现: - SDE(Separate Detection and Embedding) - [ByteTrack](../../../configs/mot/bytetrack) - [DeepSORT](../../../configs/mot/deepsort) - JDE(Joint Detection and Embedding) - [JDE](../../../configs/mot/jde) - [FairMOT](../../../configs/mot/fairmot) - [MCFairMOT](../../../configs/mot/mcfairmot) **注意:** - 以上算法原论文均为单类别的多目标跟踪,PaddleDetection团队同时也支持了[ByteTrack](./bytetrack)和FairMOT([MCFairMOT](./mcfairmot))的多类别的多目标跟踪; - [DeepSORT](../../../configs/mot/deepsort)和[JDE](../../../configs/mot/jde)均只支持单类别的多目标跟踪; - [DeepSORT](../../../configs/mot/deepsort)需要额外添加ReID权重一起执行,[ByteTrack](../../../configs/mot/bytetrack)可加可不加ReID权重,默认不加; 关于模型选型,PaddleDetection团队提供的总结建议如下: | MOT方式 | 经典算法 | 算法流程 | 数据集要求 | 其他特点 | | :--------------| :--------------| :------- | :----: | :----: | | SDE系列 | DeepSORT,ByteTrack | 分离式,两个独立模型权重先检测后ReID,也可不加ReID | 检测和ReID数据相对独立,不加ReID时即纯检测数据集 |检测和ReID可分别调优,鲁棒性较高,AI竞赛常用| | JDE系列 | FairMOT | 联合式,一个模型权重端到端同时检测和ReID | 必须同时具有检测和ReID标注 | 检测和ReID联合训练,不易调优,泛化性不强| **注意:** - 由于数据标注的成本较大,建议选型前优先考虑**数据集要求**,如果数据集只有检测框标注而没有ReID标注,是无法使用JDE系列算法训练的,更推荐使用SDE系列; - SDE系列算法在检测器精度足够高时,也可以不使用ReID权重进行物体间的长时序关联,可以参照[ByteTrack](bytetrack); - 耗时速度和模型权重参数量计算量有一定关系,耗时从理论上看`不使用ReID的SDE系列 < JDE系列 < 使用ReID的SDE系列`; ## MOT数据集准备 PaddleDetection团队提供了众多公开数据集或整理后数据集的下载链接,参考[数据集下载汇总](../../../configs/mot/DataDownload.md),用户可以自行下载使用。 根据模型选型总结,MOT数据集可以分为两类:一类纯检测框标注的数据集,仅SDE系列可以使用;另一类是同时有检测和ReID标注的数据集,SDE系列和JDE系列都可以使用。 ### SDE数据集 SDE数据集是纯检测标注的数据集,用户自定义数据集可以参照[DET数据准备文档](./PrepareDetDataSet.md)准备。 以MOT17数据集为例,下载并解压放在`PaddleDetection/dataset/mot`目录下: ``` wget https://bj.bcebos.com/v1/paddledet/data/mot/MOT17.zip ``` 并修改数据集部分的配置文件如下: ``` num_classes: 1 TrainDataset: !COCODataSet dataset_dir: dataset/mot/MOT17 anno_path: annotations/train_half.json image_dir: images/train data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd'] EvalDataset: !COCODataSet dataset_dir: dataset/mot/MOT17 anno_path: annotations/val_half.json image_dir: images/train TestDataset: !ImageFolder dataset_dir: dataset/mot/MOT17 anno_path: annotations/val_half.json ``` 数据集目录为: ``` dataset/mot |——————MOT17 |——————annotations |——————images ``` ### JDE数据集 JDE数据集是同时有检测和ReID标注的数据集,首先按照以下命令`image_lists.zip`并解压放在`PaddleDetection/dataset/mot`目录下: ``` wget https://bj.bcebos.com/v1/paddledet/data/mot/image_lists.zip ``` 然后按照以下命令可以快速下载各个公开数据集,也解压放在`PaddleDetection/dataset/mot`目录下: ``` # MIX数据,同JDE,FairMOT论文使用的数据集 wget https://bj.bcebos.com/v1/paddledet/data/mot/MOT17.zip wget https://bj.bcebos.com/v1/paddledet/data/mot/Caltech.zip wget https://bj.bcebos.com/v1/paddledet/data/mot/CUHKSYSU.zip wget https://bj.bcebos.com/v1/paddledet/data/mot/PRW.zip wget https://bj.bcebos.com/v1/paddledet/data/mot/Cityscapes.zip wget https://bj.bcebos.com/v1/paddledet/data/mot/ETHZ.zip wget https://bj.bcebos.com/v1/paddledet/data/mot/MOT16.zip ``` 数据集目录为: ``` dataset/mot |——————image_lists |——————caltech.all |——————citypersons.train |——————cuhksysu.train |——————eth.train |——————mot16.train |——————mot17.train |——————prw.train |——————Caltech |——————Cityscapes |——————CUHKSYSU |——————ETHZ |——————MOT16 |——————MOT17 |——————PRW ``` #### JDE数据集的格式 这几个相关数据集都遵循以下结构: ``` MOT17 |——————images | └——————train | └——————test └——————labels_with_ids └——————train ``` 所有数据集的标注是以统一数据格式提供的。各个数据集中每张图片都有相应的标注文本。给定一个图像路径,可以通过将字符串`images`替换为`labels_with_ids`并将`.jpg`替换为`.txt`来生成标注文本路径。在标注文本中,每行都描述一个边界框,格式如下: ``` [class] [identity] [x_center] [y_center] [width] [height] ``` - `class`为类别id,支持单类别和多类别,从`0`开始计,单类别即为`0`。 - `identity`是从`1`到`num_identities`的整数(`num_identities`是数据集中所有视频或图片序列的不同物体实例的总数),如果此框没有`identity`标注,则为`-1`。 - `[x_center] [y_center] [width] [height]`是中心点坐标和宽高,注意他们的值是由图片的宽度/高度标准化的,因此它们是从0到1的浮点数。 **注意:** - MIX数据集是[JDE](https://github.com/Zhongdao/Towards-Realtime-MOT)和[FairMOT](https://github.com/ifzhang/FairMOT)原论文使用的数据集,包括**Caltech Pedestrian, CityPersons, CUHK-SYSU, PRW, ETHZ, MOT17和MOT16**。使用前6者作为联合数据集参与训练,MOT16作为评测数据集。如果您想使用这些数据集,请**遵循他们的License**。 - MIX数据集以及其子数据集都是单类别的行人跟踪数据集,可认为相比于行人检测数据集多了id号的标注。 - 更多场景的垂类模型例如车辆行人人头跟踪等,垂类数据集也需要处理成与MIX数据集相同的格式,参照[数据集下载汇总](DataDownload.md)、[车辆跟踪](vehicle/README_cn.md)、[人头跟踪](headtracking21/README_cn.md)以及更通用的[行人跟踪](pedestrian/README_cn.md)。 - 用户自定义数据集可参照[MOT数据集准备教程](../../docs/tutorials/PrepareMOTDataSet_cn.md)去准备。 ## 用户自定义数据集准备 ### SDE数据集 如果用户选择SDE系列方案,是准备准检测标注的自定义数据集,则可以参照[DET数据准备文档](./PrepareDetDataSet.md)准备。 ### JDE数据集 如果用户选择JDE系列方案,则需要同时具有检测和ReID标注,且符合MOT-17数据集的格式。 为了规范地进行训练和评测,用户数据需要转成和MOT-17数据集相同的目录和格式: ``` custom_data |——————images | └——————test | └——————train | └——————seq1 | | └——————gt | | | └——————gt.txt | | └——————img1 | | | └——————000001.jpg | | | |——————000002.jpg | | | └—————— ... | | └——————seqinfo.ini | └——————seq2 | └——————... └——————labels_with_ids └——————train └——————seq1 | └——————000001.txt | |——————000002.txt | └—————— ... └——————seq2 └—————— ... ``` ##### images文件夹 - `gt.txt`是原始标注文件,而训练所用标注是`labels_with_ids`文件夹。 - `gt.txt`里是当前视频中所有图片的原始标注文件,每行都描述一个边界框,格式如下: ``` [frame_id],[identity],[bb_left],[bb_top],[width],[height],[score],[label],[vis_ratio] ``` - `img1`文件夹里是按照一定帧率抽好的图片。 - `seqinfo.ini`文件是视频信息描述文件,需要如下格式的信息: ``` [Sequence] name=MOT17-02 imDir=img1 frameRate=30 seqLength=600 imWidth=1920 imHeight=1080 imExt=.jpg ``` 其中`gt.txt`里是当前视频中所有图片的原始标注文件,每行都描述一个边界框,格式如下: ``` [frame_id],[identity],[bb_left],[bb_top],[width],[height],[score],[label],[vis_ratio] ``` **注意**: - `frame_id`为当前图片帧序号 - `identity`是从`1`到`num_identities`的整数(`num_identities`是**当前视频或图片序列**的不同物体实例的总数),如果此框没有`identity`标注,则为`-1`。 - `bb_left`是目标框的左边界的x坐标 - `bb_top`是目标框的上边界的y坐标 - `width,height`是真实的像素宽高 - `score`是当前目标是否进入考虑范围内的标志(值为0表示此目标在计算中被忽略,而值为1则用于将其标记为活动实例),默认为`1` - `label`是当前目标的种类标签,由于目前仅支持单类别跟踪,默认为`1`,MOT-16数据集中会有其他类别标签,但都是当作ignore类别计算 - `vis_ratio`是当前目标被其他目标包含或覆挡后的可见率,是从0到1的浮点数,默认为`1` ##### labels_with_ids文件夹 所有数据集的标注是以统一数据格式提供的。各个数据集中每张图片都有相应的标注文本。给定一个图像路径,可以通过将字符串`images`替换为`labels_with_ids`并将`.jpg`替换为`.txt`来生成标注文本路径。在标注文本中,每行都描述一个边界框,格式如下: ``` [class] [identity] [x_center] [y_center] [width] [height] ``` **注意**: - `class`为类别id,支持单类别和多类别,从`0`开始计,单类别即为`0`。 - `identity`是从`1`到`num_identities`的整数(`num_identities`是数据集中所有视频或图片序列的不同物体实例的总数),如果此框没有`identity`标注,则为`-1`。 - `[x_center] [y_center] [width] [height]`是中心点坐标和宽高,注意是由图片的宽度/高度标准化的,因此它们是从0到1的浮点数。 可采用如下脚本生成相应的`labels_with_ids`: ``` cd dataset/mot python gen_labels_MOT.py ``` ### 引用 Caltech: ``` @inproceedings{ dollarCVPR09peds, author = "P. Doll\'ar and C. Wojek and B. Schiele and P. Perona", title = "Pedestrian Detection: A Benchmark", booktitle = "CVPR", month = "June", year = "2009", city = "Miami", } ``` Citypersons: ``` @INPROCEEDINGS{Shanshan2017CVPR, Author = {Shanshan Zhang and Rodrigo Benenson and Bernt Schiele}, Title = {CityPersons: A Diverse Dataset for Pedestrian Detection}, Booktitle = {CVPR}, Year = {2017} } @INPROCEEDINGS{Cordts2016Cityscapes, title={The Cityscapes Dataset for Semantic Urban Scene Understanding}, author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt}, booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2016} } ``` CUHK-SYSU: ``` @inproceedings{xiaoli2017joint, title={Joint Detection and Identification Feature Learning for Person Search}, author={Xiao, Tong and Li, Shuang and Wang, Bochao and Lin, Liang and Wang, Xiaogang}, booktitle={CVPR}, year={2017} } ``` PRW: ``` @inproceedings{zheng2017person, title={Person re-identification in the wild}, author={Zheng, Liang and Zhang, Hengheng and Sun, Shaoyan and Chandraker, Manmohan and Yang, Yi and Tian, Qi}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={1367--1376}, year={2017} } ``` ETHZ: ``` @InProceedings{eth_biwi_00534, author = {A. Ess and B. Leibe and K. Schindler and and L. van Gool}, title = {A Mobile Vision System for Robust Multi-Person Tracking}, booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR'08)}, year = {2008}, month = {June}, publisher = {IEEE Press}, keywords = {} } ``` MOT-16&17: ``` @article{milan2016mot16, title={MOT16: A benchmark for multi-object tracking}, author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad}, journal={arXiv preprint arXiv:1603.00831}, year={2016} } ```
PaddleDetection/docs/tutorials/data/PrepareMOTDataSet.md/0
{ "file_path": "PaddleDetection/docs/tutorials/data/PrepareMOTDataSet.md", "repo_id": "PaddleDetection", "token_count": 7868 }
78
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def bbox_area(boxes): return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) def intersection_over_box(chips, boxes): """ intersection area over box area :param chips: C :param boxes: B :return: iob, CxB """ M = chips.shape[0] N = boxes.shape[0] if M * N == 0: return np.zeros([M, N], dtype='float32') box_area = bbox_area(boxes) # B inter_x2y2 = np.minimum(np.expand_dims(chips, 1)[:, :, 2:], boxes[:, 2:]) # CxBX2 inter_x1y1 = np.maximum(np.expand_dims(chips, 1)[:, :, :2], boxes[:, :2]) # CxBx2 inter_wh = inter_x2y2 - inter_x1y1 inter_wh = np.clip(inter_wh, a_min=0, a_max=None) inter_area = inter_wh[:, :, 0] * inter_wh[:, :, 1] # CxB iob = inter_area / np.expand_dims(box_area, 0) return iob def clip_boxes(boxes, im_shape): """ Clip boxes to image boundaries. :param boxes: [N, 4] :param im_shape: tuple of 2, [h, w] :return: [N, 4] """ # x1 >= 0 boxes[:, 0] = np.clip(boxes[:, 0], 0, im_shape[1] - 1) # y1 >= 0 boxes[:, 1] = np.clip(boxes[:, 1], 0, im_shape[0] - 1) # x2 < im_shape[1] boxes[:, 2] = np.clip(boxes[:, 2], 1, im_shape[1]) # y2 < im_shape[0] boxes[:, 3] = np.clip(boxes[:, 3], 1, im_shape[0]) return boxes def transform_chip_box(gt_bbox: 'Gx4', boxes_idx: 'B', chip: '4'): boxes_idx = np.array(boxes_idx) cur_gt_bbox = gt_bbox[boxes_idx].copy() # Bx4 x1, y1, x2, y2 = chip cur_gt_bbox[:, 0] -= x1 cur_gt_bbox[:, 1] -= y1 cur_gt_bbox[:, 2] -= x1 cur_gt_bbox[:, 3] -= y1 h = y2 - y1 w = x2 - x1 cur_gt_bbox = clip_boxes(cur_gt_bbox, (h, w)) ws = (cur_gt_bbox[:, 2] - cur_gt_bbox[:, 0]).astype(np.int32) hs = (cur_gt_bbox[:, 3] - cur_gt_bbox[:, 1]).astype(np.int32) valid_idx = (ws >= 2) & (hs >= 2) return cur_gt_bbox[valid_idx], boxes_idx[valid_idx] def find_chips_to_cover_overlaped_boxes(iob, overlap_threshold): chip_ids, box_ids = np.nonzero(iob >= overlap_threshold) chip_id2overlap_box_num = np.bincount(chip_ids) # 1d array chip_id2overlap_box_num = np.pad( chip_id2overlap_box_num, (0, len(iob) - len(chip_id2overlap_box_num)), constant_values=0) chosen_chip_ids = [] while len(box_ids) > 0: value_counts = np.bincount(chip_ids) # 1d array max_count_chip_id = np.argmax(value_counts) assert max_count_chip_id not in chosen_chip_ids chosen_chip_ids.append(max_count_chip_id) box_ids_in_cur_chip = box_ids[chip_ids == max_count_chip_id] ids_not_in_cur_boxes_mask = np.logical_not( np.isin(box_ids, box_ids_in_cur_chip)) chip_ids = chip_ids[ids_not_in_cur_boxes_mask] box_ids = box_ids[ids_not_in_cur_boxes_mask] return chosen_chip_ids, chip_id2overlap_box_num def transform_chip_boxes2image_boxes(chip_boxes, chip, img_h, img_w): chip_boxes = np.array(sorted(chip_boxes, key=lambda item: -item[1])) xmin, ymin, _, _ = chip # Transform to origin image loc chip_boxes[:, 2] += xmin chip_boxes[:, 4] += xmin chip_boxes[:, 3] += ymin chip_boxes[:, 5] += ymin chip_boxes = clip_boxes(chip_boxes, (img_h, img_w)) return chip_boxes def nms(dets, thresh): """Apply classic DPM-style greedy NMS.""" if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 1] x1 = dets[:, 2] y1 = dets[:, 3] x2 = dets[:, 4] y2 = dets[:, 5] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int32) # nominal indices # _i, _j # sorted indices # i, j # temp variables for box i's (the box currently under consideration) # ix1, iy1, ix2, iy2, iarea # variables for computing overlap with box j (lower scoring box) # xx1, yy1, xx2, yy2 # w, h # inter, ovr for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets
PaddleDetection/ppdet/data/crop_utils/chip_box_utils.py/0
{ "file_path": "PaddleDetection/ppdet/data/crop_utils/chip_box_utils.py", "repo_id": "PaddleDetection", "token_count": 2636 }
79
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The code is based on: # https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/atss_assigner.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) def bbox_overlaps(bboxes1, bboxes2, mode='iou', is_aligned=False, eps=1e-6): """Calculate overlap between two set of bboxes. If ``is_aligned `` is ``False``, then calculate the overlaps between each bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned pair of bboxes1 and bboxes2. Args: bboxes1 (Tensor): shape (B, m, 4) in <x1, y1, x2, y2> format or empty. bboxes2 (Tensor): shape (B, n, 4) in <x1, y1, x2, y2> format or empty. B indicates the batch dim, in shape (B1, B2, ..., Bn). If ``is_aligned `` is ``True``, then m and n must be equal. mode (str): "iou" (intersection over union) or "iof" (intersection over foreground). is_aligned (bool, optional): If True, then m and n must be equal. Default False. eps (float, optional): A value added to the denominator for numerical stability. Default 1e-6. Returns: Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,) """ assert mode in ['iou', 'iof', 'giou', 'diou'], 'Unsupported mode {}'.format( mode) # Either the boxes are empty or the length of boxes's last dimenstion is 4 assert (bboxes1.shape[-1] == 4 or bboxes1.shape[0] == 0) assert (bboxes2.shape[-1] == 4 or bboxes2.shape[0] == 0) # Batch dim must be the same # Batch dim: (B1, B2, ... Bn) assert bboxes1.shape[:-2] == bboxes2.shape[:-2] batch_shape = bboxes1.shape[:-2] rows = bboxes1.shape[-2] if bboxes1.shape[0] > 0 else 0 cols = bboxes2.shape[-2] if bboxes2.shape[0] > 0 else 0 if is_aligned: assert rows == cols if rows * cols == 0: if is_aligned: return np.random.random(batch_shape + (rows, )) else: return np.random.random(batch_shape + (rows, cols)) area1 = (bboxes1[..., 2] - bboxes1[..., 0]) * ( bboxes1[..., 3] - bboxes1[..., 1]) area2 = (bboxes2[..., 2] - bboxes2[..., 0]) * ( bboxes2[..., 3] - bboxes2[..., 1]) if is_aligned: lt = np.maximum(bboxes1[..., :2], bboxes2[..., :2]) # [B, rows, 2] rb = np.minimum(bboxes1[..., 2:], bboxes2[..., 2:]) # [B, rows, 2] wh = (rb - lt).clip(min=0) # [B, rows, 2] overlap = wh[..., 0] * wh[..., 1] if mode in ['iou', 'giou']: union = area1 + area2 - overlap else: union = area1 if mode == 'giou': enclosed_lt = np.minimum(bboxes1[..., :2], bboxes2[..., :2]) enclosed_rb = np.maximum(bboxes1[..., 2:], bboxes2[..., 2:]) if mode == 'diou': enclosed_lt = np.minimum(bboxes1[..., :2], bboxes2[..., :2]) enclosed_rb = np.maximum(bboxes1[..., 2:], bboxes2[..., 2:]) b1_x1, b1_y1 = bboxes1[..., 0], bboxes1[..., 1] b1_x2, b1_y2 = bboxes1[..., 2], bboxes1[..., 3] b2_x1, b2_y1 = bboxes2[..., 0], bboxes2[..., 1] b2_x2, b2_y2 = bboxes2[..., 2], bboxes2[..., 3] else: lt = np.maximum(bboxes1[..., :, None, :2], bboxes2[..., None, :, :2]) # [B, rows, cols, 2] rb = np.minimum(bboxes1[..., :, None, 2:], bboxes2[..., None, :, 2:]) # [B, rows, cols, 2] wh = (rb - lt).clip(min=0) # [B, rows, cols, 2] overlap = wh[..., 0] * wh[..., 1] if mode in ['iou', 'giou']: union = area1[..., None] + area2[..., None, :] - overlap else: union = area1[..., None] if mode == 'giou': enclosed_lt = np.minimum(bboxes1[..., :, None, :2], bboxes2[..., None, :, :2]) enclosed_rb = np.maximum(bboxes1[..., :, None, 2:], bboxes2[..., None, :, 2:]) if mode == 'diou': enclosed_lt = np.minimum(bboxes1[..., :, None, :2], bboxes2[..., None, :, :2]) enclosed_rb = np.maximum(bboxes1[..., :, None, 2:], bboxes2[..., None, :, 2:]) b1_x1, b1_y1 = bboxes1[..., :, None, 0], bboxes1[..., :, None, 1] b1_x2, b1_y2 = bboxes1[..., :, None, 2], bboxes1[..., :, None, 3] b2_x1, b2_y1 = bboxes2[..., None, :, 0], bboxes2[..., None, :, 1] b2_x2, b2_y2 = bboxes2[..., None, :, 2], bboxes2[..., None, :, 3] eps = np.array([eps]) union = np.maximum(union, eps) ious = overlap / union if mode in ['iou', 'iof']: return ious # calculate gious if mode in ['giou']: enclose_wh = (enclosed_rb - enclosed_lt).clip(min=0) enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1] enclose_area = np.maximum(enclose_area, eps) gious = ious - (enclose_area - union) / enclose_area return gious if mode in ['diou']: left = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2))**2 / 4 right = ((b2_y1 + b2_y2) - (b1_y1 + b1_y2))**2 / 4 rho2 = left + right enclose_wh = (enclosed_rb - enclosed_lt).clip(min=0) enclose_c = enclose_wh[..., 0]**2 + enclose_wh[..., 1]**2 enclose_c = np.maximum(enclose_c, eps) dious = ious - rho2 / enclose_c return dious def topk_(input, k, axis=1, largest=True): x = -input if largest else input if axis == 0: row_index = np.arange(input.shape[1 - axis]) if k == x.shape[0]: # argpartition requires index < len(input) topk_index = np.argpartition(x, k - 1, axis=axis)[0:k, :] else: topk_index = np.argpartition(x, k, axis=axis)[0:k, :] topk_data = x[topk_index, row_index] topk_index_sort = np.argsort(topk_data, axis=axis) topk_data_sort = topk_data[topk_index_sort, row_index] topk_index_sort = topk_index[0:k, :][topk_index_sort, row_index] else: column_index = np.arange(x.shape[1 - axis])[:, None] topk_index = np.argpartition(x, k, axis=axis)[:, 0:k] topk_data = x[column_index, topk_index] topk_data = -topk_data if largest else topk_data topk_index_sort = np.argsort(topk_data, axis=axis) topk_data_sort = topk_data[column_index, topk_index_sort] topk_index_sort = topk_index[:, 0:k][column_index, topk_index_sort] return topk_data_sort, topk_index_sort class ATSSAssigner(object): """Assign a corresponding gt bbox or background to each bbox. Each proposals will be assigned with `0` or a positive integer indicating the ground truth index. - 0: negative sample, no assigned gt - positive integer: positive sample, index (1-based) of assigned gt Args: topk (float): number of bbox selected in each level """ def __init__(self, topk=9): self.topk = topk def __call__(self, bboxes, num_level_bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): """Assign gt to bboxes. The assignment is done in following steps 1. compute iou between all bbox (bbox of all pyramid levels) and gt 2. compute center distance between all bbox and gt 3. on each pyramid level, for each gt, select k bbox whose center are closest to the gt center, so we total select k*l bbox as candidates for each gt 4. get corresponding iou for the these candidates, and compute the mean and std, set mean + std as the iou threshold 5. select these candidates whose iou are greater than or equal to the threshold as postive 6. limit the positive sample's center in gt Args: bboxes (np.array): Bounding boxes to be assigned, shape(n, 4). num_level_bboxes (List): num of bboxes in each level gt_bboxes (np.array): Groundtruth boxes, shape (k, 4). gt_bboxes_ignore (np.array, optional): Ground truth bboxes that are labelled as `ignored`, e.g., crowd boxes in COCO. gt_labels (np.array, optional): Label of gt_bboxes, shape (k, ). """ bboxes = bboxes[:, :4] num_gt, num_bboxes = gt_bboxes.shape[0], bboxes.shape[0] # assign 0 by default assigned_gt_inds = np.zeros((num_bboxes, ), dtype=np.int64) if num_gt == 0 or num_bboxes == 0: # No ground truth or boxes, return empty assignment max_overlaps = np.zeros((num_bboxes, )) if num_gt == 0: # No truth, assign everything to background assigned_gt_inds[:] = 0 if not np.any(gt_labels): assigned_labels = None else: assigned_labels = -np.ones((num_bboxes, ), dtype=np.int64) return assigned_gt_inds, max_overlaps # compute iou between all bbox and gt overlaps = bbox_overlaps(bboxes, gt_bboxes) # compute center distance between all bbox and gt gt_cx = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0 gt_cy = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0 gt_points = np.stack((gt_cx, gt_cy), axis=1) bboxes_cx = (bboxes[:, 0] + bboxes[:, 2]) / 2.0 bboxes_cy = (bboxes[:, 1] + bboxes[:, 3]) / 2.0 bboxes_points = np.stack((bboxes_cx, bboxes_cy), axis=1) distances = np.sqrt( np.power((bboxes_points[:, None, :] - gt_points[None, :, :]), 2) .sum(-1)) # Selecting candidates based on the center distance candidate_idxs = [] start_idx = 0 for bboxes_per_level in num_level_bboxes: # on each pyramid level, for each gt, # select k bbox whose center are closest to the gt center end_idx = start_idx + bboxes_per_level distances_per_level = distances[start_idx:end_idx, :] selectable_k = min(self.topk, bboxes_per_level) _, topk_idxs_per_level = topk_( distances_per_level, selectable_k, axis=0, largest=False) candidate_idxs.append(topk_idxs_per_level + start_idx) start_idx = end_idx candidate_idxs = np.concatenate(candidate_idxs, axis=0) # get corresponding iou for the these candidates, and compute the # mean and std, set mean + std as the iou threshold candidate_overlaps = overlaps[candidate_idxs, np.arange(num_gt)] overlaps_mean_per_gt = candidate_overlaps.mean(0) overlaps_std_per_gt = candidate_overlaps.std(0) overlaps_thr_per_gt = overlaps_mean_per_gt + overlaps_std_per_gt is_pos = candidate_overlaps >= overlaps_thr_per_gt[None, :] # limit the positive sample's center in gt for gt_idx in range(num_gt): candidate_idxs[:, gt_idx] += gt_idx * num_bboxes ep_bboxes_cx = np.broadcast_to( bboxes_cx.reshape(1, -1), [num_gt, num_bboxes]).reshape(-1) ep_bboxes_cy = np.broadcast_to( bboxes_cy.reshape(1, -1), [num_gt, num_bboxes]).reshape(-1) candidate_idxs = candidate_idxs.reshape(-1) # calculate the left, top, right, bottom distance between positive # bbox center and gt side l_ = ep_bboxes_cx[candidate_idxs].reshape(-1, num_gt) - gt_bboxes[:, 0] t_ = ep_bboxes_cy[candidate_idxs].reshape(-1, num_gt) - gt_bboxes[:, 1] r_ = gt_bboxes[:, 2] - ep_bboxes_cx[candidate_idxs].reshape(-1, num_gt) b_ = gt_bboxes[:, 3] - ep_bboxes_cy[candidate_idxs].reshape(-1, num_gt) is_in_gts = np.stack([l_, t_, r_, b_], axis=1).min(axis=1) > 0.01 is_pos = is_pos & is_in_gts # if an anchor box is assigned to multiple gts, # the one with the highest IoU will be selected. overlaps_inf = -np.inf * np.ones_like(overlaps).T.reshape(-1) index = candidate_idxs.reshape(-1)[is_pos.reshape(-1)] overlaps_inf[index] = overlaps.T.reshape(-1)[index] overlaps_inf = overlaps_inf.reshape(num_gt, -1).T max_overlaps = overlaps_inf.max(axis=1) argmax_overlaps = overlaps_inf.argmax(axis=1) assigned_gt_inds[max_overlaps != -np.inf] = argmax_overlaps[max_overlaps != -np.inf] + 1 return assigned_gt_inds, max_overlaps def get_vlr_region(self, bboxes, num_level_bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): """get vlr region for ld distillation. Args: bboxes (np.array): Bounding boxes to be assigned, shape(n, 4). num_level_bboxes (List): num of bboxes in each level gt_bboxes (np.array): Groundtruth boxes, shape (k, 4). gt_bboxes_ignore (np.array, optional): Ground truth bboxes that are labelled as `ignored`, e.g., crowd boxes in COCO. gt_labels (np.array, optional): Label of gt_bboxes, shape (k, ). """ bboxes = bboxes[:, :4] num_gt, num_bboxes = gt_bboxes.shape[0], bboxes.shape[0] # compute iou between all bbox and gt overlaps = bbox_overlaps(bboxes, gt_bboxes) # compute diou between all bbox and gt diou = bbox_overlaps(bboxes, gt_bboxes, mode='diou') # assign 0 by default assigned_gt_inds = np.zeros((num_bboxes, ), dtype=np.int64) vlr_region_iou = (assigned_gt_inds + 0).astype(np.float32) if num_gt == 0 or num_bboxes == 0: # No ground truth or boxes, return empty assignment max_overlaps = np.zeros((num_bboxes, )) if num_gt == 0: # No truth, assign everything to background assigned_gt_inds[:] = 0 if not np.any(gt_labels): assigned_labels = None else: assigned_labels = -np.ones((num_bboxes, ), dtype=np.int64) return assigned_gt_inds, max_overlaps # compute center distance between all bbox and gt gt_cx = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0 gt_cy = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0 gt_points = np.stack((gt_cx, gt_cy), axis=1) bboxes_cx = (bboxes[:, 0] + bboxes[:, 2]) / 2.0 bboxes_cy = (bboxes[:, 1] + bboxes[:, 3]) / 2.0 bboxes_points = np.stack((bboxes_cx, bboxes_cy), axis=1) distances = np.sqrt( np.power((bboxes_points[:, None, :] - gt_points[None, :, :]), 2) .sum(-1)) # Selecting candidates based on the center distance candidate_idxs = [] candidate_idxs_t = [] start_idx = 0 for bboxes_per_level in num_level_bboxes: # on each pyramid level, for each gt, # select k bbox whose center are closest to the gt center end_idx = start_idx + bboxes_per_level distances_per_level = distances[start_idx:end_idx, :] selectable_t = min(self.topk, bboxes_per_level) selectable_k = bboxes_per_level #k for all _, topt_idxs_per_level = topk_( distances_per_level, selectable_t, axis=0, largest=False) _, topk_idxs_per_level = topk_( distances_per_level, selectable_k, axis=0, largest=False) candidate_idxs_t.append(topt_idxs_per_level + start_idx) candidate_idxs.append(topk_idxs_per_level + start_idx) start_idx = end_idx candidate_idxs_t = np.concatenate(candidate_idxs_t, axis=0) candidate_idxs = np.concatenate(candidate_idxs, axis=0) # get corresponding iou for the these candidates, and compute the # mean and std, set mean + std as the iou threshold candidate_overlaps_t = overlaps[candidate_idxs_t, np.arange(num_gt)] # compute tdiou t_diou = diou[candidate_idxs, np.arange(num_gt)] overlaps_mean_per_gt = candidate_overlaps_t.mean(0) overlaps_std_per_gt = candidate_overlaps_t.std( 0, ddof=1) # NOTE: use Bessel correction overlaps_thr_per_gt = overlaps_mean_per_gt + overlaps_std_per_gt # compute region is_pos = (t_diou < overlaps_thr_per_gt[None, :]) & ( t_diou >= 0.25 * overlaps_thr_per_gt[None, :]) # limit the positive sample's center in gt for gt_idx in range(num_gt): candidate_idxs[:, gt_idx] += gt_idx * num_bboxes candidate_idxs = candidate_idxs.reshape(-1) # if an anchor box is assigned to multiple gts, # the one with the highest IoU will be selected. overlaps_inf = -np.inf * np.ones_like(overlaps).T.reshape(-1) index = candidate_idxs.reshape(-1)[is_pos.reshape(-1)] overlaps_inf[index] = overlaps.T.reshape(-1)[index] overlaps_inf = overlaps_inf.reshape(num_gt, -1).T max_overlaps = overlaps_inf.max(axis=1) argmax_overlaps = overlaps_inf.argmax(axis=1) overlaps_inf = -np.inf * np.ones_like(overlaps).T.reshape(-1) overlaps_inf = overlaps_inf.reshape(num_gt, -1).T assigned_gt_inds[max_overlaps != -np.inf] = argmax_overlaps[max_overlaps != -np.inf] + 1 vlr_region_iou[max_overlaps != -np.inf] = max_overlaps[max_overlaps != -np.inf] + 0 return vlr_region_iou
PaddleDetection/ppdet/data/transform/atss_assigner.py/0
{ "file_path": "PaddleDetection/ppdet/data/transform/atss_assigner.py", "repo_id": "PaddleDetection", "token_count": 8947 }
80
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import re import paddle import paddle.nn as nn import numpy as np from tqdm import tqdm from collections import defaultdict from ppdet.core.workspace import create from ppdet.utils.checkpoint import load_weight, load_pretrain_weight from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box from ppdet.modeling.mot.utils import MOTTimer, load_det_results, write_mot_results, save_vis_results from ppdet.modeling.mot.tracker import JDETracker, CenterTracker from ppdet.modeling.mot.tracker import DeepSORTTracker, OCSORTTracker, BOTSORTTracker from ppdet.modeling.architectures import YOLOX from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric, MCMOTMetric from ppdet.data.source.category import get_categories import ppdet.utils.stats as stats from .callbacks import Callback, ComposeCallback from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) MOT_ARCH = ['JDE', 'FairMOT', 'DeepSORT', 'ByteTrack', 'CenterTrack'] MOT_ARCH_JDE = MOT_ARCH[:2] MOT_ARCH_SDE = MOT_ARCH[2:4] MOT_DATA_TYPE = ['mot', 'mcmot', 'kitti'] __all__ = ['Tracker'] class Tracker(object): def __init__(self, cfg, mode='eval'): self.cfg = cfg assert mode.lower() in ['test', 'eval'], \ "mode should be 'test' or 'eval'" self.mode = mode.lower() self.optimizer = None # build MOT data loader self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())] # build model self.model = create(cfg.architecture) if isinstance(self.model.detector, YOLOX): for k, m in self.model.named_sublayers(): if isinstance(m, nn.BatchNorm2D): m._epsilon = 1e-3 # for amp(fp16) m._momentum = 0.97 # 0.03 in pytorch anno_file = self.dataset.get_anno() clsid2catid, catid2name = get_categories( self.cfg.metric, anno_file=anno_file) self.ids2names = [] for k, v in catid2name.items(): self.ids2names.append(v) self.status = {} self.start_epoch = 0 # initial default callbacks self._init_callbacks() # initial default metrics self._init_metrics() self._reset_metrics() def _init_callbacks(self): self._callbacks = [] self._compose_callback = None def _init_metrics(self): if self.mode in ['test']: self._metrics = [] return if self.cfg.metric == 'MOT': self._metrics = [MOTMetric(), ] elif self.cfg.metric == 'MCMOT': self._metrics = [MCMOTMetric(self.cfg.num_classes), ] elif self.cfg.metric == 'KITTI': self._metrics = [KITTIMOTMetric(), ] else: logger.warning("Metric not support for metric type {}".format( self.cfg.metric)) self._metrics = [] def _reset_metrics(self): for metric in self._metrics: metric.reset() def register_callbacks(self, callbacks): callbacks = [h for h in list(callbacks) if h is not None] for c in callbacks: assert isinstance(c, Callback), \ "metrics shoule be instances of subclass of Metric" self._callbacks.extend(callbacks) self._compose_callback = ComposeCallback(self._callbacks) def register_metrics(self, metrics): metrics = [m for m in list(metrics) if m is not None] for m in metrics: assert isinstance(m, Metric), \ "metrics shoule be instances of subclass of Metric" self._metrics.extend(metrics) def load_weights_jde(self, weights): load_weight(self.model, weights, self.optimizer) def load_weights_sde(self, det_weights, reid_weights): with_detector = self.model.detector is not None with_reid = self.model.reid is not None if with_detector: load_weight(self.model.detector, det_weights) if with_reid: load_weight(self.model.reid, reid_weights) else: load_weight(self.model.reid, reid_weights) def _eval_seq_centertrack(self, dataloader, save_dir=None, show_image=False, frame_rate=30, draw_threshold=0): assert isinstance(self.model.tracker, CenterTracker) if save_dir: if not os.path.exists(save_dir): os.makedirs(save_dir) tracker = self.model.tracker timer = MOTTimer() frame_id = 0 self.status['mode'] = 'track' self.model.eval() results = defaultdict(list) # only support single class now for step_id, data in enumerate(tqdm(dataloader)): self.status['step_id'] = step_id if step_id == 0: self.model.reset_tracking() # forward timer.tic() pred_ret = self.model(data) online_targets = tracker.update(pred_ret) online_tlwhs, online_scores, online_ids = [], [], [] for t in online_targets: bbox = t['bbox'] tlwh = [bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]] tscore = float(t['score']) tid = int(t['tracking_id']) if tlwh[2] * tlwh[3] > 0: online_tlwhs.append(tlwh) online_ids.append(tid) online_scores.append(tscore) timer.toc() # save results results[0].append( (frame_id + 1, online_tlwhs, online_scores, online_ids)) save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes, self.ids2names) frame_id += 1 return results, frame_id, timer.average_time, timer.calls def _eval_seq_jde(self, dataloader, save_dir=None, show_image=False, frame_rate=30, draw_threshold=0): if save_dir: if not os.path.exists(save_dir): os.makedirs(save_dir) tracker = self.model.tracker tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer) timer = MOTTimer() frame_id = 0 self.status['mode'] = 'track' self.model.eval() results = defaultdict(list) # support single class and multi classes for step_id, data in enumerate(tqdm(dataloader)): self.status['step_id'] = step_id # forward timer.tic() pred_dets, pred_embs = self.model(data) pred_dets, pred_embs = pred_dets.numpy(), pred_embs.numpy() online_targets_dict = self.model.tracker.update(pred_dets, pred_embs) online_tlwhs = defaultdict(list) online_scores = defaultdict(list) online_ids = defaultdict(list) for cls_id in range(self.cfg.num_classes): online_targets = online_targets_dict[cls_id] for t in online_targets: tlwh = t.tlwh tid = t.track_id tscore = t.score if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[ 3] > tracker.vertical_ratio: continue online_tlwhs[cls_id].append(tlwh) online_ids[cls_id].append(tid) online_scores[cls_id].append(tscore) # save results results[cls_id].append( (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id], online_ids[cls_id])) timer.toc() save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes, self.ids2names) frame_id += 1 return results, frame_id, timer.average_time, timer.calls def _eval_seq_sde(self, dataloader, save_dir=None, show_image=False, frame_rate=30, seq_name='', scaled=False, det_file='', draw_threshold=0): if save_dir: if not os.path.exists(save_dir): os.makedirs(save_dir) use_detector = False if not self.model.detector else True use_reid = hasattr(self.model, 'reid') if use_reid and self.model.reid is not None: use_reid = True else: use_reid = False timer = MOTTimer() results = defaultdict(list) frame_id = 0 self.status['mode'] = 'track' self.model.eval() if use_reid: self.model.reid.eval() if not use_detector: dets_list = load_det_results(det_file, len(dataloader)) logger.info('Finish loading detection results file {}.'.format( det_file)) tracker = self.model.tracker for step_id, data in enumerate(tqdm(dataloader)): self.status['step_id'] = step_id ori_image = data['ori_image'] # [bs, H, W, 3] ori_image_shape = data['ori_image'].shape[1:3] # ori_image_shape: [H, W] input_shape = data['image'].shape[2:] # input_shape: [h, w], before data transforms, set in model config im_shape = data['im_shape'][0].numpy() # im_shape: [new_h, new_w], after data transforms scale_factor = data['scale_factor'][0].numpy() empty_detections = False # when it has no detected bboxes, will not inference reid model # and if visualize, use original image instead # forward timer.tic() if not use_detector: dets = dets_list[frame_id] bbox_tlwh = np.array(dets['bbox'], dtype='float32') if bbox_tlwh.shape[0] > 0: # detector outputs: pred_cls_ids, pred_scores, pred_bboxes pred_cls_ids = np.array(dets['cls_id'], dtype='float32') pred_scores = np.array(dets['score'], dtype='float32') pred_bboxes = np.concatenate( (bbox_tlwh[:, 0:2], bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]), axis=1) else: logger.warning( 'Frame {} has not object, try to modify score threshold.'. format(frame_id)) empty_detections = True else: outs = self.model.detector(data) outs['bbox'] = outs['bbox'].numpy() outs['bbox_num'] = outs['bbox_num'].numpy() if len(outs['bbox']) > 0 and empty_detections == False: # detector outputs: pred_cls_ids, pred_scores, pred_bboxes pred_cls_ids = outs['bbox'][:, 0:1] pred_scores = outs['bbox'][:, 1:2] if not scaled: # Note: scaled=False only in JDE YOLOv3 or other detectors # with LetterBoxResize and JDEBBoxPostProcess. # # 'scaled' means whether the coords after detector outputs # have been scaled back to the original image, set True # in general detector, set False in JDE YOLOv3. pred_bboxes = scale_coords(outs['bbox'][:, 2:], input_shape, im_shape, scale_factor) else: pred_bboxes = outs['bbox'][:, 2:] pred_dets_old = np.concatenate( (pred_cls_ids, pred_scores, pred_bboxes), axis=1) else: logger.warning( 'Frame {} has not detected object, try to modify score threshold.'. format(frame_id)) empty_detections = True if not empty_detections: pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape) if len(keep_idx[0]) == 0: logger.warning( 'Frame {} has not detected object left after clip_box.'. format(frame_id)) empty_detections = True if empty_detections: timer.toc() # if visualize, use original image instead online_ids, online_tlwhs, online_scores = None, None, None save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes, self.ids2names) frame_id += 1 # thus will not inference reid model continue pred_cls_ids = pred_cls_ids[keep_idx[0]] pred_scores = pred_scores[keep_idx[0]] pred_dets = np.concatenate( (pred_cls_ids, pred_scores, pred_xyxys), axis=1) if use_reid: crops = get_crops( pred_xyxys, ori_image, w=tracker.input_size[0], h=tracker.input_size[1]) crops = paddle.to_tensor(crops) data.update({'crops': crops}) pred_embs = self.model(data)['embeddings'].numpy() else: pred_embs = None if isinstance(tracker, DeepSORTTracker): online_tlwhs, online_scores, online_ids = [], [], [] tracker.predict() online_targets = tracker.update(pred_dets, pred_embs) for t in online_targets: if not t.is_confirmed() or t.time_since_update > 1: continue tlwh = t.to_tlwh() tscore = t.score tid = t.track_id if tscore < draw_threshold: continue if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[ 3] > tracker.vertical_ratio: continue online_tlwhs.append(tlwh) online_scores.append(tscore) online_ids.append(tid) timer.toc() # save results results[0].append( (frame_id + 1, online_tlwhs, online_scores, online_ids)) save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes, self.ids2names) elif isinstance(tracker, JDETracker): # trick hyperparams only used for MOTChallenge (MOT17, MOT20) Test-set tracker.track_buffer, tracker.conf_thres = get_trick_hyperparams( seq_name, tracker.track_buffer, tracker.conf_thres) online_targets_dict = tracker.update(pred_dets_old, pred_embs) online_tlwhs = defaultdict(list) online_scores = defaultdict(list) online_ids = defaultdict(list) for cls_id in range(self.cfg.num_classes): online_targets = online_targets_dict[cls_id] for t in online_targets: tlwh = t.tlwh tid = t.track_id tscore = t.score if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[ 3] > tracker.vertical_ratio: continue online_tlwhs[cls_id].append(tlwh) online_ids[cls_id].append(tid) online_scores[cls_id].append(tscore) # save results results[cls_id].append( (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id], online_ids[cls_id])) timer.toc() save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes, self.ids2names) elif isinstance(tracker, OCSORTTracker): # OC_SORT Tracker online_targets = tracker.update(pred_dets_old, pred_embs) online_tlwhs = [] online_ids = [] online_scores = [] for t in online_targets: tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]] tscore = float(t[4]) tid = int(t[5]) if tlwh[2] * tlwh[3] > 0: online_tlwhs.append(tlwh) online_ids.append(tid) online_scores.append(tscore) timer.toc() # save results results[0].append( (frame_id + 1, online_tlwhs, online_scores, online_ids)) save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes, self.ids2names) elif isinstance(tracker, BOTSORTTracker): # BOTSORT Tracker online_targets = tracker.update( pred_dets_old, img=ori_image.numpy()) online_tlwhs = [] online_ids = [] online_scores = [] for t in online_targets: tlwh = t.tlwh tid = t.track_id tscore = t.score if tlwh[2] * tlwh[3] > 0: online_tlwhs.append(tlwh) online_ids.append(tid) online_scores.append(tscore) timer.toc() # save results results[0].append( (frame_id + 1, online_tlwhs, online_scores, online_ids)) save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes, self.ids2names) else: raise ValueError(tracker) frame_id += 1 return results, frame_id, timer.average_time, timer.calls def mot_evaluate(self, data_root, seqs, output_dir, data_type='mot', model_type='JDE', save_images=False, save_videos=False, show_image=False, scaled=False, det_results_dir=''): if not os.path.exists(output_dir): os.makedirs(output_dir) result_root = os.path.join(output_dir, 'mot_results') if not os.path.exists(result_root): os.makedirs(result_root) assert data_type in MOT_DATA_TYPE, \ "data_type should be 'mot', 'mcmot' or 'kitti'" assert model_type in MOT_ARCH, \ "model_type should be 'JDE', 'DeepSORT', 'FairMOT' or 'ByteTrack'" # run tracking n_frame = 0 timer_avgs, timer_calls = [], [] for seq in seqs: infer_dir = os.path.join(data_root, seq) if not os.path.exists(infer_dir) or not os.path.isdir(infer_dir): logger.warning("Seq {} error, {} has no images.".format( seq, infer_dir)) continue if os.path.exists(os.path.join(infer_dir, 'img1')): infer_dir = os.path.join(infer_dir, 'img1') frame_rate = 30 seqinfo = os.path.join(data_root, seq, 'seqinfo.ini') if os.path.exists(seqinfo): meta_info = open(seqinfo).read() frame_rate = int(meta_info[meta_info.find('frameRate') + 10: meta_info.find('\nseqLength')]) save_dir = os.path.join(output_dir, 'mot_outputs', seq) if save_images or save_videos else None logger.info('Evaluate seq: {}'.format(seq)) self.dataset.set_images(self.get_infer_images(infer_dir)) dataloader = create('EvalMOTReader')(self.dataset, 0) result_filename = os.path.join(result_root, '{}.txt'.format(seq)) with paddle.no_grad(): if model_type in MOT_ARCH_JDE: results, nf, ta, tc = self._eval_seq_jde( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate) elif model_type in MOT_ARCH_SDE: results, nf, ta, tc = self._eval_seq_sde( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate, seq_name=seq, scaled=scaled, det_file=os.path.join(det_results_dir, '{}.txt'.format(seq))) elif model_type == 'CenterTrack': results, nf, ta, tc = self._eval_seq_centertrack( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate) else: raise ValueError(model_type) write_mot_results(result_filename, results, data_type, self.cfg.num_classes) n_frame += nf timer_avgs.append(ta) timer_calls.append(tc) if save_videos: output_video_path = os.path.join(save_dir, '..', '{}_vis.mp4'.format(seq)) cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format( save_dir, output_video_path) os.system(cmd_str) logger.info('Save video in {}.'.format(output_video_path)) # update metrics for metric in self._metrics: metric.update(data_root, seq, data_type, result_root, result_filename) timer_avgs = np.asarray(timer_avgs) timer_calls = np.asarray(timer_calls) all_time = np.dot(timer_avgs, timer_calls) avg_time = all_time / np.sum(timer_calls) logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format( all_time, 1.0 / avg_time)) # accumulate metric to log out for metric in self._metrics: metric.accumulate() metric.log() # reset metric states for metric may performed multiple times self._reset_metrics() def get_infer_images(self, infer_dir): assert infer_dir is None or os.path.isdir(infer_dir), \ "{} is not a directory".format(infer_dir) images = set() assert os.path.isdir(infer_dir), \ "infer_dir {} is not a directory".format(infer_dir) exts = ['jpg', 'jpeg', 'png', 'bmp'] exts += [ext.upper() for ext in exts] for ext in exts: images.update(glob.glob('{}/*.{}'.format(infer_dir, ext))) images = list(images) images.sort() assert len(images) > 0, "no image found in {}".format(infer_dir) logger.info("Found {} inference images in total.".format(len(images))) return images def mot_predict_seq(self, video_file, frame_rate, image_dir, output_dir, data_type='mot', model_type='JDE', save_images=False, save_videos=True, show_image=False, scaled=False, det_results_dir='', draw_threshold=0.5): assert video_file is not None or image_dir is not None, \ "--video_file or --image_dir should be set." assert video_file is None or os.path.isfile(video_file), \ "{} is not a file".format(video_file) assert image_dir is None or os.path.isdir(image_dir), \ "{} is not a directory".format(image_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) result_root = os.path.join(output_dir, 'mot_results') if not os.path.exists(result_root): os.makedirs(result_root) assert data_type in MOT_DATA_TYPE, \ "data_type should be 'mot', 'mcmot' or 'kitti'" assert model_type in MOT_ARCH, \ "model_type should be 'JDE', 'DeepSORT', 'FairMOT' or 'ByteTrack'" # run tracking if video_file: seq = video_file.split('/')[-1].split('.')[0] self.dataset.set_video(video_file, frame_rate) logger.info('Starting tracking video {}'.format(video_file)) elif image_dir: seq = image_dir.split('/')[-1].split('.')[0] if os.path.exists(os.path.join(image_dir, 'img1')): image_dir = os.path.join(image_dir, 'img1') images = [ '{}/{}'.format(image_dir, x) for x in os.listdir(image_dir) ] images.sort() self.dataset.set_images(images) logger.info('Starting tracking folder {}, found {} images'.format( image_dir, len(images))) else: raise ValueError('--video_file or --image_dir should be set.') save_dir = os.path.join(output_dir, 'mot_outputs', seq) if save_images or save_videos else None dataloader = create('TestMOTReader')(self.dataset, 0) result_filename = os.path.join(result_root, '{}.txt'.format(seq)) if frame_rate == -1: frame_rate = self.dataset.frame_rate with paddle.no_grad(): if model_type in MOT_ARCH_JDE: results, nf, ta, tc = self._eval_seq_jde( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate, draw_threshold=draw_threshold) elif model_type in MOT_ARCH_SDE: results, nf, ta, tc = self._eval_seq_sde( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate, seq_name=seq, scaled=scaled, det_file=os.path.join(det_results_dir, '{}.txt'.format(seq)), draw_threshold=draw_threshold) elif model_type == 'CenterTrack': results, nf, ta, tc = self._eval_seq_centertrack( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate) else: raise ValueError(model_type) if save_videos: output_video_path = os.path.join(save_dir, '..', '{}_vis.mp4'.format(seq)) cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format( save_dir, output_video_path) os.system(cmd_str) logger.info('Save video in {}'.format(output_video_path)) write_mot_results(result_filename, results, data_type, self.cfg.num_classes) def get_trick_hyperparams(video_name, ori_buffer, ori_thresh): if video_name[:3] != 'MOT': # only used for MOTChallenge (MOT17, MOT20) Test-set return ori_buffer, ori_thresh video_name = video_name[:8] if 'MOT17-05' in video_name: track_buffer = 14 elif 'MOT17-13' in video_name: track_buffer = 25 else: track_buffer = ori_buffer if 'MOT17-01' in video_name: track_thresh = 0.65 elif 'MOT17-06' in video_name: track_thresh = 0.65 elif 'MOT17-12' in video_name: track_thresh = 0.7 elif 'MOT17-14' in video_name: track_thresh = 0.67 else: track_thresh = ori_thresh if 'MOT20-06' in video_name or 'MOT20-08' in video_name: track_thresh = 0.3 else: track_thresh = ori_thresh return track_buffer, ori_thresh
PaddleDetection/ppdet/engine/tracker.py/0
{ "file_path": "PaddleDetection/ppdet/engine/tracker.py", "repo_id": "PaddleDetection", "token_count": 16883 }
81
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import numpy as np import itertools from ppdet.metrics.json_results import get_det_res, get_det_poly_res, get_seg_res, get_solov2_segm_res, get_keypoint_res, get_pose3d_res from ppdet.metrics.map_utils import draw_pr_curve from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) def get_infer_results(outs, catid, bias=0): """ Get result at the stage of inference. The output format is dictionary containing bbox or mask result. For example, bbox result is a list and each element contains image_id, category_id, bbox and score. """ if outs is None or len(outs) == 0: raise ValueError( 'The number of valid detection result if zero. Please use reasonable model and check input data.' ) im_id = outs['im_id'] infer_res = {} if 'bbox' in outs: if len(outs['bbox']) > 0 and len(outs['bbox'][0]) > 6: infer_res['bbox'] = get_det_poly_res( outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias) else: infer_res['bbox'] = get_det_res( outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias) if 'mask' in outs: # mask post process infer_res['mask'] = get_seg_res(outs['mask'], outs['bbox'], outs['bbox_num'], im_id, catid) if 'segm' in outs: infer_res['segm'] = get_solov2_segm_res(outs, im_id, catid) if 'keypoint' in outs: infer_res['keypoint'] = get_keypoint_res(outs, im_id) outs['bbox_num'] = [len(infer_res['keypoint'])] if 'pose3d' in outs: infer_res['pose3d'] = get_pose3d_res(outs, im_id) outs['bbox_num'] = [len(infer_res['pose3d'])] return infer_res def cocoapi_eval(jsonfile, style, coco_gt=None, anno_file=None, max_dets=(100, 300, 1000), classwise=False, sigmas=None, use_area=True): """ Args: jsonfile (str): Evaluation json file, eg: bbox.json, mask.json. style (str): COCOeval style, can be `bbox` , `segm` , `proposal`, `keypoints` and `keypoints_crowd`. coco_gt (str): Whether to load COCOAPI through anno_file, eg: coco_gt = COCO(anno_file) anno_file (str): COCO annotations file. max_dets (tuple): COCO evaluation maxDets. classwise (bool): Whether per-category AP and draw P-R Curve or not. sigmas (nparray): keypoint labelling sigmas. use_area (bool): If gt annotations (eg. CrowdPose, AIC) do not have 'area', please set use_area=False. """ assert coco_gt != None or anno_file != None if style == 'keypoints_crowd': #please install xtcocotools==1.6 from xtcocotools.coco import COCO from xtcocotools.cocoeval import COCOeval else: from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval if coco_gt == None: coco_gt = COCO(anno_file) logger.info("Start evaluate...") coco_dt = coco_gt.loadRes(jsonfile) if style == 'proposal': coco_eval = COCOeval(coco_gt, coco_dt, 'bbox') coco_eval.params.useCats = 0 coco_eval.params.maxDets = list(max_dets) elif style == 'keypoints_crowd': coco_eval = COCOeval(coco_gt, coco_dt, style, sigmas, use_area) else: coco_eval = COCOeval(coco_gt, coco_dt, style) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() if classwise: # Compute per-category AP and PR curve try: from terminaltables import AsciiTable except Exception as e: logger.error( 'terminaltables not found, plaese install terminaltables. ' 'for example: `pip install terminaltables`.') raise e precisions = coco_eval.eval['precision'] cat_ids = coco_gt.getCatIds() # precision: (iou, recall, cls, area range, max dets) assert len(cat_ids) == precisions.shape[2] results_per_category = [] for idx, catId in enumerate(cat_ids): # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = coco_gt.loadCats(catId)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') results_per_category.append( (str(nm["name"]), '{:0.3f}'.format(float(ap)))) pr_array = precisions[0, :, idx, 0, 2] recall_array = np.arange(0.0, 1.01, 0.01) draw_pr_curve( pr_array, recall_array, out_dir=style + '_pr_curve', file_name='{}_precision_recall_curve.jpg'.format(nm["name"])) num_columns = min(6, len(results_per_category) * 2) results_flatten = list(itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest( * [results_flatten[i::num_columns] for i in range(num_columns)]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) logger.info('Per-category of {} AP: \n{}'.format(style, table.table)) logger.info("per-category PR curve has output to {} folder.".format( style + '_pr_curve')) # flush coco evaluation result sys.stdout.flush() return coco_eval.stats def json_eval_results(metric, json_directory, dataset): """ cocoapi eval with already exists proposal.json, bbox.json or mask.json """ assert metric == 'COCO' anno_file = dataset.get_anno() json_file_list = ['proposal.json', 'bbox.json', 'mask.json'] if json_directory: assert os.path.exists( json_directory), "The json directory:{} does not exist".format( json_directory) for k, v in enumerate(json_file_list): json_file_list[k] = os.path.join(str(json_directory), v) coco_eval_style = ['proposal', 'bbox', 'segm'] for i, v_json in enumerate(json_file_list): if os.path.exists(v_json): cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file) else: logger.info("{} not exists!".format(v_json))
PaddleDetection/ppdet/metrics/coco_utils.py/0
{ "file_path": "PaddleDetection/ppdet/metrics/coco_utils.py", "repo_id": "PaddleDetection", "token_count": 3369 }
82
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import ppdet class TestListModel(unittest.TestCase): def setUp(self): self._filter = [] def test_main(self): try: ppdet.model_zoo.list_model(self._filter) self.assertTrue(True) except: self.assertTrue(False) class TestListModelYOLO(TestListModel): def setUp(self): self._filter = ['yolo'] class TestListModelRCNN(TestListModel): def setUp(self): self._filter = ['rcnn'] class TestListModelSSD(TestListModel): def setUp(self): self._filter = ['ssd'] class TestListModelMultiFilter(TestListModel): def setUp(self): self._filter = ['yolo', 'darknet'] class TestListModelError(unittest.TestCase): def setUp(self): self._filter = ['xxx'] def test_main(self): try: ppdet.model_zoo.list_model(self._filter) self.assertTrue(False) except ValueError: self.assertTrue(True) if __name__ == '__main__': unittest.main()
PaddleDetection/ppdet/model_zoo/tests/test_list_model.py/0
{ "file_path": "PaddleDetection/ppdet/model_zoo/tests/test_list_model.py", "repo_id": "PaddleDetection", "token_count": 653 }
83
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from ppdet.core.workspace import register, create from .meta_arch import BaseArch __all__ = ['JDE'] @register class JDE(BaseArch): __category__ = 'architecture' __shared__ = ['metric'] """ JDE network, see https://arxiv.org/abs/1909.12605v1 Args: detector (object): detector model instance reid (object): reid model instance tracker (object): tracker instance metric (str): 'MOTDet' for training and detection evaluation, 'ReID' for ReID embedding evaluation, or 'MOT' for multi object tracking evaluation. """ def __init__(self, detector='YOLOv3', reid='JDEEmbeddingHead', tracker='JDETracker', metric='MOT'): super(JDE, self).__init__() self.detector = detector self.reid = reid self.tracker = tracker self.metric = metric @classmethod def from_config(cls, cfg, *args, **kwargs): detector = create(cfg['detector']) kwargs = {'input_shape': detector.neck.out_shape} reid = create(cfg['reid'], **kwargs) tracker = create(cfg['tracker']) return { "detector": detector, "reid": reid, "tracker": tracker, } def _forward(self): det_outs = self.detector(self.inputs) if self.training: emb_feats = det_outs['emb_feats'] loss_confs = det_outs['det_losses']['loss_confs'] loss_boxes = det_outs['det_losses']['loss_boxes'] jde_losses = self.reid( emb_feats, self.inputs, loss_confs=loss_confs, loss_boxes=loss_boxes) return jde_losses else: if self.metric == 'MOTDet': det_results = { 'bbox': det_outs['bbox'], 'bbox_num': det_outs['bbox_num'], } return det_results elif self.metric == 'MOT': emb_feats = det_outs['emb_feats'] bboxes = det_outs['bbox'] boxes_idx = det_outs['boxes_idx'] nms_keep_idx = det_outs['nms_keep_idx'] pred_dets, pred_embs = self.reid( emb_feats, self.inputs, bboxes=bboxes, boxes_idx=boxes_idx, nms_keep_idx=nms_keep_idx) return pred_dets, pred_embs else: raise ValueError("Unknown metric {} for multi object tracking.". format(self.metric)) def get_loss(self): return self._forward() def get_pred(self): return self._forward()
PaddleDetection/ppdet/modeling/architectures/jde.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/architectures/jde.py", "repo_id": "PaddleDetection", "token_count": 1718 }
84
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from ppdet.core.workspace import register, create from .meta_arch import BaseArch import paddle import paddle.nn.functional as F __all__ = ['SSD'] @register class SSD(BaseArch): """ Single Shot MultiBox Detector, see https://arxiv.org/abs/1512.02325 Args: backbone (nn.Layer): backbone instance ssd_head (nn.Layer): `SSDHead` instance post_process (object): `BBoxPostProcess` instance """ __category__ = 'architecture' __inject__ = ['post_process'] def __init__(self, backbone, ssd_head, post_process, r34_backbone=False): super(SSD, self).__init__() self.backbone = backbone self.ssd_head = ssd_head self.post_process = post_process self.r34_backbone = r34_backbone if self.r34_backbone: from ppdet.modeling.backbones.resnet import ResNet assert isinstance(self.backbone, ResNet) and \ self.backbone.depth == 34, \ "If you set r34_backbone=True, please use ResNet-34 as backbone." self.backbone.res_layers[2].blocks[0].branch2a.conv._stride = [1, 1] self.backbone.res_layers[2].blocks[0].short.conv._stride = [1, 1] @classmethod def from_config(cls, cfg, *args, **kwargs): # backbone backbone = create(cfg['backbone']) # head kwargs = {'input_shape': backbone.out_shape} ssd_head = create(cfg['ssd_head'], **kwargs) return { 'backbone': backbone, "ssd_head": ssd_head, } def _forward(self): # Backbone body_feats = self.backbone(self.inputs) # SSD Head if self.training: return self.ssd_head(body_feats, self.inputs['image'], self.inputs['gt_bbox'], self.inputs['gt_class']) else: preds, anchors = self.ssd_head(body_feats, self.inputs['image']) bbox, bbox_num, nms_keep_idx = self.post_process( preds, anchors, self.inputs['im_shape'], self.inputs['scale_factor']) if self.use_extra_data: extra_data = {} # record the bbox output before nms, such like scores and nms_keep_idx """extra_data:{ 'scores': predict scores, 'nms_keep_idx': bbox index before nms, } """ preds_logits = preds[1] # [[1xNumBBoxNumClass]] extra_data['scores'] = F.softmax(paddle.concat( preds_logits, axis=1)).transpose([0, 2, 1]) extra_data['logits'] = paddle.concat( preds_logits, axis=1).transpose([0, 2, 1]) extra_data['nms_keep_idx'] = nms_keep_idx # bbox index before nms return bbox, bbox_num, extra_data else: return bbox, bbox_num def get_loss(self, ): return {"loss": self._forward()} def get_pred(self): if self.use_extra_data: bbox_pred, bbox_num, extra_data = self._forward() output = { "bbox": bbox_pred, "bbox_num": bbox_num, "extra_data": extra_data } else: bbox_pred, bbox_num = self._forward() output = { "bbox": bbox_pred, "bbox_num": bbox_num, } return output
PaddleDetection/ppdet/modeling/architectures/ssd.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/architectures/ssd.py", "repo_id": "PaddleDetection", "token_count": 2042 }
85
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import AdaptiveAvgPool2D, Linear from paddle.regularizer import L2Decay from paddle import ParamAttr from paddle.nn.initializer import Normal, Uniform from numbers import Integral import math from ppdet.core.workspace import register from ..shape_spec import ShapeSpec __all__ = ['HRNet'] class ConvNormLayer(nn.Layer): def __init__(self, ch_in, ch_out, filter_size, stride=1, norm_type='bn', norm_groups=32, use_dcn=False, norm_momentum=0.9, norm_decay=0., freeze_norm=False, act=None, name=None): super(ConvNormLayer, self).__init__() assert norm_type in ['bn', 'sync_bn', 'gn'] self.act = act self.conv = nn.Conv2D( in_channels=ch_in, out_channels=ch_out, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=1, weight_attr=ParamAttr(initializer=Normal( mean=0., std=0.01)), bias_attr=False) norm_lr = 0. if freeze_norm else 1. param_attr = ParamAttr( learning_rate=norm_lr, regularizer=L2Decay(norm_decay)) bias_attr = ParamAttr( learning_rate=norm_lr, regularizer=L2Decay(norm_decay)) global_stats = True if freeze_norm else None if norm_type in ['bn', 'sync_bn']: self.norm = nn.BatchNorm2D( ch_out, momentum=norm_momentum, weight_attr=param_attr, bias_attr=bias_attr, use_global_stats=global_stats) elif norm_type == 'gn': self.norm = nn.GroupNorm( num_groups=norm_groups, num_channels=ch_out, weight_attr=param_attr, bias_attr=bias_attr) norm_params = self.norm.parameters() if freeze_norm: for param in norm_params: param.stop_gradient = True def forward(self, inputs): out = self.conv(inputs) out = self.norm(out) if self.act == 'relu': out = F.relu(out) return out class Layer1(nn.Layer): def __init__(self, num_channels, has_se=False, norm_momentum=0.9, norm_decay=0., freeze_norm=True, name=None): super(Layer1, self).__init__() self.bottleneck_block_list = [] for i in range(4): bottleneck_block = self.add_sublayer( "block_{}_{}".format(name, i + 1), BottleneckBlock( num_channels=num_channels if i == 0 else 256, num_filters=64, has_se=has_se, stride=1, downsample=True if i == 0 else False, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + '_' + str(i + 1))) self.bottleneck_block_list.append(bottleneck_block) def forward(self, input): conv = input for block_func in self.bottleneck_block_list: conv = block_func(conv) return conv class TransitionLayer(nn.Layer): def __init__(self, in_channels, out_channels, norm_momentum=0.9, norm_decay=0., freeze_norm=True, name=None): super(TransitionLayer, self).__init__() num_in = len(in_channels) num_out = len(out_channels) out = [] self.conv_bn_func_list = [] for i in range(num_out): residual = None if i < num_in: if in_channels[i] != out_channels[i]: residual = self.add_sublayer( "transition_{}_layer_{}".format(name, i + 1), ConvNormLayer( ch_in=in_channels[i], ch_out=out_channels[i], filter_size=3, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, act='relu', name=name + '_layer_' + str(i + 1))) else: residual = self.add_sublayer( "transition_{}_layer_{}".format(name, i + 1), ConvNormLayer( ch_in=in_channels[-1], ch_out=out_channels[i], filter_size=3, stride=2, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, act='relu', name=name + '_layer_' + str(i + 1))) self.conv_bn_func_list.append(residual) def forward(self, input): outs = [] for idx, conv_bn_func in enumerate(self.conv_bn_func_list): if conv_bn_func is None: outs.append(input[idx]) else: if idx < len(input): outs.append(conv_bn_func(input[idx])) else: outs.append(conv_bn_func(input[-1])) return outs class Branches(nn.Layer): def __init__(self, block_num, in_channels, out_channels, has_se=False, norm_momentum=0.9, norm_decay=0., freeze_norm=True, name=None): super(Branches, self).__init__() self.basic_block_list = [] for i in range(len(out_channels)): self.basic_block_list.append([]) for j in range(block_num): in_ch = in_channels[i] if j == 0 else out_channels[i] basic_block_func = self.add_sublayer( "bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1), BasicBlock( num_channels=in_ch, num_filters=out_channels[i], has_se=has_se, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + '_branch_layer_' + str(i + 1) + '_' + str(j + 1))) self.basic_block_list[i].append(basic_block_func) def forward(self, inputs): outs = [] for idx, input in enumerate(inputs): conv = input basic_block_list = self.basic_block_list[idx] for basic_block_func in basic_block_list: conv = basic_block_func(conv) outs.append(conv) return outs class BottleneckBlock(nn.Layer): def __init__(self, num_channels, num_filters, has_se, stride=1, downsample=False, norm_momentum=0.9, norm_decay=0., freeze_norm=True, name=None): super(BottleneckBlock, self).__init__() self.has_se = has_se self.downsample = downsample self.conv1 = ConvNormLayer( ch_in=num_channels, ch_out=num_filters, filter_size=1, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, act="relu", name=name + "_conv1") self.conv2 = ConvNormLayer( ch_in=num_filters, ch_out=num_filters, filter_size=3, stride=stride, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, act="relu", name=name + "_conv2") self.conv3 = ConvNormLayer( ch_in=num_filters, ch_out=num_filters * 4, filter_size=1, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, act=None, name=name + "_conv3") if self.downsample: self.conv_down = ConvNormLayer( ch_in=num_channels, ch_out=num_filters * 4, filter_size=1, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, act=None, name=name + "_downsample") if self.has_se: self.se = SELayer( num_channels=num_filters * 4, num_filters=num_filters * 4, reduction_ratio=16, name='fc' + name) def forward(self, input): residual = input conv1 = self.conv1(input) conv2 = self.conv2(conv1) conv3 = self.conv3(conv2) if self.downsample: residual = self.conv_down(input) if self.has_se: conv3 = self.se(conv3) y = paddle.add(x=residual, y=conv3) y = F.relu(y) return y class BasicBlock(nn.Layer): def __init__(self, num_channels, num_filters, stride=1, has_se=False, downsample=False, norm_momentum=0.9, norm_decay=0., freeze_norm=True, name=None): super(BasicBlock, self).__init__() self.has_se = has_se self.downsample = downsample self.conv1 = ConvNormLayer( ch_in=num_channels, ch_out=num_filters, filter_size=3, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, stride=stride, act="relu", name=name + "_conv1") self.conv2 = ConvNormLayer( ch_in=num_filters, ch_out=num_filters, filter_size=3, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, stride=1, act=None, name=name + "_conv2") if self.downsample: self.conv_down = ConvNormLayer( ch_in=num_channels, ch_out=num_filters * 4, filter_size=1, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, act=None, name=name + "_downsample") if self.has_se: self.se = SELayer( num_channels=num_filters, num_filters=num_filters, reduction_ratio=16, name='fc' + name) def forward(self, input): residual = input conv1 = self.conv1(input) conv2 = self.conv2(conv1) if self.downsample: residual = self.conv_down(input) if self.has_se: conv2 = self.se(conv2) y = paddle.add(x=residual, y=conv2) y = F.relu(y) return y class SELayer(nn.Layer): def __init__(self, num_channels, num_filters, reduction_ratio, name=None): super(SELayer, self).__init__() self.pool2d_gap = AdaptiveAvgPool2D(1) self._num_channels = num_channels med_ch = int(num_channels / reduction_ratio) stdv = 1.0 / math.sqrt(num_channels * 1.0) self.squeeze = Linear( num_channels, med_ch, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv))) stdv = 1.0 / math.sqrt(med_ch * 1.0) self.excitation = Linear( med_ch, num_filters, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv))) def forward(self, input): pool = self.pool2d_gap(input) pool = paddle.squeeze(pool, axis=[2, 3]) squeeze = self.squeeze(pool) squeeze = F.relu(squeeze) excitation = self.excitation(squeeze) excitation = F.sigmoid(excitation) excitation = paddle.unsqueeze(excitation, axis=[2, 3]) out = input * excitation return out class Stage(nn.Layer): def __init__(self, num_channels, num_modules, num_filters, has_se=False, norm_momentum=0.9, norm_decay=0., freeze_norm=True, multi_scale_output=True, name=None): super(Stage, self).__init__() self._num_modules = num_modules self.stage_func_list = [] for i in range(num_modules): if i == num_modules - 1 and not multi_scale_output: stage_func = self.add_sublayer( "stage_{}_{}".format(name, i + 1), HighResolutionModule( num_channels=num_channels, num_filters=num_filters, has_se=has_se, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, multi_scale_output=False, name=name + '_' + str(i + 1))) else: stage_func = self.add_sublayer( "stage_{}_{}".format(name, i + 1), HighResolutionModule( num_channels=num_channels, num_filters=num_filters, has_se=has_se, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + '_' + str(i + 1))) self.stage_func_list.append(stage_func) def forward(self, input): out = input for idx in range(self._num_modules): out = self.stage_func_list[idx](out) return out class HighResolutionModule(nn.Layer): def __init__(self, num_channels, num_filters, has_se=False, multi_scale_output=True, norm_momentum=0.9, norm_decay=0., freeze_norm=True, name=None): super(HighResolutionModule, self).__init__() self.branches_func = Branches( block_num=4, in_channels=num_channels, out_channels=num_filters, has_se=has_se, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name) self.fuse_func = FuseLayers( in_channels=num_filters, out_channels=num_filters, multi_scale_output=multi_scale_output, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name) def forward(self, input): out = self.branches_func(input) out = self.fuse_func(out) return out class FuseLayers(nn.Layer): def __init__(self, in_channels, out_channels, multi_scale_output=True, norm_momentum=0.9, norm_decay=0., freeze_norm=True, name=None): super(FuseLayers, self).__init__() self._actual_ch = len(in_channels) if multi_scale_output else 1 self._in_channels = in_channels self.residual_func_list = [] for i in range(self._actual_ch): for j in range(len(in_channels)): residual_func = None if j > i: residual_func = self.add_sublayer( "residual_{}_layer_{}_{}".format(name, i + 1, j + 1), ConvNormLayer( ch_in=in_channels[j], ch_out=out_channels[i], filter_size=1, stride=1, act=None, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, name=name + '_layer_' + str(i + 1) + '_' + str(j + 1))) self.residual_func_list.append(residual_func) elif j < i: pre_num_filters = in_channels[j] for k in range(i - j): if k == i - j - 1: residual_func = self.add_sublayer( "residual_{}_layer_{}_{}_{}".format( name, i + 1, j + 1, k + 1), ConvNormLayer( ch_in=pre_num_filters, ch_out=out_channels[i], filter_size=3, stride=2, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, act=None, name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1))) pre_num_filters = out_channels[i] else: residual_func = self.add_sublayer( "residual_{}_layer_{}_{}_{}".format( name, i + 1, j + 1, k + 1), ConvNormLayer( ch_in=pre_num_filters, ch_out=out_channels[j], filter_size=3, stride=2, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, act="relu", name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1))) pre_num_filters = out_channels[j] self.residual_func_list.append(residual_func) def forward(self, input): outs = [] residual_func_idx = 0 for i in range(self._actual_ch): residual = input[i] for j in range(len(self._in_channels)): if j > i: y = self.residual_func_list[residual_func_idx](input[j]) residual_func_idx += 1 y = F.interpolate(y, scale_factor=2**(j - i)) residual = paddle.add(x=residual, y=y) elif j < i: y = input[j] for k in range(i - j): y = self.residual_func_list[residual_func_idx](y) residual_func_idx += 1 residual = paddle.add(x=residual, y=y) residual = F.relu(residual) outs.append(residual) return outs @register class HRNet(nn.Layer): """ HRNet, see https://arxiv.org/abs/1908.07919 Args: width (int): the width of HRNet has_se (bool): whether to add SE block for each stage freeze_at (int): the stage to freeze freeze_norm (bool): whether to freeze norm in HRNet norm_momentum (float): momentum of BatchNorm norm_decay (float): weight decay for normalization layer weights return_idx (List): the stage to return upsample (bool): whether to upsample and concat the backbone feats """ def __init__(self, width=18, has_se=False, freeze_at=0, freeze_norm=True, norm_momentum=0.9, norm_decay=0., return_idx=[0, 1, 2, 3], upsample=False, downsample=False): super(HRNet, self).__init__() self.width = width self.has_se = has_se if isinstance(return_idx, Integral): return_idx = [return_idx] assert len(return_idx) > 0, "need one or more return index" self.freeze_at = freeze_at self.return_idx = return_idx self.upsample = upsample self.downsample = downsample self.channels = { 18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]], 30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]], 32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]], 40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]], 44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]], 48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]], 60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]], 64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]] } channels_2, channels_3, channels_4 = self.channels[width] num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3 self._out_channels = [sum(channels_4)] if self.upsample else channels_4 self._out_strides = [4] if self.upsample else [4, 8, 16, 32] self.conv_layer1_1 = ConvNormLayer( ch_in=3, ch_out=64, filter_size=3, stride=2, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, act='relu', name="layer1_1") self.conv_layer1_2 = ConvNormLayer( ch_in=64, ch_out=64, filter_size=3, stride=2, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, act='relu', name="layer1_2") self.la1 = Layer1( num_channels=64, has_se=has_se, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, name="layer2") self.tr1 = TransitionLayer( in_channels=[256], out_channels=channels_2, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, name="tr1") self.st2 = Stage( num_channels=channels_2, num_modules=num_modules_2, num_filters=channels_2, has_se=self.has_se, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, name="st2") self.tr2 = TransitionLayer( in_channels=channels_2, out_channels=channels_3, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, name="tr2") self.st3 = Stage( num_channels=channels_3, num_modules=num_modules_3, num_filters=channels_3, has_se=self.has_se, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, name="st3") self.tr3 = TransitionLayer( in_channels=channels_3, out_channels=channels_4, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, name="tr3") self.st4 = Stage( num_channels=channels_4, num_modules=num_modules_4, num_filters=channels_4, has_se=self.has_se, norm_momentum=norm_momentum, norm_decay=norm_decay, freeze_norm=freeze_norm, multi_scale_output=len(return_idx) > 1, name="st4") if self.downsample: self.incre_modules, self.downsamp_modules, \ self.final_layer = self._make_head(channels_4, norm_momentum=norm_momentum, has_se=self.has_se) def _make_layer(self, block, inplanes, planes, blocks, stride=1, norm_momentum=0.9, has_se=False, name=None): downsample = None if stride != 1 or inplanes != planes * 4: downsample = True layers = [] layers.append( block( inplanes, planes, has_se, stride, downsample, norm_momentum=norm_momentum, freeze_norm=False, name=name + "_s0")) inplanes = planes * 4 for i in range(1, blocks): layers.append( block( inplanes, planes, has_se, norm_momentum=norm_momentum, freeze_norm=False, name=name + "_s" + str(i))) return nn.Sequential(*layers) def _make_head(self, pre_stage_channels, norm_momentum=0.9, has_se=False): head_block = BottleneckBlock head_channels = [32, 64, 128, 256] # Increasing the #channels on each resolution # from C, 2C, 4C, 8C to 128, 256, 512, 1024 incre_modules = [] for i, channels in enumerate(pre_stage_channels): incre_module = self._make_layer( head_block, channels, head_channels[i], 1, stride=1, norm_momentum=norm_momentum, has_se=has_se, name='incre' + str(i)) incre_modules.append(incre_module) incre_modules = nn.LayerList(incre_modules) # downsampling modules downsamp_modules = [] for i in range(len(pre_stage_channels) - 1): in_channels = head_channels[i] * 4 out_channels = head_channels[i + 1] * 4 downsamp_module = nn.Sequential( nn.Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2D( out_channels, momentum=norm_momentum), nn.ReLU()) downsamp_modules.append(downsamp_module) downsamp_modules = nn.LayerList(downsamp_modules) final_layer = nn.Sequential( nn.Conv2D( in_channels=head_channels[3] * 4, out_channels=2048, kernel_size=1, stride=1, padding=0), nn.BatchNorm2D( 2048, momentum=norm_momentum), nn.ReLU()) return incre_modules, downsamp_modules, final_layer def forward(self, inputs): x = inputs['image'] conv1 = self.conv_layer1_1(x) conv2 = self.conv_layer1_2(conv1) la1 = self.la1(conv2) tr1 = self.tr1([la1]) st2 = self.st2(tr1) tr2 = self.tr2(st2) st3 = self.st3(tr2) tr3 = self.tr3(st3) st4 = self.st4(tr3) if self.upsample: # Upsampling x0_h, x0_w = st4[0].shape[2:4] x1 = F.upsample(st4[1], size=(x0_h, x0_w), mode='bilinear') x2 = F.upsample(st4[2], size=(x0_h, x0_w), mode='bilinear') x3 = F.upsample(st4[3], size=(x0_h, x0_w), mode='bilinear') x = paddle.concat([st4[0], x1, x2, x3], 1) return x if self.downsample: y = self.incre_modules[0](st4[0]) for i in range(len(self.downsamp_modules)): y = self.incre_modules[i+1](st4[i+1]) + \ self.downsamp_modules[i](y) y = self.final_layer(y) return y res = [] for i, layer in enumerate(st4): if i == self.freeze_at: layer.stop_gradient = True if i in self.return_idx: res.append(layer) return res @property def out_shape(self): if self.upsample: self.return_idx = [0] return [ ShapeSpec( channels=self._out_channels[i], stride=self._out_strides[i]) for i in self.return_idx ]
PaddleDetection/ppdet/modeling/backbones/hrnet.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/backbones/hrnet.py", "repo_id": "PaddleDetection", "token_count": 17651 }
86
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F import numpy as np import math from paddle import ParamAttr from paddle.regularizer import L2Decay from paddle.nn.initializer import Constant, TruncatedNormal from ppdet.modeling.shape_spec import ShapeSpec from ppdet.core.workspace import register, serializable from .transformer_utils import (zeros_, DropPath, Identity, window_partition, window_unpartition) from ..initializer import linear_init_ __all__ = ['VisionTransformer2D', 'SimpleFeaturePyramid'] class Mlp(nn.Layer): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer='nn.GELU', drop=0., lr_factor=1.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear( in_features, hidden_features, weight_attr=ParamAttr(learning_rate=lr_factor), bias_attr=ParamAttr(learning_rate=lr_factor)) self.act = eval(act_layer)() self.fc2 = nn.Linear( hidden_features, out_features, weight_attr=ParamAttr(learning_rate=lr_factor), bias_attr=ParamAttr(learning_rate=lr_factor)) self.drop = nn.Dropout(drop) self._init_weights() def _init_weights(self): linear_init_(self.fc1) linear_init_(self.fc2) def forward(self, x): x = self.drop(self.act(self.fc1(x))) x = self.drop(self.fc2(x)) return x class Attention(nn.Layer): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_bias=False, attn_drop=0., proj_drop=0., use_rel_pos=False, rel_pos_zero_init=True, window_size=None, input_size=None, qk_scale=None, lr_factor=1.0): super().__init__() self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = qk_scale or self.head_dim**-0.5 self.use_rel_pos = use_rel_pos self.input_size = input_size self.rel_pos_zero_init = rel_pos_zero_init self.window_size = window_size self.lr_factor = lr_factor self.qkv = nn.Linear( dim, dim * 3, weight_attr=ParamAttr(learning_rate=lr_factor), bias_attr=ParamAttr(learning_rate=lr_factor) if attn_bias else False) if qkv_bias: self.q_bias = self.create_parameter( shape=([dim]), default_initializer=zeros_) self.v_bias = self.create_parameter( shape=([dim]), default_initializer=zeros_) else: self.q_bias = None self.v_bias = None self.proj = nn.Linear( dim, dim, weight_attr=ParamAttr(learning_rate=lr_factor), bias_attr=ParamAttr(learning_rate=lr_factor)) self.attn_drop = nn.Dropout(attn_drop) if window_size is None: self.window_size = self.input_size[0] self._init_weights() def _init_weights(self): linear_init_(self.qkv) linear_init_(self.proj) if self.use_rel_pos: self.rel_pos_h = self.create_parameter( [2 * self.window_size - 1, self.head_dim], attr=ParamAttr(learning_rate=self.lr_factor), default_initializer=Constant(value=0.)) self.rel_pos_w = self.create_parameter( [2 * self.window_size - 1, self.head_dim], attr=ParamAttr(learning_rate=self.lr_factor), default_initializer=Constant(value=0.)) if not self.rel_pos_zero_init: TruncatedNormal(self.rel_pos_h, std=0.02) TruncatedNormal(self.rel_pos_w, std=0.02) def get_rel_pos(self, seq_size, rel_pos): max_rel_dist = int(2 * seq_size - 1) # Interpolate rel pos if needed. if rel_pos.shape[0] != max_rel_dist: # Interpolate rel pos. rel_pos = rel_pos.reshape([1, rel_pos.shape[0], -1]) rel_pos = rel_pos.transpose([0, 2, 1]) rel_pos_resized = F.interpolate( rel_pos, size=(max_rel_dist, ), mode="linear", data_format='NCW') rel_pos_resized = rel_pos_resized.reshape([-1, max_rel_dist]) rel_pos_resized = rel_pos_resized.transpose([1, 0]) else: rel_pos_resized = rel_pos coords = paddle.arange(seq_size, dtype='float32') relative_coords = coords.unsqueeze(-1) - coords.unsqueeze(0) relative_coords += (seq_size - 1) relative_coords = relative_coords.astype('int64').flatten() return paddle.index_select(rel_pos_resized, relative_coords).reshape( [seq_size, seq_size, self.head_dim]) def add_decomposed_rel_pos(self, attn, q, h, w): """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. Args: attn (Tensor): attention map. q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). Returns: attn (Tensor): attention map with added relative positional embeddings. """ Rh = self.get_rel_pos(h, self.rel_pos_h) Rw = self.get_rel_pos(w, self.rel_pos_w) B, _, dim = q.shape r_q = q.reshape([B, h, w, dim]) # bhwc, hch->bhwh1 # bwhc, wcw->bhw1w rel_h = paddle.einsum("bhwc,hkc->bhwk", r_q, Rh).unsqueeze(-1) rel_w = paddle.einsum("bhwc,wkc->bhwk", r_q, Rw).unsqueeze(-2) attn = attn.reshape([B, h, w, h, w]) + rel_h + rel_w return attn.reshape([B, h * w, h * w]) def forward(self, x): B, H, W, C = paddle.shape(x) if self.q_bias is not None: qkv_bias = paddle.concat( (self.q_bias, paddle.zeros_like(self.v_bias), self.v_bias)) qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias) else: qkv = self.qkv(x).reshape( [B, H * W, 3, self.num_heads, self.head_dim]).transpose( [2, 0, 3, 1, 4]).reshape( [3, B * self.num_heads, H * W, self.head_dim]) q, k, v = qkv[0], qkv[1], qkv[2] attn = q.matmul(k.transpose([0, 2, 1])) * self.scale if self.use_rel_pos: attn = self.add_decomposed_rel_pos(attn, q, H, W) attn = F.softmax(attn, axis=-1) attn = self.attn_drop(attn) x = attn.matmul(v).reshape( [B, self.num_heads, H * W, self.head_dim]).transpose( [0, 2, 1, 3]).reshape([B, H, W, C]) x = self.proj(x) return x class Block(nn.Layer): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, attn_bias=False, qk_scale=None, init_values=None, drop=0., attn_drop=0., drop_path=0., use_rel_pos=True, rel_pos_zero_init=True, window_size=None, input_size=None, act_layer='nn.GELU', norm_layer='nn.LayerNorm', lr_factor=1.0, epsilon=1e-5): super().__init__() self.window_size = window_size self.norm1 = eval(norm_layer)(dim, weight_attr=ParamAttr( learning_rate=lr_factor, regularizer=L2Decay(0.0)), bias_attr=ParamAttr( learning_rate=lr_factor, regularizer=L2Decay(0.0)), epsilon=epsilon) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_bias=attn_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, window_size=window_size, input_size=input_size, lr_factor=lr_factor) self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() self.norm2 = eval(norm_layer)(dim, weight_attr=ParamAttr( learning_rate=lr_factor, regularizer=L2Decay(0.0)), bias_attr=ParamAttr( learning_rate=lr_factor, regularizer=L2Decay(0.0)), epsilon=epsilon) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop, lr_factor=lr_factor) if init_values is not None: self.gamma_1 = self.create_parameter( shape=([dim]), default_initializer=Constant(value=init_values)) self.gamma_2 = self.create_parameter( shape=([dim]), default_initializer=Constant(value=init_values)) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x): y = self.norm1(x) if self.window_size is not None: y, pad_hw, num_hw = window_partition(y, self.window_size) y = self.attn(y) if self.gamma_1 is not None: y = self.gamma_1 * y if self.window_size is not None: y = window_unpartition(y, pad_hw, num_hw, (x.shape[1], x.shape[2])) x = x + self.drop_path(y) if self.gamma_2 is None: x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Layer): """ Image to Patch Embedding """ def __init__(self, img_size=(224, 224), patch_size=16, in_chans=3, embed_dim=768, lr_factor=0.01): super().__init__() self.img_size = img_size self.patch_size = patch_size self.proj = nn.Conv2D( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, weight_attr=ParamAttr(learning_rate=lr_factor), bias_attr=ParamAttr(learning_rate=lr_factor)) @property def num_patches_in_h(self): return self.img_size[1] // self.patch_size @property def num_patches_in_w(self): return self.img_size[0] // self.patch_size def forward(self, x): out = self.proj(x) return out @register @serializable class VisionTransformer2D(nn.Layer): """ Vision Transformer with support for patch input """ def __init__(self, img_size=(1024, 1024), patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=False, attn_bias=False, qk_scale=None, init_values=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., act_layer='nn.GELU', norm_layer='nn.LayerNorm', lr_decay_rate=1.0, global_attn_indexes=(2, 5, 8, 11), use_abs_pos=False, use_rel_pos=False, use_abs_pos_emb=False, use_sincos_pos_emb=False, rel_pos_zero_init=True, epsilon=1e-5, final_norm=False, pretrained=None, window_size=None, out_indices=(11, ), with_fpn=False, use_checkpoint=False, *args, **kwargs): super().__init__() self.img_size = img_size self.patch_size = patch_size self.embed_dim = embed_dim self.num_heads = num_heads self.depth = depth self.global_attn_indexes = global_attn_indexes self.epsilon = epsilon self.with_fpn = with_fpn self.use_checkpoint = use_checkpoint self.patch_h = img_size[0] // patch_size self.patch_w = img_size[1] // patch_size self.num_patches = self.patch_h * self.patch_w self.use_abs_pos = use_abs_pos self.use_abs_pos_emb = use_abs_pos_emb self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) dpr = np.linspace(0, drop_path_rate, depth) if use_checkpoint: paddle.seed(0) if use_abs_pos_emb: self.pos_w = self.patch_embed.num_patches_in_w self.pos_h = self.patch_embed.num_patches_in_h self.pos_embed = self.create_parameter( shape=(1, self.pos_w * self.pos_h + 1, embed_dim), default_initializer=paddle.nn.initializer.TruncatedNormal( std=.02)) elif use_sincos_pos_emb: pos_embed = self.get_2d_sincos_position_embedding(self.patch_h, self.patch_w) self.pos_embed = pos_embed self.pos_embed = self.create_parameter(shape=pos_embed.shape) self.pos_embed.set_value(pos_embed.numpy()) self.pos_embed.stop_gradient = True else: self.pos_embed = None self.blocks = nn.LayerList([ Block( embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, attn_bias=attn_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, window_size=None if i in self.global_attn_indexes else window_size, input_size=[self.patch_h, self.patch_w], act_layer=act_layer, lr_factor=self.get_vit_lr_decay_rate(i, lr_decay_rate), norm_layer=norm_layer, init_values=init_values, epsilon=epsilon) for i in range(depth) ]) assert len(out_indices) <= 4, 'out_indices out of bound' self.out_indices = out_indices self.pretrained = pretrained self.init_weight() self.out_channels = [embed_dim for _ in range(len(out_indices))] self.out_strides = [4, 8, 16, 32][-len(out_indices):] if with_fpn else [ patch_size for _ in range(len(out_indices)) ] self.norm = Identity() if self.with_fpn: self.init_fpn( embed_dim=embed_dim, patch_size=patch_size, out_with_norm=final_norm) def get_vit_lr_decay_rate(self, layer_id, lr_decay_rate): return lr_decay_rate**(self.depth - layer_id) def init_weight(self): pretrained = self.pretrained if pretrained: if 'http' in pretrained: path = paddle.utils.download.get_weights_path_from_url( pretrained) else: path = pretrained load_state_dict = paddle.load(path) model_state_dict = self.state_dict() pos_embed_name = "pos_embed" if pos_embed_name in load_state_dict.keys( ) and self.use_abs_pos_emb: load_pos_embed = paddle.to_tensor( load_state_dict[pos_embed_name], dtype="float32") if self.pos_embed.shape != load_pos_embed.shape: pos_size = int(math.sqrt(load_pos_embed.shape[1] - 1)) model_state_dict[pos_embed_name] = self.resize_pos_embed( load_pos_embed, (pos_size, pos_size), (self.pos_h, self.pos_w)) # self.set_state_dict(model_state_dict) load_state_dict[pos_embed_name] = model_state_dict[ pos_embed_name] print("Load pos_embed and resize it from {} to {} .".format( load_pos_embed.shape, self.pos_embed.shape)) self.set_state_dict(load_state_dict) print("Load load_state_dict....") def init_fpn(self, embed_dim=768, patch_size=16, out_with_norm=False): if patch_size == 16: self.fpn1 = nn.Sequential( nn.Conv2DTranspose( embed_dim, embed_dim, kernel_size=2, stride=2), nn.BatchNorm2D(embed_dim), nn.GELU(), nn.Conv2DTranspose( embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.Conv2DTranspose( embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn3 = Identity() self.fpn4 = nn.MaxPool2D(kernel_size=2, stride=2) elif patch_size == 8: self.fpn1 = nn.Sequential( nn.Conv2DTranspose( embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = Identity() self.fpn3 = nn.Sequential(nn.MaxPool2D(kernel_size=2, stride=2), ) self.fpn4 = nn.Sequential(nn.MaxPool2D(kernel_size=4, stride=4), ) if not out_with_norm: self.norm = Identity() else: self.norm = nn.LayerNorm(embed_dim, epsilon=self.epsilon) def resize_pos_embed(self, pos_embed, old_hw, new_hw): """ Resize pos_embed weight. Args: pos_embed (Tensor): the pos_embed weight old_hw (list[int]): the height and width of old pos_embed new_hw (list[int]): the height and width of new pos_embed Returns: Tensor: the resized pos_embed weight """ cls_pos_embed = pos_embed[:, :1, :] pos_embed = pos_embed[:, 1:, :] pos_embed = pos_embed.transpose([0, 2, 1]) pos_embed = pos_embed.reshape([1, -1, old_hw[0], old_hw[1]]) pos_embed = F.interpolate( pos_embed, new_hw, mode='bicubic', align_corners=False) pos_embed = pos_embed.flatten(2).transpose([0, 2, 1]) pos_embed = paddle.concat([cls_pos_embed, pos_embed], axis=1) return pos_embed def get_2d_sincos_position_embedding(self, h, w, temperature=10000.): grid_y, grid_x = paddle.meshgrid( paddle.arange( h, dtype=paddle.float32), paddle.arange( w, dtype=paddle.float32)) assert self.embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding' pos_dim = self.embed_dim // 4 omega = paddle.arange(pos_dim, dtype=paddle.float32) / pos_dim omega = (1. / (temperature**omega)).unsqueeze(0) out_x = grid_x.reshape([-1, 1]).matmul(omega) out_y = grid_y.reshape([-1, 1]).matmul(omega) pos_emb = paddle.concat( [ paddle.sin(out_y), paddle.cos(out_y), paddle.sin(out_x), paddle.cos(out_x) ], axis=1) return pos_emb.reshape([1, h, w, self.embed_dim]) def forward(self, inputs): x = self.patch_embed(inputs['image']).transpose([0, 2, 3, 1]) B, Hp, Wp, _ = paddle.shape(x) if self.use_abs_pos: x = x + self.get_2d_sincos_position_embedding(Hp, Wp) if self.use_abs_pos_emb: x = x + self.resize_pos_embed(self.pos_embed, (self.pos_h, self.pos_w), (Hp, Wp)) feats = [] for idx, blk in enumerate(self.blocks): if self.use_checkpoint and self.training: x = paddle.distributed.fleet.utils.recompute( blk, x, **{"preserve_rng_state": True}) else: x = blk(x) if idx in self.out_indices: feats.append(self.norm(x.transpose([0, 3, 1, 2]))) if self.with_fpn: fpns = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(feats)): feats[i] = fpns[i](feats[i]) return feats @property def num_layers(self): return len(self.blocks) @property def no_weight_decay(self): return {'pos_embed', 'cls_token'} @property def out_shape(self): return [ ShapeSpec( channels=c, stride=s) for c, s in zip(self.out_channels, self.out_strides) ] class LayerNorm(nn.Layer): """ A LayerNorm variant, popularized by Transformers, that performs point-wise mean and variance normalization over the channel dimension for inputs that have shape (batch_size, channels, height, width). Note that, the modified LayerNorm on used in ResBlock and SimpleFeaturePyramid. In ViT, we use the nn.LayerNorm """ def __init__(self, normalized_shape, eps=1e-6): super().__init__() self.weight = self.create_parameter([normalized_shape]) self.bias = self.create_parameter([normalized_shape]) self.eps = eps self.normalized_shape = (normalized_shape, ) def forward(self, x): u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / paddle.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x @register @serializable class SimpleFeaturePyramid(nn.Layer): def __init__(self, in_channels, out_channels, spatial_scales, num_levels=4, use_bias=False): """ Args: in_channels (list[int]): input channels of each level which can be derived from the output shape of backbone by from_config out_channel (int): output channel of each level. spatial_scales (list[float]): list of scaling factors to upsample or downsample the input features for creating pyramid features which can be derived from the output shape of backbone by from_config num_levels (int): number of levels of output features. use_bias (bool): whether use bias or not. """ super(SimpleFeaturePyramid, self).__init__() self.in_channels = in_channels[0] self.out_channels = out_channels self.num_levels = num_levels self.stages = [] dim = self.in_channels if num_levels == 4: scale_factors = [2.0, 1.0, 0.5] elif num_levels == 5: scale_factors = [4.0, 2.0, 1.0, 0.5] else: raise NotImplementedError( f"num_levels={num_levels} is not supported yet.") dim = in_channels[0] for idx, scale in enumerate(scale_factors): out_dim = dim if scale == 4.0: layers = [ nn.Conv2DTranspose( dim, dim // 2, kernel_size=2, stride=2), nn.LayerNorm(dim // 2), nn.GELU(), nn.Conv2DTranspose( dim // 2, dim // 4, kernel_size=2, stride=2), ] out_dim = dim // 4 elif scale == 2.0: layers = [ nn.Conv2DTranspose( dim, dim // 2, kernel_size=2, stride=2) ] out_dim = dim // 2 elif scale == 1.0: layers = [] elif scale == 0.5: layers = [nn.MaxPool2D(kernel_size=2, stride=2)] layers.extend([ nn.Conv2D( out_dim, out_channels, kernel_size=1, bias_attr=use_bias, ), LayerNorm(out_channels), nn.Conv2D( out_channels, out_channels, kernel_size=3, padding=1, bias_attr=use_bias, ), LayerNorm(out_channels) ]) layers = nn.Sequential(*layers) stage = -int(math.log2(spatial_scales[0] * scale_factors[idx])) self.add_sublayer(f"simfp_{stage}", layers) self.stages.append(layers) # top block output feature maps. self.top_block = nn.Sequential( nn.MaxPool2D( kernel_size=1, stride=2, padding=0)) @classmethod def from_config(cls, cfg, input_shape): return { 'in_channels': [i.channels for i in input_shape], 'spatial_scales': [1.0 / i.stride for i in input_shape], } @property def out_shape(self): return [ ShapeSpec(channels=self.out_channels) for _ in range(self.num_levels) ] def forward(self, feats): """ Args: x: Tensor of shape (N,C,H,W). """ features = feats[0] results = [] for stage in self.stages: results.append(stage(features)) top_block_in_feature = results[-1] results.append(self.top_block(top_block_in_feature)) assert self.num_levels == len(results) return results
PaddleDetection/ppdet/modeling/backbones/vit_mae.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/backbones/vit_mae.py", "repo_id": "PaddleDetection", "token_count": 14902 }
87
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn from ppdet.core.workspace import register from .. import layers as L from ..backbones.hrnet import BasicBlock @register class HrHRNetHead(nn.Layer): __inject__ = ['loss'] def __init__(self, num_joints, loss='HrHRNetLoss', swahr=False, width=32): """ Head for HigherHRNet network Args: num_joints (int): number of keypoints hrloss (object): HrHRNetLoss instance swahr (bool): whether to use swahr width (int): hrnet channel width """ super(HrHRNetHead, self).__init__() self.loss = loss self.num_joints = num_joints num_featout1 = num_joints * 2 num_featout2 = num_joints self.swahr = swahr self.conv1 = L.Conv2d(width, num_featout1, 1, 1, 0, bias=True) self.conv2 = L.Conv2d(width, num_featout2, 1, 1, 0, bias=True) self.deconv = nn.Sequential( L.ConvTranspose2d( num_featout1 + width, width, 4, 2, 1, 0, bias=False), L.BatchNorm2d(width), L.ReLU()) self.blocks = nn.Sequential(*(BasicBlock( num_channels=width, num_filters=width, has_se=False, freeze_norm=False, name='HrHRNetHead_{}'.format(i)) for i in range(4))) self.interpolate = L.Upsample(2, mode='bilinear') self.concat = L.Concat(dim=1) if swahr: self.scalelayer0 = nn.Sequential( L.Conv2d( width, num_joints, 1, 1, 0, bias=True), L.BatchNorm2d(num_joints), L.ReLU(), L.Conv2d( num_joints, num_joints, 9, 1, 4, groups=num_joints, bias=True)) self.scalelayer1 = nn.Sequential( L.Conv2d( width, num_joints, 1, 1, 0, bias=True), L.BatchNorm2d(num_joints), L.ReLU(), L.Conv2d( num_joints, num_joints, 9, 1, 4, groups=num_joints, bias=True)) def forward(self, feats, targets=None): x1 = feats[0] xo1 = self.conv1(x1) x2 = self.blocks(self.deconv(self.concat((x1, xo1)))) xo2 = self.conv2(x2) num_joints = self.num_joints if self.training: heatmap1, tagmap = paddle.split(xo1, 2, axis=1) if self.swahr: so1 = self.scalelayer0(x1) so2 = self.scalelayer1(x2) hrhrnet_outputs = ([heatmap1, so1], [xo2, so2], tagmap) return self.loss(hrhrnet_outputs, targets) else: hrhrnet_outputs = (heatmap1, xo2, tagmap) return self.loss(hrhrnet_outputs, targets) # averaged heatmap, upsampled tagmap upsampled = self.interpolate(xo1) avg = (upsampled[:, :num_joints] + xo2[:, :num_joints]) / 2 return avg, upsampled[:, num_joints:]
PaddleDetection/ppdet/modeling/heads/keypoint_hrhrnet_head.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/heads/keypoint_hrhrnet_head.py", "repo_id": "PaddleDetection", "token_count": 2092 }
88
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.nn.initializer import Constant, Normal from paddle.regularizer import L2Decay from ppdet.core.workspace import register from ppdet.modeling.layers import DeformableConvV2, LiteConv import numpy as np @register class HMHead(nn.Layer): """ Args: ch_in (int): The channel number of input Tensor. ch_out (int): The channel number of output Tensor. num_classes (int): Number of classes. conv_num (int): The convolution number of hm_feat. dcn_head(bool): whether use dcn in head. False by default. lite_head(bool): whether use lite version. False by default. norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional. bn by default Return: Heatmap head output """ __shared__ = ['num_classes', 'norm_type'] def __init__( self, ch_in, ch_out=128, num_classes=80, conv_num=2, dcn_head=False, lite_head=False, norm_type='bn', ): super(HMHead, self).__init__() head_conv = nn.Sequential() for i in range(conv_num): name = 'conv.{}'.format(i) if lite_head: lite_name = 'hm.' + name head_conv.add_sublayer( lite_name, LiteConv( in_channels=ch_in if i == 0 else ch_out, out_channels=ch_out, norm_type=norm_type)) else: if dcn_head: head_conv.add_sublayer( name, DeformableConvV2( in_channels=ch_in if i == 0 else ch_out, out_channels=ch_out, kernel_size=3, weight_attr=ParamAttr(initializer=Normal(0, 0.01)))) else: head_conv.add_sublayer( name, nn.Conv2D( in_channels=ch_in if i == 0 else ch_out, out_channels=ch_out, kernel_size=3, padding=1, weight_attr=ParamAttr(initializer=Normal(0, 0.01)), bias_attr=ParamAttr( learning_rate=2., regularizer=L2Decay(0.)))) head_conv.add_sublayer(name + '.act', nn.ReLU()) self.feat = head_conv bias_init = float(-np.log((1 - 0.01) / 0.01)) weight_attr = None if lite_head else ParamAttr(initializer=Normal(0, 0.01)) self.head = nn.Conv2D( in_channels=ch_out, out_channels=num_classes, kernel_size=1, weight_attr=weight_attr, bias_attr=ParamAttr( learning_rate=2., regularizer=L2Decay(0.), initializer=Constant(bias_init))) def forward(self, feat): out = self.feat(feat) out = self.head(out) return out @register class WHHead(nn.Layer): """ Args: ch_in (int): The channel number of input Tensor. ch_out (int): The channel number of output Tensor. conv_num (int): The convolution number of wh_feat. dcn_head(bool): whether use dcn in head. False by default. lite_head(bool): whether use lite version. False by default. norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional. bn by default Return: Width & Height head output """ __shared__ = ['norm_type'] def __init__(self, ch_in, ch_out=64, conv_num=2, dcn_head=False, lite_head=False, norm_type='bn'): super(WHHead, self).__init__() head_conv = nn.Sequential() for i in range(conv_num): name = 'conv.{}'.format(i) if lite_head: lite_name = 'wh.' + name head_conv.add_sublayer( lite_name, LiteConv( in_channels=ch_in if i == 0 else ch_out, out_channels=ch_out, norm_type=norm_type)) else: if dcn_head: head_conv.add_sublayer( name, DeformableConvV2( in_channels=ch_in if i == 0 else ch_out, out_channels=ch_out, kernel_size=3, weight_attr=ParamAttr(initializer=Normal(0, 0.01)))) else: head_conv.add_sublayer( name, nn.Conv2D( in_channels=ch_in if i == 0 else ch_out, out_channels=ch_out, kernel_size=3, padding=1, weight_attr=ParamAttr(initializer=Normal(0, 0.01)), bias_attr=ParamAttr( learning_rate=2., regularizer=L2Decay(0.)))) head_conv.add_sublayer(name + '.act', nn.ReLU()) weight_attr = None if lite_head else ParamAttr(initializer=Normal(0, 0.01)) self.feat = head_conv self.head = nn.Conv2D( in_channels=ch_out, out_channels=4, kernel_size=1, weight_attr=weight_attr, bias_attr=ParamAttr( learning_rate=2., regularizer=L2Decay(0.))) def forward(self, feat): out = self.feat(feat) out = self.head(out) out = F.relu(out) return out @register class TTFHead(nn.Layer): """ TTFHead Args: in_channels (int): the channel number of input to TTFHead. num_classes (int): the number of classes, 80 by default. hm_head_planes (int): the channel number in heatmap head, 128 by default. wh_head_planes (int): the channel number in width & height head, 64 by default. hm_head_conv_num (int): the number of convolution in heatmap head, 2 by default. wh_head_conv_num (int): the number of convolution in width & height head, 2 by default. hm_loss (object): Instance of 'CTFocalLoss'. wh_loss (object): Instance of 'GIoULoss'. wh_offset_base (float): the base offset of width and height, 16.0 by default. down_ratio (int): the actual down_ratio is calculated by base_down_ratio (default 16) and the number of upsample layers. lite_head(bool): whether use lite version. False by default. norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional. bn by default ags_module(bool): whether use AGS module to reweight location feature. false by default. """ __shared__ = ['num_classes', 'down_ratio', 'norm_type'] __inject__ = ['hm_loss', 'wh_loss'] def __init__(self, in_channels, num_classes=80, hm_head_planes=128, wh_head_planes=64, hm_head_conv_num=2, wh_head_conv_num=2, hm_loss='CTFocalLoss', wh_loss='GIoULoss', wh_offset_base=16., down_ratio=4, dcn_head=False, lite_head=False, norm_type='bn', ags_module=False): super(TTFHead, self).__init__() self.in_channels = in_channels self.hm_head = HMHead(in_channels, hm_head_planes, num_classes, hm_head_conv_num, dcn_head, lite_head, norm_type) self.wh_head = WHHead(in_channels, wh_head_planes, wh_head_conv_num, dcn_head, lite_head, norm_type) self.hm_loss = hm_loss self.wh_loss = wh_loss self.wh_offset_base = wh_offset_base self.down_ratio = down_ratio self.ags_module = ags_module @classmethod def from_config(cls, cfg, input_shape): if isinstance(input_shape, (list, tuple)): input_shape = input_shape[0] return {'in_channels': input_shape.channels, } def forward(self, feats): hm = self.hm_head(feats) wh = self.wh_head(feats) * self.wh_offset_base return hm, wh def filter_box_by_weight(self, pred, target, weight): """ Filter out boxes where ttf_reg_weight is 0, only keep positive samples. """ index = paddle.nonzero(weight > 0) index.stop_gradient = True weight = paddle.gather_nd(weight, index) pred = paddle.gather_nd(pred, index) target = paddle.gather_nd(target, index) return pred, target, weight def filter_loc_by_weight(self, score, weight): index = paddle.nonzero(weight > 0) index.stop_gradient = True score = paddle.gather_nd(score, index) return score def get_loss(self, pred_hm, pred_wh, target_hm, box_target, target_weight): pred_hm = paddle.clip(F.sigmoid(pred_hm), 1e-4, 1 - 1e-4) hm_loss = self.hm_loss(pred_hm, target_hm) H, W = target_hm.shape[2:] mask = paddle.reshape(target_weight, [-1, H, W]) avg_factor = paddle.sum(mask) + 1e-4 base_step = self.down_ratio shifts_x = paddle.arange(0, W * base_step, base_step, dtype='int32') shifts_y = paddle.arange(0, H * base_step, base_step, dtype='int32') shift_y, shift_x = paddle.tensor.meshgrid([shifts_y, shifts_x]) base_loc = paddle.stack([shift_x, shift_y], axis=0) base_loc.stop_gradient = True pred_boxes = paddle.concat( [0 - pred_wh[:, 0:2, :, :] + base_loc, pred_wh[:, 2:4] + base_loc], axis=1) pred_boxes = paddle.transpose(pred_boxes, [0, 2, 3, 1]) boxes = paddle.transpose(box_target, [0, 2, 3, 1]) boxes.stop_gradient = True if self.ags_module: pred_hm_max = paddle.max(pred_hm, axis=1, keepdim=True) pred_hm_max_softmax = F.softmax(pred_hm_max, axis=1) pred_hm_max_softmax = paddle.transpose(pred_hm_max_softmax, [0, 2, 3, 1]) pred_hm_max_softmax = self.filter_loc_by_weight(pred_hm_max_softmax, mask) else: pred_hm_max_softmax = None pred_boxes, boxes, mask = self.filter_box_by_weight(pred_boxes, boxes, mask) mask.stop_gradient = True wh_loss = self.wh_loss( pred_boxes, boxes, iou_weight=mask.unsqueeze(1), loc_reweight=pred_hm_max_softmax) wh_loss = wh_loss / avg_factor ttf_loss = {'hm_loss': hm_loss, 'wh_loss': wh_loss} return ttf_loss
PaddleDetection/ppdet/modeling/heads/ttf_head.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/heads/ttf_head.py", "repo_id": "PaddleDetection", "token_count": 6505 }
89
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn.functional as F import paddle.nn as nn from ppdet.core.workspace import register __all__ = ['FocalLoss', 'Weighted_FocalLoss'] @register class FocalLoss(nn.Layer): """A wrapper around paddle.nn.functional.sigmoid_focal_loss. Args: use_sigmoid (bool): currently only support use_sigmoid=True alpha (float): parameter alpha in Focal Loss gamma (float): parameter gamma in Focal Loss loss_weight (float): final loss will be multiplied by this """ def __init__(self, use_sigmoid=True, alpha=0.25, gamma=2.0, loss_weight=1.0): super(FocalLoss, self).__init__() assert use_sigmoid == True, \ 'Focal Loss only supports sigmoid at the moment' self.use_sigmoid = use_sigmoid self.alpha = alpha self.gamma = gamma self.loss_weight = loss_weight def forward(self, pred, target, reduction='none'): """forward function. Args: pred (Tensor): logits of class prediction, of shape (N, num_classes) target (Tensor): target class label, of shape (N, ) reduction (str): the way to reduce loss, one of (none, sum, mean) """ num_classes = pred.shape[1] target = F.one_hot(target, num_classes+1).cast(pred.dtype) target = target[:, :-1].detach() loss = F.sigmoid_focal_loss( pred, target, alpha=self.alpha, gamma=self.gamma, reduction=reduction) return loss * self.loss_weight @register class Weighted_FocalLoss(FocalLoss): """A wrapper around paddle.nn.functional.sigmoid_focal_loss. Args: use_sigmoid (bool): currently only support use_sigmoid=True alpha (float): parameter alpha in Focal Loss gamma (float): parameter gamma in Focal Loss loss_weight (float): final loss will be multiplied by this """ def __init__(self, use_sigmoid=True, alpha=0.25, gamma=2.0, loss_weight=1.0, reduction="mean"): super(FocalLoss, self).__init__() assert use_sigmoid == True, \ 'Focal Loss only supports sigmoid at the moment' self.use_sigmoid = use_sigmoid self.alpha = alpha self.gamma = gamma self.loss_weight = loss_weight self.reduction = reduction def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """forward function. Args: pred (Tensor): logits of class prediction, of shape (N, num_classes) target (Tensor): target class label, of shape (N, ) reduction (str): the way to reduce loss, one of (none, sum, mean) """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) num_classes = pred.shape[1] target = F.one_hot(target, num_classes + 1).astype(pred.dtype) target = target[:, :-1].detach() loss = F.sigmoid_focal_loss( pred, target, alpha=self.alpha, gamma=self.gamma, reduction='none') if weight is not None: if weight.shape != loss.shape: if weight.shape[0] == loss.shape[0]: # For most cases, weight is of shape (num_priors, ), # which means it does not have the second axis num_class weight = weight.reshape((-1, 1)) else: # Sometimes, weight per anchor per class is also needed. e.g. # in FSAF. But it may be flattened of shape # (num_priors x num_class, ), while loss is still of shape # (num_priors, num_class). assert weight.numel() == loss.numel() weight = weight.reshape((loss.shape[0], -1)) assert weight.ndim == loss.ndim loss = loss * weight # if avg_factor is not specified, just reduce the loss if avg_factor is None: if reduction == 'mean': loss = loss.mean() elif reduction == 'sum': loss = loss.sum() else: # if reduction is mean, then average the loss by avg_factor if reduction == 'mean': # Avoid causing ZeroDivisionError when avg_factor is 0.0, # i.e., all labels of an image belong to ignore index. eps = 1e-10 loss = loss.sum() / (avg_factor + eps) # if reduction is 'none', then do nothing, otherwise raise an error elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss * self.loss_weight
PaddleDetection/ppdet/modeling/losses/focal_loss.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/losses/focal_loss.py", "repo_id": "PaddleDetection", "token_count": 2477 }
90
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is based on https://github.com/noahcao/OC_SORT/blob/master/trackers/ocsort_tracker/ocsort.py """ import numpy as np from ..matching.ocsort_matching import associate, linear_assignment, iou_batch, associate_only_iou from ..motion.ocsort_kalman_filter import OCSORTKalmanFilter from ppdet.core.workspace import register, serializable def k_previous_obs(observations, cur_age, k): if len(observations) == 0: return [-1, -1, -1, -1, -1] for i in range(k): dt = k - i if cur_age - dt in observations: return observations[cur_age - dt] max_age = max(observations.keys()) return observations[max_age] def convert_bbox_to_z(bbox): """ Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio """ w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] x = bbox[0] + w / 2. y = bbox[1] + h / 2. s = w * h # scale is just area r = w / float(h + 1e-6) return np.array([x, y, s, r]).reshape((4, 1)) def convert_x_to_bbox(x, score=None): """ Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right """ w = np.sqrt(x[2] * x[3]) h = x[2] / w if (score == None): return np.array( [x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4)) else: score = np.array([score]) return np.array([ x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score ]).reshape((1, 5)) def speed_direction(bbox1, bbox2): cx1, cy1 = (bbox1[0] + bbox1[2]) / 2.0, (bbox1[1] + bbox1[3]) / 2.0 cx2, cy2 = (bbox2[0] + bbox2[2]) / 2.0, (bbox2[1] + bbox2[3]) / 2.0 speed = np.array([cy2 - cy1, cx2 - cx1]) norm = np.sqrt((cy2 - cy1)**2 + (cx2 - cx1)**2) + 1e-6 return speed / norm class KalmanBoxTracker(object): """ This class represents the internal state of individual tracked objects observed as bbox. Args: bbox (np.array): bbox in [x1,y1,x2,y2,score] format. delta_t (int): delta_t of previous observation """ count = 0 def __init__(self, bbox, delta_t=3): self.kf = OCSORTKalmanFilter(dim_x=7, dim_z=4) self.kf.F = np.array([[1., 0, 0, 0, 1., 0, 0], [0, 1., 0, 0, 0, 1., 0], [0, 0, 1., 0, 0, 0, 1], [0, 0, 0, 1., 0, 0, 0], [0, 0, 0, 0, 1., 0, 0], [0, 0, 0, 0, 0, 1., 0], [0, 0, 0, 0, 0, 0, 1.]]) self.kf.H = np.array([[1., 0, 0, 0, 0, 0, 0], [0, 1., 0, 0, 0, 0, 0], [0, 0, 1., 0, 0, 0, 0], [0, 0, 0, 1., 0, 0, 0]]) self.kf.R[2:, 2:] *= 10. self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities self.kf.P *= 10. self.kf.Q[-1, -1] *= 0.01 self.kf.Q[4:, 4:] *= 0.01 self.score = bbox[4] self.kf.x[:4] = convert_bbox_to_z(bbox) self.time_since_update = 0 self.id = KalmanBoxTracker.count KalmanBoxTracker.count += 1 self.history = [] self.hits = 0 self.hit_streak = 0 self.age = 0 """ NOTE: [-1,-1,-1,-1,-1] is a compromising placeholder for non-observation status, the same for the return of function k_previous_obs. It is ugly and I do not like it. But to support generate observation array in a fast and unified way, which you would see below k_observations = np.array([k_previous_obs(...]]), let's bear it for now. """ self.last_observation = np.array([-1, -1, -1, -1, -1]) # placeholder self.observations = dict() self.history_observations = [] self.velocity = None self.delta_t = delta_t def update(self, bbox, angle_cost=False): """ Updates the state vector with observed bbox. """ if bbox is not None: if angle_cost and self.last_observation.sum( ) >= 0: # no previous observation previous_box = None for i in range(self.delta_t): dt = self.delta_t - i if self.age - dt in self.observations: previous_box = self.observations[self.age - dt] break if previous_box is None: previous_box = self.last_observation """ Estimate the track speed direction with observations \Delta t steps away """ self.velocity = speed_direction(previous_box, bbox) """ Insert new observations. This is a ugly way to maintain both self.observations and self.history_observations. Bear it for the moment. """ self.last_observation = bbox self.observations[self.age] = bbox self.history_observations.append(bbox) self.time_since_update = 0 self.history = [] self.hits += 1 self.hit_streak += 1 self.kf.update(convert_bbox_to_z(bbox)) else: self.kf.update(bbox) def predict(self): """ Advances the state vector and returns the predicted bounding box estimate. """ if ((self.kf.x[6] + self.kf.x[2]) <= 0): self.kf.x[6] *= 0.0 self.kf.predict() self.age += 1 if (self.time_since_update > 0): self.hit_streak = 0 self.time_since_update += 1 self.history.append(convert_x_to_bbox(self.kf.x, score=self.score)) return self.history[-1] def get_state(self): return convert_x_to_bbox(self.kf.x, score=self.score) @register @serializable class OCSORTTracker(object): """ OCSORT tracker, support single class Args: det_thresh (float): threshold of detection score max_age (int): maximum number of missed misses before a track is deleted min_hits (int): minimum hits for associate iou_threshold (float): iou threshold for associate delta_t (int): delta_t of previous observation inertia (float): vdc_weight of angle_diff_cost for associate vertical_ratio (float): w/h, the vertical ratio of the bbox to filter bad results. If set <= 0 means no need to filter bboxes,usually set 1.6 for pedestrian tracking. min_box_area (int): min box area to filter out low quality boxes use_byte (bool): Whether use ByteTracker, default False """ def __init__(self, det_thresh=0.6, max_age=30, min_hits=3, iou_threshold=0.3, delta_t=3, inertia=0.2, vertical_ratio=-1, min_box_area=0, use_byte=False, use_angle_cost=False): self.det_thresh = det_thresh self.max_age = max_age self.min_hits = min_hits self.iou_threshold = iou_threshold self.delta_t = delta_t self.inertia = inertia self.vertical_ratio = vertical_ratio self.min_box_area = min_box_area self.use_byte = use_byte self.use_angle_cost = use_angle_cost self.trackers = [] self.frame_count = 0 KalmanBoxTracker.count = 0 def update(self, pred_dets, pred_embs=None): """ Args: pred_dets (np.array): Detection results of the image, the shape is [N, 6], means 'cls_id, score, x0, y0, x1, y1'. pred_embs (np.array): Embedding results of the image, the shape is [N, 128] or [N, 512], default as None. Return: tracking boxes (np.array): [M, 6], means 'x0, y0, x1, y1, score, id'. """ if pred_dets is None: return np.empty((0, 6)) self.frame_count += 1 bboxes = pred_dets[:, 2:] scores = pred_dets[:, 1:2] dets = np.concatenate((bboxes, scores), axis=1) scores = scores.squeeze(-1) inds_low = scores > 0.1 inds_high = scores < self.det_thresh inds_second = np.logical_and(inds_low, inds_high) # self.det_thresh > score > 0.1, for second matching dets_second = dets[inds_second] # detections for second matching remain_inds = scores > self.det_thresh dets = dets[remain_inds] # get predicted locations from existing trackers. trks = np.zeros((len(self.trackers), 5)) to_del = [] ret = [] for t, trk in enumerate(trks): pos = self.trackers[t].predict()[0] trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] if np.any(np.isnan(pos)): to_del.append(t) trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) for t in reversed(to_del): self.trackers.pop(t) if self.use_angle_cost: velocities = np.array([ trk.velocity if trk.velocity is not None else np.array((0, 0)) for trk in self.trackers ]) k_observations = np.array([ k_previous_obs(trk.observations, trk.age, self.delta_t) for trk in self.trackers ]) last_boxes = np.array([trk.last_observation for trk in self.trackers]) """ First round of association """ if self.use_angle_cost: matched, unmatched_dets, unmatched_trks = associate( dets, trks, self.iou_threshold, velocities, k_observations, self.inertia) else: matched, unmatched_dets, unmatched_trks = associate_only_iou( dets, trks, self.iou_threshold) for m in matched: self.trackers[m[1]].update( dets[m[0], :], angle_cost=self.use_angle_cost) """ Second round of associaton by OCR """ # BYTE association if self.use_byte and len(dets_second) > 0 and unmatched_trks.shape[ 0] > 0: u_trks = trks[unmatched_trks] iou_left = iou_batch( dets_second, u_trks) # iou between low score detections and unmatched tracks iou_left = np.array(iou_left) if iou_left.max() > self.iou_threshold: """ NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may get a higher performance especially on MOT17/MOT20 datasets. But we keep it uniform here for simplicity """ matched_indices = linear_assignment(-iou_left) to_remove_trk_indices = [] for m in matched_indices: det_ind, trk_ind = m[0], unmatched_trks[m[1]] if iou_left[m[0], m[1]] < self.iou_threshold: continue self.trackers[trk_ind].update( dets_second[det_ind, :], angle_cost=self.use_angle_cost) to_remove_trk_indices.append(trk_ind) unmatched_trks = np.setdiff1d(unmatched_trks, np.array(to_remove_trk_indices)) if unmatched_dets.shape[0] > 0 and unmatched_trks.shape[0] > 0: left_dets = dets[unmatched_dets] left_trks = last_boxes[unmatched_trks] iou_left = iou_batch(left_dets, left_trks) iou_left = np.array(iou_left) if iou_left.max() > self.iou_threshold: """ NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may get a higher performance especially on MOT17/MOT20 datasets. But we keep it uniform here for simplicity """ rematched_indices = linear_assignment(-iou_left) to_remove_det_indices = [] to_remove_trk_indices = [] for m in rematched_indices: det_ind, trk_ind = unmatched_dets[m[0]], unmatched_trks[m[ 1]] if iou_left[m[0], m[1]] < self.iou_threshold: continue self.trackers[trk_ind].update( dets[det_ind, :], angle_cost=self.use_angle_cost) to_remove_det_indices.append(det_ind) to_remove_trk_indices.append(trk_ind) unmatched_dets = np.setdiff1d(unmatched_dets, np.array(to_remove_det_indices)) unmatched_trks = np.setdiff1d(unmatched_trks, np.array(to_remove_trk_indices)) for m in unmatched_trks: self.trackers[m].update(None) # create and initialise new trackers for unmatched detections for i in unmatched_dets: trk = KalmanBoxTracker(dets[i, :], delta_t=self.delta_t) self.trackers.append(trk) i = len(self.trackers) for trk in reversed(self.trackers): if trk.last_observation.sum() < 0: d = trk.get_state()[0] else: d = trk.last_observation # tlbr + score if (trk.time_since_update < 1) and ( trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): # +1 as MOT benchmark requires positive ret.append(np.concatenate((d, [trk.id + 1])).reshape(1, -1)) i -= 1 # remove dead tracklet if (trk.time_since_update > self.max_age): self.trackers.pop(i) if (len(ret) > 0): return np.concatenate(ret) return np.empty((0, 6))
PaddleDetection/ppdet/modeling/mot/tracker/ocsort_tracker.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/mot/tracker/ocsort_tracker.py", "repo_id": "PaddleDetection", "token_count": 7597 }
91
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.nn.initializer import Constant, Uniform, Normal, XavierUniform from ppdet.core.workspace import register, serializable from paddle.regularizer import L2Decay from ppdet.modeling.layers import DeformableConvV2, ConvNormLayer, LiteConv import math from ppdet.modeling.ops import batch_norm from ..shape_spec import ShapeSpec __all__ = ['TTFFPN'] class Upsample(nn.Layer): def __init__(self, ch_in, ch_out, norm_type='bn'): super(Upsample, self).__init__() fan_in = ch_in * 3 * 3 stdv = 1. / math.sqrt(fan_in) self.dcn = DeformableConvV2( ch_in, ch_out, kernel_size=3, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( initializer=Constant(0), regularizer=L2Decay(0.), learning_rate=2.), lr_scale=2., regularizer=L2Decay(0.)) self.bn = batch_norm( ch_out, norm_type=norm_type, initializer=Constant(1.)) def forward(self, feat): dcn = self.dcn(feat) bn = self.bn(dcn) relu = F.relu(bn) out = F.interpolate(relu, scale_factor=2., mode='bilinear') return out class DeConv(nn.Layer): def __init__(self, ch_in, ch_out, norm_type='bn'): super(DeConv, self).__init__() self.deconv = nn.Sequential() conv1 = ConvNormLayer( ch_in=ch_in, ch_out=ch_out, stride=1, filter_size=1, norm_type=norm_type, initializer=XavierUniform()) conv2 = nn.Conv2DTranspose( in_channels=ch_out, out_channels=ch_out, kernel_size=4, padding=1, stride=2, groups=ch_out, weight_attr=ParamAttr(initializer=XavierUniform()), bias_attr=False) bn = batch_norm(ch_out, norm_type=norm_type, norm_decay=0.) conv3 = ConvNormLayer( ch_in=ch_out, ch_out=ch_out, stride=1, filter_size=1, norm_type=norm_type, initializer=XavierUniform()) self.deconv.add_sublayer('conv1', conv1) self.deconv.add_sublayer('relu6_1', nn.ReLU6()) self.deconv.add_sublayer('conv2', conv2) self.deconv.add_sublayer('bn', bn) self.deconv.add_sublayer('relu6_2', nn.ReLU6()) self.deconv.add_sublayer('conv3', conv3) self.deconv.add_sublayer('relu6_3', nn.ReLU6()) def forward(self, inputs): return self.deconv(inputs) class LiteUpsample(nn.Layer): def __init__(self, ch_in, ch_out, norm_type='bn'): super(LiteUpsample, self).__init__() self.deconv = DeConv(ch_in, ch_out, norm_type=norm_type) self.conv = LiteConv(ch_in, ch_out, norm_type=norm_type) def forward(self, inputs): deconv_up = self.deconv(inputs) conv = self.conv(inputs) interp_up = F.interpolate(conv, scale_factor=2., mode='bilinear') return deconv_up + interp_up class ShortCut(nn.Layer): def __init__(self, layer_num, ch_in, ch_out, norm_type='bn', lite_neck=False, name=None): super(ShortCut, self).__init__() shortcut_conv = nn.Sequential() for i in range(layer_num): fan_out = 3 * 3 * ch_out std = math.sqrt(2. / fan_out) in_channels = ch_in if i == 0 else ch_out shortcut_name = name + '.conv.{}'.format(i) if lite_neck: shortcut_conv.add_sublayer( shortcut_name, LiteConv( in_channels=in_channels, out_channels=ch_out, with_act=i < layer_num - 1, norm_type=norm_type)) else: shortcut_conv.add_sublayer( shortcut_name, nn.Conv2D( in_channels=in_channels, out_channels=ch_out, kernel_size=3, padding=1, weight_attr=ParamAttr(initializer=Normal(0, std)), bias_attr=ParamAttr( learning_rate=2., regularizer=L2Decay(0.)))) if i < layer_num - 1: shortcut_conv.add_sublayer(shortcut_name + '.act', nn.ReLU()) self.shortcut = self.add_sublayer('shortcut', shortcut_conv) def forward(self, feat): out = self.shortcut(feat) return out @register @serializable class TTFFPN(nn.Layer): """ Args: in_channels (list): number of input feature channels from backbone. [128,256,512,1024] by default, means the channels of DarkNet53 backbone return_idx [1,2,3,4]. planes (list): the number of output feature channels of FPN. [256, 128, 64] by default shortcut_num (list): the number of convolution layers in each shortcut. [3,2,1] by default, means DarkNet53 backbone return_idx_1 has 3 convs in its shortcut, return_idx_2 has 2 convs and return_idx_3 has 1 conv. norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional. bn by default lite_neck (bool): whether to use lite conv in TTFNet FPN, False by default fusion_method (string): the method to fusion upsample and lateral layer. 'add' and 'concat' are optional, add by default """ __shared__ = ['norm_type'] def __init__(self, in_channels, planes=[256, 128, 64], shortcut_num=[3, 2, 1], norm_type='bn', lite_neck=False, fusion_method='add'): super(TTFFPN, self).__init__() self.planes = planes self.shortcut_num = shortcut_num[::-1] self.shortcut_len = len(shortcut_num) self.ch_in = in_channels[::-1] self.fusion_method = fusion_method self.upsample_list = [] self.shortcut_list = [] self.upper_list = [] for i, out_c in enumerate(self.planes): in_c = self.ch_in[i] if i == 0 else self.upper_list[-1] upsample_module = LiteUpsample if lite_neck else Upsample upsample = self.add_sublayer( 'upsample.' + str(i), upsample_module( in_c, out_c, norm_type=norm_type)) self.upsample_list.append(upsample) if i < self.shortcut_len: shortcut = self.add_sublayer( 'shortcut.' + str(i), ShortCut( self.shortcut_num[i], self.ch_in[i + 1], out_c, norm_type=norm_type, lite_neck=lite_neck, name='shortcut.' + str(i))) self.shortcut_list.append(shortcut) if self.fusion_method == 'add': upper_c = out_c elif self.fusion_method == 'concat': upper_c = out_c * 2 else: raise ValueError('Illegal fusion method. Expected add or\ concat, but received {}'.format(self.fusion_method)) self.upper_list.append(upper_c) def forward(self, inputs): feat = inputs[-1] for i, out_c in enumerate(self.planes): feat = self.upsample_list[i](feat) if i < self.shortcut_len: shortcut = self.shortcut_list[i](inputs[-i - 2]) if self.fusion_method == 'add': feat = feat + shortcut else: feat = paddle.concat([feat, shortcut], axis=1) return feat @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape], } @property def out_shape(self): return [ShapeSpec(channels=self.upper_list[-1], )]
PaddleDetection/ppdet/modeling/necks/ttf_fpn.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/necks/ttf_fpn.py", "repo_id": "PaddleDetection", "token_count": 4677 }
92
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import Normal, Constant from paddle import ParamAttr from .resnet import ResNet50, ResNet101 from ppdet.core.workspace import register __all__ = ['PCBPyramid'] @register class PCBPyramid(nn.Layer): """ PCB (Part-based Convolutional Baseline), see https://arxiv.org/abs/1711.09349, Pyramidal Person Re-IDentification, see https://arxiv.org/abs/1810.12193 Args: input_ch (int): Number of channels of the input feature. num_stripes (int): Number of sub-parts. used_levels (tuple): Whether the level is used, 1 means used. num_classes (int): Number of classes for identities, default 751 in Market-1501 dataset. last_conv_stride (int): Stride of the last conv. last_conv_dilation (int): Dilation of the last conv. num_conv_out_channels (int): Number of channels of conv feature. """ def __init__(self, input_ch=2048, model_name='ResNet101', num_stripes=6, used_levels=(1, 1, 1, 1, 1, 1), num_classes=751, last_conv_stride=1, last_conv_dilation=1, num_conv_out_channels=128): super(PCBPyramid, self).__init__() self.num_stripes = num_stripes self.used_levels = used_levels self.num_classes = num_classes self.num_in_each_level = [i for i in range(self.num_stripes, 0, -1)] self.num_branches = sum(self.num_in_each_level) assert model_name in ['ResNet50', 'ResNet101'], "Unsupported ReID arch: {}".format(model_name) self.base = eval(model_name)( lr_mult=0.1, last_conv_stride=last_conv_stride, last_conv_dilation=last_conv_dilation) self.dropout_layer = nn.Dropout(p=0.2) self.pyramid_conv_list0, self.pyramid_fc_list0 = self.basic_branch( num_conv_out_channels, input_ch) def basic_branch(self, num_conv_out_channels, input_ch): # the level indexes are defined from fine to coarse, # the branch will contain one more part than that of its previous level # the sliding step is set to 1 pyramid_conv_list = nn.LayerList() pyramid_fc_list = nn.LayerList() idx_levels = 0 for idx_branches in range(self.num_branches): if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]): idx_levels += 1 pyramid_conv_list.append( nn.Sequential( nn.Conv2D(input_ch, num_conv_out_channels, 1), nn.BatchNorm2D(num_conv_out_channels), nn.ReLU())) idx_levels = 0 for idx_branches in range(self.num_branches): if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]): idx_levels += 1 fc = nn.Linear( in_features=num_conv_out_channels, out_features=self.num_classes, weight_attr=ParamAttr(initializer=Normal( mean=0., std=0.001)), bias_attr=ParamAttr(initializer=Constant(value=0.))) pyramid_fc_list.append(fc) return pyramid_conv_list, pyramid_fc_list def pyramid_forward(self, feat): each_stripe_size = int(feat.shape[2] / self.num_stripes) feat_list, logits_list = [], [] idx_levels = 0 used_branches = 0 for idx_branches in range(self.num_branches): if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]): idx_levels += 1 idx_in_each_level = idx_branches - sum(self.num_in_each_level[ 0:idx_levels]) stripe_size_in_each_level = each_stripe_size * (idx_levels + 1) start = idx_in_each_level * each_stripe_size end = start + stripe_size_in_each_level k = feat.shape[-1] local_feat_avgpool = F.avg_pool2d( feat[:, :, start:end, :], kernel_size=(stripe_size_in_each_level, k)) local_feat_maxpool = F.max_pool2d( feat[:, :, start:end, :], kernel_size=(stripe_size_in_each_level, k)) local_feat = local_feat_avgpool + local_feat_maxpool local_feat = self.pyramid_conv_list0[used_branches](local_feat) local_feat = paddle.reshape( local_feat, shape=[local_feat.shape[0], -1]) feat_list.append(local_feat) local_logits = self.pyramid_fc_list0[used_branches]( self.dropout_layer(local_feat)) logits_list.append(local_logits) used_branches += 1 return feat_list, logits_list def forward(self, x): feat = self.base(x) assert feat.shape[2] % self.num_stripes == 0 feat_list, logits_list = self.pyramid_forward(feat) feat_out = paddle.concat(feat_list, axis=-1) return feat_out
PaddleDetection/ppdet/modeling/reid/pyramidal_embedding.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/reid/pyramidal_embedding.py", "repo_id": "PaddleDetection", "token_count": 2712 }
93
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Modified from Deformable-DETR (https://github.com/fundamentalvision/Deformable-DETR) # Copyright (c) 2020 SenseTime. All Rights Reserved. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from ppdet.core.workspace import register from ..layers import MultiHeadAttention from .position_encoding import PositionEmbedding from .utils import _get_clones, get_valid_ratio from ..initializer import linear_init_, constant_, xavier_uniform_, normal_ __all__ = ['DeformableTransformer'] class MSDeformableAttention(nn.Layer): def __init__(self, embed_dim=256, num_heads=8, num_levels=4, num_points=4, lr_mult=0.1): """ Multi-Scale Deformable Attention Module """ super(MSDeformableAttention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.num_levels = num_levels self.num_points = num_points self.total_points = num_heads * num_levels * num_points self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.sampling_offsets = nn.Linear( embed_dim, self.total_points * 2, weight_attr=ParamAttr(learning_rate=lr_mult), bias_attr=ParamAttr(learning_rate=lr_mult)) self.attention_weights = nn.Linear(embed_dim, self.total_points) self.value_proj = nn.Linear(embed_dim, embed_dim) self.output_proj = nn.Linear(embed_dim, embed_dim) try: # use cuda op from deformable_detr_ops import ms_deformable_attn except: # use paddle func from .utils import deformable_attention_core_func as ms_deformable_attn self.ms_deformable_attn_core = ms_deformable_attn self._reset_parameters() def _reset_parameters(self): # sampling_offsets constant_(self.sampling_offsets.weight) thetas = paddle.arange( self.num_heads, dtype=paddle.float32) * (2.0 * math.pi / self.num_heads) grid_init = paddle.stack([thetas.cos(), thetas.sin()], -1) grid_init = grid_init / grid_init.abs().max(-1, keepdim=True) grid_init = grid_init.reshape([self.num_heads, 1, 1, 2]).tile( [1, self.num_levels, self.num_points, 1]) scaling = paddle.arange( 1, self.num_points + 1, dtype=paddle.float32).reshape([1, 1, -1, 1]) grid_init *= scaling self.sampling_offsets.bias.set_value(grid_init.flatten()) # attention_weights constant_(self.attention_weights.weight) constant_(self.attention_weights.bias) # proj xavier_uniform_(self.value_proj.weight) constant_(self.value_proj.bias) xavier_uniform_(self.output_proj.weight) constant_(self.output_proj.bias) def forward(self, query, reference_points, value, value_spatial_shapes, value_level_start_index, value_mask=None): """ Args: query (Tensor): [bs, query_length, C] reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area value (Tensor): [bs, value_length, C] value_spatial_shapes (Tensor): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] value_level_start_index (Tensor(int64)): [n_levels], [0, H_0*W_0, H_0*W_0+H_1*W_1, ...] value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements Returns: output (Tensor): [bs, Length_{query}, C] """ bs, Len_q = query.shape[:2] Len_v = value.shape[1] assert int(value_spatial_shapes.prod(1).sum()) == Len_v value = self.value_proj(value) if value_mask is not None: value_mask = value_mask.astype(value.dtype).unsqueeze(-1) value *= value_mask value = value.reshape([bs, Len_v, self.num_heads, self.head_dim]) sampling_offsets = self.sampling_offsets(query).reshape( [bs, Len_q, self.num_heads, self.num_levels, self.num_points, 2]) attention_weights = self.attention_weights(query).reshape( [bs, Len_q, self.num_heads, self.num_levels * self.num_points]) attention_weights = F.softmax(attention_weights).reshape( [bs, Len_q, self.num_heads, self.num_levels, self.num_points]) if reference_points.shape[-1] == 2: offset_normalizer = value_spatial_shapes.flip([1]).reshape( [1, 1, 1, self.num_levels, 1, 2]) sampling_locations = reference_points.reshape([ bs, Len_q, 1, self.num_levels, 1, 2 ]) + sampling_offsets / offset_normalizer elif reference_points.shape[-1] == 4: sampling_locations = ( reference_points[:, :, None, :, None, :2] + sampling_offsets / self.num_points * reference_points[:, :, None, :, None, 2:] * 0.5) else: raise ValueError( "Last dim of reference_points must be 2 or 4, but get {} instead.". format(reference_points.shape[-1])) output = self.ms_deformable_attn_core( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights) output = self.output_proj(output) return output class DeformableTransformerEncoderLayer(nn.Layer): def __init__(self, d_model=256, n_head=8, dim_feedforward=1024, dropout=0.1, activation="relu", n_levels=4, n_points=4, lr_mult=0.1, weight_attr=None, bias_attr=None): super(DeformableTransformerEncoderLayer, self).__init__() # self attention self.self_attn = MSDeformableAttention(d_model, n_head, n_levels, n_points, lr_mult) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm( d_model, weight_attr=weight_attr, bias_attr=bias_attr) # ffn self.linear1 = nn.Linear(d_model, dim_feedforward) self.activation = getattr(F, activation) self.dropout2 = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.dropout3 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm( d_model, weight_attr=weight_attr, bias_attr=bias_attr) self._reset_parameters() def _reset_parameters(self): linear_init_(self.linear1) linear_init_(self.linear2) xavier_uniform_(self.linear1.weight) xavier_uniform_(self.linear2.weight) def with_pos_embed(self, tensor, pos): return tensor if pos is None else tensor + pos def forward_ffn(self, src): src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) src = src + self.dropout3(src2) src = self.norm2(src) return src def forward(self, src, reference_points, spatial_shapes, level_start_index, src_mask=None, query_pos_embed=None): # self attention src2 = self.self_attn( self.with_pos_embed(src, query_pos_embed), reference_points, src, spatial_shapes, level_start_index, src_mask) src = src + self.dropout1(src2) src = self.norm1(src) # ffn src = self.forward_ffn(src) return src class DeformableTransformerEncoder(nn.Layer): def __init__(self, encoder_layer, num_layers): super(DeformableTransformerEncoder, self).__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers @staticmethod def get_reference_points(spatial_shapes, valid_ratios, offset=0.5): valid_ratios = valid_ratios.unsqueeze(1) reference_points = [] for i, (H, W) in enumerate(spatial_shapes): ref_y, ref_x = paddle.meshgrid( paddle.arange(end=H) + offset, paddle.arange(end=W) + offset) ref_y = ref_y.flatten().unsqueeze(0) / (valid_ratios[:, :, i, 1] * H) ref_x = ref_x.flatten().unsqueeze(0) / (valid_ratios[:, :, i, 0] * W) reference_points.append(paddle.stack((ref_x, ref_y), axis=-1)) reference_points = paddle.concat(reference_points, 1).unsqueeze(2) reference_points = reference_points * valid_ratios return reference_points def forward(self, feat, spatial_shapes, level_start_index, feat_mask=None, query_pos_embed=None, valid_ratios=None): if valid_ratios is None: valid_ratios = paddle.ones( [feat.shape[0], spatial_shapes.shape[0], 2]) reference_points = self.get_reference_points(spatial_shapes, valid_ratios) for layer in self.layers: feat = layer(feat, reference_points, spatial_shapes, level_start_index, feat_mask, query_pos_embed) return feat class DeformableTransformerDecoderLayer(nn.Layer): def __init__(self, d_model=256, n_head=8, dim_feedforward=1024, dropout=0.1, activation="relu", n_levels=4, n_points=4, lr_mult=0.1, weight_attr=None, bias_attr=None): super(DeformableTransformerDecoderLayer, self).__init__() # self attention self.self_attn = MultiHeadAttention(d_model, n_head, dropout=dropout) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm( d_model, weight_attr=weight_attr, bias_attr=bias_attr) # cross attention self.cross_attn = MSDeformableAttention(d_model, n_head, n_levels, n_points, lr_mult) self.dropout2 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm( d_model, weight_attr=weight_attr, bias_attr=bias_attr) # ffn self.linear1 = nn.Linear(d_model, dim_feedforward) self.activation = getattr(F, activation) self.dropout3 = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.dropout4 = nn.Dropout(dropout) self.norm3 = nn.LayerNorm( d_model, weight_attr=weight_attr, bias_attr=bias_attr) self._reset_parameters() def _reset_parameters(self): linear_init_(self.linear1) linear_init_(self.linear2) xavier_uniform_(self.linear1.weight) xavier_uniform_(self.linear2.weight) def with_pos_embed(self, tensor, pos): return tensor if pos is None else tensor + pos def forward_ffn(self, tgt): tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout4(tgt2) tgt = self.norm3(tgt) return tgt def forward(self, tgt, reference_points, memory, memory_spatial_shapes, memory_level_start_index, memory_mask=None, query_pos_embed=None): # self attention q = k = self.with_pos_embed(tgt, query_pos_embed) tgt2 = self.self_attn(q, k, value=tgt) tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) # cross attention tgt2 = self.cross_attn( self.with_pos_embed(tgt, query_pos_embed), reference_points, memory, memory_spatial_shapes, memory_level_start_index, memory_mask) tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) # ffn tgt = self.forward_ffn(tgt) return tgt class DeformableTransformerDecoder(nn.Layer): def __init__(self, decoder_layer, num_layers, return_intermediate=False): super(DeformableTransformerDecoder, self).__init__() self.layers = _get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.return_intermediate = return_intermediate def forward(self, tgt, reference_points, memory, memory_spatial_shapes, memory_level_start_index, memory_mask=None, query_pos_embed=None): output = tgt intermediate = [] for lid, layer in enumerate(self.layers): output = layer(output, reference_points, memory, memory_spatial_shapes, memory_level_start_index, memory_mask, query_pos_embed) if self.return_intermediate: intermediate.append(output) if self.return_intermediate: return paddle.stack(intermediate) return output.unsqueeze(0) @register class DeformableTransformer(nn.Layer): __shared__ = ['hidden_dim'] def __init__(self, num_queries=300, position_embed_type='sine', return_intermediate_dec=True, in_feats_channel=[512, 1024, 2048], num_feature_levels=4, num_encoder_points=4, num_decoder_points=4, hidden_dim=256, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1, activation="relu", lr_mult=0.1, pe_temperature=10000, pe_offset=-0.5): super(DeformableTransformer, self).__init__() assert position_embed_type in ['sine', 'learned'], \ f'ValueError: position_embed_type not supported {position_embed_type}!' assert len(in_feats_channel) <= num_feature_levels self.hidden_dim = hidden_dim self.nhead = nhead self.num_feature_levels = num_feature_levels encoder_layer = DeformableTransformerEncoderLayer( hidden_dim, nhead, dim_feedforward, dropout, activation, num_feature_levels, num_encoder_points, lr_mult) self.encoder = DeformableTransformerEncoder(encoder_layer, num_encoder_layers) decoder_layer = DeformableTransformerDecoderLayer( hidden_dim, nhead, dim_feedforward, dropout, activation, num_feature_levels, num_decoder_points) self.decoder = DeformableTransformerDecoder( decoder_layer, num_decoder_layers, return_intermediate_dec) self.level_embed = nn.Embedding(num_feature_levels, hidden_dim) self.tgt_embed = nn.Embedding(num_queries, hidden_dim) self.query_pos_embed = nn.Embedding(num_queries, hidden_dim) self.reference_points = nn.Linear( hidden_dim, 2, weight_attr=ParamAttr(learning_rate=lr_mult), bias_attr=ParamAttr(learning_rate=lr_mult)) self.input_proj = nn.LayerList() for in_channels in in_feats_channel: self.input_proj.append( nn.Sequential( nn.Conv2D( in_channels, hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim))) in_channels = in_feats_channel[-1] for _ in range(num_feature_levels - len(in_feats_channel)): self.input_proj.append( nn.Sequential( nn.Conv2D( in_channels, hidden_dim, kernel_size=3, stride=2, padding=1), nn.GroupNorm(32, hidden_dim))) in_channels = hidden_dim self.position_embedding = PositionEmbedding( hidden_dim // 2, temperature=pe_temperature, normalize=True if position_embed_type == 'sine' else False, embed_type=position_embed_type, offset=pe_offset, eps=1e-4) self._reset_parameters() def _reset_parameters(self): normal_(self.level_embed.weight) normal_(self.tgt_embed.weight) normal_(self.query_pos_embed.weight) xavier_uniform_(self.reference_points.weight) constant_(self.reference_points.bias) for l in self.input_proj: xavier_uniform_(l[0].weight) constant_(l[0].bias) @classmethod def from_config(cls, cfg, input_shape): return {'in_feats_channel': [i.channels for i in input_shape], } def forward(self, src_feats, src_mask=None, *args, **kwargs): srcs = [] for i in range(len(src_feats)): srcs.append(self.input_proj[i](src_feats[i])) if self.num_feature_levels > len(srcs): len_srcs = len(srcs) for i in range(len_srcs, self.num_feature_levels): if i == len_srcs: srcs.append(self.input_proj[i](src_feats[-1])) else: srcs.append(self.input_proj[i](srcs[-1])) src_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] valid_ratios = [] for level, src in enumerate(srcs): src_shape = paddle.shape(src) bs = src_shape[0:1] h = src_shape[2:3] w = src_shape[3:4] spatial_shapes.append(paddle.concat([h, w])) src = src.flatten(2).transpose([0, 2, 1]) src_flatten.append(src) if src_mask is not None: mask = F.interpolate(src_mask.unsqueeze(0), size=(h, w))[0] else: mask = paddle.ones([bs, h, w]) valid_ratios.append(get_valid_ratio(mask)) pos_embed = self.position_embedding(mask).flatten(1, 2) lvl_pos_embed = pos_embed + self.level_embed.weight[level] lvl_pos_embed_flatten.append(lvl_pos_embed) mask = mask.flatten(1) mask_flatten.append(mask) src_flatten = paddle.concat(src_flatten, 1) mask_flatten = None if src_mask is None else paddle.concat(mask_flatten, 1) lvl_pos_embed_flatten = paddle.concat(lvl_pos_embed_flatten, 1) # [l, 2] spatial_shapes = paddle.to_tensor( paddle.stack(spatial_shapes).astype('int64')) # [l], 每一个level的起始index level_start_index = paddle.concat([ paddle.zeros( [1], dtype='int64'), spatial_shapes.prod(1).cumsum(0)[:-1] ]) # [b, l, 2] valid_ratios = paddle.stack(valid_ratios, 1) # encoder memory = self.encoder(src_flatten, spatial_shapes, level_start_index, mask_flatten, lvl_pos_embed_flatten, valid_ratios) # prepare input for decoder bs, _, c = memory.shape query_embed = self.query_pos_embed.weight.unsqueeze(0).tile([bs, 1, 1]) tgt = self.tgt_embed.weight.unsqueeze(0).tile([bs, 1, 1]) reference_points = F.sigmoid(self.reference_points(query_embed)) reference_points_input = reference_points.unsqueeze( 2) * valid_ratios.unsqueeze(1) # decoder hs = self.decoder(tgt, reference_points_input, memory, spatial_shapes, level_start_index, mask_flatten, query_embed) return (hs, memory, reference_points) class QRDeformableTransformerDecoder(DeformableTransformerDecoder): def __init__(self, decoder_layer, num_layers, start_q=None, end_q=None, return_intermediate=False): super(QRDeformableTransformerDecoder, self).__init__( decoder_layer, num_layers, return_intermediate=return_intermediate) self.start_q = start_q self.end_q = end_q def forward(self, tgt, reference_points, memory, memory_spatial_shapes, memory_level_start_index, memory_mask=None, query_pos_embed=None): if not self.training: return super(QRDeformableTransformerDecoder, self).forward( tgt, reference_points, memory, memory_spatial_shapes, memory_level_start_index, memory_mask=memory_mask, query_pos_embed=query_pos_embed) batchsize = tgt.shape[0] query_list_reserve = [tgt] intermediate = [] for lid, layer in enumerate(self.layers): start_q = self.start_q[lid] end_q = self.end_q[lid] query_list = query_list_reserve.copy()[start_q:end_q] # prepare for parallel process output = paddle.concat(query_list, axis=0) fakesetsize = int(output.shape[0] / batchsize) reference_points_tiled = reference_points.tile([fakesetsize, 1, 1, 1]) memory_tiled = memory.tile([fakesetsize, 1, 1]) query_pos_embed_tiled = query_pos_embed.tile([fakesetsize, 1, 1]) memory_mask_tiled = memory_mask.tile([fakesetsize, 1]) output = layer(output, reference_points_tiled, memory_tiled, memory_spatial_shapes, memory_level_start_index, memory_mask_tiled, query_pos_embed_tiled) for i in range(fakesetsize): query_list_reserve.append(output[batchsize*i:batchsize*(i+1)]) if self.return_intermediate: for i in range(fakesetsize): intermediate.append(output[batchsize*i:batchsize*(i+1)]) if self.return_intermediate: return paddle.stack(intermediate) return output.unsqueeze(0) @register class QRDeformableTransformer(DeformableTransformer): def __init__(self, num_queries=300, position_embed_type='sine', return_intermediate_dec=True, in_feats_channel=[512, 1024, 2048], num_feature_levels=4, num_encoder_points=4, num_decoder_points=4, hidden_dim=256, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1, activation="relu", lr_mult=0.1, pe_temperature=10000, pe_offset=-0.5, start_q=None, end_q=None): super(QRDeformableTransformer, self).__init__( num_queries=num_queries, position_embed_type=position_embed_type, return_intermediate_dec=return_intermediate_dec, in_feats_channel=in_feats_channel, num_feature_levels=num_feature_levels, num_encoder_points=num_encoder_points, num_decoder_points=num_decoder_points, hidden_dim=hidden_dim, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, dim_feedforward=dim_feedforward, dropout=dropout, activation=activation, lr_mult=lr_mult, pe_temperature=pe_temperature, pe_offset=pe_offset) decoder_layer = DeformableTransformerDecoderLayer( hidden_dim, nhead, dim_feedforward, dropout, activation, num_feature_levels, num_decoder_points) self.decoder = QRDeformableTransformerDecoder( decoder_layer, num_decoder_layers, start_q, end_q, return_intermediate_dec)
PaddleDetection/ppdet/modeling/transformers/deformable_transformer.py/0
{ "file_path": "PaddleDetection/ppdet/modeling/transformers/deformable_transformer.py", "repo_id": "PaddleDetection", "token_count": 12986 }
94
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser, RawDescriptionHelpFormatter import yaml import re from ppdet.core.workspace import get_registered_modules, dump_value __all__ = ['ColorTTY', 'ArgsParser'] class ColorTTY(object): def __init__(self): super(ColorTTY, self).__init__() self.colors = ['red', 'green', 'yellow', 'blue', 'magenta', 'cyan'] def __getattr__(self, attr): if attr in self.colors: color = self.colors.index(attr) + 31 def color_message(message): return "[{}m{}".format(color, message) setattr(self, attr, color_message) return color_message def bold(self, message): return self.with_code('01', message) def with_code(self, code, message): return "[{}m{}".format(code, message) class ArgsParser(ArgumentParser): def __init__(self): super(ArgsParser, self).__init__( formatter_class=RawDescriptionHelpFormatter) self.add_argument("-c", "--config", help="configuration file to use") self.add_argument( "-o", "--opt", nargs='*', help="set configuration options") def parse_args(self, argv=None): args = super(ArgsParser, self).parse_args(argv) assert args.config is not None, \ "Please specify --config=configure_file_path." args.opt = self._parse_opt(args.opt) return args def _parse_opt(self, opts): config = {} if not opts: return config for s in opts: s = s.strip() k, v = s.split('=', 1) if '.' not in k: config[k] = yaml.load(v, Loader=yaml.Loader) else: keys = k.split('.') if keys[0] not in config: config[keys[0]] = {} cur = config[keys[0]] for idx, key in enumerate(keys[1:]): if idx == len(keys) - 2: cur[key] = yaml.load(v, Loader=yaml.Loader) else: cur[key] = {} cur = cur[key] return config def merge_args(config, args, exclude_args=['config', 'opt', 'slim_config']): for k, v in vars(args).items(): if k not in exclude_args: config[k] = v return config def print_total_cfg(config): modules = get_registered_modules() color_tty = ColorTTY() green = '___{}___'.format(color_tty.colors.index('green') + 31) styled = {} for key in config.keys(): if not config[key]: # empty schema continue if key not in modules and not hasattr(config[key], '__dict__'): styled[key] = config[key] continue elif key in modules: module = modules[key] else: type_name = type(config[key]).__name__ if type_name in modules: module = modules[type_name].copy() module.update({ k: v for k, v in config[key].__dict__.items() if k in module.schema }) key += " ({})".format(type_name) default = module.find_default_keys() missing = module.find_missing_keys() mismatch = module.find_mismatch_keys() extra = module.find_extra_keys() dep_missing = [] for dep in module.inject: if isinstance(module[dep], str) and module[dep] != '<value>': if module[dep] not in modules: # not a valid module dep_missing.append(dep) else: dep_mod = modules[module[dep]] # empty dict but mandatory if not dep_mod and dep_mod.mandatory(): dep_missing.append(dep) override = list( set(module.keys()) - set(default) - set(extra) - set(dep_missing)) replacement = {} for name in set(override + default + extra + mismatch + missing): new_name = name if name in missing: value = "<missing>" else: value = module[name] if name in extra: value = dump_value(value) + " <extraneous>" elif name in mismatch: value = dump_value(value) + " <type mismatch>" elif name in dep_missing: value = dump_value(value) + " <module config missing>" elif name in override and value != '<missing>': mark = green new_name = mark + name replacement[new_name] = value styled[key] = replacement buffer = yaml.dump(styled, default_flow_style=False, default_style='') buffer = (re.sub(r"<missing>", r"[31m<missing>[0m", buffer)) buffer = (re.sub(r"<extraneous>", r"[33m<extraneous>[0m", buffer)) buffer = (re.sub(r"<type mismatch>", r"[31m<type mismatch>[0m", buffer)) buffer = (re.sub(r"<module config missing>", r"[31m<module config missing>[0m", buffer)) buffer = re.sub(r"___(\d+)___(.*?):", r"[\1m\2[0m:", buffer) print(buffer)
PaddleDetection/ppdet/utils/cli.py/0
{ "file_path": "PaddleDetection/ppdet/utils/cli.py", "repo_id": "PaddleDetection", "token_count": 2733 }
95
import numpy as np import os import subprocess import json import argparse import glob def init_args(): parser = argparse.ArgumentParser() # params for testing assert allclose parser.add_argument("--atol", type=float, default=1e-3) parser.add_argument("--rtol", type=float, default=1e-3) parser.add_argument("--gt_file", type=str, default="") parser.add_argument("--log_file", type=str, default="") parser.add_argument("--precision", type=str, default="fp32") return parser def parse_args(): parser = init_args() return parser.parse_args() def run_shell_command(cmd): p = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = p.communicate() if p.returncode == 0: return out.decode('utf-8') else: return None def parser_results_from_log_by_name(log_path, names_list): if not os.path.exists(log_path): raise ValueError("The log file {} does not exists!".format(log_path)) if names_list is None or len(names_list) < 1: return [] parser_results = {} for name in names_list: cmd = "grep {} {}".format(name, log_path) outs = run_shell_command(cmd) outs = outs.split("\n")[0] result = outs.split("{}".format(name))[-1] try: result = json.loads(result) except: result = np.array([int(r) for r in result.split()]).reshape(-1, 4) parser_results[name] = result return parser_results def load_gt_from_file(gt_file): if not os.path.exists(gt_file): raise ValueError("The log file {} does not exists!".format(gt_file)) with open(gt_file, 'r') as f: data = f.readlines() f.close() parser_gt = {} for line in data: image_name, result = line.strip("\n").split("\t") image_name = image_name.split('/')[-1] try: result = json.loads(result) except: result = np.array([int(r) for r in result.split()]).reshape(-1, 4) parser_gt[image_name] = result return parser_gt def load_gt_from_txts(gt_file): gt_list = glob.glob(gt_file) gt_collection = {} for gt_f in gt_list: gt_dict = load_gt_from_file(gt_f) basename = os.path.basename(gt_f) if "fp32" in basename: gt_collection["fp32"] = [gt_dict, gt_f] elif "fp16" in basename: gt_collection["fp16"] = [gt_dict, gt_f] elif "int8" in basename: gt_collection["int8"] = [gt_dict, gt_f] else: continue return gt_collection def collect_predict_from_logs(log_path, key_list): log_list = glob.glob(log_path) pred_collection = {} for log_f in log_list: pred_dict = parser_results_from_log_by_name(log_f, key_list) key = os.path.basename(log_f) pred_collection[key] = pred_dict return pred_collection def testing_assert_allclose(dict_x, dict_y, atol=1e-7, rtol=1e-7): for k in dict_x: np.testing.assert_allclose( np.array(dict_x[k]), np.array(dict_y[k]), atol=atol, rtol=rtol) if __name__ == "__main__": # Usage: # python3.7 tests/compare_results.py --gt_file=./tests/results/*.txt --log_file=./tests/output/infer_*.log args = parse_args() gt_collection = load_gt_from_txts(args.gt_file) key_list = gt_collection["fp32"][0].keys() pred_collection = collect_predict_from_logs(args.log_file, key_list) for filename in pred_collection.keys(): if "fp32" in filename: gt_dict, gt_filename = gt_collection["fp32"] elif "fp16" in filename: gt_dict, gt_filename = gt_collection["fp16"] elif "int8" in filename: gt_dict, gt_filename = gt_collection["int8"] else: continue pred_dict = pred_collection[filename] try: testing_assert_allclose( gt_dict, pred_dict, atol=args.atol, rtol=args.rtol) print( "Assert allclose passed! The results of {} and {} are consistent!". format(filename, gt_filename)) except Exception as E: print(E) raise ValueError( "The results of {} and the results of {} are inconsistent!". format(filename, gt_filename))
PaddleDetection/test_tipc/compare_results.py/0
{ "file_path": "PaddleDetection/test_tipc/compare_results.py", "repo_id": "PaddleDetection", "token_count": 2012 }
96
#!/bin/bash source test_tipc/utils_func.sh FILENAME=$1 # MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' # 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer', # 'cpp_infer', 'serving_infer', 'lite_infer', 'paddle2onnx_infer'] MODE=$2 # parse params dataline=$(cat ${FILENAME}) IFS=$'\n' lines=(${dataline}) # The training params model_name=$(func_parser_value "${lines[1]}") python=$(func_parser_value "${lines[2]}") if [ ${MODE} = "whole_train_whole_infer" ];then mv ./dataset/coco/download_coco.py . && rm -rf ./dataset/coco/* && mv ./download_coco.py ./dataset/coco/ # prepare whole training data eval "${python} ./dataset/coco/download_coco.py" elif [ ${MODE} = "cpp_infer" ];then # download coco lite data wget -nc -P ./dataset/coco/ https://paddledet.bj.bcebos.com/data/tipc/coco_tipc.tar --no-check-certificate cd ./dataset/coco/ && tar -xvf coco_tipc.tar && mv -n coco_tipc/* . rm -rf coco_tipc/ && cd ../../ # download wider_face lite data wget -nc -P ./dataset/wider_face/ https://paddledet.bj.bcebos.com/data/tipc/wider_tipc.tar --no-check-certificate cd ./dataset/wider_face/ && tar -xvf wider_tipc.tar && mv -n wider_tipc/* . rm -rf wider_tipc/ && cd ../../ # download spine lite data wget -nc -P ./dataset/spine_coco/ https://paddledet.bj.bcebos.com/data/tipc/spine_tipc.tar --no-check-certificate cd ./dataset/spine_coco/ && tar -xvf spine_tipc.tar && mv -n spine_tipc/* . rm -rf spine_tipc/ && cd ../../ if [[ ${model_name} =~ "s2anet" ]]; then cd ./ppdet/ext_op && eval "${python} setup.py install" cd ../../ elif [[ ${model_name} =~ "tinypose" ]]; then wget -nc -P ./output_inference/ https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.tar --no-check-certificate cd ./output_inference/ && tar -xvf picodet_s_320_pedestrian.tar cd ../ fi # download KL model if [[ ${model_name} = "picodet_lcnet_1_5x_416_coco_KL" ]]; then wget -nc -P ./output_inference/picodet_lcnet_1_5x_416_coco_KL/ https://bj.bcebos.com/v1/paddledet/data/tipc/models/picodet_lcnet_1_5x_416_coco_ptq.tar --no-check-certificate cd ./output_inference/picodet_lcnet_1_5x_416_coco_KL/ && tar -xvf picodet_lcnet_1_5x_416_coco_ptq.tar && mv -n picodet_lcnet_1_5x_416_coco_ptq/* . cd ../../ elif [[ ${model_name} = "ppyoloe_crn_s_300e_coco_KL" ]]; then wget -nc -P ./output_inference/ppyoloe_crn_s_300e_coco_KL/ https://bj.bcebos.com/v1/paddledet/data/tipc/models/ppyoloe_crn_s_300e_coco_ptq.tar --no-check-certificate cd ./output_inference/ppyoloe_crn_s_300e_coco_KL/ && tar -xvf ppyoloe_crn_s_300e_coco_ptq.tar && mv -n ppyoloe_crn_s_300e_coco_ptq/* . cd ../../ elif [[ ${model_name} = "ppyolo_mbv3_large_coco_KL" ]]; then wget -nc -P ./output_inference/ppyolo_mbv3_large_coco_KL/ https://bj.bcebos.com/v1/paddledet/data/tipc/models/ppyolo_mbv3_large_ptq.tar --no-check-certificate cd ./output_inference/ppyolo_mbv3_large_coco_KL/ && tar -xvf ppyolo_mbv3_large_ptq.tar && mv -n ppyolo_mbv3_large_ptq/* . cd ../../ elif [[ ${model_name} = "mask_rcnn_r50_fpn_1x_coco_KL" ]]; then wget -nc -P ./output_inference/mask_rcnn_r50_fpn_1x_coco_KL/ https://bj.bcebos.com/v1/paddledet/data/tipc/models/mask_rcnn_r50_fpn_1x_coco_ptq.tar --no-check-certificate cd ./output_inference/mask_rcnn_r50_fpn_1x_coco_KL/ && tar -xvf mask_rcnn_r50_fpn_1x_coco_ptq.tar && mv -n mask_rcnn_r50_fpn_1x_coco_ptq/* . cd ../../ elif [[ ${model_name} = "tinypose_128x96_KL" ]]; then wget -nc -P ./output_inference/tinypose_128x96_KL/ https://bj.bcebos.com/v1/paddledet/data/tipc/models/tinypose_128x96_ptq.tar --no-check-certificate cd ./output_inference/tinypose_128x96_KL/ && tar -xvf tinypose_128x96_ptq.tar && mv -n tinypose_128x96_ptq/* . cd ../../ fi # download mot lite data wget -nc -P ./dataset/mot/ https://paddledet.bj.bcebos.com/data/tipc/mot_tipc.tar --no-check-certificate cd ./dataset/mot/ && tar -xvf mot_tipc.tar && mv -n mot_tipc/* . rm -rf mot_tipc/ && cd ../../ opencv_dir=$(func_parser_value "${lines[15]}") # prepare opencv cd ./deploy/cpp if [ ${opencv_dir} = "default" ] || [ ${opencv_dir} = "null" ]; then if [ -d "deps/opencv-3.4.16_gcc8.2_ffmpeg/" ]; then echo "################### Opencv already exists, skip downloading. ###################" else mkdir -p $(pwd)/deps && cd $(pwd)/deps wget -c https://paddledet.bj.bcebos.com/data/opencv-3.4.16_gcc8.2_ffmpeg.tar.gz --no-check-certificate tar -xvf opencv-3.4.16_gcc8.2_ffmpeg.tar.gz && cd ../ echo "################### Finish downloading opencv. ###################" fi fi cd ../../ elif [ ${MODE} = "benchmark_train" ];then pip install -U pip pip install Cython pip install -r requirements.txt if [[ ${model_name} =~ "higherhrnet" ]] || [[ ${model_name} =~ "hrnet" ]] || [[ ${model_name} =~ "tinypose" ]];then wget -nc -P ./dataset/ https://bj.bcebos.com/v1/paddledet/data/coco.tar --no-check-certificate cd ./dataset/ && tar -xf coco.tar ls ./coco/ cd ../ pip3 install opencv-python==4.5.2.54 elif [[ ${model_name} =~ "ppyoloe_r_crn_s_3x_spine_coco" ]];then wget -nc -P ./dataset/spine_coco/ https://paddledet.bj.bcebos.com/data/tipc/spine_coco_tipc.tar --no-check-certificate cd ./dataset/spine_coco/ && tar -xvf spine_coco_tipc.tar && mv -n spine_coco_tipc/* . rm -rf spine_coco_tipc/ && cd ../../ cd ./ppdet/ext_op && eval "${python} setup.py install" cd ../../ else # prepare lite benchmark coco data wget -nc -P ./dataset/coco/ https://bj.bcebos.com/v1/paddledet/data/cocomini.zip --no-check-certificate cd ./dataset/coco/ && unzip cocomini.zip mv -u cocomini/* ./ ls ./ cd ../../ # prepare lite benchmark mot data wget -nc -P ./dataset/mot/ https://paddledet.bj.bcebos.com/data/mot_benchmark.tar --no-check-certificate cd ./dataset/mot/ && tar -xf mot_benchmark.tar mv -u mot_benchmark/* ./ ls ./ cd ../../ fi elif [ ${MODE} = "paddle2onnx_infer" ];then # install paddle2onnx ${python} -m pip install paddle2onnx ${python} -m pip install onnx onnxruntime elif [ ${MODE} = "serving_infer" ];then unset https_proxy http_proxy # download coco lite data wget -nc -P ./dataset/coco/ https://paddledet.bj.bcebos.com/data/tipc/coco_tipc.tar --no-check-certificate cd ./dataset/coco/ && tar -xvf coco_tipc.tar && mv -n coco_tipc/* . rm -rf coco_tipc/ && cd ../../ # download KL model if [[ ${model_name} = "picodet_lcnet_1_5x_416_coco_KL" ]]; then wget -nc -P ./output_inference/picodet_lcnet_1_5x_416_coco_KL/ https://bj.bcebos.com/v1/paddledet/data/tipc/models/picodet_lcnet_1_5x_416_coco_ptq.tar --no-check-certificate cd ./output_inference/picodet_lcnet_1_5x_416_coco_KL/ && tar -xvf picodet_lcnet_1_5x_416_coco_ptq.tar && mv -n picodet_lcnet_1_5x_416_coco_ptq/* . cd ../../ eval "${python} -m paddle_serving_client.convert --dirname output_inference/picodet_lcnet_1_5x_416_coco_KL/ --model_filename model.pdmodel --params_filename model.pdiparams --serving_server output_inference/picodet_lcnet_1_5x_416_coco_KL/serving_server --serving_client output_inference/picodet_lcnet_1_5x_416_coco_KL/serving_client" elif [[ ${model_name} = "ppyoloe_crn_s_300e_coco_KL" ]]; then wget -nc -P ./output_inference/ppyoloe_crn_s_300e_coco_KL/ https://bj.bcebos.com/v1/paddledet/data/tipc/models/ppyoloe_crn_s_300e_coco_ptq.tar --no-check-certificate cd ./output_inference/ppyoloe_crn_s_300e_coco_KL/ && tar -xvf ppyoloe_crn_s_300e_coco_ptq.tar && mv -n ppyoloe_crn_s_300e_coco_ptq/* . cd ../../ eval "${python} -m paddle_serving_client.convert --dirname output_inference/ppyoloe_crn_s_300e_coco_KL/ --model_filename model.pdmodel --params_filename model.pdiparams --serving_server output_inference/ppyoloe_crn_s_300e_coco_KL/serving_server --serving_client output_inference/ppyoloe_crn_s_300e_coco_KL/serving_client" elif [[ ${model_name} = "ppyolo_mbv3_large_coco_KL" ]]; then wget -nc -P ./output_inference/ppyolo_mbv3_large_coco_KL/ https://bj.bcebos.com/v1/paddledet/data/tipc/models/ppyolo_mbv3_large_ptq.tar --no-check-certificate cd ./output_inference/ppyolo_mbv3_large_coco_KL/ && tar -xvf ppyolo_mbv3_large_ptq.tar && mv -n ppyolo_mbv3_large_ptq/* . cd ../../ eval "${python} -m paddle_serving_client.convert --dirname output_inference/ppyolo_mbv3_large_coco_KL/ --model_filename model.pdmodel --params_filename model.pdiparams --serving_server output_inference/ppyolo_mbv3_large_coco_KL/serving_server --serving_client output_inference/ppyolo_mbv3_large_coco_KL/serving_client" elif [[ ${model_name} = "mask_rcnn_r50_fpn_1x_coco_KL" ]]; then wget -nc -P ./output_inference/mask_rcnn_r50_fpn_1x_coco_KL/ https://bj.bcebos.com/v1/paddledet/data/tipc/models/mask_rcnn_r50_fpn_1x_coco_ptq.tar --no-check-certificate cd ./output_inference/mask_rcnn_r50_fpn_1x_coco_KL/ && tar -xvf mask_rcnn_r50_fpn_1x_coco_ptq.tar && mv -n mask_rcnn_r50_fpn_1x_coco_ptq/* . cd ../../ eval "${python} -m paddle_serving_client.convert --dirname output_inference/mask_rcnn_r50_fpn_1x_coco_KL/ --model_filename model.pdmodel --params_filename model.pdiparams --serving_server output_inference/mask_rcnn_r50_fpn_1x_coco_KL/serving_server --serving_client output_inference/mask_rcnn_r50_fpn_1x_coco_KL/serving_client" elif [[ ${model_name} = "tinypose_128x96_KL" ]]; then wget -nc -P ./output_inference/tinypose_128x96_KL/ https://bj.bcebos.com/v1/paddledet/data/tipc/models/tinypose_128x96_ptq.tar --no-check-certificate cd ./output_inference/tinypose_128x96_KL/ && tar -xvf tinypose_128x96_ptq.tar && mv -n tinypose_128x96_ptq/* . cd ../../ eval "${python} -m paddle_serving_client.convert --dirname output_inference/tinypose_128x96_KL/ --model_filename model.pdmodel --params_filename model.pdiparams --serving_server output_inference/tinypose_128x96_KL/serving_server --serving_client output_inference/tinypose_128x96_KL/serving_client" fi else # download coco lite data wget -nc -P ./dataset/coco/ https://paddledet.bj.bcebos.com/data/tipc/coco_tipc.tar --no-check-certificate cd ./dataset/coco/ && tar -xvf coco_tipc.tar && mv -n coco_tipc/* . rm -rf coco_tipc/ && cd ../../ # download wider_face lite data wget -nc -P ./dataset/wider_face/ https://paddledet.bj.bcebos.com/data/tipc/wider_tipc.tar --no-check-certificate cd ./dataset/wider_face/ && tar -xvf wider_tipc.tar && mv -n wider_tipc/* . rm -rf wider_tipc/ && cd ../../ # download spine_coco lite data wget -nc -P ./dataset/spine_coco/ https://paddledet.bj.bcebos.com/data/tipc/spine_coco_tipc.tar --no-check-certificate cd ./dataset/spine_coco/ && tar -xvf spine_coco_tipc.tar && mv -n spine_coco_tipc/* . rm -rf spine_coco_tipc/ && cd ../../ if [[ ${model_name} =~ "s2anet" ]]; then cd ./ppdet/ext_op && eval "${python} setup.py install" cd ../../ elif [[ ${model_name} =~ "ppyoloe_r_crn_s_3x_spine_coco" ]]; then cd ./ppdet/ext_op && eval "${python} setup.py install" cd ../../ elif [[ ${model_name} =~ "fcosr_x50_3x_spine_coco" ]]; then cd ./ppdet/ext_op && eval "${python} setup.py install" cd ../../ fi # download mot lite data wget -nc -P ./dataset/mot/ https://paddledet.bj.bcebos.com/data/tipc/mot_tipc.tar --no-check-certificate cd ./dataset/mot/ && tar -xvf mot_tipc.tar && mv -n mot_tipc/* . rm -rf mot_tipc/ && cd ../../ fi
PaddleDetection/test_tipc/prepare.sh/0
{ "file_path": "PaddleDetection/test_tipc/prepare.sh", "repo_id": "PaddleDetection", "token_count": 5691 }
97
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # add python path of PaddleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) sys.path.insert(0, parent_path) # ignore warning log import warnings warnings.filterwarnings('ignore') import paddle from ppdet.core.workspace import create, load_config, merge_config from ppdet.utils.check import check_gpu, check_npu, check_xpu, check_mlu, check_version, check_config from ppdet.utils.cli import ArgsParser, merge_args from ppdet.engine import Trainer, Trainer_ARSL, init_parallel_env from ppdet.metrics.coco_utils import json_eval_results from ppdet.slim import build_slim_model from ppdet.utils.logger import setup_logger logger = setup_logger('eval') def parse_args(): parser = ArgsParser() parser.add_argument( "--output_eval", default=None, type=str, help="Evaluation directory, default is current directory.") parser.add_argument( '--json_eval', action='store_true', default=False, help='Whether to re eval with already exists bbox.json or mask.json') parser.add_argument( "--slim_config", default=None, type=str, help="Configuration file of slim method.") # TODO: bias should be unified parser.add_argument( "--bias", action="store_true", help="whether add bias or not while getting w and h") parser.add_argument( "--classwise", action="store_true", help="whether per-category AP and draw P-R Curve or not.") parser.add_argument( '--save_prediction_only', action='store_true', default=False, help='Whether to save the evaluation results only') parser.add_argument( "--amp", action='store_true', default=False, help="Enable auto mixed precision eval.") # for smalldet slice_infer parser.add_argument( "--slice_infer", action='store_true', help="Whether to slice the image and merge the inference results for small object detection." ) parser.add_argument( '--slice_size', nargs='+', type=int, default=[640, 640], help="Height of the sliced image.") parser.add_argument( "--overlap_ratio", nargs='+', type=float, default=[0.25, 0.25], help="Overlap height ratio of the sliced image.") parser.add_argument( "--combine_method", type=str, default='nms', help="Combine method of the sliced images' detection results, choose in ['nms', 'nmm', 'concat']." ) parser.add_argument( "--match_threshold", type=float, default=0.6, help="Combine method matching threshold.") parser.add_argument( "--match_metric", type=str, default='ios', help="Combine method matching metric, choose in ['iou', 'ios'].") args = parser.parse_args() return args def run(FLAGS, cfg): if FLAGS.json_eval: logger.info( "In json_eval mode, PaddleDetection will evaluate json files in " "output_eval directly. And proposal.json, bbox.json and mask.json " "will be detected by default.") json_eval_results( cfg.metric, json_directory=FLAGS.output_eval, dataset=create('EvalDataset')()) return # init parallel environment if nranks > 1 init_parallel_env() ssod_method = cfg.get('ssod_method', None) if ssod_method == 'ARSL': # build ARSL_trainer trainer = Trainer_ARSL(cfg, mode='eval') # load ARSL_weights trainer.load_weights(cfg.weights, ARSL_eval=True) else: # build trainer trainer = Trainer(cfg, mode='eval') #load weights trainer.load_weights(cfg.weights) # training if FLAGS.slice_infer: trainer.evaluate_slice( slice_size=FLAGS.slice_size, overlap_ratio=FLAGS.overlap_ratio, combine_method=FLAGS.combine_method, match_threshold=FLAGS.match_threshold, match_metric=FLAGS.match_metric) else: trainer.evaluate() def main(): FLAGS = parse_args() cfg = load_config(FLAGS.config) merge_args(cfg, FLAGS) merge_config(FLAGS.opt) # disable npu in config by default if 'use_npu' not in cfg: cfg.use_npu = False # disable xpu in config by default if 'use_xpu' not in cfg: cfg.use_xpu = False if 'use_gpu' not in cfg: cfg.use_gpu = False # disable mlu in config by default if 'use_mlu' not in cfg: cfg.use_mlu = False if cfg.use_gpu: place = paddle.set_device('gpu') elif cfg.use_npu: place = paddle.set_device('npu') elif cfg.use_xpu: place = paddle.set_device('xpu') elif cfg.use_mlu: place = paddle.set_device('mlu') else: place = paddle.set_device('cpu') if FLAGS.slim_config: cfg = build_slim_model(cfg, FLAGS.slim_config, mode='eval') check_config(cfg) check_gpu(cfg.use_gpu) check_npu(cfg.use_npu) check_xpu(cfg.use_xpu) check_mlu(cfg.use_mlu) check_version() run(FLAGS, cfg) if __name__ == '__main__': main()
PaddleDetection/tools/eval.py/0
{ "file_path": "PaddleDetection/tools/eval.py", "repo_id": "PaddleDetection", "token_count": 2529 }
98
{ "add_prefix_space": false, "bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "model_max_length": 1024, "name_or_path": "Salesforce/codegen-350M-mono", "special_tokens_map_file": null, "tokenizer_class": "CodeGenTokenizer", "unk_token": "<|endoftext|>" }
fauxpilot/copilot_proxy/cgtok/tokenizer_config.json/0
{ "file_path": "fauxpilot/copilot_proxy/cgtok/tokenizer_config.json", "repo_id": "fauxpilot", "token_count": 108 }
99
""" Tests setup script (currently for Python backend) """ import os import shutil import signal import subprocess from pathlib import Path from typing import Dict, Union import pexpect import pytest import requests curdir = Path(__file__).parent root = curdir.parent.parent test_models_dir = curdir.joinpath("models") def setup_module(): """ Setup steps for tests in this module """ assert root.joinpath("setup.sh").exists(), "setup.sh not found" if root.joinpath(".env").exists(): shutil.move(str(root.joinpath(".env")), str(root.joinpath(".env.bak"))) def teardown_module(): """ Teardown steps for tests in this module """ if root.joinpath(".env.bak").exists(): shutil.move(str(root.joinpath(".env.bak")), str(root.joinpath(".env"))) try: if test_models_dir: shutil.rmtree(test_models_dir) except Exception as exc: print( f"WARNING: Couldn't delete `{test_models_dir}` most likely due to permission issues." f"Run the tests with sudo to ensure this gets deleted automatically, or else delete manually. " f"Exception: {exc}" ) def enter_input(proc: pexpect.spawn, expect: str, input_s: str, timeout: int = 5) -> str: """ Helper function to enter input for a given prompt. Returns consumed output. """ try: proc.expect(expect, timeout=timeout) except pexpect.exceptions.TIMEOUT as exc: raise AssertionError( f"Timeout waiting for prompt: `{expect}`.\n" f"Output-before: `{proc.before}`\nOutput-after: `{proc.after}`" ) from exc after = str(proc.after) print(after) proc.sendline(input_s) return after def run_common_setup_steps(n_gpus: int = 0) -> pexpect.spawn: """ Helper function to run common setup steps. """ proc = pexpect.pty_spawn.spawn( "./setup.sh 2>&1", encoding="utf-8", cwd=str(root), ) proc.ignorecase = True enter_input(proc, r".*Enter number of GPUs[^:]+: ?", str(n_gpus)) enter_input(proc, r".*port for the API[^:]+: ?", "5000") enter_input(proc, r".*Address for Triton[^:]+: ?", "triton") enter_input(proc, r".*Port of Triton[^:]+: ?", "8001") enter_input(proc, r".*save your models[^\?]+\? ?", str(test_models_dir.absolute())) return proc def load_test_env(): """ Load test env vars """ # Without loading default env vars, PATH won't be set correctly env = os.environ.copy() with open(curdir.joinpath("test.env"), "r", encoding="utf8") as test_env: for line in test_env: key, val = line.strip().split("=") env[key] = val return env def run_inference( prompt: str, model: str = "py-model", port: int = 5000, return_all: bool = False, **kwargs ) -> Union[str, Dict]: """ Invokes the copilot proxy with the given prompt and returns the completion """ endpoint = f"http://localhost:{port}/v1/engines/codegen/completions" data = { "model": model, "prompt": prompt, "suffix": kwargs.get("suffix", ""), "max_tokens": kwargs.get("max_tokens", 16), "temperature": kwargs.get("temperature", 0.0), "top_p": kwargs.get("top_p", 1.0), "n": kwargs.get("n", 1), "stream": kwargs.get("stream", None), # it's not true/false. It's None or not None :[ "logprobs": kwargs.get("logprobs", 0), "stop": kwargs.get("stop", ""), "echo": kwargs.get("echo", True), "presence_penalty": kwargs.get("presence_penalty", 0.0), "frequency_penalty": kwargs.get("frequency_penalty", 0.0), "best_of": kwargs.get("best_of", 1), "logit_bias": kwargs.get("logit_bias", {}), "user": kwargs.get("user", "test"), } response = requests.post(endpoint, json=data) response.raise_for_status() if return_all: return response.json() return response.json()["choices"][0]["text"] @pytest.mark.parametrize("n_gpus", [0]) # we don't have a GPU on CI def test_python_backend(n_gpus: int): """ Step 1: run $root/setup.sh while passing appropriate options via stdin Step 2: run docker-compose up with test.env sourced Step 3: call :5000 with appropriate request """ proc = run_common_setup_steps(n_gpus) choices = enter_input(proc, r".*Choose your backend.*Enter your choice[^:]+: ?", "2") assert "[2] Python backend" in choices, "Option 2 should be Python backend" choices = enter_input(proc, r".*Models available:.*Enter your choice[^:]+: ?", "1") assert "[1] codegen-350M-mono" in choices, "Option 1 should be codegen-350M-mono" enter_input(proc, r".*share (your )?huggingface cache[^:]+: ?", "y") enter_input(proc, r".*cache directory[^:]+: ?", "") # default enter_input(proc, r".*use int8[^:]+: ?", "n") enter_input(proc, r".*run FauxPilot\? \[y/n\] ", "n", timeout=120) # copy $root/.env to $curdir/test.env shutil.copy(str(root.joinpath(".env")), str(curdir.joinpath("test.env"))) # run docker-compose up -f docker-compose-{without|with}-gpus.yml compose_file = f"docker-compose-with{'' if n_gpus > 0 else 'out'}-gpus.yaml" docker_proc = None try: docker_proc = pexpect.pty_spawn.spawn( f"docker compose -f {compose_file} up", encoding="utf-8", cwd=curdir, env=load_test_env(), ) print("Waiting for API to be ready...") docker_proc.expect(r".*Started GRPCInferenceService at 0.0.0.0:8001", timeout=120) print("API ready, sending request...") # Simple test 1: hello world prompt without bells and whistles response = run_inference("def hello_world():\n", max_tokens=16, return_all=True) assert response["choices"][0]["text"].rstrip() == ' print("Hello World")\n\nhello_world()\n\n#' assert response["choices"][0]["finish_reason"] == "length" finally: if docker_proc is not None and docker_proc.isalive(): docker_proc.kill(signal.SIGINT) # killing docker-compose process doesn't bring down the containers. # explicitly stop the containers: subprocess.run(["docker-compose", "-f", compose_file, "down"], cwd=curdir, check=True, env=load_test_env())
fauxpilot/tests/python_backend/test_setup.py/0
{ "file_path": "fauxpilot/tests/python_backend/test_setup.py", "repo_id": "fauxpilot", "token_count": 2665 }
100
[ { "name": "\ud83d\udcd6 - READER: \ud83d\udc3f Jsonl", "time_stats": { "total": 2.726222380704712, "n": 5199, "mean": 0.0005243743759770558, "variance": 1.3217056156114112e-05, "std_dev": 0.003635526943389928, "min": 9.210023563355207e-06, "max": 0.03093169000931084, "total_human": "2 seconds", "mean_human": "0.52 milliseconds", "std_dev_human": "3.64 milliseconds", "min_human": "0.01 milliseconds", "max_human": "30.93 milliseconds", "global_mean": 0.1703888987940445, "global_mean_human": "0 seconds", "global_min": 0.014167226327117532, "global_min_human": "0 seconds", "global_max": 0.3217224628897384, "global_max_human": "0 seconds", "global_std_dev": 0.14844102588250072, "global_std_dev_human": "0 seconds" }, "stats": { "input_files": 16, "doc_len": { "total": 666096707, "n": 5199, "mean": 128120.15906905179, "variance": 786538251733.3838, "std_dev": 886869.9181578907, "min": 3, "max": 11190333 }, "documents": { "total": 5183, "n": 16, "mean": 323.9375, "variance": 59.92916666666681, "std_dev": 7.741393070156483, "min": 312, "max": 340, "unit": "input_file" } } }, { "name": "\ud83e\udec2 - DEDUP: \ud83c\udfaf MinHash stage 1", "time_stats": { "total": 402.93095610296587, "n": 16, "mean": 25.183184756435367, "variance": 343.50627465273016, "std_dev": 18.533922268444154, "min": 2.4529826429788955, "max": 46.265308337053284, "total_human": "6 minutes and 42 seconds", "mean_human": "25 seconds and 183.19 milliseconds", "std_dev_human": "18 seconds and 533.92 milliseconds", "min_human": "2 seconds and 452.98 milliseconds", "max_human": "46 seconds and 265.31 milliseconds", "global_mean": 25.183184756435367, "global_mean_human": "25 seconds", "global_min": 2.4529826429788955, "global_min_human": "2 seconds", "global_max": 46.265308337053284, "global_max_human": "46 seconds", "global_std_dev": 18.533922268444158, "global_std_dev_human": "18 seconds" }, "stats": { "total": 5199 } } ]
get-data/logs/2024-07-05_01-48-57_flgve/stats.json/0
{ "file_path": "get-data/logs/2024-07-05_01-48-57_flgve/stats.json", "repo_id": "get-data", "token_count": 1649 }
101
# InsightFace: 2D and 3D Face Analysis Project <div align="left"> <img src="https://insightface.ai/assets/img/custom/logo3.jpg" width="240"/> </div> InsightFace project is mainly maintained By [Jia Guo](mailto:guojia@gmail.com?subject=[GitHub]%20InsightFace%20Project) and [Jiankang Deng](https://jiankangdeng.github.io/). For all main contributors, please check [contributing](#contributing). ## License The code of InsightFace is released under the MIT License. There is no limitation for both academic and commercial usage. The training data containing the annotation (and the models trained with these data) are available for non-commercial research purposes only. Both manual-downloading models from our github repo and auto-downloading models with our [python-library](python-package) follow the above license policy(which is for non-commercial research purposes only). ## Top News **`2024-04-17`**: [Monocular Identity-Conditioned Facial Reflectance Reconstruction](https://arxiv.org/abs/2404.00301) accepted by [CVPR-2024](https://cvpr.thecvf.com/Conferences/2024). **`2023-04-01`**: We move the swapping demo to Discord bot, which support editing on Midjourney generated images, see detail at [web-demos/swapping_discord](web-demos/swapping_discord). **`2022-08-12`**: We achieved Rank-1st of [Perspective Projection Based Monocular 3D Face Reconstruction Challenge](https://tianchi.aliyun.com/competition/entrance/531961/introduction) of [ECCV-2022 WCPA Workshop](https://sites.google.com/view/wcpa2022), [paper](https://arxiv.org/abs/2208.07142) and [code](reconstruction/jmlr). **`2021-11-30`**: [MFR-Ongoing](challenges/mfr) challenge launched(same with IFRT), which is an extended version of [iccv21-mfr](challenges/iccv21-mfr). **`2021-10-29`**: We achieved 1st place on the [VISA track](https://pages.nist.gov/frvt/plots/11/visa.html) of [NIST-FRVT 1:1](https://pages.nist.gov/frvt/html/frvt11.html) by using Partial FC (Xiang An, Jiankang Deng, Jia Guo). ## ChangeLogs **`2023-08-08`**: We released the implementation of [Generalizing Gaze Estimation with Weak-Supervision from Synthetic Views](https://arxiv.org/abs/2212.02997) at [reconstruction/gaze](reconstruction/gaze). **`2023-05-03`**: We have launched the ongoing version of wild face anti-spoofing challenge. See details [here](https://github.com/deepinsight/insightface/tree/master/challenges/cvpr23-fas-wild#updates). **`2023-04-01`**: We move the swapping demo to Discord bot, which support editing on Midjourney generated images, see detail at [web-demos/swapping_discord](web-demos/swapping_discord). **`2023-02-13`**: We launch a large scale in the wild face anti-spoofing challenge on CVPR23 Workshop, see details at [challenges/cvpr23-fas-wild](challenges/cvpr23-fas-wild). **`2022-11-28`**: Single line code for facial identity swapping in our python packge ver 0.7, please check the example [here](examples/in_swapper). **`2022-10-28`**: [MFR-Ongoing](http://iccv21-mfr.com) website is refactored, please create issues if there's any bug. **`2022-09-22`**: Now we have [web-demos](web-demos): [face-localization](http://demo.insightface.ai:7007/), [face-recognition](http://demo.insightface.ai:7008/), and [face-swapping](http://demo.insightface.ai:7009/). **`2022-08-12`**: We achieved Rank-1st of [Perspective Projection Based Monocular 3D Face Reconstruction Challenge](https://tianchi.aliyun.com/competition/entrance/531961/introduction) of [ECCV-2022 WCPA Workshop](https://sites.google.com/view/wcpa2022), [paper](https://arxiv.org/abs/2208.07142) and [code](reconstruction/jmlr). **`2022-03-30`**: [Partial FC](https://arxiv.org/abs/2203.15565) accepted by CVPR-2022. **`2022-02-23`**: [SCRFD](detection/scrfd) accepted by [ICLR-2022](https://iclr.cc/Conferences/2022). **`2021-11-30`**: [MFR-Ongoing](challenges/mfr) challenge launched(same with IFRT), which is an extended version of [iccv21-mfr](challenges/iccv21-mfr). **`2021-10-29`**: We achieved 1st place on the [VISA track](https://pages.nist.gov/frvt/plots/11/visa.html) of [NIST-FRVT 1:1](https://pages.nist.gov/frvt/html/frvt11.html) by using Partial FC (Xiang An, Jiankang Deng, Jia Guo). **`2021-10-11`**: [Leaderboard](https://insightface.ai/mfr21) of [ICCV21 - Masked Face Recognition Challenge](challenges/iccv21-mfr) released. Video: [Youtube](https://www.youtube.com/watch?v=lL-7l5t6x2w), [Bilibili](https://www.bilibili.com/video/BV15b4y1h79N/). **`2021-06-05`**: We launch a [Masked Face Recognition Challenge & Workshop](challenges/iccv21-mfr) on ICCV 2021. ## Introduction [InsightFace](https://insightface.ai) is an open source 2D&3D deep face analysis toolbox, mainly based on PyTorch and MXNet. Please check our [website](https://insightface.ai) for detail. The master branch works with **PyTorch 1.6+** and/or **MXNet=1.6-1.8**, with **Python 3.x**. InsightFace efficiently implements a rich variety of state of the art algorithms of face recognition, face detection and face alignment, which optimized for both training and deployment. ## Quick Start Please start with our [python-package](python-package/), for testing detection, recognition and alignment models on input images. ### ArcFace Video Demo [<img src=https://insightface.ai/assets/img/github/facerecognitionfromvideo.PNG width="760" />](https://www.youtube.com/watch?v=y-D1tReryGA&t=81s) Please click the image to watch the Youtube video. For Bilibili users, click [here](https://www.bilibili.com/video/av38041494?from=search&seid=11501833604850032313). ## Projects The [page](https://insightface.ai/projects) on InsightFace website also describes all supported projects in InsightFace. You may also interested in some [challenges](https://insightface.ai/challenges) hold by InsightFace. ## Face Recognition ### Introduction In this module, we provide training data, network settings and loss designs for deep face recognition. The supported methods are as follows: - [x] [ArcFace_mxnet (CVPR'2019)](recognition/arcface_mxnet) - [x] [ArcFace_torch (CVPR'2019)](recognition/arcface_torch) - [x] [SubCenter ArcFace (ECCV'2020)](recognition/subcenter_arcface) - [x] [PartialFC_mxnet (CVPR'2022)](recognition/partial_fc) - [x] [PartialFC_torch (CVPR'2022)](recognition/arcface_torch) - [x] [VPL (CVPR'2021)](recognition/vpl) - [x] [Arcface_oneflow](recognition/arcface_oneflow) - [x] [ArcFace_Paddle (CVPR'2019)](recognition/arcface_paddle) Commonly used network backbones are included in most of the methods, such as IResNet, MobilefaceNet, MobileNet, InceptionResNet_v2, DenseNet, etc.. ### Datasets The training data includes, but not limited to the cleaned MS1M, VGG2 and CASIA-Webface datasets, which were already packed in MXNet binary format. Please [dataset](recognition/_datasets_) page for detail. ### Evaluation We provide standard IJB and Megaface evaluation pipelines in [evaluation](recognition/_evaluation_) ### Pretrained Models **Please check [Model-Zoo](https://github.com/deepinsight/insightface/wiki/Model-Zoo) for more pretrained models.** ### Third-party Re-implementation of ArcFace - TensorFlow: [InsightFace_TF](https://github.com/auroua/InsightFace_TF) - TensorFlow: [tf-insightface](https://github.com/AIInAi/tf-insightface) - TensorFlow:[insightface](https://github.com/Fei-Wang/insightface) - PyTorch: [InsightFace_Pytorch](https://github.com/TreB1eN/InsightFace_Pytorch) - PyTorch: [arcface-pytorch](https://github.com/ronghuaiyang/arcface-pytorch) - Caffe: [arcface-caffe](https://github.com/xialuxi/arcface-caffe) - Caffe: [CombinedMargin-caffe](https://github.com/gehaocool/CombinedMargin-caffe) - Tensorflow: [InsightFace-tensorflow](https://github.com/luckycallor/InsightFace-tensorflow) - TensorRT: [wang-xinyu/tensorrtx](https://github.com/wang-xinyu/tensorrtx) - TensorRT: [InsightFace-REST](https://github.com/SthPhoenix/InsightFace-REST) - ONNXRuntime C++: [ArcFace-ONNXRuntime](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/ort/cv/glint_arcface.cpp) - ONNXRuntime Go: [arcface-go](https://github.com/jack139/arcface-go) - MNN: [ArcFace-MNN](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/mnn/cv/mnn_glint_arcface.cpp) - TNN: [ArcFace-TNN](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/tnn/cv/tnn_glint_arcface.cpp) - NCNN: [ArcFace-NCNN](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/ncnn/cv/ncnn_glint_arcface.cpp) ## Face Detection ### Introduction <div align="left"> <img src="https://insightface.ai/assets/img/github/11513D05.jpg" width="640"/> </div> In this module, we provide training data with annotation, network settings and loss designs for face detection training, evaluation and inference. The supported methods are as follows: - [x] [RetinaFace (CVPR'2020)](detection/retinaface) - [x] [SCRFD (Arxiv'2021)](detection/scrfd) - [x] [blazeface_paddle](detection/blazeface_paddle) [RetinaFace](detection/retinaface) is a practical single-stage face detector which is accepted by [CVPR 2020](https://openaccess.thecvf.com/content_CVPR_2020/html/Deng_RetinaFace_Single-Shot_Multi-Level_Face_Localisation_in_the_Wild_CVPR_2020_paper.html). We provide training code, training dataset, pretrained models and evaluation scripts. [SCRFD](detection/scrfd) is an efficient high accuracy face detection approach which is initialy described in [Arxiv](https://arxiv.org/abs/2105.04714). We provide an easy-to-use pipeline to train high efficiency face detectors with NAS supporting. ## Face Alignment ### Introduction <div align="left"> <img src="https://insightface.ai/assets/img/custom/thumb_sdunet.png" width="600"/> </div> In this module, we provide datasets and training/inference pipelines for face alignment. Supported methods: - [x] [SDUNets (BMVC'2018)](alignment/heatmap) - [x] [SimpleRegression](alignment/coordinate_reg) [SDUNets](alignment/heatmap) is a heatmap based method which accepted on [BMVC](http://bmvc2018.org/contents/papers/0051.pdf). [SimpleRegression](alignment/coordinate_reg) provides very lightweight facial landmark models with fast coordinate regression. The input of these models is loose cropped face image while the output is the direct landmark coordinates. ## Citation If you find *InsightFace* useful in your research, please consider to cite the following related papers: ``` @inproceedings{ren2023pbidr, title={Facial Geometric Detail Recovery via Implicit Representation}, author={Ren, Xingyu and Lattas, Alexandros and Gecer, Baris and Deng, Jiankang and Ma, Chao and Yang, Xiaokang}, booktitle={2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)}, year={2023} } @article{guo2021sample, title={Sample and Computation Redistribution for Efficient Face Detection}, author={Guo, Jia and Deng, Jiankang and Lattas, Alexandros and Zafeiriou, Stefanos}, journal={arXiv preprint arXiv:2105.04714}, year={2021} } @inproceedings{gecer2021ostec, title={OSTeC: One-Shot Texture Completion}, author={Gecer, Baris and Deng, Jiankang and Zafeiriou, Stefanos}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2021} } @inproceedings{an2020partical_fc, title={Partial FC: Training 10 Million Identities on a Single Machine}, author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and Zhang, Debing and Fu Ying}, booktitle={Arxiv 2010.05222}, year={2020} } @inproceedings{deng2020subcenter, title={Sub-center ArcFace: Boosting Face Recognition by Large-scale Noisy Web Faces}, author={Deng, Jiankang and Guo, Jia and Liu, Tongliang and Gong, Mingming and Zafeiriou, Stefanos}, booktitle={Proceedings of the IEEE Conference on European Conference on Computer Vision}, year={2020} } @inproceedings{Deng2020CVPR, title = {RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild}, author = {Deng, Jiankang and Guo, Jia and Ververas, Evangelos and Kotsia, Irene and Zafeiriou, Stefanos}, booktitle = {CVPR}, year = {2020} } @inproceedings{guo2018stacked, title={Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment}, author={Guo, Jia and Deng, Jiankang and Xue, Niannan and Zafeiriou, Stefanos}, booktitle={BMVC}, year={2018} } @article{deng2018menpo, title={The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking}, author={Deng, Jiankang and Roussos, Anastasios and Chrysos, Grigorios and Ververas, Evangelos and Kotsia, Irene and Shen, Jie and Zafeiriou, Stefanos}, journal={IJCV}, year={2018} } @inproceedings{deng2018arcface, title={ArcFace: Additive Angular Margin Loss for Deep Face Recognition}, author={Deng, Jiankang and Guo, Jia and Niannan, Xue and Zafeiriou, Stefanos}, booktitle={CVPR}, year={2019} } ``` ## Contributing Main contributors: - [Jia Guo](https://github.com/nttstar), ``guojia[at]gmail.com`` - [Jiankang Deng](https://github.com/jiankangdeng) ``jiankangdeng[at]gmail.com`` - [Xiang An](https://github.com/anxiangsir) ``anxiangsir[at]gmail.com`` - [Jack Yu](https://github.com/szad670401) ``jackyu961127[at]gmail.com`` - [Baris Gecer](https://barisgecer.github.io/) ``barisgecer[at]msn.com``
insightface/README.md/0
{ "file_path": "insightface/README.md", "repo_id": "insightface", "token_count": 4547 }
102
import numpy as np import albumentations as A from albumentations.core.transforms_interface import ImageOnlyTransform class RectangleBorderAugmentation(ImageOnlyTransform): def __init__( self, fill_value = 0, limit = 0.3, always_apply=False, p=1.0, ): super(RectangleBorderAugmentation, self).__init__(always_apply, p) assert limit>0.0 and limit<1.0 self.fill_value = 0 self.limit = limit def apply(self, image, border_size_limit, **params): assert len(border_size_limit)==4 border_size = border_size_limit.copy() border_size[0] *= image.shape[1] border_size[2] *= image.shape[1] border_size[1] *= image.shape[0] border_size[3] *= image.shape[0] border_size = border_size.astype(np.int) image[:,:border_size[0],:] = self.fill_value image[:border_size[1],:,:] = self.fill_value image[:,-border_size[2]:,:] = self.fill_value image[-border_size[3]:,:,:] = self.fill_value return image def get_params(self): border_size_limit = np.random.uniform(0.0, self.limit, size=4) return {'border_size_limit': border_size_limit} def get_transform_init_args_names(self): return ('fill_value', 'limit')
insightface/alignment/synthetics/datasets/augs.py/0
{ "file_path": "insightface/alignment/synthetics/datasets/augs.py", "repo_id": "insightface", "token_count": 612 }
103
BATCH_SIZE: 512 DATA: NUM_FRAMES: 1 SCALE_MID_MEAN: 0.720643 SCALE_MID_STD: 0.058 USE_RANDOM_DIFF: true NETWORK: DIS_RES_BLOCKS: 2 DIS_TEMP_RES_BLOCKS: 2 DIS_USE_SPECTRAL_NORM: false SCALER_INPUT_SIZE: 34 TRAIN: BOUND_AZIM: 2.44346 BOUND_ELEV: 0.34906585 DIS_LR: 0.0001 LOSS_TYPE: ss_adv LOSS_WEIGHTS: - 0.5 - 5.0 - 1.0 - 1.0 MAINNET_CRITICS: 4 NUM_CRITICS: 3 NUM_CRITICS_TEMP: 3 POSE_LR: 0.00015 PRETRAIN_LIFTER: false SCALE_LOSS_WEIGHTS: - 0.001 - 1.0 SUBNET_CRITICS: 1 TEMP_LR: 0.0001 SCHEDULER_STEP_SIZE: 5 USE_CYCLE: true USE_NEW_ROT: false USE_NEW_TEMP: true USE_SCALER: true USE_GT: true FIX: FIX_TRAJ: true FIX_TRAJ_BY_ROT: false
insightface/body/human_pose/ambiguity_aware/cfg/h36m_gt_scale.yaml/0
{ "file_path": "insightface/body/human_pose/ambiguity_aware/cfg/h36m_gt_scale.yaml", "repo_id": "insightface", "token_count": 378 }
104
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function import torch.nn as nn def weight_init(m): if isinstance(m, nn.Linear): nn.init.kaiming_normal(m.weight) class Linear(nn.Module): def __init__(self, linear_size, p_dropout=0.5, spectral_norm=False, use_bn=True): super(Linear, self).__init__() self.l_size = linear_size self.use_bn = use_bn self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout(p_dropout) self.w1 = nn.Linear(self.l_size, self.l_size) self.batch_norm1 = nn.BatchNorm1d(self.l_size) self.w2 = nn.Linear(self.l_size, self.l_size) self.batch_norm2 = nn.BatchNorm1d(self.l_size) if spectral_norm: self.w1 = nn.utils.spectral_norm(self.w1) self.w2 = nn.utils.spectral_norm(self.w2) def forward(self, x): y = self.w1(x) if self.use_bn: y = self.batch_norm1(y) y = self.relu(y) y = self.dropout(y) y = self.w2(y) if self.use_bn: y = self.batch_norm2(y) y = self.relu(y) y = self.dropout(y) out = x + y return out class LinearModelBefore(nn.Module): def __init__(self, linear_size=1024, num_stage=4, p_dropout=0.5): super(LinearModelBefore, self).__init__() self.linear_size = linear_size self.p_dropout = p_dropout self.num_stage = num_stage # 2d joints self.input_size = 17 * 2 # 3d joints self.output_size = 17 * 1 # process input to linear size self.w1 = nn.Linear(self.input_size, self.linear_size) self.batch_norm1 = nn.BatchNorm1d(self.linear_size) self.linear_stages = [] for l in range(num_stage): self.linear_stages.append(Linear(self.linear_size, self.p_dropout)) self.linear_stages = nn.ModuleList(self.linear_stages) # post processing # self.w2 = nn.Linear(self.linear_size, self.output_size) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout(self.p_dropout) def forward(self, x): x = x.view(x.size(0), -1) # pre-processing y = self.w1(x) y = self.batch_norm1(y) y = self.relu(y) y = self.dropout(y) # linear layers for i in range(self.num_stage): y = self.linear_stages[i](y) # y = self.w2(y) # y should be features, and x is reshaped inputs # namely x, joints_sc for LinearModelAfter return y, x class LinearModelAfter(nn.Module): def __init__(self): super(LinearModelAfter, self).__init__() self.main = nn.Linear(1024, 17 * 1) def forward(self, x, y): return self.main(x)
insightface/body/human_pose/ambiguity_aware/lib/models/simple_model.py/0
{ "file_path": "insightface/body/human_pose/ambiguity_aware/lib/models/simple_model.py", "repo_id": "insightface", "token_count": 1488 }
105
#!/usr/bin/env python3 # coding=utf-8 import os import cv2 import random import os.path as osp import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from mpl_toolkits.mplot3d import Axes3D plt.switch_backend('agg') plt.ioff() import h5py from tqdm import trange import argparse parser = argparse.ArgumentParser() parser.add_argument('--seq_num', type=int, default=1, help='Specify the number of sequences to render') parser.add_argument('--save_dir', type=str, default="../vis/", help='Specify the directory the save the visualization') parser.add_argument('--in_filename', type=str, default= "../data/h36m_valid_pred_3d.h5", help="Speicfy the dataset to load from") args = parser.parse_args() seq_num = args.seq_num save_dir = args.save_dir in_filename = args.in_filename os.makedirs(save_dir, exist_ok=True) v3d_to_ours = [3, 2, 1, 4, 5, 6, 16, 15, 14, 11, 12, 13, 8, 0, 7, 9, 10] pairs = [(0, 1), (1, 2), (2, 13), (3, 13), (3, 4), (4, 5), (6, 7), (7, 8), (8, 12), (9, 10),(9, 12), (10, 11),(12, 14), (12, 15), (13, 14), (15, 16)] pairs_left = [(3, 13), (3, 4), (4, 5), (9, 10), (9, 12), (10, 11)] pairs_right = [(0, 1), (1, 2), (2, 13), (6, 7), (7, 8), (8, 12)] colors = { 'pink': np.array([197, 27, 125]), # L lower leg 'light_pink': np.array([233, 163, 201]), # L upper leg 'light_green': np.array([161, 215, 106]), # L lower arm 'green': np.array([77, 146, 33]), # L upper arm 'red': np.array([215, 48, 39]), # head 'light_red': np.array([252, 146, 114]), # head 'light_orange': np.array([252, 141, 89]), # chest 'purple': np.array([118, 42, 131]), # R lower leg 'light_purple': np.array([175, 141, 195]), # R upper 'light_blue': np.array([145, 191, 219]), # R lower arm 'blue': np.array([69, 117, 180]), # R upper arm 'gray': np.array([130, 130, 130]), # 'white': np.array([255, 255, 255]), # } jcolors = [ 'light_pink', 'light_pink', 'light_pink', 'pink', 'pink', 'pink', 'light_blue', 'light_blue', 'light_blue', 'blue', 'blue', 'blue', 'purple', 'purple', 'red', 'green', 'green', 'white', 'white' ] ecolors = { 0: 'light_pink', 1: 'light_pink', 2: 'light_pink', 3: 'pink', 4: 'pink', 5: 'pink', 6: 'light_blue', 7: 'light_blue', 8: 'light_blue', 9: 'blue', 10: 'blue', 11: 'blue', 12: 'purple', 13: 'light_green', 14: 'light_green', 15: 'purple' } root = "/home/yuzhenbo/codebase/3D/multipose/data/mpi_inf/" image_root = root in_filename = "../data/mpi_valid_pred_3d.h5" print("Read from", in_filename) f = h5py.File(in_filename, "r") imagenames = [name.decode() for name in f['imagename'][:]] # 2d joints in the order of v3d convention # poses2d = np.array(f['joint_2d_gt'])[:, v3d_to_ours] poses2d = np.array(f['joint_2d_gt']) poses3d = np.array(f['joint_3d_pre']) poses3d_gt = np.array(f['joint_3d_gt']) poses3d_gt = poses3d_gt - poses3d_gt[:, 13:14] f.close() t = trange(0, len(imagenames)) processed_video_names = [] def plot_skeleton_2d(all_frames, joints_2d): out_frames = [] radius = max(4, (np.mean(all_frames[0].shape[:2]) * 0.01).astype(int)) for idx in range(len(all_frames)): for pair in pairs: i, j = pair pt1, pt2 = joints_2d[idx, i], joints_2d[idx, j] x11, y11 = pt1 x22, y22 = pt2 if pair in pairs_left: color = (205, 0, 0) elif pair in pairs_right: color = (0, 205, 0) else: color = (0, 165, 255) cv2.line(all_frames[idx], (int(x11), int(y11)), (int(x22), int(y22)), color, radius-2) def get_xxyys(names): xxyys = [] # should be subject, action, camera splits = names[0].split('/') video_name = '/'.join(splits[:-1]) part_label_path = osp.join(root, splits[0], 'MySegmentsMat', 'PartLabels', splits[1] + ("cam" + splits[2]).replace('cam0', '.54138969').replace('cam2','.58860488').replace('cam1', '.55011271').replace('cam3', '.60457274') + ".mat") f = h5py.File(part_label_path, "r") for idx, name in enumerate(names): partmask = f[f['Feat'][idx*30, 0]][()].T yp, xp = np.where(partmask != 0) xmin, xmax = np.min(xp), np.max(xp) + 1 ymin, ymax = np.min(yp), np.max(yp) + 1 xxyys.append((xmin, xmax, ymin, ymax)) f.close() return xxyys def crop_image(all_frames, xxyys, scale_factor=0.25): out_frames = [] for frame, xxyy in zip(all_frames, xxyys): h, w = frame.shape[:2] xmin, xmax, ymin, ymax = xxyy xc, yc = (xmin + xmax) / 2, (ymin + ymax) / 2 l = max(xmax - xmin, ymax - ymin) xmin, xmax = max(0, xc - l/2), min(w, xc + l / 2) ymin, ymax = max(0, yc - l/2), min(h, yc + l / 2) xmin, xmax = int(xmin), int(xmax) ymin, ymax = int(ymin), int(ymax) frame = frame[ymin:ymax, xmin:xmax, :].copy() frame = cv2.resize(frame, (int(scale_factor * w), int(scale_factor * h))) frame = frame[::-1, :, ::-1] / 255 out_frames.append(frame) return out_frames for imageid in t: name = imagenames[imageid] splits = name.split('/') video_name = '/'.join(splits[:2]) if len(processed_video_names) == seq_num: print("Finished! Rendered {} sequences, saved to {}".format(seq_num, save_dir)) break if video_name in processed_video_names: continue else: processed_video_names.append(video_name) print(video_name) recs = [(idx, name) for idx, name in enumerate(imagenames) if video_name in name] # downsample recs = recs[::5] # cand_list = [x*5 for x in [440, 565, 770]] # cand_list = [200, 250, 300, 350, 400, 450, 500, 520, 550, 590, 620, 660, 700, 740, 770, 800, 830, 845] # recs = list(filter(lambda x: x[0] in cand_list, recs)) # recs = list(filter(lambda x: x[0] in [65*5, 100*5, 905*5, 1160*5], recs)) recs = sorted(recs, key=lambda x: int(x[1].split('/')[-1].split('_')[1].split('.')[0])) names_in_video = [rec[1] for rec in recs] indices_in_video = [rec[0] for rec in recs] # path_format = osp.join(image_root, splits[0], splits[1], "img_{:06d}.jpg") poses3d_in_video = poses3d[indices_in_video] poses2d_in_video = poses2d[indices_in_video] poses3d_gt_in_video = poses3d_gt[indices_in_video] all_frames = [cv2.imread(osp.join(image_root, name)) for name in names_in_video] # all_frames = [cv2.imread(path_format.format(int(name.split('/')[-1])+1)) for name in names_in_video] print("Ploting 2d skeleton...") plot_skeleton_2d(all_frames, poses2d_in_video) scale_factor = 0.2 all_frames = [cv2.resize(frame, (int(scale_factor * frame.shape[1]), int(scale_factor * frame.shape[0])))[::-1, :, ::-1] / 255 for frame in all_frames] # print("Getting bounding boxes...") # xxyys = get_xxyys(names_in_video) # print("Cropping images...") # all_frames = crop_image(all_frames, xxyys, scale_factor=0.2) print("Generating gifs...") fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(111, projection='3d') ax.view_init(elev=10., azim=45.) lines_3d, lines_3d_gt = [], [] radius = 0.75 initialized = False num_render = len(names_in_video) print(num_render, " frames to plot") def update_video(frame_idx): global initialized, lines_3d, lines_3d_gt print("{}/{} ".format(frame_idx, num_render), end='\r') pose2d = poses2d_in_video[frame_idx] pose3d = poses3d_in_video[frame_idx] pose3d_gt = poses3d_gt_in_video[frame_idx] if not initialized: for idx, pair in enumerate(pairs): i, j = pair if pair in pairs_left: color = "blue" elif pair in pairs_right: color = "green" else: color = "darkorange" # pt1, pt2 = pose3d[i], pose3d[j] # x11, y11, z11 = pt1 # x22, y22, z22 = pt2 # lines_3d.append(ax.plot([z11, z22], [x11, x22], [-y11, -y22], c='red', linewidth=3, label="pre")) pt1, pt2 = pose3d_gt[i], pose3d_gt[j] x11, y11, z11 = pt1 x22, y22, z22 = pt2 lines_3d_gt.append(ax.plot([z11, z22], [x11, x22], [-y11, -y22], c=color, linewidth=3, label="gt")) # pt1, pt2 = pose3d_ssadv[i], pose3d_ssadv[j] # x11, y11, z11 = pt1 # x22, y22, z22 = pt2 # lines_3d_ssadv.append(ax.plot([z11, z22], [x11, x22], [-y11, -y22], c="red", linewidth=3, label="ssadv")) initialized = True else: for idx, pair in enumerate(pairs): i, j = pair # pt1, pt2 = pose3d[i], pose3d[j] # x11, y11, z11 = pt1 # x22, y22, z22 = pt2 # lines_3d[idx][0].set_xdata([z11, z22]) # lines_3d[idx][0].set_ydata([x11, x22]) # lines_3d[idx][0].set_3d_properties([-y11, -y22]) pt1, pt2 = pose3d_gt[i], pose3d_gt[j] x11, y11, z11 = pt1 x22, y22, z22 = pt2 lines_3d_gt[idx][0].set_xdata([z11, z22]) lines_3d_gt[idx][0].set_ydata([x11, x22]) lines_3d_gt[idx][0].set_3d_properties([-y11, -y22]) # pt1, pt2 = pose3d_ssadv[i], pose3d_ssadv[j] # x11, y11, z11 = pt1 # x22, y22, z22 = pt2 # lines_3d_ssadv[idx][0].set_xdata([z11, z22]) # lines_3d_ssadv[idx][0].set_ydata([x11, x22]) # lines_3d_ssadv[idx][0].set_3d_properties([-y11, -y22]) xroot, yroot, zroot = pose3d_gt[13, 0], -pose3d_gt[13, 1], pose3d_gt[13, 2] ax.set_ylim3d([-radius+xroot, radius+xroot]) ax.set_zlim3d([-radius+yroot, radius+yroot]) ax.set_xlim3d([-2.5 * radius+zroot, radius+zroot]) ax.get_xaxis().set_ticklabels([]) ax.get_yaxis().set_ticklabels([]) ax.set_zticklabels([]) white = (1.0, 1.0, 1.0, 0.0) ax.w_xaxis.set_pane_color(white) ax.w_yaxis.set_pane_color(white) ax.w_xaxis.line.set_color(white) ax.w_yaxis.line.set_color(white) ax.w_zaxis.line.set_color(white) r = 0.95 xx = np.linspace(-r * radius + xroot, r * radius + xroot, all_frames[frame_idx].shape[1]) yy = np.linspace(-r * radius + yroot, r * radius + yroot, all_frames[frame_idx].shape[0]) xx, yy = np.meshgrid(xx, yy) zz = np.ones_like(xx) * (-3.2* radius + zroot) ax.set_xlabel('Z', fontsize=13) ax.set_ylabel("X", fontsize=13) ax.set_zlabel("Y", fontsize=13) ax.plot_surface(zz, xx, yy, rstride=1, cstride=1, facecolors=all_frames[frame_idx], shade=False) plt.savefig(osp.join(save_dir, f"{video_name.replace('/', '_')}_{frame_idx}.png")) for idx in range(len(names_in_video)): update_video(idx) ani = animation.FuncAnimation(fig, update_video, range(len(names_in_video)), interval=20) save_name = name.replace('/', '_') ani.save(osp.join(save_dir, f"{save_name}.gif"), writer='imagemagick', fps=20) t.set_postfix(index=int(imageid))
insightface/body/human_pose/ambiguity_aware/scripts/mpi_plot1.py/0
{ "file_path": "insightface/body/human_pose/ambiguity_aware/scripts/mpi_plot1.py", "repo_id": "insightface", "token_count": 5777 }
106
import sys import os import argparse import onnx import mxnet as mx from onnx import helper from onnx import TensorProto from onnx import numpy_helper print('mxnet version:', mx.__version__) print('onnx version:', onnx.__version__) assert mx.__version__ >= '1.8', 'mxnet version should >= 1.8' assert onnx.__version__ >= '1.2.1', 'onnx version should >= 1.2.1' import numpy as np from mxnet.contrib import onnx as onnx_mxnet def create_map(graph_member_list): member_map={} for n in graph_member_list: member_map[n.name]=n return member_map parser = argparse.ArgumentParser(description='convert arcface models to onnx') # general parser.add_argument('params', default='./r100a/model-0000.params', help='mxnet params to load.') parser.add_argument('output', default='./r100a.onnx', help='path to write onnx model.') parser.add_argument('--eps', default=1.0e-8, type=float, help='eps for weights.') parser.add_argument('--input-shape', default='3,112,112', help='input shape.') args = parser.parse_args() input_shape = (1,) + tuple( [int(x) for x in args.input_shape.split(',')] ) params_file = args.params pos = params_file.rfind('-') prefix = params_file[:pos] epoch = int(params_file[pos+1:pos+5]) sym_file = prefix + "-symbol.json" assert os.path.exists(sym_file) assert os.path.exists(params_file) sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) eps = args.eps arg = {} aux = {} invalid = 0 ac = 0 for k in arg_params: v = arg_params[k] nv = v.asnumpy() #print(k, nv.dtype) nv = nv.astype(np.float32) ac += nv.size invalid += np.count_nonzero(np.abs(nv)<eps) nv[np.abs(nv) < eps] = 0.0 arg[k] = mx.nd.array(nv, dtype='float32') print(invalid, ac) arg_params = arg invalid = 0 ac = 0 for k in aux_params: v = aux_params[k] nv = v.asnumpy().astype(np.float32) ac += nv.size invalid += np.count_nonzero(np.abs(nv)<eps) nv[np.abs(nv) < eps] = 0.0 aux[k] = mx.nd.array(nv, dtype='float32') print(invalid, ac) aux_params = aux all_args = {} all_args.update(arg_params) all_args.update(aux_params) converted_model_path = onnx_mxnet.export_model(sym, all_args, [input_shape], np.float32, args.output, opset_version=11) model = onnx.load(args.output) graph = model.graph input_map = create_map(graph.input) node_map = create_map(graph.node) init_map = create_map(graph.initializer) #fix PRelu issue for input_name in input_map.keys(): if input_name.endswith('_gamma'): node_name = input_name[:-6] if not node_name in node_map: continue node = node_map[node_name] if node.op_type!='PRelu': continue input_shape = input_map[input_name].type.tensor_type.shape.dim input_dim_val=input_shape[0].dim_value graph.initializer.remove(init_map[input_name]) weight_array = numpy_helper.to_array(init_map[input_name]) b=[] for w in weight_array: b.append(w) new_nv = helper.make_tensor(input_name, TensorProto.FLOAT, [input_dim_val,1,1], b) graph.initializer.extend([new_nv]) for init_name in init_map.keys(): weight_array = numpy_helper.to_array(init_map[init_name]) assert weight_array.dtype==np.float32 if init_name in input_map: graph.input.remove(input_map[init_name]) #support batch-inference graph.input[0].type.tensor_type.shape.dim[0].dim_param = 'None' onnx.save(model, args.output)
insightface/challenges/iccv21-mfr/mxnet_to_ort.py/0
{ "file_path": "insightface/challenges/iccv21-mfr/mxnet_to_ort.py", "repo_id": "insightface", "token_count": 1493 }
107
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- import os from os.path import join as pjoin from setuptools import setup from distutils.extension import Extension from Cython.Distutils import build_ext import numpy as np def find_in_path(name, path): "Find a file in a search path" # Adapted fom # http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/ for dir in path.split(os.pathsep): binpath = pjoin(dir, name) if os.path.exists(binpath): return os.path.abspath(binpath) return None def locate_cuda(): """Locate the CUDA environment on the system Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64' and values giving the absolute path to each directory. Starts by looking for the CUDAHOME env variable. If not found, everything is based on finding 'nvcc' in the PATH. """ # first check if the CUDAHOME env variable is in use if 'CUDAHOME' in os.environ: home = os.environ['CUDAHOME'] nvcc = pjoin(home, 'bin', 'nvcc') else: # otherwise, search the PATH for NVCC default_path = pjoin(os.sep, 'usr', 'local', 'cuda', 'bin') nvcc = find_in_path('nvcc', os.environ['PATH'] + os.pathsep + default_path) if nvcc is None: raise EnvironmentError( 'The nvcc binary could not be ' 'located in your $PATH. Either add it to your path, or set $CUDAHOME' ) home = os.path.dirname(os.path.dirname(nvcc)) cudaconfig = { 'home': home, 'nvcc': nvcc, 'include': pjoin(home, 'include'), 'lib64': pjoin(home, 'lib64') } for k, v in cudaconfig.items(): if not os.path.exists(v): raise EnvironmentError( 'The CUDA %s path could not be located in %s' % (k, v)) return cudaconfig # Test if cuda could be foun try: CUDA = locate_cuda() except EnvironmentError: CUDA = None # Obtain the numpy include directory. This logic works across numpy versions. try: numpy_include = np.get_include() except AttributeError: numpy_include = np.get_numpy_include() def customize_compiler_for_nvcc(self): """inject deep into distutils to customize how the dispatch to gcc/nvcc works. If you subclass UnixCCompiler, it's not trivial to get your subclass injected in, and still have the right customizations (i.e. distutils.sysconfig.customize_compiler) run on it. So instead of going the OO route, I have this. Note, it's kindof like a wierd functional subclassing going on.""" # tell the compiler it can processes .cu self.src_extensions.append('.cu') # save references to the default compiler_so and _comple methods default_compiler_so = self.compiler_so super = self._compile # now redefine the _compile method. This gets executed for each # object but distutils doesn't have the ability to change compilers # based on source extension: we add it. def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts): if os.path.splitext(src)[1] == '.cu': # use the cuda for .cu files self.set_executable('compiler_so', CUDA['nvcc']) # use only a subset of the extra_postargs, which are 1-1 translated # from the extra_compile_args in the Extension class postargs = extra_postargs['nvcc'] else: postargs = extra_postargs['gcc'] super(obj, src, ext, cc_args, postargs, pp_opts) # reset the default compiler_so, which we might have changed for cuda self.compiler_so = default_compiler_so # inject our redefined _compile method into the class self._compile = _compile # run the customize_compiler class custom_build_ext(build_ext): def build_extensions(self): customize_compiler_for_nvcc(self.compiler) build_ext.build_extensions(self) ext_modules = [ Extension("bbox", ["bbox.pyx"], extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]}, include_dirs=[numpy_include]), Extension("anchors", ["anchors.pyx"], extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]}, include_dirs=[numpy_include]), Extension("cpu_nms", ["cpu_nms.pyx"], extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]}, include_dirs=[numpy_include]), ] if CUDA is not None: ext_modules.append( Extension( 'gpu_nms', ['nms_kernel.cu', 'gpu_nms.pyx'], library_dirs=[CUDA['lib64']], libraries=['cudart'], language='c++', runtime_library_dirs=[CUDA['lib64']], # this syntax is specific to this build system # we're only going to use certain compiler args with nvcc and not with # gcc the implementation of this trick is in customize_compiler() below extra_compile_args={ 'gcc': ["-Wno-unused-function"], 'nvcc': [ '-arch=sm_35', '--ptxas-options=-v', '-c', '--compiler-options', "'-fPIC'" ] }, include_dirs=[numpy_include, CUDA['include']])) else: print('Skipping GPU_NMS') setup( name='frcnn_cython', ext_modules=ext_modules, # inject our custom trigger cmdclass={'build_ext': custom_build_ext}, )
insightface/detection/retinaface/rcnn/cython/setup.py/0
{ "file_path": "insightface/detection/retinaface/rcnn/cython/setup.py", "repo_id": "insightface", "token_count": 2399 }
108
https://github.com/pdollar/coco/commit/336d2a27c91e3c0663d2dcf0b13574674d30f88e
insightface/detection/retinaface/rcnn/pycocotools/UPSTREAM_REV/0
{ "file_path": "insightface/detection/retinaface/rcnn/pycocotools/UPSTREAM_REV", "repo_id": "insightface", "token_count": 42 }
109
import mxnet as mx import mxnet.ndarray as nd import mxnet.gluon as gluon import mxnet.gluon.nn as nn import mxnet.autograd as ag import numpy as np from rcnn.config import config from rcnn.PY_OP import rpn_fpn_ohem, rpn_fpn_ohem2, rpn_fpn_ohem3 USE_DCN = False MM = 1.0 def ConvBlock(channels, kernel_size, strides, **kwargs): out = nn.HybridSequential(**kwargs) with out.name_scope(): out.add( nn.Conv2D(channels, kernel_size, strides=strides, padding=1, use_bias=False), nn.BatchNorm(scale=True), nn.Activation('relu') ) return out def Conv1x1(channels, is_linear=False, **kwargs): out = nn.HybridSequential(**kwargs) with out.name_scope(): out.add( nn.Conv2D(channels, 1, padding=0, use_bias=False), nn.BatchNorm(scale=True) ) if not is_linear: out.add(nn.Activation('relu')) return out def DWise(channels, strides, kernel_size=3, **kwargs): out = nn.HybridSequential(**kwargs) with out.name_scope(): out.add( nn.Conv2D(channels, kernel_size, strides=strides, padding=kernel_size // 2, groups=channels, use_bias=False), nn.BatchNorm(scale=True), nn.Activation('relu') ) return out class SepCONV(nn.HybridBlock): def __init__(self, inp, output, kernel_size, depth_multiplier=1, with_bn=True, **kwargs): super(SepCONV, self).__init__(**kwargs) with self.name_scope(): self.net = nn.HybridSequential() cn = int(inp*depth_multiplier) if output is None: self.net.add( nn.Conv2D(in_channels=inp, channels=cn, groups=inp, kernel_size=kernel_size, strides=(1,1), padding=kernel_size // 2 , use_bias=not with_bn) ) else: self.net.add( nn.Conv2D(in_channels=inp, channels=cn, groups=inp, kernel_size=kernel_size, strides=(1,1), padding=kernel_size // 2 , use_bias=False), nn.BatchNorm(), nn.Activation('relu'), nn.Conv2D(in_channels=cn, channels=output, kernel_size=(1,1), strides=(1,1) , use_bias=not with_bn) ) self.with_bn = with_bn self.act = nn.Activation('relu') if with_bn: self.bn = nn.BatchNorm() def hybrid_forward(self, F ,x): x = self.net(x) if self.with_bn: x = self.bn(x) if self.act is not None: x = self.act(x) return x class ExpandedConv(nn.HybridBlock): def __init__(self, inp, oup, t, strides, kernel=3, same_shape=True, **kwargs): super(ExpandedConv, self).__init__(**kwargs) self.same_shape = same_shape self.strides = strides with self.name_scope(): self.bottleneck = nn.HybridSequential() self.bottleneck.add( Conv1x1(inp*t, prefix="expand_"), DWise(inp*t, self.strides, kernel, prefix="dwise_"), Conv1x1(oup, is_linear=True, prefix="linear_") ) def hybrid_forward(self, F, x): out = self.bottleneck(x) if self.strides == 1 and self.same_shape: out = F.elemwise_add(out, x) return out def ExpandedConvSequence(t, k, inp, oup, repeats, first_strides, **kwargs): seq = nn.HybridSequential(**kwargs) with seq.name_scope(): seq.add(ExpandedConv(inp, oup, t, first_strides, k, same_shape=False)) curr_inp = oup for i in range(1, repeats): seq.add(ExpandedConv(curr_inp, oup, t, 1)) curr_inp = oup return seq class Mnasnet(nn.HybridBlock): def __init__(self, multiplier=1.0, **kwargs): super(Mnasnet, self).__init__(**kwargs) mm = multiplier self.first_oup = 32 self.interverted_residual_setting = [ # t, c, n, s, k [3, int(24*mm), 3, 2, 3, "stage2_"], # -> 56x56 [3, int(40*mm), 3, 2, 5, "stage3_"], # -> 28x28 [6, int(80*mm), 3, 2, 5, "stage4_1_"], # -> 14x14 [6, int(96*mm), 2, 1, 3, "stage4_2_"], # -> 14x14 [6, int(192*mm), 4, 2, 5, "stage5_1_"], # -> 7x7 [6, int(320*mm), 1, 1, 3, "stage5_2_"], # -> 7x7 ] self.last_channels = 1280 with self.name_scope(): self.features = nn.HybridSequential() self.features.add(ConvBlock(self.first_oup, 3, 2, prefix="stage1_conv0_")) self.features.add(SepCONV(self.first_oup, 16, 3, prefix="stage1_sepconv0_")) inp = 16 for i, (t, c, n, s, k, prefix) in enumerate(self.interverted_residual_setting): oup = c self.features.add(ExpandedConvSequence(t, k, inp, oup, n, s, prefix=prefix)) inp = oup self.features.add(Conv1x1(self.last_channels, prefix="stage5_3_")) def hybrid_forward(self, F, x): x = self.features(x) return x def conv_act_layer(from_layer, name, num_filter, kernel=(1,1), pad=(0,0), \ stride=(1,1), act_type="relu", bias_wd_mult=0.0, dcn=False): weight = mx.symbol.Variable(name="{}_weight".format(name), init=mx.init.Normal(0.01), attr={'__lr_mult__': '1.0'}) bias = mx.symbol.Variable(name="{}_bias".format(name), init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0', '__wd_mult__': str(bias_wd_mult)}) if not dcn: conv = mx.symbol.Convolution(data=from_layer, kernel=kernel, pad=pad, \ stride=stride, num_filter=num_filter, name="{}".format(name), weight = weight, bias=bias) else: assert kernel[0]==3 and kernel[1]==3 num_group = 1 f = num_group*18 offset_weight = mx.symbol.Variable(name="{}_offset_weight".format(name), init=mx.init.Constant(0.0), attr={'__lr_mult__': '1.0'}) offset_bias = mx.symbol.Variable(name="{}_offset_bias".format(name), init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0', '__wd_mult__': str(bias_wd_mult)}) conv_offset = mx.symbol.Convolution(name=name+'_offset', data = from_layer, weight=offset_weight, bias=offset_bias, num_filter=f, pad=(1, 1), kernel=(3, 3), stride=(1, 1)) conv = mx.contrib.symbol.DeformableConvolution(name=name, data=from_layer, offset=conv_offset, weight=weight, bias=bias, num_filter=num_filter, pad=(1,1), kernel=(3, 3), num_deformable_group=num_group, stride=(1, 1), no_bias=False) if len(act_type)>0: relu = mx.symbol.Activation(data=conv, act_type=act_type, \ name="{}_{}".format(name, act_type)) else: relu = conv return relu def ssh_context_module(body, num_filters, name): conv_dimred = conv_act_layer(body, name+'_conv1', num_filters, kernel=(3, 3), pad=(1, 1), stride=(1, 1), act_type='relu', dcn=False) conv5x5 = conv_act_layer(conv_dimred, name+'_conv2', num_filters, kernel=(3, 3), pad=(1, 1), stride=(1, 1), act_type='', dcn=USE_DCN) conv7x7_1 = conv_act_layer(conv_dimred, name+'_conv3_1', num_filters, kernel=(3, 3), pad=(1, 1), stride=(1, 1), act_type='relu', dcn=False) conv7x7 = conv_act_layer(conv7x7_1, name+'_conv3_2', num_filters, kernel=(3, 3), pad=(1, 1), stride=(1, 1), act_type='', dcn=USE_DCN) return (conv5x5, conv7x7) def ssh_detection_module(body, num_filters, name): conv3x3 = conv_act_layer(body, name+'_conv1', num_filters, kernel=(3, 3), pad=(1, 1), stride=(1, 1), act_type='', dcn=USE_DCN) conv5x5, conv7x7 = ssh_context_module(body, num_filters//2, name+'_context') ret = mx.sym.concat(*[conv3x3, conv5x5, conv7x7], dim=1, name = name+'_concat') ret = mx.symbol.Activation(data=ret, act_type='relu', name=name+'_concat_relu') return ret def conv_bn(input, filter, ksize, stride, padding, act_type='relu', name=''): conv = mx.symbol.Convolution(data=input, kernel=(ksize,ksize), pad=(padding,padding), \ stride=(stride,stride), num_filter=filter, name=name+"_conv") ret = mx.sym.BatchNorm(data=conv, fix_gamma=False, eps=2e-5, momentum=0.9, name=name + '_bn') if act_type is not None: ret = mx.symbol.Activation(data=ret, act_type=act_type, \ name="{}_{}".format(name, act_type)) return ret def cpm(input, name): # residual branch1 = conv_bn(input, 1024, 1, 1, 0, act_type=None, name=name+"_branch1") branch2a = conv_bn(input, 256, 1, 1, 0, act_type='relu', name=name+"_branch2a") branch2b = conv_bn(branch2a, 256, 3, 1, 1, act_type='relu', name=name+"_branch2b") branch2c = conv_bn(branch2b, 1024, 1, 1, 0, act_type=None, name=name+"_branch2c") sum = branch1 + branch2c rescomb = mx.symbol.Activation(data=sum, act_type='relu', name="%s_relu2"%(name)) ssh_out = ssh_detection_module(rescomb, 256, name=name+"_ssh") return ssh_out def get_mnet_conv(data): mm = MM net = Mnasnet(mm, prefix="") body = net(data) all_layers = body.get_internals() #print(all_layers) c1 = all_layers['stage3_expandedconv2_elemwise_add0_output'] c2 = all_layers['stage4_2_expandedconv1_elemwise_add0_output'] #c3 = all_layers['stage5_3_relu0_fwd_output'] c3 = all_layers['stage5_2_expandedconv0_linear_batchnorm0_fwd_output'] F1 = int(256*mm) F2 = int(128*mm) _bwm = 1.0 conv4_128 = conv_act_layer(c1, 'ssh_m1_red_conv', F2, kernel=(1, 1), pad=(0, 0), stride=(1, 1), act_type='relu', bias_wd_mult=_bwm) conv5_128 = conv_act_layer(c2, 'ssh_m2_red_conv', F2, kernel=(1, 1), pad=(0, 0), stride=(1, 1), act_type='relu', bias_wd_mult=_bwm) conv5_128_up = mx.symbol.Deconvolution(data=conv5_128, num_filter=F2, kernel=(4,4), stride=(2, 2), pad=(1,1), num_group = F2, no_bias = True, attr={'__lr_mult__': '0.0', '__wd_mult__': '0.0'}, name='ssh_m2_red_upsampling') #conv5_128_up = mx.symbol.UpSampling(conv5_128, scale=2, sample_type='nearest', workspace=512, name='ssh_m2_red_up', num_args=1) conv4_128 = mx.symbol.Crop(*[conv4_128, conv5_128_up]) #conv5_128_up = mx.symbol.Crop(*[conv5_128_up, conv4_128]) conv_sum = conv4_128+conv5_128_up #conv_sum = conv_1x1 m1_conv = conv_act_layer(conv_sum, 'ssh_m1_conv', F2, kernel=(3, 3), pad=(1, 1), stride=(1, 1), act_type='relu', bias_wd_mult=_bwm) m1 = ssh_detection_module(m1_conv, F2, 'ssh_m1_det') m2 = ssh_detection_module(c2, F1, 'ssh_m2_det') m3 = ssh_detection_module(c3, F1, 'ssh_m3_det') return {8: m1, 16:m2, 32: m3} def get_out(conv_fpn_feat, prefix, stride, landmark=False, lr_mult=1.0): A = config.NUM_ANCHORS ret_group = [] num_anchors = config.RPN_ANCHOR_CFG[str(stride)]['NUM_ANCHORS'] label = mx.symbol.Variable(name='%s_label_stride%d'%(prefix,stride)) bbox_target = mx.symbol.Variable(name='%s_bbox_target_stride%d'%(prefix,stride)) bbox_weight = mx.symbol.Variable(name='%s_bbox_weight_stride%d'%(prefix,stride)) if landmark: landmark_target = mx.symbol.Variable(name='%s_landmark_target_stride%d'%(prefix,stride)) landmark_weight = mx.symbol.Variable(name='%s_landmark_weight_stride%d'%(prefix,stride)) rpn_relu = conv_fpn_feat[stride] maxout_stat = 0 if config.USE_MAXOUT>=1 and stride==config.RPN_FEAT_STRIDE[-1]: maxout_stat = 1 if config.USE_MAXOUT>=2 and stride!=config.RPN_FEAT_STRIDE[-1]: maxout_stat = 2 if maxout_stat==0: rpn_cls_score = conv_act_layer(rpn_relu, '%s_rpn_cls_score_stride%d'%(prefix, stride), 2*num_anchors, kernel=(1,1), pad=(0,0), stride=(1, 1), act_type='') elif maxout_stat==1: cls_list = [] for a in range(num_anchors): rpn_cls_score_bg = conv_act_layer(rpn_relu, '%s_rpn_cls_score_stride%d_anchor%d_bg'%(prefix,stride,a), 3, kernel=(1,1), pad=(0,0), stride=(1, 1), act_type='') rpn_cls_score_bg = mx.sym.max(rpn_cls_score_bg, axis=1, keepdims=True) cls_list.append(rpn_cls_score_bg) rpn_cls_score_fg = conv_act_layer(rpn_relu, '%s_rpn_cls_score_stride%d_anchor%d_fg'%(prefix,stride,a), 1, kernel=(1,1), pad=(0,0), stride=(1, 1), act_type='') cls_list.append(rpn_cls_score_fg) rpn_cls_score = mx.sym.concat(*cls_list, dim=1, name='%s_rpn_cls_score_stride%d'%(prefix,stride)) else: cls_list = [] for a in range(num_anchors): rpn_cls_score_bg = conv_act_layer(rpn_relu, '%s_rpn_cls_score_stride%d_anchor%d_bg'%(prefix,stride,a), 1, kernel=(1,1), pad=(0,0), stride=(1, 1), act_type='') cls_list.append(rpn_cls_score_bg) rpn_cls_score_fg = conv_act_layer(rpn_relu, '%s_rpn_cls_score_stride%d_anchor%d_fg'%(prefix,stride,a), 3, kernel=(1,1), pad=(0,0), stride=(1, 1), act_type='') rpn_cls_score_fg = mx.sym.max(rpn_cls_score_fg, axis=1, keepdims=True) cls_list.append(rpn_cls_score_fg) rpn_cls_score = mx.sym.concat(*cls_list, dim=1, name='%s_rpn_cls_score_stride%d'%(prefix,stride)) rpn_bbox_pred = conv_act_layer(rpn_relu, '%s_rpn_bbox_pred_stride%d'%(prefix,stride), 4*num_anchors, kernel=(1,1), pad=(0,0), stride=(1, 1), act_type='') # prepare rpn data rpn_cls_score_reshape = mx.symbol.Reshape(data=rpn_cls_score, shape=(0, 2, -1), name="%s_rpn_cls_score_reshape_stride%s" % (prefix,stride)) rpn_bbox_pred_reshape = mx.symbol.Reshape(data=rpn_bbox_pred, shape=(0, 0, -1), name="%s_rpn_bbox_pred_reshape_stride%s" % (prefix,stride)) if landmark: rpn_landmark_pred = conv_act_layer(rpn_relu, '%s_rpn_landmark_pred_stride%d'%(prefix,stride), 10*num_anchors, kernel=(1,1), pad=(0,0), stride=(1, 1), act_type='') rpn_landmark_pred_reshape = mx.symbol.Reshape(data=rpn_landmark_pred, shape=(0, 0, -1), name="%s_rpn_landmark_pred_reshape_stride%s" % (prefix,stride)) if config.TRAIN.RPN_ENABLE_OHEM>=2: label, anchor_weight = mx.sym.Custom(op_type='rpn_fpn_ohem3', stride=int(stride), network=config.network, dataset=config.dataset, prefix=prefix, cls_score=rpn_cls_score_reshape, labels = label) _bbox_weight = mx.sym.tile(anchor_weight, (1,1,4)) _bbox_weight = _bbox_weight.reshape((0, -1, A * 4)).transpose((0,2,1)) bbox_weight = mx.sym.elemwise_mul(bbox_weight, _bbox_weight, name='%s_bbox_weight_mul_stride%s'%(prefix,stride)) if landmark: _landmark_weight = mx.sym.tile(anchor_weight, (1,1,10)) _landmark_weight = _landmark_weight.reshape((0, -1, A * 10)).transpose((0,2,1)) landmark_weight = mx.sym.elemwise_mul(landmark_weight, _landmark_weight, name='%s_landmark_weight_mul_stride%s'%(prefix,stride)) #if not config.FACE_LANDMARK: # label, bbox_weight = mx.sym.Custom(op_type='rpn_fpn_ohem', stride=int(stride), cls_score=rpn_cls_score_reshape, bbox_weight = bbox_weight , labels = label) #else: # label, bbox_weight, landmark_weight = mx.sym.Custom(op_type='rpn_fpn_ohem2', stride=int(stride), cls_score=rpn_cls_score_reshape, bbox_weight = bbox_weight, landmark_weight=landmark_weight, labels = label) #cls loss rpn_cls_prob = mx.symbol.SoftmaxOutput(data=rpn_cls_score_reshape, label=label, multi_output=True, normalization='valid', use_ignore=True, ignore_label=-1, grad_scale = lr_mult, name='%s_rpn_cls_prob_stride%d'%(prefix,stride)) ret_group.append(rpn_cls_prob) ret_group.append(mx.sym.BlockGrad(label)) #bbox loss bbox_diff = rpn_bbox_pred_reshape-bbox_target bbox_diff = bbox_diff * bbox_weight rpn_bbox_loss_ = mx.symbol.smooth_l1(name='%s_rpn_bbox_loss_stride%d_'%(prefix,stride), scalar=3.0, data=bbox_diff) rpn_bbox_loss = mx.sym.MakeLoss(name='%s_rpn_bbox_loss_stride%d'%(prefix,stride), data=rpn_bbox_loss_, grad_scale=1.0*lr_mult / (config.TRAIN.RPN_BATCH_SIZE)) ret_group.append(rpn_bbox_loss) ret_group.append(mx.sym.BlockGrad(bbox_weight)) #landmark loss if landmark: landmark_diff = rpn_landmark_pred_reshape-landmark_target landmark_diff = landmark_diff * landmark_weight rpn_landmark_loss_ = mx.symbol.smooth_l1(name='%s_rpn_landmark_loss_stride%d_'%(prefix,stride), scalar=3.0, data=landmark_diff) rpn_landmark_loss = mx.sym.MakeLoss(name='%s_rpn_landmark_loss_stride%d'%(prefix,stride), data=rpn_landmark_loss_, grad_scale=0.5*lr_mult / (config.TRAIN.RPN_BATCH_SIZE)) ret_group.append(rpn_landmark_loss) ret_group.append(mx.sym.BlockGrad(landmark_weight)) return ret_group def get_mnet_train(): data = mx.symbol.Variable(name="data") # shared convolutional layers conv_fpn_feat = get_mnet_conv(data) ret_group = [] for stride in config.RPN_FEAT_STRIDE: ret = get_out(conv_fpn_feat, 'face', stride, config.FACE_LANDMARK, lr_mult=1.0) ret_group += ret if config.HEAD_BOX: ret = get_out(conv_fpn_feat, 'head', stride, False, lr_mult=1.0) ret_group += ret return mx.sym.Group(ret_group)
insightface/detection/retinaface/rcnn/symbol/symbol_mnet.py.bak/0
{ "file_path": "insightface/detection/retinaface/rcnn/symbol/symbol_mnet.py.bak", "repo_id": "insightface", "token_count": 8977 }
110
from __future__ import print_function import argparse import sys import os import time import numpy as np import mxnet as mx from mxnet import ndarray as nd import cv2 from rcnn.logger import logger #from rcnn.config import config, default, generate_config #from rcnn.tools.test_rcnn import test_rcnn #from rcnn.tools.test_rpn import test_rpn from rcnn.processing.bbox_transform import nonlinear_pred, clip_boxes, landmark_pred from rcnn.processing.generate_anchor import generate_anchors_fpn, anchors_plane from rcnn.processing.nms import gpu_nms_wrapper from rcnn.processing.bbox_transform import bbox_overlaps from rcnn.dataset import retinaface from retinaface import RetinaFace def parse_args(): parser = argparse.ArgumentParser( description='Test widerface by retinaface detector') # general parser.add_argument('--network', help='network name', default='net3', type=str) parser.add_argument('--dataset', help='dataset name', default='retinaface', type=str) parser.add_argument('--image-set', help='image_set name', default='val', type=str) parser.add_argument('--root-path', help='output data folder', default='./data', type=str) parser.add_argument('--dataset-path', help='dataset path', default='./data/retinaface', type=str) parser.add_argument('--gpu', help='GPU device to test with', default=0, type=int) # testing parser.add_argument('--prefix', help='model to test with', default='', type=str) parser.add_argument('--epoch', help='model to test with', default=0, type=int) parser.add_argument('--output', help='output folder', default='./wout', type=str) parser.add_argument('--nocrop', help='', action='store_true') parser.add_argument('--thresh', help='valid detection threshold', default=0.02, type=float) parser.add_argument('--mode', help='test mode, 0 for fast, 1 for accurate', default=1, type=int) #parser.add_argument('--pyramid', help='enable pyramid test', action='store_true') #parser.add_argument('--bbox-vote', help='', action='store_true') parser.add_argument('--part', help='', default=0, type=int) parser.add_argument('--parts', help='', default=1, type=int) args = parser.parse_args() return args detector = None args = None imgid = -1 def get_boxes(roi, pyramid): global imgid im = cv2.imread(roi['image']) do_flip = False if not pyramid: target_size = 1200 max_size = 1600 #do_flip = True target_size = 1504 max_size = 2000 target_size = 1600 max_size = 2150 im_shape = im.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale = float(target_size) / float(im_size_min) # prevent bigger axis from being more than max_size: if np.round(im_scale * im_size_max) > max_size: im_scale = float(max_size) / float(im_size_max) scales = [im_scale] else: do_flip = True #TEST_SCALES = [500, 800, 1200, 1600] TEST_SCALES = [500, 800, 1100, 1400, 1700] target_size = 800 max_size = 1200 im_shape = im.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale = float(target_size) / float(im_size_min) # prevent bigger axis from being more than max_size: if np.round(im_scale * im_size_max) > max_size: im_scale = float(max_size) / float(im_size_max) scales = [ float(scale) / target_size * im_scale for scale in TEST_SCALES ] boxes, landmarks = detector.detect(im, threshold=args.thresh, scales=scales, do_flip=do_flip) #print(boxes.shape, landmarks.shape) if imgid >= 0 and imgid < 100: font = cv2.FONT_HERSHEY_SIMPLEX for i in range(boxes.shape[0]): box = boxes[i] ibox = box[0:4].copy().astype(np.int) cv2.rectangle(im, (ibox[0], ibox[1]), (ibox[2], ibox[3]), (255, 0, 0), 2) #print('box', ibox) #if len(ibox)>5: # for l in range(5): # pp = (ibox[5+l*2], ibox[6+l*2]) # cv2.circle(im, (pp[0], pp[1]), 1, (0, 0, 255), 1) blur = box[5] k = "%.3f" % blur cv2.putText(im, k, (ibox[0] + 2, ibox[1] + 14), font, 0.6, (0, 255, 0), 2) #landmarks = box[6:21].reshape( (5,3) ) if landmarks is not None: for l in range(5): color = (0, 255, 0) landmark = landmarks[i][l] pp = (int(landmark[0]), int(landmark[1])) if landmark[2] - 0.5 < 0.0: color = (0, 0, 255) cv2.circle(im, (pp[0], pp[1]), 1, color, 2) filename = './testimages/%d.jpg' % imgid cv2.imwrite(filename, im) print(filename, 'wrote') imgid += 1 return boxes def test(args): print('test with', args) global detector output_folder = args.output if not os.path.exists(output_folder): os.mkdir(output_folder) detector = RetinaFace(args.prefix, args.epoch, args.gpu, network=args.network, nocrop=args.nocrop, vote=args.bbox_vote) imdb = eval(args.dataset)(args.image_set, args.root_path, args.dataset_path) roidb = imdb.gt_roidb() gt_overlaps = np.zeros(0) overall = [0.0, 0.0] gt_max = np.array((0.0, 0.0)) num_pos = 0 print('roidb size', len(roidb)) for i in range(len(roidb)): if i % args.parts != args.part: continue #if i%10==0: # print('processing', i, file=sys.stderr) roi = roidb[i] boxes = get_boxes(roi, args.pyramid) if 'boxes' in roi: gt_boxes = roi['boxes'].copy() gt_areas = (gt_boxes[:, 2] - gt_boxes[:, 0] + 1) * (gt_boxes[:, 3] - gt_boxes[:, 1] + 1) num_pos += gt_boxes.shape[0] overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float)) #print(im_info, gt_boxes.shape, boxes.shape, overlaps.shape, file=sys.stderr) _gt_overlaps = np.zeros((gt_boxes.shape[0])) if boxes.shape[0] > 0: _gt_overlaps = overlaps.max(axis=0) #print('max_overlaps', _gt_overlaps, file=sys.stderr) for j in range(len(_gt_overlaps)): if _gt_overlaps[j] > 0.5: continue #print(j, 'failed', gt_boxes[j], 'max_overlap:', _gt_overlaps[j], file=sys.stderr) # append recorded IoU coverage level found = (_gt_overlaps > 0.5).sum() recall = found / float(gt_boxes.shape[0]) #print('recall', _recall, gt_boxes.shape[0], boxes.shape[0], gt_areas, 'num:', i, file=sys.stderr) overall[0] += found overall[1] += gt_boxes.shape[0] #gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps)) #_recall = (gt_overlaps >= threshold).sum() / float(num_pos) recall_all = float(overall[0]) / overall[1] #print('recall_all', _recall, file=sys.stderr) print('[%d]' % i, 'recall', recall, (gt_boxes.shape[0], boxes.shape[0]), 'all:', recall_all, file=sys.stderr) else: print('[%d]' % i, 'detect %d faces' % boxes.shape[0]) _vec = roidb[i]['image'].split('/') out_dir = os.path.join(output_folder, _vec[-2]) if not os.path.exists(out_dir): os.mkdir(out_dir) out_file = os.path.join(out_dir, _vec[-1].replace('jpg', 'txt')) with open(out_file, 'w') as f: name = '/'.join(roidb[i]['image'].split('/')[-2:]) f.write("%s\n" % (name)) f.write("%d\n" % (boxes.shape[0])) for b in range(boxes.shape[0]): box = boxes[b] f.write( "%d %d %d %d %g \n" % (box[0], box[1], box[2] - box[0], box[3] - box[1], box[4])) def main(): global args args = parse_args() args.pyramid = False args.bbox_vote = False if args.mode == 1: args.pyramid = True args.bbox_vote = True elif args.mode == 2: args.pyramid = True args.bbox_vote = False logger.info('Called with argument: %s' % args) test(args) if __name__ == '__main__': main()
insightface/detection/retinaface/test_widerface.py/0
{ "file_path": "insightface/detection/retinaface/test_widerface.py", "repo_id": "insightface", "token_count": 5389 }
111
dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox')
insightface/detection/scrfd/configs/_base_/datasets/coco_detection.py/0
{ "file_path": "insightface/detection/scrfd/configs/_base_/datasets/coco_detection.py", "repo_id": "insightface", "token_count": 795 }
112
import warnings import matplotlib.pyplot as plt import mmcv import numpy as np import torch from mmcv.ops import RoIPool from mmcv.parallel import collate, scatter from mmcv.runner import load_checkpoint from mmdet.core import get_classes from mmdet.datasets.pipelines import Compose from mmdet.models import build_detector def init_detector(config, checkpoint=None, device='cuda:0', cfg_options=None): """Initialize a detector from config file. Args: config (str or :obj:`mmcv.Config`): Config file path or the config object. checkpoint (str, optional): Checkpoint path. If left as None, the model will not load any weights. cfg_options (dict): Options to override some settings in the used config. Returns: nn.Module: The constructed detector. """ if isinstance(config, str): config = mmcv.Config.fromfile(config) elif not isinstance(config, mmcv.Config): raise TypeError('config must be a filename or Config object, ' f'but got {type(config)}') if cfg_options is not None: config.merge_from_dict(cfg_options) config.model.pretrained = None model = build_detector(config.model, test_cfg=config.test_cfg) if checkpoint is not None: map_loc = 'cpu' if device == 'cpu' else None checkpoint = load_checkpoint(model, checkpoint, map_location=map_loc) if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: warnings.simplefilter('once') warnings.warn('Class names are not saved in the checkpoint\'s ' 'meta data, use COCO classes by default.') model.CLASSES = get_classes('coco') model.cfg = config # save the config in the model for convenience model.to(device) model.eval() return model class LoadImage(object): """A simple pipeline to load image.""" def __call__(self, results): """Call function to load images into results. Args: results (dict): A result dict contains the file name of the image to be read. Returns: dict: ``results`` will be returned containing loaded image. """ if isinstance(results['img'], str): results['filename'] = results['img'] results['ori_filename'] = results['img'] else: results['filename'] = None results['ori_filename'] = None img = mmcv.imread(results['img']) results['img'] = img results['img_fields'] = ['img'] results['img_shape'] = img.shape results['ori_shape'] = img.shape return results def inference_detector(model, img): """Inference image(s) with the detector. Args: model (nn.Module): The loaded detector. imgs (str/ndarray or list[str/ndarray]): Either image files or loaded images. Returns: If imgs is a str, a generator will be returned, otherwise return the detection results directly. """ cfg = model.cfg device = next(model.parameters()).device # model device # prepare data if isinstance(img, np.ndarray): # directly add img data = dict(img=img) cfg = cfg.copy() # set loading pipeline type cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' else: # add information into dict data = dict(img_info=dict(filename=img), img_prefix=None) # build the data pipeline test_pipeline = Compose(cfg.data.test.pipeline) data = test_pipeline(data) data = collate([data], samples_per_gpu=1) if next(model.parameters()).is_cuda: # scatter to specified GPU data = scatter(data, [device])[0] else: for m in model.modules(): assert not isinstance( m, RoIPool ), 'CPU inference with RoIPool is not supported currently.' # just get the actual data from DataContainer data['img_metas'] = data['img_metas'][0].data # forward the model with torch.no_grad(): result = model(return_loss=False, rescale=True, **data)[0] return result async def async_inference_detector(model, img): """Async inference image(s) with the detector. Args: model (nn.Module): The loaded detector. img (str | ndarray): Either image files or loaded images. Returns: Awaitable detection results. """ cfg = model.cfg device = next(model.parameters()).device # model device # prepare data if isinstance(img, np.ndarray): # directly add img data = dict(img=img) cfg = cfg.copy() # set loading pipeline type cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' else: # add information into dict data = dict(img_info=dict(filename=img), img_prefix=None) # build the data pipeline test_pipeline = Compose(cfg.data.test.pipeline) data = test_pipeline(data) data = scatter(collate([data], samples_per_gpu=1), [device])[0] # We don't restore `torch.is_grad_enabled()` value during concurrent # inference since execution can overlap torch.set_grad_enabled(False) result = await model.aforward_test(rescale=True, **data) return result def show_result_pyplot(model, img, result, score_thr=0.3, fig_size=(15, 10), title='result', block=True): """Visualize the detection results on the image. Args: model (nn.Module): The loaded detector. img (str or np.ndarray): Image filename or loaded image. result (tuple[list] or list): The detection result, can be either (bbox, segm) or just bbox. score_thr (float): The threshold to visualize the bboxes and masks. fig_size (tuple): Figure size of the pyplot figure. title (str): Title of the pyplot figure. block (bool): Whether to block GUI. """ if hasattr(model, 'module'): model = model.module img = model.show_result(img, result, score_thr=score_thr, show=False) plt.figure(figsize=fig_size) plt.imshow(mmcv.bgr2rgb(img)) plt.title(title) plt.tight_layout() plt.show(block=block)
insightface/detection/scrfd/mmdet/apis/inference.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/apis/inference.py", "repo_id": "insightface", "token_count": 2670 }
113
import torch from ..builder import BBOX_ASSIGNERS from ..iou_calculators import build_iou_calculator from .assign_result import AssignResult from .base_assigner import BaseAssigner @BBOX_ASSIGNERS.register_module() class GridAssigner(BaseAssigner): """Assign a corresponding gt bbox or background to each bbox. Each proposals will be assigned with `-1`, `0`, or a positive integer indicating the ground truth index. - -1: don't care - 0: negative sample, no assigned gt - positive integer: positive sample, index (1-based) of assigned gt Args: pos_iou_thr (float): IoU threshold for positive bboxes. neg_iou_thr (float or tuple): IoU threshold for negative bboxes. min_pos_iou (float): Minimum iou for a bbox to be considered as a positive bbox. Positive samples can have smaller IoU than pos_iou_thr due to the 4th step (assign max IoU sample to each gt). gt_max_assign_all (bool): Whether to assign all bboxes with the same highest overlap with some gt to that gt. """ def __init__(self, pos_iou_thr, neg_iou_thr, min_pos_iou=.0, gt_max_assign_all=True, iou_calculator=dict(type='BboxOverlaps2D')): self.pos_iou_thr = pos_iou_thr self.neg_iou_thr = neg_iou_thr self.min_pos_iou = min_pos_iou self.gt_max_assign_all = gt_max_assign_all self.iou_calculator = build_iou_calculator(iou_calculator) def assign(self, bboxes, box_responsible_flags, gt_bboxes, gt_labels=None): """Assign gt to bboxes. The process is very much like the max iou assigner, except that positive samples are constrained within the cell that the gt boxes fell in. This method assign a gt bbox to every bbox (proposal/anchor), each bbox will be assigned with -1, 0, or a positive number. -1 means don't care, 0 means negative sample, positive number is the index (1-based) of assigned gt. The assignment is done in following steps, the order matters. 1. assign every bbox to -1 2. assign proposals whose iou with all gts <= neg_iou_thr to 0 3. for each bbox within a cell, if the iou with its nearest gt > pos_iou_thr and the center of that gt falls inside the cell, assign it to that bbox 4. for each gt bbox, assign its nearest proposals within the cell the gt bbox falls in to itself. Args: bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4). box_responsible_flags (Tensor): flag to indicate whether box is responsible for prediction, shape(n, ) gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). Returns: :obj:`AssignResult`: The assign result. """ num_gts, num_bboxes = gt_bboxes.size(0), bboxes.size(0) # compute iou between all gt and bboxes overlaps = self.iou_calculator(gt_bboxes, bboxes) # 1. assign -1 by default assigned_gt_inds = overlaps.new_full((num_bboxes, ), -1, dtype=torch.long) if num_gts == 0 or num_bboxes == 0: # No ground truth or boxes, return empty assignment max_overlaps = overlaps.new_zeros((num_bboxes, )) if num_gts == 0: # No truth, assign everything to background assigned_gt_inds[:] = 0 if gt_labels is None: assigned_labels = None else: assigned_labels = overlaps.new_full((num_bboxes, ), -1, dtype=torch.long) return AssignResult( num_gts, assigned_gt_inds, max_overlaps, labels=assigned_labels) # 2. assign negative: below # for each anchor, which gt best overlaps with it # for each anchor, the max iou of all gts # shape of max_overlaps == argmax_overlaps == num_bboxes max_overlaps, argmax_overlaps = overlaps.max(dim=0) if isinstance(self.neg_iou_thr, float): assigned_gt_inds[(max_overlaps >= 0) & (max_overlaps <= self.neg_iou_thr)] = 0 elif isinstance(self.neg_iou_thr, (tuple, list)): assert len(self.neg_iou_thr) == 2 assigned_gt_inds[(max_overlaps > self.neg_iou_thr[0]) & (max_overlaps <= self.neg_iou_thr[1])] = 0 # 3. assign positive: falls into responsible cell and above # positive IOU threshold, the order matters. # the prior condition of comparision is to filter out all # unrelated anchors, i.e. not box_responsible_flags overlaps[:, ~box_responsible_flags.type(torch.bool)] = -1. # calculate max_overlaps again, but this time we only consider IOUs # for anchors responsible for prediction max_overlaps, argmax_overlaps = overlaps.max(dim=0) # for each gt, which anchor best overlaps with it # for each gt, the max iou of all proposals # shape of gt_max_overlaps == gt_argmax_overlaps == num_gts gt_max_overlaps, gt_argmax_overlaps = overlaps.max(dim=1) pos_inds = (max_overlaps > self.pos_iou_thr) & box_responsible_flags.type(torch.bool) assigned_gt_inds[pos_inds] = argmax_overlaps[pos_inds] + 1 # 4. assign positive to max overlapped anchors within responsible cell for i in range(num_gts): if gt_max_overlaps[i] > self.min_pos_iou: if self.gt_max_assign_all: max_iou_inds = (overlaps[i, :] == gt_max_overlaps[i]) & \ box_responsible_flags.type(torch.bool) assigned_gt_inds[max_iou_inds] = i + 1 elif box_responsible_flags[gt_argmax_overlaps[i]]: assigned_gt_inds[gt_argmax_overlaps[i]] = i + 1 # assign labels of positive anchors if gt_labels is not None: assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) pos_inds = torch.nonzero( assigned_gt_inds > 0, as_tuple=False).squeeze() if pos_inds.numel() > 0: assigned_labels[pos_inds] = gt_labels[ assigned_gt_inds[pos_inds] - 1] else: assigned_labels = None return AssignResult( num_gts, assigned_gt_inds, max_overlaps, labels=assigned_labels)
insightface/detection/scrfd/mmdet/core/bbox/assigners/grid_assigner.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/core/bbox/assigners/grid_assigner.py", "repo_id": "insightface", "token_count": 3306 }
114
import torch from .builder import IOU_CALCULATORS @IOU_CALCULATORS.register_module() class BboxOverlaps2D(object): """2D Overlaps (e.g. IoUs, GIoUs) Calculator.""" def __call__(self, bboxes1, bboxes2, mode='iou', is_aligned=False): """Calculate IoU between 2D bboxes. Args: bboxes1 (Tensor): bboxes have shape (m, 4) in <x1, y1, x2, y2> format, or shape (m, 5) in <x1, y1, x2, y2, score> format. bboxes2 (Tensor): bboxes have shape (m, 4) in <x1, y1, x2, y2> format, shape (m, 5) in <x1, y1, x2, y2, score> format, or be empty. If ``is_aligned `` is ``True``, then m and n must be equal. mode (str): "iou" (intersection over union), "iof" (intersection over foreground), or "giou" (generalized intersection over union). is_aligned (bool, optional): If True, then m and n must be equal. Default False. Returns: Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,) """ assert bboxes1.size(-1) in [0, 4, 5] assert bboxes2.size(-1) in [0, 4, 5] if bboxes2.size(-1) == 5: bboxes2 = bboxes2[..., :4] if bboxes1.size(-1) == 5: bboxes1 = bboxes1[..., :4] return bbox_overlaps(bboxes1, bboxes2, mode, is_aligned) def __repr__(self): """str: a string describing the module""" repr_str = self.__class__.__name__ + '()' return repr_str def bbox_overlaps(bboxes1, bboxes2, mode='iou', is_aligned=False, eps=1e-6): """Calculate overlap between two set of bboxes. If ``is_aligned `` is ``False``, then calculate the overlaps between each bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned pair of bboxes1 and bboxes2. Args: bboxes1 (Tensor): shape (B, m, 4) in <x1, y1, x2, y2> format or empty. bboxes2 (Tensor): shape (B, n, 4) in <x1, y1, x2, y2> format or empty. B indicates the batch dim, in shape (B1, B2, ..., Bn). If ``is_aligned `` is ``True``, then m and n must be equal. mode (str): "iou" (intersection over union), "iof" (intersection over foreground) or "giou" (generalized intersection over union). Default "iou". is_aligned (bool, optional): If True, then m and n must be equal. Default False. eps (float, optional): A value added to the denominator for numerical stability. Default 1e-6. Returns: Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,) Example: >>> bboxes1 = torch.FloatTensor([ >>> [0, 0, 10, 10], >>> [10, 10, 20, 20], >>> [32, 32, 38, 42], >>> ]) >>> bboxes2 = torch.FloatTensor([ >>> [0, 0, 10, 20], >>> [0, 10, 10, 19], >>> [10, 10, 20, 20], >>> ]) >>> overlaps = bbox_overlaps(bboxes1, bboxes2) >>> assert overlaps.shape == (3, 3) >>> overlaps = bbox_overlaps(bboxes1, bboxes2, is_aligned=True) >>> assert overlaps.shape == (3, ) Example: >>> empty = torch.empty(0, 4) >>> nonempty = torch.FloatTensor([[0, 0, 10, 9]]) >>> assert tuple(bbox_overlaps(empty, nonempty).shape) == (0, 1) >>> assert tuple(bbox_overlaps(nonempty, empty).shape) == (1, 0) >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0) """ assert mode in ['iou', 'iof', 'giou'], f'Unsupported mode {mode}' # Either the boxes are empty or the length of boxes's last dimenstion is 4 assert (bboxes1.size(-1) == 4 or bboxes1.size(0) == 0) assert (bboxes2.size(-1) == 4 or bboxes2.size(0) == 0) # Batch dim must be the same # Batch dim: (B1, B2, ... Bn) assert bboxes1.shape[:-2] == bboxes2.shape[:-2] batch_shape = bboxes1.shape[:-2] rows = bboxes1.size(-2) cols = bboxes2.size(-2) if is_aligned: assert rows == cols if rows * cols == 0: if is_aligned: return bboxes1.new(batch_shape + (rows, )) else: return bboxes1.new(batch_shape + (rows, cols)) area1 = (bboxes1[..., 2] - bboxes1[..., 0]) * ( bboxes1[..., 3] - bboxes1[..., 1]) area2 = (bboxes2[..., 2] - bboxes2[..., 0]) * ( bboxes2[..., 3] - bboxes2[..., 1]) if is_aligned: lt = torch.max(bboxes1[..., :2], bboxes2[..., :2]) # [B, rows, 2] rb = torch.min(bboxes1[..., 2:], bboxes2[..., 2:]) # [B, rows, 2] wh = (rb - lt).clamp(min=0) # [B, rows, 2] overlap = wh[..., 0] * wh[..., 1] if mode in ['iou', 'giou']: union = area1 + area2 - overlap else: union = area1 if mode == 'giou': enclosed_lt = torch.min(bboxes1[..., :2], bboxes2[..., :2]) enclosed_rb = torch.max(bboxes1[..., 2:], bboxes2[..., 2:]) else: lt = torch.max(bboxes1[..., :, None, :2], bboxes2[..., None, :, :2]) # [B, rows, cols, 2] rb = torch.min(bboxes1[..., :, None, 2:], bboxes2[..., None, :, 2:]) # [B, rows, cols, 2] wh = (rb - lt).clamp(min=0) # [B, rows, cols, 2] overlap = wh[..., 0] * wh[..., 1] if mode in ['iou', 'giou']: union = area1[..., None] + area2[..., None, :] - overlap else: union = area1[..., None] if mode == 'giou': enclosed_lt = torch.min(bboxes1[..., :, None, :2], bboxes2[..., None, :, :2]) enclosed_rb = torch.max(bboxes1[..., :, None, 2:], bboxes2[..., None, :, 2:]) eps = union.new_tensor([eps]) union = torch.max(union, eps) ious = overlap / union if mode in ['iou', 'iof']: return ious # calculate gious enclose_wh = (enclosed_rb - enclosed_lt).clamp(min=0) enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1] enclose_area = torch.max(enclose_area, eps) gious = ious - (enclose_area - union) / enclose_area return gious
insightface/detection/scrfd/mmdet/core/bbox/iou_calculators/iou2d_calculator.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/core/bbox/iou_calculators/iou2d_calculator.py", "repo_id": "insightface", "token_count": 3075 }
115
from multiprocessing import Pool import mmcv import numpy as np from mmcv.utils import print_log from terminaltables import AsciiTable from .bbox_overlaps import bbox_overlaps from .class_names import get_classes def average_precision(recalls, precisions, mode='area'): """Calculate average precision (for single or multiple scales). Args: recalls (ndarray): shape (num_scales, num_dets) or (num_dets, ) precisions (ndarray): shape (num_scales, num_dets) or (num_dets, ) mode (str): 'area' or '11points', 'area' means calculating the area under precision-recall curve, '11points' means calculating the average precision of recalls at [0, 0.1, ..., 1] Returns: float or ndarray: calculated average precision """ no_scale = False if recalls.ndim == 1: no_scale = True recalls = recalls[np.newaxis, :] precisions = precisions[np.newaxis, :] assert recalls.shape == precisions.shape and recalls.ndim == 2 num_scales = recalls.shape[0] ap = np.zeros(num_scales, dtype=np.float32) if mode == 'area': zeros = np.zeros((num_scales, 1), dtype=recalls.dtype) ones = np.ones((num_scales, 1), dtype=recalls.dtype) mrec = np.hstack((zeros, recalls, ones)) mpre = np.hstack((zeros, precisions, zeros)) for i in range(mpre.shape[1] - 1, 0, -1): mpre[:, i - 1] = np.maximum(mpre[:, i - 1], mpre[:, i]) for i in range(num_scales): ind = np.where(mrec[i, 1:] != mrec[i, :-1])[0] ap[i] = np.sum( (mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1]) elif mode == '11points': for i in range(num_scales): for thr in np.arange(0, 1 + 1e-3, 0.1): precs = precisions[i, recalls[i, :] >= thr] prec = precs.max() if precs.size > 0 else 0 ap[i] += prec ap /= 11 else: raise ValueError( 'Unrecognized mode, only "area" and "11points" are supported') if no_scale: ap = ap[0] return ap def tpfp_imagenet(det_bboxes, gt_bboxes, gt_bboxes_ignore=None, default_iou_thr=0.5, area_ranges=None): """Check if detected bboxes are true positive or false positive. Args: det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5). gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4). gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image, of shape (k, 4). Default: None default_iou_thr (float): IoU threshold to be considered as matched for medium and large bboxes (small ones have special rules). Default: 0.5. area_ranges (list[tuple] | None): Range of bbox areas to be evaluated, in the format [(min1, max1), (min2, max2), ...]. Default: None. Returns: tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of each array is (num_scales, m). """ # an indicator of ignored gts gt_ignore_inds = np.concatenate( (np.zeros(gt_bboxes.shape[0], dtype=np.bool), np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool))) # stack gt_bboxes and gt_bboxes_ignore for convenience gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore)) num_dets = det_bboxes.shape[0] num_gts = gt_bboxes.shape[0] if area_ranges is None: area_ranges = [(None, None)] num_scales = len(area_ranges) # tp and fp are of shape (num_scales, num_gts), each row is tp or fp # of a certain scale. tp = np.zeros((num_scales, num_dets), dtype=np.float32) fp = np.zeros((num_scales, num_dets), dtype=np.float32) if gt_bboxes.shape[0] == 0: if area_ranges == [(None, None)]: fp[...] = 1 else: det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0]) * ( det_bboxes[:, 3] - det_bboxes[:, 1]) for i, (min_area, max_area) in enumerate(area_ranges): fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1 return tp, fp ious = bbox_overlaps(det_bboxes, gt_bboxes - 1) gt_w = gt_bboxes[:, 2] - gt_bboxes[:, 0] gt_h = gt_bboxes[:, 3] - gt_bboxes[:, 1] iou_thrs = np.minimum((gt_w * gt_h) / ((gt_w + 10.0) * (gt_h + 10.0)), default_iou_thr) # sort all detections by scores in descending order sort_inds = np.argsort(-det_bboxes[:, -1]) for k, (min_area, max_area) in enumerate(area_ranges): gt_covered = np.zeros(num_gts, dtype=bool) # if no area range is specified, gt_area_ignore is all False if min_area is None: gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool) else: gt_areas = gt_w * gt_h gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area) for i in sort_inds: max_iou = -1 matched_gt = -1 # find best overlapped available gt for j in range(num_gts): # different from PASCAL VOC: allow finding other gts if the # best overlaped ones are already matched by other det bboxes if gt_covered[j]: continue elif ious[i, j] >= iou_thrs[j] and ious[i, j] > max_iou: max_iou = ious[i, j] matched_gt = j # there are 4 cases for a det bbox: # 1. it matches a gt, tp = 1, fp = 0 # 2. it matches an ignored gt, tp = 0, fp = 0 # 3. it matches no gt and within area range, tp = 0, fp = 1 # 4. it matches no gt but is beyond area range, tp = 0, fp = 0 if matched_gt >= 0: gt_covered[matched_gt] = 1 if not (gt_ignore_inds[matched_gt] or gt_area_ignore[matched_gt]): tp[k, i] = 1 elif min_area is None: fp[k, i] = 1 else: bbox = det_bboxes[i, :4] area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) if area >= min_area and area < max_area: fp[k, i] = 1 return tp, fp def tpfp_default(det_bboxes, gt_bboxes, gt_bboxes_ignore=None, iou_thr=0.5, area_ranges=None): """Check if detected bboxes are true positive or false positive. Args: det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5). gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4). gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image, of shape (k, 4). Default: None iou_thr (float): IoU threshold to be considered as matched. Default: 0.5. area_ranges (list[tuple] | None): Range of bbox areas to be evaluated, in the format [(min1, max1), (min2, max2), ...]. Default: None. Returns: tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of each array is (num_scales, m). """ # an indicator of ignored gts gt_ignore_inds = np.concatenate( (np.zeros(gt_bboxes.shape[0], dtype=np.bool), np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool))) # stack gt_bboxes and gt_bboxes_ignore for convenience gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore)) num_dets = det_bboxes.shape[0] num_gts = gt_bboxes.shape[0] if area_ranges is None: area_ranges = [(None, None)] num_scales = len(area_ranges) # tp and fp are of shape (num_scales, num_gts), each row is tp or fp of # a certain scale tp = np.zeros((num_scales, num_dets), dtype=np.float32) fp = np.zeros((num_scales, num_dets), dtype=np.float32) # if there is no gt bboxes in this image, then all det bboxes # within area range are false positives if gt_bboxes.shape[0] == 0: if area_ranges == [(None, None)]: fp[...] = 1 else: det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0]) * ( det_bboxes[:, 3] - det_bboxes[:, 1]) for i, (min_area, max_area) in enumerate(area_ranges): fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1 return tp, fp ious = bbox_overlaps(det_bboxes, gt_bboxes) # for each det, the max iou with all gts ious_max = ious.max(axis=1) # for each det, which gt overlaps most with it ious_argmax = ious.argmax(axis=1) # sort all dets in descending order by scores sort_inds = np.argsort(-det_bboxes[:, -1]) for k, (min_area, max_area) in enumerate(area_ranges): gt_covered = np.zeros(num_gts, dtype=bool) # if no area range is specified, gt_area_ignore is all False if min_area is None: gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool) else: gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * ( gt_bboxes[:, 3] - gt_bboxes[:, 1]) gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area) for i in sort_inds: if ious_max[i] >= iou_thr: matched_gt = ious_argmax[i] if not (gt_ignore_inds[matched_gt] or gt_area_ignore[matched_gt]): if not gt_covered[matched_gt]: gt_covered[matched_gt] = True tp[k, i] = 1 else: fp[k, i] = 1 # otherwise ignore this detected bbox, tp = 0, fp = 0 elif min_area is None: fp[k, i] = 1 else: bbox = det_bboxes[i, :4] area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) if area >= min_area and area < max_area: fp[k, i] = 1 return tp, fp def get_cls_results(det_results, annotations, class_id): """Get det results and gt information of a certain class. Args: det_results (list[list]): Same as `eval_map()`. annotations (list[dict]): Same as `eval_map()`. class_id (int): ID of a specific class. Returns: tuple[list[np.ndarray]]: detected bboxes, gt bboxes, ignored gt bboxes """ cls_dets = [img_res[class_id] for img_res in det_results] cls_gts = [] cls_gts_ignore = [] for ann in annotations: gt_inds = ann['labels'] == class_id cls_gts.append(ann['bboxes'][gt_inds, :]) if ann.get('labels_ignore', None) is not None: ignore_inds = ann['labels_ignore'] == class_id cls_gts_ignore.append(ann['bboxes_ignore'][ignore_inds, :]) else: cls_gts_ignore.append(np.empty((0, 4), dtype=np.float32)) return cls_dets, cls_gts, cls_gts_ignore def eval_map(det_results, annotations, scale_ranges=None, iou_thr=0.5, dataset=None, logger=None, tpfp_fn=None, nproc=4): """Evaluate mAP of a dataset. Args: det_results (list[list]): [[cls1_det, cls2_det, ...], ...]. The outer list indicates images, and the inner list indicates per-class detected bboxes. annotations (list[dict]): Ground truth annotations where each item of the list indicates an image. Keys of annotations are: - `bboxes`: numpy array of shape (n, 4) - `labels`: numpy array of shape (n, ) - `bboxes_ignore` (optional): numpy array of shape (k, 4) - `labels_ignore` (optional): numpy array of shape (k, ) scale_ranges (list[tuple] | None): Range of scales to be evaluated, in the format [(min1, max1), (min2, max2), ...]. A range of (32, 64) means the area range between (32**2, 64**2). Default: None. iou_thr (float): IoU threshold to be considered as matched. Default: 0.5. dataset (list[str] | str | None): Dataset name or dataset classes, there are minor differences in metrics for different datsets, e.g. "voc07", "imagenet_det", etc. Default: None. logger (logging.Logger | str | None): The way to print the mAP summary. See `mmdet.utils.print_log()` for details. Default: None. tpfp_fn (callable | None): The function used to determine true/ false positives. If None, :func:`tpfp_default` is used as default unless dataset is 'det' or 'vid' (:func:`tpfp_imagenet` in this case). If it is given as a function, then this function is used to evaluate tp & fp. Default None. nproc (int): Processes used for computing TP and FP. Default: 4. Returns: tuple: (mAP, [dict, dict, ...]) """ assert len(det_results) == len(annotations) num_imgs = len(det_results) num_scales = len(scale_ranges) if scale_ranges is not None else 1 num_classes = len(det_results[0]) # positive class num area_ranges = ([(rg[0]**2, rg[1]**2) for rg in scale_ranges] if scale_ranges is not None else None) pool = Pool(nproc) eval_results = [] for i in range(num_classes): # get gt and det bboxes of this class cls_dets, cls_gts, cls_gts_ignore = get_cls_results( det_results, annotations, i) # choose proper function according to datasets to compute tp and fp if tpfp_fn is None: if dataset in ['det', 'vid']: tpfp_fn = tpfp_imagenet else: tpfp_fn = tpfp_default if not callable(tpfp_fn): raise ValueError( f'tpfp_fn has to be a function or None, but got {tpfp_fn}') # compute tp and fp for each image with multiple processes tpfp = pool.starmap( tpfp_fn, zip(cls_dets, cls_gts, cls_gts_ignore, [iou_thr for _ in range(num_imgs)], [area_ranges for _ in range(num_imgs)])) tp, fp = tuple(zip(*tpfp)) # calculate gt number of each scale # ignored gts or gts beyond the specific scale are not counted num_gts = np.zeros(num_scales, dtype=int) for j, bbox in enumerate(cls_gts): if area_ranges is None: num_gts[0] += bbox.shape[0] else: gt_areas = (bbox[:, 2] - bbox[:, 0]) * ( bbox[:, 3] - bbox[:, 1]) for k, (min_area, max_area) in enumerate(area_ranges): num_gts[k] += np.sum((gt_areas >= min_area) & (gt_areas < max_area)) # sort all det bboxes by score, also sort tp and fp cls_dets = np.vstack(cls_dets) num_dets = cls_dets.shape[0] sort_inds = np.argsort(-cls_dets[:, -1]) tp = np.hstack(tp)[:, sort_inds] fp = np.hstack(fp)[:, sort_inds] # calculate recall and precision with tp and fp tp = np.cumsum(tp, axis=1) fp = np.cumsum(fp, axis=1) eps = np.finfo(np.float32).eps recalls = tp / np.maximum(num_gts[:, np.newaxis], eps) precisions = tp / np.maximum((tp + fp), eps) # calculate AP if scale_ranges is None: recalls = recalls[0, :] precisions = precisions[0, :] num_gts = num_gts.item() mode = 'area' if dataset != 'voc07' else '11points' ap = average_precision(recalls, precisions, mode) eval_results.append({ 'num_gts': num_gts, 'num_dets': num_dets, 'recall': recalls, 'precision': precisions, 'ap': ap }) pool.close() if scale_ranges is not None: # shape (num_classes, num_scales) all_ap = np.vstack([cls_result['ap'] for cls_result in eval_results]) all_num_gts = np.vstack( [cls_result['num_gts'] for cls_result in eval_results]) mean_ap = [] for i in range(num_scales): if np.any(all_num_gts[:, i] > 0): mean_ap.append(all_ap[all_num_gts[:, i] > 0, i].mean()) else: mean_ap.append(0.0) else: aps = [] for cls_result in eval_results: if cls_result['num_gts'] > 0: aps.append(cls_result['ap']) mean_ap = np.array(aps).mean().item() if aps else 0.0 print_map_summary( mean_ap, eval_results, dataset, area_ranges, logger=logger) return mean_ap, eval_results def print_map_summary(mean_ap, results, dataset=None, scale_ranges=None, logger=None): """Print mAP and results of each class. A table will be printed to show the gts/dets/recall/AP of each class and the mAP. Args: mean_ap (float): Calculated from `eval_map()`. results (list[dict]): Calculated from `eval_map()`. dataset (list[str] | str | None): Dataset name or dataset classes. scale_ranges (list[tuple] | None): Range of scales to be evaluated. logger (logging.Logger | str | None): The way to print the mAP summary. See `mmdet.utils.print_log()` for details. Default: None. """ if logger == 'silent': return if isinstance(results[0]['ap'], np.ndarray): num_scales = len(results[0]['ap']) else: num_scales = 1 if scale_ranges is not None: assert len(scale_ranges) == num_scales num_classes = len(results) recalls = np.zeros((num_scales, num_classes), dtype=np.float32) aps = np.zeros((num_scales, num_classes), dtype=np.float32) num_gts = np.zeros((num_scales, num_classes), dtype=int) for i, cls_result in enumerate(results): if cls_result['recall'].size > 0: recalls[:, i] = np.array(cls_result['recall'], ndmin=2)[:, -1] aps[:, i] = cls_result['ap'] num_gts[:, i] = cls_result['num_gts'] if dataset is None: label_names = [str(i) for i in range(num_classes)] elif mmcv.is_str(dataset): label_names = get_classes(dataset) else: label_names = dataset if not isinstance(mean_ap, list): mean_ap = [mean_ap] header = ['class', 'gts', 'dets', 'recall', 'ap'] for i in range(num_scales): if scale_ranges is not None: print_log(f'Scale range {scale_ranges[i]}', logger=logger) table_data = [header] for j in range(num_classes): row_data = [ label_names[j], num_gts[i, j], results[j]['num_dets'], f'{recalls[i, j]:.3f}', f'{aps[i, j]:.3f}' ] table_data.append(row_data) table_data.append(['mAP', '', '', '', f'{mean_ap[i]:.3f}']) table = AsciiTable(table_data) table.inner_footing_row_border = True print_log('\n' + table.table, logger=logger)
insightface/detection/scrfd/mmdet/core/evaluation/mean_ap.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/core/evaluation/mean_ap.py", "repo_id": "insightface", "token_count": 9597 }
116
from functools import partial import torch from six.moves import map, zip def multi_apply(func, *args, **kwargs): """Apply function to a list of arguments. Note: This function applies the ``func`` to multiple inputs and map the multiple outputs of the ``func`` into different list. Each list contains the same type of outputs corresponding to different inputs. Args: func (Function): A function that will be applied to a list of arguments Returns: tuple(list): A tuple containing multiple list, each list contains \ a kind of returned results by the function """ pfunc = partial(func, **kwargs) if kwargs else func map_results = map(pfunc, *args) return tuple(map(list, zip(*map_results))) def unmap(data, count, inds, fill=0): """Unmap a subset of item (data) back to the original set of items (of size count)""" if data.dim() == 1: ret = data.new_full((count, ), fill) ret[inds.type(torch.bool)] = data else: new_size = (count, ) + data.size()[1:] ret = data.new_full(new_size, fill) #print(inds) #print('CCC', ret.shape, inds.shape, data.shape) ret[inds.type(torch.bool), :] = data return ret
insightface/detection/scrfd/mmdet/core/utils/misc.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/core/utils/misc.py", "repo_id": "insightface", "token_count": 499 }
117
import inspect import mmcv import numpy as np from numpy import random import cv2 from mmdet.core import PolygonMasks from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps from ..builder import PIPELINES try: from imagecorruptions import corrupt except ImportError: corrupt = None try: import albumentations from albumentations import Compose except ImportError: albumentations = None Compose = None @PIPELINES.register_module() class Resize(object): """Resize images & bbox & mask. This transform resizes the input image to some scale. Bboxes and masks are then resized with the same scale factor. If the input dict contains the key "scale", then the scale in the input dict is used, otherwise the specified scale in the init method is used. If the input dict contains the key "scale_factor" (if MultiScaleFlipAug does not give img_scale but scale_factor), the actual scale will be computed by image shape and scale_factor. `img_scale` can either be a tuple (single-scale) or a list of tuple (multi-scale). There are 3 multiscale modes: - ``ratio_range is not None``: randomly sample a ratio from the ratio \ range and multiply it with the image scale. - ``ratio_range is None`` and ``multiscale_mode == "range"``: randomly \ sample a scale from the multiscale range. - ``ratio_range is None`` and ``multiscale_mode == "value"``: randomly \ sample a scale from multiple scales. Args: img_scale (tuple or list[tuple]): Images scales for resizing. multiscale_mode (str): Either "range" or "value". ratio_range (tuple[float]): (min_ratio, max_ratio) keep_ratio (bool): Whether to keep the aspect ratio when resizing the image. bbox_clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. backend (str): Image resize backend, choices are 'cv2' and 'pillow'. These two backends generates slightly different results. Defaults to 'cv2'. override (bool, optional): Whether to override `scale` and `scale_factor` so as to call resize twice. Default False. If True, after the first resizing, the existed `scale` and `scale_factor` will be ignored so the second resizing can be allowed. This option is a work-around for multiple times of resize in DETR. Defaults to False. """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=True, bbox_clip_border=True, backend='cv2', override=False): if img_scale is None: self.img_scale = None else: if isinstance(img_scale, list): self.img_scale = img_scale else: self.img_scale = [img_scale] assert mmcv.is_list_of(self.img_scale, tuple) if ratio_range is not None: # mode 1: given a scale and a range of image ratio assert len(self.img_scale) == 1 else: # mode 2: given multiple scales or a range of scales assert multiscale_mode in ['value', 'range'] self.backend = backend self.multiscale_mode = multiscale_mode self.ratio_range = ratio_range self.keep_ratio = keep_ratio # TODO: refactor the override option in Resize self.override = override self.bbox_clip_border = bbox_clip_border @staticmethod def random_select(img_scales): """Randomly select an img_scale from given candidates. Args: img_scales (list[tuple]): Images scales for selection. Returns: (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, \ where ``img_scale`` is the selected image scale and \ ``scale_idx`` is the selected index in the given candidates. """ assert mmcv.is_list_of(img_scales, tuple) scale_idx = np.random.randint(len(img_scales)) img_scale = img_scales[scale_idx] return img_scale, scale_idx @staticmethod def random_sample(img_scales): """Randomly sample an img_scale when ``multiscale_mode=='range'``. Args: img_scales (list[tuple]): Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and uper bound of image scales. Returns: (tuple, None): Returns a tuple ``(img_scale, None)``, where \ ``img_scale`` is sampled scale and None is just a placeholder \ to be consistent with :func:`random_select`. """ assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale, None @staticmethod def random_sample_ratio(img_scale, ratio_range): """Randomly sample an img_scale when ``ratio_range`` is specified. A ratio will be randomly sampled from the range specified by ``ratio_range``. Then it would be multiplied with ``img_scale`` to generate sampled scale. Args: img_scale (tuple): Images scale base to multiply with ratio. ratio_range (tuple[float]): The minimum and maximum ratio to scale the ``img_scale``. Returns: (tuple, None): Returns a tuple ``(scale, None)``, where \ ``scale`` is sampled ratio multiplied with ``img_scale`` and \ None is just a placeholder to be consistent with \ :func:`random_select`. """ assert isinstance(img_scale, tuple) and len(img_scale) == 2 min_ratio, max_ratio = ratio_range assert min_ratio <= max_ratio ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) return scale, None def _random_scale(self, results): """Randomly sample an img_scale according to ``ratio_range`` and ``multiscale_mode``. If ``ratio_range`` is specified, a ratio will be sampled and be multiplied with ``img_scale``. If multiple scales are specified by ``img_scale``, a scale will be sampled according to ``multiscale_mode``. Otherwise, single scale will be used. Args: results (dict): Result dict from :obj:`dataset`. Returns: dict: Two new keys 'scale` and 'scale_idx` are added into \ ``results``, which would be used by subsequent pipelines. """ if self.ratio_range is not None: scale, scale_idx = self.random_sample_ratio( self.img_scale[0], self.ratio_range) elif len(self.img_scale) == 1: scale, scale_idx = self.img_scale[0], 0 elif self.multiscale_mode == 'range': scale, scale_idx = self.random_sample(self.img_scale) elif self.multiscale_mode == 'value': scale, scale_idx = self.random_select(self.img_scale) else: raise NotImplementedError results['scale'] = scale results['scale_idx'] = scale_idx def _resize_img(self, results): """Resize images with ``results['scale']``.""" for key in results.get('img_fields', ['img']): if self.keep_ratio: img, scale_factor = mmcv.imrescale( results[key], results['scale'], return_scale=True, backend=self.backend) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results[key].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = mmcv.imresize( results[key], results['scale'], return_scale=True, backend=self.backend) results[key] = img scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img_shape'] = img.shape # in case that there is no padding results['pad_shape'] = img.shape results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio def _resize_bboxes(self, results): """Resize bounding boxes with ``results['scale_factor']``.""" for key in results.get('bbox_fields', []): bboxes = results[key] * results['scale_factor'] if self.bbox_clip_border: img_shape = results['img_shape'] bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) results[key] = bboxes def _resize_keypoints(self, results): for key in results.get('keypoints_fields', []): keypointss = results[key].copy() factors = results['scale_factor'] assert factors[0]==factors[2] assert factors[1]==factors[3] #print('AAA', results['scale_factor']) keypointss[:,:,0] *= factors[0] keypointss[:,:,1] *= factors[1] if self.bbox_clip_border: img_shape = results['img_shape'] keypointss[:,:, 0] = np.clip(keypointss[:,:, 0], 0, img_shape[1]) keypointss[:,:, 1] = np.clip(keypointss[:,:, 1], 0, img_shape[0]) results[key] = keypointss def _resize_masks(self, results): """Resize masks with ``results['scale']``""" for key in results.get('mask_fields', []): if results[key] is None: continue if self.keep_ratio: results[key] = results[key].rescale(results['scale']) else: results[key] = results[key].resize(results['img_shape'][:2]) def _resize_seg(self, results): """Resize semantic segmentation map with ``results['scale']``.""" for key in results.get('seg_fields', []): if self.keep_ratio: gt_seg = mmcv.imrescale( results[key], results['scale'], interpolation='nearest', backend=self.backend) else: gt_seg = mmcv.imresize( results[key], results['scale'], interpolation='nearest', backend=self.backend) results['gt_semantic_seg'] = gt_seg def __call__(self, results): """Call function to resize images, bounding boxes, masks, semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', \ 'keep_ratio' keys are added into result dict. """ if 'scale' not in results: if 'scale_factor' in results: img_shape = results['img'].shape[:2] scale_factor = results['scale_factor'] assert isinstance(scale_factor, float) results['scale'] = tuple( [int(x * scale_factor) for x in img_shape][::-1]) else: self._random_scale(results) else: if not self.override: assert 'scale_factor' not in results, ( 'scale and scale_factor cannot be both set.') else: results.pop('scale') if 'scale_factor' in results: results.pop('scale_factor') self._random_scale(results) self._resize_img(results) self._resize_bboxes(results) self._resize_keypoints(results) self._resize_masks(results) self._resize_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(img_scale={self.img_scale}, ' repr_str += f'multiscale_mode={self.multiscale_mode}, ' repr_str += f'ratio_range={self.ratio_range}, ' repr_str += f'keep_ratio={self.keep_ratio})' repr_str += f'bbox_clip_border={self.bbox_clip_border})' return repr_str @PIPELINES.register_module() class RandomFlip(object): """Flip the image & bbox & mask. If the input dict contains the key "flip", then the flag will be used, otherwise it will be randomly decided by a ratio specified in the init method. When random flip is enabled, ``flip_ratio``/``direction`` can either be a float/string or tuple of float/string. There are 3 flip modes: - ``flip_ratio`` is float, ``direction`` is string: the image will be ``direction``ly flipped with probability of ``flip_ratio`` . E.g., ``flip_ratio=0.5``, ``direction='horizontal'``, then image will be horizontally flipped with probability of 0.5. - ``flip_ratio`` is float, ``direction`` is list of string: the image wil be ``direction[i]``ly flipped with probability of ``flip_ratio/len(direction)``. E.g., ``flip_ratio=0.5``, ``direction=['horizontal', 'vertical']``, then image will be horizontally flipped with probability of 0.25, vertically with probability of 0.25. - ``flip_ratio`` is list of float, ``direction`` is list of string: given ``len(flip_ratio) == len(direction)``, the image wil be ``direction[i]``ly flipped with probability of ``flip_ratio[i]``. E.g., ``flip_ratio=[0.3, 0.5]``, ``direction=['horizontal', 'vertical']``, then image will be horizontally flipped with probability of 0.3, vertically with probability of 0.5 Args: flip_ratio (float | list[float], optional): The flipping probability. Default: None. direction(str | list[str], optional): The flipping direction. Options are 'horizontal', 'vertical', 'diagonal'. Default: 'horizontal'. If input is a list, the length must equal ``flip_ratio``. Each element in ``flip_ratio`` indicates the flip probability of corresponding direction. """ def __init__(self, flip_ratio=None, direction='horizontal'): if isinstance(flip_ratio, list): assert mmcv.is_list_of(flip_ratio, float) assert 0 <= sum(flip_ratio) <= 1 elif isinstance(flip_ratio, float): assert 0 <= flip_ratio <= 1 elif flip_ratio is None: pass else: raise ValueError('flip_ratios must be None, float, ' 'or list of float') self.flip_ratio = flip_ratio valid_directions = ['horizontal', 'vertical', 'diagonal'] if isinstance(direction, str): assert direction in valid_directions elif isinstance(direction, list): assert mmcv.is_list_of(direction, str) assert set(direction).issubset(set(valid_directions)) else: raise ValueError('direction must be either str or list of str') self.direction = direction if isinstance(flip_ratio, list): assert len(self.flip_ratio) == len(self.direction) def bbox_flip(self, bboxes, img_shape, direction): """Flip bboxes horizontally. Args: bboxes (numpy.ndarray): Bounding boxes, shape (..., 4*k) img_shape (tuple[int]): Image shape (height, width) direction (str): Flip direction. Options are 'horizontal', 'vertical'. Returns: numpy.ndarray: Flipped bounding boxes. """ assert bboxes.shape[-1] % 4 == 0 flipped = bboxes.copy() if direction == 'horizontal': w = img_shape[1] flipped[..., 0::4] = w - bboxes[..., 2::4] flipped[..., 2::4] = w - bboxes[..., 0::4] elif direction == 'vertical': h = img_shape[0] flipped[..., 1::4] = h - bboxes[..., 3::4] flipped[..., 3::4] = h - bboxes[..., 1::4] elif direction == 'diagonal': w = img_shape[1] h = img_shape[0] flipped[..., 0::4] = w - bboxes[..., 2::4] flipped[..., 1::4] = h - bboxes[..., 3::4] flipped[..., 2::4] = w - bboxes[..., 0::4] flipped[..., 3::4] = h - bboxes[..., 1::4] else: raise ValueError(f"Invalid flipping direction '{direction}'") return flipped def keypoints_flip(self, keypointss, img_shape, direction): assert direction == 'horizontal' assert keypointss.shape[-1] == 3 assert keypointss.shape[1]==5 assert keypointss.ndim==3 flipped = keypointss.copy() flip_order = [1,0,2,4,3] for idx, a in enumerate(flip_order): flipped[:,idx,:] = keypointss[:,a,:] w = img_shape[1] flipped[..., 0] = w - flipped[..., 0] return flipped def __call__(self, results): """Call function to flip bounding boxes, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Flipped results, 'flip', 'flip_direction' keys are added \ into result dict. """ if 'flip' not in results: if isinstance(self.direction, list): # None means non-flip direction_list = self.direction + [None] else: # None means non-flip direction_list = [self.direction, None] if isinstance(self.flip_ratio, list): non_flip_ratio = 1 - sum(self.flip_ratio) flip_ratio_list = self.flip_ratio + [non_flip_ratio] else: non_flip_ratio = 1 - self.flip_ratio # exclude non-flip single_ratio = self.flip_ratio / (len(direction_list) - 1) flip_ratio_list = [single_ratio] * (len(direction_list) - 1) + [non_flip_ratio] cur_dir = np.random.choice(direction_list, p=flip_ratio_list) results['flip'] = cur_dir is not None if 'flip_direction' not in results: results['flip_direction'] = cur_dir if results['flip']: # flip image for key in results.get('img_fields', ['img']): results[key] = mmcv.imflip( results[key], direction=results['flip_direction']) # flip bboxes for key in results.get('bbox_fields', []): results[key] = self.bbox_flip(results[key], results['img_shape'], results['flip_direction']) for key in results.get('keypoints_fields', []): results[key] = self.keypoints_flip(results[key], results['img_shape'], results['flip_direction']) # flip masks for key in results.get('mask_fields', []): results[key] = results[key].flip(results['flip_direction']) # flip segs for key in results.get('seg_fields', []): results[key] = mmcv.imflip( results[key], direction=results['flip_direction']) return results def __repr__(self): return self.__class__.__name__ + f'(flip_ratio={self.flip_ratio})' @PIPELINES.register_module() class Pad(object): """Pad the image & mask. There are two padding modes: (1) pad to a fixed size and (2) pad to the minimum size that is divisible by some number. Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor", Args: size (tuple, optional): Fixed padding size. size_divisor (int, optional): The divisor of padded size. pad_val (float, optional): Padding value, 0 by default. """ def __init__(self, size=None, size_divisor=None, pad_val=0): self.size = size self.size_divisor = size_divisor self.pad_val = pad_val # only one of size and size_divisor should be valid assert size is not None or size_divisor is not None assert size is None or size_divisor is None def _pad_img(self, results): """Pad images according to ``self.size``.""" for key in results.get('img_fields', ['img']): if self.size is not None: padded_img = mmcv.impad( results[key], shape=self.size, pad_val=self.pad_val) elif self.size_divisor is not None: padded_img = mmcv.impad_to_multiple( results[key], self.size_divisor, pad_val=self.pad_val) results[key] = padded_img results['pad_shape'] = padded_img.shape results['pad_fixed_size'] = self.size results['pad_size_divisor'] = self.size_divisor def _pad_masks(self, results): """Pad masks according to ``results['pad_shape']``.""" pad_shape = results['pad_shape'][:2] for key in results.get('mask_fields', []): results[key] = results[key].pad(pad_shape, pad_val=self.pad_val) def _pad_seg(self, results): """Pad semantic segmentation map according to ``results['pad_shape']``.""" for key in results.get('seg_fields', []): results[key] = mmcv.impad( results[key], shape=results['pad_shape'][:2]) def __call__(self, results): """Call function to pad images, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Updated result dict. """ self._pad_img(results) self._pad_masks(results) self._pad_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(size={self.size}, ' repr_str += f'size_divisor={self.size_divisor}, ' repr_str += f'pad_val={self.pad_val})' return repr_str @PIPELINES.register_module() class Normalize(object): """Normalize the image. Added key is "img_norm_cfg". Args: mean (sequence): Mean values of 3 channels. std (sequence): Std values of 3 channels. to_rgb (bool): Whether to convert the image from BGR to RGB, default is true. """ def __init__(self, mean, std, to_rgb=True): self.mean = np.array(mean, dtype=np.float32) self.std = np.array(std, dtype=np.float32) self.to_rgb = to_rgb def __call__(self, results): """Call function to normalize images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Normalized results, 'img_norm_cfg' key is added into result dict. """ for key in results.get('img_fields', ['img']): results[key] = mmcv.imnormalize(results[key], self.mean, self.std, self.to_rgb) results['img_norm_cfg'] = dict( mean=self.mean, std=self.std, to_rgb=self.to_rgb) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(mean={self.mean}, std={self.std}, to_rgb={self.to_rgb})' return repr_str @PIPELINES.register_module() class RandomCrop(object): """Random crop the image & bboxes & masks. The absolute `crop_size` is sampled based on `crop_type` and `image_size`, then the cropped results are generated. Args: crop_size (tuple): The relative ratio or absolute pixels of height and width. crop_type (str, optional): one of "relative_range", "relative", "absolute", "absolute_range". "relative" randomly crops (h * crop_size[0], w * crop_size[1]) part from an input of size (h, w). "relative_range" uniformly samples relative crop size from range [crop_size[0], 1] and [crop_size[1], 1] for height and width respectively. "absolute" crops from an input with absolute size (crop_size[0], crop_size[1]). "absolute_range" uniformly samples crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w in range [crop_size[0], min(w, crop_size[1])]. Default "absolute". allow_negative_crop (bool, optional): Whether to allow a crop that does not contain any bbox area. Default False. bbox_clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. Note: - If the image is smaller than the absolute crop size, return the original image. - The keys for bboxes, labels and masks must be aligned. That is, `gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and `gt_bboxes_ignore` corresponds to `gt_labels_ignore` and `gt_masks_ignore`. - If the crop does not contain any gt-bbox region and `allow_negative_crop` is set to False, skip this image. """ def __init__(self, crop_size, crop_type='absolute', allow_negative_crop=False, bbox_clip_border=True): if crop_type not in [ 'relative_range', 'relative', 'absolute', 'absolute_range' ]: raise ValueError(f'Invalid crop_type {crop_type}.') if crop_type in ['absolute', 'absolute_range']: assert crop_size[0] > 0 and crop_size[1] > 0 assert isinstance(crop_size[0], int) and isinstance( crop_size[1], int) else: assert 0 < crop_size[0] <= 1 and 0 < crop_size[1] <= 1 self.crop_size = crop_size self.crop_type = crop_type self.allow_negative_crop = allow_negative_crop self.bbox_clip_border = bbox_clip_border # The key correspondence from bboxes to labels and masks. self.bbox2label = { 'gt_bboxes': 'gt_labels', 'gt_bboxes_ignore': 'gt_labels_ignore' } self.bbox2mask = { 'gt_bboxes': 'gt_masks', 'gt_bboxes_ignore': 'gt_masks_ignore' } def _crop_data(self, results, crop_size, allow_negative_crop): """Function to randomly crop images, bounding boxes, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. crop_size (tuple): Expected absolute size after cropping, (h, w). allow_negative_crop (bool): Whether to allow a crop that does not contain any bbox area. Default to False. Returns: dict: Randomly cropped results, 'img_shape' key in result dict is updated according to crop size. """ assert crop_size[0] > 0 and crop_size[1] > 0 for key in results.get('img_fields', ['img']): img = results[key] margin_h = max(img.shape[0] - crop_size[0], 0) margin_w = max(img.shape[1] - crop_size[1], 0) offset_h = np.random.randint(0, margin_h + 1) offset_w = np.random.randint(0, margin_w + 1) crop_y1, crop_y2 = offset_h, offset_h + crop_size[0] crop_x1, crop_x2 = offset_w, offset_w + crop_size[1] # crop the image img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] img_shape = img.shape results[key] = img results['img_shape'] = img_shape # crop bboxes accordingly and clip to the image boundary for key in results.get('bbox_fields', []): # e.g. gt_bboxes and gt_bboxes_ignore bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h], dtype=np.float32) bboxes = results[key] - bbox_offset if self.bbox_clip_border: bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & ( bboxes[:, 3] > bboxes[:, 1]) # If the crop does not contain any gt-bbox area and # allow_negative_crop is False, skip this image. if (key == 'gt_bboxes' and not valid_inds.any() and not allow_negative_crop): return None results[key] = bboxes[valid_inds, :] # label fields. e.g. gt_labels and gt_labels_ignore label_key = self.bbox2label.get(key) if label_key in results: results[label_key] = results[label_key][valid_inds] # mask fields, e.g. gt_masks and gt_masks_ignore mask_key = self.bbox2mask.get(key) if mask_key in results: results[mask_key] = results[mask_key][ valid_inds.nonzero()[0]].crop( np.asarray([crop_x1, crop_y1, crop_x2, crop_y2])) # crop semantic seg for key in results.get('seg_fields', []): results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2] return results def _get_crop_size(self, image_size): """Randomly generates the absolute crop size based on `crop_type` and `image_size`. Args: image_size (tuple): (h, w). Returns: crop_size (tuple): (crop_h, crop_w) in absolute pixels. """ h, w = image_size if self.crop_type == 'absolute': return (min(self.crop_size[0], h), min(self.crop_size[1], w)) elif self.crop_type == 'absolute_range': assert self.crop_size[0] <= self.crop_size[1] crop_h = np.random.randint( min(h, self.crop_size[0]), min(h, self.crop_size[1]) + 1) crop_w = np.random.randint( min(w, self.crop_size[0]), min(w, self.crop_size[1]) + 1) return crop_h, crop_w elif self.crop_type == 'relative': crop_h, crop_w = self.crop_size return int(h * crop_h + 0.5), int(w * crop_w + 0.5) elif self.crop_type == 'relative_range': crop_size = np.asarray(self.crop_size, dtype=np.float32) crop_h, crop_w = crop_size + np.random.rand(2) * (1 - crop_size) return int(h * crop_h + 0.5), int(w * crop_w + 0.5) def __call__(self, results): """Call function to randomly crop images, bounding boxes, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Randomly cropped results, 'img_shape' key in result dict is updated according to crop size. """ image_size = results['img'].shape[:2] crop_size = self._get_crop_size(image_size) results = self._crop_data(results, crop_size, self.allow_negative_crop) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(crop_size={self.crop_size}, ' repr_str += f'crop_type={self.crop_type}, ' repr_str += f'allow_negative_crop={self.allow_negative_crop}, ' repr_str += f'bbox_clip_border={self.bbox_clip_border})' return repr_str @PIPELINES.register_module() class RandomSquareCrop(object): """Random crop the image & bboxes, the cropped patches have minimum IoU requirement with original image & bboxes, the IoU threshold is randomly selected from min_ious. Args: min_ious (tuple): minimum IoU threshold for all intersections with bounding boxes min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w, where a >= min_crop_size). Note: The keys for bboxes, labels and masks should be paired. That is, \ `gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and \ `gt_bboxes_ignore` to `gt_labels_ignore` and `gt_masks_ignore`. """ def __init__(self, crop_ratio_range=None, crop_choice=None, bbox_clip_border=True): self.crop_ratio_range = crop_ratio_range self.crop_choice = crop_choice self.bbox_clip_border = bbox_clip_border assert (self.crop_ratio_range is None) ^ (self.crop_choice is None) if self.crop_ratio_range is not None: self.crop_ratio_min, self.crop_ratio_max = self.crop_ratio_range self.bbox2label = { 'gt_bboxes': 'gt_labels', 'gt_bboxes_ignore': 'gt_labels_ignore' } self.bbox2mask = { 'gt_bboxes': 'gt_masks', 'gt_bboxes_ignore': 'gt_masks_ignore' } def __call__(self, results): """Call function to crop images and bounding boxes with minimum IoU constraint. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with images and bounding boxes cropped, \ 'img_shape' key is updated. """ if 'img_fields' in results: assert results['img_fields'] == ['img'], \ 'Only single img_fields is allowed' img = results['img'] assert 'bbox_fields' in results assert 'gt_bboxes' in results boxes = results['gt_bboxes'] #boxes = [results[key] for key in results['bbox_fields']] #boxes = np.concatenate(boxes, 0) h, w, c = img.shape scale_retry = 0 if self.crop_ratio_range is not None: max_scale = self.crop_ratio_max else: max_scale = np.amax(self.crop_choice) #max_scale = max(max_scale, float(max(w,h))/min(w,h)) while True: scale_retry += 1 if scale_retry==1 or max_scale>1.0: if self.crop_ratio_range is not None: scale = np.random.uniform(self.crop_ratio_min, self.crop_ratio_max) elif self.crop_choice is not None: scale = np.random.choice(self.crop_choice) else: #scale = min(scale*1.2, max_scale) scale = scale*1.2 # print(scale, img.shape[:2], boxes) # import cv2 # cv2.imwrite('aaa.png', img) for i in range(250): short_side = min(w, h) cw = int(scale * short_side) ch = cw # TODO +1 if w==cw: left = 0 elif w>cw: #left = random.uniform(w - cw) left = random.randint(0, w - cw) else: left = random.randint(w - cw, 0) if h==ch: top = 0 elif h>ch: #top = random.uniform(h - ch) top = random.randint(0, h - ch) else: top = random.randint(h - ch, 0) patch = np.array( (int(left), int(top), int(left + cw), int(top + ch)), dtype=np.int) # center of boxes should inside the crop img # only adjust boxes and instance masks when the gt is not empty # adjust boxes def is_center_of_bboxes_in_patch(boxes, patch): # TODO >= center = (boxes[:, :2] + boxes[:, 2:]) / 2 mask = ((center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * (center[:, 0] < patch[2]) * (center[:, 1] < patch[3])) return mask mask = is_center_of_bboxes_in_patch(boxes, patch) if not mask.any(): continue for key in results.get('bbox_fields', []): boxes = results[key].copy() #print('BBB', key, boxes.shape) mask = is_center_of_bboxes_in_patch(boxes, patch) boxes = boxes[mask] if self.bbox_clip_border: boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:]) boxes[:, :2] = boxes[:, :2].clip(min=patch[:2]) boxes -= np.tile(patch[:2], 2) results[key] = boxes # labels label_key = self.bbox2label.get(key) if label_key in results: results[label_key] = results[label_key][mask] # keypoints field if key=='gt_bboxes': for kps_key in results.get('keypoints_fields', []): keypointss = results[kps_key].copy() #print('AAAA', kps_key, keypointss.shape, mask.shape) keypointss = keypointss[mask,:,:] if self.bbox_clip_border: keypointss[:,:,:2] = keypointss[:,:,:2].clip(max=patch[2:]) keypointss[:,:,:2] = keypointss[:,:,:2].clip(min=patch[:2]) #keypointss[:,:,:2] -= np.tile(patch[:2], 2) keypointss[:,:,0] -= patch[0] keypointss[:,:,1] -= patch[1] results[kps_key] = keypointss # mask fields mask_key = self.bbox2mask.get(key) if mask_key in results: results[mask_key] = results[mask_key][mask.nonzero() [0]].crop(patch) # adjust the img no matter whether the gt is empty before crop #img = img[patch[1]:patch[3], patch[0]:patch[2]] rimg = np.ones( (ch, cw, 3), dtype=img.dtype) * 128 patch_from = patch.copy() patch_from[0] = max(0, patch_from[0]) patch_from[1] = max(0, patch_from[1]) patch_from[2] = min(img.shape[1], patch_from[2]) patch_from[3] = min(img.shape[0], patch_from[3]) patch_to = patch.copy() patch_to[0] = max(0, patch_to[0]*-1) patch_to[1] = max(0, patch_to[1]*-1) patch_to[2] = patch_to[0] + (patch_from[2] - patch_from[0]) patch_to[3] = patch_to[1] + (patch_from[3] - patch_from[1]) rimg[patch_to[1]:patch_to[3], patch_to[0]:patch_to[2],:] = img[patch_from[1]:patch_from[3], patch_from[0]:patch_from[2], :] #print(img.shape, scale, patch, patch_from, patch_to, rimg.shape) img = rimg results['img'] = img results['img_shape'] = img.shape # seg fields #for key in results.get('seg_fields', []): # results[key] = results[key][patch[1]:patch[3], # patch[0]:patch[2]] return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(min_ious={self.min_iou}, ' repr_str += f'crop_size={self.crop_size})' return repr_str @PIPELINES.register_module() class SegRescale(object): """Rescale semantic segmentation maps. Args: scale_factor (float): The scale factor of the final output. backend (str): Image rescale backend, choices are 'cv2' and 'pillow'. These two backends generates slightly different results. Defaults to 'cv2'. """ def __init__(self, scale_factor=1, backend='cv2'): self.scale_factor = scale_factor self.backend = backend def __call__(self, results): """Call function to scale the semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with semantic segmentation map scaled. """ for key in results.get('seg_fields', []): if self.scale_factor != 1: results[key] = mmcv.imrescale( results[key], self.scale_factor, interpolation='nearest', backend=self.backend) return results def __repr__(self): return self.__class__.__name__ + f'(scale_factor={self.scale_factor})' @PIPELINES.register_module() class PhotoMetricDistortion(object): """Apply photometric distortion to image sequentially, every transformation is applied with a probability of 0.5. The position of random contrast is in second or second to last. 1. random brightness 2. random contrast (mode 0) 3. convert color from BGR to HSV 4. random saturation 5. random hue 6. convert color from HSV to BGR 7. random contrast (mode 1) 8. randomly swap channels 9. random grayscale Args: brightness_delta (int): delta of brightness. contrast_range (tuple): range of contrast. saturation_range (tuple): range of saturation. hue_delta (int): delta of hue. gray_prob (float): prob of grayscale. """ def __init__(self, brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18, gray_prob=0.0): self.brightness_delta = brightness_delta self.contrast_lower, self.contrast_upper = contrast_range self.saturation_lower, self.saturation_upper = saturation_range self.hue_delta = hue_delta self.gray_prob = gray_prob def __call__(self, results): """Call function to perform photometric distortion on images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with images distorted. """ if 'img_fields' in results: assert results['img_fields'] == ['img'], \ 'Only single img_fields is allowed' img = results['img'] assert img.dtype == np.float32, \ 'PhotoMetricDistortion needs the input image of dtype np.float32,'\ ' please set "to_float32=True" in "LoadImageFromFile" pipeline' # random brightness if random.randint(2): delta = random.uniform(-self.brightness_delta, self.brightness_delta) img += delta # mode == 0 --> do random contrast first # mode == 1 --> do random contrast last mode = random.randint(2) if mode == 1: if random.randint(2): alpha = random.uniform(self.contrast_lower, self.contrast_upper) img *= alpha # convert color from BGR to HSV img = mmcv.bgr2hsv(img) # random saturation if random.randint(2): img[..., 1] *= random.uniform(self.saturation_lower, self.saturation_upper) # random hue if random.randint(2): img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta) img[..., 0][img[..., 0] > 360] -= 360 img[..., 0][img[..., 0] < 0] += 360 # convert color from HSV to BGR img = mmcv.hsv2bgr(img) # random contrast if mode == 0: if random.randint(2): alpha = random.uniform(self.contrast_lower, self.contrast_upper) img *= alpha # randomly swap channels if random.randint(2): img = img[..., random.permutation(3)] if self.gray_prob>0.0: if random.random()<self.gray_prob: gray = mmcv.bgr2gray(img) img = cv2.merge([gray, gray, gray]) results['img'] = img return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(\nbrightness_delta={self.brightness_delta},\n' repr_str += 'contrast_range=' repr_str += f'{(self.contrast_lower, self.contrast_upper)},\n' repr_str += 'saturation_range=' repr_str += f'{(self.saturation_lower, self.saturation_upper)},\n' repr_str += f'hue_delta={self.hue_delta},\n' repr_str += f'gray_prob={self.gray_prob})' return repr_str @PIPELINES.register_module() class Expand(object): """Random expand the image & bboxes. Randomly place the original image on a canvas of 'ratio' x original image size filled with mean values. The ratio is in the range of ratio_range. Args: mean (tuple): mean value of dataset. to_rgb (bool): if need to convert the order of mean to align with RGB. ratio_range (tuple): range of expand ratio. prob (float): probability of applying this transformation """ def __init__(self, mean=(0, 0, 0), to_rgb=True, ratio_range=(1, 4), seg_ignore_label=None, prob=0.5): self.to_rgb = to_rgb self.ratio_range = ratio_range if to_rgb: self.mean = mean[::-1] else: self.mean = mean self.min_ratio, self.max_ratio = ratio_range self.seg_ignore_label = seg_ignore_label self.prob = prob def __call__(self, results): """Call function to expand images, bounding boxes. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with images, bounding boxes expanded """ if random.uniform(0, 1) > self.prob: return results if 'img_fields' in results: assert results['img_fields'] == ['img'], \ 'Only single img_fields is allowed' img = results['img'] h, w, c = img.shape ratio = random.uniform(self.min_ratio, self.max_ratio) # speedup expand when meets large image if np.all(self.mean == self.mean[0]): expand_img = np.empty((int(h * ratio), int(w * ratio), c), img.dtype) expand_img.fill(self.mean[0]) else: expand_img = np.full((int(h * ratio), int(w * ratio), c), self.mean, dtype=img.dtype) left = int(random.uniform(0, w * ratio - w)) top = int(random.uniform(0, h * ratio - h)) expand_img[top:top + h, left:left + w] = img results['img'] = expand_img # expand bboxes for key in results.get('bbox_fields', []): results[key] = results[key] + np.tile( (left, top), 2).astype(results[key].dtype) # expand masks for key in results.get('mask_fields', []): results[key] = results[key].expand( int(h * ratio), int(w * ratio), top, left) # expand segs for key in results.get('seg_fields', []): gt_seg = results[key] expand_gt_seg = np.full((int(h * ratio), int(w * ratio)), self.seg_ignore_label, dtype=gt_seg.dtype) expand_gt_seg[top:top + h, left:left + w] = gt_seg results[key] = expand_gt_seg return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(mean={self.mean}, to_rgb={self.to_rgb}, ' repr_str += f'ratio_range={self.ratio_range}, ' repr_str += f'seg_ignore_label={self.seg_ignore_label})' return repr_str @PIPELINES.register_module() class MinIoURandomCrop(object): """Random crop the image & bboxes, the cropped patches have minimum IoU requirement with original image & bboxes, the IoU threshold is randomly selected from min_ious. Args: min_ious (tuple): minimum IoU threshold for all intersections with bounding boxes min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w, where a >= min_crop_size). bbox_clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. Note: The keys for bboxes, labels and masks should be paired. That is, \ `gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and \ `gt_bboxes_ignore` to `gt_labels_ignore` and `gt_masks_ignore`. """ def __init__(self, min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3, bbox_clip_border=True): # 1: return ori img self.min_ious = min_ious self.sample_mode = (1, *min_ious, 0) self.min_crop_size = min_crop_size self.bbox_clip_border = bbox_clip_border self.bbox2label = { 'gt_bboxes': 'gt_labels', 'gt_bboxes_ignore': 'gt_labels_ignore' } self.bbox2mask = { 'gt_bboxes': 'gt_masks', 'gt_bboxes_ignore': 'gt_masks_ignore' } def __call__(self, results): """Call function to crop images and bounding boxes with minimum IoU constraint. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with images and bounding boxes cropped, \ 'img_shape' key is updated. """ if 'img_fields' in results: assert results['img_fields'] == ['img'], \ 'Only single img_fields is allowed' img = results['img'] assert 'bbox_fields' in results boxes = [results[key] for key in results['bbox_fields']] boxes = np.concatenate(boxes, 0) h, w, c = img.shape while True: mode = random.choice(self.sample_mode) self.mode = mode if mode == 1: return results min_iou = mode for i in range(50): new_w = random.uniform(self.min_crop_size * w, w) new_h = random.uniform(self.min_crop_size * h, h) # h / w in [0.5, 2] if new_h / new_w < 0.5 or new_h / new_w > 2: continue left = random.uniform(w - new_w) top = random.uniform(h - new_h) patch = np.array( (int(left), int(top), int(left + new_w), int(top + new_h))) # Line or point crop is not allowed if patch[2] == patch[0] or patch[3] == patch[1]: continue overlaps = bbox_overlaps( patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1) if len(overlaps) > 0 and overlaps.min() < min_iou: continue # center of boxes should inside the crop img # only adjust boxes and instance masks when the gt is not empty if len(overlaps) > 0: # adjust boxes def is_center_of_bboxes_in_patch(boxes, patch): center = (boxes[:, :2] + boxes[:, 2:]) / 2 mask = ((center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * (center[:, 0] < patch[2]) * (center[:, 1] < patch[3])) return mask mask = is_center_of_bboxes_in_patch(boxes, patch) if not mask.any(): continue for key in results.get('bbox_fields', []): boxes = results[key].copy() mask = is_center_of_bboxes_in_patch(boxes, patch) boxes = boxes[mask] if self.bbox_clip_border: boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:]) boxes[:, :2] = boxes[:, :2].clip(min=patch[:2]) boxes -= np.tile(patch[:2], 2) results[key] = boxes # labels label_key = self.bbox2label.get(key) if label_key in results: results[label_key] = results[label_key][mask] # mask fields mask_key = self.bbox2mask.get(key) if mask_key in results: results[mask_key] = results[mask_key][ mask.nonzero()[0]].crop(patch) # adjust the img no matter whether the gt is empty before crop img = img[patch[1]:patch[3], patch[0]:patch[2]] results['img'] = img results['img_shape'] = img.shape # seg fields for key in results.get('seg_fields', []): results[key] = results[key][patch[1]:patch[3], patch[0]:patch[2]] return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(min_ious={self.min_ious}, ' repr_str += f'min_crop_size={self.min_crop_size}), ' repr_str += f'bbox_clip_border={self.bbox_clip_border})' return repr_str @PIPELINES.register_module() class Corrupt(object): """Corruption augmentation. Corruption transforms implemented based on `imagecorruptions <https://github.com/bethgelab/imagecorruptions>`_. Args: corruption (str): Corruption name. severity (int, optional): The severity of corruption. Default: 1. """ def __init__(self, corruption, severity=1): self.corruption = corruption self.severity = severity def __call__(self, results): """Call function to corrupt image. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with images corrupted. """ if corrupt is None: raise RuntimeError('imagecorruptions is not installed') if 'img_fields' in results: assert results['img_fields'] == ['img'], \ 'Only single img_fields is allowed' results['img'] = corrupt( results['img'].astype(np.uint8), corruption_name=self.corruption, severity=self.severity) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(corruption={self.corruption}, ' repr_str += f'severity={self.severity})' return repr_str @PIPELINES.register_module() class Albu(object): """Albumentation augmentation. Adds custom transformations from Albumentations library. Please, visit `https://albumentations.readthedocs.io` to get more information. An example of ``transforms`` is as followed: .. code-block:: [ dict( type='ShiftScaleRotate', shift_limit=0.0625, scale_limit=0.0, rotate_limit=0, interpolation=1, p=0.5), dict( type='RandomBrightnessContrast', brightness_limit=[0.1, 0.3], contrast_limit=[0.1, 0.3], p=0.2), dict(type='ChannelShuffle', p=0.1), dict( type='OneOf', transforms=[ dict(type='Blur', blur_limit=3, p=1.0), dict(type='MedianBlur', blur_limit=3, p=1.0) ], p=0.1), ] Args: transforms (list[dict]): A list of albu transformations bbox_params (dict): Bbox_params for albumentation `Compose` keymap (dict): Contains {'input key':'albumentation-style key'} skip_img_without_anno (bool): Whether to skip the image if no ann left after aug """ def __init__(self, transforms, bbox_params=None, keymap=None, update_pad_shape=False, skip_img_without_anno=False): if Compose is None: raise RuntimeError('albumentations is not installed') self.transforms = transforms self.filter_lost_elements = False self.update_pad_shape = update_pad_shape self.skip_img_without_anno = skip_img_without_anno # A simple workaround to remove masks without boxes if (isinstance(bbox_params, dict) and 'label_fields' in bbox_params and 'filter_lost_elements' in bbox_params): self.filter_lost_elements = True self.origin_label_fields = bbox_params['label_fields'] bbox_params['label_fields'] = ['idx_mapper'] del bbox_params['filter_lost_elements'] self.bbox_params = ( self.albu_builder(bbox_params) if bbox_params else None) self.aug = Compose([self.albu_builder(t) for t in self.transforms], bbox_params=self.bbox_params) if not keymap: self.keymap_to_albu = { 'img': 'image', 'gt_masks': 'masks', 'gt_bboxes': 'bboxes' } else: self.keymap_to_albu = keymap self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()} def albu_builder(self, cfg): """Import a module from albumentations. It inherits some of :func:`build_from_cfg` logic. Args: cfg (dict): Config dict. It should at least contain the key "type". Returns: obj: The constructed object. """ assert isinstance(cfg, dict) and 'type' in cfg args = cfg.copy() obj_type = args.pop('type') if mmcv.is_str(obj_type): if albumentations is None: raise RuntimeError('albumentations is not installed') obj_cls = getattr(albumentations, obj_type) elif inspect.isclass(obj_type): obj_cls = obj_type else: raise TypeError( f'type must be a str or valid type, but got {type(obj_type)}') if 'transforms' in args: args['transforms'] = [ self.albu_builder(transform) for transform in args['transforms'] ] return obj_cls(**args) @staticmethod def mapper(d, keymap): """Dictionary mapper. Renames keys according to keymap provided. Args: d (dict): old dict keymap (dict): {'old_key':'new_key'} Returns: dict: new dict. """ updated_dict = {} for k, v in zip(d.keys(), d.values()): new_k = keymap.get(k, k) updated_dict[new_k] = d[k] return updated_dict def __call__(self, results): # dict to albumentations format results = self.mapper(results, self.keymap_to_albu) # TODO: add bbox_fields if 'bboxes' in results: # to list of boxes if isinstance(results['bboxes'], np.ndarray): results['bboxes'] = [x for x in results['bboxes']] # add pseudo-field for filtration if self.filter_lost_elements: results['idx_mapper'] = np.arange(len(results['bboxes'])) # TODO: Support mask structure in albu if 'masks' in results: if isinstance(results['masks'], PolygonMasks): raise NotImplementedError( 'Albu only supports BitMap masks now') ori_masks = results['masks'] if albumentations.__version__ < '0.5': results['masks'] = results['masks'].masks else: results['masks'] = [mask for mask in results['masks'].masks] results = self.aug(**results) if 'bboxes' in results: if isinstance(results['bboxes'], list): results['bboxes'] = np.array( results['bboxes'], dtype=np.float32) results['bboxes'] = results['bboxes'].reshape(-1, 4) # filter label_fields if self.filter_lost_elements: for label in self.origin_label_fields: results[label] = np.array( [results[label][i] for i in results['idx_mapper']]) if 'masks' in results: results['masks'] = np.array( [results['masks'][i] for i in results['idx_mapper']]) results['masks'] = ori_masks.__class__( results['masks'], results['image'].shape[0], results['image'].shape[1]) if (not len(results['idx_mapper']) and self.skip_img_without_anno): return None if 'gt_labels' in results: if isinstance(results['gt_labels'], list): results['gt_labels'] = np.array(results['gt_labels']) results['gt_labels'] = results['gt_labels'].astype(np.int64) # back to the original format results = self.mapper(results, self.keymap_back) # update final shape if self.update_pad_shape: results['pad_shape'] = results['img'].shape return results def __repr__(self): repr_str = self.__class__.__name__ + f'(transforms={self.transforms})' return repr_str @PIPELINES.register_module() class RandomCenterCropPad(object): """Random center crop and random around padding for CornerNet. This operation generates randomly cropped image from the original image and pads it simultaneously. Different from :class:`RandomCrop`, the output shape may not equal to ``crop_size`` strictly. We choose a random value from ``ratios`` and the output shape could be larger or smaller than ``crop_size``. The padding operation is also different from :class:`Pad`, here we use around padding instead of right-bottom padding. The relation between output image (padding image) and original image: .. code:: text output image +----------------------------+ | padded area | +------|----------------------------|----------+ | | cropped area | | | | +---------------+ | | | | | . center | | | original image | | | range | | | | | +---------------+ | | +------|----------------------------|----------+ | padded area | +----------------------------+ There are 5 main areas in the figure: - output image: output image of this operation, also called padding image in following instruction. - original image: input image of this operation. - padded area: non-intersect area of output image and original image. - cropped area: the overlap of output image and original image. - center range: a smaller area where random center chosen from. center range is computed by ``border`` and original image's shape to avoid our random center is too close to original image's border. Also this operation act differently in train and test mode, the summary pipeline is listed below. Train pipeline: 1. Choose a ``random_ratio`` from ``ratios``, the shape of padding image will be ``random_ratio * crop_size``. 2. Choose a ``random_center`` in center range. 3. Generate padding image with center matches the ``random_center``. 4. Initialize the padding image with pixel value equals to ``mean``. 5. Copy the cropped area to padding image. 6. Refine annotations. Test pipeline: 1. Compute output shape according to ``test_pad_mode``. 2. Generate padding image with center matches the original image center. 3. Initialize the padding image with pixel value equals to ``mean``. 4. Copy the ``cropped area`` to padding image. Args: crop_size (tuple | None): expected size after crop, final size will computed according to ratio. Requires (h, w) in train mode, and None in test mode. ratios (tuple): random select a ratio from tuple and crop image to (crop_size[0] * ratio) * (crop_size[1] * ratio). Only available in train mode. border (int): max distance from center select area to image border. Only available in train mode. mean (sequence): Mean values of 3 channels. std (sequence): Std values of 3 channels. to_rgb (bool): Whether to convert the image from BGR to RGB. test_mode (bool): whether involve random variables in transform. In train mode, crop_size is fixed, center coords and ratio is random selected from predefined lists. In test mode, crop_size is image's original shape, center coords and ratio is fixed. test_pad_mode (tuple): padding method and padding shape value, only available in test mode. Default is using 'logical_or' with 127 as padding shape value. - 'logical_or': final_shape = input_shape | padding_shape_value - 'size_divisor': final_shape = int( ceil(input_shape / padding_shape_value) * padding_shape_value) bbox_clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. """ def __init__(self, crop_size=None, ratios=(0.9, 1.0, 1.1), border=128, mean=None, std=None, to_rgb=None, test_mode=False, test_pad_mode=('logical_or', 127), bbox_clip_border=True): if test_mode: assert crop_size is None, 'crop_size must be None in test mode' assert ratios is None, 'ratios must be None in test mode' assert border is None, 'border must be None in test mode' assert isinstance(test_pad_mode, (list, tuple)) assert test_pad_mode[0] in ['logical_or', 'size_divisor'] else: assert isinstance(crop_size, (list, tuple)) assert crop_size[0] > 0 and crop_size[1] > 0, ( 'crop_size must > 0 in train mode') assert isinstance(ratios, (list, tuple)) assert test_pad_mode is None, ( 'test_pad_mode must be None in train mode') self.crop_size = crop_size self.ratios = ratios self.border = border # We do not set default value to mean, std and to_rgb because these # hyper-parameters are easy to forget but could affect the performance. # Please use the same setting as Normalize for performance assurance. assert mean is not None and std is not None and to_rgb is not None self.to_rgb = to_rgb self.input_mean = mean self.input_std = std if to_rgb: self.mean = mean[::-1] self.std = std[::-1] else: self.mean = mean self.std = std self.test_mode = test_mode self.test_pad_mode = test_pad_mode self.bbox_clip_border = bbox_clip_border def _get_border(self, border, size): """Get final border for the target size. This function generates a ``final_border`` according to image's shape. The area between ``final_border`` and ``size - final_border`` is the ``center range``. We randomly choose center from the ``center range`` to avoid our random center is too close to original image's border. Also ``center range`` should be larger than 0. Args: border (int): The initial border, default is 128. size (int): The width or height of original image. Returns: int: The final border. """ k = 2 * border / size i = pow(2, np.ceil(np.log2(np.ceil(k))) + (k == int(k))) return border // i def _filter_boxes(self, patch, boxes): """Check whether the center of each box is in the patch. Args: patch (list[int]): The cropped area, [left, top, right, bottom]. boxes (numpy array, (N x 4)): Ground truth boxes. Returns: mask (numpy array, (N,)): Each box is inside or outside the patch. """ center = (boxes[:, :2] + boxes[:, 2:]) / 2 mask = (center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * ( center[:, 0] < patch[2]) * ( center[:, 1] < patch[3]) return mask def _crop_image_and_paste(self, image, center, size): """Crop image with a given center and size, then paste the cropped image to a blank image with two centers align. This function is equivalent to generating a blank image with ``size`` as its shape. Then cover it on the original image with two centers ( the center of blank image and the random center of original image) aligned. The overlap area is paste from the original image and the outside area is filled with ``mean pixel``. Args: image (np array, H x W x C): Original image. center (list[int]): Target crop center coord. size (list[int]): Target crop size. [target_h, target_w] Returns: cropped_img (np array, target_h x target_w x C): Cropped image. border (np array, 4): The distance of four border of ``cropped_img`` to the original image area, [top, bottom, left, right] patch (list[int]): The cropped area, [left, top, right, bottom]. """ center_y, center_x = center target_h, target_w = size img_h, img_w, img_c = image.shape x0 = max(0, center_x - target_w // 2) x1 = min(center_x + target_w // 2, img_w) y0 = max(0, center_y - target_h // 2) y1 = min(center_y + target_h // 2, img_h) patch = np.array((int(x0), int(y0), int(x1), int(y1))) left, right = center_x - x0, x1 - center_x top, bottom = center_y - y0, y1 - center_y cropped_center_y, cropped_center_x = target_h // 2, target_w // 2 cropped_img = np.zeros((target_h, target_w, img_c), dtype=image.dtype) for i in range(img_c): cropped_img[:, :, i] += self.mean[i] y_slice = slice(cropped_center_y - top, cropped_center_y + bottom) x_slice = slice(cropped_center_x - left, cropped_center_x + right) cropped_img[y_slice, x_slice, :] = image[y0:y1, x0:x1, :] border = np.array([ cropped_center_y - top, cropped_center_y + bottom, cropped_center_x - left, cropped_center_x + right ], dtype=np.float32) return cropped_img, border, patch def _train_aug(self, results): """Random crop and around padding the original image. Args: results (dict): Image infomations in the augment pipeline. Returns: results (dict): The updated dict. """ img = results['img'] h, w, c = img.shape boxes = results['gt_bboxes'] while True: scale = random.choice(self.ratios) new_h = int(self.crop_size[0] * scale) new_w = int(self.crop_size[1] * scale) h_border = self._get_border(self.border, h) w_border = self._get_border(self.border, w) for i in range(50): center_x = random.randint(low=w_border, high=w - w_border) center_y = random.randint(low=h_border, high=h - h_border) cropped_img, border, patch = self._crop_image_and_paste( img, [center_y, center_x], [new_h, new_w]) mask = self._filter_boxes(patch, boxes) # if image do not have valid bbox, any crop patch is valid. if not mask.any() and len(boxes) > 0: continue results['img'] = cropped_img results['img_shape'] = cropped_img.shape results['pad_shape'] = cropped_img.shape x0, y0, x1, y1 = patch left_w, top_h = center_x - x0, center_y - y0 cropped_center_x, cropped_center_y = new_w // 2, new_h // 2 # crop bboxes accordingly and clip to the image boundary for key in results.get('bbox_fields', []): mask = self._filter_boxes(patch, results[key]) bboxes = results[key][mask] bboxes[:, 0:4:2] += cropped_center_x - left_w - x0 bboxes[:, 1:4:2] += cropped_center_y - top_h - y0 if self.bbox_clip_border: bboxes[:, 0:4:2] = np.clip(bboxes[:, 0:4:2], 0, new_w) bboxes[:, 1:4:2] = np.clip(bboxes[:, 1:4:2], 0, new_h) keep = (bboxes[:, 2] > bboxes[:, 0]) & ( bboxes[:, 3] > bboxes[:, 1]) bboxes = bboxes[keep] results[key] = bboxes if key in ['gt_bboxes']: if 'gt_labels' in results: labels = results['gt_labels'][mask] labels = labels[keep] results['gt_labels'] = labels if 'gt_masks' in results: raise NotImplementedError( 'RandomCenterCropPad only supports bbox.') # crop semantic seg for key in results.get('seg_fields', []): raise NotImplementedError( 'RandomCenterCropPad only supports bbox.') return results def _test_aug(self, results): """Around padding the original image without cropping. The padding mode and value are from ``test_pad_mode``. Args: results (dict): Image infomations in the augment pipeline. Returns: results (dict): The updated dict. """ img = results['img'] h, w, c = img.shape results['img_shape'] = img.shape if self.test_pad_mode[0] in ['logical_or']: target_h = h | self.test_pad_mode[1] target_w = w | self.test_pad_mode[1] elif self.test_pad_mode[0] in ['size_divisor']: divisor = self.test_pad_mode[1] target_h = int(np.ceil(h / divisor)) * divisor target_w = int(np.ceil(w / divisor)) * divisor else: raise NotImplementedError( 'RandomCenterCropPad only support two testing pad mode:' 'logical-or and size_divisor.') cropped_img, border, _ = self._crop_image_and_paste( img, [h // 2, w // 2], [target_h, target_w]) results['img'] = cropped_img results['pad_shape'] = cropped_img.shape results['border'] = border return results def __call__(self, results): img = results['img'] assert img.dtype == np.float32, ( 'RandomCenterCropPad needs the input image of dtype np.float32,' ' please set "to_float32=True" in "LoadImageFromFile" pipeline') h, w, c = img.shape assert c == len(self.mean) if self.test_mode: return self._test_aug(results) else: return self._train_aug(results) def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(crop_size={self.crop_size}, ' repr_str += f'ratios={self.ratios}, ' repr_str += f'border={self.border}, ' repr_str += f'mean={self.input_mean}, ' repr_str += f'std={self.input_std}, ' repr_str += f'to_rgb={self.to_rgb}, ' repr_str += f'test_mode={self.test_mode}, ' repr_str += f'test_pad_mode={self.test_pad_mode}), ' repr_str += f'bbox_clip_border={self.bbox_clip_border})' return repr_str @PIPELINES.register_module() class CutOut(object): """CutOut operation. Randomly drop some regions of image used in `Cutout <https://arxiv.org/abs/1708.04552>`_. Args: n_holes (int | tuple[int, int]): Number of regions to be dropped. If it is given as a list, number of holes will be randomly selected from the closed interval [`n_holes[0]`, `n_holes[1]`]. cutout_shape (tuple[int, int] | list[tuple[int, int]]): The candidate shape of dropped regions. It can be `tuple[int, int]` to use a fixed cutout shape, or `list[tuple[int, int]]` to randomly choose shape from the list. cutout_ratio (tuple[float, float] | list[tuple[float, float]]): The candidate ratio of dropped regions. It can be `tuple[float, float]` to use a fixed ratio or `list[tuple[float, float]]` to randomly choose ratio from the list. Please note that `cutout_shape` and `cutout_ratio` cannot be both given at the same time. fill_in (tuple[float, float, float] | tuple[int, int, int]): The value of pixel to fill in the dropped regions. Default: (0, 0, 0). """ def __init__(self, n_holes, cutout_shape=None, cutout_ratio=None, fill_in=(0, 0, 0)): assert (cutout_shape is None) ^ (cutout_ratio is None), \ 'Either cutout_shape or cutout_ratio should be specified.' assert (isinstance(cutout_shape, (list, tuple)) or isinstance(cutout_ratio, (list, tuple))) if isinstance(n_holes, tuple): assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1] else: n_holes = (n_holes, n_holes) self.n_holes = n_holes self.fill_in = fill_in self.with_ratio = cutout_ratio is not None self.candidates = cutout_ratio if self.with_ratio else cutout_shape if not isinstance(self.candidates, list): self.candidates = [self.candidates] def __call__(self, results): """Call function to drop some regions of image.""" h, w, c = results['img'].shape n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1) for _ in range(n_holes): x1 = np.random.randint(0, w) y1 = np.random.randint(0, h) index = np.random.randint(0, len(self.candidates)) if not self.with_ratio: cutout_w, cutout_h = self.candidates[index] else: cutout_w = int(self.candidates[index][0] * w) cutout_h = int(self.candidates[index][1] * h) x2 = np.clip(x1 + cutout_w, 0, w) y2 = np.clip(y1 + cutout_h, 0, h) results['img'][y1:y2, x1:x2, :] = self.fill_in return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(n_holes={self.n_holes}, ' repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio else f'cutout_shape={self.candidates}, ') repr_str += f'fill_in={self.fill_in})' return repr_str
insightface/detection/scrfd/mmdet/datasets/pipelines/transforms.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/datasets/pipelines/transforms.py", "repo_id": "insightface", "token_count": 39473 }
118
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn from mmdet.utils import get_root_logger from mmcv.cnn import (build_conv_layer, build_norm_layer, build_plugin_layer, constant_init, kaiming_init) from mmcv.runner import load_checkpoint from torch.nn.modules.batchnorm import _BatchNorm from ..builder import BACKBONES @BACKBONES.register_module() class MobileNetV1(nn.Module): def __init__(self, in_channels=3, #base_channels=32, block_cfg = None, num_stages=4, out_indices=(0, 1, 2, 3)): super(MobileNetV1, self).__init__() self.out_indices = out_indices def conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True) ) def conv_dw(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), nn.ReLU(inplace=True), nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True), ) if block_cfg is None: stage_planes = [8, 16, 32, 64, 128, 256] #0.25 default stage_blocks = [2,4,4,2] else: stage_planes = block_cfg['stage_planes'] stage_blocks = block_cfg['stage_blocks'] assert len(stage_planes)==6 assert len(stage_blocks)==4 self.stem = nn.Sequential( conv_bn(3, stage_planes[0], 2), conv_dw(stage_planes[0], stage_planes[1], 1), ) self.stage_layers = [] for i, num_blocks in enumerate(stage_blocks): _layers = [] for n in range(num_blocks): if n==0: _layer = conv_dw(stage_planes[i+1], stage_planes[i+2], 2) else: _layer = conv_dw(stage_planes[i+2], stage_planes[i+2], 1) _layers.append(_layer) _block = nn.Sequential(*_layers) layer_name = f'layer{i + 1}' self.add_module(layer_name, _block) self.stage_layers.append(layer_name) #bc = base_channels #self.stages = nn.ModuleDict() #self.stage0 = nn.Sequential( # conv_bn(3, bc, 2), # conv_dw(bc, bc*2, 1), # conv_dw(bc*2, bc*4, 2), # conv_dw(bc*4, bc*4, 1), #) #self.stage1 = nn.Sequential( # conv_dw(bc*4, bc*8, 2), # conv_dw(bc*8, bc*8, 1), # conv_dw(bc*8, bc*8, 1), # conv_dw(bc*8, bc*8, 1), #) #self.stage2 = nn.Sequential( # conv_dw(bc*8, bc*16, 2), # conv_dw(bc*16, bc*16, 1), # conv_dw(bc*16, bc*16, 1), # conv_dw(bc*16, bc*16, 1), # #conv_dw(bc*16, bc*16, 1), # #conv_dw(bc*16, bc*16, 1), #) #self.stage3 = nn.Sequential( # conv_dw(bc*16, bc*32, 2), # conv_dw(bc*32, bc*32, 1), #) #self.stages = [self.stage0, self.stage1, self.stage2, self.stage3] def forward(self, x): output = [] x = self.stem(x) for i, layer_name in enumerate(self.stage_layers): stage_layer = getattr(self, layer_name) x = stage_layer(x) if i in self.out_indices: output.append(x) return tuple(output) def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) else: raise TypeError('pretrained must be a str or None')
insightface/detection/scrfd/mmdet/models/backbones/mobilenet.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/backbones/mobilenet.py", "repo_id": "insightface", "token_count": 2478 }
119
from inspect import signature import torch from mmdet.core import bbox2result, bbox_mapping_back, multiclass_nms class BBoxTestMixin(object): """Mixin class for test time augmentation of bboxes.""" def merge_aug_bboxes(self, aug_bboxes, aug_scores, img_metas): """Merge augmented detection bboxes and scores. Args: aug_bboxes (list[Tensor]): shape (n, 4*#class) aug_scores (list[Tensor] or None): shape (n, #class) img_shapes (list[Tensor]): shape (3, ). Returns: tuple: (bboxes, scores) """ recovered_bboxes = [] for bboxes, img_info in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] flip_direction = img_info[0]['flip_direction'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip, flip_direction) recovered_bboxes.append(bboxes) bboxes = torch.cat(recovered_bboxes, dim=0) if aug_scores is None: return bboxes else: scores = torch.cat(aug_scores, dim=0) return bboxes, scores def aug_test_bboxes(self, feats, img_metas, rescale=False): """Test det bboxes with test time augmentation. Args: feats (list[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains features for all images in the batch. img_metas (list[list[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. each dict has image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[ndarray]: bbox results of each class """ # check with_nms argument gb_sig = signature(self.get_bboxes) gb_args = [p.name for p in gb_sig.parameters.values()] gbs_sig = signature(self._get_bboxes_single) gbs_args = [p.name for p in gbs_sig.parameters.values()] assert ('with_nms' in gb_args) and ('with_nms' in gbs_args), \ f'{self.__class__.__name__}' \ ' does not support test-time augmentation' aug_bboxes = [] aug_scores = [] aug_factors = [] # score_factors for NMS for x, img_meta in zip(feats, img_metas): # only one image in the batch outs = self.forward(x) bbox_inputs = outs + (img_meta, self.test_cfg, False, False) bbox_outputs = self.get_bboxes(*bbox_inputs)[0] aug_bboxes.append(bbox_outputs[0]) aug_scores.append(bbox_outputs[1]) # bbox_outputs of some detectors (e.g., ATSS, FCOS, YOLOv3) # contains additional element to adjust scores before NMS if len(bbox_outputs) >= 3: aug_factors.append(bbox_outputs[2]) # after merging, bboxes will be rescaled to the original image size merged_bboxes, merged_scores = self.merge_aug_bboxes( aug_bboxes, aug_scores, img_metas) merged_factors = torch.cat(aug_factors, dim=0) if aug_factors else None det_bboxes, det_labels = multiclass_nms( merged_bboxes, merged_scores, self.test_cfg.score_thr, self.test_cfg.nms, self.test_cfg.max_per_img, score_factors=merged_factors) if rescale: _det_bboxes = det_bboxes else: _det_bboxes = det_bboxes.clone() _det_bboxes[:, :4] *= det_bboxes.new_tensor( img_metas[0][0]['scale_factor']) bbox_results = bbox2result(_det_bboxes, det_labels, self.num_classes) return bbox_results
insightface/detection/scrfd/mmdet/models/dense_heads/dense_test_mixins.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/dense_heads/dense_test_mixins.py", "repo_id": "insightface", "token_count": 1939 }
120
import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import normal_init from mmcv.ops import batched_nms from ..builder import HEADS from .anchor_head import AnchorHead from .rpn_test_mixin import RPNTestMixin @HEADS.register_module() class RPNHead(RPNTestMixin, AnchorHead): """RPN head. Args: in_channels (int): Number of channels in the input feature map. """ # noqa: W605 def __init__(self, in_channels, **kwargs): super(RPNHead, self).__init__(1, in_channels, **kwargs) def _init_layers(self): """Initialize layers of the head.""" self.rpn_conv = nn.Conv2d( self.in_channels, self.feat_channels, 3, padding=1) self.rpn_cls = nn.Conv2d(self.feat_channels, self.num_anchors * self.cls_out_channels, 1) self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 1) def init_weights(self): """Initialize weights of the head.""" normal_init(self.rpn_conv, std=0.01) normal_init(self.rpn_cls, std=0.01) normal_init(self.rpn_reg, std=0.01) def forward_single(self, x): """Forward feature map of a single scale level.""" x = self.rpn_conv(x) x = F.relu(x, inplace=True) rpn_cls_score = self.rpn_cls(x) rpn_bbox_pred = self.rpn_reg(x) return rpn_cls_score, rpn_bbox_pred def loss(self, cls_scores, bbox_preds, gt_bboxes, img_metas, gt_bboxes_ignore=None): """Compute losses of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W) gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ losses = super(RPNHead, self).loss( cls_scores, bbox_preds, gt_bboxes, None, img_metas, gt_bboxes_ignore=gt_bboxes_ignore) return dict( loss_rpn_cls=losses['loss_cls'], loss_rpn_bbox=losses['loss_bbox']) def _get_bboxes_single(self, cls_scores, bbox_preds, mlvl_anchors, img_shape, scale_factor, cfg, rescale=False): """Transform outputs for a single batch item into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (num_anchors * 4, H, W). mlvl_anchors (list[Tensor]): Box reference for each scale level with shape (num_total_anchors, 4). img_shape (tuple[int]): Shape of the input image, (height, width, 3). scale_factor (ndarray): Scale factor of the image arange as (w_scale, h_scale, w_scale, h_scale). cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Returns: Tensor: Labeled boxes in shape (n, 5), where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between 0 and 1. """ cfg = self.test_cfg if cfg is None else cfg # bboxes from different level should be independent during NMS, # level_ids are used as labels for batched NMS to separate them level_ids = [] mlvl_scores = [] mlvl_bbox_preds = [] mlvl_valid_anchors = [] for idx in range(len(cls_scores)): rpn_cls_score = cls_scores[idx] rpn_bbox_pred = bbox_preds[idx] assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:] rpn_cls_score = rpn_cls_score.permute(1, 2, 0) if self.use_sigmoid_cls: rpn_cls_score = rpn_cls_score.reshape(-1) scores = rpn_cls_score.sigmoid() else: rpn_cls_score = rpn_cls_score.reshape(-1, 2) # We set FG labels to [0, num_class-1] and BG label to # num_class in RPN head since mmdet v2.5, which is unified to # be consistent with other head since mmdet v2.0. In mmdet v2.0 # to v2.4 we keep BG label as 0 and FG label as 1 in rpn head. scores = rpn_cls_score.softmax(dim=1)[:, 0] rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4) anchors = mlvl_anchors[idx] if cfg.nms_pre > 0 and scores.shape[0] > cfg.nms_pre: # sort is faster than topk # _, topk_inds = scores.topk(cfg.nms_pre) ranked_scores, rank_inds = scores.sort(descending=True) topk_inds = rank_inds[:cfg.nms_pre] scores = ranked_scores[:cfg.nms_pre] rpn_bbox_pred = rpn_bbox_pred[topk_inds, :] anchors = anchors[topk_inds, :] mlvl_scores.append(scores) mlvl_bbox_preds.append(rpn_bbox_pred) mlvl_valid_anchors.append(anchors) level_ids.append( scores.new_full((scores.size(0), ), idx, dtype=torch.long)) scores = torch.cat(mlvl_scores) anchors = torch.cat(mlvl_valid_anchors) rpn_bbox_pred = torch.cat(mlvl_bbox_preds) proposals = self.bbox_coder.decode( anchors, rpn_bbox_pred, max_shape=img_shape) ids = torch.cat(level_ids) if cfg.min_bbox_size > 0: w = proposals[:, 2] - proposals[:, 0] h = proposals[:, 3] - proposals[:, 1] valid_inds = torch.nonzero( (w >= cfg.min_bbox_size) & (h >= cfg.min_bbox_size), as_tuple=False).squeeze() if valid_inds.sum().item() != len(proposals): proposals = proposals[valid_inds, :] scores = scores[valid_inds] ids = ids[valid_inds] # TODO: remove the hard coded nms type nms_cfg = dict(type='nms', iou_threshold=cfg.nms_thr) dets, keep = batched_nms(proposals, scores, ids, nms_cfg) return dets[:cfg.nms_post]
insightface/detection/scrfd/mmdet/models/dense_heads/rpn_head.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/dense_heads/rpn_head.py", "repo_id": "insightface", "token_count": 3742 }
121
from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class FasterRCNN(TwoStageDetector): """Implementation of `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None): super(FasterRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained)
insightface/detection/scrfd/mmdet/models/detectors/faster_rcnn.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/detectors/faster_rcnn.py", "repo_id": "insightface", "token_count": 391 }
122
import torch import torch.nn as nn from mmdet.core import bbox2result from ..builder import DETECTORS, build_backbone, build_head, build_neck from .base import BaseDetector @DETECTORS.register_module() class SingleStageDetector(BaseDetector): """Base class for single-stage detectors. Single-stage detectors directly and densely predict bounding boxes on the output features of the backbone+neck. """ def __init__(self, backbone, neck=None, bbox_head=None, train_cfg=None, test_cfg=None, pretrained=None): super(SingleStageDetector, self).__init__() self.backbone = build_backbone(backbone) if neck is not None: self.neck = build_neck(neck) bbox_head.update(train_cfg=train_cfg) bbox_head.update(test_cfg=test_cfg) self.bbox_head = build_head(bbox_head) self.train_cfg = train_cfg self.test_cfg = test_cfg self.init_weights(pretrained=pretrained) def init_weights(self, pretrained=None): """Initialize the weights in detector. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ super(SingleStageDetector, self).init_weights(pretrained) self.backbone.init_weights(pretrained=pretrained) if self.with_neck: if isinstance(self.neck, nn.Sequential): for m in self.neck: m.init_weights() else: self.neck.init_weights() self.bbox_head.init_weights() def extract_feat(self, img): """Directly extract features from the backbone+neck.""" x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def forward_dummy(self, img): """Used for computing network flops. See `mmdetection/tools/get_flops.py` """ x = self.extract_feat(img) outs = self.bbox_head(x) return outs def forward_train(self, img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None): """ Args: img (Tensor): Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled. img_metas (list[dict]): A List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see :class:`mmdet.datasets.pipelines.Collect`. gt_bboxes (list[Tensor]): Each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): Class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor]): Specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ super(SingleStageDetector, self).forward_train(img, img_metas) x = self.extract_feat(img) losses = self.bbox_head.forward_train(x, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore) return losses def simple_test(self, img, img_metas, rescale=False): """Test function without test time augmentation. Args: imgs (list[torch.Tensor]): List of multiple images img_metas (list[dict]): List of image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[list[np.ndarray]]: BBox results of each image and classes. The outer list corresponds to each image. The inner list corresponds to each class. """ x = self.extract_feat(img) outs = self.bbox_head(x) #print(len(outs)) if torch.onnx.is_in_onnx_export(): print('single_stage.py in-onnx-export') print(outs.__class__) cls_score, bbox_pred = outs for c in cls_score: print(c.shape) for c in bbox_pred: print(c.shape) #print(outs[0].shape, outs[1].shape) return outs bbox_list = self.bbox_head.get_bboxes( *outs, img_metas, rescale=rescale) # skip post-processing when exporting to ONNX if torch.onnx.is_in_onnx_export(): return bbox_list bbox_results = [ bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) for det_bboxes, det_labels in bbox_list ] return bbox_results def aug_test(self, imgs, img_metas, rescale=False): """Test function with test time augmentation. Args: imgs (list[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains all images in the batch. img_metas (list[list[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. each dict has image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[list[np.ndarray]]: BBox results of each image and classes. The outer list corresponds to each image. The inner list corresponds to each class. """ assert hasattr(self.bbox_head, 'aug_test'), \ f'{self.bbox_head.__class__.__name__}' \ ' does not support test-time augmentation' print('aug-test:', len(imgs)) feats = self.extract_feats(imgs) return [self.bbox_head.aug_test(feats, img_metas, rescale=rescale)]
insightface/detection/scrfd/mmdet/models/detectors/single_stage.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/detectors/single_stage.py", "repo_id": "insightface", "token_count": 2971 }
123
import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES from .utils import weighted_loss @weighted_loss def mse_loss(pred, target): """Warpper of mse loss.""" return F.mse_loss(pred, target, reduction='none') @LOSSES.register_module() class MSELoss(nn.Module): """MSELoss. Args: reduction (str, optional): The method that reduces the loss to a scalar. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of the loss. Defaults to 1.0 """ def __init__(self, reduction='mean', loss_weight=1.0): super().__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None): """Forward function of loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): Weight of the loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. Returns: torch.Tensor: The calculated loss """ loss = self.loss_weight * mse_loss( pred, target, weight, reduction=self.reduction, avg_factor=avg_factor) return loss
insightface/detection/scrfd/mmdet/models/losses/mse_loss.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/losses/mse_loss.py", "repo_id": "insightface", "token_count": 624 }
124
# Copyright (c) 2019 Western Digital Corporation or its affiliates. import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule from ..builder import NECKS class DetectionBlock(nn.Module): """Detection block in YOLO neck. Let out_channels = n, the DetectionBlock contains: Six ConvLayers, 1 Conv2D Layer and 1 YoloLayer. The first 6 ConvLayers are formed the following way: 1x1xn, 3x3x2n, 1x1xn, 3x3x2n, 1x1xn, 3x3x2n. The Conv2D layer is 1x1x255. Some block will have branch after the fifth ConvLayer. The input channel is arbitrary (in_channels) Args: in_channels (int): The number of input channels. out_channels (int): The number of output channels. conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Dictionary to construct and config norm layer. Default: dict(type='BN', requires_grad=True) act_cfg (dict): Config dict for activation layer. Default: dict(type='LeakyReLU', negative_slope=0.1). """ def __init__(self, in_channels, out_channels, conv_cfg=None, norm_cfg=dict(type='BN', requires_grad=True), act_cfg=dict(type='LeakyReLU', negative_slope=0.1)): super(DetectionBlock, self).__init__() double_out_channels = out_channels * 2 # shortcut cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.conv1 = ConvModule(in_channels, out_channels, 1, **cfg) self.conv2 = ConvModule( out_channels, double_out_channels, 3, padding=1, **cfg) self.conv3 = ConvModule(double_out_channels, out_channels, 1, **cfg) self.conv4 = ConvModule( out_channels, double_out_channels, 3, padding=1, **cfg) self.conv5 = ConvModule(double_out_channels, out_channels, 1, **cfg) def forward(self, x): tmp = self.conv1(x) tmp = self.conv2(tmp) tmp = self.conv3(tmp) tmp = self.conv4(tmp) out = self.conv5(tmp) return out @NECKS.register_module() class YOLOV3Neck(nn.Module): """The neck of YOLOV3. It can be treated as a simplified version of FPN. It will take the result from Darknet backbone and do some upsampling and concatenation. It will finally output the detection result. Note: The input feats should be from top to bottom. i.e., from high-lvl to low-lvl But YOLOV3Neck will process them in reversed order. i.e., from bottom (high-lvl) to top (low-lvl) Args: num_scales (int): The number of scales / stages. in_channels (int): The number of input channels. out_channels (int): The number of output channels. conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Dictionary to construct and config norm layer. Default: dict(type='BN', requires_grad=True) act_cfg (dict): Config dict for activation layer. Default: dict(type='LeakyReLU', negative_slope=0.1). """ def __init__(self, num_scales, in_channels, out_channels, conv_cfg=None, norm_cfg=dict(type='BN', requires_grad=True), act_cfg=dict(type='LeakyReLU', negative_slope=0.1)): super(YOLOV3Neck, self).__init__() assert (num_scales == len(in_channels) == len(out_channels)) self.num_scales = num_scales self.in_channels = in_channels self.out_channels = out_channels # shortcut cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) # To support arbitrary scales, the code looks awful, but it works. # Better solution is welcomed. self.detect1 = DetectionBlock(in_channels[0], out_channels[0], **cfg) for i in range(1, self.num_scales): in_c, out_c = self.in_channels[i], self.out_channels[i] self.add_module(f'conv{i}', ConvModule(in_c, out_c, 1, **cfg)) # in_c + out_c : High-lvl feats will be cat with low-lvl feats self.add_module(f'detect{i+1}', DetectionBlock(in_c + out_c, out_c, **cfg)) def forward(self, feats): assert len(feats) == self.num_scales # processed from bottom (high-lvl) to top (low-lvl) outs = [] out = self.detect1(feats[-1]) outs.append(out) for i, x in enumerate(reversed(feats[:-1])): conv = getattr(self, f'conv{i+1}') tmp = conv(out) # Cat with low-lvl feats tmp = F.interpolate(tmp, scale_factor=2) tmp = torch.cat((tmp, x), 1) detect = getattr(self, f'detect{i+2}') out = detect(tmp) outs.append(out) return tuple(outs) def init_weights(self): """Initialize the weights of module.""" # init is done in ConvModule pass
insightface/detection/scrfd/mmdet/models/necks/yolo_neck.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/necks/yolo_neck.py", "repo_id": "insightface", "token_count": 2319 }
125
import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule, kaiming_init from mmcv.runner import auto_fp16, force_fp32 from mmdet.models.builder import HEADS @HEADS.register_module() class FusedSemanticHead(nn.Module): r"""Multi-level fused semantic segmentation head. .. code-block:: none in_1 -> 1x1 conv --- | in_2 -> 1x1 conv -- | || in_3 -> 1x1 conv - || ||| /-> 1x1 conv (mask prediction) in_4 -> 1x1 conv -----> 3x3 convs (*4) | \-> 1x1 conv (feature) in_5 -> 1x1 conv --- """ # noqa: W605 def __init__(self, num_ins, fusion_level, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, ignore_label=255, loss_weight=0.2, conv_cfg=None, norm_cfg=None): super(FusedSemanticHead, self).__init__() self.num_ins = num_ins self.fusion_level = fusion_level self.num_convs = num_convs self.in_channels = in_channels self.conv_out_channels = conv_out_channels self.num_classes = num_classes self.ignore_label = ignore_label self.loss_weight = loss_weight self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.fp16_enabled = False self.lateral_convs = nn.ModuleList() for i in range(self.num_ins): self.lateral_convs.append( ConvModule( self.in_channels, self.in_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, inplace=False)) self.convs = nn.ModuleList() for i in range(self.num_convs): in_channels = self.in_channels if i == 0 else conv_out_channels self.convs.append( ConvModule( in_channels, conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.conv_embedding = ConvModule( conv_out_channels, conv_out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.conv_logits = nn.Conv2d(conv_out_channels, self.num_classes, 1) self.criterion = nn.CrossEntropyLoss(ignore_index=ignore_label) def init_weights(self): kaiming_init(self.conv_logits) @auto_fp16() def forward(self, feats): x = self.lateral_convs[self.fusion_level](feats[self.fusion_level]) fused_size = tuple(x.shape[-2:]) for i, feat in enumerate(feats): if i != self.fusion_level: feat = F.interpolate( feat, size=fused_size, mode='bilinear', align_corners=True) x += self.lateral_convs[i](feat) for i in range(self.num_convs): x = self.convs[i](x) mask_pred = self.conv_logits(x) x = self.conv_embedding(x) return mask_pred, x @force_fp32(apply_to=('mask_pred', )) def loss(self, mask_pred, labels): labels = labels.squeeze(1).long() loss_semantic_seg = self.criterion(mask_pred, labels) loss_semantic_seg *= self.loss_weight return loss_semantic_seg
insightface/detection/scrfd/mmdet/models/roi_heads/mask_heads/fused_semantic_head.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/roi_heads/mask_heads/fused_semantic_head.py", "repo_id": "insightface", "token_count": 2004 }
126
import torch from mmcv.ops import batched_nms from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, merge_aug_bboxes, multiclass_nms) from mmdet.models.roi_heads.standard_roi_head import StandardRoIHead from ..builder import HEADS @HEADS.register_module() class TridentRoIHead(StandardRoIHead): """Trident roi head. Args: num_branch (int): Number of branches in TridentNet. test_branch_idx (int): In inference, all 3 branches will be used if `test_branch_idx==-1`, otherwise only branch with index `test_branch_idx` will be used. """ def __init__(self, num_branch, test_branch_idx, **kwargs): self.num_branch = num_branch self.test_branch_idx = test_branch_idx super(TridentRoIHead, self).__init__(**kwargs) def simple_test(self, x, proposal_list, img_metas, proposals=None, rescale=False): """Test without augmentation as follows: 1. Compute prediction bbox and label per branch. 2. Merge predictions of each branch according to scores of bboxes, i.e., bboxes with higher score are kept to give top-k prediction. """ assert self.with_bbox, 'Bbox head must be implemented.' det_bboxes_list, det_labels_list = self.simple_test_bboxes( x, img_metas, proposal_list, self.test_cfg, rescale=rescale) for _ in range(len(det_bboxes_list)): if det_bboxes_list[_].shape[0] == 0: det_bboxes_list[_] = det_bboxes_list[_].new_empty((0, 5)) trident_det_bboxes = torch.cat(det_bboxes_list, 0) trident_det_labels = torch.cat(det_labels_list, 0) if trident_det_bboxes.numel() == 0: det_bboxes = trident_det_bboxes.new_zeros((0, 5)) det_labels = trident_det_bboxes.new_zeros((0, ), dtype=torch.long) else: nms_bboxes = trident_det_bboxes[:, :4] nms_scores = trident_det_bboxes[:, 4].contiguous() nms_inds = trident_det_labels nms_cfg = self.test_cfg['nms'] det_bboxes, keep = batched_nms(nms_bboxes, nms_scores, nms_inds, nms_cfg) det_labels = trident_det_labels[keep] if self.test_cfg['max_per_img'] > 0: det_labels = det_labels[:self.test_cfg['max_per_img']] det_bboxes = det_bboxes[:self.test_cfg['max_per_img']] det_bboxes, det_labels = [det_bboxes], [det_labels] bbox_results = [ bbox2result(det_bboxes[i], det_labels[i], self.bbox_head.num_classes) for i in range(len(det_bboxes)) ] return bbox_results def aug_test_bboxes(self, feats, img_metas, proposal_list, rcnn_test_cfg): """Test det bboxes with test time augmentation.""" aug_bboxes = [] aug_scores = [] for x, img_meta in zip(feats, img_metas): # only one image in the batch img_shape = img_meta[0]['img_shape'] scale_factor = img_meta[0]['scale_factor'] flip = img_meta[0]['flip'] flip_direction = img_meta[0]['flip_direction'] trident_bboxes, trident_scores = [], [] for branch_idx in range(len(proposal_list)): proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, scale_factor, flip, flip_direction) rois = bbox2roi([proposals]) bbox_results = self._bbox_forward(x, rois) bboxes, scores = self.bbox_head.get_bboxes( rois, bbox_results['cls_score'], bbox_results['bbox_pred'], img_shape, scale_factor, rescale=False, cfg=None) trident_bboxes.append(bboxes) trident_scores.append(scores) aug_bboxes.append(torch.cat(trident_bboxes, 0)) aug_scores.append(torch.cat(trident_scores, 0)) # after merging, bboxes will be rescaled to the original image size merged_bboxes, merged_scores = merge_aug_bboxes( aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, rcnn_test_cfg.score_thr, rcnn_test_cfg.nms, rcnn_test_cfg.max_per_img) return det_bboxes, det_labels
insightface/detection/scrfd/mmdet/models/roi_heads/trident_roi_head.py/0
{ "file_path": "insightface/detection/scrfd/mmdet/models/roi_heads/trident_roi_head.py", "repo_id": "insightface", "token_count": 2521 }
127
from __future__ import print_function import cv2 import argparse import os import os.path as osp import shutil import numpy as np import json def parse_args(): parser = argparse.ArgumentParser( description='convert crowdhuman dataset to scrfd format') parser.add_argument('--raw', help='raw dataset dir') parser.add_argument('--save', default='data/crowdhuman', help='save path') args = parser.parse_args() return args def main(): args = parse_args() raw_image_dir = osp.join(args.raw, 'Images') for subset in ['train', 'val']: save_image_dir = osp.join(args.save, subset, 'images') if not osp.exists(save_image_dir): os.makedirs(save_image_dir) anno_file = osp.join(args.raw, 'annotation_%s.odgt'%subset) fullbody_anno_file = osp.join(osp.join(args.save, subset, "label_fullbody.txt")) head_anno_file = osp.join(osp.join(args.save, subset, "label_head.txt")) fullbody_f = open(fullbody_anno_file, 'w') head_f = open(head_anno_file, 'w') for line in open(anno_file, 'r'): data = json.loads(line) img_id = data['ID'] img_name = "%s.jpg"%img_id raw_image_file = osp.join(raw_image_dir, img_name) target_image_file = osp.join(save_image_dir, img_name) img = cv2.imread(raw_image_file) print(raw_image_file, img.shape) fullbody_f.write("# %s %d %d\n"%(img_name,img.shape[1],img.shape[0])) head_f.write("# %s %d %d\n"%(img_name,img.shape[1],img.shape[0])) shutil.copyfile(raw_image_file, target_image_file) items = data['gtboxes'] for item in items: fbox = item['fbox'] is_ignore = False extra = item['extra'] if 'ignore' in extra: is_ignore = extra['ignore']==1 bbox = np.array(fbox, dtype=np.float32) bbox[2] += bbox[0] bbox[3] += bbox[1] if is_ignore: fullbody_f.write("%.5f %.5f %.5f %.5f %d\n"%(bbox[0], bbox[1], bbox[2], bbox[3], is_ignore)) else: vbox = item['vbox'] vbox = np.array(vbox, dtype=np.float32) vbox[2] += vbox[0] vbox[3] += vbox[1] x1, y1, x2, y2 = vbox[0], vbox[1], vbox[2], vbox[3] cx = (x1+x2)/2 cy = (y1+y2)/2 kps = np.ones( (5,3), dtype=np.float32) kps[0,0] = x1 kps[0,1] = y1 kps[1,0] = x2 kps[1,1] = y1 kps[2,0] = cx kps[2,1] = cy kps[3,0] = x1 kps[3,1] = y2 kps[4,0] = x2 kps[4,1] = y2 kps_str = " ".join(["%.5f"%x for x in kps.flatten()]) fullbody_f.write("%.5f %.5f %.5f %.5f %s\n"%(bbox[0], bbox[1], bbox[2], bbox[3], kps_str)) hbox = item['hbox'] is_ignore = False extra = item['head_attr'] if 'ignore' in extra: is_ignore = extra['ignore']==1 bbox = np.array(hbox, dtype=np.float32) bbox[2] += bbox[0] bbox[3] += bbox[1] head_f.write("%.5f %.5f %.5f %.5f %d\n"%(bbox[0], bbox[1], bbox[2], bbox[3], is_ignore)) fullbody_f.close() head_f.close() if __name__ == '__main__': main()
insightface/detection/scrfd/tools/convert_crowdhuman.py/0
{ "file_path": "insightface/detection/scrfd/tools/convert_crowdhuman.py", "repo_id": "insightface", "token_count": 2141 }
128
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ @Author : Qingping Zheng @Contact : qingpingzheng2014@gmail.com @File : ddgcn.py @Time : 10/01/21 00:00 PM @Desc : @License : Licensed under the Apache License, Version 2.0 (the "License"); @Copyright : Copyright 2022 The Authors. All Rights Reserved. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn.functional as F import torch.nn as nn from inplace_abn import InPlaceABNSync class SpatialGCN(nn.Module): def __init__(self, plane, abn=InPlaceABNSync): super(SpatialGCN, self).__init__() inter_plane = plane // 2 self.node_k = nn.Conv2d(plane, inter_plane, kernel_size=1) self.node_v = nn.Conv2d(plane, inter_plane, kernel_size=1) self.node_q = nn.Conv2d(plane, inter_plane, kernel_size=1) self.conv_wg = nn.Conv1d(inter_plane, inter_plane, kernel_size=1, bias=False) self.bn_wg = nn.BatchNorm1d(inter_plane) self.softmax = nn.Softmax(dim=2) self.out = nn.Sequential(nn.Conv2d(inter_plane, plane, kernel_size=1), abn(plane)) self.gamma = nn.Parameter(torch.zeros(1)) def forward(self, x): # b, c, h, w = x.size() node_k = self.node_k(x) node_v = self.node_v(x) node_q = self.node_q(x) b,c,h,w = node_k.size() node_k = node_k.view(b, c, -1).permute(0, 2, 1) node_q = node_q.view(b, c, -1) node_v = node_v.view(b, c, -1).permute(0, 2, 1) # A = k * q # AV = k * q * v # AVW = k *(q *v) * w AV = torch.bmm(node_q,node_v) AV = self.softmax(AV) AV = torch.bmm(node_k, AV) AV = AV.transpose(1, 2).contiguous() AVW = self.conv_wg(AV) AVW = self.bn_wg(AVW) AVW = AVW.view(b, c, h, -1) # out = F.relu_(self.out(AVW) + x) out = self.gamma * self.out(AVW) + x return out class DDualGCN(nn.Module): """ Feature GCN with coordinate GCN """ def __init__(self, planes, abn=InPlaceABNSync, ratio=4): super(DDualGCN, self).__init__() self.phi = nn.Conv2d(planes, planes // ratio * 2, kernel_size=1, bias=False) self.bn_phi = abn(planes // ratio * 2) self.theta = nn.Conv2d(planes, planes // ratio, kernel_size=1, bias=False) self.bn_theta = abn(planes // ratio) # Interaction Space # Adjacency Matrix: (-)A_g self.conv_adj = nn.Conv1d(planes // ratio, planes // ratio, kernel_size=1, bias=False) self.bn_adj = nn.BatchNorm1d(planes // ratio) # State Update Function: W_g self.conv_wg = nn.Conv1d(planes // ratio * 2, planes // ratio * 2, kernel_size=1, bias=False) self.bn_wg = nn.BatchNorm1d(planes // ratio * 2) # last fc self.conv3 = nn.Conv2d(planes // ratio * 2, planes, kernel_size=1, bias=False) self.bn3 = abn(planes) self.local = nn.Sequential( nn.Conv2d(planes, planes, 3, groups=planes, stride=2, padding=1, bias=False), abn(planes), nn.Conv2d(planes, planes, 3, groups=planes, stride=2, padding=1, bias=False), abn(planes), nn.Conv2d(planes, planes, 3, groups=planes, stride=2, padding=1, bias=False), abn(planes)) self.gcn_local_attention = SpatialGCN(planes, abn) self.final = nn.Sequential(nn.Conv2d(planes * 2, planes, kernel_size=1, bias=False), abn(planes)) self.gamma1 = nn.Parameter(torch.zeros(1)) def to_matrix(self, x): n, c, h, w = x.size() x = x.view(n, c, -1) return x def forward(self, feat): # # # # Local # # # # x = feat local = self.local(feat) local = self.gcn_local_attention(local) local = F.interpolate(local, size=x.size()[2:], mode='bilinear', align_corners=True) spatial_local_feat = x * local + x # # # # Projection Space # # # # x_sqz, b = x, x x_sqz = self.phi(x_sqz) x_sqz = self.bn_phi(x_sqz) x_sqz = self.to_matrix(x_sqz) b = self.theta(b) b = self.bn_theta(b) b = self.to_matrix(b) # Project z_idt = torch.matmul(x_sqz, b.transpose(1, 2)) # channel # # # # Interaction Space # # # # z = z_idt.transpose(1, 2).contiguous() z = self.conv_adj(z) z = self.bn_adj(z) z = z.transpose(1, 2).contiguous() # Laplacian smoothing: (I - A_g)Z => Z - A_gZ z += z_idt z = self.conv_wg(z) z = self.bn_wg(z) # # # # Re-projection Space # # # # # Re-project y = torch.matmul(z, b) n, _, h, w = x.size() y = y.view(n, -1, h, w) y = self.conv3(y) y = self.bn3(y) # g_out = x + y # g_out = F.relu_(x+y) g_out = self.gamma1*y + x # cat or sum, nearly the same results out = self.final(torch.cat((spatial_local_feat, g_out), 1)) return out class DDualGCNHead(nn.Module): def __init__(self, inplanes, interplanes, abn=InPlaceABNSync): super(DDualGCNHead, self).__init__() self.conva = nn.Sequential(nn.Conv2d(inplanes, interplanes, 3, padding=1, bias=False), abn(interplanes)) self.dualgcn = DDualGCN(interplanes, abn) self.convb = nn.Sequential(nn.Conv2d(interplanes, interplanes, 3, padding=1, bias=False), abn(interplanes)) self.bottleneck = nn.Sequential( nn.Conv2d(inplanes + interplanes, interplanes, kernel_size=3, padding=1, dilation=1, bias=False), abn(interplanes) ) def forward(self, x): output = self.conva(x) output = self.dualgcn(output) output = self.convb(output) output = self.bottleneck(torch.cat([x, output], 1)) return output
insightface/parsing/dml_csr/networks/modules/ddgcn.py/0
{ "file_path": "insightface/parsing/dml_csr/networks/modules/ddgcn.py", "repo_id": "insightface", "token_count": 3149 }
129
import numpy as np from numpy.linalg import norm as l2norm #from easydict import EasyDict class Face(dict): def __init__(self, d=None, **kwargs): if d is None: d = {} if kwargs: d.update(**kwargs) for k, v in d.items(): setattr(self, k, v) # Class attributes #for k in self.__class__.__dict__.keys(): # if not (k.startswith('__') and k.endswith('__')) and not k in ('update', 'pop'): # setattr(self, k, getattr(self, k)) def __setattr__(self, name, value): if isinstance(value, (list, tuple)): value = [self.__class__(x) if isinstance(x, dict) else x for x in value] elif isinstance(value, dict) and not isinstance(value, self.__class__): value = self.__class__(value) super(Face, self).__setattr__(name, value) super(Face, self).__setitem__(name, value) __setitem__ = __setattr__ def __getattr__(self, name): return None @property def embedding_norm(self): if self.embedding is None: return None return l2norm(self.embedding) @property def normed_embedding(self): if self.embedding is None: return None return self.embedding / self.embedding_norm @property def sex(self): if self.gender is None: return None return 'M' if self.gender==1 else 'F'
insightface/python-package/insightface/app/common.py/0
{ "file_path": "insightface/python-package/insightface/app/common.py", "repo_id": "insightface", "token_count": 695 }
130
import cv2 import os import os.path as osp from pathlib import Path import pickle def get_object(name): objects_dir = osp.join(Path(__file__).parent.absolute(), 'objects') if not name.endswith('.pkl'): name = name+".pkl" filepath = osp.join(objects_dir, name) if not osp.exists(filepath): return None with open(filepath, 'rb') as f: obj = pickle.load(f) return obj
insightface/python-package/insightface/data/pickle_object.py/0
{ "file_path": "insightface/python-package/insightface/data/pickle_object.py", "repo_id": "insightface", "token_count": 176 }
131
#ifndef MESH_CORE_HPP_ #define MESH_CORE_HPP_ #include <stdio.h> #include <cmath> #include <algorithm> #include <string> #include <iostream> #include <fstream> using namespace std; class point { public: float x; float y; float dot(point p) { return this->x * p.x + this->y * p.y; } point operator-(const point& p) { point np; np.x = this->x - p.x; np.y = this->y - p.y; return np; } point operator+(const point& p) { point np; np.x = this->x + p.x; np.y = this->y + p.y; return np; } point operator*(float s) { point np; np.x = s * this->x; np.y = s * this->y; return np; } }; bool isPointInTri(point p, point p0, point p1, point p2, int h, int w); void get_point_weight(float* weight, point p, point p0, point p1, point p2); void _get_normal_core( float* normal, float* tri_normal, int* triangles, int ntri); void _rasterize_triangles_core( float* vertices, int* triangles, float* depth_buffer, int* triangle_buffer, float* barycentric_weight, int nver, int ntri, int h, int w); void _render_colors_core( float* image, float* vertices, int* triangles, float* colors, float* depth_buffer, int nver, int ntri, int h, int w, int c); void _render_texture_core( float* image, float* vertices, int* triangles, float* texture, float* tex_coords, int* tex_triangles, float* depth_buffer, int nver, int tex_nver, int ntri, int h, int w, int c, int tex_h, int tex_w, int tex_c, int mapping_type); void _write_obj_with_colors_texture(string filename, string mtl_name, float* vertices, int* triangles, float* colors, float* uv_coords, int nver, int ntri, int ntexver); #endif
insightface/python-package/insightface/thirdparty/face3d/mesh/cython/mesh_core.h/0
{ "file_path": "insightface/python-package/insightface/thirdparty/face3d/mesh/cython/mesh_core.h", "repo_id": "insightface", "token_count": 828 }
132
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from skimage import measure from mpl_toolkits.mplot3d import Axes3D def plot_mesh(vertices, triangles, subplot = [1,1,1], title = 'mesh', el = 90, az = -90, lwdt=.1, dist = 6, color = "grey"): ''' plot the mesh Args: vertices: [nver, 3] triangles: [ntri, 3] ''' ax = plt.subplot(subplot[0], subplot[1], subplot[2], projection = '3d') ax.plot_trisurf(vertices[:, 0], vertices[:, 1], vertices[:, 2], triangles = triangles, lw = lwdt, color = color, alpha = 1) ax.axis("off") ax.view_init(elev = el, azim = az) ax.dist = dist plt.title(title) ### -------------- Todo: use vtk to visualize mesh? or visvis? or VisPy?
insightface/python-package/insightface/thirdparty/face3d/mesh_numpy/vis.py/0
{ "file_path": "insightface/python-package/insightface/thirdparty/face3d/mesh_numpy/vis.py", "repo_id": "insightface", "token_count": 308 }
133
To reproduce the figures and tables in the notebook, please download everything (model, code, data and meta info) from here: [GDrive](https://drive.google.com/file/d/1aC4zf2Bn0xCVH_ZtEuQipR2JvRb1bf8o/view?usp=sharing) or [Baidu Cloud](https://pan.baidu.com/s/1oer0p4_mcOrs4cfdeWfbFg) Updated Meta data (1:1 and 1:N): [Baidu Cloud](https://pan.baidu.com/s/1x-ytzg4zkCTOTtklUgAhfg) (code:7g8o) ; [GDrive](https://drive.google.com/file/d/1MXzrU_zUESSx_242pRUnVvW_wDzfU8Ky/view?usp=sharing) Please apply for the IJB-B and IJB-C by yourself and strictly follow their distribution licenses. ## Aknowledgement Great thanks for Weidi Xie's instruction [2,3,4,5] to evaluate ArcFace [1] on IJB-B[6] and IJB-C[7] (1:1 protocol). Great thanks for Yuge Huang's code [8] to evaluate ArcFace [1] on IJB-B[6] and IJB-C[7] (1:N protocol). ## Reference [1] Jiankang Deng, Jia Guo, Niannan Xue, Stefanos Zafeiriou. Arcface: Additive angular margin loss for deep face recognition[J]. arXiv:1801.07698, 2018. [2] https://github.com/ox-vgg/vgg_face2. [3] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, Andrew Zisserman. VGGFace2: A dataset for recognising faces across pose and age. FG, 2018. [4] Weidi Xie, Andrew Zisserman. Multicolumn Networks for Face Recognition. BMVC 2018. [5] Weidi Xie, Li Shen, Andrew Zisserman. Comparator Networks. ECCV, 2018. [6] Whitelam, Cameron, Emma Taborsky, Austin Blanton, Brianna Maze, Jocelyn C. Adams, Tim Miller, Nathan D. Kalka et al. IARPA Janus Benchmark-B Face Dataset. CVPR Workshops, 2017. [7] Maze, Brianna, Jocelyn Adams, James A. Duncan, Nathan Kalka, Tim Miller, Charles Otto, Anil K. Jain et al. IARPA Janus Benchmark–C: Face Dataset and Protocol. ICB, 2018. [8] Yuge Huang, Pengcheng Shen, Ying Tai, Shaoxin Li, Xiaoming Liu, Jilin Li, Feiyue Huang, Rongrong Ji. Distribution Distillation Loss: Generic Approach for Improving Face Recognition from Hard Samples. arXiv:2002.03662.
insightface/recognition/_evaluation_/ijb/README.md/0
{ "file_path": "insightface/recognition/_evaluation_/ijb/README.md", "repo_id": "insightface", "token_count": 732 }
134
''' @author: insightface ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os import json import argparse import numpy as np import mxnet as mx def is_no_bias(attr): ret = False if 'no_bias' in attr and (attr['no_bias'] == True or attr['no_bias'] == 'True'): ret = True return ret def count_fc_flops(input_filter, output_filter, attr): #print(input_filter, output_filter ,attr) ret = 2 * input_filter * output_filter if is_no_bias(attr): ret -= output_filter return int(ret) def count_conv_flops(input_shape, output_shape, attr): kernel = attr['kernel'][1:-1].split(',') kernel = [int(x) for x in kernel] #print('kernel', kernel) if is_no_bias(attr): ret = (2 * input_shape[1] * kernel[0] * kernel[1] - 1) * output_shape[2] * output_shape[3] * output_shape[1] else: ret = 2 * input_shape[1] * kernel[0] * kernel[1] * output_shape[ 2] * output_shape[3] * output_shape[1] num_group = 1 if 'num_group' in attr: num_group = int(attr['num_group']) ret /= num_group return int(ret) def count_flops(sym, **data_shapes): all_layers = sym.get_internals() #print(all_layers) arg_shapes, out_shapes, aux_shapes = all_layers.infer_shape(**data_shapes) out_shape_dict = dict(zip(all_layers.list_outputs(), out_shapes)) nodes = json.loads(sym.tojson())['nodes'] nodeid_shape = {} for nodeid, node in enumerate(nodes): name = node['name'] layer_name = name + "_output" if layer_name in out_shape_dict: nodeid_shape[nodeid] = out_shape_dict[layer_name] #print(nodeid_shape) FLOPs = 0 for nodeid, node in enumerate(nodes): flops = 0 if node['op'] == 'Convolution': output_shape = nodeid_shape[nodeid] name = node['name'] attr = node['attrs'] input_nodeid = node['inputs'][0][0] input_shape = nodeid_shape[input_nodeid] flops = count_conv_flops(input_shape, output_shape, attr) elif node['op'] == 'FullyConnected': attr = node['attrs'] output_shape = nodeid_shape[nodeid] input_nodeid = node['inputs'][0][0] input_shape = nodeid_shape[input_nodeid] output_filter = output_shape[1] input_filter = input_shape[1] * input_shape[2] * input_shape[3] #assert len(input_shape)==4 and input_shape[2]==1 and input_shape[3]==1 flops = count_fc_flops(input_filter, output_filter, attr) #print(node, flops) FLOPs += flops return FLOPs def flops_str(FLOPs): preset = [(1e12, 'T'), (1e9, 'G'), (1e6, 'M'), (1e3, 'K')] for p in preset: if FLOPs // p[0] > 0: N = FLOPs / p[0] ret = "%.1f%s" % (N, p[1]) return ret ret = "%.1f" % (FLOPs) return ret if __name__ == '__main__': parser = argparse.ArgumentParser(description='flops counter') # general #parser.add_argument('--model', default='../models2/y2-arcface-retinat1/model,1', help='path to load model.') #parser.add_argument('--model', default='../models2/r100fc-arcface-retinaa/model,1', help='path to load model.') parser.add_argument('--model', default='../models2/r50fc-arcface-emore/model,1', help='path to load model.') args = parser.parse_args() _vec = args.model.split(',') assert len(_vec) == 2 prefix = _vec[0] epoch = int(_vec[1]) print('loading', prefix, epoch) sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) all_layers = sym.get_internals() sym = all_layers['fc1_output'] FLOPs = count_flops(sym, data=(1, 3, 112, 112)) print('FLOPs:', FLOPs)
insightface/recognition/arcface_mxnet/common/flops_counter.py/0
{ "file_path": "insightface/recognition/arcface_mxnet/common/flops_counter.py", "repo_id": "insightface", "token_count": 1830 }
135
import os import sys import struct import argparse import numbers import random from mxnet import recordio import oneflow.core.record.record_pb2 as of_record def parse_arguement(argv): parser = argparse.ArgumentParser() parser.add_argument( "--data_dir", type=str, default="insightface/datasets/faces_emore", help="Root directory to mxnet dataset.", ) parser.add_argument( "--output_filepath", type=str, default="./ofrecord", help="Path to output OFRecord.", ) parser.add_argument( "--num_part", type=int, default=96, help="num_part of OFRecord to generate.", ) return parser.parse_args(argv) def load_train_data(data_dir): path_imgrec = os.path.join(data_dir, "train.rec") path_imgidx = path_imgrec[0:-4] + ".idx" print( "Loading recordio {}\n\ Corresponding record idx is {}".format( path_imgrec, path_imgidx ) ) imgrec = recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, "r", key_type=int) # Read header0 to get some info. identity_key_start = 0 identity_key_end = 0 imgidx_list = [] id2range = {} rec0 = imgrec.read_idx(0) header0, img_str = recordio.unpack(rec0) if header0.flag > 0: identity_key_start = int(header0.label[0]) identity_key_end = int(header0.label[1]) imgidx_list = range(1, identity_key_start) # Read identity id range for identity in range(identity_key_start, identity_key_end): rec = imgrec.read_idx(identity) header, s = recordio.unpack(rec) a, b = int(header.label[0]), int(header.label[1]) id2range[identity] = (a, b) else: imgidx_list = imgrec.keys return imgrec, imgidx_list def convert_to_ofrecord(img_data): """ Convert python dictionary formath data of one image to of.Example proto. Args: img_data: Python dict. Returns: example: The converted of.Exampl """ def _int32_feature(value): """Wrapper for inserting int32 features into Example proto.""" if not isinstance(value, list): value = [value] return of_record.Feature(int32_list=of_record.Int32List(value=value)) def _float_feature(value): """Wrapper for inserting float features into Example proto.""" if not isinstance(value, list): value = [value] return of_record.Feature(float_list=of_record.FloatList(value=value)) def _double_feature(value): """Wrapper for inserting float features into Example proto.""" if not isinstance(value, list): value = [value] return of_record.Feature(double_list=of_record.DoubleList(value=value)) def _bytes_feature(value): """Wrapper for inserting bytes features into Example proto.""" # if isinstance(value, six.string_types): # value = six.binary_type(value, encoding='utf-8') return of_record.Feature(bytes_list=of_record.BytesList(value=[value])) example = of_record.OFRecord( feature={ "label": _int32_feature(img_data["label"]), "encoded": _bytes_feature(img_data["pixel_data"]), } ) return example def main(args): # Convert recordio to ofrecord imgrec, imgidx_list = load_train_data(data_dir=args.data_dir) imgidx_list = list(imgidx_list) random.shuffle(imgidx_list) output_dir = os.path.join(args.output_filepath, "train") if not os.path.exists(output_dir): os.makedirs(output_dir) num_images = len(imgidx_list) num_images_per_part = (num_images + args.num_part) // args.num_part print("num_images", num_images, "num_images_per_part", num_images_per_part) for part_id in range(args.num_part): part_name = "part-" + "{:0>5d}".format(part_id) output_file = os.path.join(output_dir, part_name) file_idx_start = part_id * num_images_per_part file_idx_end = min((part_id + 1) * num_images_per_part, num_images) print("part-" + str(part_id), "start", file_idx_start, "end", file_idx_end) with open(output_file, "wb") as f: for file_idx in range(file_idx_start, file_idx_end): idx = imgidx_list[file_idx] if idx % 10000 == 0: print("Converting images: {} of {}".format(idx, len(imgidx_list))) img_data = {} rec = imgrec.read_idx(idx) header, s = recordio.unpack(rec) label = header.label if not isinstance(label, numbers.Number): label = label[0] img_data["label"] = int(label) img_data["pixel_data"] = s example = convert_to_ofrecord(img_data) size = example.ByteSize() f.write(struct.pack("q", size)) f.write(example.SerializeToString()) if __name__ == "__main__": main(parse_arguement(sys.argv[1:]))
insightface/recognition/arcface_oneflow/tools/mx_recordio_2_ofrecord_shuffled_npart.py/0
{ "file_path": "insightface/recognition/arcface_oneflow/tools/mx_recordio_2_ofrecord_shuffled_npart.py", "repo_id": "insightface", "token_count": 2274 }
136
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import requests import json import base64 import os import argparse parser = argparse.ArgumentParser(description="args for paddleserving") parser.add_argument("--image_dir", type=str, default="./imgs") args = parser.parse_args() def cv2_to_base64(image): return base64.b64encode(image).decode('utf8') url = "http://127.0.0.1:9998/ArcFace/prediction" test_img_dir = args.image_dir for idx, img_file in enumerate(os.listdir(test_img_dir)): with open(os.path.join(test_img_dir, img_file), 'rb') as file: image_data1 = file.read() image = cv2_to_base64(image_data1) for i in range(1): data = {"key": ["image"], "value": [image]} r = requests.post(url=url, data=json.dumps(data)) print(r.json()) print("==> total number of test imgs: ", len(os.listdir(test_img_dir)))
insightface/recognition/arcface_paddle/deploy/pdserving/pipeline_http_client.py/0
{ "file_path": "insightface/recognition/arcface_paddle/deploy/pdserving/pipeline_http_client.py", "repo_id": "insightface", "token_count": 496 }
137
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import paddle from .utils.verification import CallBackVerification from .utils.io import Checkpoint from . import backbones def validation(args): checkpoint = Checkpoint( rank=0, world_size=1, embedding_size=args.embedding_size, num_classes=None, checkpoint_dir=args.checkpoint_dir, ) backbone = eval("backbones.{}".format(args.backbone))( num_features=args.embedding_size) checkpoint.load(backbone, for_train=False, dtype='float32') backbone.eval() callback_verification = CallBackVerification( 1, 0, args.batch_size, args.val_targets, args.data_dir) callback_verification(1, backbone)
insightface/recognition/arcface_paddle/dynamic/validation.py/0
{ "file_path": "insightface/recognition/arcface_paddle/dynamic/validation.py", "repo_id": "insightface", "token_count": 427 }
138
#!/bin/bash function func_parser_key(){ strs=$1 IFS=":" array=(${strs}) tmp=${array[0]} echo ${tmp} } function func_parser_value(){ strs=$1 IFS=":" array=(${strs}) tmp=${array[1]} echo ${tmp} } function func_set_params(){ key=$1 value=$2 if [ ${key}x = "null"x ];then echo " " elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then echo " " else echo "${key}=${value}" fi } function func_parser_params(){ strs=$1 IFS=":" array=(${strs}) key=${array[0]} tmp=${array[1]} IFS="|" res="" for _params in ${tmp[*]}; do IFS="=" array=(${_params}) mode=${array[0]} value=${array[1]} if [[ ${mode} = ${MODE} ]]; then IFS="|" #echo $(func_set_params "${mode}" "${value}") echo $value break fi IFS="|" done echo ${res} } function status_check(){ last_status=$1 # the exit code run_command=$2 run_log=$3 if [ $last_status -eq 0 ]; then echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} else echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log} fi }
insightface/recognition/arcface_paddle/test_tipc/common_func.sh/0
{ "file_path": "insightface/recognition/arcface_paddle/test_tipc/common_func.sh", "repo_id": "insightface", "token_count": 674 }
139
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import time import argparse from paddle.inference import Config from paddle.inference import create_predictor def parse_args(): def str2bool(v): return v.lower() in ("true", "t", "1") # general params parser = argparse.ArgumentParser() parser.add_argument("--use_gpu", type=str2bool, default=False) parser.add_argument("--gpu_mem", type=int, default=1000) # params for predict parser.add_argument("--model_file", type=str) parser.add_argument("--params_file", type=str) parser.add_argument("-b", "--batch_size", type=int, default=1) parser.add_argument("--ir_optim", type=str2bool, default=True) parser.add_argument("--use_mkldnn", type=str2bool, default=True) parser.add_argument("--cpu_num_threads", type=int, default=10) parser.add_argument("--model", type=str) return parser.parse_args() def create_paddle_predictor(args): config = Config(args.model_file, args.params_file) if args.use_gpu: config.enable_use_gpu(args.gpu_mem, 0) else: config.disable_gpu() if args.use_mkldnn: config.enable_mkldnn() config.set_cpu_math_library_num_threads(args.cpu_num_threads) config.set_mkldnn_cache_capacity(100) config.disable_glog_info() config.switch_ir_optim(args.ir_optim) # default true config.enable_memory_optim() # use zero copy config.switch_use_feed_fetch_ops(False) predictor = create_predictor(config) return predictor class Predictor(object): def __init__(self, args): self.args = args self.paddle_predictor = create_paddle_predictor(args) input_names = self.paddle_predictor.get_input_names() self.input_tensor = self.paddle_predictor.get_input_handle(input_names[ 0]) output_names = self.paddle_predictor.get_output_names() self.output_tensor = self.paddle_predictor.get_output_handle( output_names[0]) def predict(self, batch_input): self.input_tensor.copy_from_cpu(batch_input) self.paddle_predictor.run() batch_output = self.output_tensor.copy_to_cpu() return batch_output def benchmark_predict(self): test_num = 500 test_time = 0.0 for i in range(0, test_num + 10): inputs = np.random.rand(args.batch_size, 3, 112, 112).astype(np.float32) start_time = time.time() batch_output = self.predict(inputs).flatten() if i >= 10: test_time += time.time() - start_time # time.sleep(0.01) # sleep for T4 GPU print("{0}\tbatch size: {1}\ttime(ms): {2}".format( args.model, args.batch_size, 1000 * test_time / test_num)) if __name__ == "__main__": args = parse_args() assert os.path.exists( args.model_file), "The path of 'model_file' does not exist: {}".format( args.model_file) assert os.path.exists( args.params_file ), "The path of 'params_file' does not exist: {}".format(args.params_file) predictor = Predictor(args) assert args.model is not None predictor.benchmark_predict()
insightface/recognition/arcface_paddle/tools/benchmark_speed.py/0
{ "file_path": "insightface/recognition/arcface_paddle/tools/benchmark_speed.py", "repo_id": "insightface", "token_count": 1546 }
140
import torch from torch import nn from torch.utils.checkpoint import checkpoint __all__ = ['iresnet18', 'iresnet34', 'iresnet50', 'iresnet100', 'iresnet200'] using_ckpt = False def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class IBasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1): super(IBasicBlock, self).__init__() if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05,) self.conv1 = conv3x3(inplanes, planes) self.bn2 = nn.BatchNorm2d(planes, eps=1e-05,) self.prelu = nn.PReLU(planes) self.conv2 = conv3x3(planes, planes, stride) self.bn3 = nn.BatchNorm2d(planes, eps=1e-05,) self.downsample = downsample self.stride = stride def forward_impl(self, x): identity = x out = self.bn1(x) out = self.conv1(out) out = self.bn2(out) out = self.prelu(out) out = self.conv2(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity return out def forward(self, x): if self.training and using_ckpt: return checkpoint(self.forward_impl, x) else: return self.forward_impl(x) class IResNet(nn.Module): fc_scale = 7 * 7 def __init__(self, block, layers, dropout=0, num_features=512, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False): super(IResNet, self).__init__() self.extra_gflops = 0.0 self.fp16 = fp16 self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05) self.prelu = nn.PReLU(self.inplanes) self.layer1 = self._make_layer(block, 64, layers[0], stride=2) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05,) self.dropout = nn.Dropout(p=dropout, inplace=True) self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features) self.features = nn.BatchNorm1d(num_features, eps=1e-05) nn.init.constant_(self.features.weight, 1.0) self.features.weight.requires_grad = False for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, 0, 0.1) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) if zero_init_residual: for m in self.modules(): if isinstance(m, IBasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ), ) layers = [] layers.append( block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation)) return nn.Sequential(*layers) def forward(self, x): with torch.cuda.amp.autocast(self.fp16): x = self.conv1(x) x = self.bn1(x) x = self.prelu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.bn2(x) x = torch.flatten(x, 1) x = self.dropout(x) x = self.fc(x.float() if self.fp16 else x) x = self.features(x) return x def _iresnet(arch, block, layers, pretrained, progress, **kwargs): model = IResNet(block, layers, **kwargs) if pretrained: raise ValueError() return model def iresnet18(pretrained=False, progress=True, **kwargs): return _iresnet('iresnet18', IBasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def iresnet34(pretrained=False, progress=True, **kwargs): return _iresnet('iresnet34', IBasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) def iresnet50(pretrained=False, progress=True, **kwargs): return _iresnet('iresnet50', IBasicBlock, [3, 4, 14, 3], pretrained, progress, **kwargs) def iresnet100(pretrained=False, progress=True, **kwargs): return _iresnet('iresnet100', IBasicBlock, [3, 13, 30, 3], pretrained, progress, **kwargs) def iresnet200(pretrained=False, progress=True, **kwargs): return _iresnet('iresnet200', IBasicBlock, [6, 26, 60, 6], pretrained, progress, **kwargs)
insightface/recognition/arcface_torch/backbones/iresnet.py/0
{ "file_path": "insightface/recognition/arcface_torch/backbones/iresnet.py", "repo_id": "insightface", "token_count": 3963 }
141
import numbers import os import queue as Queue import threading from typing import Iterable import mxnet as mx import numpy as np import torch from functools import partial from torch import distributed from torch.utils.data import DataLoader, Dataset from torchvision import transforms from torchvision.datasets import ImageFolder from utils.utils_distributed_sampler import DistributedSampler from utils.utils_distributed_sampler import get_dist_info, worker_init_fn def get_dataloader( root_dir, local_rank, batch_size, dali = False, dali_aug = False, seed = 2048, num_workers = 2, ) -> Iterable: rec = os.path.join(root_dir, 'train.rec') idx = os.path.join(root_dir, 'train.idx') train_set = None # Synthetic if root_dir == "synthetic": train_set = SyntheticDataset() dali = False # Mxnet RecordIO elif os.path.exists(rec) and os.path.exists(idx): train_set = MXFaceDataset(root_dir=root_dir, local_rank=local_rank) # Image Folder else: transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) train_set = ImageFolder(root_dir, transform) # DALI if dali: return dali_data_iter( batch_size=batch_size, rec_file=rec, idx_file=idx, num_threads=2, local_rank=local_rank, dali_aug=dali_aug) rank, world_size = get_dist_info() train_sampler = DistributedSampler( train_set, num_replicas=world_size, rank=rank, shuffle=True, seed=seed) if seed is None: init_fn = None else: init_fn = partial(worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) train_loader = DataLoaderX( local_rank=local_rank, dataset=train_set, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers, pin_memory=True, drop_last=True, worker_init_fn=init_fn, ) return train_loader class BackgroundGenerator(threading.Thread): def __init__(self, generator, local_rank, max_prefetch=6): super(BackgroundGenerator, self).__init__() self.queue = Queue.Queue(max_prefetch) self.generator = generator self.local_rank = local_rank self.daemon = True self.start() def run(self): torch.cuda.set_device(self.local_rank) for item in self.generator: self.queue.put(item) self.queue.put(None) def next(self): next_item = self.queue.get() if next_item is None: raise StopIteration return next_item def __next__(self): return self.next() def __iter__(self): return self class DataLoaderX(DataLoader): def __init__(self, local_rank, **kwargs): super(DataLoaderX, self).__init__(**kwargs) self.stream = torch.cuda.Stream(local_rank) self.local_rank = local_rank def __iter__(self): self.iter = super(DataLoaderX, self).__iter__() self.iter = BackgroundGenerator(self.iter, self.local_rank) self.preload() return self def preload(self): self.batch = next(self.iter, None) if self.batch is None: return None with torch.cuda.stream(self.stream): for k in range(len(self.batch)): self.batch[k] = self.batch[k].to(device=self.local_rank, non_blocking=True) def __next__(self): torch.cuda.current_stream().wait_stream(self.stream) batch = self.batch if batch is None: raise StopIteration self.preload() return batch class MXFaceDataset(Dataset): def __init__(self, root_dir, local_rank): super(MXFaceDataset, self).__init__() self.transform = transforms.Compose( [transforms.ToPILImage(), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) self.root_dir = root_dir self.local_rank = local_rank path_imgrec = os.path.join(root_dir, 'train.rec') path_imgidx = os.path.join(root_dir, 'train.idx') self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') s = self.imgrec.read_idx(0) header, _ = mx.recordio.unpack(s) if header.flag > 0: self.header0 = (int(header.label[0]), int(header.label[1])) self.imgidx = np.array(range(1, int(header.label[0]))) else: self.imgidx = np.array(list(self.imgrec.keys)) def __getitem__(self, index): idx = self.imgidx[index] s = self.imgrec.read_idx(idx) header, img = mx.recordio.unpack(s) label = header.label if not isinstance(label, numbers.Number): label = label[0] label = torch.tensor(label, dtype=torch.long) sample = mx.image.imdecode(img).asnumpy() if self.transform is not None: sample = self.transform(sample) return sample, label def __len__(self): return len(self.imgidx) class SyntheticDataset(Dataset): def __init__(self): super(SyntheticDataset, self).__init__() img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.int32) img = np.transpose(img, (2, 0, 1)) img = torch.from_numpy(img).squeeze(0).float() img = ((img / 255) - 0.5) / 0.5 self.img = img self.label = 1 def __getitem__(self, index): return self.img, self.label def __len__(self): return 1000000 def dali_data_iter( batch_size: int, rec_file: str, idx_file: str, num_threads: int, initial_fill=32768, random_shuffle=True, prefetch_queue_depth=1, local_rank=0, name="reader", mean=(127.5, 127.5, 127.5), std=(127.5, 127.5, 127.5), dali_aug=False ): """ Parameters: ---------- initial_fill: int Size of the buffer that is used for shuffling. If random_shuffle is False, this parameter is ignored. """ rank: int = distributed.get_rank() world_size: int = distributed.get_world_size() import nvidia.dali.fn as fn import nvidia.dali.types as types from nvidia.dali.pipeline import Pipeline from nvidia.dali.plugin.pytorch import DALIClassificationIterator def dali_random_resize(img, resize_size, image_size=112): img = fn.resize(img, resize_x=resize_size, resize_y=resize_size) img = fn.resize(img, size=(image_size, image_size)) return img def dali_random_gaussian_blur(img, window_size): img = fn.gaussian_blur(img, window_size=window_size * 2 + 1) return img def dali_random_gray(img, prob_gray): saturate = fn.random.coin_flip(probability=1 - prob_gray) saturate = fn.cast(saturate, dtype=types.FLOAT) img = fn.hsv(img, saturation=saturate) return img def dali_random_hsv(img, hue, saturation): img = fn.hsv(img, hue=hue, saturation=saturation) return img def multiplexing(condition, true_case, false_case): neg_condition = condition ^ True return condition * true_case + neg_condition * false_case condition_resize = fn.random.coin_flip(probability=0.1) size_resize = fn.random.uniform(range=(int(112 * 0.5), int(112 * 0.8)), dtype=types.FLOAT) condition_blur = fn.random.coin_flip(probability=0.2) window_size_blur = fn.random.uniform(range=(1, 2), dtype=types.INT32) condition_flip = fn.random.coin_flip(probability=0.5) condition_hsv = fn.random.coin_flip(probability=0.2) hsv_hue = fn.random.uniform(range=(0., 20.), dtype=types.FLOAT) hsv_saturation = fn.random.uniform(range=(1., 1.2), dtype=types.FLOAT) pipe = Pipeline( batch_size=batch_size, num_threads=num_threads, device_id=local_rank, prefetch_queue_depth=prefetch_queue_depth, ) condition_flip = fn.random.coin_flip(probability=0.5) with pipe: jpegs, labels = fn.readers.mxnet( path=rec_file, index_path=idx_file, initial_fill=initial_fill, num_shards=world_size, shard_id=rank, random_shuffle=random_shuffle, pad_last_batch=False, name=name) images = fn.decoders.image(jpegs, device="mixed", output_type=types.RGB) if dali_aug: images = fn.cast(images, dtype=types.UINT8) images = multiplexing(condition_resize, dali_random_resize(images, size_resize, image_size=112), images) images = multiplexing(condition_blur, dali_random_gaussian_blur(images, window_size_blur), images) images = multiplexing(condition_hsv, dali_random_hsv(images, hsv_hue, hsv_saturation), images) images = dali_random_gray(images, 0.1) images = fn.crop_mirror_normalize( images, dtype=types.FLOAT, mean=mean, std=std, mirror=condition_flip) pipe.set_outputs(images, labels) pipe.build() return DALIWarper(DALIClassificationIterator(pipelines=[pipe], reader_name=name, )) @torch.no_grad() class DALIWarper(object): def __init__(self, dali_iter): self.iter = dali_iter def __next__(self): data_dict = self.iter.__next__()[0] tensor_data = data_dict['data'].cuda() tensor_label: torch.Tensor = data_dict['label'].cuda().long() tensor_label.squeeze_() return tensor_data, tensor_label def __iter__(self): return self def reset(self): self.iter.reset()
insightface/recognition/arcface_torch/dataset.py/0
{ "file_path": "insightface/recognition/arcface_torch/dataset.py", "repo_id": "insightface", "token_count": 4374 }
142
from __future__ import division import datetime import os import os.path as osp import glob import numpy as np import cv2 import sys import onnxruntime import onnx import argparse from onnx import numpy_helper from insightface.data import get_image class ArcFaceORT: def __init__(self, model_path, cpu=False): self.model_path = model_path # providers = None will use available provider, for onnxruntime-gpu it will be "CUDAExecutionProvider" self.providers = ['CPUExecutionProvider'] if cpu else None #input_size is (w,h), return error message, return None if success def check(self, track='cfat', test_img = None): #default is cfat max_model_size_mb=1024 max_feat_dim=512 max_time_cost=15 if track.startswith('ms1m'): max_model_size_mb=1024 max_feat_dim=512 max_time_cost=10 elif track.startswith('glint'): max_model_size_mb=1024 max_feat_dim=1024 max_time_cost=20 elif track.startswith('cfat'): max_model_size_mb = 1024 max_feat_dim = 512 max_time_cost = 15 elif track.startswith('unconstrained'): max_model_size_mb=1024 max_feat_dim=1024 max_time_cost=30 else: return "track not found" if not os.path.exists(self.model_path): return "model_path not exists" if not os.path.isdir(self.model_path): return "model_path should be directory" onnx_files = [] for _file in os.listdir(self.model_path): if _file.endswith('.onnx'): onnx_files.append(osp.join(self.model_path, _file)) if len(onnx_files)==0: return "do not have onnx files" self.model_file = sorted(onnx_files)[-1] print('use onnx-model:', self.model_file) try: session = onnxruntime.InferenceSession(self.model_file, providers=self.providers) except: return "load onnx failed" input_cfg = session.get_inputs()[0] input_shape = input_cfg.shape print('input-shape:', input_shape) if len(input_shape)!=4: return "length of input_shape should be 4" if not isinstance(input_shape[0], str): #return "input_shape[0] should be str to support batch-inference" print('reset input-shape[0] to None') model = onnx.load(self.model_file) model.graph.input[0].type.tensor_type.shape.dim[0].dim_param = 'None' new_model_file = osp.join(self.model_path, 'zzzzrefined.onnx') onnx.save(model, new_model_file) self.model_file = new_model_file print('use new onnx-model:', self.model_file) try: session = onnxruntime.InferenceSession(self.model_file, providers=self.providers) except: return "load onnx failed" input_cfg = session.get_inputs()[0] input_shape = input_cfg.shape print('new-input-shape:', input_shape) self.image_size = tuple(input_shape[2:4][::-1]) #print('image_size:', self.image_size) input_name = input_cfg.name outputs = session.get_outputs() output_names = [] for o in outputs: output_names.append(o.name) #print(o.name, o.shape) if len(output_names)!=1: return "number of output nodes should be 1" self.session = session self.input_name = input_name self.output_names = output_names #print(self.output_names) model = onnx.load(self.model_file) graph = model.graph if len(graph.node)<8: return "too small onnx graph" input_size = (112,112) self.crop = None if track=='cfat': crop_file = osp.join(self.model_path, 'crop.txt') if osp.exists(crop_file): lines = open(crop_file,'r').readlines() if len(lines)!=6: return "crop.txt should contain 6 lines" lines = [int(x) for x in lines] self.crop = lines[:4] input_size = tuple(lines[4:6]) if input_size!=self.image_size: return "input-size is inconsistant with onnx model input, %s vs %s"%(input_size, self.image_size) self.model_size_mb = os.path.getsize(self.model_file) / float(1024*1024) if self.model_size_mb > max_model_size_mb: return "max model size exceed, given %.3f-MB"%self.model_size_mb input_mean = None input_std = None if track=='cfat': pn_file = osp.join(self.model_path, 'pixel_norm.txt') if osp.exists(pn_file): lines = open(pn_file,'r').readlines() if len(lines)!=2: return "pixel_norm.txt should contain 2 lines" input_mean = float(lines[0]) input_std = float(lines[1]) if input_mean is not None or input_std is not None: if input_mean is None or input_std is None: return "please set input_mean and input_std simultaneously" else: find_sub = False find_mul = False for nid, node in enumerate(graph.node[:8]): print(nid, node.name) if node.name.startswith('Sub') or node.name.startswith('_minus'): find_sub = True if node.name.startswith('Mul') or node.name.startswith('_mul') or node.name.startswith('Div'): find_mul = True if find_sub and find_mul: print("find sub and mul") #mxnet arcface model input_mean = 0.0 input_std = 1.0 else: input_mean = 127.5 input_std = 127.5 self.input_mean = input_mean self.input_std = input_std for initn in graph.initializer: weight_array = numpy_helper.to_array(initn) dt = weight_array.dtype if dt.itemsize<4: return 'invalid weight type - (%s:%s)' % (initn.name, dt.name) if test_img is None: test_img = get_image('Tom_Hanks_54745') test_img = cv2.resize(test_img, self.image_size) else: test_img = cv2.resize(test_img, self.image_size) feat, cost = self.benchmark(test_img) batch_result = self.check_batch(test_img) batch_result_sum = float(np.sum(batch_result)) if batch_result_sum in [float('inf'), -float('inf')] or batch_result_sum != batch_result_sum: print(batch_result) print(batch_result_sum) return "batch result output contains NaN!" if len(feat.shape) < 2: return "the shape of the feature must be two, but get {}".format(str(feat.shape)) if feat.shape[1] > max_feat_dim: return "max feat dim exceed, given %d"%feat.shape[1] self.feat_dim = feat.shape[1] cost_ms = cost*1000 if cost_ms>max_time_cost: return "max time cost exceed, given %.4f"%cost_ms self.cost_ms = cost_ms print('check stat:, model-size-mb: %.4f, feat-dim: %d, time-cost-ms: %.4f, input-mean: %.3f, input-std: %.3f'%(self.model_size_mb, self.feat_dim, self.cost_ms, self.input_mean, self.input_std)) return None def check_batch(self, img): if not isinstance(img, list): imgs = [img, ] * 32 if self.crop is not None: nimgs = [] for img in imgs: nimg = img[self.crop[1]:self.crop[3], self.crop[0]:self.crop[2], :] if nimg.shape[0] != self.image_size[1] or nimg.shape[1] != self.image_size[0]: nimg = cv2.resize(nimg, self.image_size) nimgs.append(nimg) imgs = nimgs blob = cv2.dnn.blobFromImages( images=imgs, scalefactor=1.0 / self.input_std, size=self.image_size, mean=(self.input_mean, self.input_mean, self.input_mean), swapRB=True) net_out = self.session.run(self.output_names, {self.input_name: blob})[0] return net_out def meta_info(self): return {'model-size-mb':self.model_size_mb, 'feature-dim':self.feat_dim, 'infer': self.cost_ms} def forward(self, imgs): if not isinstance(imgs, list): imgs = [imgs] input_size = self.image_size if self.crop is not None: nimgs = [] for img in imgs: nimg = img[self.crop[1]:self.crop[3],self.crop[0]:self.crop[2],:] if nimg.shape[0]!=input_size[1] or nimg.shape[1]!=input_size[0]: nimg = cv2.resize(nimg, input_size) nimgs.append(nimg) imgs = nimgs blob = cv2.dnn.blobFromImages(imgs, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) net_out = self.session.run(self.output_names, {self.input_name : blob})[0] return net_out def benchmark(self, img): input_size = self.image_size if self.crop is not None: nimg = img[self.crop[1]:self.crop[3],self.crop[0]:self.crop[2],:] if nimg.shape[0]!=input_size[1] or nimg.shape[1]!=input_size[0]: nimg = cv2.resize(nimg, input_size) img = nimg blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) costs = [] for _ in range(50): ta = datetime.datetime.now() net_out = self.session.run(self.output_names, {self.input_name : blob})[0] tb = datetime.datetime.now() cost = (tb-ta).total_seconds() costs.append(cost) costs = sorted(costs) cost = costs[5] return net_out, cost if __name__ == '__main__': parser = argparse.ArgumentParser(description='') # general parser.add_argument('workdir', help='submitted work dir', type=str) parser.add_argument('--track', help='track name, for different challenge', type=str, default='cfat') args = parser.parse_args() handler = ArcFaceORT(args.workdir) err = handler.check(args.track) print('err:', err)
insightface/recognition/arcface_torch/onnx_helper.py/0
{ "file_path": "insightface/recognition/arcface_torch/onnx_helper.py", "repo_id": "insightface", "token_count": 5210 }
143
#!/bin/bash #### Parameters # datasets options: "casia", "lamp", "buaa", "oulu" # test_fold_id = -1 if testing 10 fold (casia & lamp) else test_fold_id = i (fold id) # test_mode: "pretrain" or "finetune" dataset='oulu' # img_root="path to data folder" img_root="/storage/local/local/Oulu_CASIA_NIR_VIS/crops112_3/" input_mode='grey' model_mode='29' test_mode='pretrain' test_fold_id=-1 model_name='L29.pth.tar' # pretrain model # model_name=$dataset'_fold'$test_fold_id'_final.pth.tar' # finetune: 'casia_fold1_final.pth.tar' CUDA_VISIBLE_DEVICES=6 python ./evaluate/eval_${dataset}_112.py --test_fold_id $test_fold_id --input_mode $input_mode --model_mode $model_mode --model_name $model_name --img_root $img_root --test_mode $test_mode | tee test.log
insightface/recognition/idmmd/eval.sh/0
{ "file_path": "insightface/recognition/idmmd/eval.sh", "repo_id": "insightface", "token_count": 307 }
144
## Partial-FC Partial FC is a distributed deep learning training framework for face recognition. The goal of Partial FC is to facilitate large-scale classification task (e.g. 10 or 100 million identities). It is much faster than the model parallel solution and there is no performance drop. ![Image text](https://github.com/nttstar/insightface-resources/blob/master/images/partial_speed1.png) ## Contents [Partial FC](https://arxiv.org/abs/2203.15565) - [Largest Face Recognition Dataset: **Glint360k**](#Glint360K) - [Docker](#Docker) - [Performance On Million Identities](#Benchmark) - [FAQ](#FAQ) - [Citation](#Citation) ## Glint360K We clean, merge, and release the largest and cleanest face recognition dataset Glint360K, which contains **`17091657`** images of **`360232`** individuals. By employing the Patial FC training strategy, baseline models trained on Glint360K can easily achieve state-of-the-art performance. Detailed evaluation results on the large-scale test set (e.g. IFRT, IJB-C and Megaface) are as follows: ### 1. Evaluation on IFRT **`r`** denotes the sampling rate of negative class centers. | Backbone | Dataset | African | Caucasian | Indian | Asian | ALL | | ------------ | ----------- | ----- | ----- | ------ | ----- | ----- | | R50 | MS1M-V3 | 76.24 | 86.21 | 84.44 | 37.43 | 71.02 | | R124 | MS1M-V3 | 81.08 | 89.06 | 87.53 | 38.40 | 74.76 | | R100 | **Glint360k**(r=1.0) | 89.50 | 94.23 | 93.54 | **65.07** | **88.67** | | R100 | **Glint360k**(r=0.1) | **90.45** | **94.60** | **93.96** | 63.91 | 88.23 | ### 2. Evaluation on IJB-C and Megaface We employ ResNet100 as the backbone and CosFace (m=0.4) as the loss function. TAR@FAR=1e-4 is reported on the IJB-C datasets, and TAR@FAR=1e-6 is reported on the Megaface dataset. |Test Dataset | IJB-C | Megaface_Id | Megaface_Ver | | :--- | :---: | :---: | :---: | | MS1MV2 | 96.4 | 98.3 | 98.6 | |**Glint360k** | **97.3** | **99.1** | **99.1** | ### 3. License The Glint360K dataset (and the models trained with this dataset) are available for non-commercial research purposes only. ### 4. Download - [x] [**Baidu Drive**](https://pan.baidu.com/s/1GsYqTTt7_Dn8BfxxsLFN0w) (code:o3az) - [x] **Magnet URI**: `magnet:?xt=urn:btih:E5F46EE502B9E76DA8CC3A0E4F7C17E4000C7B1E&dn=glint360k` Refer to the following command to unzip. ``` cat glint360k_* | tar -xzvf - # Don't forget the last '-'! # cf7433cbb915ac422230ba33176f4625 glint360k_00 # 589a5ea3ab59f283d2b5dd3242bc027a glint360k_01 # 8d54fdd5b1e4cd55e1b9a714d76d1075 glint360k_02 # cd7f008579dbed9c5af4d1275915d95e glint360k_03 # 64666b324911b47334cc824f5f836d4c glint360k_04 # a318e4d32493dd5be6b94dd48f9943ac glint360k_05 # c3ae1dcbecea360d2ec2a43a7b6f1d94 glint360k_06 # md5sum: # 5d9cd9f262ec87a5ca2eac5e703f7cdf train.idx # 8483be5af6f9906e19f85dee49132f8e train.rec ``` Use [unpack_glint360k.py](./unpack_glint360k.py) to unpack. ### 5. Pretrain models - [x] [**Baidu Drive**](https://pan.baidu.com/s/1sd9ZRsV2c_dWHW84kz1P1Q) (code:befi) - [x] [**Google Drive**](https://drive.google.com/drive/folders/1WLjDzEs1wC1K1jxDHNJ7dhEmQ3rOOILl?usp=sharing) | Framework | backbone | negative class centers sample_rate | IJBC@e4 | IFRT@e6 | | :--- | :--- | :--- | :--- | :--- | | mxnet | [R100](https://drive.google.com/drive/folders/1YPqIkOZWrmbli4GWfMJO2b0yiiZ7UCsP?usp=sharing) |1.0|97.3|-| | mxnet | [R100](https://drive.google.com/drive/folders/1-gF5sDwNoRcjwmpPSTNLpaZJi5N91BvL?usp=sharing) |0.1|97.3|-| | pytorch | [R50](https://drive.google.com/drive/folders/16hjOGRJpwsJCRjIBbO13z3SrSgvPTaMV?usp=sharing) |1.0|97.0|-| | pytorch | [R100](https://drive.google.com/drive/folders/19EHffHN0Yn8DjYm5ofrgVOf_xfkrVgqc?usp=sharing) |1.0|97.4|-| ## Docker Make sure you have installed the NVIDIA driver and Docker engine for your Linux distribution Note that you do not need to install the CUDA Toolkit and other independence on the host system, but the NVIDIA driver needs to be installed. Because the CUDA version used in the image is 10.1, the graphics driver version on the physical machine must be greater than 418. ### 1. Docker Getting Started You can use dockerhub or offline docker.tar to get the image of the Partial-fc. 1. dockerhub ```shell docker pull insightface/partial_fc:v1 ``` 2. offline images coming soon! ### 2. Getting Started ```shell sudo docker run -it -v /train_tmp:/train_tmp --net=host --privileged --gpus 8 --shm-size=1g insightface/partial_fc:v1 /bin/bash ``` `/train_tmp` is where you put your training set (if you have enough RAM memory, you can turn it into `tmpfs` first). ## Benchmark ### 1. Train Glint360K Using MXNET | Backbone | GPU | FP16 | BatchSize / it | Throughput img / sec | | :--- | :--- | :--- | :--- | :--- | | R100 | 8 * Tesla V100-SXM2-32GB | False | 64 | 1748 | | R100 | 8 * Tesla V100-SXM2-32GB | True | 64 | 3357 | | R100 | 8 * Tesla V100-SXM2-32GB | False | 128 | 1847 | | R100 | 8 * Tesla V100-SXM2-32GB | True | 128 | 3867 | | R50 | 8 * Tesla V100-SXM2-32GB | False | 64 | 2921 | | R50 | 8 * Tesla V100-SXM2-32GB | True | 64 | 5428 | | R50 | 8 * Tesla V100-SXM2-32GB | False | 128 | 3045 | | R50 | 8 * Tesla V100-SXM2-32GB | True | 128 | 6112 | ### 2. Performance On Million Identities We neglect the influence of IO. All experiments use mixed-precision training, and the backbone is ResNet50. #### 1 Million Identities On 8 RTX2080Ti |Method | GPUs | BatchSize | Memory/M | Throughput img/sec | W | | :--- | :---: | :---: | :---: | :---: | :---: | | Model Parallel | 8 | 1024 | 10408 | 2390 | GPU | | **Partial FC(Ours)** | **8** | **1024** | **8100** | **2780** | GPU | #### 10 Million Identities On 64 RTX2080Ti |Method | GPUs | BatchSize | Memory/M | Throughput img/sec | W | | :--- | :---: | :---: | :---: | :---: | :---: | | Model Parallel | 64 | 2048 | 9684 | 4483 | GPU | | **Partial FC(Ours)** | **64** | **4096** | **6722** | **12600** | GPU | ## FAQ #### Glint360K's Face Alignment Settings? We use a same alignment setting with MS1MV2, code is [here](https://github.com/deepinsight/insightface/issues/1286). #### Why update Glint360K, is there a bug in the previous version? In the previous version of Glint360K, there is no bug when using softmax training, but there is a bug in triplet training. In the latest Glint360k, this bug has been fixed. #### Dataset in Google Drive or Dropbox? The torrent has been released. ## Citation If you find Partial-FC or Glint360K useful in your research, please consider to cite the following related paper: [Partial FC](https://arxiv.org/abs/2203.15565) ``` @inproceedings{an2022pfc, title={Killing Two Birds with One Stone: Efficient and Robust Training of Face Recognition CNNs by Partial FC}, author={An, Xiang and Deng, Jiangkang and Guo, Jia and Feng, Ziyong and Zhu, Xuhan and Jing, Yang and Tongliang, Liu}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2022} } ```
insightface/recognition/partial_fc/README.md/0
{ "file_path": "insightface/recognition/partial_fc/README.md", "repo_id": "insightface", "token_count": 3723 }
145
import os import numpy as np from mxnet import nd import mxnet as mx from memory_samplers import WeightIndexSampler class MemoryBank(object): def __init__(self, num_sample, num_local, rank, local_rank, embedding_size, prefix, gpu=True): """ Parameters ---------- num_sample: int The number of sampled class center. num_local: int The number of class center storage in this rank(CPU/GPU). rank: int Unique process(GPU) ID from 0 to size - 1. local_rank: int Unique process(GPU) ID within the server from 0 to 7. embedding_size: int The feature dimension. prefix_dir: str Path prefix of model dir. gpu: bool If True, class center and class center mom will storage in GPU. """ self.num_sample = num_sample self.num_local = num_local self.rank = rank self.embedding_size = embedding_size self.gpu = gpu self.prefix = prefix if self.gpu: context = mx.gpu(local_rank) else: context = mx.cpu() # In order to apply update, weight and momentum should be storage. self.weight = nd.random_normal(loc=0, scale=0.01, shape=(self.num_local, self.embedding_size), ctx=context) self.weight_mom = nd.zeros_like(self.weight) # Sampler object self.weight_index_sampler = WeightIndexSampler(num_sample, num_local, rank) def sample(self, global_label): """ Parameters ---------- global_label: NDArray Global label (after gathers label from all rank) Returns ------- index: ndarray(numpy) Local index for memory bank to sample, start from 0 to num_local, length is num_sample. global_label: ndarray(numpy) Global label after sort and unique. """ assert isinstance(global_label, nd.NDArray) global_label = global_label.asnumpy() global_label = np.unique(global_label) global_label.sort() index = self.weight_index_sampler(global_label) index.sort() return index, global_label def get(self, index): """ Get sampled class centers and their momentum. Parameters ---------- index: NDArray Local index for memory bank to sample, start from 0 to num_local. """ return self.weight[index], self.weight_mom[index] def set(self, index, updated_weight, updated_weight_mom=None): """ Update sampled class to memory bank, make the class center stored in the memory bank the latest. Parameters ---------- index: NDArray Local index for memory bank to sample, start from 0 to num_local. updated_weight: NDArray Class center which has been applied gradients. updated_weight_mom: NDArray Class center momentum which has been moved average. """ self.weight[index] = updated_weight self.weight_mom[index] = updated_weight_mom def save(self): nd.save(fname=os.path.join(self.prefix, "%d_centers.param" % self.rank), data=self.weight) nd.save(fname=os.path.join(self.prefix, "%d_centers_mom.param" % self.rank), data=self.weight_mom)
insightface/recognition/partial_fc/mxnet/memory_bank.py/0
{ "file_path": "insightface/recognition/partial_fc/mxnet/memory_bank.py", "repo_id": "insightface", "token_count": 1899 }
146
# partial fc PartialFC-Pytorch has been merged into [arcface_torch](https://github.com/deepinsight/insightface/tree/master/recognition/arcface_torch).
insightface/recognition/partial_fc/pytorch/README.md/0
{ "file_path": "insightface/recognition/partial_fc/pytorch/README.md", "repo_id": "insightface", "token_count": 52 }
147
import sys import os import mxnet as mx import symbol_utils sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from config import config def Act(data, act_type, name): #ignore param act_type, set it in this function if act_type == 'prelu': body = mx.sym.LeakyReLU(data=data, act_type='prelu', name=name) else: body = mx.sym.Activation(data=data, act_type=act_type, name=name) return body def Conv(data, num_filter=1, kernel=(1, 1), stride=(1, 1), pad=(0, 0), num_group=1, name=None, suffix=''): conv = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=kernel, num_group=num_group, stride=stride, pad=pad, no_bias=True, name='%s%s_conv2d' % (name, suffix)) bn = mx.sym.BatchNorm(data=conv, name='%s%s_batchnorm' % (name, suffix), fix_gamma=False, momentum=config.bn_mom) act = Act(data=bn, act_type=config.net_act, name='%s%s_relu' % (name, suffix)) return act def Linear(data, num_filter=1, kernel=(1, 1), stride=(1, 1), pad=(0, 0), num_group=1, name=None, suffix=''): conv = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=kernel, num_group=num_group, stride=stride, pad=pad, no_bias=True, name='%s%s_conv2d' % (name, suffix)) bn = mx.sym.BatchNorm(data=conv, name='%s%s_batchnorm' % (name, suffix), fix_gamma=False, momentum=config.bn_mom) return bn def ConvOnly(data, num_filter=1, kernel=(1, 1), stride=(1, 1), pad=(0, 0), num_group=1, name=None, suffix=''): conv = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=kernel, num_group=num_group, stride=stride, pad=pad, no_bias=True, name='%s%s_conv2d' % (name, suffix)) return conv def DResidual(data, num_out=1, kernel=(3, 3), stride=(2, 2), pad=(1, 1), num_group=1, name=None, suffix=''): conv = Conv(data=data, num_filter=num_group, kernel=(1, 1), pad=(0, 0), stride=(1, 1), name='%s%s_conv_sep' % (name, suffix)) conv_dw = Conv(data=conv, num_filter=num_group, num_group=num_group, kernel=kernel, pad=pad, stride=stride, name='%s%s_conv_dw' % (name, suffix)) proj = Linear(data=conv_dw, num_filter=num_out, kernel=(1, 1), pad=(0, 0), stride=(1, 1), name='%s%s_conv_proj' % (name, suffix)) return proj def Residual(data, num_block=1, num_out=1, kernel=(3, 3), stride=(1, 1), pad=(1, 1), num_group=1, name=None, suffix=''): identity = data for i in range(num_block): shortcut = identity conv = DResidual(data=identity, num_out=num_out, kernel=kernel, stride=stride, pad=pad, num_group=num_group, name='%s%s_block' % (name, suffix), suffix='%d' % i) identity = conv + shortcut return identity def get_symbol(): num_classes = config.emb_size print('in_network', config) fc_type = config.net_output data = mx.symbol.Variable(name="data") data = data - 127.5 data = data * 0.0078125 blocks = config.net_blocks conv_1 = Conv(data, num_filter=64, kernel=(3, 3), pad=(1, 1), stride=(2, 2), name="conv_1") if blocks[0] == 1: conv_2_dw = Conv(conv_1, num_group=64, num_filter=64, kernel=(3, 3), pad=(1, 1), stride=(1, 1), name="conv_2_dw") else: conv_2_dw = Residual(conv_1, num_block=blocks[0], num_out=64, kernel=(3, 3), stride=(1, 1), pad=(1, 1), num_group=64, name="res_2") conv_23 = DResidual(conv_2_dw, num_out=64, kernel=(3, 3), stride=(2, 2), pad=(1, 1), num_group=128, name="dconv_23") conv_3 = Residual(conv_23, num_block=blocks[1], num_out=64, kernel=(3, 3), stride=(1, 1), pad=(1, 1), num_group=128, name="res_3") conv_34 = DResidual(conv_3, num_out=128, kernel=(3, 3), stride=(2, 2), pad=(1, 1), num_group=256, name="dconv_34") conv_4 = Residual(conv_34, num_block=blocks[2], num_out=128, kernel=(3, 3), stride=(1, 1), pad=(1, 1), num_group=256, name="res_4") conv_45 = DResidual(conv_4, num_out=128, kernel=(3, 3), stride=(2, 2), pad=(1, 1), num_group=512, name="dconv_45") conv_5 = Residual(conv_45, num_block=blocks[3], num_out=128, kernel=(3, 3), stride=(1, 1), pad=(1, 1), num_group=256, name="res_5") conv_6_sep = Conv(conv_5, num_filter=512, kernel=(1, 1), pad=(0, 0), stride=(1, 1), name="conv_6sep") fc1 = symbol_utils.get_fc1(conv_6_sep, num_classes, fc_type) return fc1
insightface/recognition/subcenter_arcface/symbol/fmobilefacenet.py/0
{ "file_path": "insightface/recognition/subcenter_arcface/symbol/fmobilefacenet.py", "repo_id": "insightface", "token_count": 4969 }
148
set -ex GPU=0 python evaluation/eval.py --conf ./confs/test.conf --scan_id 0 --gpu $GPU --checkpoint 400 --eval_rendering
insightface/reconstruction/PBIDR/code/script/fast_eval.sh/0
{ "file_path": "insightface/reconstruction/PBIDR/code/script/fast_eval.sh", "repo_id": "insightface", "token_count": 42 }
149
## Introduction JMLR is an efficient high accuracy face reconstruction approach which achieved [Rank-1st](https://tianchi.aliyun.com/competition/entrance/531961/rankingList) of [Perspective Projection Based Monocular 3D Face Reconstruction Challenge](https://tianchi.aliyun.com/competition/entrance/531961/introduction) of [ECCV-2022 WCPA Workshop](https://sites.google.com/view/wcpa2022). Paper in [arXiv](https://arxiv.org/abs/2208.07142). ## Method Pipeline <img src="https://github.com/nttstar/insightface-resources/blob/master/images/jmlr_pipeline.jpg?raw=true" width="800" alt="jmlr-pipeline"/> ## Data preparation 1. Download the dataset from WCPA organiser and put it at somewhere. 2. Create `cache_align/` dir and put `flip_index.npy` file under it. 3. Check `configs/s1.py` and fix the location to yours. 4. Use ``python rec_builder.py`` to generate cached dataset, which will be used in following steps. ## Training ``` CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -u -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=13334 train.py configs/s1.py ``` ## Inference Example ``` python inference_simple.py ``` ## Resources [flip_index.npy](https://drive.google.com/file/d/1fZ4cRyvQeehwKoMKKSmXUmTx5GEJwyrT/view?usp=sharing) [pretrained-model](https://drive.google.com/file/d/1qSpqDDLQfcPeFr2b82IZrK8QC_3lci3l/view?usp=sharing) [projection_matrix.txt](https://drive.google.com/file/d/1joiu-V0qEZxil_AHcg_W726nRxE8Q4dm/view?usp=sharing) ## Results <img src="https://github.com/nttstar/insightface-resources/blob/master/images/jmlr_id.jpg?raw=true" width="800" alt="jmlr-id"/>
insightface/reconstruction/jmlr/README.md/0
{ "file_path": "insightface/reconstruction/jmlr/README.md", "repo_id": "insightface", "token_count": 647 }
150
import pickle import numpy as np import os import os.path as osp import glob import argparse import cv2 import time import datetime import pickle import sklearn import mxnet as mx from utils.utils_config import get_config from dataset import FaceDataset, Rt26dof class RecBuilder(): def __init__(self, path, image_size=(112, 112), is_train=True): self.path = path self.image_size = image_size self.widx = 0 self.wlabel = 0 self.max_label = -1 #assert not osp.exists(path), '%s exists' % path if is_train: rec_file = osp.join(path, 'train.rec') idx_file = osp.join(path, 'train.idx') else: rec_file = osp.join(path, 'val.rec') idx_file = osp.join(path, 'val.idx') #assert not osp.exists(rec_file), '%s exists' % rec_file if not osp.exists(path): os.makedirs(path) self.writer = mx.recordio.MXIndexedRecordIO(idx_file, rec_file, 'w') self.meta = [] def add(self, imgs): #!!! img should be BGR!!!! #assert label >= 0 #assert label > self.last_label assert len(imgs) > 0 label = self.wlabel for img in imgs: idx = self.widx image_meta = {'image_index': idx, 'image_classes': [label]} header = mx.recordio.IRHeader(0, label, idx, 0) if isinstance(img, np.ndarray): s = mx.recordio.pack_img(header,img,quality=95,img_fmt='.jpg') else: s = mx.recordio.pack(header, img) self.writer.write_idx(idx, s) self.meta.append(image_meta) self.widx += 1 self.max_label = label self.wlabel += 1 return label def add_image(self, img, label): #!!! img should be BGR!!!! #assert label >= 0 #assert label > self.last_label idx = self.widx header = mx.recordio.IRHeader(0, label, idx, 0) if isinstance(img, np.ndarray): s = mx.recordio.pack_img(header,img,quality=100,img_fmt='.jpg') else: s = mx.recordio.pack(header, img) self.writer.write_idx(idx, s) self.widx += 1 def close(self): print('stat:', self.widx, self.wlabel) if __name__ == "__main__": #cfg = get_config('configs/s1.py') cfg = get_config('configs/s2.py') cfg.task = 0 cfg.input_size = 512 for is_train in [True, False]: dataset = FaceDataset(cfg, is_train=is_train, local_rank=0) dataset.transform = None writer = RecBuilder(cfg.cache_dir, is_train=is_train) #writer = RecBuilder("temp", is_train=is_train) print('total:', len(dataset)) #meta = np.zeros( (len(dataset), 3), dtype=np.float32 ) meta = [] subset_name = 'train' if is_train else 'val' meta_path = osp.join(cfg.cache_dir, '%s.meta'%subset_name) eye_missing = 0 for idx in range(len(dataset)): #img_local, img_global, label_verts, label_Rt, tform = dataset[idx] #img_local, label_verts, label_Rt, tform = dataset[idx] data = dataset[idx] img_local = data['img_local'] label_verts = data['verts'] label_Rt = data['rt'] tform = data['tform'] label_verts = label_verts.numpy() label_Rt = label_Rt.numpy() tform = tform.numpy() label_6dof = Rt26dof(label_Rt, True) pose = label_6dof[:3] #print(image.shape, label_verts.shape, label_6dof.shape) #print(image.__class__, label_verts.__class__) img_local = img_local[:,:,::-1] #img_global = img_global[:,:,::-1] #image = np.concatenate( (img_local, img_global), axis=1 ) image = img_local label = list(label_verts.flatten()) + list(label_Rt.flatten()) + list(tform.flatten()) expect_len = 1220*3+16+6 if 'eye_world_left' in data: if idx==0: print('find eye') eyel = data['eye_world_left'].numpy() eyer = data['eye_world_right'].numpy() label += list(eyel.flatten()) label += list(eyer.flatten()) expect_len += 481*6 else: eye_missing += 1 continue meta.append(pose) assert len(label)==expect_len writer.add_image(image, label) if idx%100==0: print('processing:', idx, image.shape, len(label)) if idx<10: cv2.imwrite("temp/%d.jpg"%idx, image) writer.close() meta = np.array(meta, dtype=np.float32) np.save(meta_path, meta) print('Eye missing:', eye_missing, is_train)
insightface/reconstruction/jmlr/rec_builder.py/0
{ "file_path": "insightface/reconstruction/jmlr/rec_builder.py", "repo_id": "insightface", "token_count": 2615 }
151
# Copyright (c) 2020, Baris Gecer. All rights reserved. # # This work is made available under the CC BY-NC-SA 4.0. # To view a copy of this license, see LICENSE import tensorflow as tf from external.landmark_detector import networks from external.landmark_detector.flags import FLAGS def tf_heatmap_to_lms(heatmap): hs = tf.argmax(tf.reduce_max(heatmap, 2), 1) ws = tf.argmax(tf.reduce_max(heatmap, 1), 1) lms = tf.transpose(tf.to_float(tf.stack([hs, ws])), perm=[1, 2, 0]) return lms class Landmark_Handler(): def __init__(self, args, sess, generated_image): self.sess = sess self.model_path = args.landmark_model n_landmarks = 84 FLAGS.n_landmarks = 84 net_model = networks.DNFaceMultiView('') with tf.variable_scope('net'): self.lms_heatmap_prediction, states = net_model._build_network(generated_image, datas=None, is_training=False, n_channels=n_landmarks) self.pts_predictions = tf_heatmap_to_lms(self.lms_heatmap_prediction) variables = tf.all_variables() variables_to_restore = [v for v in variables if v.name.split('/')[0] == 'net'] self.saver = tf.train.Saver(variables_to_restore) def load_model(self): self.saver.restore(self.sess, self.model_path)
insightface/reconstruction/ostec/core/landmark_handler.py/0
{ "file_path": "insightface/reconstruction/ostec/core/landmark_handler.py", "repo_id": "insightface", "token_count": 632 }
152
import torch import numpy as np import networkx as nx import scipy.sparse as sp pascal_graph = { 0: [0], 1: [1, 2], 2: [1, 2, 3, 5], 3: [2, 3, 4], 4: [3, 4], 5: [2, 5, 6], 6: [5, 6], } cihp_graph = { 0: [], 1: [2, 13], 2: [1, 13], 3: [14, 15], 4: [13], 5: [6, 7, 9, 10, 11, 12, 14, 15], 6: [5, 7, 10, 11, 14, 15, 16, 17], 7: [5, 6, 9, 10, 11, 12, 14, 15], 8: [16, 17, 18, 19], 9: [5, 7, 10, 16, 17, 18, 19], 10: [5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17], 11: [5, 6, 7, 10, 13], 12: [5, 7, 10, 16, 17], 13: [1, 2, 4, 10, 11], 14: [3, 5, 6, 7, 10], 15: [3, 5, 6, 7, 10], 16: [6, 8, 9, 10, 12, 18], 17: [6, 8, 9, 10, 12, 19], 18: [8, 9, 16], 19: [8, 9, 17], } atr_graph = { 0: [], 1: [2, 11], 2: [1, 11], 3: [11], 4: [5, 6, 7, 11, 14, 15, 17], 5: [4, 6, 7, 8, 12, 13], 6: [4, 5, 7, 8, 9, 10, 12, 13], 7: [4, 11, 12, 13, 14, 15], 8: [5, 6], 9: [6, 12], 10: [6, 13], 11: [1, 2, 3, 4, 7, 14, 15, 17], 12: [5, 6, 7, 9], 13: [5, 6, 7, 10], 14: [4, 7, 11, 16], 15: [4, 7, 11, 16], 16: [14, 15], 17: [4, 11], } cihp2pascal_adj = np.array( [ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], ] ) cihp2pascal_nlp_adj = np.array( [ [ 1.0, 0.35333052, 0.32727194, 0.17418084, 0.18757584, 0.40608522, 0.37503981, 0.35448462, 0.22598555, 0.23893579, 0.33064262, 0.28923404, 0.27986573, 0.4211553, 0.36915778, 0.41377746, 0.32485771, 0.37248222, 0.36865639, 0.41500332, ], [ 0.39615879, 0.46201529, 0.52321467, 0.30826114, 0.25669527, 0.54747773, 0.3670523, 0.3901983, 0.27519473, 0.3433325, 0.52728509, 0.32771333, 0.34819325, 0.63882953, 0.68042925, 0.69368576, 0.63395791, 0.65344337, 0.59538781, 0.6071375, ], [ 0.16373166, 0.21663339, 0.3053872, 0.28377612, 0.1372435, 0.4448808, 0.29479995, 0.31092595, 0.22703953, 0.33983576, 0.75778818, 0.2619818, 0.37069392, 0.35184867, 0.49877512, 0.49979437, 0.51853277, 0.52517541, 0.32517741, 0.32377309, ], [ 0.32687232, 0.38482461, 0.37693463, 0.41610834, 0.20415749, 0.76749079, 0.35139853, 0.3787411, 0.28411737, 0.35155421, 0.58792618, 0.31141718, 0.40585111, 0.51189218, 0.82042737, 0.8342413, 0.70732188, 0.72752501, 0.60327325, 0.61431337, ], [ 0.34069369, 0.34817292, 0.37525998, 0.36497069, 0.17841617, 0.69746208, 0.31731463, 0.34628951, 0.25167277, 0.32072379, 0.56711286, 0.24894776, 0.37000453, 0.52600859, 0.82483993, 0.84966274, 0.7033991, 0.73449378, 0.56649608, 0.58888791, ], [ 0.28477487, 0.35139564, 0.42742352, 0.41664321, 0.20004676, 0.78566833, 0.42237487, 0.41048549, 0.37933812, 0.46542516, 0.62444759, 0.3274493, 0.49466009, 0.49314658, 0.71244233, 0.71497003, 0.8234787, 0.83566589, 0.62597135, 0.62626812, ], [ 0.3011378, 0.31775977, 0.42922647, 0.36896257, 0.17597556, 0.72214655, 0.39162804, 0.38137872, 0.34980296, 0.43818419, 0.60879174, 0.26762545, 0.46271161, 0.51150476, 0.72318109, 0.73678399, 0.82620388, 0.84942166, 0.5943811, 0.60607602, ], ] ) pascal2atr_nlp_adj = np.array( [ [ 1.0, 0.35333052, 0.32727194, 0.18757584, 0.40608522, 0.27986573, 0.23893579, 0.27600672, 0.30964391, 0.36865639, 0.41500332, 0.4211553, 0.32485771, 0.37248222, 0.36915778, 0.41377746, 0.32006291, 0.28923404, ], [ 0.39615879, 0.46201529, 0.52321467, 0.25669527, 0.54747773, 0.34819325, 0.3433325, 0.26603942, 0.45162929, 0.59538781, 0.6071375, 0.63882953, 0.63395791, 0.65344337, 0.68042925, 0.69368576, 0.44354613, 0.32771333, ], [ 0.16373166, 0.21663339, 0.3053872, 0.1372435, 0.4448808, 0.37069392, 0.33983576, 0.26563416, 0.35443504, 0.32517741, 0.32377309, 0.35184867, 0.51853277, 0.52517541, 0.49877512, 0.49979437, 0.21750868, 0.2619818, ], [ 0.32687232, 0.38482461, 0.37693463, 0.20415749, 0.76749079, 0.40585111, 0.35155421, 0.28271333, 0.52684576, 0.60327325, 0.61431337, 0.51189218, 0.70732188, 0.72752501, 0.82042737, 0.8342413, 0.40137029, 0.31141718, ], [ 0.34069369, 0.34817292, 0.37525998, 0.17841617, 0.69746208, 0.37000453, 0.32072379, 0.27268885, 0.47426719, 0.56649608, 0.58888791, 0.52600859, 0.7033991, 0.73449378, 0.82483993, 0.84966274, 0.37830796, 0.24894776, ], [ 0.28477487, 0.35139564, 0.42742352, 0.20004676, 0.78566833, 0.49466009, 0.46542516, 0.32662614, 0.55780359, 0.62597135, 0.62626812, 0.49314658, 0.8234787, 0.83566589, 0.71244233, 0.71497003, 0.41223219, 0.3274493, ], [ 0.3011378, 0.31775977, 0.42922647, 0.17597556, 0.72214655, 0.46271161, 0.43818419, 0.3192333, 0.50979216, 0.5943811, 0.60607602, 0.51150476, 0.82620388, 0.84942166, 0.72318109, 0.73678399, 0.39259827, 0.26762545, ], ] ) cihp2atr_nlp_adj = np.array( [ [ 1.0, 0.35333052, 0.32727194, 0.18757584, 0.40608522, 0.27986573, 0.23893579, 0.27600672, 0.30964391, 0.36865639, 0.41500332, 0.4211553, 0.32485771, 0.37248222, 0.36915778, 0.41377746, 0.32006291, 0.28923404, ], [ 0.35333052, 1.0, 0.39206695, 0.42143438, 0.4736689, 0.47139544, 0.51999208, 0.38354847, 0.45628529, 0.46514124, 0.50083501, 0.4310595, 0.39371443, 0.4319752, 0.42938598, 0.46384034, 0.44833757, 0.6153155, ], [ 0.32727194, 0.39206695, 1.0, 0.32836702, 0.52603065, 0.39543695, 0.3622627, 0.43575346, 0.33866223, 0.45202552, 0.48421, 0.53669903, 0.47266611, 0.50925436, 0.42286557, 0.45403656, 0.37221304, 0.40999322, ], [ 0.17418084, 0.46892601, 0.25774838, 0.31816231, 0.39330317, 0.34218382, 0.48253904, 0.22084125, 0.41335728, 0.52437572, 0.5191713, 0.33576117, 0.44230914, 0.44250678, 0.44330833, 0.43887264, 0.50693611, 0.39278795, ], [ 0.18757584, 0.42143438, 0.32836702, 1.0, 0.35030067, 0.30110947, 0.41055555, 0.34338879, 0.34336307, 0.37704433, 0.38810141, 0.34702081, 0.24171562, 0.25433078, 0.24696241, 0.2570884, 0.4465962, 0.45263213, ], [ 0.40608522, 0.4736689, 0.52603065, 0.35030067, 1.0, 0.54372584, 0.58300258, 0.56674191, 0.555266, 0.66599594, 0.68567555, 0.55716359, 0.62997328, 0.65638548, 0.61219615, 0.63183318, 0.54464151, 0.44293752, ], [ 0.37503981, 0.50675565, 0.4761106, 0.37561813, 0.60419403, 0.77912403, 0.64595517, 0.85939662, 0.46037144, 0.52348817, 0.55875094, 0.37741886, 0.455671, 0.49434392, 0.38479954, 0.41804074, 0.47285709, 0.57236283, ], [ 0.35448462, 0.50576632, 0.51030446, 0.35841033, 0.55106903, 0.50257274, 0.52591451, 0.4283053, 0.39991808, 0.42327211, 0.42853819, 0.42071825, 0.41240559, 0.42259136, 0.38125352, 0.3868255, 0.47604934, 0.51811717, ], [ 0.22598555, 0.5053299, 0.36301185, 0.38002282, 0.49700941, 0.45625243, 0.62876479, 0.4112051, 0.33944371, 0.48322639, 0.50318714, 0.29207815, 0.38801966, 0.41119094, 0.29199072, 0.31021029, 0.41594871, 0.54961962, ], [ 0.23893579, 0.51999208, 0.3622627, 0.41055555, 0.58300258, 0.68874251, 1.0, 0.56977937, 0.49918447, 0.48484363, 0.51615925, 0.41222306, 0.49535971, 0.53134951, 0.3807616, 0.41050298, 0.48675801, 0.51112664, ], [ 0.33064262, 0.306412, 0.60679935, 0.25592294, 0.58738706, 0.40379627, 0.39679161, 0.33618385, 0.39235148, 0.45474013, 0.4648476, 0.59306762, 0.58976007, 0.60778661, 0.55400397, 0.56551297, 0.3698029, 0.33860535, ], [ 0.28923404, 0.6153155, 0.40999322, 0.45263213, 0.44293752, 0.60359359, 0.51112664, 0.46578181, 0.45656936, 0.38142307, 0.38525582, 0.33327223, 0.35360175, 0.36156453, 0.3384992, 0.34261229, 0.49297863, 1.0, ], [ 0.27986573, 0.47139544, 0.39543695, 0.30110947, 0.54372584, 1.0, 0.68874251, 0.67765588, 0.48690078, 0.44010641, 0.44921156, 0.32321099, 0.48311542, 0.4982002, 0.39378102, 0.40297733, 0.45309735, 0.60359359, ], [ 0.4211553, 0.4310595, 0.53669903, 0.34702081, 0.55716359, 0.32321099, 0.41222306, 0.25721705, 0.36633509, 0.5397475, 0.56429928, 1.0, 0.55796926, 0.58842844, 0.57930828, 0.60410597, 0.41615326, 0.33327223, ], [ 0.36915778, 0.42938598, 0.42286557, 0.24696241, 0.61219615, 0.39378102, 0.3807616, 0.28089866, 0.48450394, 0.77400821, 0.68813814, 0.57930828, 0.8856886, 0.81673412, 1.0, 0.92279623, 0.46969152, 0.3384992, ], [ 0.41377746, 0.46384034, 0.45403656, 0.2570884, 0.63183318, 0.40297733, 0.41050298, 0.332879, 0.48799542, 0.69231828, 0.77015091, 0.60410597, 0.79788484, 0.88232104, 0.92279623, 1.0, 0.45685017, 0.34261229, ], [ 0.32485771, 0.39371443, 0.47266611, 0.24171562, 0.62997328, 0.48311542, 0.49535971, 0.32477932, 0.51486622, 0.79353556, 0.69768738, 0.55796926, 1.0, 0.92373745, 0.8856886, 0.79788484, 0.47883134, 0.35360175, ], [ 0.37248222, 0.4319752, 0.50925436, 0.25433078, 0.65638548, 0.4982002, 0.53134951, 0.38057074, 0.52403969, 0.72035243, 0.78711147, 0.58842844, 0.92373745, 1.0, 0.81673412, 0.88232104, 0.47109935, 0.36156453, ], [ 0.36865639, 0.46514124, 0.45202552, 0.37704433, 0.66599594, 0.44010641, 0.48484363, 0.39636574, 0.50175258, 1.0, 0.91320249, 0.5397475, 0.79353556, 0.72035243, 0.77400821, 0.69231828, 0.59087008, 0.38142307, ], [ 0.41500332, 0.50083501, 0.48421, 0.38810141, 0.68567555, 0.44921156, 0.51615925, 0.45156472, 0.50438158, 0.91320249, 1.0, 0.56429928, 0.69768738, 0.78711147, 0.68813814, 0.77015091, 0.57698754, 0.38525582, ], ] ) def normalize_adj(adj): """Symmetrically normalize adjacency matrix.""" adj = sp.coo_matrix(adj) rowsum = np.array(adj.sum(1)) d_inv_sqrt = np.power(rowsum, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.0 d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo() def preprocess_adj(adj): """Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation.""" adj = nx.adjacency_matrix( nx.from_dict_of_lists(adj) ) # return a adjacency matrix of adj ( type is numpy) adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0])) # # return sparse_to_tuple(adj_normalized) return adj_normalized.todense() def row_norm(inputs): outputs = [] for x in inputs: xsum = x.sum() x = x / xsum outputs.append(x) return outputs def normalize_adj_torch(adj): # print(adj.size()) if len(adj.size()) == 4: new_r = torch.zeros(adj.size()).type_as(adj) for i in range(adj.size(1)): adj_item = adj[0, i] rowsum = adj_item.sum(1) d_inv_sqrt = rowsum.pow_(-0.5) d_inv_sqrt[torch.isnan(d_inv_sqrt)] = 0 d_mat_inv_sqrt = torch.diag(d_inv_sqrt) r = torch.matmul(torch.matmul(d_mat_inv_sqrt, adj_item), d_mat_inv_sqrt) new_r[0, i, ...] = r return new_r rowsum = adj.sum(1) d_inv_sqrt = rowsum.pow_(-0.5) d_inv_sqrt[torch.isnan(d_inv_sqrt)] = 0 d_mat_inv_sqrt = torch.diag(d_inv_sqrt) r = torch.matmul(torch.matmul(d_mat_inv_sqrt, adj), d_mat_inv_sqrt) return r # def row_norm(adj): if __name__ == "__main__": a = row_norm(cihp2pascal_adj) print(a) print(cihp2pascal_adj) # print(a.shape)
insightface/reconstruction/ostec/external/graphonomy/FaceHairMask/graph.py/0
{ "file_path": "insightface/reconstruction/ostec/external/graphonomy/FaceHairMask/graph.py", "repo_id": "insightface", "token_count": 14206 }
153