text
stringlengths
7
318k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
439
<jupyter_start><jupyter_text>Que faire si mon jeu de données n'est pas sur le Hub ? Installez les bibliothèques 🤗 Transformers et 🤗 Datasets pour exécuter ce *notebook*.<jupyter_code>!pip install datasets evaluate transformers[sentencepiece] !wget https://github.com/crux82/squad-it/raw/master/SQuAD_it-train.json.gz !wget https://github.com/crux82/squad-it/raw/master/SQuAD_it-test.json.gz !gzip -dkv SQuAD_it-*.json.gz from datasets import load_dataset squad_it_dataset = load_dataset("json", data_files="SQuAD_it-train.json", field="data") squad_it_dataset squad_it_dataset["train"][0] data_files = {"train": "SQuAD_it-train.json", "test": "SQuAD_it-test.json"} squad_it_dataset = load_dataset("json", data_files=data_files, field="data") squad_it_dataset data_files = {"train": "SQuAD_it-train.json.gz", "test": "SQuAD_it-test.json.gz"} squad_it_dataset = load_dataset("json", data_files=data_files, field="data") url = "https://github.com/crux82/squad-it/raw/master/" data_files = { "train": url + "SQuAD_it-train.json.gz", "test": url + "SQuAD_it-test.json.gz", } squad_it_dataset = load_dataset("json", data_files=data_files, field="data")<jupyter_output><empty_output>
notebooks/course/fr/chapter5/section2.ipynb/0
{ "file_path": "notebooks/course/fr/chapter5/section2.ipynb", "repo_id": "notebooks", "token_count": 496 }
152
<jupyter_start><jupyter_text>Construction d'un *tokenizer*, bloc par bloc Installez les bibliothèques 🤗 *Transformers* et 🤗 *Datasets* pour exécuter ce *notebook*.<jupyter_code>!pip install datasets transformers[sentencepiece] from datasets import load_dataset dataset = load_dataset("wikitext", name="wikitext-2-raw-v1", split="train") def get_training_corpus(): for i in range(0, len(dataset), 1000): yield dataset[i : i + 1000]["text"] with open("wikitext-2.txt", "w", encoding="utf-8") as f: for i in range(len(dataset)): f.write(dataset[i]["text"] + "\n") from tokenizers import ( decoders, models, normalizers, pre_tokenizers, processors, trainers, Tokenizer, ) tokenizer = Tokenizer(models.WordPiece(unk_token="[UNK]")) tokenizer.normalizer = normalizers.BertNormalizer(lowercase=True) tokenizer.normalizer = normalizers.Sequence( [normalizers.NFD(), normalizers.Lowercase(), normalizers.StripAccents()] ) print(tokenizer.normalizer.normalize_str("Héllò hôw are ü?")) tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() tokenizer.pre_tokenizer = pre_tokenizers.Whitespace() tokenizer.pre_tokenizer.pre_tokenize_str("Testons le prétokeniseur.") pre_tokenizer = pre_tokenizers.WhitespaceSplit() pre_tokenizer.pre_tokenize_str("Testons le prétokeniseur.") pre_tokenizer = pre_tokenizers.Sequence( [pre_tokenizers.WhitespaceSplit(), pre_tokenizers.Punctuation()] ) pre_tokenizer.pre_tokenize_str("Testons le prétokeniseur.") special_tokens = ["[UNK]", "[PAD]", "[CLS]", "[SEP]", "[MASK]"] trainer = trainers.WordPieceTrainer(vocab_size=25000, special_tokens=special_tokens) tokenizer.train_from_iterator(get_training_corpus(), trainer=trainer) tokenizer.model = models.WordPiece(unk_token="[UNK]") tokenizer.train(["wikitext-2.txt"], trainer=trainer) encoding = tokenizer.encode("Testons le prétokeniseur.") print(encoding.tokens) cls_token_id = tokenizer.token_to_id("[CLS]") sep_token_id = tokenizer.token_to_id("[SEP]") print(cls_token_id, sep_token_id) tokenizer.post_processor = processors.TemplateProcessing( single=f"[CLS]:0 $A:0 [SEP]:0", pair=f"[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1", special_tokens=[("[CLS]", cls_token_id), ("[SEP]", sep_token_id)], ) encoding = tokenizer.encode("Testons le prétokeniseur.") print(encoding.tokens) encoding = tokenizer.encode("Testons le prétokeniseur...", "sur des phrases.") print(encoding.tokens) print(encoding.type_ids) tokenizer.decoder = decoders.WordPiece(prefix="##") tokenizer.decode(encoding.ids) tokenizer.save("tokenizer.json") new_tokenizer = Tokenizer.from_file("tokenizer.json") from transformers import PreTrainedTokenizerFast wrapped_tokenizer = PreTrainedTokenizerFast( tokenizer_object=tokenizer, # tokenizer_file="tokenizer.json", # Vous pouvez charger à partir du fichier tokenizer, alternativement unk_token="[UNK]", pad_token="[PAD]", cls_token="[CLS]", sep_token="[SEP]", mask_token="[MASK]", ) from transformers import BertTokenizerFast wrapped_tokenizer = BertTokenizerFast(tokenizer_object=tokenizer) tokenizer = Tokenizer(models.BPE()) tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False) tokenizer.pre_tokenizer.pre_tokenize_str("Testons la prétokenisation !") trainer = trainers.BpeTrainer(vocab_size=25000, special_tokens=["<|endoftext|>"]) tokenizer.train_from_iterator(get_training_corpus(), trainer=trainer) tokenizer.model = models.BPE() tokenizer.train(["wikitext-2.txt"], trainer=trainer) encoding = tokenizer.encode("Testons ce tokeniseur.") print(encoding.tokens) tokenizer.post_processor = processors.ByteLevel(trim_offsets=False) sentence = "Testons ce tokeniseur." encoding = tokenizer.encode(sentence) start, end = encoding.offsets[4] sentence[start:end] tokenizer.decoder = decoders.ByteLevel() tokenizer.decode(encoding.ids) from transformers import PreTrainedTokenizerFast wrapped_tokenizer = PreTrainedTokenizerFast( tokenizer_object=tokenizer, bos_token="<|endoftext|>", eos_token="<|endoftext|>", ) from transformers import GPT2TokenizerFast wrapped_tokenizer = GPT2TokenizerFast(tokenizer_object=tokenizer) tokenizer = Tokenizer(models.Unigram()) from tokenizers import Regex tokenizer.normalizer = normalizers.Sequence( [ normalizers.Replace("``", '"'), normalizers.Replace("''", '"'), normalizers.NFKD(), normalizers.StripAccents(), normalizers.Replace(Regex(" {2,}"), " "), ] ) tokenizer.pre_tokenizer = pre_tokenizers.Metaspace() tokenizer.pre_tokenizer.pre_tokenize_str("Testons ce prétokeniseur !") special_tokens = ["<cls>", "<sep>", "<unk>", "<pad>", "<mask>", "<s>", "</s>"] trainer = trainers.UnigramTrainer( vocab_size=25000, special_tokens=special_tokens, unk_token="<unk>" ) tokenizer.train_from_iterator(get_training_corpus(), trainer=trainer) tokenizer.model = models.Unigram() tokenizer.train(["wikitext-2.txt"], trainer=trainer) encoding = tokenizer.encode("Testons ce prétokeniseur.") print(encoding.tokens) cls_token_id = tokenizer.token_to_id("<cls>") sep_token_id = tokenizer.token_to_id("<sep>") print(cls_token_id, sep_token_id) tokenizer.post_processor = processors.TemplateProcessing( single="$A:0 <sep>:0 <cls>:2", pair="$A:0 <sep>:0 $B:1 <sep>:1 <cls>:2", special_tokens=[("<sep>", sep_token_id), ("<cls>", cls_token_id)], ) encoding = tokenizer.encode("Testons ce tokeniseur...", "sur des phrases !") print(encoding.tokens) print(encoding.type_ids) tokenizer.decoder = decoders.Metaspace() from transformers import PreTrainedTokenizerFast wrapped_tokenizer = PreTrainedTokenizerFast( tokenizer_object=tokenizer, bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", cls_token="<cls>", sep_token="<sep>", mask_token="<mask>", padding_side="left", ) from transformers import XLNetTokenizerFast wrapped_tokenizer = XLNetTokenizerFast(tokenizer_object=tokenizer)<jupyter_output><empty_output>
notebooks/course/fr/chapter6/section8.ipynb/0
{ "file_path": "notebooks/course/fr/chapter6/section8.ipynb", "repo_id": "notebooks", "token_count": 2318 }
153
<jupyter_start><jupyter_text>Déboguer le pipeline d'entraînementCe chapitre portant sur le débogage, la langue nous importe peu ici. Nous nous intéressons surtout à la logique du code pour comprendre d'où provient l'erreur. Installez les bibliothèques 🤗 Transformers et 🤗 Datasets pour exécuter ce *notebook*.<jupyter_code>!pip install datasets transformers[sentencepiece] from datasets import load_dataset, load_metric from transformers import ( AutoTokenizer, TFAutoModelForSequenceClassification, ) raw_datasets = load_dataset("glue", "mnli") model_checkpoint = "distilbert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) def preprocess_function(examples): return tokenizer(examples["premise"], examples["hypothesis"], truncation=True) tokenized_datasets = raw_datasets.map(preprocess_function, batched=True) train_dataset = tokenized_datasets["train"].to_tf_dataset( columns=["input_ids", "labels"], batch_size=16, shuffle=True ) validation_dataset = tokenized_datasets["validation_matched"].to_tf_dataset( columns=["input_ids", "labels"], batch_size=16, shuffle=True ) model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint) model.compile(loss="sparse_categorical_crossentropy", optimizer="adam") model.fit(train_dataset) for batch in train_dataset: break model.compile(optimizer="adam") model(batch) model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint) model(batch) import numpy as np loss = model(batch).loss.numpy() indices = np.flatnonzero(np.isnan(loss)) indices input_ids = batch["input_ids"].numpy() input_ids[indices] model.config.num_labels from tensorflow.keras.optimizers import Adam model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint) model.compile(optimizer=Adam(5e-5)) model.fit(train_dataset) input_ids = batch["input_ids"].numpy() tokenizer.decode(input_ids[0]) labels = batch["labels"].numpy() label = labels[0] for batch in train_dataset: break # Assurez-vous que vous avez exécuté model.compile() et défini votre optimiseur, # et vos pertes/métriques si vous les utilisez model.fit(batch, epochs=20)<jupyter_output><empty_output>
notebooks/course/fr/chapter8/section4_tf.ipynb/0
{ "file_path": "notebooks/course/fr/chapter8/section4_tf.ipynb", "repo_id": "notebooks", "token_count": 806 }
154
<jupyter_start><jupyter_text>Exploring simple optimizations for Stable Diffusion XL<jupyter_code>!nvidia-smi !pip install git+https://github.com/huggingface/diffusers -q !pip install transformers accelerate -q<jupyter_output><empty_output><jupyter_text>Unoptimized setup* FP32 computation* Default attention processor<jupyter_code>from diffusers import StableDiffusionXLPipeline pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipe = pipe.to("cuda") pipe.unet.set_default_attn_processor() import time import torch num_iterations = 3 num_inference_steps = 25 prompt = "a photo of an astronaut riding a horse on mars" num_images_per_prompt = 4 def bytes_to_giga_bytes(bytes): return bytes / 1024 / 1024 / 1024 def timeit( pipeline, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, ): if prompt_embeds is None: call_args = dict( prompt=prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=num_inference_steps, ) else: call_args = dict( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, num_images_per_prompt=num_images_per_prompt, num_inference_steps=num_inference_steps, ) for i in range(num_iterations): start = time.time_ns() _ = pipeline(**call_args) end = time.time_ns() if i == num_iterations - 1: print(f"Execution time -- {(end - start) / 1e6:.1f} ms\n") print( f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB" ) timeit(pipe) import gc import torch def flush(): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() del pipe flush()<jupyter_output><empty_output><jupyter_text>Just FP16<jupyter_code>pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe = pipe.to("cuda") pipe.unet.set_default_attn_processor() timeit(pipe) del pipe flush()<jupyter_output><empty_output><jupyter_text>FP16 + SDPA<jupyter_code>pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe = pipe.to("cuda") timeit(pipe) del pipe flush()<jupyter_output><empty_output><jupyter_text>From here on, we refer to "FP16 + SDPA" as the default setting. Default + `torch.compile()`<jupyter_code>pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe = pipe.to("cuda") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) timeit(pipe) del pipe flush()<jupyter_output><empty_output><jupyter_text>Default + Model CPU OffloadingHere we focus more on the memory optimization rather than inference speed.<jupyter_code>pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() timeit(pipe) del pipe flush()<jupyter_output><empty_output><jupyter_text>Default + Sequential CPU Offloading<jupyter_code>pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe.enable_sequential_cpu_offload() timeit(pipe) del pipe flush()<jupyter_output><empty_output><jupyter_text>Default + VAE SlicingSpecifically suited for optimizing memory for decoding latents into higher-res images without compromising too much on the inference speed.<jupyter_code>pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe = pipe.to("cuda") pipe.enable_vae_slicing() timeit(pipe) del pipe flush()<jupyter_output><empty_output><jupyter_text>Default + VAE Slicing + Sequential CPU Offloading<jupyter_code>pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe.enable_sequential_cpu_offload() pipe.enable_vae_slicing() timeit(pipe) del pipe flush()<jupyter_output><empty_output><jupyter_text>Default + Precompting text embeddings<jupyter_code>import torch from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer pipe_id = "stabilityai/stable-diffusion-xl-base-1.0" torch_dtype = torch.float16 # Load the text encoders and tokenizers. text_encoder = CLIPTextModel.from_pretrained(pipe_id, subfolder="text_encoder", torch_dtype=torch.float16).to("cuda") tokenizer = CLIPTokenizer.from_pretrained(pipe_id, subfolder="tokenizer") text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(pipe_id, subfolder="text_encoder_2", torch_dtype=torch.float16).to("cuda") tokenizer_2 = CLIPTokenizer.from_pretrained(pipe_id, subfolder="tokenizer_2") def encode_prompt(tokenizers, text_encoders, prompt: str, negative_prompt: str = None): device = text_encoders[0].device if isinstance(prompt, str): prompt = [prompt] batch_size = len(prompt) prompt_embeds_list = [] for tokenizer, text_encoder in zip(tokenizers, text_encoders): text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.hidden_states[-2] prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) if negative_prompt is None: negative_prompt_embeds = torch.zeros_like(prompt_embeds) negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) else: negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt negative_prompt_embeds_list = [] for tokenizer, text_encoder in zip(tokenizers, text_encoders): uncond_input = tokenizer( negative_prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) negative_pooled_prompt_embeds = negative_prompt_embeds[0] negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] negative_prompt_embeds_list.append(negative_prompt_embeds) negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds tokenizers = [tokenizer, tokenizer_2] text_encoders = [text_encoder, text_encoder_2] ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds ) = encode_prompt(tokenizers, text_encoders, prompt) del text_encoder, text_encoder_2, tokenizer, tokenizer_2 flush() pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", text_encoder=None, text_encoder_2=None, tokenizer=None, tokenizer_2=None, torch_dtype=torch.float16, ) pipe = pipe.to("cuda") timeit( pipe, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) del pipe flush()<jupyter_output><empty_output><jupyter_text>Default + Tiny AutoencoderThis is better suited for generating (almost) instant previews. The "instant" part is of course, GPU-dependent. On an A10G, for example, it can be achieved.<jupyter_code>from diffusers import AutoencoderTiny pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16) pipe = pipe.to("cuda") timeit(pipe)<jupyter_output><empty_output>
notebooks/diffusers/exploring_simple optimizations_for_sdxl.ipynb/0
{ "file_path": "notebooks/diffusers/exploring_simple optimizations_for_sdxl.ipynb", "repo_id": "notebooks", "token_count": 3443 }
155
<jupyter_start><jupyter_text>Generating images and text with UniDiffuserUniDiffuser was introduced in [One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale](https://arxiv.org/abs/2303.06555).In this notebook, we will show how the [UniDiffuser pipeline](https://huggingface.co/docs/diffusers/api/pipelines/unidiffuser) in 🧨 diffusers can be used for:* Unconditional image generation* Unconditional text generation* Text-to-image generation* Image-to-text generation* Image variation* Text variationOne pipeline to rule six use cases 🤯Let's start! Setup<jupyter_code>!pip install -q git+https://github.com/huggingface/diffusers !pip install transformers accelerate -q<jupyter_output>Installing build dependencies ... [?25l[?25hdone Getting requirements to build wheel ... [?25l[?25hdone Preparing metadata (pyproject.toml) ... [?25l[?25hdone  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 224.5/224.5 kB 18.0 MB/s eta 0:00:00 [?25h Building wheel for diffusers (pyproject.toml) ... [?25l[?25hdone  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.1/7.1 MB 104.1 MB/s eta 0:00:00  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 219.1/219.1 kB 27.3 MB/s eta 0:00:00  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.8/7.8 MB 105.7 MB/s eta 0:00:00 [?25h<jupyter_text>Unconditional image and text generationThroughout this notebook, we'll be using the ["thu-ml/unidiffuser-v1"](https://huggingface.co/thu-ml/unidiffuser-v1) checkpoint. UniDiffuser comes with two checkpoints:* ["thu-ml/unidiffuser-v1"](https://huggingface.co/thu-ml/unidiffuser-v1)* ["thu-ml/unidiffuser-v0"](https://huggingface.co/thu-ml/unidiffuser-v0)<jupyter_code>import torch from diffusers import UniDiffuserPipeline device = "cuda" model_id_or_path = "thu-ml/unidiffuser-v1" pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16) pipe.to(device) # Unconditional image and text generation. The generation task is automatically inferred. sample = pipe(num_inference_steps=20, guidance_scale=8.0) image = sample.images[0] text = sample.text[0] image.save("unidiffuser_joint_sample_image.png") print(text)<jupyter_output><empty_output><jupyter_text>You can also generate only an image or only text (which the UniDiffuser paper calls “marginal” generation since we sample from the marginal distribution of images and text, respectively):<jupyter_code># Unlike other generation tasks, image-only and text-only generation don't use classifier-free guidance # Image-only generation pipe.set_image_mode() sample_image = pipe(num_inference_steps=20).images[0] # Text-only generation pipe.set_text_mode() sample_text = pipe(num_inference_steps=20).text[0]<jupyter_output><empty_output><jupyter_text>To reset a mode, call: `pipe.reset_mode()`. Text-to-image generationThe `UniDiffuserPipeline` can infer the right mode of execution from provided inputs to the pipeline called. Since we started with the joint unconditional mode (`set_joint_mode()`), the subsequent calls will be executed in this model. Now, we want to generate images from text. So, we set the model accordingly.<jupyter_code>pipe.set_text_to_image_mode() # Text-to-image generation prompt = "an elephant under the sea" sample = pipe(prompt=prompt, num_inference_steps=20, guidance_scale=8.0) t2i_image = sample.images[0] t2i_image.save("unidiffuser_text2img_sample_image.png")<jupyter_output><empty_output><jupyter_text>Image-to-text generation<jupyter_code>pipe.set_image_to_text_mode() from diffusers.utils import load_image # Image-to-text generation image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg" init_image = load_image(image_url).resize((512, 512)) sample = pipe(image=init_image, num_inference_steps=20, guidance_scale=8.0) i2t_text = sample.text[0] print(i2t_text)<jupyter_output><empty_output><jupyter_text>Image variationFor image variation, we follow a "round-trip" method as suggested in the paper. We first generate a caption from a given image. And then use the caption to generate a image from it.<jupyter_code># Image variation can be performed with a image-to-text generation followed by a text-to-image generation: # 1. Image-to-text generation image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg" init_image = load_image(image_url).resize((512, 512)) pipe.set_image_to_text_mode() sample = pipe(image=init_image, num_inference_steps=20, guidance_scale=8.0) i2t_text = sample.text[0] print(i2t_text) # 2. Text-to-image generation pipe.set_text_to_image_mode() sample = pipe(prompt=i2t_text, num_inference_steps=20, guidance_scale=8.0) final_image = sample.images[0] final_image.save("unidiffuser_image_variation_sample.png")<jupyter_output><empty_output><jupyter_text>Text variationThe same round-trip methodology can be applied here.<jupyter_code># Text variation can be performed with a text-to-image generation followed by a image-to-text generation: # 1. Text-to-image generation prompt = "an elephant under the sea" pipe.set_text_to_image_mode() sample = pipe(prompt=prompt, num_inference_steps=20, guidance_scale=8.0) t2i_image = sample.images[0] t2i_image.save("unidiffuser_text2img_sample_image.png") # 2. Image-to-text generation pipe.set_image_to_text_mode() sample = pipe(image=t2i_image, num_inference_steps=20, guidance_scale=8.0) final_prompt = sample.text[0] print(final_prompt)<jupyter_output><empty_output>
notebooks/diffusers/unidiffuser.ipynb/0
{ "file_path": "notebooks/diffusers/unidiffuser.ipynb", "repo_id": "notebooks", "token_count": 2196 }
156
<jupyter_start><jupyter_text>Segment Anything Model: automatic mask generation using `transformers` 🤗 libraryThis notebook demonstrates how to use the Segment Anything Model (SAM) to automatically generate segementation masks on any image. The model was released by Meta AI in the paper [Segment Anything Model](https://ai.facebook.com/research/publications/segment-anything/). The original source code can be found [here](https://github.com/facebookresearch/segment-anything)The `mask-generation` pipeline, freshly released for SAM, creates a gris of `1024` which are feed in a batch of `points_per_batch` to the model. The examples are inspired from the [original notebook of the authors](https://github.com/facebookresearch/segment-anything/blob/main/notebooks/predictor_example.ipynb).<jupyter_code>!pip install -q git+https://github.com/huggingface/transformers.git<jupyter_output>Installing build dependencies ... [?25l[?25hdone Getting requirements to build wheel ... [?25l[?25hdone Preparing metadata (pyproject.toml) ... [?25l[?25hdone  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 200.1/200.1 kB 16.8 MB/s eta 0:00:00  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.8/7.8 MB 104.4 MB/s eta 0:00:00 [?25h Building wheel for transformers (pyproject.toml) ... [?25l[?25hdone<jupyter_text>Utility functions Run the cells below to import the needed utility functions for displaying the masks!<jupyter_code>import numpy as np import matplotlib.pyplot as plt import gc def show_mask(mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) del mask gc.collect() def show_masks_on_image(raw_image, masks): plt.imshow(np.array(raw_image)) ax = plt.gca() ax.set_autoscale_on(False) for mask in masks: show_mask(mask, ax=ax, random_color=True) plt.axis("off") plt.show() del mask gc.collect()<jupyter_output><empty_output><jupyter_text>Model loading Use the `from_pretrained` method on the `SamForMaskGeneration` class to load the model from the Hub! For the sake of this demonstration we will use the `vit-huge` checkpoint.<jupyter_code>from transformers import pipeline generator = pipeline("mask-generation", model="facebook/sam-vit-huge", device=0)<jupyter_output><empty_output><jupyter_text>Load the example image<jupyter_code>from PIL import Image import requests img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") plt.imshow(raw_image)<jupyter_output><empty_output><jupyter_text>Generate the masks Let's automatically generate the masks on the image! For that simply pass the raw image into the generator<jupyter_code>outputs = generator(raw_image, points_per_batch=64)<jupyter_output><empty_output><jupyter_text>The line above you take ~7 seconds on Google Colab 1xNVIDIA-T4, now let's see the resulting segmentation masks.<jupyter_code>masks = outputs["masks"] show_masks_on_image(raw_image, masks)<jupyter_output><empty_output><jupyter_text>Batch of imagesYou can feed both urls and raw images. Here is an example:<jupyter_code>new_image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/depth-estimation-example.jpg" outputs = generator([raw_image,new_image_url], points_per_batch=64) masks = outputs[1]["masks"] raw_image = Image.open(requests.get(new_image_url, stream=True).raw).convert("RGB") show_masks_on_image(raw_image, masks)<jupyter_output><empty_output>
notebooks/examples/automatic_mask_generation.ipynb/0
{ "file_path": "notebooks/examples/automatic_mask_generation.ipynb", "repo_id": "notebooks", "token_count": 1453 }
157
<jupyter_start><jupyter_text>If you're opening this Notebook on colab, you will probably need to install 🤗 Transformers and 🤗 Datasets. Uncomment the following cell and run it.<jupyter_code>#! pip install transformers datasets huggingface_hub<jupyter_output><empty_output><jupyter_text>If you're opening this notebook locally, make sure your environment has an install from the last version of those libraries.To be able to share your model with the community, there are a few more steps to follow.First you have to store your authentication token from the Hugging Face website (sign up [here](https://huggingface.co/join) if you haven't already!) then uncomment the following cell and input your token:<jupyter_code>from huggingface_hub import notebook_login notebook_login()<jupyter_output><empty_output><jupyter_text>Then you need to install Git-LFS and setup Git if you haven't already. Uncomment the following instructions and adapt with your name and email:<jupyter_code># !apt install git-lfs # !git config --global user.email "you@example.com" # !git config --global user.name "Your Name"<jupyter_output><empty_output><jupyter_text>Make sure your version of Transformers is at least 4.16.0 since some of the functionality we use was introduced in that version:<jupyter_code>import transformers print(transformers.__version__)<jupyter_output>4.21.0.dev0<jupyter_text>We also quickly upload some telemetry - this tells us which examples and software versions are getting used so we know where to prioritize our maintenance efforts. We don't collect (or care about) any personally identifiable information, but if you'd prefer not to be counted, feel free to skip this step or delete this cell entirely.<jupyter_code>from transformers.utils import send_example_telemetry send_example_telemetry("multiple_choice_notebook", framework="tensorflow")<jupyter_output><empty_output><jupyter_text>Fine-tuning a model on a multiple choice task In this notebook, we will see how to fine-tune one of the [🤗 Transformers](https://github.com/huggingface/transformers) model on a multiple-choice task. In a multiple-choice task, multiple answers or continuations are provided for each input, and the model must guess which is most plausible. The dataset used here is [SWAG](https://www.aclweb.org/anthology/D18-1009/) but you can adapt the pre-processing to any other multiple choice dataset you like, or your own data. SWAG is a dataset about commonsense reasoning, where each example describes a situation and proposes four continuations that could follow it. This notebook is built to run with any model checkpoint from the [Model Hub](https://huggingface.co/models) as long as that model has a version with a mutiple choice head. Depending on your model and the GPU you are using, you might need to adjust the batch size to avoid out-of-memory errors. Set those two parameters, then the rest of the notebook should run smoothly.<jupyter_code>model_checkpoint = "bert-base-cased" batch_size = 16<jupyter_output><empty_output><jupyter_text>Loading the dataset We will use the [🤗 Datasets](https://github.com/huggingface/datasets) library to download the data. This can be easily done with the `load_dataset` function.<jupyter_code>from datasets import load_dataset, load_metric<jupyter_output><empty_output><jupyter_text>`load_dataset` will cache the dataset to avoid downloading it again the next time you run this cell.<jupyter_code>datasets = load_dataset("swag", "regular")<jupyter_output>Reusing dataset swag (/home/matt/.cache/huggingface/datasets/swag/regular/0.0.0/9640de08cdba6a1469ed3834fcab4b8ad8e38caf5d1ba5e7436d8b1fd067ad4c)<jupyter_text>The `dataset` object itself is [`DatasetDict`](https://huggingface.co/docs/datasets/package_reference/main_classes.htmldatasetdict), which contains one key for the training, validation and test set.<jupyter_code>datasets<jupyter_output><empty_output><jupyter_text>To access an actual element, you need to select a split first, then give an index:<jupyter_code>datasets["train"][0]<jupyter_output><empty_output><jupyter_text>To get a sense of what the data looks like, the following function will show some examples picked randomly in the dataset.<jupyter_code>from datasets import ClassLabel import random import pandas as pd from IPython.display import display, HTML def show_random_elements(dataset, num_examples=10): assert num_examples <= len( dataset ), "Can't pick more elements than there are in the dataset." picks = [] for _ in range(num_examples): pick = random.randint(0, len(dataset) - 1) while pick in picks: pick = random.randint(0, len(dataset) - 1) picks.append(pick) df = pd.DataFrame(dataset[picks]) for column, typ in dataset.features.items(): if isinstance(typ, ClassLabel): df[column] = df[column].transform(lambda i: typ.names[i]) display(HTML(df.to_html())) show_random_elements(datasets["train"])<jupyter_output><empty_output><jupyter_text>Each example in the dataset has a context composed of a first sentence (`sent1`) and an introduction to the second sentence (`sent2`). Then four possible endings are given (`ending0`, `ending1`, `ending2` and `ending3`) and the model must pick the right one (`label`). The following function lets us visualize a given example a bit better:<jupyter_code>def show_one(example): print(f"Context: {example['sent1']}") print(f" A - {example['sent2']} {example['ending0']}") print(f" B - {example['sent2']} {example['ending1']}") print(f" C - {example['sent2']} {example['ending2']}") print(f" D - {example['sent2']} {example['ending3']}") print(f"\nGround truth: option {['A', 'B', 'C', 'D'][example['label']]}") show_one(datasets["train"][0]) show_one(datasets["train"][15])<jupyter_output>Context: Now it's someone's turn to rain blades on his opponent. A - Someone pats his shoulder and spins wildly. B - Someone lunges forward through the window. C - Someone falls to the ground. D - Someone rolls up his fast run from the water and tosses in the sky. Ground truth: option C<jupyter_text>Preprocessing the data Before we can feed those texts to our model, we need to preprocess them. This is done by a 🤗 Transformers `Tokenizer` which will (as the name indicates) tokenize the inputs, convert the tokens to their corresponding IDs in the pretrained vocabulary and put it in a format the model expects, as well as generate the other inputs that model requires.To do all of this, we instantiate our tokenizer with the `AutoTokenizer.from_pretrained` method, which will ensure:- we get a tokenizer that corresponds to the model architecture we want to use,- we download the vocabulary used when pretraining this specific checkpoint.That vocabulary will be cached, so it's not downloaded again the next time we run the cell.<jupyter_code>from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)<jupyter_output><empty_output><jupyter_text>You can directly call this tokenizer on one sentence or a pair of sentences:<jupyter_code>tokenizer("Hello, this is a sentence!", "And this sentence goes with it.")<jupyter_output><empty_output><jupyter_text>Depending on the model you selected, you will see different keys in the dictionary returned by the cell above. They don't matter much for what we're doing here (just know they are required by the model we will instantiate later). You can learn more about them in [this tutorial](https://huggingface.co/transformers/preprocessing.html) if you're interested. We can now write the function that will preprocess our samples. The tricky part is to put all the possible pairs of sentences into two big lists before passing them to the tokenizer, then un-flatten the result so that each example has four input ids, attentions masks, etc.When calling the `tokenizer`, we use the argument `truncation=True`. This will ensure that an input longer that what the model selected can handle will be truncated to the maximum length accepted by the model.<jupyter_code>ending_names = ["ending0", "ending1", "ending2", "ending3"] def preprocess_function(examples): # Repeat each first sentence four times to go with the four possibilities of second sentences. first_sentences = [[context] * 4 for context in examples["sent1"]] # Grab all second sentences possible for each context. question_headers = examples["sent2"] second_sentences = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers) ] # Flatten everything first_sentences = sum(first_sentences, []) second_sentences = sum(second_sentences, []) # Tokenize tokenized_examples = tokenizer(first_sentences, second_sentences, truncation=True) # Un-flatten return { k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items() }<jupyter_output><empty_output><jupyter_text>This function works with one or several examples. In the case of several examples, the tokenizer will return a list of lists of lists for each key: a list of all examples (here 5), then a list of all choices (4) and a list of input IDs (length varying here since we did not apply any padding):<jupyter_code>examples = datasets["train"][:5] features = preprocess_function(examples) print( len(features["input_ids"]), len(features["input_ids"][0]), [len(x) for x in features["input_ids"][0]], )<jupyter_output>5 4 [30, 25, 30, 28]<jupyter_text>To check we didn't do anything wrong when grouping all possibilites and unflattening them, let's have a look at the decoded inputs for a given example:<jupyter_code>idx = 3 [tokenizer.decode(features["input_ids"][idx][i]) for i in range(4)]<jupyter_output><empty_output><jupyter_text>We can compare it to the ground truth:<jupyter_code>show_one(datasets["train"][3])<jupyter_output>Context: A drum line passes by walking down the street playing their instruments. A - Members of the procession are playing ping pong and celebrating one left each in quick. B - Members of the procession wait slowly towards the cadets. C - Members of the procession makes a square call and ends by jumping down into snowy streets where fans begin to take their positions. D - Members of the procession play and go back and forth hitting the drums while the audience claps for them. Ground truth: option D<jupyter_text>This seems alright, so we can apply this function on all the examples in our dataset. All we need to do is to use the `map` method of the `dataset` object we created earlier. This will apply the function on all the elements of all the splits in `dataset`, so our training, validation and testing data will be preprocessed in one single command.<jupyter_code>encoded_datasets = datasets.map(preprocess_function, batched=True)<jupyter_output>Loading cached processed dataset at /home/matt/.cache/huggingface/datasets/swag/regular/0.0.0/9640de08cdba6a1469ed3834fcab4b8ad8e38caf5d1ba5e7436d8b1fd067ad4c/cache-1931e2c0368a1bc4.arrow Loading cached processed dataset at /home/matt/.cache/huggingface/datasets/swag/regular/0.0.0/9640de08cdba6a1469ed3834fcab4b8ad8e38caf5d1ba5e7436d8b1fd067ad4c/cache-df4adf2eee309953.arrow Loading cached processed dataset at /home/matt/.cache/huggingface/datasets/swag/regular/0.0.0/9640de08cdba6a1469ed3834fcab4b8ad8e38caf5d1ba5e7436d8b1fd067ad4c/cache-41eb40ca99e099f0.arrow<jupyter_text>Even better, the results are automatically cached by the 🤗 Datasets library to avoid spending time on this step the next time you run your notebook. The 🤗 Datasets library is normally smart enough to detect when the function you pass to map has changed (and thus requires to not use the cache data). For instance, it will properly detect if you change the task in the first cell and rerun the notebook. 🤗 Datasets warns you when it uses cached files, so you can pass `load_from_cache_file=False` in the call to `map` to not use the cached files and force the preprocessing to be applied again.Note that we passed `batched=True` to encode the texts by batches together. This is to leverage the full benefit of the fast tokenizer we loaded earlier, which will use multi-threading to handle the texts in a batch concurrently. Fine-tuning the model Now that our data is ready, we can download the pretrained model and fine-tune it. Since all our task is about multiple choice, we use the `AutoModelForMultipleChoice` class. Like with the tokenizer, the `from_pretrained` method will download and cache the model for us.<jupyter_code>from transformers import TFAutoModelForMultipleChoice model = TFAutoModelForMultipleChoice.from_pretrained(model_checkpoint)<jupyter_output>2022-07-21 13:43:42.021257: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:975] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2022-07-21 13:43:42.060063: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:975] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2022-07-21 13:43:42.061084: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:975] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2022-07-21 13:43:42.062943: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags[...]<jupyter_text>The warning is telling us we are throwing away some weights (the `vocab_transform` and `vocab_layer_norm` layers) and randomly initializing some others (the `pre_classifier` and `classifier` layers). This is absolutely normal in this case, because we are removing the head used to pretrain the model on a masked language modeling objective and replacing it with a new head for which we don't have pretrained weights, and so the library warns us we should fine-tune this model before using it for inference, which is exactly what we are going to do. Next, we set some names and hyperparameters for the model. The first two variables are used so we can push the model to the [Hub](https://huggingface.co/models) at the end of training. Remove the two of them if you didn't follow the installation steps at the top of the notebook, otherwise you can change the value of `push_to_hub_model_id` to something you would prefer.<jupyter_code>model_name = model_checkpoint.split("/")[-1] push_to_hub_model_id = f"{model_name}-finetuned-swag" learning_rate = 5e-5 batch_size = batch_size num_train_epochs = 2 weight_decay = 0.01<jupyter_output><empty_output><jupyter_text>Next we need to tell our `Dataset` how to form batches from the pre-processed inputs. We haven't done any padding yet because we will pad each batch to the maximum length inside the batch (instead of doing so with the maximum length of the whole dataset). This will be the job of the *data collator*. A data collator takes a list of examples and converts them to a batch (by, in our case, applying padding). Since there is no data collator in the library that works on our specific problem, we will write one, adapted from the `DataCollatorWithPadding`:<jupyter_code>from dataclasses import dataclass from transformers.tokenization_utils_base import ( PreTrainedTokenizerBase, PaddingStrategy, ) from typing import Optional, Union import tensorflow as tf @dataclass class DataCollatorForMultipleChoice: """ Data collator that will dynamically pad the inputs for multiple choice received. """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None def __call__(self, features): label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature.pop(label_name) for feature in features] batch_size = len(features) num_choices = len(features[0]["input_ids"]) flattened_features = [ [{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features ] flattened_features = sum(flattened_features, []) batch = self.tokenizer.pad( flattened_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="np", ) # Un-flatten batch = { k: tf.reshape(v, (batch_size, num_choices, -1)) for k, v in batch.items() } # Add back labels batch["labels"] = tf.convert_to_tensor(labels, dtype=tf.int64) return batch<jupyter_output><empty_output><jupyter_text>When called on a list of examples, it will flatten all the inputs/attentions masks etc. in big lists that it will pass to the `tokenizer.pad` method. This will return a dictionary with big tensors (of shape `(batch_size * 4) x seq_length`) that we then unflatten.We can check this data collator works on a list of features, we just have to make sure to remove all features that are not inputs accepted by our model:<jupyter_code>accepted_keys = ["input_ids", "attention_mask", "label"] features = [ {k: v for k, v in encoded_datasets["train"][i].items() if k in accepted_keys} for i in range(10) ] batch = DataCollatorForMultipleChoice(tokenizer)(features) encoded_datasets["train"].features["attention_mask"].feature.feature<jupyter_output><empty_output><jupyter_text>Again, all those flatten/un-flattens are sources of potential errors so let's make another sanity check on our inputs:<jupyter_code>[tokenizer.decode(batch["input_ids"][8][i].numpy().tolist()) for i in range(4)] show_one(datasets["train"][8])<jupyter_output>Context: Someone walks over to the radio. A - Someone hands her another phone. B - Someone takes the drink, then holds it. C - Someone looks off then looks at someone. D - Someone stares blearily down at the floor. Ground truth: option D<jupyter_text>All good! Now we can use this collator as a collation function for our dataset. Next, we convert our datasets to `tf.data.Dataset`, which Keras understands natively. There are two ways to do this - we can use the slightly more low-level [`Dataset.to_tf_dataset()`](https://huggingface.co/docs/datasets/package_reference/main_classesdatasets.Dataset.to_tf_dataset) method, or we can use [`Model.prepare_tf_dataset()`](https://huggingface.co/docs/transformers/main_classes/modeltransformers.TFPreTrainedModel.prepare_tf_dataset). The main difference between these two is that the `Model` method can inspect the model to determine which column names it can use as input, which means you don't need to specify them yourself.<jupyter_code>data_collator = DataCollatorForMultipleChoice(tokenizer) train_set = model.prepare_tf_dataset( encoded_datasets["train"], shuffle=True, batch_size=batch_size, collate_fn=data_collator, ) validation_set = model.prepare_tf_dataset( encoded_datasets["validation"], shuffle=False, batch_size=batch_size, collate_fn=data_collator, ) train_set<jupyter_output><empty_output><jupyter_text>As we can see, our dataset will output a 2-tuple where the first element is a dict containing `input_ids`, `token_type_ids` and `attention_mask`, and the second element is the label. This is exactly what we want for our model! Now we can compile our model. First, we specify an optimizer. Using the `create_optimizer` function we can get a nice `AdamW` optimizer with weight decay and a learning rate decay schedule set up for free - but to compute that schedule, it needs to know how long training will take.<jupyter_code>from transformers import create_optimizer total_train_steps = (len(encoded_datasets["train"]) // batch_size) * num_train_epochs optimizer, schedule = create_optimizer( init_lr=learning_rate, num_warmup_steps=0, num_train_steps=total_train_steps )<jupyter_output><empty_output><jupyter_text>Note that most Transformers models compute loss internally, so we actually don't have to specify anything there! You can of course set your own loss function if you want, but by default our models will choose the 'obvious' loss that matches their task, such as cross-entropy in the case of language modelling. The built-in loss will also correctly handle things like masking the loss on padding tokens, or unlabelled tokens in the case of masked language modelling, so we recommend using it unless you're an advanced user!In addition, because the outputs and loss for this model class are quite straightforward, we can use built-in Keras metrics - these are liable to misbehave in other contexts (for example, they don't know about the masking in masked language modelling) but work well here.In some of our other examples, we use `jit_compile` to compile the model with [XLA](https://www.tensorflow.org/xla). In this case, we should be careful about that - because our inputs have variable sequence lengths, we may end up having to do a new XLA compilation for each possible length, because XLA compilation expects a static input shape! For small datasets, this will probably result in spending more time on XLA compilation than actually training, which isn't very helpful.If you really want to use XLA without these problems (for example, if you're training on TPU), you can create a tokenizer with `padding="max_length"`. This will pad all of your samples to the same length, ensuring that a single XLA compilation will suffice for your entire dataset. Note that depending on the nature of your dataset, this may result in a lot of wasted computation on padding tokens!<jupyter_code>import tensorflow as tf model.compile( optimizer=optimizer, metrics=["accuracy"], )<jupyter_output>No loss specified in compile() - the model's internal loss computation will be used as the loss. Don't panic - this is a common way to train TensorFlow models in Transformers! To disable this behaviour please pass a loss argument, or explicitly pass `loss=None` if you do not want your model to compute a loss.<jupyter_text>Now we can train our model. We can also add a callback to sync up our model with the Hub - this allows us to resume training from other machines and even test the model's inference quality midway through training! Make sure to change the `username` if you do. If you don't want to do this, simply remove the callbacks argument in the call to `fit()`.<jupyter_code>from transformers.keras_callbacks import PushToHubCallback from tensorflow.keras.callbacks import TensorBoard tensorboard_callback = TensorBoard(log_dir="./mc_model_save/logs") push_to_hub_callback = PushToHubCallback( output_dir="./mc_model_save", tokenizer=tokenizer, hub_model_id=push_to_hub_model_id, ) callbacks = [tensorboard_callback, push_to_hub_callback] model.fit( train_set, validation_data=validation_set, epochs=num_train_epochs, callbacks=callbacks, )<jupyter_output>/home/matt/PycharmProjects/notebooks/examples/mc_model_save is already a clone of https://huggingface.co/Rocketknight1/bert-base-cased-finetuned-swag. Make sure you pull the latest changes with `repo.git_pull()`.<jupyter_text>If you used the callback above, you can now share this model with all your friends, family or favorite pets: they can all load it with the identifier `"your-username/the-name-you-picked"` so for instance:```pythonfrom transformers import TFAutoModelForMultipleChoicemodel = TFAutoModelForMultipleChoice.from_pretrained("your-username/my-awesome-model")``` Inference Now we've trained our model, let's see how we could load it and use it to answer questions in future! First, let's load it from the hub. This means we can resume the code from here without needing to rerun everything above every time.<jupyter_code>from transformers import AutoTokenizer, TFAutoModelForMultipleChoice # You can, of course, use your own username and model name here # once you've pushed your model using the code above! checkpoint = "Rocketknight1/bert-base-cased-finetuned-swag" model = TFAutoModelForMultipleChoice.from_pretrained(checkpoint) tokenizer = AutoTokenizer.from_pretrained(checkpoint)<jupyter_output><empty_output><jupyter_text>Now let's see how to use this model for inference. The SWAG task we trained on is a commonsense inference benchmark, where we ask the model to indicate which of four completions of a sentence is realistic and makes sense in context. Let's use a sample input from SWAG and see how we can get predictions for it.<jupyter_code>input_start = "Members of the procession walk down the street holding small horn brass instruments. A drum line" endings = [ 'passes by walking down the street playing their instruments.', 'has heard approaching them.', "arrives and they're outside dancing and asleep.", 'turns the lead singer watches the performance.', ] full_sentences = [f"{input_start} {ending}" for ending in endings]<jupyter_output><empty_output><jupyter_text>Now we tokenize this input. Note that our inputs need to be reshaped a little - multiple choice models expect inputs to have the shape `(num_samples, num_choices, num_tokens)` - this means we will need to add a sample/batch dimension of length 1.<jupyter_code>import numpy as np tokenized = tokenizer(full_sentences, padding="longest", return_tensors="np") tokenized = {key: np.expand_dims(array, 0) for key, array in tokenized.items()}<jupyter_output><empty_output><jupyter_text>And now we run these inputs through our model and see what it guesses!<jupyter_code>import tensorflow as tf outputs = model(tokenized).logits answer = np.argmax(outputs) print(f"The answer is choice {answer}: {endings[answer]}")<jupyter_output>The answer is choice 0: passes by walking down the street playing their instruments.
notebooks/examples/multiple_choice-tf.ipynb/0
{ "file_path": "notebooks/examples/multiple_choice-tf.ipynb", "repo_id": "notebooks", "token_count": 7913 }
158
<jupyter_start><jupyter_text>Fine-tuning for Semantic Segmentation with 🤗 TransformersIn this notebook, you'll learn how to fine-tune a pretrained vision model for Semantic Segmentation on a custom dataset in PyTorch. The idea is to add a randomly initialized segmentation head on top of a pre-trained encoder, and fine-tune the model altogether on a labeled dataset. You can find an accompanying blog post [here](https://huggingface.co/blog/fine-tune-segformer). ModelThis notebook is built for the [SegFormer model](https://huggingface.co/docs/transformers/model_doc/segformertransformers.SegformerForSemanticSegmentation) and is supposed to run on any semantic segmentation dataset. You can adapt this notebook to other supported semantic segmentation models such as [MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit). Data augmentationThis notebook leverages `torchvision`'s [`transforms` module](https://pytorch.org/vision/stable/transforms.html) for applying data augmentation. Using other augmentation libraries like `albumentations` is also [supported](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb).---Depending on the model and the GPU you are using, you might need to adjust the batch size to avoid out-of-memory errors. Set those two parameters, then the rest of the notebook should run smoothly.In this notebook, we'll fine-tune from the https://huggingface.co/nvidia/mit-b0 checkpoint, but note that there are others [available on the hub](https://huggingface.co/models?pipeline_tag=image-segmentation).<jupyter_code>model_checkpoint = "nvidia/mit-b0" # pre-trained model from which to fine-tune batch_size = 4 # batch size for training and evaluation<jupyter_output><empty_output><jupyter_text>Before we start, let's install the `datasets`, `transformers`, and `evaluate` libraries. We also install Git-LFS to upload the model checkpoints to Hub.<jupyter_code>!pip -q install datasets transformers evaluate !git lfs install !git config --global credential.helper store<jupyter_output><empty_output><jupyter_text>If you're opening this notebook locally, make sure your environment has an install from the last version of those libraries or run the `pip install` command above with the `--upgrade` flag.You can share the resulting model with the community. By pushing the model to the Hub, others can discover your model and build on top of it. You also get an automatically generated model card that documents how the model works and a widget that will allow anyone to try out the model directly in the browser. To enable this, you'll need to login to your account.<jupyter_code>from huggingface_hub import notebook_login notebook_login()<jupyter_output><empty_output><jupyter_text>We also quickly upload some telemetry - this tells us which examples and software versions are getting used so we know where to prioritize our maintenance efforts. We don't collect (or care about) any personally identifiable information, but if you'd prefer not to be counted, feel free to skip this step or delete this cell entirely.<jupyter_code>from transformers.utils import send_example_telemetry send_example_telemetry("semantic_segmentation_notebook", framework="pytorch")<jupyter_output><empty_output><jupyter_text>Fine-tuning a model on a semantic segmentation taskGiven an image, the goal is to associate each and every pixel to a particular category (such as table). The screenshot below is taken from a [SegFormer fine-tuned on ADE20k](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) - try out the inference widget! Loading the dataset We will use the [🤗 Datasets](https://github.com/huggingface/datasets) library to download our custom dataset into a [`DatasetDict`](https://huggingface.co/docs/datasets/package_reference/main_classes.htmldatasetdict).We're using the Sidewalk dataset which is dataset of sidewalk images gathered in Belgium in the summer of 2021. You can learn more about the dataset [here](https://huggingface.co/datasets/segments/sidewalk-semantic).<jupyter_code>from datasets import load_dataset hf_dataset_identifier = "segments/sidewalk-semantic" ds = load_dataset(hf_dataset_identifier)<jupyter_output><empty_output><jupyter_text>Let us also load the Mean IoU metric, which we'll use to evaluate our model both during and after training. IoU (short for Intersection over Union) tells us the amount of overlap between two sets. In our case, these sets will be the ground-truth segmentation map and the predicted segmentation map. To learn more, you can check out [this article](https://learnopencv.com/intersection-over-union-iou-in-object-detection-and-segmentation/).<jupyter_code>import evaluate metric = evaluate.load("mean_iou")<jupyter_output><empty_output><jupyter_text>The `ds` object itself is a `DatasetDict`, which contains one key per split (in this case, only "train" for a training split).<jupyter_code>ds<jupyter_output><empty_output><jupyter_text>Here, the `features` tell us what each example is consisted of:* `pixel_values`: the actual image* `label`: segmentation mask To access an actual element, you need to select a split first, then give an index:<jupyter_code>example = ds["train"][10] example["pixel_values"].resize((200, 200)) example["label"].resize((200, 200))<jupyter_output><empty_output><jupyter_text>Each of the pixels above can be associated to a particular category. Let's load all the categories that are associated with the dataset. Let's also create an `id2label` dictionary to decode them back to strings and see what they are. The inverse `label2id` will be useful too, when we load the model later.<jupyter_code>from huggingface_hub import hf_hub_download import json filename = "id2label.json" id2label = json.load( open(hf_hub_download(hf_dataset_identifier, filename, repo_type="dataset"), "r") ) id2label = {int(k): v for k, v in id2label.items()} label2id = {v: k for k, v in id2label.items()} num_labels = len(id2label) num_labels, list(label2id.keys())<jupyter_output><empty_output><jupyter_text>**Note**: This dataset specificaly sets the 0th index as being `unlabeled`. We want to take this information into consideration while computing the loss. Specifically, we'll want to mask the pixels where the network predicted `unlabeled` and avoid computing the loss for it since it doesn't contribute to to training that much. Let's shuffle the dataset and split the dataset in a train and test set. We'll explicitly define a random seed to use when calling `ds.shuffle()` to ensure our results are the same each time we run this cell.<jupyter_code>ds = ds.shuffle(seed=1) ds = ds["train"].train_test_split(test_size=0.2) train_ds = ds["train"] test_ds = ds["test"]<jupyter_output><empty_output><jupyter_text>Preprocessing the data Before we can feed these images to our model, we need to preprocess them. Preprocessing images typically comes down to (1) resizing them to a particular size (2) normalizing the color channels (R,G,B) using a mean and standard deviation. These are referred to as **image transformations**.To make sure we (1) resize to the appropriate size (2) use the appropriate image mean and standard deviation for the model architecture we are going to use, we instantiate what is called a feature extractor with the `AutoFeatureExtractor.from_pretrained` method.This feature extractor is a minimal preprocessor that can be used to prepare images for model training and inference.<jupyter_code>from transformers import AutoFeatureExtractor feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint) feature_extractor from torchvision.transforms import ColorJitter from transformers import SegformerFeatureExtractor feature_extractor = SegformerFeatureExtractor() jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1) def train_transforms(example_batch): images = [jitter(x) for x in example_batch['pixel_values']] labels = [x for x in example_batch['label']] inputs = feature_extractor(images, labels) return inputs def val_transforms(example_batch): images = [x for x in example_batch['pixel_values']] labels = [x for x in example_batch['label']] inputs = feature_extractor(images, labels) return inputs # Set transforms train_ds.set_transform(train_transforms) test_ds.set_transform(val_transforms)<jupyter_output><empty_output><jupyter_text>We also defined some data augmentations to make our model more resilient to different lighting conditions. We used the [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) function from `torchvision` to randomly change the brightness, contrast, saturation, and hue of the images in the batch. Also, notice the differences in between transformations applied to the train and test splits. We're only applying jittering to the training split and not to the test split. Data augmentation is usually a training-only step and isn't applied during evaluation. Training the model Now that our data is ready, we can download the pretrained model and fine-tune it. We will use the `SegformerForSemanticSegmentation` class. Calling the `from_pretrained` method on it will download and cache the weights for us. As the label ids and the number of labels are dataset dependent, we pass `label2id`, and `id2label` alongside the `model_checkpoint` here. This will make sure a custom segmentation head is created (with a custom number of output neurons).<jupyter_code>from transformers import SegformerForSemanticSegmentation model = SegformerForSemanticSegmentation.from_pretrained( model_checkpoint, num_labels=num_labels, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True, # Will ensure the segmentation specific components are reinitialized. )<jupyter_output><empty_output><jupyter_text>The warning is telling us we are throwing away some weights (the weights and bias of the `decode_head` layer) and randomly initializing some other (the weights and bias of a new `decode_head` layer). This is expected in this case, because we are adding a new head for which we don't have pretrained weights, so the library warns us we should fine-tune this model before using it for inference, which is exactly what we are going to do.To fine-tune the model, we'll use Hugging Face's [Trainer API](https://huggingface.co/docs/transformers/main_classes/trainer). To use the `Trainer`, we'll need to define the training configuration and any evaluation metrics we might want to use.First, we'll set up the [`TrainingArguments`](https://huggingface.co/docs/transformers/main_classes/trainertransformers.TrainingArguments). This defines all training hyperparameters, such as learning rate and the number of epochs, frequency to save the model and so on. We also specify to push the model to the hub after training (`push_to_hub=True`) and specify a model name (`hub_model_id`).<jupyter_code>from transformers import TrainingArguments epochs = 50 lr = 0.00006 batch_size = 2 hub_model_id = "segformer-b0-finetuned-segments-sidewalk-2" training_args = TrainingArguments( "segformer-b0-finetuned-segments-sidewalk-outputs", learning_rate=lr, num_train_epochs=epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, save_total_limit=3, evaluation_strategy="steps", save_strategy="steps", save_steps=20, eval_steps=20, logging_steps=1, eval_accumulation_steps=5, load_best_model_at_end=True, push_to_hub=True, hub_model_id=hub_model_id, hub_strategy="end", )<jupyter_output><empty_output><jupyter_text>Next, we'll define a function that computes the evaluation metric we want to work with. Because we're doing semantic segmentation, we'll use the [mean Intersection over Union (mIoU)](https://huggingface.co/spaces/evaluate-metric/mean_iou), which is directly accessible in the [`evaluate` library](https://huggingface.co/docs/evaluate/index). IoU represents the overlap of segmentation masks. Mean IoU is the average of the IoU of all semantic classes. Take a look at [this blogpost](https://www.jeremyjordan.me/evaluating-image-segmentation-models/) for an overview of evaluation metrics for image segmentation.Because our model outputs logits with dimensions height/4 and width/4, we have to upscale them before we can compute the mIoU.<jupyter_code>import torch from torch import nn import evaluate metric = evaluate.load("mean_iou") def compute_metrics(eval_pred): with torch.no_grad(): logits, labels = eval_pred logits_tensor = torch.from_numpy(logits) # scale the logits to the size of the label logits_tensor = nn.functional.interpolate( logits_tensor, size=labels.shape[-2:], mode="bilinear", align_corners=False, ).argmax(dim=1) pred_labels = logits_tensor.detach().cpu().numpy() # currently using _compute instead of compute # see this issue for more info: https://github.com/huggingface/evaluate/pull/328#issuecomment-1286866576 metrics = metric._compute( predictions=pred_labels, references=labels, num_labels=len(id2label), ignore_index=0, reduce_labels=feature_extractor.reduce_labels, ) # add per category metrics as individual key-value pairs per_category_accuracy = metrics.pop("per_category_accuracy").tolist() per_category_iou = metrics.pop("per_category_iou").tolist() metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)}) metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)}) return metrics<jupyter_output><empty_output><jupyter_text>Finally, we can instantiate a `Trainer` object.<jupyter_code>from transformers import Trainer trainer = Trainer( model=model, args=training_args, tokenizer=feature_extractor, train_dataset=train_ds, eval_dataset=test_ds, compute_metrics=compute_metrics, )<jupyter_output><empty_output><jupyter_text>Notice that we're passing `feature_extractor` to the `Trainer`. This will ensure the feature extractor is also uploaded to the Hub along with the model checkpoints.Now that our trainer is set up, training is as simple as calling the train function. We don't need to worry about managing our GPU(s), the trainer will take care of that.<jupyter_code>trainer.train()<jupyter_output><empty_output><jupyter_text>When we're done with training, we can push our fine-tuned model to the Hub.This will also automatically create a model card with our results. We'll supply some extra information in kwargs to make the model card more complete.<jupyter_code>kwargs = { "tags": ["vision", "image-segmentation"], "finetuned_from": pretrained_model_name, "dataset": hf_dataset_identifier, } trainer.push_to_hub(**kwargs)<jupyter_output><empty_output><jupyter_text>InferenceNow comes the exciting part -- using our fine-tuned model! In this section, we'll show how you can load your model from the hub and use it for inference. However, you can also try out your model directly on the Hugging Face Hub, thanks to the cool widgets powered by the [hosted inference API](https://api-inference.huggingface.co/docs/python/html/index.html). If you pushed your model to the Hub in the previous step, you should see an inference widget on your model page. You can add default examples to the widget by defining example image URLs in your model card. See [this model card](https://huggingface.co/segments-tobias/segformer-b0-finetuned-segments-sidewalk/blob/main/README.md) as an example. <video alt="The interactive widget of the model" style="max-width: 70%; margin: auto;" autoplay loop autobuffer muted playsinline > Use the model from the HubWe'll first load the model from the Hub using `SegformerForSemanticSegmentation.from_pretrained()`.<jupyter_code>from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation feature_extractor = SegformerFeatureExtractor.from_pretrained(model_checkpoint) hf_username = "segments-tobias" model = SegformerForSemanticSegmentation.from_pretrained(f"{hf_username}/{hub_model_id}")<jupyter_output><empty_output><jupyter_text>Next, we'll load an image from our test dataset and its associated ground truth segmentation label.<jupyter_code>image = test_ds[0]['pixel_values'] gt_seg = test_ds[0]['label'] image<jupyter_output><empty_output><jupyter_text>To segment this test image, we first need to prepare the image using the feature extractor. Then we'll forward it through the model.We also need to remember to upscale the output logits to the original image size. In order to get the actual category predictions, we just have to apply an `argmax` on the logits.<jupyter_code>from torch import nn inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) # First, rescale logits to original image size upsampled_logits = nn.functional.interpolate( logits, size=image.size[::-1], # (height, width) mode='bilinear', align_corners=False ) # Second, apply argmax on the class dimension pred_seg = upsampled_logits.argmax(dim=1)[0]<jupyter_output><empty_output><jupyter_text>Now it's time to display the result. The next cell defines the colors for each category, so that they match the "category coloring" on Segments.ai.<jupyter_code>#@title `def sidewalk_palette()` def sidewalk_palette(): """Sidewalk palette that maps each class to RGB values.""" return [ [0, 0, 0], [216, 82, 24], [255, 255, 0], [125, 46, 141], [118, 171, 47], [161, 19, 46], [255, 0, 0], [0, 128, 128], [190, 190, 0], [0, 255, 0], [0, 0, 255], [170, 0, 255], [84, 84, 0], [84, 170, 0], [84, 255, 0], [170, 84, 0], [170, 170, 0], [170, 255, 0], [255, 84, 0], [255, 170, 0], [255, 255, 0], [33, 138, 200], [0, 170, 127], [0, 255, 127], [84, 0, 127], [84, 84, 127], [84, 170, 127], [84, 255, 127], [170, 0, 127], [170, 84, 127], [170, 170, 127], [170, 255, 127], [255, 0, 127], [255, 84, 127], [255, 170, 127], ]<jupyter_output><empty_output><jupyter_text>The next function overlays the output segmentation map on the original image.<jupyter_code>import numpy as np def get_seg_overlay(image, seg): color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3 palette = np.array(sidewalk_palette()) for label, color in enumerate(palette): color_seg[seg == label, :] = color # Show image + mask img = np.array(image) * 0.5 + color_seg * 0.5 img = img.astype(np.uint8) return img<jupyter_output><empty_output><jupyter_text>We'll display the result next to the ground-truth mask.<jupyter_code>import matplotlib.pyplot as plt pred_img = get_seg_overlay(image, pred_seg) gt_img = get_seg_overlay(image, np.array(gt_seg)) f, axs = plt.subplots(1, 2) f.set_figheight(30) f.set_figwidth(50) axs[0].set_title("Prediction", {'fontsize': 40}) axs[0].imshow(pred_img) axs[1].set_title("Ground truth", {'fontsize': 40}) axs[1].imshow(gt_img)<jupyter_output><empty_output>
notebooks/examples/semantic_segmentation.ipynb/0
{ "file_path": "notebooks/examples/semantic_segmentation.ipynb", "repo_id": "notebooks", "token_count": 6303 }
159
<jupyter_start><jupyter_text>Using 🤗 Hugging Face Models with Tensorflow + TPU Most of this notebook is designed to be run on a Colab TPU. To access TPU on Colab, go to `Runtime -> Change runtime type` and choose `TPU`. Some parts of the code may need to be changed when running on a Google Cloud TPU VM or TPU Node. We have indicated in the code where these changes may be necessary.At busy times, you may find that there's a lot of competition for TPUs and it can be hard to get access to a free one on Colab. Keep trying!This notebook is focused on usable code, but if you'd like a more high-level explanation of how to work with TPUs, please check out our [associated TPU tutorial](https://huggingface.co/docs/transformers/main/en/perf_train_tpu_tf). First, install up-to-date versions of `transformers` and `datasets` if you don't have them already.<jupyter_code>!pip install --upgrade transformers datasets<jupyter_output><empty_output><jupyter_text>We also quickly upload some telemetry - this tells us which examples and software versions are getting used so we know where to prioritize our maintenance efforts. We don't collect (or care about) any personally identifiable information, but if you'd prefer not to be counted, feel free to skip this step or delete this cell entirely.<jupyter_code>from transformers.utils import send_example_telemetry send_example_telemetry("tpu_notebook", framework="tensorflow")<jupyter_output><empty_output><jupyter_text>Initialize your TPU This next block will need to be modified depending on how you're accessing the TPU. For Colab, this code should work fine. When running on a TPU VM, pass the argument `tpu="local"` to the `TPUClusterResolver`. When running on a non-Colab TPU Node, you'll need to pass the address of the TPU resource. When debugging on CPU/GPU, skip this block.<jupyter_code>import tensorflow as tf resolver = tf.distribute.cluster_resolver.TPUClusterResolver() # On TPU VMs use this line instead: # resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu="local") tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver)<jupyter_output><empty_output><jupyter_text>Prepare your `Strategy` In TensorFlow, a `Strategy` object determines how models and data should be distributed across workers. There is a `TPUStrategy` specifically for TPU. However, when debugging, we recommend starting with the simplest `OneDeviceStrategy` to make sure your code works on CPU, and then swapping it for the `TPUStrategy` once you're sure it's bug-free.<jupyter_code>import tensorflow as tf strategy = tf.distribute.TPUStrategy(resolver) # For testing without a TPU use this line instead: # strategy = tf.distribute.OneDeviceStrategy("/cpu:0")<jupyter_output><empty_output><jupyter_text>Load and preprocess training data In order for TPU training to work, you must create the model used for training inside the `Strategy.scope()`. However, other things like Hugging Face `tokenizers` and the `Dataset` do not need to be created in this scope.For this example we will use CoLA, which is a small and simple binary text classification dataset from the GLUE benchmark.We also pad all samples to the maximum length, firstly to make it easier to load them as an array, but secondly because this avoids issues with XLA later. For more information on XLA compilation and TPUs, see the [associated TPU tutorial](https://huggingface.co/docs/transformers/main/en/perf_train_tpu_tf).<jupyter_code>from transformers import AutoTokenizer from datasets import load_dataset import numpy as np model_checkpoint = "distilbert-base-cased" dataset = load_dataset("glue", "cola")["train"] tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) # For simplicity, let's just tokenize our dataset as NumPy arrays # padded to the maximum length. We discuss other options below! train_data = tokenizer( dataset["sentence"], padding="max_length", truncation=True, max_length=128, return_tensors="np", ) train_data = dict(train_data) # Because the tokenizer returns a dict subclass train_labels = np.array(dataset["label"])<jupyter_output><empty_output><jupyter_text>Create your Model While preprocessing data you can operate outside of the the `strategy.scope()`, but model creation **must** take place inside it.<jupyter_code>from transformers import TFAutoModelForSequenceClassification with strategy.scope(): model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint) # You can compile with jit_compile=True when debugging on CPU or GPU to check # that XLA compilation works. Remember to take it out when actually running # on TPU, though - XLA compilation will be handled for you when running with a # TPUStrategy! model.compile(optimizer="adam")<jupyter_output><empty_output><jupyter_text>Create the `tf.data.Dataset` Keras methods like `fit()` can usually accept a broad range of inputs - a `list`/`tuple`/`dict` of `np.ndarray` or `tf.Tensor`, Python generators, `tf.data.Dataset`, and so on. **This is not the case on TPU.**On TPU, your input must always be a `tf.data.Dataset`. If you pass anything elseto `model.fit()` when using a `TPUStrategy`, it will try to coerce it into a `tf.data.Dataset`. This sometimes works, but will create a lot of console spam and warnings even when it does. As a result, we recommend explicitly creating a `tf.data.Dataset` in all cases.<jupyter_code># The batch size will be split among TPU workers # so we scale it up based on how many of them there are BATCH_SIZE = 8 * strategy.num_replicas_in_sync tf_dataset = tf.data.Dataset.from_tensor_slices((train_data, train_labels)) tf_dataset = tf_dataset.shuffle(len(tf_dataset)) # You should use drop_remainder on TPU where possible, because a change in the # batch size will require a new XLA compilation tf_dataset = tf_dataset.batch(BATCH_SIZE, drop_remainder=True) tf_dataset<jupyter_output><empty_output><jupyter_text>Train your model! If you made it this far, then this next line should feel very familiar. Note that `fit()` doesn't actually need to be in the `scope()`, as long as the model and dataset were created there!<jupyter_code>model.fit(tf_dataset)<jupyter_output><empty_output><jupyter_text>And that's it! You just trained a Hugging Face model on TPU. Advanced dataset creation Although the code above is perfectly usable, the dataset creation has been very simplified. We padded every sample to the maximum length in the whole dataset, and we also loaded the whole dataset into memory. When your data is too big for this to work, you will need to use a different approach instead.Below, we're going to list a few possible approaches to try. Note that some of these approaches may not work on Colab or TPU Node, so don't panic if you get errors! We'll try to indicate which code will work where, and what the advantages and disadvantages of each method are. When adapting this code for your own projects, we recommend choosing only one of these approaches, don't try to do them all at once! Convert your data to `TFRecord` `TFRecord` is the standard `tf.data` format for storing training data. For very large training jobs, it's often worth preprocessing your data and storing it all as TFRecord, then building your own `tf.data` pipeline on top of it. This is more work, and often requires you to pay for cloud storage, but it works for training on a wide range of devices (including TPU VM, TPU Node and Colab), and allows for truly massive data pipeline throughput.When converting to TFRecord, it's a good idea to do your preprocessing and tokenization before writing the TFRecord, so you don't have to do it every time the data is loaded. However, if you intend to use **train-time augmentations** you should be careful **not** to apply those before writing the `TFRecord`, or else you'll get exactly the same augmentation each epoch, which defeats the purpose of augmenting your data in the first place! Instead, you should apply augmentations in the `tf.data` pipeline that loads your data. First, we initialize our TPU. Skip this block if you're running on CPU.<jupyter_code>import tensorflow as tf resolver = tf.distribute.cluster_resolver.TPUClusterResolver() # On TPU VMs use this line instead: # resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu="local") tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver)<jupyter_output><empty_output><jupyter_text>Next, we load our strategy, dataset, tokenizer and model just like we did in the first example.<jupyter_code>import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSequenceClassification from datasets import load_dataset strategy = tf.distribute.TPUStrategy(resolver) # For testing without a TPU use this line instead: # strategy = tf.distribute.OneDeviceStrategy("/cpu:0") BATCH_SIZE = 8 * strategy.num_replicas_in_sync dataset = load_dataset("glue", "cola", split="train") model_checkpoint = "distilbert-base-cased" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) with strategy.scope(): model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint) model.compile(optimizer="adam")<jupyter_output><empty_output><jupyter_text>Now, let's tokenize our Hugging Face dataset.**Tip:** When using this method in practice, you probably won't be able to load your entire dataset in memory - instead, load a chunk of the dataset at a time and convert that to a TFRecord file, then repeat until you've covered the entire dataset, then use the list of all the files to create the TFRecordDataset later. In this example, we'll just create a single file for simplicity.<jupyter_code>tokenized_data = tokenizer( dataset["sentence"], padding="max_length", truncation=True, max_length=128, return_tensors="np", ) labels = dataset["label"] with tf.io.TFRecordWriter("dataset.tfrecords") as file_writer: for i in range(len(labels)): features = { "input_ids": tf.train.Feature( int64_list=tf.train.Int64List(value=tokenized_data["input_ids"][i]) ), "attention_mask": tf.train.Feature( int64_list=tf.train.Int64List(value=tokenized_data["attention_mask"][i]) ), "labels": tf.train.Feature( int64_list=tf.train.Int64List(value=[labels[i]]) ), } features = tf.train.Features(feature=features) example = tf.train.Example(features=features) record_bytes = example.SerializeToString() file_writer.write(record_bytes)<jupyter_output><empty_output><jupyter_text>Now, to load the dataset we build a `TFRecordDataset` using the filenames of the file(s) we saved. Ordinarily, you would need to create your own bucket in Google Cloud Storage, upload files to there, and handle authenticating your Python code so it can access it. However, for the sake of this example, we have uploaded the example file to a public bucket for you, so you can get started quickly!<jupyter_code>def decode_fn(sample): features = { "input_ids": tf.io.FixedLenFeature((128,), dtype=tf.int64), "attention_mask": tf.io.FixedLenFeature((128,), dtype=tf.int64), "labels": tf.io.FixedLenFeature((1,), dtype=tf.int64), } return tf.io.parse_example(sample, features) # TFRecordDataset can handle gs:// paths! tf_dataset = tf.data.TFRecordDataset(["gs://matt-tf-tpu-tutorial-datasets/cola/dataset.tfrecords"]) tf_dataset = tf_dataset.map(decode_fn) tf_dataset = tf_dataset.shuffle(len(dataset)).batch(BATCH_SIZE, drop_remainder=True) tf_dataset = tf_dataset.apply( tf.data.experimental.assert_cardinality(len(labels) // BATCH_SIZE) )<jupyter_output><empty_output><jupyter_text>And now we can simply fit our dataset as before.<jupyter_code>model.fit(tf_dataset)<jupyter_output><empty_output><jupyter_text>In summary:**TFRecord advantages:**- Works on all TPU instances (if the TFRecords are [stored in Google Cloud](https://www.tensorflow.org/api_docs/python/tf/io/gfile/GFile))- Can support huge datasets and massive throughput- Suitable for training on even entire TPU pods (!)- Preprocessing is done in advance, maximizing training speed**TFRecord disadvantages:**- Cloud storage isn't free!- Some datatypes (e.g. images) can take up a lot of space in this format Stream from raw data In all of the examples above, we preprocessed data with a `tokenizer`, and then loaded the preprocessed data to fit our model. However, there is an alternate approach: The data can be stored in its native format, and the preprocessing can be done in the `tf.data` pipeline itself as the data is loaded!This is probably the most complex approach, but it can be useful if converting to `TFRecord` is difficult, such as when you don't want to save preprocessed images. It's especially useful when the dataset you want is already publicly available in cloud storage - this saves you having to create (and pay for!) your own cloud storage bucket.Many Hugging Face NLP models have complex tokenization schemes that are not yet supported as `tf.data` operations, and so this approach will not work for them. However, some (e.g. BERT) do have [fully TF compilable tokenization](https://huggingface.co/docs/transformers/model_doc/berttransformers.TFBertTokenizer). This is often a great approach for image models, though!Let's see an example of this in action. First, we initialize our TPU. Skip this block if you're running on CPU.<jupyter_code>import tensorflow as tf resolver = tf.distribute.cluster_resolver.TPUClusterResolver() # On TPU VMs use this line instead: # resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu="local") tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver)<jupyter_output><empty_output><jupyter_text>Next, we create our strategy as we did in the first example.<jupyter_code>import tensorflow as tf strategy = tf.distribute.TPUStrategy(resolver) # For testing without a TPU use this line instead: # strategy = tf.distribute.OneDeviceStrategy("/cpu:0")<jupyter_output><empty_output><jupyter_text>Next, let's download an image dataset. We'll use Hugging Face datasets for this, but you can use any other source too.<jupyter_code>from datasets import load_dataset image_dataset = load_dataset("beans", split="train")<jupyter_output><empty_output><jupyter_text>Now, let's get a list of the underlying image file paths and labels.<jupyter_code>filenames = image_dataset["image_file_path"] labels = image_dataset["labels"]<jupyter_output><empty_output><jupyter_text>Ordinarily at this point you would need to create your own bucket in Google Cloud Storage, upload the image files to there, and handle authenticating your Python code so it can access it. However, for the sake of this example we have uploaded the images to a public bucket for you, so you can get started quickly!We'll use this quick conversion below to turn the local filenames in the dataset into `gs://` paths in Google Cloud Storage.<jupyter_code># Strip everything but the category directory and filenames base_filenames = ['/'.join(filename.split('/')[-2:]) for filename in filenames] # Prepend the google cloud base path to everything instead gs_paths = ["gs://matt-tf-tpu-tutorial-datasets/beans/"+filename for filename in base_filenames] tf_dataset = tf.data.Dataset.from_tensor_slices( {"filename": gs_paths, "labels": labels} ) tf_dataset = tf_dataset.shuffle(len(tf_dataset))<jupyter_output><empty_output><jupyter_text>That was pretty painless, but now we come to the tricky bit. It's extremely important to preprocess data in the way that the model expects. Classes like `AutoTokenizer` and `AutoImageProcessor` are designed to easily load the exact configuration for any model, so that you're guaranteed that your preprocessing will be correct.However, this might seem like a problem when we need to do the preprocessing in `tf.data`! These classes contain framework-agnostic code which `tf.data` will usually not be able to compile into a pipeline. Don't panic, though - for image datasets we can simply get the normalization values from those classes, and then use them in our `tf.data` pipeline.Let's use [ViT](https://huggingface.co/google/vit-base-patch16-224) as our image model, and get the `mean` and `std` values used to normalize images.<jupyter_code>from transformers import AutoImageProcessor image_model_checkpoint = "google/vit-base-patch16-224" processor = AutoImageProcessor.from_pretrained(image_model_checkpoint) image_size = (processor.size["height"], processor.size["width"]) image_mean = processor.image_mean image_std = processor.image_std<jupyter_output><empty_output><jupyter_text>Now we can write a function to load and preprocess the images:<jupyter_code>BATCH_SIZE = 8 * strategy.num_replicas_in_sync def decode_fn(sample): image_data = tf.io.read_file(sample["filename"]) image = tf.io.decode_jpeg(image_data, channels=3) image = tf.image.resize(image, image_size) array = tf.cast(image, tf.float32) array /= 255.0 array = (array - image_mean) / image_std array = tf.transpose(array, perm=[2, 0, 1]) # Swap to channels-first return {"pixel_values": array, "labels": sample["labels"]} tf_dataset = tf_dataset.map(decode_fn) tf_dataset = tf_dataset.batch(BATCH_SIZE, drop_remainder=True) print(tf_dataset.element_spec)<jupyter_output><empty_output><jupyter_text>Nice! Now we have a pipeline we can feed our model with. Let's try it!<jupyter_code>from transformers import TFAutoModelForImageClassification with strategy.scope(): model = TFAutoModelForImageClassification.from_pretrained(image_model_checkpoint) model.compile(optimizer="adam") model.fit(tf_dataset)<jupyter_output><empty_output><jupyter_text>In summary:**tf.data pipeline advantages:**- Very suitable for big data that is highly compressed in its native format (images, audio)- Very convenient if the raw data is already available in a public cloud bucket- Works on all TPU instances (if the data is stored in Google Cloud)**tf.data pipeline disadvantages:**- You'll need to write a full preprocessing pipeline- If preprocessing is complex, doing it on-the-fly can hurt throughput- If the data isn't already available in cloud storage you'll have to put it there- Less suitable for text data because writing a tokenization pipeline is hard, plus tokenized text is small and suitable for TFRecord Stream from your dataset with `model.prepare_tf_dataset()` If you've read any of our other [example notebooks](https://huggingface.co/docs/transformers/notebooks), you'll notice we often use the method `Dataset.to_tf_dataset()` or its higher-level wrapper `model.prepare_tf_dataset()` to convert Hugging Face Datasets to `tf.data.Dataset`. These methods can work for TPU, but with several caveats!The main thing to know is that these methods do not actually convert the entire Hugging Face `Dataset`. Instead, they create a `tf.data` pipeline that loads samples from the `Dataset`. This pipeline uses `tf.numpy_function` or `Dataset.from_generator()` to access the underlying `Dataset`, and as a result the whole pipeline cannot be compiled by TensorFlow. **Because of this, and because the pipeline streams from data on a local disc, these methods will not work on Colab TPU or TPU Nodes.**However, if you're running on a TPU VM and you can tolerate TensorFlow throwing some warnings, this method can work! Let's see it in action. By default, the code below will run on CPU so you can try it on Colab, but if you have a TPU VM feel free to try running it on TPU there. First, we initialize our TPU. Skip this block if you're running on CPU.<jupyter_code>import tensorflow as tf resolver = tf.distribute.cluster_resolver.TPUClusterResolver() # On TPU VMs use this line instead: # resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu="local") tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver)<jupyter_output><empty_output><jupyter_text>Next, we load our strategy, dataset, tokenizer and model just like we did in the first example.<jupyter_code>import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSequenceClassification from datasets import load_dataset # By default, we run on CPU so you can try this code on Colab strategy = tf.distribute.OneDeviceStrategy("/cpu:0") # When actually running on a TPU VM use this line instead: # strategy = tf.distribute.TPUStrategy(resolver) BATCH_SIZE = 8 * strategy.num_replicas_in_sync dataset = load_dataset("glue", "cola", split="train") model_checkpoint = "distilbert-base-cased" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) with strategy.scope(): model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint) model.compile(optimizer="adam")<jupyter_output><empty_output><jupyter_text>Next, we add the tokenizer output as columns in the dataset. Since the dataset is stored on disc, this means we can handle data much bigger than our available memory. Once that's done, we can use `prepare_tf_dataset` to stream data from the Hugging Face Dataset by wrapping it with a `tf.data` pipeline.<jupyter_code>def tokenize_function(examples): return tokenizer( examples["sentence"], padding="max_length", truncation=True, max_length=128 ) # This will add the tokenizer output to the dataset as new columns dataset = dataset.map(tokenize_function) # prepare_tf_dataset() will choose columns that match the model's input names tf_dataset = model.prepare_tf_dataset( dataset, batch_size=BATCH_SIZE, shuffle=True, tokenizer=tokenizer )<jupyter_output><empty_output><jupyter_text>And now you can fit this dataset just like before!<jupyter_code>model.fit(tf_dataset) # Note - will be very slow if you're on CPU<jupyter_output><empty_output>
notebooks/examples/tpu_training-tf.ipynb/0
{ "file_path": "notebooks/examples/tpu_training-tf.ipynb", "repo_id": "notebooks", "token_count": 6661 }
160
<jupyter_start><jupyter_text>Spot Instances - Amazon SageMaker x Hugging Face Transformers Learn how to use Spot Instances and Checkpointing and save up to 90% training cost [Amazon EC2 Spot Instances](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html) are a way to take advantage of unused EC2 capacity in the AWS cloud. A Spot Instance is an instance that uses spare EC2 capacity that is available for less than the On-Demand price. The hourly price for a Spot Instance is called a Spot price. If you want to learn more about Spot Instances, you should check out the concepts of it in the [documentation](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.htmlspot-pricing). One concept we should nevertheless briefly address here is `Spot Instance interruption`. > Amazon EC2 terminates, stops, or hibernates your Spot Instance when Amazon EC2 needs the capacity back or the Spot price exceeds the maximum price for your request. Amazon EC2 provides a Spot Instance interruption notice, which gives the instance a two-minute warning before it is interrupted.[Amazon SageMaker](https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html) and the [Hugging Face DLCs](https://huggingface.co/docs/sagemaker/main) make it easy to train transformer models using managed Spot instances. Managed spot training can optimize the cost of training models up to 90% over on-demand instances. As we learned spot instances can be interrupted, causing jobs to potentially stop before they are finished. To prevent any loss of model weights or information Amazon SageMaker offers support for [remote S3 Checkpointing](https://docs.aws.amazon.com/sagemaker/latest/dg/model-checkpoints.html) where data from a local path to Amazon S3 is saved. When the job is restarted, SageMaker copies the data from Amazon S3 back into the local path.In this example, we will learn how to use [managed Spot Training](https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html) and [S3 checkpointing](https://docs.aws.amazon.com/sagemaker/latest/dg/model-checkpoints.html) with Hugging Face Transformers to save up to 90% of the training costs. We are going to:- preprocess a dataset in the notebook and upload it to Amazon S3- configure checkpointing and spot training in the `HuggingFace` estimator- run training on a spot instance_**NOTE: You can run this demo in Sagemaker Studio, your local machine, or Sagemaker Notebook Instances**_ **Development Environment and Permissions***Note: we only install the required libraries from Hugging Face and AWS. You also need PyTorch or Tensorflow, if you haven´t it installed*<jupyter_code>!pip install "sagemaker>=2.140.0" "transformers==4.26.1" "datasets[s3]==2.10.1" --upgrade<jupyter_output><empty_output><jupyter_text>Permissions *If you are going to use Sagemaker in a local environment (not SageMaker Studio or Notebook Instances). You need access to an IAM Role with the required permissions for Sagemaker. You can find [here](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html) more about it.*<jupyter_code>import sagemaker import boto3 sess = sagemaker.Session() # sagemaker session bucket -> used for uploading data, models and logs # sagemaker will automatically create this bucket if it not exists sagemaker_session_bucket=None if sagemaker_session_bucket is None and sess is not None: # set to default bucket if a bucket name is not given sagemaker_session_bucket = sess.default_bucket() try: role = sagemaker.get_execution_role() except ValueError: iam = boto3.client('iam') role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn'] sess = sagemaker.Session(default_bucket=sagemaker_session_bucket) print(f"sagemaker role arn: {role}") print(f"sagemaker bucket: {sess.default_bucket()}") print(f"sagemaker session region: {sess.boto_region_name}")<jupyter_output><empty_output><jupyter_text>PreprocessingWe are using the `datasets` library to download and preprocess the `emotion` dataset. After preprocessing, the dataset will be uploaded to our `sagemaker_session_bucket` to be used within our training job. The [emotion](https://github.com/dair-ai/emotion_dataset) dataset consists of 16000 training examples, 2000 validation examples, and 2000 testing examples.<jupyter_code>from datasets import load_dataset from transformers import AutoTokenizer # model_id used for training and preprocessing model_id = 'distilbert-base-uncased' # dataset used dataset_name = 'emotion' # s3 key prefix for the data s3_prefix = 'samples/datasets/emotion' # download tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id) # tokenizer helper function def tokenize(batch): return tokenizer(batch['text'], padding='max_length', truncation=True) # load dataset train_dataset, test_dataset = load_dataset(dataset_name, split=['train', 'test']) # tokenize dataset train_dataset = train_dataset.map(tokenize, batched=True) test_dataset = test_dataset.map(tokenize, batched=True) # set format for pytorch train_dataset = train_dataset.rename_column("label", "labels") train_dataset.set_format('torch', columns=['input_ids', 'attention_mask', 'labels']) test_dataset = test_dataset.rename_column("label", "labels") test_dataset.set_format('torch', columns=['input_ids', 'attention_mask', 'labels'])<jupyter_output><empty_output><jupyter_text>After we processed the `datasets` we are going to use the new `FileSystem` [integration](https://huggingface.co/docs/datasets/filesystems.html) to upload our dataset to S3.<jupyter_code># save train_dataset to s3 training_input_path = f's3://{sess.default_bucket()}/{s3_prefix}/train' train_dataset.save_to_disk(training_input_path) # save test_dataset to s3 test_input_path = f's3://{sess.default_bucket()}/{s3_prefix}/test' test_dataset.save_to_disk(test_input_path)<jupyter_output><empty_output><jupyter_text>Configure checkpointing and spot training in the `HuggingFace` estimatorAfter we have uploaded we can configure our spot training and make sure we have checkpointing enabled to not lose any progress if interruptions happen. To configure spot training we need to define the `max_wait` and `max_run` in the `HuggingFace` estimator and set `use_spot_instances` to `True`. - `max_wait`: Duration in seconds until Amazon SageMaker will stop the managed spot training if not completed yet- `max_run`: Max duration in seconds for training the training job`max_wait` also needs to be greater than `max_run`, because `max_wait` is the duration for waiting/accessing spot instances (can take time when no spot capacity is free) + the expected duration of the training job. **Example**If you expect your training to take 3600 seconds (1 hour) you can set `max_run` to `4000` seconds (buffer) and `max_wait` to `7200` to include a `3200` seconds waiting time for your spot capacity.<jupyter_code># enables spot training use_spot_instances=True # max time including spot start + training time max_wait=7200 # expected training time max_run=4000<jupyter_output><empty_output><jupyter_text>To enable checkpointing we need to define `checkpoint_s3_uri` in the `HuggingFace` estimator. `checkpoint_s3_uri` is a S3 URI in which to save the checkpoints. By default Amazon SageMaker will save now any file, which is written to `/opt/ml/checkpoints` in the training job to `checkpoint_s3_uri`. *It is possible to adjust `/opt/ml/checkpoints` by overwriting `checkpoint_local_path` in the `HuggingFace` estimator*<jupyter_code># s3 uri where our checkpoints will be uploaded during training base_job_name = "emotion-checkpointing" checkpoint_s3_uri = f's3://{sess.default_bucket()}/{base_job_name}/checkpoints'<jupyter_output><empty_output><jupyter_text>Next step is to create our `HuggingFace` estimator, provide our `hyperparameters` and add our spot and checkpointing configurations.<jupyter_code>from sagemaker.huggingface import HuggingFace # hyperparameters, which are passed into the training job hyperparameters={ 'epochs': 1, # number of training epochs 'train_batch_size': 32, # batch size for training 'eval_batch_size': 64, # batch size for evaluation 'learning_rate': 3e-5, # learning rate used during training 'model_id':model_id, # pre-trained model id 'fp16': True, # Whether to use 16-bit (mixed) precision training 'output_dir':'/opt/ml/checkpoints' # make sure files are saved to the checkpoint directory } # create the Estimator huggingface_estimator = HuggingFace( entry_point = 'train.py', # fine-tuning script used in training jon source_dir = './scripts', # directory where fine-tuning script is stored instance_type = 'ml.p3.2xlarge', # instances type used for the training job instance_count = 1, # the number of instances used for training base_job_name = base_job_name, # the name of the training job role = role, # Iam role used in training job to access AWS ressources, e.g. S3 transformers_version = '4.26.0', # the transformers version used in the training job pytorch_version = '1.13.1', # the pytorch_version version used in the training job py_version = 'py39', # the python version used in the training job hyperparameters = hyperparameters, # the hyperparameter used for running the training job use_spot_instances = use_spot_instances,# wether to use spot instances or not max_wait = max_wait, # max time including spot start + training time max_run = max_run, # max expected training time checkpoint_s3_uri = checkpoint_s3_uri, # s3 uri where our checkpoints will be uploaded during training )<jupyter_output><empty_output><jupyter_text>When using remote S3 checkpointing you have to make sure that your `train.py` also supports checkpointing. `Transformers` and the `Trainer` offers utilities on how to do this. You only need to add the following snippet to your `Trainer` training script```pythonfrom transformers.trainer_utils import get_last_checkpoint check if checkpoint existing if so continue trainingif get_last_checkpoint(args.output_dir) is not None: logger.info("***** continue training *****") last_checkpoint = get_last_checkpoint(args.output_dir) trainer.train(resume_from_checkpoint=last_checkpoint)else: trainer.train()``` Run training on a spot instanceThe last step of this example is to start our managed Spot Training. Therefore we simple call the `.fit` method of our estimator and provide our dataset.<jupyter_code># define train data object data = { 'train': training_input_path, 'test': test_input_path } # starting the train job with our uploaded datasets as input huggingface_estimator.fit(data) # Training seconds: 874 # Billable seconds: 262 # Managed Spot Training savings: 70.0%<jupyter_output><empty_output>
notebooks/sagemaker/05_spot_instances/sagemaker-notebook.ipynb/0
{ "file_path": "notebooks/sagemaker/05_spot_instances/sagemaker-notebook.ipynb", "repo_id": "notebooks", "token_count": 3523 }
161
from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F # Helper: Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def model_fn(model_dir): # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained(model_dir) model = AutoModel.from_pretrained(model_dir) return model, tokenizer def predict_fn(data, model_and_tokenizer): # destruct model and tokenizer model, tokenizer = model_and_tokenizer # Tokenize sentences sentences = data.pop("inputs", data) encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) # return dictonary, which will be json serializable return {"vectors": sentence_embeddings}
notebooks/sagemaker/17_custom_inference_script/code/inference.py/0
{ "file_path": "notebooks/sagemaker/17_custom_inference_script/code/inference.py", "repo_id": "notebooks", "token_count": 487 }
162
base_job_name: accelerate-sagemaker-1 compute_environment: AMAZON_SAGEMAKER distributed_type: DATA_PARALLEL ec2_instance_type: ml.p3.16xlarge iam_role_name: xxxxx image_uri: null mixed_precision: fp16 num_machines: 1 profile: xxxxx py_version: py38 pytorch_version: 1.10.2 region: us-east-1 sagemaker_inputs_file: sagemaker_inputs.tsv sagemaker_metrics_file: sagemaker_metrics_definition.tsv transformers_version: 4.17.0 use_cpu: false
notebooks/sagemaker/22_accelerate_sagemaker_examples/src/text-classification/accelerate_config.yaml/0
{ "file_path": "notebooks/sagemaker/22_accelerate_sagemaker_examples/src/text-classification/accelerate_config.yaml", "repo_id": "notebooks", "token_count": 177 }
163
<jupyter_start><jupyter_text>How to scale LLM workloads to 20B+ with multi-node clusters on Amazon SageMaker using Hugging Face and PyTorch FSDPIn this tutorial, we will fine-tune the new [GPT-NeoXT-Chat-Base-20B](https://huggingface.co/togethercomputer/GPT-NeoXT-Chat-Base-20B) on the [ELI5](https://huggingface.co/datasets/eli5) dataset to improve the explanation and question-answering skills of the agent. The [ELI5](https://huggingface.co/datasets/eli5) dataset is an English-language dataset of questions and answers gathered from three subreddits where users ask factual questions requiring paragraph-length or longer answers. [GPT-NeoXT-Chat-Base](https://huggingface.co/togethercomputer/GPT-NeoXT-Chat-Base-20B) is a 20B open-source LLM, which makes it hard to fine-tune on a single GPU or even a single Node with multiple GPUs. We are going to use Amazon SageMaker managed training platform as our infrastructure backbone to help us create a multi-node cluster to easily run our distributed training. As instances, we will use 2x p4d.24xlarge instances, which come with 8x NIVIDA A100 40GB GPUs. *Note: You might have to increase and request a quota for those instances.*As distributed training framework, we will use Pytorch FSDP + Hugging Face Transformers Trainer, which will make it super easy to distribute our model and data in a fully sharded way across all our nodes and GPUs. What is PyTorch Fully Sharded Data Parallel (FSDP)?PyTorch FSDP (Fully Sharded Data Parallel) is an extension of data parallelism that enables efficient large-scale training of LLMs. With FSDP, each GPU stores only a subset of the model and associated optimizer states and gradients and can optionally offload the sharded model parameters to CPUs. This helps maximize the overlap between network communication and model computation, reducing the memory footprint on GPUs.FSDP optimizations include:- Transformer Wrapping Policy- Mixed Precision (bf16)- Activation Checkpointing (Gradient Checkpointing)- Full Sharding StrategyPyTorch FSDP is natively integrated into the [Hugging Face Trainer](https://huggingface.co/docs/transformers/main_classes/trainerpytorch-fully-sharded-data-parallel), making it easy to adapt and use. You can learn more about PyTorch FSDP in [Efficient Large-Scale Training with Pytorch FSDP and AWS](https://pytorch.org/blog/efficient-large-scale-training-with-pytorch/) or [Introducing PyTorch Fully Sharded Data Parallel (FSDP) API](https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/) blog post.<jupyter_code>!pip install "transformers==4.28.1" "datasets[s3]==2.9.0" "sagemaker>=2.150.0" --upgrade --quiet<jupyter_output><empty_output><jupyter_text>If you are going to use Sagemaker in a local environment. You need access to an IAM Role with the required permissions for Sagemaker. You can find [here](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html) more about it.<jupyter_code>import sagemaker import boto3 sess = sagemaker.Session() # sagemaker session bucket -> used for uploading data, models and logs # sagemaker will automatically create this bucket if it not exists sagemaker_session_bucket=None if sagemaker_session_bucket is None and sess is not None: # set to default bucket if a bucket name is not given sagemaker_session_bucket = sess.default_bucket() try: role = sagemaker.get_execution_role() except ValueError: iam = boto3.client('iam') role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn'] sess = sagemaker.Session(default_bucket=sagemaker_session_bucket) print(f"sagemaker role arn: {role}") print(f"sagemaker bucket: {sess.default_bucket()}") print(f"sagemaker session region: {sess.boto_region_name}")<jupyter_output><empty_output><jupyter_text>2. Load and prepare the datasetAs the base dataset, we will use the [ELI5](https://huggingface.co/datasets/eli5) dataset, but before fine-tuning the model, we need to preprocess the data. We will create a "chat" version of the dataset by adding `` and ``tokens and add an end-of-sequence `` token to help the model learn to distinguish consecutive examples. Additionally, we create chunks of `2048` tokens ([model max length](https://huggingface.co/EleutherAI/gpt-neox-20b)) to avoid unnecessary padding and computing. The first step is to load our dataset from Hugging Face. The dataset contains `272634` samples for `eli5`. We will downsample the dataset to `25 000` to make it more realistic for real-world use cases.<jupyter_code>from datasets import load_dataset from transformers import AutoTokenizer # Load Tokenizer model_id = "togethercomputer/GPT-NeoXT-Chat-Base-20B" tokenizer = AutoTokenizer.from_pretrained(model_id) # Load dataset from huggingface.co dataset_id = "eli5" dataset = load_dataset(dataset_id, split="train_eli5") # downsample dataset to 10k dataset = dataset.shuffle(42).select(range(25_000))<jupyter_output><empty_output><jupyter_text>An [ELI5](https://huggingface.co/datasets/eli5) sample can include multiple answers to a “question”. We will select the answer with the highest user score for our explanation. *Note: This dataset is a good example of using reinforcement learning for training transformers learning to generate answers with higher scores. Let me know if you are interested in an example of that.*The next step is to convert our dataset into a chat version. Here we will follow the instructions on the [Model card](https://huggingface.co/togethercomputer/GPT-NeoXT-Chat-Base-20Bstrengths-of-the-model) and add the EOS token.<jupyter_code>from random import randint # dataset template for chat conversation template=f'''<human>: Explain like I am five: {{question}} <bot>: {{answer}}{{eos_token}}''' eos_token = tokenizer.eos_token def template_dataset(sample): sample["text"] = template.format( question=sample["title"], answer=sample["answers"]["text"][0], eos_token=eos_token ) return sample # apply prompt template per sample dataset = dataset.map(template_dataset, remove_columns=list(dataset.features)) # print random sample print(dataset[randint(0, 10_000)])<jupyter_output><empty_output><jupyter_text>The last step of the data preparation is to tokenize and chunk our dataset. We convert our inputs (text) to token IDs by tokenizing, which the model can understand. Additionally, we concatenate our dataset samples into chunks of `2048` to avoid unnecessary padding.<jupyter_code>from itertools import chain from functools import partial # empty list to save remainder from batches to use in next batch remainder = {"input_ids": [], "attention_mask": []} def chunk(sample, chunk_length=2048): # define global remainder variable to save remainder from batches to use in next batch global remainder # Concatenate all texts and add remainder from previous batch concatenated_examples = {k: list(chain(*sample[k])) for k in sample.keys()} concatenated_examples = {k: remainder[k] + concatenated_examples[k] for k in concatenated_examples.keys()} # get total number of tokens for batch batch_total_length = len(concatenated_examples[list(sample.keys())[0]]) # get max number of chunks for batch if batch_total_length >= chunk_length: batch_chunk_length = (batch_total_length // chunk_length) * chunk_length # Split by chunks of max_len. result = { k: [t[i : i + chunk_length] for i in range(0, batch_chunk_length, chunk_length)] for k, t in concatenated_examples.items() } # add remainder to global variable for next batch remainder = {k: concatenated_examples[k][batch_chunk_length:] for k in concatenated_examples.keys()} # prepare labels result["labels"] = result["input_ids"].copy() return result # tokenize and chunk dataset lm_dataset = dataset.map( lambda sample: tokenizer(sample["text"]), batched=True, remove_columns=list(dataset.features) ).map( partial(chunk, chunk_length=2048), batched=True, ) # Print total number of samples print(f"Total number of samples: {len(lm_dataset)}")<jupyter_output><empty_output><jupyter_text>After we processed the datasets we are going to use the new [FileSystem integration](https://huggingface.co/docs/datasets/filesystems) to upload our dataset to S3. We are using the `sess.default_bucket()`, adjust this if you want to store the dataset in a different S3 bucket. We will use the S3 path later in our training script.<jupyter_code># save train_dataset to s3 training_input_path = f's3://{sess.default_bucket()}/processed/eli-5/train' lm_dataset.save_to_disk(training_input_path) print("uploaded data to:") print(f"training dataset to: {training_input_path}")<jupyter_output><empty_output><jupyter_text>3. Fine-tune the GPT model using FSDP on Amazon SageMakerAs mentioned in the beginning, we will use Amazon SageMaker and PyTorch FSDP to train our model. Amazon SageMaker makes it easy to create a multi-node cluster to train our model in a distributed manner. Lately, the `sagemaker` python SDK got support to run training jobs using `torchrun`, to distribute the script across multiple nodes and GPUs. To use `torchrun` to execute our scripts, we only have to define the `distribution` parameter in our Estimator and set it to `"torch_distributed": {"enabled": True}`. This tells sagemaker to launch our training job with.```pythontorchrun --nnodes 2 --nproc_per_node 8 --master_addr algo-1 --master_port 7777 --node_rank 1 run_clm.py --bf16 True --dataset_path /opt/ml/input/data/training --epochs 3 --fsdp "full_shard auto_wrap" --fsdp_transformer_layer_cls_to_wrap GPTNeoXLayer --gradient_checkpointing True --model_id togethercomputer/GPT-NeoXT-Chat-Base-20B --optimizer adamw_apex_fused --per_device_train_batch_size 2```To use FSDP with the Hugging Face Trainer, we need to provide our `fsdp` strategy as well as the `transformer layer policy`. In our example, we will use `full shard auto_wrap` and `GPTNeoXLayer`as transformer layer policy. If you run this example and change the model id make sure to also adjust the transformer layer policy. We prepared a [run_clm.py](https://www.notion.so/schmidphilipp/scripts/run_clm.py), which implements causal language modeling and accepts our fsdp and other hyperparameters.To create a sagemaker training job, we create an `HuggingFace` Estimator and provide all our information. SagMaker takes care of starting and managing all the required ec2 instances for us, provides the correct huggingface container, uploads the provided scripts and downloads the data from our S3 bucket into the container at `/opt/ml/input/data`. Then, it starts the training job by running.<jupyter_code>import time from sagemaker.huggingface import HuggingFace # define Training Job Name job_name = f'huggingface-fsdp-{time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())}' # hyperparameters, which are passed into the training job hyperparameters={ 'model_id': 'togethercomputer/GPT-NeoXT-Chat-Base-20B', # model id from huggingface.co/models 'dataset_path': '/opt/ml/input/data/training', # path where sagemaker will save training dataset 'gradient_checkpointing': True, # enable gradient checkpointing 'bf16': True, # enable mixed precision training 'optimizer': "adamw_apex_fused", # optimizer 'per_device_train_batch_size': 2, # batch size per device during training 'epochs': 3, # number of epochs to train 'fsdp': '"full_shard auto_wrap"', # fully sharded data parallelism 'fsdp_transformer_layer_cls_to_wrap': "GPTNeoXLayer", # transformer layer to wrap } # estimator huggingface_estimator = HuggingFace( entry_point='run_clm.py', source_dir='./scripts', instance_type="ml.p4d.24xlarge", instance_count=2, volume_size=200, role=role, job_name=job_name, transformers_version='4.26.0', pytorch_version='1.13.1', py_version="py39", hyperparameters = hyperparameters, distribution={"torch_distributed": {"enabled": True}} # enable torchrun )<jupyter_output><empty_output><jupyter_text>We can now start our training job, with the `.fit()` method passing our S3 path to the training script.<jupyter_code># define a data input dictonary with our uploaded s3 uris data = {'training': training_input_path} # starting the train job with our uploaded datasets as input huggingface_estimator.fit(data, wait=True)<jupyter_output><empty_output>
notebooks/sagemaker/25_pytorch_fsdp_model_parallelism/sagemaker-notebook.ipynb/0
{ "file_path": "notebooks/sagemaker/25_pytorch_fsdp_model_parallelism/sagemaker-notebook.ipynb", "repo_id": "notebooks", "token_count": 3866 }
164
<!--- Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Generating the documentation To generate the documentation, you first have to build it. Several packages are necessary to build the doc, you can install them with the following command, at the root of the code repository: ```bash pip install -e ".[docs]" ``` Then you need to install our special tool that builds the documentation: ```bash pip install git+https://github.com/huggingface/doc-builder ``` --- **NOTE** You only need to generate the documentation to inspect it locally (if you're planning changes and want to check how they look before committing for instance). You don't have to commit to the built documentation. --- ## Building the documentation Once you have setup the `doc-builder` and additional packages, you can generate the documentation by typing the following command: ```bash doc-builder build peft docs/source/ --build_dir ~/tmp/test-build ``` You can adapt the `--build_dir` to set any temporary folder you prefer. This command will create it and generate the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite Markdown editor. ## Previewing the documentation To preview the docs, first install the `watchdog` module with: ```bash pip install watchdog ``` Then run the following command: ```bash doc-builder preview {package_name} {path_to_docs} ``` For example: ```bash doc-builder preview peft docs/source ``` The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives. --- **NOTE** The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again). --- ## Adding a new element to the navigation bar Accepted files are Markdown (.md or .mdx). Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/peft/blob/main/docs/source/_toctree.yml) file. ## Renaming section headers and moving sections It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information. Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor. So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file: ``` Sections that were moved: [ <a href="#section-b">Section A</a><a id="section-a"></a> ] ``` and of course, if you moved it to another file, then: ``` Sections that were moved: [ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ] ``` Use the relative style to link to the new file so that the versioned docs continue to work. ## Writing Documentation - Specification The `huggingface/peft` documentation follows the [Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings, although we can write them directly in Markdown. ### Adding a new tutorial Adding a new tutorial or section is done in two steps: - Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md). - Link that file in `./source/_toctree.yml` on the correct toc-tree. Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so depending on the intended targets (beginners, more advanced users, or researchers) it should go into sections two, three, or four. ### Writing source documentation Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names and objects like True, None, or any strings should usually be put in `code`. When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or function to be in the main package. If you want to create a link to some internal class or function, you need to provide its path. For instance: \[\`utils.gather\`\]. This will be converted into a link with `utils.gather` in the description. To get rid of the path and only keep the name of the object you are linking to in the description, add a ~: \[\`~utils.gather\`\] will generate a link with `gather` in the description. The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\]. #### Defining arguments in a method Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its description: ``` Args: n_layers (`int`): The number of layers of the model. ``` If the description is too long to fit in one line (more than 119 characters in total), another indentation is necessary before writing the description after the argument. Finally, to maintain uniformity if any *one* description is too long to fit on one line, the rest of the parameters should follow suit and have an indention before their description. Here's an example showcasing everything so far: ``` Args: gradient_accumulation_steps (`int`, *optional*, default to 1): The number of steps that should pass before gradients are accumulated. A number > 1 should be combined with `Accelerator.accumulate`. cpu (`bool`, *optional*): Whether or not to force the script to execute on CPU. Will ignore GPU available if set to `True` and force the execution on one process only. ``` For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the following signature: ``` def my_function(x: str = None, a: float = 1): ``` then its documentation should look like this: ``` Args: x (`str`, *optional*): This argument controls ... and has a description longer than 119 chars. a (`float`, *optional*, defaults to 1): This argument is used to ... and has a description longer than 119 chars. ``` Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even if the first line describing your argument type and its default gets long, you can't break it into several lines. You can however write as many lines as you want in the indented description (see the example above with `input_ids`). #### Writing a multi-line code block Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown: ```` ```python # first line of code # second line # etc ``` ```` #### Writing a return block The return block should be introduced with the `Returns:` prefix, followed by a line return and an indentation. The first line should be the type of the return, followed by a line return. No need to indent further for the elements building the return. Here's an example of a single value return: ``` Returns: `List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token. ``` Here's an example of a tuple return, comprising several objects: ``` Returns: `tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs: - ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` -- Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss. - **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) -- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). ``` ## Styling the docstring We have an automatic script running with the `make style` comment that will make sure that: - the docstrings fully take advantage of the line width - all code examples are formatted using black, like the code of the Transformers library This script may have some weird failures if you make a syntax mistake or if you uncover a bug. Therefore, it's recommended to commit your changes before running `make style`, so you can revert the changes done by that script easily. ## Writing documentation examples The syntax, for example, docstrings can look as follows: ``` Example: ```python >>> import time >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> if accelerator.is_main_process: ... time.sleep(2) >>> else: ... print("I'm waiting for the main process to finish its sleep...") >>> accelerator.wait_for_everyone() >>> # Should print on every process at the same time >>> print("Everyone is here") ``` ``` The docstring should give a minimal, clear example of how the respective function is to be used in inference and also include the expected (ideally sensible) output. Often, readers will try out the example before even going through the function or class definitions. Therefore, it is of utmost importance that the example works as expected.
peft/docs/README.md/0
{ "file_path": "peft/docs/README.md", "repo_id": "peft", "token_count": 2889 }
165
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Installation Before you start, you will need to setup your environment, install the appropriate packages, and configure 🤗 PEFT. 🤗 PEFT is tested on **Python 3.8+**. 🤗 PEFT is available on PyPI, as well as GitHub: ## PyPI To install 🤗 PEFT from PyPI: ```bash pip install peft ``` ## Source New features that haven't been released yet are added every day, which also means there may be some bugs. To try them out, install from the GitHub repository: ```bash pip install git+https://github.com/huggingface/peft ``` If you're working on contributing to the library or wish to play with the source code and see live results as you run the code, an editable version can be installed from a locally-cloned version of the repository: ```bash git clone https://github.com/huggingface/peft cd peft pip install -e . ```
peft/docs/source/install.md/0
{ "file_path": "peft/docs/source/install.md", "repo_id": "peft", "token_count": 436 }
166
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Prefix tuning [Prefix tuning](https://hf.co/papers/2101.00190) prefixes a series of task-specific vectors to the input sequence that can be learned while keeping the pretrained model frozen. The prefix parameters are inserted in all of the model layers. The abstract from the paper is: *Fine-tuning is the de facto way to leverage large pretrained language models to perform downstream tasks. However, it modifies all the language model parameters and therefore necessitates storing a full copy for each task. In this paper, we propose prefix-tuning, a lightweight alternative to fine-tuning for natural language generation tasks, which keeps language model parameters frozen, but optimizes a small continuous task-specific vector (called the prefix). Prefix-tuning draws inspiration from prompting, allowing subsequent tokens to attend to this prefix as if it were "virtual tokens". We apply prefix-tuning to GPT-2 for table-to-text generation and to BART for summarization. We find that by learning only 0.1\% of the parameters, prefix-tuning obtains comparable performance in the full data setting, outperforms fine-tuning in low-data settings, and extrapolates better to examples with topics unseen during training*. ## PrefixTuningConfig [[autodoc]] tuners.prefix_tuning.config.PrefixTuningConfig ## PrefixEncoder [[autodoc]] tuners.prefix_tuning.model.PrefixEncoder
peft/docs/source/package_reference/prefix_tuning.md/0
{ "file_path": "peft/docs/source/package_reference/prefix_tuning.md", "repo_id": "peft", "token_count": 514 }
167
<jupyter_start><jupyter_text>Training PEFT models with new tokens being added to the embedding layers and tokenizerIn this example, we will learn how to train a LoRA model when adding new tokens to the tokenizer and model. This is a common usecase when doing the following:1. Instruction finetuning with new tokens beind added such as ``, ``, ``, ``, `` to properly format the conversations2. Finetuning on a specific language wherein language spoecific tokens are added, e.g., korean tokens being added to vocabulary for finetuning LLM on Korean datasets.3. Instruction finetuning to return outputs in certain format to enable agent behaviour new tokens such as ``, ``, ``, ``, ``, ``, ``.In such cases, you add the Embedding modules to the LORA `target_modules`. PEFT will take care of saving the embedding layers with the new added tokens along with the adapter weights that were trained on the specific initialization of the embeddings weights of the added tokens. Let's import the necessary libraries<jupyter_code>import os os.environ["CUDA_VISIBLE_DEVICES"] = "3" os.environ["WANDB_PROJECT"] = "PeftExamples" import transformers from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_int8_training, ) from transformers import ( AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, TrainingArguments, Trainer, default_data_collator, ) import torch from dataclasses import dataclass, field from typing import Optional from dataclass_csv import DataclassReader from torch.utils.data import Dataset, DataLoader from enum import Enum<jupyter_output><empty_output><jupyter_text>Prepare Model and Tokenizer Now, we will be adding 27 new tokens as well as replace the existing pad, bos and eos tokens of the model.<jupyter_code>class SpecialTokens(str, Enum): begin_target = "<|begintarget|>" end_target = "<|endtarget|>" begin_context = "<|begincontext|>" end_context = "<|endcontext|>" system = "<|system|>" user = "<|user|>" begin_last_user_utterance = "<|beginlastuserutterance|>" end_last_user_utterance = "<|endlastuserutterance|>" begin_dsts = "<|begindsts|>" end_dsts = "<|enddsts|>" begin_dst = "<|begindst|>" end_dst = "<|enddst|>" begin_belief = "<|beginbelief|>" end_belief = "<|endbelief|>" begin_response = "<|beginresponse|>" end_response = "<|endresponse|>" begin_action = "<|beginaction|>" end_action = "<|endaction|>" begin_user_action = "<|beginuseraction|>" end_user_action = "<|enduseraction|>" sys_actions = "<|sysactions|>" begin_intent = "<|beginintent|>" end_intent = "<|endintent|>" begin_requested_slots = "<|beginrequestedslots|>" end_requested_slots = "<|endrequestedslots|>" pad_token = "<|pad|>" bos_token = "<|startoftext|>" @classmethod def list(cls): return [c.value for c in cls]<jupyter_output><empty_output><jupyter_text>We will be finetuning Mistral-7B model. Let's load the tokenizer and add the special tokens followed by loading the base model and resizzing the embedding layers to accomodate the newly added tokens.<jupyter_code>model_name = "mistralai/Mistral-7B-v0.1" tokenizer = AutoTokenizer.from_pretrained( model_name, pad_token=SpecialTokens.pad_token.value, bos_token=SpecialTokens.bos_token.value, eos_token=SpecialTokens.end_target.value, additional_special_tokens=SpecialTokens.list(), ) model = AutoModelForCausalLM.from_pretrained( model_name, low_cpu_mem_usage=True # use_flash_attention_2=True, # leading to an error ) model.resize_token_embeddings(len(tokenizer))<jupyter_output><empty_output><jupyter_text>Apply LoRA<jupyter_code>config = LoraConfig( r=64, lora_alpha=128, lora_dropout=0.0, target_modules=["embed_tokens", "lm_head", "q_proj", "v_proj"] ) model = get_peft_model(model, config) print(model.print_trainable_parameters()) print(model)<jupyter_output>trainable params: 31,886,720 || all params: 7,273,840,000 || trainable%: 0.43837532857472805 None PeftModel( (base_model): LoraModel( (model): MistralForCausalLM( (model): MistralModel( (embed_tokens): lora.Embedding( (base_layer): Embedding(32027, 4096) (lora_dropout): ModuleDict( (default): Identity() ) (lora_A): ModuleDict() (lora_B): ModuleDict() (lora_embedding_A): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 64x32027]) (lora_embedding_B): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 4096x64]) ) (layers): ModuleList( (0-31): 32 x MistralDecoderLayer( (self_attn): MistralAttention( (q_proj): lora.Linear( (base_layer): Linear(in_features=4096, out_features=4096, bias=False) (lora_dropout): ModuleDict( (default): Identity([...]<jupyter_text>Preapre Dataset<jupyter_code>from datasets import load_dataset dataset = load_dataset("smangrul/assistant_chatbot_dataset") dataset = dataset["train"].train_test_split(0.2) text_column = "context" label_column = "target" max_length = 512 def preprocess_function(examples): batch_size = len(examples[text_column]) targets = [str(x) for x in examples[label_column]] model_inputs = tokenizer(examples[text_column]) labels = tokenizer(targets, add_special_tokens=False) # don't add bos token because we concatenate with inputs for i in range(batch_size): sample_input_ids = model_inputs["input_ids"][i] label_input_ids = labels["input_ids"][i] + [tokenizer.eos_token_id] # print(i, sample_input_ids, label_input_ids) model_inputs["input_ids"][i] = sample_input_ids + label_input_ids labels["input_ids"][i] = [-100] * len(sample_input_ids) + label_input_ids model_inputs["attention_mask"][i] = [1] * len(model_inputs["input_ids"][i]) # print(model_inputs) for i in range(batch_size): sample_input_ids = model_inputs["input_ids"][i] label_input_ids = labels["input_ids"][i] model_inputs["input_ids"][i] = [tokenizer.pad_token_id] * ( max_length - len(sample_input_ids) ) + sample_input_ids model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[ "attention_mask" ][i] labels["input_ids"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids model_inputs["input_ids"][i] = model_inputs["input_ids"][i][:max_length] model_inputs["attention_mask"][i] = model_inputs["attention_mask"][i][:max_length] labels["input_ids"][i] = labels["input_ids"][i][:max_length] model_inputs["labels"] = labels["input_ids"] return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] train_dataset train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=8, pin_memory=True ) next(iter(train_dataloader)) tokenizer.decode(train_dataset[0]["input_ids"])<jupyter_output><empty_output><jupyter_text>Train the model<jupyter_code>training_args = TrainingArguments( output_dir="mistral_lora_clm_with_added_tokens", num_train_epochs=2, save_total_limit=5, per_device_train_batch_size=8, warmup_steps=10, weight_decay=0.0001, dataloader_drop_last=True, bf16=True, logging_steps=10, learning_rate=1e-5, gradient_checkpointing=True, gradient_checkpointing_kwargs={"use_reentrant": False}, remove_unused_columns=False, hub_model_id="smangrul/mistral_lora_clm_with_added_tokens", push_to_hub=True, hub_private_repo=True, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, data_collator=default_data_collator, ) # model.config.use_cache = False trainer.train()<jupyter_output>Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving. wandb: Currently logged in as: smangrul. Use `wandb login --relogin` to force relogin<jupyter_text>Check the model output on a sample from evaluation dataset<jupyter_code>import random i = random.randint(0, len(dataset["test"])) context = dataset["test"][i]["context"] batch = tokenizer(context, return_tensors="pt") batch = {k: v.to("cuda") for k, v in batch.items()} model.eval() output_tokens = model.generate( **batch, max_new_tokens=256, do_sample=True, temperature=0.2, top_p=0.95, top_k=50, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) target_predicted = tokenizer.decode(output_tokens[0], skip_special_tokens=False).split("<|endcontext|>")[1] target = dataset["test"][i]["target"] print(f"{context=} \n\n {target_predicted=} \n\n {target=}")<jupyter_output>context="<|begincontext|><|user|>Can you find me a place to eat please?<|system|>Where at? And what kind of cuisine are you craving?<|user|>Somewhere in SF, and I am really craving Thai food at the moment!<|system|>I found a bunch of restaurants, there's actually 10 that you might like in San Francisco, one of them being Baan Thai House & Wine Bar<|user|>How can I reach them? And what's their address?<|system|>You can reach them by phone at 415-379-4505 and visit them at 534 Irving Street<|beginlastuserutterance|>Great, that restaurant sounds good<|endlastuserutterance|><|endcontext|>" target_predicted='<|begintarget|><|begindsts|><|begindst|><|beginintent|> FindRestaurants<|endintent|><|beginbelief|> Restaurants^city->SF~San Francisco|Restaurants^cuisine->Thai|Restaurants^restaurant_name->Baan Thai House & Wine Bar<|endbelief|><|enddst|><|enddsts|><|beginuseraction|> REQUEST->Restaurants^phone_number~|REQUEST->Restaurants^street_address~<|enduseraction|><|beginaction|> INFORM->Rest[...]<jupyter_text>Save the Adapter model When the lora layers are applied to embedding layers, the corresponding base model embedding layers are also saved.<jupyter_code>trainer.push_to_hub() trainer.model.push_to_hub(training_args.output_dir)<jupyter_output>/raid/sourab/peft/src/peft/utils/save_and_load.py:128: UserWarning: Setting `is_embedding_layer_resized` to `True` as embedding layers found in `target_modules` warnings.warn("Setting `is_embedding_layer_resized` to `True` as embedding layers found in `target_modules`")<jupyter_text>Check the model loading is working as expected and generating plausible outputs.<jupyter_code>from peft import PeftModel inference_model = AutoModelForCausalLM.from_pretrained( model_name, low_cpu_mem_usage=True, # use_flash_attention_2=True, ) inference_model.resize_token_embeddings(len(tokenizer)) inference_model = PeftModel.from_pretrained(inference_model, "smangrul/mistral_lora_clm_with_added_tokens") inference_model.to("cuda") inference_model.eval() output_tokens = inference_model.generate( **batch, max_new_tokens=256, do_sample=True, temperature=0.2, top_p=0.95, top_k=50, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) target_predicted = tokenizer.decode(output_tokens[0], skip_special_tokens=False).split("<|endcontext|>")[1] print(f"{context=} \n\n {target_predicted=} \n\n {target=}")<jupyter_output><empty_output>
peft/examples/causal_language_modeling/peft_lora_clm_with_additional_tokens.ipynb/0
{ "file_path": "peft/examples/causal_language_modeling/peft_lora_clm_with_additional_tokens.ipynb", "repo_id": "peft", "token_count": 4571 }
168
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import math import os import random from pathlib import Path import datasets import evaluate import torch import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from datasets import DatasetDict, load_dataset from huggingface_hub import Repository, create_repo from torch import nn from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModel, AutoTokenizer, SchedulerType, default_data_collator, get_scheduler from transformers.utils import get_full_repo_name from peft import LoraConfig, TaskType, get_peft_model logger = get_logger(__name__) def parse_args(): parser = argparse.ArgumentParser(description="Training a PEFT model for Sematic Search task") parser.add_argument("--dataset_name", type=str, default=None, help="dataset name on HF hub") parser.add_argument( "--max_length", type=int, default=128, help=( "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_length` is passed." ), ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations.' "Only applicable when `--with_tracking` is passed." ), ) parser.add_argument( "--sanity_test", action="store_true", help="Whether to enable sanity test.", ) parser.add_argument( "--use_peft", action="store_true", help="Whether to use PEFT.", ) args = parser.parse_args() if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args def save_model_hook(models, weights, output_dir): for i, model in enumerate(models): model.save_pretrained(output_dir, state_dict=weights[i]) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): while len(models) > 0: model = models.pop() # pop models so that they are not loaded again if hasattr(model, "active_adapter") and hasattr(model, "load_adapter"): model.load_adapter(input_dir, model.active_adapter, is_trainable=True) class AutoModelForSentenceEmbedding(nn.Module): def __init__(self, model_name, tokenizer, normalize=True): super(AutoModelForSentenceEmbedding, self).__init__() self.model = AutoModel.from_pretrained(model_name) # , load_in_8bit=True, device_map={"":0}) self.normalize = normalize self.tokenizer = tokenizer def forward(self, **kwargs): model_output = self.model(**kwargs) embeddings = self.mean_pooling(model_output, kwargs["attention_mask"]) if self.normalize: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) return embeddings def mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: return getattr(self.model, name) def get_cosing_embeddings(query_embs, product_embs): return torch.sum(query_embs * product_embs, axis=1) def get_loss(cosine_score, labels): return torch.mean(torch.square(labels * (1 - cosine_score) + torch.clamp((1 - labels) * cosine_score, min=0.0))) def main(): args = parse_args() accelerator_kwargs = {"gradient_accumulation_steps": args.gradient_accumulation_steps} if args.with_tracking: accelerator_kwargs["log_with"] = args.report_to accelerator_kwargs["project_dir"] = args.output_dir accelerator = Accelerator(**accelerator_kwargs) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id create_repo(repo_name, exist_ok=True, token=args.hub_token) repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # get the tokenizer tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) # dataset download and preprocessing if args.sanity_test: train_dataset = load_dataset("smangrul/amazon_esci", split="train[:1024]") val_dataset = load_dataset("smangrul/amazon_esci", split="validation[:1024]") dataset = DatasetDict({"train": train_dataset, "validation": val_dataset}) else: dataset = load_dataset(args.dataset_name) def preprocess_function(examples): queries = examples["query"] result = tokenizer(queries, padding="max_length", max_length=70, truncation=True) result = {f"query_{k}": v for k, v in result.items()} products = examples["product_title"] result_products = tokenizer(products, padding="max_length", max_length=70, truncation=True) for k, v in result_products.items(): result[f"product_{k}"] = v result["labels"] = examples["relevance_label"] return result processed_datasets = dataset.map( preprocess_function, batched=True, remove_columns=dataset["train"].column_names, desc="Running tokenizer on dataset", ) # Log a few random samples from the training set: for index in random.sample(range(len(processed_datasets["train"])), 3): logger.info(f"Sample {index} of the training set: {processed_datasets['train'][index]}.") # base model model = AutoModelForSentenceEmbedding(args.model_name_or_path, tokenizer) if args.use_peft: # peft config and wrapping peft_config = LoraConfig( r=8, lora_alpha=16, bias="none", task_type=TaskType.FEATURE_EXTRACTION, target_modules=["key", "query", "value"], ) model = get_peft_model(model, peft_config) model.print_trainable_parameters() accelerator.print(model) # get dataloaders train_dataloader = DataLoader( processed_datasets["train"], shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size, pin_memory=True, ) eval_dataloader = DataLoader( processed_datasets["validation"], shuffle=False, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size, pin_memory=True, ) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Figure out how many steps we should save the Accelerator states checkpointing_steps = args.checkpointing_steps if checkpointing_steps is not None and checkpointing_steps.isdigit(): checkpointing_steps = int(checkpointing_steps) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("peft_semantic_search", experiment_config) metric = evaluate.load("roc_auc") total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps if args.use_peft: # saving and loading checkpoints for resuming training accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) logger.info("***** Running training *****") logger.info(f" Num examples = {len(processed_datasets['train'])}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None completed_steps = starting_epoch * num_update_steps_per_epoch else: # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) completed_steps = resume_step // args.gradient_accumulation_steps # update the progress_bar if load from checkpoint progress_bar.update(completed_steps) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We skip the first `n` batches in the dataloader when resuming from a checkpoint active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) else: active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): with accelerator.accumulate(model): query_embs = model(**{k.replace("query_", ""): v for k, v in batch.items() if "query" in k}) product_embs = model(**{k.replace("product_", ""): v for k, v in batch.items() if "product" in k}) loss = get_loss(get_cosing_embeddings(query_embs, product_embs), batch["labels"]) total_loss += accelerator.reduce(loss.detach().float(), reduction="sum") accelerator.backward(loss) optimizer.step() lr_scheduler.step() model.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) completed_steps += 1 if (step + 1) % 100 == 0: logger.info(f"Step: {step+1}, Loss: {total_loss/(step+1)}") if args.with_tracking: accelerator.log({"train/loss": total_loss / (step + 1)}, step=completed_steps) if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0: output_dir = f"step_{completed_steps }" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() for step, batch in enumerate(eval_dataloader): with torch.no_grad(): query_embs = model(**{k.replace("query_", ""): v for k, v in batch.items() if "query" in k}) product_embs = model(**{k.replace("product_", ""): v for k, v in batch.items() if "product" in k}) prediction_scores = get_cosing_embeddings(query_embs, product_embs) prediction_scores, references = accelerator.gather_for_metrics((prediction_scores, batch["labels"])) metric.add_batch( prediction_scores=prediction_scores, references=references, ) result = metric.compute() result = {f"eval/{k}": v for k, v in result.items()} # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", result) if args.with_tracking: result["train/epoch_loss"] = total_loss.item() / len(train_dataloader) accelerator.log(result, step=completed_steps) if args.output_dir is not None: accelerator.wait_for_everyone() if accelerator.is_main_process: if isinstance(checkpointing_steps, str): accelerator.save_state(os.path.join(args.output_dir, f"epoch_{epoch}")) accelerator.unwrap_model(model).save_pretrained( args.output_dir, state_dict=accelerator.get_state_dict(accelerator.unwrap_model(model)) ) tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: commit_message = ( f"Training in progress epoch {epoch}" if epoch < args.num_train_epochs - 1 else "End of training" ) repo.push_to_hub(commit_message=commit_message, blocking=False, auto_lfs_prune=True) accelerator.wait_for_everyone() accelerator.end_training() if __name__ == "__main__": main()
peft/examples/feature_extraction/peft_lora_embedding_semantic_search.py/0
{ "file_path": "peft/examples/feature_extraction/peft_lora_embedding_semantic_search.py", "repo_id": "peft", "token_count": 8620 }
169
<jupyter_start><jupyter_code>!git clone https://huggingface.co/spaces/smangrul/peft-lora-sd-dreambooth %cd "peft-lora-sd-dreambooth" !pip install -r requirements.txt !python colab.py<jupyter_output><empty_output>
peft/examples/lora_dreambooth/colab_notebook.ipynb/0
{ "file_path": "peft/examples/lora_dreambooth/colab_notebook.ipynb", "repo_id": "peft", "token_count": 91 }
170
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import importlib import os from typing import Optional from huggingface_hub import file_exists from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoTokenizer, ) from .config import PeftConfig from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING from .peft_model import ( PeftModel, PeftModelForCausalLM, PeftModelForFeatureExtraction, PeftModelForQuestionAnswering, PeftModelForSeq2SeqLM, PeftModelForSequenceClassification, PeftModelForTokenClassification, ) from .utils.constants import TOKENIZER_CONFIG_NAME class _BaseAutoPeftModel: _target_class = None _target_peft_class = None def __init__(self, *args, **kwargs): # For consistency with transformers: https://github.com/huggingface/transformers/blob/91d7df58b6537d385e90578dac40204cb550f706/src/transformers/models/auto/auto_factory.py#L400 raise EnvironmentError( f"{self.__class__.__name__} is designed to be instantiated " f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " f"`{self.__class__.__name__}.from_config(config)` methods." ) @classmethod def from_pretrained( cls, pretrained_model_name_or_path, adapter_name: str = "default", is_trainable: bool = False, config: Optional[PeftConfig] = None, **kwargs, ): r""" A wrapper around all the preprocessing steps a user needs to perform in order to load a PEFT model. The kwargs are passed along to `PeftConfig` that automatically takes care of filtering the kwargs of the Hub methods and the config object init. """ peft_config = PeftConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) base_model_path = peft_config.base_model_name_or_path task_type = getattr(peft_config, "task_type", None) if cls._target_class is not None: target_class = cls._target_class elif cls._target_class is None and task_type is not None: # this is only in the case where we use `AutoPeftModel` raise ValueError( "Cannot use `AutoPeftModel` with a task type, please use a specific class for your task type. (e.g. `AutoPeftModelForCausalLM` for `task_type='CAUSAL_LM'`)" ) if task_type is not None: expected_target_class = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[task_type] if cls._target_peft_class.__name__ != expected_target_class.__name__: raise ValueError( f"Expected target PEFT class: {expected_target_class.__name__}, but you have asked for: {cls._target_peft_class.__name__ }" " make sure that you are loading the correct model for your task type." ) elif task_type is None and getattr(peft_config, "auto_mapping", None) is not None: auto_mapping = getattr(peft_config, "auto_mapping", None) base_model_class = auto_mapping["base_model_class"] parent_library_name = auto_mapping["parent_library"] parent_library = importlib.import_module(parent_library_name) target_class = getattr(parent_library, base_model_class) else: raise ValueError( "Cannot infer the auto class from the config, please make sure that you are loading the correct model for your task type." ) base_model = target_class.from_pretrained(base_model_path, **kwargs) tokenizer_exists = False if os.path.exists(os.path.join(pretrained_model_name_or_path, TOKENIZER_CONFIG_NAME)): tokenizer_exists = True else: token = kwargs.get("token", None) if token is None: token = kwargs.get("use_auth_token", None) tokenizer_exists = file_exists( repo_id=pretrained_model_name_or_path, filename=TOKENIZER_CONFIG_NAME, revision=kwargs.get("revision", None), repo_type=kwargs.get("repo_type", None), token=token, ) if tokenizer_exists: tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path) base_model.resize_token_embeddings(len(tokenizer)) return cls._target_peft_class.from_pretrained( base_model, pretrained_model_name_or_path, adapter_name=adapter_name, is_trainable=is_trainable, config=config, **kwargs, ) class AutoPeftModel(_BaseAutoPeftModel): _target_class = None _target_peft_class = PeftModel class AutoPeftModelForCausalLM(_BaseAutoPeftModel): _target_class = AutoModelForCausalLM _target_peft_class = PeftModelForCausalLM class AutoPeftModelForSeq2SeqLM(_BaseAutoPeftModel): _target_class = AutoModelForSeq2SeqLM _target_peft_class = PeftModelForSeq2SeqLM class AutoPeftModelForSequenceClassification(_BaseAutoPeftModel): _target_class = AutoModelForSequenceClassification _target_peft_class = PeftModelForSequenceClassification class AutoPeftModelForTokenClassification(_BaseAutoPeftModel): _target_class = AutoModelForTokenClassification _target_peft_class = PeftModelForTokenClassification class AutoPeftModelForQuestionAnswering(_BaseAutoPeftModel): _target_class = AutoModelForQuestionAnswering _target_peft_class = PeftModelForQuestionAnswering class AutoPeftModelForFeatureExtraction(_BaseAutoPeftModel): _target_class = AutoModel _target_peft_class = PeftModelForFeatureExtraction
peft/src/peft/auto.py/0
{ "file_path": "peft/src/peft/auto.py", "repo_id": "peft", "token_count": 2629 }
171
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import namedtuple from dataclasses import dataclass, field from peft.config import PeftConfig from peft.utils import PeftType from .utils import llama_compute_query_states @dataclass class AdaptionPromptConfig(PeftConfig): """Stores the configuration of an [`AdaptionPromptModel`].""" target_modules: str = field( default=None, metadata={"help": "Name of the attention submodules to insert adaption prompts into."} ) adapter_len: int = field(default=None, metadata={"help": "Number of adapter tokens to insert"}) adapter_layers: int = field(default=None, metadata={"help": "Number of adapter layers (from the top)"}) def __post_init__(self): self.peft_type = PeftType.ADAPTION_PROMPT @property def is_adaption_prompt(self) -> bool: """Return True if this is an adaption prompt config.""" return True # Contains the config that is specific to a transformers model type. ModelTypeConfig = namedtuple( "ModelTypeConfig", ["compute_query_states", "target_modules", "k_proj_layer", "v_proj_layer", "o_proj_layer"] ) # Mapping of transformers model types to their specific configuration. TRANSFORMERS_MODEL_CONFIG = { "llama": ModelTypeConfig( compute_query_states=llama_compute_query_states, target_modules="self_attn", k_proj_layer="k_proj", v_proj_layer="v_proj", o_proj_layer="o_proj", ), } def prepare_config( peft_config: AdaptionPromptConfig, model, ) -> AdaptionPromptConfig: """Prepare the config based on the llama model type.""" if model.config.model_type not in TRANSFORMERS_MODEL_CONFIG: raise ValueError("Unsupported model type for adaption prompt: '{model.config.model_type}'.") model_config = TRANSFORMERS_MODEL_CONFIG[model.config.model_type] if peft_config.target_modules is None: peft_config.target_modules = model_config.target_modules return peft_config
peft/src/peft/tuners/adaption_prompt/config.py/0
{ "file_path": "peft/src/peft/tuners/adaption_prompt/config.py", "repo_id": "peft", "token_count": 876 }
172
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from itertools import chain from typing import Dict, Type, Union import torch from torch import nn from peft.tuners.lycoris_utils import LycorisConfig, LycorisTuner from .layer import Conv2d, Linear, LoKrLayer class LoKrModel(LycorisTuner): """ Creates Low-Rank Kronecker Product model from a pretrained model. The original method is partially described in https://arxiv.org/abs/2108.06098 and in https://arxiv.org/abs/2309.14859 Current implementation heavily borrows from https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/lokr.py Args: model (`torch.nn.Module`): The model to which the adapter tuner layers will be attached. config ([`LoKrConfig`]): The configuration of the LoKr model. adapter_name (`str`): The name of the adapter, defaults to `"default"`. Returns: `torch.nn.Module`: The LoKr model. Example: ```py >>> from diffusers import StableDiffusionPipeline >>> from peft import LoKrModel, LoKrConfig >>> config_te = LoKrConfig( ... r=8, ... lora_alpha=32, ... target_modules=["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"], ... rank_dropout=0.0, ... module_dropout=0.0, ... init_weights=True, ... ) >>> config_unet = LoKrConfig( ... r=8, ... lora_alpha=32, ... target_modules=[ ... "proj_in", ... "proj_out", ... "to_k", ... "to_q", ... "to_v", ... "to_out.0", ... "ff.net.0.proj", ... "ff.net.2", ... ], ... rank_dropout=0.0, ... module_dropout=0.0, ... init_weights=True, ... use_effective_conv2d=True, ... ) >>> model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") >>> model.text_encoder = LoKrModel(model.text_encoder, config_te, "default") >>> model.unet = LoKrModel(model.unet, config_unet, "default") ``` **Attributes**: - **model** ([`~torch.nn.Module`]) -- The model to be adapted. - **peft_config** ([`LoKrConfig`]): The configuration of the LoKr model. """ prefix: str = "lokr_" layers_mapping: Dict[Type[torch.nn.Module], Type[LoKrLayer]] = { torch.nn.Conv2d: Conv2d, torch.nn.Linear: Linear, } def _create_and_replace( self, config: LycorisConfig, adapter_name: str, target: Union[LoKrLayer, nn.Module], target_name: str, parent: nn.Module, current_key: str, ) -> None: """ A private method to create and replace the target module with the adapter module. """ # Regexp matching - Find key which matches current target_name in patterns provided pattern_keys = list(chain(config.rank_pattern.keys(), config.alpha_pattern.keys())) target_name_key = next(filter(lambda key: re.match(f"(.*\.)?{key}$", current_key), pattern_keys), target_name) kwargs = config.to_dict() kwargs["r"] = config.rank_pattern.get(target_name_key, config.r) kwargs["alpha"] = config.alpha_pattern.get(target_name_key, config.alpha) if isinstance(target, LoKrLayer): target.update_layer(adapter_name, **kwargs) else: new_module = self._create_new_module(config, adapter_name, target, **kwargs) self._replace_module(parent, target_name, new_module, target)
peft/src/peft/tuners/lokr/model.py/0
{ "file_path": "peft/src/peft/tuners/lokr/model.py", "repo_id": "peft", "token_count": 1871 }
173
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import warnings from typing import Any, List, Optional, Set, Tuple import torch import torch.nn as nn from peft.tuners.lycoris_utils import LycorisLayer, check_adapters_to_merge class OFTLayer(nn.Module, LycorisLayer): # All names of layers that may contain adapter weights adapter_layer_names = ("oft_r",) # other_param_names is defined on parent class def __init__(self, base_layer: nn.Module): super().__init__() LycorisLayer.__init__(self, base_layer) # OFT info self.oft_r = nn.ParameterDict({}) self.coft = {} self.eps = {} self.block_share = {} @property def _available_adapters(self) -> Set[str]: return {*self.oft_r} def create_adapter_parameters(self, adapter_name: str, r: int, shape: Tuple[int, ...], block_share: bool): if block_share: self.oft_r[adapter_name] = nn.Parameter(torch.empty(1, math.ceil(shape[0] / r), math.ceil(shape[0] / r))) else: self.oft_r[adapter_name] = nn.Parameter(torch.empty(r, math.ceil(shape[0] / r), math.ceil(shape[0] / r))) def reset_adapter_parameters(self, adapter_name: str): nn.init.zeros_(self.oft_r[adapter_name]) def reset_adapter_parameters_random(self, adapter_name: str): nn.init.kaiming_uniform_(self.oft_r[adapter_name], a=math.sqrt(5)) def update_layer( self, adapter_name: str, r: int, module_dropout: float, init_weights: bool, coft: bool = False, eps: float = 6e-5, block_share: bool = False, **kwargs, ) -> None: """Internal function to create oft adapter Args: adapter_name (`str`): Name for the adapter to add. r (`int`): Rank for the added adapter. module_dropout (`float`): The dropout probability for disabling adapter during training. init_weights (`bool`): Whether to initialize weights. coft (`bool`): Whether to use the constrainted variant of OFT or not. eps (`float`): The control strength of COFT. The freedom of rotation. Only has an effect if `coft` is set to True. block_share (`bool`): Whether to share the OFT parameters between blocks or not. """ if r <= 0: raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") self.r[adapter_name] = r self.module_dropout[adapter_name] = module_dropout self.coft[adapter_name] = coft self.block_share[adapter_name] = block_share # Determine shape of OFT weights base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): shape = tuple(base_layer.weight.shape) elif isinstance(base_layer, nn.Conv2d): shape = ( base_layer.out_channels, base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1], ) else: raise TypeError(f"OFT is not implemented for base layers of type {type(base_layer).__name__}") self.eps[adapter_name] = eps * math.ceil(shape[0] / r) * math.ceil(shape[0] / r) # Create weights with provided shape self.create_adapter_parameters(adapter_name, r, shape, block_share) # Initialize weights if init_weights: self.reset_adapter_parameters(adapter_name) else: self.reset_adapter_parameters_random(adapter_name) # Move new weights to device weight = getattr(self.get_base_layer(), "weight", None) if weight is not None: # the layer is already completely initialized, this is an update if weight.dtype.is_floating_point or weight.dtype.is_complex: self.to(weight.device, dtype=weight.dtype) else: self.to(weight.device) self.set_adapter(self.active_adapters) def unscale_layer(self, scale=None) -> None: # scale is not used pass def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`List[str]`, *optional*): The list of adapter names that should be merged. If `None`, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter in self._available_adapters: base_layer = self.get_base_layer() orig_weights = base_layer.weight.data if isinstance(base_layer, nn.Linear): orig_weights = torch.transpose(orig_weights, 0, 1) elif isinstance(base_layer, nn.Conv2d): orig_weights = orig_weights.view( [ base_layer.out_channels, base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1], ] ) orig_weights = torch.transpose(orig_weights, 0, 1) delta_weight = self.get_delta_weight(active_adapter) if orig_weights.shape[1] != delta_weight.shape[1]: # when in channels is not divisible by r delta_weight = delta_weight[: orig_weights.shape[1], : orig_weights.shape[1]] new_weights = torch.mm(orig_weights, delta_weight) if isinstance(base_layer, nn.Linear): new_weights = torch.transpose(new_weights, 0, 1) elif isinstance(base_layer, nn.Conv2d): new_weights = torch.transpose(new_weights, 0, 1) new_weights = new_weights.view( [ base_layer.out_channels, base_layer.in_channels, base_layer.kernel_size[0], base_layer.kernel_size[1], ] ) if safe_merge and not torch.isfinite(new_weights).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) base_layer.weight.data = new_weights self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self._available_adapters: base_layer = self.get_base_layer() new_weights = base_layer.weight.data if isinstance(base_layer, nn.Linear): new_weights = torch.transpose(new_weights, 0, 1) elif isinstance(base_layer, nn.Conv2d): new_weights = new_weights.view( [ base_layer.out_channels, base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1], ] ) new_weights = torch.transpose(new_weights, 0, 1) delta_weight = self.get_delta_weight(active_adapter) if new_weights.shape[1] != delta_weight.shape[1]: # when in channels is not divisible by r delta_weight = delta_weight[: new_weights.shape[1], : new_weights.shape[1]] delta_inv = torch.inverse(delta_weight) orig_weights = torch.mm(new_weights, delta_inv) if isinstance(base_layer, nn.Linear): orig_weights = torch.transpose(orig_weights, 0, 1) elif isinstance(base_layer, nn.Conv2d): orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = orig_weights.reshape( [ base_layer.out_channels, base_layer.in_channels, base_layer.kernel_size[0], base_layer.kernel_size[1], ] ) base_layer.weight.data = orig_weights def get_delta_weight(self, adapter_name: str) -> torch.Tensor: rank = self.r[adapter_name] coft = self.coft[adapter_name] eps = self.eps[adapter_name] opt_r = self.oft_r[adapter_name] if coft: with torch.no_grad(): opt_r.copy_(self._project_batch(opt_r, eps=eps)) orth_rotate = self._cayley_batch(opt_r) weight = self._block_diagonal(orth_rotate, rank) return weight # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L144 def _cayley_batch(self, data: torch.Tensor) -> torch.Tensor: b, r, c = data.shape # Ensure the input matrix is skew-symmetric skew = 0.5 * (data - data.transpose(1, 2)) I = torch.eye(r, device=data.device).unsqueeze(0).expand(b, r, c) # Perform the Cayley parametrization Q = torch.bmm(I - skew, torch.inverse(I + skew)) return Q # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L155 def _block_diagonal(self, oft_r: torch.Tensor, rank: int) -> torch.Tensor: if oft_r.shape[0] == 1: # block share blocks = [oft_r[0, ...] for i in range(rank)] else: blocks = [oft_r[i, ...] for i in range(rank)] # Use torch.block_diag to create the block diagonal matrix A = torch.block_diag(*blocks) return A # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L52 def _project_batch(self, oft_r, eps=1e-5): # scaling factor for each of the smaller block matrix eps = eps * 1 / torch.sqrt(torch.tensor(oft_r.shape[0])) I = ( torch.zeros((oft_r.size(1), oft_r.size(1)), device=oft_r.device, dtype=oft_r.dtype) .unsqueeze(0) .expand_as(oft_r) ) diff = oft_r - I norm_diff = torch.norm(oft_r - I, dim=(1, 2), keepdim=True) mask = (norm_diff <= eps).bool() out = torch.where(mask, oft_r, I + eps * (diff / norm_diff)) return out def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) if len(result.shape) == 4: result = result.permute(0, 2, 3, 1) base_layer = self.get_base_layer() base_bias = base_layer.bias if base_bias is not None: # Bias should be added after OFT forward result = result - base_bias.data # Execute all the adapters for active_adapter in self.active_adapters: if active_adapter not in self._available_adapters: continue module_dropout = self.module_dropout[active_adapter] # Modify current execution weights if (not self.training) or (self.training and torch.rand(1) > module_dropout): result = self._get_delta_activations(active_adapter, result, *args, **kwargs) if base_bias is not None: result = result + base_bias.data if len(result.shape) == 4: result = result.permute(0, 3, 1, 2) result = result.to(previous_dtype) return result class Linear(OFTLayer): """OFT implemented in Linear layer""" def __init__( self, base_layer: nn.Module, adapter_name: str = "default", r: int = 0, module_dropout: float = 0.0, init_weights: bool = True, **kwargs, ): super().__init__(base_layer) # Create adapter and set it active self._active_adapter = adapter_name self.update_layer(adapter_name, r, module_dropout, init_weights, **kwargs) def _get_delta_activations( self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any ) -> torch.Tensor: delta_weight = self.get_delta_weight(adapter_name) base_layer = self.get_base_layer() base_weight = base_layer.weight.data delta_weight = delta_weight[: base_weight.shape[0], : base_weight.shape[0]] # don't add bias here, because the bias will be added after OFT forward return torch.matmul(input, delta_weight) def __repr__(self) -> str: rep = super().__repr__() return "oft." + rep class Conv2d(OFTLayer): """OFT implemented in Conv2d layer""" def __init__( self, base_layer: nn.Module, adapter_name: str = "default", r: int = 0, module_dropout: float = 0.0, init_weights: bool = True, **kwargs, ): super().__init__(base_layer) # Create adapter and set it active self._active_adapter = adapter_name self.update_layer(adapter_name, r, module_dropout, init_weights, **kwargs) def _get_delta_activations( self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any ) -> torch.Tensor: delta_weight = self.get_delta_weight(adapter_name) base_layer = self.get_base_layer() base_weight = base_layer.weight.data delta_weight = delta_weight[: base_weight.shape[0], : base_weight.shape[0]] # don't add bias here, because the bias will be added after OFT forward return torch.matmul(input, delta_weight) def __repr__(self) -> str: rep = super().__repr__() return "oft." + rep
peft/src/peft/tuners/oft/layer.py/0
{ "file_path": "peft/src/peft/tuners/oft/layer.py", "repo_id": "peft", "token_count": 7500 }
174
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import logging import re import warnings from abc import ABC, abstractmethod from contextlib import contextmanager from typing import Any, List, Optional, Union import torch from accelerate.hooks import AlignDevicesHook from accelerate.utils import named_module_tensors, offload_state_dict from torch import nn from transformers import PreTrainedModel from transformers.pytorch_utils import Conv1D from peft.utils import INCLUDE_LINEAR_LAYERS_SHORTHAND from ..config import PeftConfig from ..utils import ModulesToSaveWrapper, _get_submodules logger = logging.getLogger(__name__) @contextmanager def onload_layer(layer): r""" A utility for modifying a module containing one or more tuners and a base layer, any of which are offloaded to the CPU or disk. Moves a module's sub-modules to the execution device before some action is performed, after that the base layer state dictionary is re-assigned (if that layer was offloaded to the disk) and finally the parameters are offloaded. If the module has no offloaded sub-modules, this function does nothing. Args: layer ('torch.nn.Module'): layer with tuners to be merged """ offloaded_modules = [] for name, module in layer.named_modules(): if name in ["", "base_layer"]: continue if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook) and module._hf_hook.offload: module._hf_hook.pre_forward(module) offloaded_modules.append(module) base_layer_offload = False if hasattr(layer, "base_layer") and ( hasattr(layer.base_layer, "_hf_hook") and isinstance(layer.base_layer._hf_hook, AlignDevicesHook) and layer.base_layer._hf_hook.offload ): if torch.device("meta") in layer.base_layer._hf_hook.original_devices.values(): # retrieve the name of the original disk-offload directory offload_folder = layer.base_layer._hf_hook.weights_map.dataset.save_folder layer.base_layer._hf_hook.pre_forward(layer.base_layer) base_layer_offload = True yield for module in offloaded_modules: module._hf_hook.post_forward(module, torch.tensor([])) if base_layer_offload: # re-make weights map (must be on cpu to send params to the disk via memmap if disk offload) layer.base_layer._hf_hook.weights_map = { name: param.to("cpu") for name, param in named_module_tensors(layer.base_layer) } # offload weights map to disk if original device is the disk if torch.device("meta") in layer.base_layer._hf_hook.original_devices.values(): # rewrite directory with merged weights offload_state_dict(offload_folder, layer.base_layer._hf_hook.weights_map) layer.base_layer._hf_hook.post_forward(layer.base_layer, torch.tensor([])) class BaseTuner(nn.Module, ABC): r""" A base tuner model that provides the common methods and attributes for all tuners that are injectable into a torch.nn.Module For adding a new Tuner class, one needs to overwrite the following methods: - **_prepare_adapter_config**: A private method to eventually prepare the adapter config, for example in case the field `target_modules` is missing. - **_create_and_replace**: A private method to create and replace the target module with the adapter module. - **_check_target_module_exists**: A private helper method to check if the passed module's key name matches any of the target modules in the adatper_config. The easiest is to check what is done in the `peft.tuners.lora.LoraModel` class. Attributes: model (`torch.nn.Module`): The model to which the adapter tuner layers will be attached. forward (`Callable`): The forward method of the model. peft_config (`Union[`PeftConfig`, dict[str, PeftConfig]]`): The adapter configuration object, it should be a dictionary of `str` to `PeftConfig` objects. One can also pass a PeftConfig object and a new adapter will be created with the default name `adapter` or create a new dictionary with a key `adapter_name` and a value of that peft config. config (`dict[str, Any]`): The model configuration object, it should be a dictionary of `str` to `Any` objects. targeted_module_names (`list[str]`): The list of module names that were actually adapted. Can be useful to inspect if you want to quickly double-check that the `config.target_modules` where specified correctly. """ def __init__(self, model, peft_config: Union[PeftConfig, dict[str, PeftConfig]], adapter_name: str) -> None: super().__init__() self.model = model self.targeted_module_names: list[str] = [] # For advanced developpers, if you want to attach multiple adapters to your # model, just add a `peft_config` dict attribute to your model. if not hasattr(self, "peft_config"): self.peft_config = {adapter_name: peft_config} if isinstance(peft_config, PeftConfig) else peft_config else: logger.info( "Already found a `peft_config` attribute in the model. This will lead to having multiple adapters" " in the model. Make sure to know what you are doing!" ) if isinstance(peft_config, PeftConfig): self.peft_config[adapter_name] = peft_config else: # user is adding a dict of PeftConfigs self.peft_config.update(peft_config) self.active_adapter = adapter_name self.inject_adapter(self.model, adapter_name) # Copy the peft_config in the injected model. self.model.peft_config = self.peft_config @property def active_adapters(self) -> list[str]: if isinstance(self.active_adapter, str): return [self.active_adapter] # is already a list of str return self.active_adapter def forward(self, *args: Any, **kwargs: Any): return self.model.forward(*args, **kwargs) @abstractmethod def _prepare_adapter_config(self, peft_config: PeftConfig, model_config: dict) -> PeftConfig: r""" A private method to eventually prepare the adapter config. For transformers based models, if `peft_config.target_modules` is None, we can automatically infer the target modules from the `TRANSFORMERS_MODELS_TO_XXX_TARGET_MODULES_MAPPING`. This method can be further refactored in the future to automatically infer it for all tuner models. Check out `peft.tuner.lora.LoraModel._prepare_adapter_config` for an example. Args: peft_config (`str`): The adapter config. model_config (`str`): The transformers model config, that config should contain the `model_type` key. """ ... @abstractmethod def _check_target_module_exists(peft_config: PeftConfig, key: str) -> bool: r""" A helper private method to check if the passed module's key name matches any of the target modules in the `peft_config.target_modules` list. If it does, return `True`, else return `False`. Args: peft_config (`PeftConfig`): The adapter config. key (`str`): The module's key name. """ ... @abstractmethod def _create_and_replace( self, peft_config: PeftConfig, adapter_name: str, target: nn.Module, target_name: str, parent: nn.Module, current_key: str, ) -> None: r""" Inplace replacement of the target module with the adapter layer. This method needs to be overriden by all the tuner classes. Check `peft.tuners.lora.LoraModel._create_and_replace` for an example. Args: peft_config (`PeftConfig`): The adapter config. adapter_name (`str`): The adapter name. target (`nn.Module`): The target module. target_name (`str`): The target module's name. parent (`nn.Module`): The parent module. current_key (`str`): The key of the current target being adapted. """ ... @abstractmethod def _mark_only_adapters_as_trainable(self, model: nn.Module): r""" A helper method to mark only the adapter layers as trainable (i.e. module.requires_grad = False) This needs to be overriden for all tuner classes to match the correct key names. Check `peft.tuners.lora.LoraModel._mark_only_adapters_as_trainable` for an example. """ ... def _check_new_adapter_config(self, config: PeftConfig) -> None: """ A helper method to check the config when a new adapter is being added. Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters. """ pass def inject_adapter(self, model: nn.Module, adapter_name: str): r""" Creates adapter layers and replaces the target modules with the adapter layers. This method is called under the hood by `peft.mapping.get_peft_model` if a non-prompt tuning adapter class is passed. The corresponding PEFT config is directly retrieved from the `peft_config` attribute of the BaseTuner class. Args: model (`nn.Module`): The model to be tuned. adapter_name (`str`): The adapter name. """ peft_config = self.peft_config[adapter_name] # Note: If possible, all checks should be performed *at the start of this method*. # This way, we can raise early if something goes wrong, without leaving the model # in a bad (half-initialized) state. self._check_new_adapter_config(peft_config) is_target_modules_in_base_model = False key_list = [key for key, _ in model.named_modules()] _check_for_modules_to_save = getattr(peft_config, "modules_to_save", None) is not None _has_modules_to_save = False model_config = getattr(model, "config", {"model_type": "custom"}) if hasattr(model_config, "to_dict"): model_config = model_config.to_dict() peft_config = self._prepare_adapter_config(peft_config, model_config) # update peft_config.target_modules if required peft_config = _maybe_include_all_linear_layers(peft_config, model) for key in key_list: # Check for modules_to_save in case if _check_for_modules_to_save and any( key.endswith(f"{module_to_save}") for module_to_save in peft_config.modules_to_save ): # Optionally set the modules to save parent, target, target_name = _get_submodules(model, key) if not isinstance(target, ModulesToSaveWrapper): new_module = ModulesToSaveWrapper(target, adapter_name) setattr(parent, target_name, new_module) else: target.update(adapter_name) _has_modules_to_save = True continue if not self._check_target_module_exists(peft_config, key): continue self.targeted_module_names.append(key) is_target_modules_in_base_model = True parent, target, target_name = _get_submodules(model, key) self._create_and_replace(peft_config, adapter_name, target, target_name, parent, current_key=key) if not is_target_modules_in_base_model: raise ValueError( f"Target modules {peft_config.target_modules} not found in the base model. " f"Please check the target modules and try again." ) self._mark_only_adapters_as_trainable(model) if self.peft_config[adapter_name].inference_mode: for n, p in model.named_parameters(): if adapter_name in n: p.requires_grad = False if _has_modules_to_save: if not hasattr(model, "modules_to_save"): model.modules_to_save = set(peft_config.modules_to_save) else: model.modules_to_save.update(set(peft_config.modules_to_save)) def merge_adapter(self, adapter_names: Optional[list[str]] = None) -> None: """ This method merges the adapter layers into the base model. Merging adapters can lead to a speed up of the forward pass. A copy of the adapter weights is still kept in memory, which is required to unmerge the adapters. In order to merge the adapter weights without keeping them in memory, please call `merge_and_unload`. Args: safe_merge (`bool`, *optional*): If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`list[str]`, *optional*): The list of adapter names that should be merged. If `None`, all active adapters will be merged. Defaults to `None`. """ for module in self.model.modules(): if isinstance(module, BaseTunerLayer): with onload_layer(module): module.merge(adapter_names=adapter_names) def unmerge_adapter(self): """ This method unmerges all merged adapter layers from the base model. """ for module in self.model.modules(): if isinstance(module, BaseTunerLayer): with onload_layer(module): module.unmerge() def _unloading_checks(self, adapter_names: Optional[List[str]]): adapters_to_consider = adapter_names or self.active_adapters is_modules_to_save_available = any( self.peft_config[adapter].modules_to_save for adapter in adapters_to_consider ) if is_modules_to_save_available and len(adapters_to_consider) > 1: raise ValueError("Cannot unload multiple adapters that specify `modules_to_save`.") class BaseTunerLayer(ABC): r""" A tuner layer mixin that provides the common methods and attributes for all tuners. Args: is_plugable (`bool`, *optional*): Whether the adapter layer can be plugged to any pytorch module active_adapters (Union[List[`str`], `str`], *optional*): The name of the active adapter. """ active_adapter = None # All names of layers that may contain adapter (trainable) weights adapter_layer_names: tuple[str] = () # All names of other parameters that may contain adapter-related parameters other_param_names: tuple[str] = () # indicates whether all adapters should be disabled _disable_adapters: bool = False # the currently active adapter(s) _active_adapter: str | list[str] = "default" # List all merged adapters merged_adapters: list[str] = [] def get_base_layer(self) -> nn.Module: """ (Recursively) get the base_layer. This is necessary for the case that the tuner layer wraps another tuner layer. """ base_layer = self while hasattr(base_layer, "base_layer"): base_layer = base_layer.base_layer return base_layer @property def weight(self) -> torch.Tensor: # This is required for some transformers code, e.g. for T5, weight is accessed as: # self.wo.weight # where "wo" is the adapter layer. # https://github.com/huggingface/transformers/blob/78f6ed6c70b29c1560780e3869a7ad4c6b3d2710/src/transformers # /models/t5/modeling_t5.py#L292 base_layer = self.get_base_layer() if hasattr(base_layer, "qweight"): # QuantLinear weight = base_layer.qweight else: # Other layers weight = base_layer.weight return weight def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: raise NotImplementedError def unmerge(self) -> None: raise NotImplementedError @property def merged(self) -> bool: return bool(self.merged_adapters) @property def disable_adapters(self) -> bool: # use a property to ensure that disable_adapters is not set directly, instead use the enable_adapters method return self._disable_adapters @property def active_adapter(self) -> str: # use a property to ensure that active_adapter is not set directly, instead use the set_adapter method return self._active_adapter @property def active_adapters(self): if isinstance(self.active_adapter, str): return [self.active_adapter] # is already a list of str return self.active_adapter def enable_adapters(self, enabled: bool) -> None: """Toggle the enabling and disabling of adapters Takes care of setting the requires_grad flag for the adapter weights. Args: enabled (bool): True to enable adapters, False to disable adapters """ if enabled: self.set_adapter(self.active_adapters) self._disable_adapters = False else: # disable grads on all adapter layers for layer_name in self.adapter_layer_names: layer = getattr(self, layer_name) layer.requires_grad_(False) self._disable_adapters = True def set_adapter(self, adapter_names: str | list[str]) -> None: """Set the active adapter(s). Args: adapter_name (`str` or `List[str]`): Name of the adapter(s) to be activated. """ if isinstance(adapter_names, str): adapter_names = [adapter_names] # Deactivate grads on the inactive adapter and activate grads on the active adapter for layer_name in self.adapter_layer_names: module_dict = getattr(self, layer_name) for key, layer in module_dict.items(): if key in adapter_names: # Note: It is possible that not a single layer is called with requires_grad_(True) here. This may # happen if a completely different adapter layer is being activated. layer.requires_grad_(True) else: layer.requires_grad_(False) self._active_adapter = adapter_names def _all_available_adapter_names(self) -> list[str]: """Return a sorted list of all available adapter names""" adapter_names = set() for name in self.adapter_layer_names + self.other_param_names: # we check each possible attribute and if it's a dict or ModuleDict, we assume that the keys are the adapter # names attr = getattr(self, name) if hasattr(attr, "keys"): adapter_names.update(attr.keys()) return sorted(adapter_names) def delete_adapter(self, adapter_name: str) -> None: """ Delete an adapter from the layer This should be called on all adapter layers, or else we will get an inconsistent state. This method will also set a new active adapter if the deleted adapter was an active adapter. It is important that the new adapter is chosen in a deterministic way, so that the same adapter is chosen on all layers. Args: adapter_name (`str`): The name of the adapter to delete """ for attr in self.adapter_layer_names + self.other_param_names: if adapter_name in getattr(self, attr): del getattr(self, attr)[adapter_name] if adapter_name in self.active_adapters: # choose a new active adapter active_adapters = self.active_adapters[:] active_adapters.remove(adapter_name) if active_adapters: self.set_adapter(active_adapters) else: # no active adapters left, set a new default adapter # here we get the list of all adapters existing adapter names and choose the first one remaining_adapters = self._all_available_adapter_names() if not remaining_adapters: self.set_adapter([]) else: new_active_adapter = remaining_adapters[0] warnings.warn( f"Adapter {adapter_name} was active which is now deleted. Setting active adapter to " f"{new_active_adapter}." ) self.set_adapter(remaining_adapters[0]) def check_target_module_exists(config, key: str) -> bool | re.Match[str] | None: """A helper method to check if the passed module's key name matches any of the target modules in the adapter_config. Args: config (`LoraConfig` | `LycorisConfig`): A config to match target modules from key (`str`): A key to search any matches in config Returns: `bool` | `re.Match[str]` | `None`: True of match object if key matches any target modules from config, False or None if no match found """ if isinstance(config.target_modules, str): target_module_found = re.fullmatch(config.target_modules, key) elif key in config.target_modules: # this module is specified directly in target_modules target_module_found = True else: target_module_found = any(key.endswith(f".{target_key}") for target_key in config.target_modules) layer_indexes = getattr(config, "layers_to_transform", None) layers_pattern = getattr(config, "layers_pattern", None) is_using_layer_indexes = layer_indexes is not None and ( len(layer_indexes) != 0 if isinstance(layer_indexes, list) else True ) if is_using_layer_indexes and target_module_found: layer_index = None # TODO: It's still unclear how empty layers_pattern (None, [], or "") should behave # For now, empty layers_pattern means any layer pattern is ok if layers_pattern is None or len(layers_pattern) == 0: layer_index = re.match(r".*\.[^.]*\.(\d+)\.", key) else: layers_pattern = [layers_pattern] if isinstance(layers_pattern, str) else layers_pattern for pattern in layers_pattern: layer_index = re.match(r".*\.{layer}\.(\d+)\.".format(layer=pattern), key) if layer_index is not None: break if layer_index is None: target_module_found = False else: layer_index = int(layer_index.group(1)) if isinstance(layer_indexes, int): target_module_found = layer_index == layer_indexes else: target_module_found = layer_index in layer_indexes return target_module_found def inspect_matched_modules(tuner: BaseTuner, adapter_name: str = "default") -> dict: """ A helper function to inspect the set of matched and unmatched modules for a PEFT model and the given adapter. """ config = tuner.peft_config[adapter_name] key_list = [key for key, _ in tuner.model.named_modules()] module_dict = {"matched": [], "unmatched": []} for key in key_list: if tuner._check_target_module_exists(config, key): module_dict["matched"].append(key) else: module_dict["unmatched"].append(key) return module_dict def _maybe_include_all_linear_layers(peft_config: PeftConfig, model: nn.Module) -> PeftConfig: """ Helper function to update `target_modules` to all linear/Conv1D layers if provided as 'all-linear'. Adapted from the QLoRA repository: https://github.com/artidoro/qlora/blob/main/qlora.py """ # if `target_modules` is a string, convert to lower case and check if it matches "all-linear" if not ( isinstance(peft_config.target_modules, str) and peft_config.target_modules.lower() == INCLUDE_LINEAR_LAYERS_SHORTHAND ): return peft_config if not isinstance(model, PreTrainedModel): raise ValueError( f"Only instances of PreTrainedModel support `target_modules={INCLUDE_LINEAR_LAYERS_SHORTHAND!r}`" ) linear_classes = (torch.nn.Linear, Conv1D) linear_module_names = set() for name, module in model.named_modules(): # match with all linear classes. if isinstance(module, linear_classes): names = name.rsplit(".", 1)[-1] # get the base name linear_module_names.add(names) # ignore the last classification head for text generation models output_emb = model.get_output_embeddings() if output_emb is not None: last_module_name = [name for name, module in model.named_modules() if module is output_emb][0] linear_module_names -= {last_module_name} peft_config.target_modules = linear_module_names return peft_config def check_adapters_to_merge(module: BaseTunerLayer, adapter_names: Optional[List[str]] = None) -> list[str]: """ Helper function to check which adapters should be merged. Only return those adapters that are not already merged. Give a warning if some or all of the adapters are already merged. """ if adapter_names is None: adapter_names = module.active_adapters if module.merged: merged_adapters = set(module.merged_adapters) adapter_names = [name for name in adapter_names if name not in merged_adapters] if adapter_names: warnings.warn( f"Already following adapters were merged {','.join(module.merged_adapters)}. " f"You are now additionally merging {','.join(adapter_names)}." ) else: warnings.warn("All adapters are already merged, nothing to do.") return adapter_names
peft/src/peft/tuners/tuners_utils.py/0
{ "file_path": "peft/src/peft/tuners/tuners_utils.py", "repo_id": "peft", "token_count": 11088 }
175
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import torch from parameterized import parameterized from transformers import AutoModelForSeq2SeqLM, AutoModelForTokenClassification from peft import LoraConfig, TaskType, get_peft_model from .testing_common import PeftCommonTester, PeftTestConfigManager PEFT_ENCODER_DECODER_MODELS_TO_TEST = [ "ybelkada/tiny-random-T5ForConditionalGeneration-calibrated", "hf-internal-testing/tiny-random-BartForConditionalGeneration", ] FULL_GRID = {"model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "task_type": "SEQ_2_SEQ_LM"} class PeftEncoderDecoderModelTester(unittest.TestCase, PeftCommonTester): r""" Test if the PeftModel behaves as expected. This includes: - test if the model has the expected methods We use parametrized.expand for debugging purposes to test each model individually. """ transformers_class = AutoModelForSeq2SeqLM def prepare_inputs_for_testing(self): input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) decoder_input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) input_dict = { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, } return input_dict @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_attributes_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_model_attr(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_adapter_name(self, test_name, model_id, config_cls, config_kwargs): self._test_adapter_name(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_prepare_for_training_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_prepare_for_training(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained_pickle(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs, safe_serialization=False) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained_selected_adapters(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained_selected_adapters_pickle(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs, safe_serialization=False) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_from_pretrained_config_construction(self, test_name, model_id, config_cls, config_kwargs): self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs): self._test_merge_layers(model_id, config_cls, config_kwargs) # skip non lora models - generate does not work for prefix tuning, prompt tuning @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_generate(self, test_name, model_id, config_cls, config_kwargs): self._test_generate(model_id, config_cls, config_kwargs) # skip non lora models - generate does not work for prefix tuning, prompt tuning @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_generate_pos_args(self, test_name, model_id, config_cls, config_kwargs): # positional arguments are not supported for PeftModelForSeq2SeqLM self._test_generate_pos_args(model_id, config_cls, config_kwargs, raises_err=True) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_generate_half_prec(self, test_name, model_id, config_cls, config_kwargs): self._test_generate_half_prec(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_prefix_tuning_half_prec_conversion(self, test_name, model_id, config_cls, config_kwargs): self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_encoder_decoders(self, test_name, model_id, config_cls, config_kwargs): self._test_training(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_encoder_decoders_layer_indexing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_layer_indexing(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_encoder_decoders_gradient_checkpointing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_inference_safetensors(self, test_name, model_id, config_cls, config_kwargs): self._test_inference_safetensors(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_peft_model_device_map(self, test_name, model_id, config_cls, config_kwargs): self._test_peft_model_device_map(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_delete_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_delete_adapter(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_delete_inactive_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_adding_multiple_adapters_with_bias_raises(self, test_name, model_id, config_cls, config_kwargs): self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "adalora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_unload_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_unload_adapter(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_weighted_combination_of_adapters(self, test_name, model_id, config_cls, config_kwargs): self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_prompt_learning_tasks(self, test_name, model_id, config_cls, config_kwargs): self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "adalora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_disable_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_disable_adapter(model_id, config_cls, config_kwargs) class PeftEncoderDecoderCustomModelTester(unittest.TestCase): """ A custom class to write any custom test related with Enc-Dec models """ def test_save_shared_tensors(self): model_id = "hf-internal-testing/tiny-random-RobertaModel" peft_config = LoraConfig( task_type=TaskType.TOKEN_CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all" ) model = AutoModelForTokenClassification.from_pretrained(model_id, num_labels=11) model = get_peft_model(model, peft_config) with tempfile.TemporaryDirectory() as tmp_dir: # This should work fine model.save_pretrained(tmp_dir, safe_serialization=True)
peft/tests/test_encoder_decoder_models.py/0
{ "file_path": "peft/tests/test_encoder_decoder_models.py", "repo_id": "peft", "token_count": 4387 }
176
app.location$.subscribe(function() { var tables = document.querySelectorAll("article table") tables.forEach(function(table) { new Tablesort(table) }) })
pytorch-image-models/docs/javascripts/tables.js/0
{ "file_path": "pytorch-image-models/docs/javascripts/tables.js", "repo_id": "pytorch-image-models", "token_count": 52 }
177
# EfficientNet **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use $2^N$ times more computational resources, then we can simply increase the network depth by $\alpha ^ N$, width by $\beta ^ N$, and image size by $\gamma ^ N$, where $\alpha, \beta, \gamma$ are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient $\phi$ to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). {% include 'code_snippets.md' %} ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{tan2020efficientnet, title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, author={Mingxing Tan and Quoc V. Le}, year={2020}, eprint={1905.11946}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: EfficientNet Paper: Title: 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks' URL: https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for Models: - Name: efficientnet_b0 In Collection: EfficientNet Metadata: FLOPs: 511241564 Parameters: 5290000 File Size: 21376743 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b0 Layers: 18 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1002 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.71% Top 5 Accuracy: 93.52% - Name: efficientnet_b1 In Collection: EfficientNet Metadata: FLOPs: 909691920 Parameters: 7790000 File Size: 31502706 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b1 Crop Pct: '0.875' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1011 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.71% Top 5 Accuracy: 94.15% - Name: efficientnet_b2 In Collection: EfficientNet Metadata: FLOPs: 1265324514 Parameters: 9110000 File Size: 36788104 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b2 Crop Pct: '0.875' Image Size: '260' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1020 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.38% Top 5 Accuracy: 95.08% - Name: efficientnet_b2a In Collection: EfficientNet Metadata: FLOPs: 1452041554 Parameters: 9110000 File Size: 49369973 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b2a Crop Pct: '1.0' Image Size: '288' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1029 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.61% Top 5 Accuracy: 95.32% - Name: efficientnet_b3 In Collection: EfficientNet Metadata: FLOPs: 2327905920 Parameters: 12230000 File Size: 49369973 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b3 Crop Pct: '0.904' Image Size: '300' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1038 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.08% Top 5 Accuracy: 96.03% - Name: efficientnet_b3a In Collection: EfficientNet Metadata: FLOPs: 2600628304 Parameters: 12230000 File Size: 49369973 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b3a Crop Pct: '1.0' Image Size: '320' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1047 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.25% Top 5 Accuracy: 96.11% - Name: efficientnet_em In Collection: EfficientNet Metadata: FLOPs: 3935516480 Parameters: 6900000 File Size: 27927309 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_em Crop Pct: '0.882' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1118 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_em_ra2-66250f76.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.26% Top 5 Accuracy: 94.79% - Name: efficientnet_es In Collection: EfficientNet Metadata: FLOPs: 2317181824 Parameters: 5440000 File Size: 22003339 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_es Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1110 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.09% Top 5 Accuracy: 93.93% - Name: efficientnet_lite0 In Collection: EfficientNet Metadata: FLOPs: 510605024 Parameters: 4650000 File Size: 18820005 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_lite0 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1163 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_lite0_ra-37913777.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.5% Top 5 Accuracy: 92.51% -->
pytorch-image-models/docs/models/.templates/models/efficientnet.md/0
{ "file_path": "pytorch-image-models/docs/models/.templates/models/efficientnet.md", "repo_id": "pytorch-image-models", "token_count": 4091 }
178
# (Legacy) SE-ResNeXt **SE ResNeXt** is a variant of a [ResNeXt](https://www.paperswithcode.com/method/resnext) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. {% include 'code_snippets.md' %} ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Legacy SE ResNeXt Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: legacy_seresnext101_32x4d In Collection: Legacy SE ResNeXt Metadata: FLOPs: 10287698672 Parameters: 48960000 File Size: 196466866 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnext101_32x4d LR: 0.6 Epochs: 100 Layers: 101 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L462 Weights: http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.23% Top 5 Accuracy: 95.02% - Name: legacy_seresnext26_32x4d In Collection: Legacy SE ResNeXt Metadata: FLOPs: 3187342304 Parameters: 16790000 File Size: 67346327 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnext26_32x4d LR: 0.6 Epochs: 100 Layers: 26 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L448 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26_32x4d-65ebdb501.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.11% Top 5 Accuracy: 93.31% - Name: legacy_seresnext50_32x4d In Collection: Legacy SE ResNeXt Metadata: FLOPs: 5459954352 Parameters: 27560000 File Size: 110559176 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnext50_32x4d LR: 0.6 Epochs: 100 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L455 Weights: http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.08% Top 5 Accuracy: 94.43% -->
pytorch-image-models/docs/models/.templates/models/legacy-se-resnext.md/0
{ "file_path": "pytorch-image-models/docs/models/.templates/models/legacy-se-resnext.md", "repo_id": "pytorch-image-models", "token_count": 1900 }
179
# ResNeXt A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) $C$, as an essential factor in addition to the dimensions of depth and width. {% include 'code_snippets.md' %} ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/XieGDTH16, author = {Saining Xie and Ross B. Girshick and Piotr Doll{\'{a}}r and Zhuowen Tu and Kaiming He}, title = {Aggregated Residual Transformations for Deep Neural Networks}, journal = {CoRR}, volume = {abs/1611.05431}, year = {2016}, url = {http://arxiv.org/abs/1611.05431}, archivePrefix = {arXiv}, eprint = {1611.05431}, timestamp = {Mon, 13 Aug 2018 16:45:58 +0200}, biburl = {https://dblp.org/rec/journals/corr/XieGDTH16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: ResNeXt Paper: Title: Aggregated Residual Transformations for Deep Neural Networks URL: https://paperswithcode.com/paper/aggregated-residual-transformations-for-deep Models: - Name: resnext101_32x8d In Collection: ResNeXt Metadata: FLOPs: 21180417024 Parameters: 88790000 File Size: 356082095 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnext101_32x8d Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnet.py#L877 Weights: https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.3% Top 5 Accuracy: 94.53% - Name: resnext50_32x4d In Collection: ResNeXt Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100435887 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnext50_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnet.py#L851 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50_32x4d_ra-d733960d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.79% Top 5 Accuracy: 94.61% - Name: resnext50d_32x4d In Collection: ResNeXt Metadata: FLOPs: 5781119488 Parameters: 25050000 File Size: 100515304 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnext50d_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnet.py#L869 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50d_32x4d-103e99f8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.67% Top 5 Accuracy: 94.87% - Name: tv_resnext50_32x4d In Collection: ResNeXt Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100441675 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnext50_32x4d LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L842 Weights: https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.61% Top 5 Accuracy: 93.68% -->
pytorch-image-models/docs/models/.templates/models/resnext.md/0
{ "file_path": "pytorch-image-models/docs/models/.templates/models/resnext.md", "repo_id": "pytorch-image-models", "token_count": 2238 }
180
# (Tensorflow) MixNet **MixNet** is a type of convolutional neural network discovered via AutoML that utilises [MixConvs](https://paperswithcode.com/method/mixconv) instead of regular [depthwise convolutions](https://paperswithcode.com/method/depthwise-convolution). The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). {% include 'code_snippets.md' %} ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{tan2019mixconv, title={MixConv: Mixed Depthwise Convolutional Kernels}, author={Mingxing Tan and Quoc V. Le}, year={2019}, eprint={1907.09595}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: TF MixNet Paper: Title: 'MixConv: Mixed Depthwise Convolutional Kernels' URL: https://paperswithcode.com/paper/mixnet-mixed-depthwise-convolutional-kernels Models: - Name: tf_mixnet_l In Collection: TF MixNet Metadata: FLOPs: 688674516 Parameters: 7330000 File Size: 29620756 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: tf_mixnet_l Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1720 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_l-6c92e0c8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.78% Top 5 Accuracy: 94.0% - Name: tf_mixnet_m In Collection: TF MixNet Metadata: FLOPs: 416633502 Parameters: 5010000 File Size: 20310871 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: tf_mixnet_m Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1709 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_m-0f4d8805.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.96% Top 5 Accuracy: 93.16% - Name: tf_mixnet_s In Collection: TF MixNet Metadata: FLOPs: 302587678 Parameters: 4130000 File Size: 16738218 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: tf_mixnet_s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1698 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_s-89d3354b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.68% Top 5 Accuracy: 92.64% -->
pytorch-image-models/docs/models/.templates/models/tf-mixnet.md/0
{ "file_path": "pytorch-image-models/docs/models/.templates/models/tf-mixnet.md", "repo_id": "pytorch-image-models", "token_count": 1547 }
181
# EfficientNet (Knapsack Pruned) **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use $2^N$ times more computational resources, then we can simply increase the network depth by $\alpha ^ N$, width by $\beta ^ N$, and image size by $\gamma ^ N$, where $\alpha, \beta, \gamma$ are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient $\phi$ to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). This collection consists of pruned EfficientNet models. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('efficientnet_b1_pruned', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `efficientnet_b1_pruned`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('efficientnet_b1_pruned', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{tan2020efficientnet, title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, author={Mingxing Tan and Quoc V. Le}, year={2020}, eprint={1905.11946}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` ``` @misc{aflalo2020knapsack, title={Knapsack Pruning with Inner Distillation}, author={Yonathan Aflalo and Asaf Noy and Ming Lin and Itamar Friedman and Lihi Zelnik}, year={2020}, eprint={2002.08258}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: EfficientNet Pruned Paper: Title: Knapsack Pruning with Inner Distillation URL: https://paperswithcode.com/paper/knapsack-pruning-with-inner-distillation Models: - Name: efficientnet_b1_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 489653114 Parameters: 6330000 File Size: 25595162 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b1_pruned Crop Pct: '0.882' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1208 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb1_pruned_9ebb3fe6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.25% Top 5 Accuracy: 93.84% - Name: efficientnet_b2_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 878133915 Parameters: 8310000 File Size: 33555005 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b2_pruned Crop Pct: '0.89' Image Size: '260' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1219 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb2_pruned_203f55bc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.91% Top 5 Accuracy: 94.86% - Name: efficientnet_b3_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 1239590641 Parameters: 9860000 File Size: 39770812 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b3_pruned Crop Pct: '0.904' Image Size: '300' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1230 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb3_pruned_5abcc29f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.86% Top 5 Accuracy: 95.24% -->
pytorch-image-models/docs/models/efficientnet-pruned.md/0
{ "file_path": "pytorch-image-models/docs/models/efficientnet-pruned.md", "repo_id": "pytorch-image-models", "token_count": 2760 }
182
# (Legacy) SE-ResNet **SE ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('legacy_seresnet101', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `legacy_seresnet101`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('legacy_seresnet101', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Legacy SE ResNet Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: legacy_seresnet101 In Collection: Legacy SE ResNet Metadata: FLOPs: 9762614000 Parameters: 49330000 File Size: 197822624 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet101 LR: 0.6 Epochs: 100 Layers: 101 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L426 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet101-7e38fcc6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.38% Top 5 Accuracy: 94.26% - Name: legacy_seresnet152 In Collection: Legacy SE ResNet Metadata: FLOPs: 14553578160 Parameters: 66819999 File Size: 268033864 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet152 LR: 0.6 Epochs: 100 Layers: 152 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L433 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet152-d17c99b7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.67% Top 5 Accuracy: 94.38% - Name: legacy_seresnet18 In Collection: Legacy SE ResNet Metadata: FLOPs: 2328876024 Parameters: 11780000 File Size: 47175663 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet18 LR: 0.6 Epochs: 100 Layers: 18 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L405 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet18-4bb0ce65.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 71.74% Top 5 Accuracy: 90.34% - Name: legacy_seresnet34 In Collection: Legacy SE ResNet Metadata: FLOPs: 4706201004 Parameters: 21960000 File Size: 87958697 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet34 LR: 0.6 Epochs: 100 Layers: 34 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L412 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet34-a4004e63.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.79% Top 5 Accuracy: 92.13% - Name: legacy_seresnet50 In Collection: Legacy SE ResNet Metadata: FLOPs: 4974351024 Parameters: 28090000 File Size: 112611220 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet50 LR: 0.6 Epochs: 100 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Image Size: '224' Interpolation: bilinear Minibatch Size: 1024 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L419 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet50-ce0d4300.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.64% Top 5 Accuracy: 93.74% -->
pytorch-image-models/docs/models/legacy-se-resnet.md/0
{ "file_path": "pytorch-image-models/docs/models/legacy-se-resnet.md", "repo_id": "pytorch-image-models", "token_count": 3698 }
183
# ResNet **Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('resnet18', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnet18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, archivePrefix = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: ResNet Paper: Title: Deep Residual Learning for Image Recognition URL: https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition Models: - Name: resnet18 In Collection: ResNet Metadata: FLOPs: 2337073152 Parameters: 11690000 File Size: 46827520 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet18 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L641 Weights: https://download.pytorch.org/models/resnet18-5c106cde.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 69.74% Top 5 Accuracy: 89.09% - Name: resnet26 In Collection: ResNet Metadata: FLOPs: 3026804736 Parameters: 16000000 File Size: 64129972 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet26 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L675 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.29% Top 5 Accuracy: 92.57% - Name: resnet34 In Collection: ResNet Metadata: FLOPs: 4718469120 Parameters: 21800000 File Size: 87290831 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet34 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L658 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.11% Top 5 Accuracy: 92.28% - Name: resnet50 In Collection: ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102488165 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet50 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L691 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.04% Top 5 Accuracy: 94.39% - Name: resnetblur50 In Collection: ResNet Metadata: FLOPs: 6621606912 Parameters: 25560000 File Size: 102488165 Architecture: - 1x1 Convolution - Batch Normalization - Blur Pooling - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnetblur50 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L1160 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.29% Top 5 Accuracy: 94.64% - Name: tv_resnet101 In Collection: ResNet Metadata: FLOPs: 10068547584 Parameters: 44550000 File Size: 178728960 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet101 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L761 Weights: https://download.pytorch.org/models/resnet101-5d3b4d8f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.37% Top 5 Accuracy: 93.56% - Name: tv_resnet152 In Collection: ResNet Metadata: FLOPs: 14857660416 Parameters: 60190000 File Size: 241530880 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet152 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L769 Weights: https://download.pytorch.org/models/resnet152-b121ed2d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.32% Top 5 Accuracy: 94.05% - Name: tv_resnet34 In Collection: ResNet Metadata: FLOPs: 4718469120 Parameters: 21800000 File Size: 87306240 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet34 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L745 Weights: https://download.pytorch.org/models/resnet34-333f7ec4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.3% Top 5 Accuracy: 91.42% - Name: tv_resnet50 In Collection: ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102502400 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet50 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L753 Weights: https://download.pytorch.org/models/resnet50-19c8e357.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.16% Top 5 Accuracy: 92.88% -->
pytorch-image-models/docs/models/resnet.md/0
{ "file_path": "pytorch-image-models/docs/models/resnet.md", "repo_id": "pytorch-image-models", "token_count": 5071 }
184
# Model Summaries The model architectures included come from a wide variety of sources. Sources, including papers, original impl ("reference code") that I rewrote / adapted, and PyTorch impl that I leveraged directly ("code") are listed below. Most included models have pretrained weights. The weights are either: 1. from their original sources 2. ported by myself from their original impl in a different framework (e.g. Tensorflow models) 3. trained from scratch using the included training script The validation results for the pretrained weights are [here](results) A more exciting view (with pretty pictures) of the models within `timm` can be found at [paperswithcode](https://paperswithcode.com/lib/timm). ## Big Transfer ResNetV2 (BiT) * Implementation: [resnetv2.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnetv2.py) * Paper: `Big Transfer (BiT): General Visual Representation Learning` - https://arxiv.org/abs/1912.11370 * Reference code: https://github.com/google-research/big_transfer ## Cross-Stage Partial Networks * Implementation: [cspnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/cspnet.py) * Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 * Reference impl: https://github.com/WongKinYiu/CrossStagePartialNetworks ## DenseNet * Implementation: [densenet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/densenet.py) * Paper: `Densely Connected Convolutional Networks` - https://arxiv.org/abs/1608.06993 * Code: https://github.com/pytorch/vision/tree/master/torchvision/models ## DLA * Implementation: [dla.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/dla.py) * Paper: https://arxiv.org/abs/1707.06484 * Code: https://github.com/ucbdrive/dla ## Dual-Path Networks * Implementation: [dpn.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/dpn.py) * Paper: `Dual Path Networks` - https://arxiv.org/abs/1707.01629 * My PyTorch code: https://github.com/rwightman/pytorch-dpn-pretrained * Reference code: https://github.com/cypw/DPNs ## GPU-Efficient Networks * Implementation: [byobnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/byobnet.py) * Paper: `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 * Reference code: https://github.com/idstcv/GPU-Efficient-Networks ## HRNet * Implementation: [hrnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/hrnet.py) * Paper: `Deep High-Resolution Representation Learning for Visual Recognition` - https://arxiv.org/abs/1908.07919 * Code: https://github.com/HRNet/HRNet-Image-Classification ## Inception-V3 * Implementation: [inception_v3.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/inception_v3.py) * Paper: `Rethinking the Inception Architecture for Computer Vision` - https://arxiv.org/abs/1512.00567 * Code: https://github.com/pytorch/vision/tree/master/torchvision/models ## Inception-V4 * Implementation: [inception_v4.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/inception_v4.py) * Paper: `Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning` - https://arxiv.org/abs/1602.07261 * Code: https://github.com/Cadene/pretrained-models.pytorch * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets ## Inception-ResNet-V2 * Implementation: [inception_resnet_v2.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/inception_resnet_v2.py) * Paper: `Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning` - https://arxiv.org/abs/1602.07261 * Code: https://github.com/Cadene/pretrained-models.pytorch * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets ## NASNet-A * Implementation: [nasnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/nasnet.py) * Papers: `Learning Transferable Architectures for Scalable Image Recognition` - https://arxiv.org/abs/1707.07012 * Code: https://github.com/Cadene/pretrained-models.pytorch * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet ## PNasNet-5 * Implementation: [pnasnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/pnasnet.py) * Papers: `Progressive Neural Architecture Search` - https://arxiv.org/abs/1712.00559 * Code: https://github.com/Cadene/pretrained-models.pytorch * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet ## EfficientNet * Implementation: [efficientnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/efficientnet.py) * Papers: * EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252 * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665 * EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946 * EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html * MixNet - https://arxiv.org/abs/1907.09595 * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626 * MobileNet-V2 - https://arxiv.org/abs/1801.04381 * FBNet-C - https://arxiv.org/abs/1812.03443 * Single-Path NAS - https://arxiv.org/abs/1904.02877 * My PyTorch code: https://github.com/rwightman/gen-efficientnet-pytorch * Reference code: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet ## MobileNet-V3 * Implementation: [mobilenetv3.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/mobilenetv3.py) * Paper: `Searching for MobileNetV3` - https://arxiv.org/abs/1905.02244 * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet ## RegNet * Implementation: [regnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/regnet.py) * Paper: `Designing Network Design Spaces` - https://arxiv.org/abs/2003.13678 * Reference code: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py ## RepVGG * Implementation: [byobnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/byobnet.py) * Paper: `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 * Reference code: https://github.com/DingXiaoH/RepVGG ## ResNet, ResNeXt * Implementation: [resnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnet.py) * ResNet (V1B) * Paper: `Deep Residual Learning for Image Recognition` - https://arxiv.org/abs/1512.03385 * Code: https://github.com/pytorch/vision/tree/master/torchvision/models * ResNeXt * Paper: `Aggregated Residual Transformations for Deep Neural Networks` - https://arxiv.org/abs/1611.05431 * Code: https://github.com/pytorch/vision/tree/master/torchvision/models * 'Bag of Tricks' / Gluon C, D, E, S ResNet variants * Paper: `Bag of Tricks for Image Classification with CNNs` - https://arxiv.org/abs/1812.01187 * Code: https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/resnetv1b.py * Instagram pretrained / ImageNet tuned ResNeXt101 * Paper: `Exploring the Limits of Weakly Supervised Pretraining` - https://arxiv.org/abs/1805.00932 * Weights: https://pytorch.org/hub/facebookresearch_WSL-Images_resnext (NOTE: CC BY-NC 4.0 License, NOT commercial friendly) * Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet and ResNeXts * Paper: `Billion-scale semi-supervised learning for image classification` - https://arxiv.org/abs/1905.00546 * Weights: https://github.com/facebookresearch/semi-supervised-ImageNet1K-models (NOTE: CC BY-NC 4.0 License, NOT commercial friendly) * Squeeze-and-Excitation Networks * Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507 * Code: Added to ResNet base, this is current version going forward, old `senet.py` is being deprecated * ECAResNet (ECA-Net) * Paper: `ECA-Net: Efficient Channel Attention for Deep CNN` - https://arxiv.org/abs/1910.03151v4 * Code: Added to ResNet base, ECA module contributed by @VRandme, reference https://github.com/BangguWu/ECANet ## Res2Net * Implementation: [res2net.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/res2net.py) * Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169 * Code: https://github.com/gasvn/Res2Net ## ResNeSt * Implementation: [resnest.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnest.py) * Paper: `ResNeSt: Split-Attention Networks` - https://arxiv.org/abs/2004.08955 * Code: https://github.com/zhanghang1989/ResNeSt ## ReXNet * Implementation: [rexnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/rexnet.py) * Paper: `ReXNet: Diminishing Representational Bottleneck on CNN` - https://arxiv.org/abs/2007.00992 * Code: https://github.com/clovaai/rexnet ## Selective-Kernel Networks * Implementation: [sknet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/sknet.py) * Paper: `Selective-Kernel Networks` - https://arxiv.org/abs/1903.06586 * Code: https://github.com/implus/SKNet, https://github.com/clovaai/assembled-cnn ## SelecSLS * Implementation: [selecsls.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/selecsls.py) * Paper: `XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera` - https://arxiv.org/abs/1907.00837 * Code: https://github.com/mehtadushy/SelecSLS-Pytorch ## Squeeze-and-Excitation Networks * Implementation: [senet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/senet.py) NOTE: I am deprecating this version of the networks, the new ones are part of `resnet.py` * Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507 * Code: https://github.com/Cadene/pretrained-models.pytorch ## TResNet * Implementation: [tresnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/tresnet.py) * Paper: `TResNet: High Performance GPU-Dedicated Architecture` - https://arxiv.org/abs/2003.13630 * Code: https://github.com/mrT23/TResNet ## VGG * Implementation: [vgg.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vgg.py) * Paper: `Very Deep Convolutional Networks For Large-Scale Image Recognition` - https://arxiv.org/pdf/1409.1556.pdf * Reference code: https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py ## Vision Transformer * Implementation: [vision_transformer.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py) * Paper: `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 * Reference code and pretrained weights: https://github.com/google-research/vision_transformer ## VovNet V2 and V1 * Implementation: [vovnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vovnet.py) * Paper: `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 * Reference code: https://github.com/youngwanLEE/vovnet-detectron2 ## Xception * Implementation: [xception.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/xception.py) * Paper: `Xception: Deep Learning with Depthwise Separable Convolutions` - https://arxiv.org/abs/1610.02357 * Code: https://github.com/Cadene/pretrained-models.pytorch ## Xception (Modified Aligned, Gluon) * Implementation: [gluon_xception.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/gluon_xception.py) * Paper: `Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation` - https://arxiv.org/abs/1802.02611 * Reference code: https://github.com/dmlc/gluon-cv/tree/master/gluoncv/model_zoo, https://github.com/jfzhang95/pytorch-deeplab-xception/ ## Xception (Modified Aligned, TF) * Implementation: [aligned_xception.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/aligned_xception.py) * Paper: `Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation` - https://arxiv.org/abs/1802.02611 * Reference code: https://github.com/tensorflow/models/tree/master/research/deeplab
pytorch-image-models/hfdocs/source/models.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models.mdx", "repo_id": "pytorch-image-models", "token_count": 4494 }
185
# MobileNet v2 **MobileNetV2** is a convolutional neural network architecture that seeks to perform well on mobile devices. It is based on an [inverted residual structure](https://paperswithcode.com/method/inverted-residual-block) where the residual connections are between the bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. As a whole, the architecture of MobileNetV2 contains the initial fully convolution layer with 32 filters, followed by 19 residual bottleneck layers. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('mobilenetv2_100', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `mobilenetv2_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('mobilenetv2_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1801-04381, author = {Mark Sandler and Andrew G. Howard and Menglong Zhu and Andrey Zhmoginov and Liang{-}Chieh Chen}, title = {Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation}, journal = {CoRR}, volume = {abs/1801.04381}, year = {2018}, url = {http://arxiv.org/abs/1801.04381}, archivePrefix = {arXiv}, eprint = {1801.04381}, timestamp = {Tue, 12 Jan 2021 15:30:06 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1801-04381.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: MobileNet V2 Paper: Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks' URL: https://paperswithcode.com/paper/mobilenetv2-inverted-residuals-and-linear Models: - Name: mobilenetv2_100 In Collection: MobileNet V2 Metadata: FLOPs: 401920448 Parameters: 3500000 File Size: 14202571 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Inverted Residual Block - Max Pooling - ReLU6 - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: mobilenetv2_100 LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1536 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L955 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.95% Top 5 Accuracy: 91.0% - Name: mobilenetv2_110d In Collection: MobileNet V2 Metadata: FLOPs: 573958832 Parameters: 4520000 File Size: 18316431 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Inverted Residual Block - Max Pooling - ReLU6 - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: mobilenetv2_110d LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1536 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L969 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.05% Top 5 Accuracy: 92.19% - Name: mobilenetv2_120d In Collection: MobileNet V2 Metadata: FLOPs: 888510048 Parameters: 5830000 File Size: 23651121 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Inverted Residual Block - Max Pooling - ReLU6 - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: mobilenetv2_120d LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1536 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L977 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.28% Top 5 Accuracy: 93.51% - Name: mobilenetv2_140 In Collection: MobileNet V2 Metadata: FLOPs: 770196784 Parameters: 6110000 File Size: 24673555 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Inverted Residual Block - Max Pooling - ReLU6 - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: mobilenetv2_140 LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1536 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L962 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.51% Top 5 Accuracy: 93.0% -->
pytorch-image-models/hfdocs/source/models/mobilenet-v2.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/mobilenet-v2.mdx", "repo_id": "pytorch-image-models", "token_count": 3401 }
186
# SE-ResNeXt **SE ResNeXt** is a variant of a [ResNext](https://www.paperswithcode.com/method/resneXt) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('seresnext26d_32x4d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `seresnext26d_32x4d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('seresnext26d_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: SEResNeXt Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: seresnext26d_32x4d In Collection: SEResNeXt Metadata: FLOPs: 3507053024 Parameters: 16810000 File Size: 67425193 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnext26d_32x4d LR: 0.6 Epochs: 100 Layers: 26 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1234 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26d_32x4d-80fa48a3.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.59% Top 5 Accuracy: 93.61% - Name: seresnext26t_32x4d In Collection: SEResNeXt Metadata: FLOPs: 3466436448 Parameters: 16820000 File Size: 67414838 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnext26t_32x4d LR: 0.6 Epochs: 100 Layers: 26 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1246 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26tn_32x4d-569cb627.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.99% Top 5 Accuracy: 93.73% - Name: seresnext50_32x4d In Collection: SEResNeXt Metadata: FLOPs: 5475179184 Parameters: 27560000 File Size: 110569859 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnext50_32x4d LR: 0.6 Epochs: 100 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1267 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext50_32x4d_racm-a304a460.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.27% Top 5 Accuracy: 95.62% -->
pytorch-image-models/hfdocs/source/models/seresnext.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/seresnext.mdx", "repo_id": "pytorch-image-models", "token_count": 2753 }
187
# Quickstart This quickstart is intended for developers who are ready to dive into the code and see an example of how to integrate `timm` into their model training workflow. First, you'll need to install `timm`. For more information on installation, see [Installation](installation). ```bash pip install timm ``` ## Load a Pretrained Model Pretrained models can be loaded using [`create_model`]. Here, we load the pretrained `mobilenetv3_large_100` model. ```py >>> import timm >>> m = timm.create_model('mobilenetv3_large_100', pretrained=True) >>> m.eval() ``` <Tip> Note: The returned PyTorch model is set to train mode by default, so you must call .eval() on it if you plan to use it for inference. </Tip> ## List Models with Pretrained Weights To list models packaged with `timm`, you can use [`list_models`]. If you specify `pretrained=True`, this function will only return model names that have associated pretrained weights available. ```py >>> import timm >>> from pprint import pprint >>> model_names = timm.list_models(pretrained=True) >>> pprint(model_names) [ 'adv_inception_v3', 'cspdarknet53', 'cspresnext50', 'densenet121', 'densenet161', 'densenet169', 'densenet201', 'densenetblur121d', 'dla34', 'dla46_c', ] ``` You can also list models with a specific pattern in their name. ```py >>> import timm >>> from pprint import pprint >>> model_names = timm.list_models('*resne*t*') >>> pprint(model_names) [ 'cspresnet50', 'cspresnet50d', 'cspresnet50w', 'cspresnext50', ... ] ``` ## Fine-Tune a Pretrained Model You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('mobilenetv3_large_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To fine-tune on your own dataset, you have to write a PyTorch training loop or adapt `timm`'s [training script](training_script) to use your dataset. ## Use a Pretrained Model for Feature Extraction Without modifying the network, one can call model.forward_features(input) on any model instead of the usual model(input). This will bypass the head classifier and global pooling for networks. For a more in depth guide to using `timm` for feature extraction, see [Feature Extraction](feature_extraction). ```py >>> import timm >>> import torch >>> x = torch.randn(1, 3, 224, 224) >>> model = timm.create_model('mobilenetv3_large_100', pretrained=True) >>> features = model.forward_features(x) >>> print(features.shape) torch.Size([1, 960, 7, 7]) ``` ## Image Augmentation To transform images into valid inputs for a model, you can use [`timm.data.create_transform`], providing the desired `input_size` that the model expects. This will return a generic transform that uses reasonable defaults. ```py >>> timm.data.create_transform((3, 224, 224)) Compose( Resize(size=256, interpolation=bilinear, max_size=None, antialias=None) CenterCrop(size=(224, 224)) ToTensor() Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250])) ) ``` Pretrained models have specific transforms that were applied to images fed into them while training. If you use the wrong transform on your image, the model won't understand what it's seeing! To figure out which transformations were used for a given pretrained model, we can start by taking a look at its `pretrained_cfg` ```py >>> model.pretrained_cfg {'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth', 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225), 'first_conv': 'conv_stem', 'classifier': 'classifier', 'architecture': 'mobilenetv3_large_100'} ``` We can then resolve only the data related configuration by using [`timm.data.resolve_data_config`]. ```py >>> timm.data.resolve_data_config(model.pretrained_cfg) {'input_size': (3, 224, 224), 'interpolation': 'bicubic', 'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225), 'crop_pct': 0.875} ``` We can pass this data config to [`timm.data.create_transform`] to initialize the model's associated transform. ```py >>> data_cfg = timm.data.resolve_data_config(model.pretrained_cfg) >>> transform = timm.data.create_transform(**data_cfg) >>> transform Compose( Resize(size=256, interpolation=bicubic, max_size=None, antialias=None) CenterCrop(size=(224, 224)) ToTensor() Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250])) ) ``` <Tip> Note: Here, the pretrained model's config happens to be the same as the generic config we made earlier. This is not always the case. So, it's safer to use the data config to create the transform as we did here instead of using the generic transform. </Tip> ## Using Pretrained Models for Inference Here, we will put together the above sections and use a pretrained model for inference. First we'll need an image to do inference on. Here we load a picture of a leaf from the web: ```py >>> import requests >>> from PIL import Image >>> from io import BytesIO >>> url = 'https://datasets-server.huggingface.co/assets/imagenet-1k/--/default/test/12/image/image.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> image ``` Here's the image we loaded: <img src="https://datasets-server.huggingface.co/assets/imagenet-1k/--/default/test/12/image/image.jpg" alt="An Image from a link" width="300"/> Now, we'll create our model and transforms again. This time, we make sure to set our model in evaluation mode. ```py >>> model = timm.create_model('mobilenetv3_large_100', pretrained=True).eval() >>> transform = timm.data.create_transform( **timm.data.resolve_data_config(model.pretrained_cfg) ) ``` We can prepare this image for the model by passing it to the transform. ```py >>> image_tensor = transform(image) >>> image_tensor.shape torch.Size([3, 224, 224]) ``` Now we can pass that image to the model to get the predictions. We use `unsqueeze(0)` in this case, as the model is expecting a batch dimension. ```py >>> output = model(image_tensor.unsqueeze(0)) >>> output.shape torch.Size([1, 1000]) ``` To get the predicted probabilities, we apply softmax to the output. This leaves us with a tensor of shape `(num_classes,)`. ```py >>> probabilities = torch.nn.functional.softmax(output[0], dim=0) >>> probabilities.shape torch.Size([1000]) ``` Now we'll find the top 5 predicted class indexes and values using `torch.topk`. ```py >>> values, indices = torch.topk(probabilities, 5) >>> indices tensor([162, 166, 161, 164, 167]) ``` If we check the imagenet labels for the top index, we can see what the model predicted... ```py >>> IMAGENET_1k_URL = 'https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt' >>> IMAGENET_1k_LABELS = requests.get(IMAGENET_1k_URL).text.strip().split('\n') >>> [{'label': IMAGENET_1k_LABELS[idx], 'value': val.item()} for val, idx in zip(values, indices)] [{'label': 'beagle', 'value': 0.8486220836639404}, {'label': 'Walker_hound, Walker_foxhound', 'value': 0.03753996267914772}, {'label': 'basset, basset_hound', 'value': 0.024628572165966034}, {'label': 'bluetick', 'value': 0.010317106731235981}, {'label': 'English_foxhound', 'value': 0.006958036217838526}] ```
pytorch-image-models/hfdocs/source/quickstart.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/quickstart.mdx", "repo_id": "pytorch-image-models", "token_count": 2583 }
188
from .auto_augment import RandAugment, AutoAugment, rand_augment_ops, auto_augment_policy,\ rand_augment_transform, auto_augment_transform from .config import resolve_data_config, resolve_model_data_config from .constants import * from .dataset import ImageDataset, IterableImageDataset, AugMixDataset from .dataset_factory import create_dataset from .dataset_info import DatasetInfo, CustomDatasetInfo from .imagenet_info import ImageNetInfo, infer_imagenet_subset from .loader import create_loader from .mixup import Mixup, FastCollateMixup from .readers import create_reader from .readers import get_img_extensions, is_img_extension, set_img_extensions, add_img_extensions, del_img_extensions from .real_labels import RealLabelsImagenet from .transforms import * from .transforms_factory import create_transform
pytorch-image-models/timm/data/__init__.py/0
{ "file_path": "pytorch-image-models/timm/data/__init__.py", "repo_id": "pytorch-image-models", "token_count": 256 }
189
import os import pickle def load_class_map(map_or_filename, root=''): if isinstance(map_or_filename, dict): assert dict, 'class_map dict must be non-empty' return map_or_filename class_map_path = map_or_filename if not os.path.exists(class_map_path): class_map_path = os.path.join(root, class_map_path) assert os.path.exists(class_map_path), 'Cannot locate specified class map file (%s)' % map_or_filename class_map_ext = os.path.splitext(map_or_filename)[-1].lower() if class_map_ext == '.txt': with open(class_map_path) as f: class_to_idx = {v.strip(): k for k, v in enumerate(f)} elif class_map_ext == '.pkl': with open(class_map_path, 'rb') as f: class_to_idx = pickle.load(f) else: assert False, f'Unsupported class map file extension ({class_map_ext}).' return class_to_idx
pytorch-image-models/timm/data/readers/class_map.py/0
{ "file_path": "pytorch-image-models/timm/data/readers/class_map.py", "repo_id": "pytorch-image-models", "token_count": 387 }
190
from .activations import * from .adaptive_avgmax_pool import \ adaptive_avgmax_pool2d, select_adaptive_pool2d, AdaptiveAvgMaxPool2d, SelectAdaptivePool2d from .attention_pool import AttentionPoolLatent from .attention_pool2d import AttentionPool2d, RotAttentionPool2d, RotaryEmbedding from .blur_pool import BlurPool2d from .classifier import ClassifierHead, create_classifier, NormMlpClassifierHead from .cond_conv2d import CondConv2d, get_condconv_initializer from .config import is_exportable, is_scriptable, is_no_jit, use_fused_attn, \ set_exportable, set_scriptable, set_no_jit, set_layer_config, set_fused_attn from .conv2d_same import Conv2dSame, conv2d_same from .conv_bn_act import ConvNormAct, ConvNormActAa, ConvBnAct from .create_act import create_act_layer, get_act_layer, get_act_fn from .create_attn import get_attn, create_attn from .create_conv2d import create_conv2d from .create_norm import get_norm_layer, create_norm_layer from .create_norm_act import get_norm_act_layer, create_norm_act_layer, get_norm_act_layer from .drop import DropBlock2d, DropPath, drop_block_2d, drop_path from .eca import EcaModule, CecaModule, EfficientChannelAttn, CircularEfficientChannelAttn from .evo_norm import EvoNorm2dB0, EvoNorm2dB1, EvoNorm2dB2,\ EvoNorm2dS0, EvoNorm2dS0a, EvoNorm2dS1, EvoNorm2dS1a, EvoNorm2dS2, EvoNorm2dS2a from .fast_norm import is_fast_norm, set_fast_norm, fast_group_norm, fast_layer_norm from .filter_response_norm import FilterResponseNormTlu2d, FilterResponseNormAct2d from .format import Format, get_channel_dim, get_spatial_dim, nchw_to, nhwc_to from .gather_excite import GatherExcite from .global_context import GlobalContext from .grid import ndgrid, meshgrid from .helpers import to_ntuple, to_2tuple, to_3tuple, to_4tuple, make_divisible, extend_tuple from .inplace_abn import InplaceAbn from .linear import Linear from .mixed_conv2d import MixedConv2d from .mlp import Mlp, GluMlp, GatedMlp, SwiGLU, SwiGLUPacked, ConvMlp, GlobalResponseNormMlp from .non_local_attn import NonLocalAttn, BatNonLocalAttn from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d, RmsNorm from .norm_act import BatchNormAct2d, GroupNormAct, GroupNorm1Act, LayerNormAct, LayerNormAct2d,\ SyncBatchNormAct, convert_sync_batchnorm, FrozenBatchNormAct2d, freeze_batch_norm_2d, unfreeze_batch_norm_2d from .padding import get_padding, get_same_padding, pad_same from .patch_dropout import PatchDropout from .patch_embed import PatchEmbed, PatchEmbedWithSize, resample_patch_embed from .pool2d_same import AvgPool2dSame, create_pool2d from .pos_embed import resample_abs_pos_embed, resample_abs_pos_embed_nhwc from .pos_embed_rel import RelPosMlp, RelPosBias, RelPosBiasTf, gen_relative_position_index, gen_relative_log_coords, \ resize_rel_pos_bias_table, resize_rel_pos_bias_table_simple, resize_rel_pos_bias_table_levit from .pos_embed_sincos import pixel_freq_bands, freq_bands, build_sincos2d_pos_embed, build_fourier_pos_embed, \ build_rotary_pos_embed, apply_rot_embed, apply_rot_embed_cat, apply_rot_embed_list, apply_keep_indices_nlc, \ FourierEmbed, RotaryEmbedding, RotaryEmbeddingCat from .squeeze_excite import SEModule, SqueezeExcite, EffectiveSEModule, EffectiveSqueezeExcite from .selective_kernel import SelectiveKernel from .separable_conv import SeparableConv2d, SeparableConvNormAct from .space_to_depth import SpaceToDepthModule, SpaceToDepth, DepthToSpace from .split_attn import SplitAttn from .split_batchnorm import SplitBatchNorm2d, convert_splitbn_model from .std_conv import StdConv2d, StdConv2dSame, ScaledStdConv2d, ScaledStdConv2dSame from .test_time_pool import TestTimePoolHead, apply_test_time_pool from .trace_utils import _assert, _float_to_int from .typing import LayerType, PadType from .weight_init import trunc_normal_, trunc_normal_tf_, variance_scaling_, lecun_normal_
pytorch-image-models/timm/layers/__init__.py/0
{ "file_path": "pytorch-image-models/timm/layers/__init__.py", "repo_id": "pytorch-image-models", "token_count": 1381 }
191
""" Attention Factory Hacked together by / Copyright 2021 Ross Wightman """ import torch from functools import partial from .bottleneck_attn import BottleneckAttn from .cbam import CbamModule, LightCbamModule from .eca import EcaModule, CecaModule from .gather_excite import GatherExcite from .global_context import GlobalContext from .halo_attn import HaloAttn from .lambda_layer import LambdaLayer from .non_local_attn import NonLocalAttn, BatNonLocalAttn from .selective_kernel import SelectiveKernel from .split_attn import SplitAttn from .squeeze_excite import SEModule, EffectiveSEModule def get_attn(attn_type): if isinstance(attn_type, torch.nn.Module): return attn_type module_cls = None if attn_type: if isinstance(attn_type, str): attn_type = attn_type.lower() # Lightweight attention modules (channel and/or coarse spatial). # Typically added to existing network architecture blocks in addition to existing convolutions. if attn_type == 'se': module_cls = SEModule elif attn_type == 'ese': module_cls = EffectiveSEModule elif attn_type == 'eca': module_cls = EcaModule elif attn_type == 'ecam': module_cls = partial(EcaModule, use_mlp=True) elif attn_type == 'ceca': module_cls = CecaModule elif attn_type == 'ge': module_cls = GatherExcite elif attn_type == 'gc': module_cls = GlobalContext elif attn_type == 'gca': module_cls = partial(GlobalContext, fuse_add=True, fuse_scale=False) elif attn_type == 'cbam': module_cls = CbamModule elif attn_type == 'lcbam': module_cls = LightCbamModule # Attention / attention-like modules w/ significant params # Typically replace some of the existing workhorse convs in a network architecture. # All of these accept a stride argument and can spatially downsample the input. elif attn_type == 'sk': module_cls = SelectiveKernel elif attn_type == 'splat': module_cls = SplitAttn # Self-attention / attention-like modules w/ significant compute and/or params # Typically replace some of the existing workhorse convs in a network architecture. # All of these accept a stride argument and can spatially downsample the input. elif attn_type == 'lambda': return LambdaLayer elif attn_type == 'bottleneck': return BottleneckAttn elif attn_type == 'halo': return HaloAttn elif attn_type == 'nl': module_cls = NonLocalAttn elif attn_type == 'bat': module_cls = BatNonLocalAttn # Woops! else: assert False, "Invalid attn module (%s)" % attn_type elif isinstance(attn_type, bool): if attn_type: module_cls = SEModule else: module_cls = attn_type return module_cls def create_attn(attn_type, channels, **kwargs): module_cls = get_attn(attn_type) if module_cls is not None: # NOTE: it's expected the first (positional) argument of all attention layers is the # input channels return module_cls(channels, **kwargs) return None
pytorch-image-models/timm/layers/create_attn.py/0
{ "file_path": "pytorch-image-models/timm/layers/create_attn.py", "repo_id": "pytorch-image-models", "token_count": 1588 }
192
import torch from torch import nn as nn try: from inplace_abn.functions import inplace_abn, inplace_abn_sync has_iabn = True except ImportError: has_iabn = False def inplace_abn(x, weight, bias, running_mean, running_var, training=True, momentum=0.1, eps=1e-05, activation="leaky_relu", activation_param=0.01): raise ImportError( "Please install InplaceABN:'pip install git+https://github.com/mapillary/inplace_abn.git@v1.0.12'") def inplace_abn_sync(**kwargs): inplace_abn(**kwargs) class InplaceAbn(nn.Module): """Activated Batch Normalization This gathers a BatchNorm and an activation function in a single module Parameters ---------- num_features : int Number of feature channels in the input and output. eps : float Small constant to prevent numerical issues. momentum : float Momentum factor applied to compute running statistics. affine : bool If `True` apply learned scale and shift transformation after normalization. act_layer : str or nn.Module type Name or type of the activation functions, one of: `leaky_relu`, `elu` act_param : float Negative slope for the `leaky_relu` activation. """ def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, apply_act=True, act_layer="leaky_relu", act_param=0.01, drop_layer=None): super(InplaceAbn, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps self.momentum = momentum if apply_act: if isinstance(act_layer, str): assert act_layer in ('leaky_relu', 'elu', 'identity', '') self.act_name = act_layer if act_layer else 'identity' else: # convert act layer passed as type to string if act_layer == nn.ELU: self.act_name = 'elu' elif act_layer == nn.LeakyReLU: self.act_name = 'leaky_relu' elif act_layer is None or act_layer == nn.Identity: self.act_name = 'identity' else: assert False, f'Invalid act layer {act_layer.__name__} for IABN' else: self.act_name = 'identity' self.act_param = act_param if self.affine: self.weight = nn.Parameter(torch.ones(num_features)) self.bias = nn.Parameter(torch.zeros(num_features)) else: self.register_parameter('weight', None) self.register_parameter('bias', None) self.register_buffer('running_mean', torch.zeros(num_features)) self.register_buffer('running_var', torch.ones(num_features)) self.reset_parameters() def reset_parameters(self): nn.init.constant_(self.running_mean, 0) nn.init.constant_(self.running_var, 1) if self.affine: nn.init.constant_(self.weight, 1) nn.init.constant_(self.bias, 0) def forward(self, x): output = inplace_abn( x, self.weight, self.bias, self.running_mean, self.running_var, self.training, self.momentum, self.eps, self.act_name, self.act_param) if isinstance(output, tuple): output = output[0] return output
pytorch-image-models/timm/layers/inplace_abn.py/0
{ "file_path": "pytorch-image-models/timm/layers/inplace_abn.py", "repo_id": "pytorch-image-models", "token_count": 1556 }
193
""" Relative position embedding modules and functions Hacked together by / Copyright 2022 Ross Wightman """ import math import os from typing import Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from .grid import ndgrid from .interpolate import RegularGridInterpolator from .mlp import Mlp from .weight_init import trunc_normal_ _USE_SCIPY = int(os.environ.get('TIMM_USE_SCIPY_INTERP', 0)) > 0 def gen_relative_position_index( q_size: Tuple[int, int], k_size: Optional[Tuple[int, int]] = None, class_token: bool = False, ) -> torch.Tensor: # Adapted with significant modifications from Swin / BeiT codebases # get pair-wise relative position index for each token inside the window assert k_size is None, 'Different q & k sizes not currently supported' # FIXME coords = torch.stack(ndgrid(torch.arange(q_size[0]), torch.arange(q_size[1]))).flatten(1) # 2, Wh, Ww relative_coords = coords[:, :, None] - coords[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0) # Qh*Qw, Kh*Kw, 2 relative_coords[:, :, 0] += q_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += q_size[1] - 1 relative_coords[:, :, 0] *= 2 * q_size[1] - 1 num_relative_distance = (2 * q_size[0] - 1) * (2 * q_size[1] - 1) # else: # # FIXME different q vs k sizes is a WIP, need to better offset the two grids? # q_coords = torch.stack( # ndgrid( # torch.arange(q_size[0]), # torch.arange(q_size[1]) # ) # ).flatten(1) # 2, Wh, Ww # k_coords = torch.stack( # ndgrid( # torch.arange(k_size[0]), # torch.arange(k_size[1]) # ) # ).flatten(1) # relative_coords = q_coords[:, :, None] - k_coords[:, None, :] # 2, Wh*Ww, Wh*Ww # relative_coords = relative_coords.permute(1, 2, 0) # Qh*Qw, Kh*Kw, 2 # relative_coords[:, :, 0] += max(q_size[0], k_size[0]) - 1 # shift to start from 0 # relative_coords[:, :, 1] += max(q_size[1], k_size[1]) - 1 # relative_coords[:, :, 0] *= k_size[1] + q_size[1] - 1 # relative_position_index = relative_coords.sum(-1) # Qh*Qw, Kh*Kw # num_relative_distance = (q_size[0] + k_size[0] - 1) * (q_size[1] + k_size[1] - 1) + 3 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww if class_token: # handle cls to token & token 2 cls & cls to cls as per beit for rel pos bias # NOTE not intended or tested with MLP log-coords relative_position_index = F.pad(relative_position_index, [1, 0, 1, 0]) relative_position_index[0, 0:] = num_relative_distance relative_position_index[0:, 0] = num_relative_distance + 1 relative_position_index[0, 0] = num_relative_distance + 2 return relative_position_index.contiguous() def resize_rel_pos_bias_table_simple( rel_pos_bias, new_window_size: Tuple[int, int], new_bias_shape: Tuple[int, ...], ): dst_size = (new_window_size[0] * 2 - 1, new_window_size[1] * 2 - 1) if rel_pos_bias.ndim == 3: # TF maxvit style (num_heads, H, W) bias shape, no extra tokens currently supported _, dst_h, dst_w = new_bias_shape num_attn_heads, src_h, src_w = rel_pos_bias.shape assert dst_h == dst_size[0] and dst_w == dst_size[1] if src_h != dst_h or src_w != dst_w: rel_pos_bias = torch.nn.functional.interpolate( rel_pos_bias.unsqueeze(0), size=dst_size, mode="bicubic", align_corners=False, ).squeeze(0) else: assert rel_pos_bias.ndim == 2 # (num_pos, num_heads) (aka flat) bias shape dst_num_pos, _ = new_bias_shape src_num_pos, num_attn_heads = rel_pos_bias.shape num_extra_tokens = dst_num_pos - (dst_size[0] * dst_size[1]) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) src_size = (src_size, src_size) # FIXME could support non-equal src if argument passed if src_size[0] != dst_size[0] or src_size[1] != dst_size[1]: if num_extra_tokens: extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] else: extra_tokens = None rel_pos_bias = torch.nn.functional.interpolate( rel_pos_bias.transpose(1, 0).reshape((1, -1, src_size[0], src_size[1])), size=dst_size, mode="bicubic", align_corners=False, ).view(-1, dst_num_pos - num_extra_tokens).transpose(0, 1) if extra_tokens is not None: rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) return rel_pos_bias def resize_rel_pos_bias_table_levit( position_bias_table, new_size, interpolation: str = 'bicubic', antialias: bool = True, ): """ Resample relative position bias table suggested in LeVit Adapted from: https://github.com/microsoft/Cream/blob/main/TinyViT/utils.py """ L1, nH1 = position_bias_table.size() L2, nH2 = new_size assert nH1 == nH2 if L1 != L2: orig_dtype = position_bias_table.dtype position_bias_table = position_bias_table.float() # bicubic interpolate relative_position_bias_table if not match S1 = int(L1 ** 0.5) S2 = int(L2 ** 0.5) relative_position_bias_table_resized = F.interpolate( position_bias_table.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2), mode=interpolation, antialias=antialias) relative_position_bias_table_resized = \ relative_position_bias_table_resized.view(nH2, L2).permute(1, 0) relative_position_bias_table_resized.to(orig_dtype) return relative_position_bias_table_resized else: return position_bias_table def resize_rel_pos_bias_table( rel_pos_bias, new_window_size: Tuple[int, int], new_bias_shape: Tuple[int, ...], ): """ Resize relative position bias table using more advanced interpolation. Modified from code in Microsoft Unilm (https://github.com/microsoft/unilm) repo (BeiT, BeiT-v2, etc). https://github.com/microsoft/unilm/blob/5255d52de86dad642810f5849dd357769346c1d7/beit/run_class_finetuning.py#L351 Args: rel_pos_bias: new_window_size: new_bias_shape: Returns: """ if _USE_SCIPY: from scipy import interpolate dst_size = (new_window_size[0] * 2 - 1, new_window_size[1] * 2 - 1) if rel_pos_bias.ndim == 3: # TF maxvit style (num_heads, H, W) bias shape, no extra tokens currently supported num_extra_tokens = 0 _, dst_h, dst_w = new_bias_shape assert dst_h == dst_size[0] and dst_w == dst_size[1] num_attn_heads, src_h, src_w = rel_pos_bias.shape src_size = (src_h, src_w) has_flat_shape = False else: assert rel_pos_bias.ndim == 2 # (num_pos, num_heads) (aka flat) bias shape dst_num_pos, _ = new_bias_shape src_num_pos, num_attn_heads = rel_pos_bias.shape num_extra_tokens = dst_num_pos - (dst_size[0] * dst_size[1]) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) src_size = (src_size, src_size) has_flat_shape = True if src_size[0] != dst_size[0] or src_size[1] != dst_size[1]: # print("Interpolating position from %dx%d to %dx%d" % (src_size[0], src_size[1], dst_size[0], dst_size[1])) if num_extra_tokens: extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] else: extra_tokens = None def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) def _calc(src, dst): left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src // 2) if gp > dst // 2: right = q else: left = q dis = [] cur = 1 for i in range(src // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] return r_ids + [0] + dis y = _calc(src_size[0], dst_size[0]) x = _calc(src_size[1], dst_size[1]) yx = [torch.tensor(y), torch.tensor(x)] # print("Original positions = %s" % str(x)) ty = dst_size[0] // 2.0 tx = dst_size[1] // 2.0 dy = torch.arange(-ty, ty + 0.1, 1.0) dx = torch.arange(-tx, tx + 0.1, 1.0) dyx = ndgrid(dy, dx) # print("Target positions = %s" % str(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): if has_flat_shape: z = rel_pos_bias[:, i].view(src_size[0], src_size[1]).float() else: z = rel_pos_bias[i, :, :].float() if _USE_SCIPY: # Original beit code uses scipy w/ cubic interpolation f = interpolate.interp2d(x, y, z.numpy(), kind='cubic') r = torch.Tensor(f(dx, dy)).contiguous().to(rel_pos_bias.device) else: # Without scipy dependency, I've found a reasonably simple impl # that supports uneven spaced interpolation pts with 'linear' interp. # Results are comparable to scipy for model accuracy in most cases. f = RegularGridInterpolator(yx, z) r = f(dyx).contiguous().to(rel_pos_bias.device) if has_flat_shape: r = r.view(-1, 1) all_rel_pos_bias.append(r) if has_flat_shape: rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) else: rel_pos_bias = torch.cat(all_rel_pos_bias, dim=0) if extra_tokens is not None: assert has_flat_shape rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) return rel_pos_bias class RelPosBias(nn.Module): """ Relative Position Bias Adapted from Swin-V1 relative position bias impl, modularized. """ def __init__(self, window_size, num_heads, prefix_tokens=0): super().__init__() assert prefix_tokens <= 1 self.window_size = window_size self.window_area = window_size[0] * window_size[1] self.bias_shape = (self.window_area + prefix_tokens,) * 2 + (num_heads,) num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 * prefix_tokens self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads)) self.register_buffer( "relative_position_index", gen_relative_position_index(self.window_size, class_token=prefix_tokens > 0).view(-1), persistent=False, ) self.init_weights() def init_weights(self): trunc_normal_(self.relative_position_bias_table, std=.02) def get_bias(self) -> torch.Tensor: relative_position_bias = self.relative_position_bias_table[self.relative_position_index] # win_h * win_w, win_h * win_w, num_heads relative_position_bias = relative_position_bias.view(self.bias_shape).permute(2, 0, 1) return relative_position_bias.unsqueeze(0).contiguous() def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): return attn + self.get_bias() def gen_relative_log_coords( win_size: Tuple[int, int], pretrained_win_size: Tuple[int, int] = (0, 0), mode='swin', ): assert mode in ('swin', 'cr') # as per official swin-v2 impl, supporting timm specific 'cr' log coords as well relative_coords_h = torch.arange(-(win_size[0] - 1), win_size[0]).to(torch.float32) relative_coords_w = torch.arange(-(win_size[1] - 1), win_size[1]).to(torch.float32) relative_coords_table = torch.stack(ndgrid(relative_coords_h, relative_coords_w)) relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous() # 2*Wh-1, 2*Ww-1, 2 if mode == 'swin': if pretrained_win_size[0] > 0: relative_coords_table[:, :, 0] /= (pretrained_win_size[0] - 1) relative_coords_table[:, :, 1] /= (pretrained_win_size[1] - 1) else: relative_coords_table[:, :, 0] /= (win_size[0] - 1) relative_coords_table[:, :, 1] /= (win_size[1] - 1) relative_coords_table *= 8 # normalize to -8, 8 relative_coords_table = torch.sign(relative_coords_table) * torch.log2( 1.0 + relative_coords_table.abs()) / math.log2(8) else: # mode == 'cr' relative_coords_table = torch.sign(relative_coords_table) * torch.log( 1.0 + relative_coords_table.abs()) return relative_coords_table class RelPosMlp(nn.Module): """ Log-Coordinate Relative Position MLP Based on ideas presented in Swin-V2 paper (https://arxiv.org/abs/2111.09883) This impl covers the 'swin' implementation as well as two timm specific modes ('cr', and 'rw') """ def __init__( self, window_size, num_heads=8, hidden_dim=128, prefix_tokens=0, mode='cr', pretrained_window_size=(0, 0) ): super().__init__() self.window_size = window_size self.window_area = self.window_size[0] * self.window_size[1] self.prefix_tokens = prefix_tokens self.num_heads = num_heads self.bias_shape = (self.window_area,) * 2 + (num_heads,) if mode == 'swin': self.bias_act = nn.Sigmoid() self.bias_gain = 16 mlp_bias = (True, False) else: self.bias_act = nn.Identity() self.bias_gain = None mlp_bias = True self.mlp = Mlp( 2, # x, y hidden_features=hidden_dim, out_features=num_heads, act_layer=nn.ReLU, bias=mlp_bias, drop=(0.125, 0.) ) self.register_buffer( "relative_position_index", gen_relative_position_index(window_size).view(-1), persistent=False) # get relative_coords_table self.register_buffer( "rel_coords_log", gen_relative_log_coords(window_size, pretrained_window_size, mode=mode), persistent=False) def get_bias(self) -> torch.Tensor: relative_position_bias = self.mlp(self.rel_coords_log) if self.relative_position_index is not None: relative_position_bias = relative_position_bias.view(-1, self.num_heads)[self.relative_position_index] relative_position_bias = relative_position_bias.view(self.bias_shape) relative_position_bias = relative_position_bias.permute(2, 0, 1) relative_position_bias = self.bias_act(relative_position_bias) if self.bias_gain is not None: relative_position_bias = self.bias_gain * relative_position_bias if self.prefix_tokens: relative_position_bias = F.pad(relative_position_bias, [self.prefix_tokens, 0, self.prefix_tokens, 0]) return relative_position_bias.unsqueeze(0).contiguous() def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): return attn + self.get_bias() def generate_lookup_tensor( length: int, max_relative_position: Optional[int] = None, ): """Generate a one_hot lookup tensor to reindex embeddings along one dimension. Args: length: the length to reindex to. max_relative_position: the maximum relative position to consider. Relative position embeddings for distances above this threshold are zeroed out. Returns: a lookup Tensor of size [length, length, vocab_size] that satisfies ret[n,m,v] = 1{m - n + max_relative_position = v}. """ if max_relative_position is None: max_relative_position = length - 1 # Return the cached lookup tensor, otherwise compute it and cache it. vocab_size = 2 * max_relative_position + 1 ret = torch.zeros(length, length, vocab_size) for i in range(length): for x in range(length): v = x - i + max_relative_position if abs(x - i) > max_relative_position: continue ret[i, x, v] = 1 return ret def reindex_2d_einsum_lookup( relative_position_tensor, height: int, width: int, height_lookup: torch.Tensor, width_lookup: torch.Tensor, ) -> torch.Tensor: """Reindex 2d relative position bias with 2 independent einsum lookups. Adapted from: https://github.com/google-research/maxvit/blob/2e06a7f1f70c76e64cd3dabe5cd1b8c1a23c9fb7/maxvit/models/attention_utils.py Args: relative_position_tensor: tensor of shape [..., vocab_height, vocab_width, ...]. height: height to reindex to. width: width to reindex to. height_lookup: one-hot height lookup width_lookup: one-hot width lookup Returns: reindexed_tensor: a Tensor of shape [..., height * width, height * width, ...] """ reindexed_tensor = torch.einsum('nhw,ixh->nixw', relative_position_tensor, height_lookup) reindexed_tensor = torch.einsum('nixw,jyw->nijxy', reindexed_tensor, width_lookup) area = height * width return reindexed_tensor.reshape(relative_position_tensor.shape[0], area, area) class RelPosBiasTf(nn.Module): """ Relative Position Bias Impl (Compatible with Tensorflow MaxViT models) Adapted from: https://github.com/google-research/maxvit/blob/2e06a7f1f70c76e64cd3dabe5cd1b8c1a23c9fb7/maxvit/models/attention_utils.py """ def __init__(self, window_size, num_heads, prefix_tokens=0): super().__init__() assert prefix_tokens <= 1 self.window_size = window_size self.window_area = window_size[0] * window_size[1] self.num_heads = num_heads vocab_height = 2 * window_size[0] - 1 vocab_width = 2 * window_size[1] - 1 self.bias_shape = (self.num_heads, vocab_height, vocab_width) self.relative_position_bias_table = nn.Parameter(torch.zeros(self.bias_shape)) self.register_buffer('height_lookup', generate_lookup_tensor(window_size[0]), persistent=False) self.register_buffer('width_lookup', generate_lookup_tensor(window_size[1]), persistent=False) self.init_weights() def init_weights(self): nn.init.normal_(self.relative_position_bias_table, std=.02) def get_bias(self) -> torch.Tensor: # FIXME change to not use one-hot/einsum? return reindex_2d_einsum_lookup( self.relative_position_bias_table, self.window_size[0], self.window_size[1], self.height_lookup, self.width_lookup ) def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): return attn + self.get_bias()
pytorch-image-models/timm/layers/pos_embed_rel.py/0
{ "file_path": "pytorch-image-models/timm/layers/pos_embed_rel.py", "repo_id": "pytorch-image-models", "token_count": 9303 }
194
""" Cross Entropy w/ smoothing or soft targets Hacked together by / Copyright 2021 Ross Wightman """ import torch import torch.nn as nn import torch.nn.functional as F class LabelSmoothingCrossEntropy(nn.Module): """ NLL loss with label smoothing. """ def __init__(self, smoothing=0.1): super(LabelSmoothingCrossEntropy, self).__init__() assert smoothing < 1.0 self.smoothing = smoothing self.confidence = 1. - smoothing def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: logprobs = F.log_softmax(x, dim=-1) nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1)) nll_loss = nll_loss.squeeze(1) smooth_loss = -logprobs.mean(dim=-1) loss = self.confidence * nll_loss + self.smoothing * smooth_loss return loss.mean() class SoftTargetCrossEntropy(nn.Module): def __init__(self): super(SoftTargetCrossEntropy, self).__init__() def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: loss = torch.sum(-target * F.log_softmax(x, dim=-1), dim=-1) return loss.mean()
pytorch-image-models/timm/loss/cross_entropy.py/0
{ "file_path": "pytorch-image-models/timm/loss/cross_entropy.py", "repo_id": "pytorch-image-models", "token_count": 470 }
195
"""Pytorch Densenet implementation w/ tweaks This file is a copy of https://github.com/pytorch/vision 'densenet.py' (BSD-3-Clause) with fixed kwargs passthrough and addition of dynamic global avg/max pool. """ import re from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from torch.jit.annotations import List from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import BatchNormAct2d, get_norm_act_layer, BlurPool2d, create_classifier from ._builder import build_model_with_cfg from ._manipulate import MATCH_PREV_GROUP from ._registry import register_model, generate_default_cfgs, register_model_deprecations __all__ = ['DenseNet'] class DenseLayer(nn.Module): def __init__( self, num_input_features, growth_rate, bn_size, norm_layer=BatchNormAct2d, drop_rate=0., grad_checkpointing=False, ): super(DenseLayer, self).__init__() self.add_module('norm1', norm_layer(num_input_features)), self.add_module('conv1', nn.Conv2d( num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), self.add_module('norm2', norm_layer(bn_size * growth_rate)), self.add_module('conv2', nn.Conv2d( bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), self.drop_rate = float(drop_rate) self.grad_checkpointing = grad_checkpointing def bottleneck_fn(self, xs): # type: (List[torch.Tensor]) -> torch.Tensor concated_features = torch.cat(xs, 1) bottleneck_output = self.conv1(self.norm1(concated_features)) # noqa: T484 return bottleneck_output # todo: rewrite when torchscript supports any def any_requires_grad(self, x): # type: (List[torch.Tensor]) -> bool for tensor in x: if tensor.requires_grad: return True return False @torch.jit.unused # noqa: T484 def call_checkpoint_bottleneck(self, x): # type: (List[torch.Tensor]) -> torch.Tensor def closure(*xs): return self.bottleneck_fn(xs) return cp.checkpoint(closure, *x) @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (List[torch.Tensor]) -> (torch.Tensor) pass @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (torch.Tensor) -> (torch.Tensor) pass # torchscript does not yet support *args, so we overload method # allowing it to take either a List[Tensor] or single Tensor def forward(self, x): # noqa: F811 if isinstance(x, torch.Tensor): prev_features = [x] else: prev_features = x if self.grad_checkpointing and self.any_requires_grad(prev_features): if torch.jit.is_scripting(): raise Exception("Memory Efficient not supported in JIT") bottleneck_output = self.call_checkpoint_bottleneck(prev_features) else: bottleneck_output = self.bottleneck_fn(prev_features) new_features = self.conv2(self.norm2(bottleneck_output)) if self.drop_rate > 0: new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) return new_features class DenseBlock(nn.ModuleDict): _version = 2 def __init__( self, num_layers, num_input_features, bn_size, growth_rate, norm_layer=BatchNormAct2d, drop_rate=0., grad_checkpointing=False, ): super(DenseBlock, self).__init__() for i in range(num_layers): layer = DenseLayer( num_input_features + i * growth_rate, growth_rate=growth_rate, bn_size=bn_size, norm_layer=norm_layer, drop_rate=drop_rate, grad_checkpointing=grad_checkpointing, ) self.add_module('denselayer%d' % (i + 1), layer) def forward(self, init_features): features = [init_features] for name, layer in self.items(): new_features = layer(features) features.append(new_features) return torch.cat(features, 1) class DenseTransition(nn.Sequential): def __init__( self, num_input_features, num_output_features, norm_layer=BatchNormAct2d, aa_layer=None, ): super(DenseTransition, self).__init__() self.add_module('norm', norm_layer(num_input_features)) self.add_module('conv', nn.Conv2d( num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) if aa_layer is not None: self.add_module('pool', aa_layer(num_output_features, stride=2)) else: self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) class DenseNet(nn.Module): r"""Densenet-BC model class, based on `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: growth_rate (int) - how many filters to add each layer (`k` in paper) block_config (list of 4 ints) - how many layers in each pooling block bn_size (int) - multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer) drop_rate (float) - dropout rate before classifier layer proj_drop_rate (float) - dropout rate after each dense layer num_classes (int) - number of classification classes memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ def __init__( self, growth_rate=32, block_config=(6, 12, 24, 16), num_classes=1000, in_chans=3, global_pool='avg', bn_size=4, stem_type='', act_layer='relu', norm_layer='batchnorm2d', aa_layer=None, drop_rate=0., proj_drop_rate=0., memory_efficient=False, aa_stem_only=True, ): self.num_classes = num_classes super(DenseNet, self).__init__() norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer) # Stem deep_stem = 'deep' in stem_type # 3x3 deep stem num_init_features = growth_rate * 2 if aa_layer is None: stem_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) else: stem_pool = nn.Sequential(*[ nn.MaxPool2d(kernel_size=3, stride=1, padding=1), aa_layer(channels=num_init_features, stride=2)]) if deep_stem: stem_chs_1 = stem_chs_2 = growth_rate if 'tiered' in stem_type: stem_chs_1 = 3 * (growth_rate // 4) stem_chs_2 = num_init_features if 'narrow' in stem_type else 6 * (growth_rate // 4) self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False)), ('norm0', norm_layer(stem_chs_1)), ('conv1', nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False)), ('norm1', norm_layer(stem_chs_2)), ('conv2', nn.Conv2d(stem_chs_2, num_init_features, 3, stride=1, padding=1, bias=False)), ('norm2', norm_layer(num_init_features)), ('pool0', stem_pool), ])) else: self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', norm_layer(num_init_features)), ('pool0', stem_pool), ])) self.feature_info = [ dict(num_chs=num_init_features, reduction=2, module=f'features.norm{2 if deep_stem else 0}')] current_stride = 4 # DenseBlocks num_features = num_init_features for i, num_layers in enumerate(block_config): block = DenseBlock( num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, norm_layer=norm_layer, drop_rate=proj_drop_rate, grad_checkpointing=memory_efficient, ) module_name = f'denseblock{(i + 1)}' self.features.add_module(module_name, block) num_features = num_features + num_layers * growth_rate transition_aa_layer = None if aa_stem_only else aa_layer if i != len(block_config) - 1: self.feature_info += [ dict(num_chs=num_features, reduction=current_stride, module='features.' + module_name)] current_stride *= 2 trans = DenseTransition( num_input_features=num_features, num_output_features=num_features // 2, norm_layer=norm_layer, aa_layer=transition_aa_layer, ) self.features.add_module(f'transition{i + 1}', trans) num_features = num_features // 2 # Final batch norm self.features.add_module('norm5', norm_layer(num_features)) self.feature_info += [dict(num_chs=num_features, reduction=current_stride, module='features.norm5')] self.num_features = num_features # Linear layer global_pool, classifier = create_classifier( self.num_features, self.num_classes, pool_type=global_pool, ) self.global_pool = global_pool self.head_drop = nn.Dropout(drop_rate) self.classifier = classifier # Official init from torch repo. for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0) @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^features\.conv[012]|features\.norm[012]|features\.pool[012]', blocks=r'^features\.(?:denseblock|transition)(\d+)' if coarse else [ (r'^features\.denseblock(\d+)\.denselayer(\d+)', None), (r'^features\.transition(\d+)', MATCH_PREV_GROUP) # FIXME combine with previous denselayer ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for b in self.features.modules(): if isinstance(b, DenseLayer): b.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes self.global_pool, self.classifier = create_classifier( self.num_features, self.num_classes, pool_type=global_pool) def forward_features(self, x): return self.features(x) def forward(self, x): x = self.forward_features(x) x = self.global_pool(x) x = self.head_drop(x) x = self.classifier(x) return x def _filter_torchvision_pretrained(state_dict): pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] return state_dict def _create_densenet(variant, growth_rate, block_config, pretrained, **kwargs): kwargs['growth_rate'] = growth_rate kwargs['block_config'] = block_config return build_model_with_cfg( DenseNet, variant, pretrained, feature_cfg=dict(flatten_sequential=True), pretrained_filter_fn=_filter_torchvision_pretrained, **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'features.conv0', 'classifier': 'classifier', **kwargs, } default_cfgs = generate_default_cfgs({ 'densenet121.ra_in1k': _cfg( hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'densenetblur121d.ra_in1k': _cfg( hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'densenet264d.untrained': _cfg(), 'densenet121.tv_in1k': _cfg(hf_hub_id='timm/'), 'densenet169.tv_in1k': _cfg(hf_hub_id='timm/'), 'densenet201.tv_in1k': _cfg(hf_hub_id='timm/'), 'densenet161.tv_in1k': _cfg(hf_hub_id='timm/'), }) @register_model def densenet121(pretrained=False, **kwargs) -> DenseNet: r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16)) model = _create_densenet('densenet121', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def densenetblur121d(pretrained=False, **kwargs) -> DenseNet: r"""Densenet-121 w/ blur-pooling & 3-layer 3x3 stem `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep', aa_layer=BlurPool2d) model = _create_densenet('densenetblur121d', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def densenet169(pretrained=False, **kwargs) -> DenseNet: r"""Densenet-169 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model_args = dict(growth_rate=32, block_config=(6, 12, 32, 32)) model = _create_densenet('densenet169', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def densenet201(pretrained=False, **kwargs) -> DenseNet: r"""Densenet-201 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model_args = dict(growth_rate=32, block_config=(6, 12, 48, 32)) model = _create_densenet('densenet201', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def densenet161(pretrained=False, **kwargs) -> DenseNet: r"""Densenet-161 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model_args = dict(growth_rate=48, block_config=(6, 12, 36, 24)) model = _create_densenet('densenet161', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def densenet264d(pretrained=False, **kwargs) -> DenseNet: r"""Densenet-264 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model_args = dict(growth_rate=48, block_config=(6, 12, 64, 48), stem_type='deep') model = _create_densenet('densenet264d', pretrained=pretrained, **dict(model_args, **kwargs)) return model register_model_deprecations(__name__, { 'tv_densenet121': 'densenet121.tv_in1k', })
pytorch-image-models/timm/models/densenet.py/0
{ "file_path": "pytorch-image-models/timm/models/densenet.py", "repo_id": "pytorch-image-models", "token_count": 7537 }
196
""" An implementation of GhostNet & GhostNetV2 Models as defined in: GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907 GhostNetV2: Enhance Cheap Operation with Long-Range Attention. https://proceedings.neurips.cc/paper_files/paper/2022/file/40b60852a4abdaa696b5a1a78da34635-Paper-Conference.pdf The train script & code of models at: Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch Original model: https://github.com/huawei-noah/Efficient-AI-Backbones/blob/master/ghostnetv2_pytorch/model/ghostnetv2_torch.py """ import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import SelectAdaptivePool2d, Linear, make_divisible from ._builder import build_model_with_cfg from ._efficientnet_blocks import SqueezeExcite, ConvBnAct from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs __all__ = ['GhostNet'] _SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) class GhostModule(nn.Module): def __init__( self, in_chs, out_chs, kernel_size=1, ratio=2, dw_size=3, stride=1, use_act=True, act_layer=nn.ReLU, ): super(GhostModule, self).__init__() self.out_chs = out_chs init_chs = math.ceil(out_chs / ratio) new_chs = init_chs * (ratio - 1) self.primary_conv = nn.Sequential( nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(init_chs), act_layer(inplace=True) if use_act else nn.Identity(), ) self.cheap_operation = nn.Sequential( nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False), nn.BatchNorm2d(new_chs), act_layer(inplace=True) if use_act else nn.Identity(), ) def forward(self, x): x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) out = torch.cat([x1, x2], dim=1) return out[:, :self.out_chs, :, :] class GhostModuleV2(nn.Module): def __init__( self, in_chs, out_chs, kernel_size=1, ratio=2, dw_size=3, stride=1, use_act=True, act_layer=nn.ReLU, ): super().__init__() self.gate_fn = nn.Sigmoid() self.out_chs = out_chs init_chs = math.ceil(out_chs / ratio) new_chs = init_chs * (ratio - 1) self.primary_conv = nn.Sequential( nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(init_chs), act_layer(inplace=True) if use_act else nn.Identity(), ) self.cheap_operation = nn.Sequential( nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False), nn.BatchNorm2d(new_chs), act_layer(inplace=True) if use_act else nn.Identity(), ) self.short_conv = nn.Sequential( nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(out_chs), nn.Conv2d(out_chs, out_chs, kernel_size=(1, 5), stride=1, padding=(0, 2), groups=out_chs, bias=False), nn.BatchNorm2d(out_chs), nn.Conv2d(out_chs, out_chs, kernel_size=(5, 1), stride=1, padding=(2, 0), groups=out_chs, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2)) x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) out = torch.cat([x1, x2], dim=1) return out[:, :self.out_chs, :, :] * F.interpolate( self.gate_fn(res), size=(out.shape[-2], out.shape[-1]), mode='nearest') class GhostBottleneck(nn.Module): """ Ghost bottleneck w/ optional SE""" def __init__( self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0., mode='original', ): super(GhostBottleneck, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride # Point-wise expansion if mode == 'original': self.ghost1 = GhostModule(in_chs, mid_chs, use_act=True, act_layer=act_layer) else: self.ghost1 = GhostModuleV2(in_chs, mid_chs, use_act=True, act_layer=act_layer) # Depth-wise convolution if self.stride > 1: self.conv_dw = nn.Conv2d( mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) self.bn_dw = nn.BatchNorm2d(mid_chs) else: self.conv_dw = None self.bn_dw = None # Squeeze-and-excitation self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None # Point-wise linear projection self.ghost2 = GhostModule(mid_chs, out_chs, use_act=False) # shortcut if in_chs == out_chs and self.stride == 1: self.shortcut = nn.Sequential() else: self.shortcut = nn.Sequential( nn.Conv2d( in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): shortcut = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.conv_dw is not None: x = self.conv_dw(x) x = self.bn_dw(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(shortcut) return x class GhostNet(nn.Module): def __init__( self, cfgs, num_classes=1000, width=1.0, in_chans=3, output_stride=32, global_pool='avg', drop_rate=0.2, version='v1', ): super(GhostNet, self).__init__() # setting of inverted residual blocks assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' self.cfgs = cfgs self.num_classes = num_classes self.drop_rate = drop_rate self.grad_checkpointing = False self.feature_info = [] # building first layer stem_chs = make_divisible(16 * width, 4) self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) self.bn1 = nn.BatchNorm2d(stem_chs) self.act1 = nn.ReLU(inplace=True) prev_chs = stem_chs # building inverted residual blocks stages = nn.ModuleList([]) stage_idx = 0 layer_idx = 0 net_stride = 2 for cfg in self.cfgs: layers = [] s = 1 for k, exp_size, c, se_ratio, s in cfg: out_chs = make_divisible(c * width, 4) mid_chs = make_divisible(exp_size * width, 4) layer_kwargs = {} if version == 'v2' and layer_idx > 1: layer_kwargs['mode'] = 'attn' layers.append(GhostBottleneck(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, **layer_kwargs)) prev_chs = out_chs layer_idx += 1 if s > 1: net_stride *= 2 self.feature_info.append(dict( num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) stages.append(nn.Sequential(*layers)) stage_idx += 1 out_chs = make_divisible(exp_size * width, 4) stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) self.pool_dim = prev_chs = out_chs self.blocks = nn.Sequential(*stages) # building last several layers self.num_features = out_chs = 1280 self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) self.act2 = nn.ReLU(inplace=True) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() # FIXME init @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^conv_stem|bn1', blocks=[ (r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None), (r'conv_head', (99999,)) ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes # cannot meaningfully change pooling of efficient head after creation self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x, flatten=True) else: x = self.blocks(x) return x def forward_head(self, x): x = self.global_pool(x) x = self.conv_head(x) x = self.act2(x) x = self.flatten(x) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) x = self.classifier(x) return x def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model: nn.Module): out_dict = {} for k, v in state_dict.items(): if 'total' in k: continue out_dict[k] = v return out_dict def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs): """ Constructs a GhostNet model """ cfgs = [ # k, t, c, SE, s # stage1 [[3, 16, 16, 0, 1]], # stage2 [[3, 48, 24, 0, 2]], [[3, 72, 24, 0, 1]], # stage3 [[5, 72, 40, 0.25, 2]], [[5, 120, 40, 0.25, 1]], # stage4 [[3, 240, 80, 0, 2]], [[3, 200, 80, 0, 1], [3, 184, 80, 0, 1], [3, 184, 80, 0, 1], [3, 480, 112, 0.25, 1], [3, 672, 112, 0.25, 1] ], # stage5 [[5, 672, 160, 0.25, 2]], [[5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1], [5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1] ] ] model_kwargs = dict( cfgs=cfgs, width=width, **kwargs, ) return build_model_with_cfg( GhostNet, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True), **model_kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } default_cfgs = generate_default_cfgs({ 'ghostnet_050.untrained': _cfg(), 'ghostnet_100.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth' ), 'ghostnet_130.untrained': _cfg(), 'ghostnetv2_100.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_10.pth.tar' ), 'ghostnetv2_130.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_13.pth.tar' ), 'ghostnetv2_160.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_16.pth.tar' ), }) @register_model def ghostnet_050(pretrained=False, **kwargs) -> GhostNet: """ GhostNet-0.5x """ model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs) return model @register_model def ghostnet_100(pretrained=False, **kwargs) -> GhostNet: """ GhostNet-1.0x """ model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs) return model @register_model def ghostnet_130(pretrained=False, **kwargs) -> GhostNet: """ GhostNet-1.3x """ model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs) return model @register_model def ghostnetv2_100(pretrained=False, **kwargs) -> GhostNet: """ GhostNetV2-1.0x """ model = _create_ghostnet('ghostnetv2_100', width=1.0, pretrained=pretrained, version='v2', **kwargs) return model @register_model def ghostnetv2_130(pretrained=False, **kwargs) -> GhostNet: """ GhostNetV2-1.3x """ model = _create_ghostnet('ghostnetv2_130', width=1.3, pretrained=pretrained, version='v2', **kwargs) return model @register_model def ghostnetv2_160(pretrained=False, **kwargs) -> GhostNet: """ GhostNetV2-1.6x """ model = _create_ghostnet('ghostnetv2_160', width=1.6, pretrained=pretrained, version='v2', **kwargs) return model
pytorch-image-models/timm/models/ghostnet.py/0
{ "file_path": "pytorch-image-models/timm/models/ghostnet.py", "repo_id": "pytorch-image-models", "token_count": 7430 }
197
""" Multi-Scale Vision Transformer v2 @inproceedings{li2021improved, title={MViTv2: Improved multiscale vision transformers for classification and detection}, author={Li, Yanghao and Wu, Chao-Yuan and Fan, Haoqi and Mangalam, Karttikeya and Xiong, Bo and Malik, Jitendra and Feichtenhofer, Christoph}, booktitle={CVPR}, year={2022} } Code adapted from original Apache 2.0 licensed impl at https://github.com/facebookresearch/mvit Original copyright below. Modifications and timm support by / Copyright 2022, Ross Wightman """ # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. All Rights Reserved. import operator from collections import OrderedDict from dataclasses import dataclass from functools import partial, reduce from typing import Union, List, Tuple, Optional import torch import torch.utils.checkpoint as checkpoint from torch import nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import Mlp, DropPath, trunc_normal_tf_, get_norm_layer, to_2tuple from ._builder import build_model_with_cfg from ._features_fx import register_notrace_function from ._registry import register_model, register_model_deprecations, generate_default_cfgs __all__ = ['MultiScaleVit', 'MultiScaleVitCfg'] # model_registry will add each entrypoint fn to this @dataclass class MultiScaleVitCfg: depths: Tuple[int, ...] = (2, 3, 16, 3) embed_dim: Union[int, Tuple[int, ...]] = 96 num_heads: Union[int, Tuple[int, ...]] = 1 mlp_ratio: float = 4. pool_first: bool = False expand_attn: bool = True qkv_bias: bool = True use_cls_token: bool = False use_abs_pos: bool = False residual_pooling: bool = True mode: str = 'conv' kernel_qkv: Tuple[int, int] = (3, 3) stride_q: Optional[Tuple[Tuple[int, int]]] = ((1, 1), (2, 2), (2, 2), (2, 2)) stride_kv: Optional[Tuple[Tuple[int, int]]] = None stride_kv_adaptive: Optional[Tuple[int, int]] = (4, 4) patch_kernel: Tuple[int, int] = (7, 7) patch_stride: Tuple[int, int] = (4, 4) patch_padding: Tuple[int, int] = (3, 3) pool_type: str = 'max' rel_pos_type: str = 'spatial' act_layer: Union[str, Tuple[str, str]] = 'gelu' norm_layer: Union[str, Tuple[str, str]] = 'layernorm' norm_eps: float = 1e-6 def __post_init__(self): num_stages = len(self.depths) if not isinstance(self.embed_dim, (tuple, list)): self.embed_dim = tuple(self.embed_dim * 2 ** i for i in range(num_stages)) assert len(self.embed_dim) == num_stages if not isinstance(self.num_heads, (tuple, list)): self.num_heads = tuple(self.num_heads * 2 ** i for i in range(num_stages)) assert len(self.num_heads) == num_stages if self.stride_kv_adaptive is not None and self.stride_kv is None: _stride_kv = self.stride_kv_adaptive pool_kv_stride = [] for i in range(num_stages): if min(self.stride_q[i]) > 1: _stride_kv = [ max(_stride_kv[d] // self.stride_q[i][d], 1) for d in range(len(_stride_kv)) ] pool_kv_stride.append(tuple(_stride_kv)) self.stride_kv = tuple(pool_kv_stride) def prod(iterable): return reduce(operator.mul, iterable, 1) class PatchEmbed(nn.Module): """ PatchEmbed. """ def __init__( self, dim_in=3, dim_out=768, kernel=(7, 7), stride=(4, 4), padding=(3, 3), ): super().__init__() self.proj = nn.Conv2d( dim_in, dim_out, kernel_size=kernel, stride=stride, padding=padding, ) def forward(self, x) -> Tuple[torch.Tensor, List[int]]: x = self.proj(x) # B C H W -> B HW C return x.flatten(2).transpose(1, 2), x.shape[-2:] @register_notrace_function def reshape_pre_pool( x, feat_size: List[int], has_cls_token: bool = True ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: H, W = feat_size if has_cls_token: cls_tok, x = x[:, :, :1, :], x[:, :, 1:, :] else: cls_tok = None x = x.reshape(-1, H, W, x.shape[-1]).permute(0, 3, 1, 2).contiguous() return x, cls_tok @register_notrace_function def reshape_post_pool( x, num_heads: int, cls_tok: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, List[int]]: feat_size = [x.shape[2], x.shape[3]] L_pooled = x.shape[2] * x.shape[3] x = x.reshape(-1, num_heads, x.shape[1], L_pooled).transpose(2, 3) if cls_tok is not None: x = torch.cat((cls_tok, x), dim=2) return x, feat_size @register_notrace_function def cal_rel_pos_type( attn: torch.Tensor, q: torch.Tensor, has_cls_token: bool, q_size: List[int], k_size: List[int], rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, ): """ Spatial Relative Positional Embeddings. """ sp_idx = 1 if has_cls_token else 0 q_h, q_w = q_size k_h, k_w = k_size # Scale up rel pos if shapes for q and k are different. q_h_ratio = max(k_h / q_h, 1.0) k_h_ratio = max(q_h / k_h, 1.0) dist_h = ( torch.arange(q_h, device=q.device).unsqueeze(-1) * q_h_ratio - torch.arange(k_h, device=q.device).unsqueeze(0) * k_h_ratio ) dist_h += (k_h - 1) * k_h_ratio q_w_ratio = max(k_w / q_w, 1.0) k_w_ratio = max(q_w / k_w, 1.0) dist_w = ( torch.arange(q_w, device=q.device).unsqueeze(-1) * q_w_ratio - torch.arange(k_w, device=q.device).unsqueeze(0) * k_w_ratio ) dist_w += (k_w - 1) * k_w_ratio rel_h = rel_pos_h[dist_h.long()] rel_w = rel_pos_w[dist_w.long()] B, n_head, q_N, dim = q.shape r_q = q[:, :, sp_idx:].reshape(B, n_head, q_h, q_w, dim) rel_h = torch.einsum("byhwc,hkc->byhwk", r_q, rel_h) rel_w = torch.einsum("byhwc,wkc->byhwk", r_q, rel_w) attn[:, :, sp_idx:, sp_idx:] = ( attn[:, :, sp_idx:, sp_idx:].view(B, -1, q_h, q_w, k_h, k_w) + rel_h.unsqueeze(-1) + rel_w.unsqueeze(-2) ).view(B, -1, q_h * q_w, k_h * k_w) return attn class MultiScaleAttentionPoolFirst(nn.Module): def __init__( self, dim, dim_out, feat_size, num_heads=8, qkv_bias=True, mode="conv", kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, ): super().__init__() self.num_heads = num_heads self.dim_out = dim_out self.head_dim = dim_out // num_heads self.scale = self.head_dim ** -0.5 self.has_cls_token = has_cls_token padding_q = tuple([int(q // 2) for q in kernel_q]) padding_kv = tuple([int(kv // 2) for kv in kernel_kv]) self.q = nn.Linear(dim, dim_out, bias=qkv_bias) self.k = nn.Linear(dim, dim_out, bias=qkv_bias) self.v = nn.Linear(dim, dim_out, bias=qkv_bias) self.proj = nn.Linear(dim_out, dim_out) # Skip pooling with kernel and stride size of (1, 1, 1). if prod(kernel_q) == 1 and prod(stride_q) == 1: kernel_q = None if prod(kernel_kv) == 1 and prod(stride_kv) == 1: kernel_kv = None self.mode = mode self.unshared = mode == 'conv_unshared' self.pool_q, self.pool_k, self.pool_v = None, None, None self.norm_q, self.norm_k, self.norm_v = None, None, None if mode in ("avg", "max"): pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d if kernel_q: self.pool_q = pool_op(kernel_q, stride_q, padding_q) if kernel_kv: self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv) self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv) elif mode == "conv" or mode == "conv_unshared": dim_conv = dim // num_heads if mode == "conv" else dim if kernel_q: self.pool_q = nn.Conv2d( dim_conv, dim_conv, kernel_q, stride=stride_q, padding=padding_q, groups=dim_conv, bias=False, ) self.norm_q = norm_layer(dim_conv) if kernel_kv: self.pool_k = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_k = norm_layer(dim_conv) self.pool_v = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_v = norm_layer(dim_conv) else: raise NotImplementedError(f"Unsupported model {mode}") # relative pos embedding self.rel_pos_type = rel_pos_type if self.rel_pos_type == 'spatial': assert feat_size[0] == feat_size[1] size = feat_size[0] q_size = size // stride_q[1] if len(stride_q) > 0 else size kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size rel_sp_dim = 2 * max(q_size, kv_size) - 1 self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) trunc_normal_tf_(self.rel_pos_h, std=0.02) trunc_normal_tf_(self.rel_pos_w, std=0.02) self.residual_pooling = residual_pooling def forward(self, x, feat_size: List[int]): B, N, _ = x.shape fold_dim = 1 if self.unshared else self.num_heads x = x.reshape(B, N, fold_dim, -1).permute(0, 2, 1, 3) q = k = v = x if self.pool_q is not None: q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token) q = self.pool_q(q) q, q_size = reshape_post_pool(q, self.num_heads, q_tok) else: q_size = feat_size if self.norm_q is not None: q = self.norm_q(q) if self.pool_k is not None: k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token) k = self.pool_k(k) k, k_size = reshape_post_pool(k, self.num_heads, k_tok) else: k_size = feat_size if self.norm_k is not None: k = self.norm_k(k) if self.pool_v is not None: v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token) v = self.pool_v(v) v, v_size = reshape_post_pool(v, self.num_heads, v_tok) else: v_size = feat_size if self.norm_v is not None: v = self.norm_v(v) q_N = q_size[0] * q_size[1] + int(self.has_cls_token) q = q.transpose(1, 2).reshape(B, q_N, -1) q = self.q(q).reshape(B, q_N, self.num_heads, -1).transpose(1, 2) k_N = k_size[0] * k_size[1] + int(self.has_cls_token) k = k.transpose(1, 2).reshape(B, k_N, -1) k = self.k(k).reshape(B, k_N, self.num_heads, -1) v_N = v_size[0] * v_size[1] + int(self.has_cls_token) v = v.transpose(1, 2).reshape(B, v_N, -1) v = self.v(v).reshape(B, v_N, self.num_heads, -1).transpose(1, 2) attn = (q * self.scale) @ k if self.rel_pos_type == 'spatial': attn = cal_rel_pos_type( attn, q, self.has_cls_token, q_size, k_size, self.rel_pos_h, self.rel_pos_w, ) attn = attn.softmax(dim=-1) x = attn @ v if self.residual_pooling: x = x + q x = x.transpose(1, 2).reshape(B, -1, self.dim_out) x = self.proj(x) return x, q_size class MultiScaleAttention(nn.Module): def __init__( self, dim, dim_out, feat_size, num_heads=8, qkv_bias=True, mode="conv", kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, ): super().__init__() self.num_heads = num_heads self.dim_out = dim_out self.head_dim = dim_out // num_heads self.scale = self.head_dim ** -0.5 self.has_cls_token = has_cls_token padding_q = tuple([int(q // 2) for q in kernel_q]) padding_kv = tuple([int(kv // 2) for kv in kernel_kv]) self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias) self.proj = nn.Linear(dim_out, dim_out) # Skip pooling with kernel and stride size of (1, 1, 1). if prod(kernel_q) == 1 and prod(stride_q) == 1: kernel_q = None if prod(kernel_kv) == 1 and prod(stride_kv) == 1: kernel_kv = None self.mode = mode self.unshared = mode == 'conv_unshared' self.norm_q, self.norm_k, self.norm_v = None, None, None self.pool_q, self.pool_k, self.pool_v = None, None, None if mode in ("avg", "max"): pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d if kernel_q: self.pool_q = pool_op(kernel_q, stride_q, padding_q) if kernel_kv: self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv) self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv) elif mode == "conv" or mode == "conv_unshared": dim_conv = dim_out // num_heads if mode == "conv" else dim_out if kernel_q: self.pool_q = nn.Conv2d( dim_conv, dim_conv, kernel_q, stride=stride_q, padding=padding_q, groups=dim_conv, bias=False, ) self.norm_q = norm_layer(dim_conv) if kernel_kv: self.pool_k = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_k = norm_layer(dim_conv) self.pool_v = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_v = norm_layer(dim_conv) else: raise NotImplementedError(f"Unsupported model {mode}") # relative pos embedding self.rel_pos_type = rel_pos_type if self.rel_pos_type == 'spatial': assert feat_size[0] == feat_size[1] size = feat_size[0] q_size = size // stride_q[1] if len(stride_q) > 0 else size kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size rel_sp_dim = 2 * max(q_size, kv_size) - 1 self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) trunc_normal_tf_(self.rel_pos_h, std=0.02) trunc_normal_tf_(self.rel_pos_w, std=0.02) self.residual_pooling = residual_pooling def forward(self, x, feat_size: List[int]): B, N, _ = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(dim=0) if self.pool_q is not None: q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token) q = self.pool_q(q) q, q_size = reshape_post_pool(q, self.num_heads, q_tok) else: q_size = feat_size if self.norm_q is not None: q = self.norm_q(q) if self.pool_k is not None: k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token) k = self.pool_k(k) k, k_size = reshape_post_pool(k, self.num_heads, k_tok) else: k_size = feat_size if self.norm_k is not None: k = self.norm_k(k) if self.pool_v is not None: v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token) v = self.pool_v(v) v, _ = reshape_post_pool(v, self.num_heads, v_tok) if self.norm_v is not None: v = self.norm_v(v) attn = (q * self.scale) @ k.transpose(-2, -1) if self.rel_pos_type == 'spatial': attn = cal_rel_pos_type( attn, q, self.has_cls_token, q_size, k_size, self.rel_pos_h, self.rel_pos_w, ) attn = attn.softmax(dim=-1) x = attn @ v if self.residual_pooling: x = x + q x = x.transpose(1, 2).reshape(B, -1, self.dim_out) x = self.proj(x) return x, q_size class MultiScaleBlock(nn.Module): def __init__( self, dim, dim_out, num_heads, feat_size, mlp_ratio=4.0, qkv_bias=True, drop_path=0.0, norm_layer=nn.LayerNorm, kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), mode="conv", has_cls_token=True, expand_attn=False, pool_first=False, rel_pos_type='spatial', residual_pooling=True, ): super().__init__() proj_needed = dim != dim_out self.dim = dim self.dim_out = dim_out self.has_cls_token = has_cls_token self.norm1 = norm_layer(dim) self.shortcut_proj_attn = nn.Linear(dim, dim_out) if proj_needed and expand_attn else None if stride_q and prod(stride_q) > 1: kernel_skip = [s + 1 if s > 1 else s for s in stride_q] stride_skip = stride_q padding_skip = [int(skip // 2) for skip in kernel_skip] self.shortcut_pool_attn = nn.MaxPool2d(kernel_skip, stride_skip, padding_skip) else: self.shortcut_pool_attn = None att_dim = dim_out if expand_attn else dim attn_layer = MultiScaleAttentionPoolFirst if pool_first else MultiScaleAttention self.attn = attn_layer( dim, att_dim, num_heads=num_heads, feat_size=feat_size, qkv_bias=qkv_bias, kernel_q=kernel_q, kernel_kv=kernel_kv, stride_q=stride_q, stride_kv=stride_kv, norm_layer=norm_layer, has_cls_token=has_cls_token, mode=mode, rel_pos_type=rel_pos_type, residual_pooling=residual_pooling, ) self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(att_dim) mlp_dim_out = dim_out self.shortcut_proj_mlp = nn.Linear(dim, dim_out) if proj_needed and not expand_attn else None self.mlp = Mlp( in_features=att_dim, hidden_features=int(att_dim * mlp_ratio), out_features=mlp_dim_out, ) self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def _shortcut_pool(self, x, feat_size: List[int]): if self.shortcut_pool_attn is None: return x if self.has_cls_token: cls_tok, x = x[:, :1, :], x[:, 1:, :] else: cls_tok = None B, L, C = x.shape H, W = feat_size x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous() x = self.shortcut_pool_attn(x) x = x.reshape(B, C, -1).transpose(1, 2) if cls_tok is not None: x = torch.cat((cls_tok, x), dim=1) return x def forward(self, x, feat_size: List[int]): x_norm = self.norm1(x) # NOTE as per the original impl, this seems odd, but shortcut uses un-normalized input if no proj x_shortcut = x if self.shortcut_proj_attn is None else self.shortcut_proj_attn(x_norm) x_shortcut = self._shortcut_pool(x_shortcut, feat_size) x, feat_size_new = self.attn(x_norm, feat_size) x = x_shortcut + self.drop_path1(x) x_norm = self.norm2(x) x_shortcut = x if self.shortcut_proj_mlp is None else self.shortcut_proj_mlp(x_norm) x = x_shortcut + self.drop_path2(self.mlp(x_norm)) return x, feat_size_new class MultiScaleVitStage(nn.Module): def __init__( self, dim, dim_out, depth, num_heads, feat_size, mlp_ratio=4.0, qkv_bias=True, mode="conv", kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, expand_attn=False, pool_first=False, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, drop_path=0.0, ): super().__init__() self.grad_checkpointing = False self.blocks = nn.ModuleList() if expand_attn: out_dims = (dim_out,) * depth else: out_dims = (dim,) * (depth - 1) + (dim_out,) for i in range(depth): attention_block = MultiScaleBlock( dim=dim, dim_out=out_dims[i], num_heads=num_heads, feat_size=feat_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, kernel_q=kernel_q, kernel_kv=kernel_kv, stride_q=stride_q if i == 0 else (1, 1), stride_kv=stride_kv, mode=mode, has_cls_token=has_cls_token, pool_first=pool_first, rel_pos_type=rel_pos_type, residual_pooling=residual_pooling, expand_attn=expand_attn, norm_layer=norm_layer, drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path, ) dim = out_dims[i] self.blocks.append(attention_block) if i == 0: feat_size = tuple([size // stride for size, stride in zip(feat_size, stride_q)]) self.feat_size = feat_size def forward(self, x, feat_size: List[int]): for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x, feat_size = checkpoint.checkpoint(blk, x, feat_size) else: x, feat_size = blk(x, feat_size) return x, feat_size class MultiScaleVit(nn.Module): """ Improved Multiscale Vision Transformers for Classification and Detection Yanghao Li*, Chao-Yuan Wu*, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, Christoph Feichtenhofer* https://arxiv.org/abs/2112.01526 Multiscale Vision Transformers Haoqi Fan*, Bo Xiong*, Karttikeya Mangalam*, Yanghao Li*, Zhicheng Yan, Jitendra Malik, Christoph Feichtenhofer* https://arxiv.org/abs/2104.11227 """ def __init__( self, cfg: MultiScaleVitCfg, img_size: Tuple[int, int] = (224, 224), in_chans: int = 3, global_pool: Optional[str] = None, num_classes: int = 1000, drop_path_rate: float = 0., drop_rate: float = 0., ): super().__init__() img_size = to_2tuple(img_size) norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) self.num_classes = num_classes self.drop_rate = drop_rate if global_pool is None: global_pool = 'token' if cfg.use_cls_token else 'avg' self.global_pool = global_pool self.depths = tuple(cfg.depths) self.expand_attn = cfg.expand_attn embed_dim = cfg.embed_dim[0] self.patch_embed = PatchEmbed( dim_in=in_chans, dim_out=embed_dim, kernel=cfg.patch_kernel, stride=cfg.patch_stride, padding=cfg.patch_padding, ) patch_dims = (img_size[0] // cfg.patch_stride[0], img_size[1] // cfg.patch_stride[1]) num_patches = prod(patch_dims) if cfg.use_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.num_prefix_tokens = 1 pos_embed_dim = num_patches + 1 else: self.num_prefix_tokens = 0 self.cls_token = None pos_embed_dim = num_patches if cfg.use_abs_pos: self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_dim, embed_dim)) else: self.pos_embed = None num_stages = len(cfg.embed_dim) feat_size = patch_dims dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] self.stages = nn.ModuleList() for i in range(num_stages): if cfg.expand_attn: dim_out = cfg.embed_dim[i] else: dim_out = cfg.embed_dim[min(i + 1, num_stages - 1)] stage = MultiScaleVitStage( dim=embed_dim, dim_out=dim_out, depth=cfg.depths[i], num_heads=cfg.num_heads[i], feat_size=feat_size, mlp_ratio=cfg.mlp_ratio, qkv_bias=cfg.qkv_bias, mode=cfg.mode, pool_first=cfg.pool_first, expand_attn=cfg.expand_attn, kernel_q=cfg.kernel_qkv, kernel_kv=cfg.kernel_qkv, stride_q=cfg.stride_q[i], stride_kv=cfg.stride_kv[i], has_cls_token=cfg.use_cls_token, rel_pos_type=cfg.rel_pos_type, residual_pooling=cfg.residual_pooling, norm_layer=norm_layer, drop_path=dpr[i], ) embed_dim = dim_out feat_size = stage.feat_size self.stages.append(stage) self.num_features = embed_dim self.norm = norm_layer(embed_dim) self.head = nn.Sequential(OrderedDict([ ('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) ])) if self.pos_embed is not None: trunc_normal_tf_(self.pos_embed, std=0.02) if self.cls_token is not None: trunc_normal_tf_(self.cls_token, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_tf_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0.0) @torch.jit.ignore def no_weight_decay(self): return {k for k, _ in self.named_parameters() if any(n in k for n in ["pos_embed", "rel_pos_h", "rel_pos_w", "cls_token"])} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^patch_embed', # stem and embed blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = nn.Sequential(OrderedDict([ ('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) ])) def forward_features(self, x): x, feat_size = self.patch_embed(x) B, N, C = x.shape if self.cls_token is not None: cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed for stage in self.stages: x, feat_size = stage(x, feat_size) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool: if self.global_pool == 'avg': x = x[:, self.num_prefix_tokens:].mean(1) else: x = x[:, 0] return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): if 'stages.0.blocks.0.norm1.weight' in state_dict: return state_dict import re if 'model_state' in state_dict: state_dict = state_dict['model_state'] depths = getattr(model, 'depths', None) expand_attn = getattr(model, 'expand_attn', True) assert depths is not None, 'model requires depth attribute to remap checkpoints' depth_map = {} block_idx = 0 for stage_idx, d in enumerate(depths): depth_map.update({i: (stage_idx, i - block_idx) for i in range(block_idx, block_idx + d)}) block_idx += d out_dict = {} for k, v in state_dict.items(): k = re.sub( r'blocks\.(\d+)', lambda x: f'stages.{depth_map[int(x.group(1))][0]}.blocks.{depth_map[int(x.group(1))][1]}', k) if expand_attn: k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_attn', k) else: k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_mlp', k) if 'head' in k: k = k.replace('head.projection', 'head.fc') out_dict[k] = v # for k, v in state_dict.items(): # if model.pos_embed is not None and k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: # # To resize pos embedding when using model at different size from pretrained weights # v = resize_pos_embed( # v, # model.pos_embed, # 0 if getattr(model, 'no_embed_class') else getattr(model, 'num_prefix_tokens', 1), # model.patch_embed.grid_size # ) return out_dict model_cfgs = dict( mvitv2_tiny=MultiScaleVitCfg( depths=(1, 2, 5, 2), ), mvitv2_small=MultiScaleVitCfg( depths=(1, 2, 11, 2), ), mvitv2_base=MultiScaleVitCfg( depths=(2, 3, 16, 3), ), mvitv2_large=MultiScaleVitCfg( depths=(2, 6, 36, 4), embed_dim=144, num_heads=2, expand_attn=False, ), mvitv2_small_cls=MultiScaleVitCfg( depths=(1, 2, 11, 2), use_cls_token=True, ), mvitv2_base_cls=MultiScaleVitCfg( depths=(2, 3, 16, 3), use_cls_token=True, ), mvitv2_large_cls=MultiScaleVitCfg( depths=(2, 6, 36, 4), embed_dim=144, num_heads=2, use_cls_token=True, expand_attn=True, ), mvitv2_huge_cls=MultiScaleVitCfg( depths=(4, 8, 60, 8), embed_dim=192, num_heads=3, use_cls_token=True, expand_attn=True, ), ) def _create_mvitv2(variant, cfg_variant=None, pretrained=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Multiscale Vision Transformer models.') return build_model_with_cfg( MultiScaleVit, variant, pretrained, model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', 'fixed_input_size': True, **kwargs } default_cfgs = generate_default_cfgs({ 'mvitv2_tiny.fb_in1k': _cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_T_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_small.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_S_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_base.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_large.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_small_cls': _cfg(url=''), 'mvitv2_base_cls.fb_inw21k': _cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in21k.pyth', hf_hub_id='timm/', num_classes=19168), 'mvitv2_large_cls.fb_inw21k': _cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in21k.pyth', hf_hub_id='timm/', num_classes=19168), 'mvitv2_huge_cls.fb_inw21k': _cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_H_in21k.pyth', hf_hub_id='timm/', num_classes=19168), }) @register_model def mvitv2_tiny(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_tiny', pretrained=pretrained, **kwargs) @register_model def mvitv2_small(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_small', pretrained=pretrained, **kwargs) @register_model def mvitv2_base(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_base', pretrained=pretrained, **kwargs) @register_model def mvitv2_large(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_large', pretrained=pretrained, **kwargs) @register_model def mvitv2_small_cls(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_small_cls', pretrained=pretrained, **kwargs) @register_model def mvitv2_base_cls(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_base_cls', pretrained=pretrained, **kwargs) @register_model def mvitv2_large_cls(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_large_cls', pretrained=pretrained, **kwargs) @register_model def mvitv2_huge_cls(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_huge_cls', pretrained=pretrained, **kwargs)
pytorch-image-models/timm/models/mvitv2.py/0
{ "file_path": "pytorch-image-models/timm/models/mvitv2.py", "repo_id": "pytorch-image-models", "token_count": 19585 }
198
"""PyTorch SelecSLS Net example for ImageNet Classification License: CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode) Author: Dushyant Mehta (@mehtadushy) SelecSLS (core) Network Architecture as proposed in "XNect: Real-time Multi-person 3D Human Pose Estimation with a Single RGB Camera, Mehta et al." https://arxiv.org/abs/1907.00837 Based on ResNet implementation in https://github.com/rwightman/pytorch-image-models and SelecSLS Net implementation in https://github.com/mehtadushy/SelecSLS-Pytorch """ from typing import List import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import create_classifier from ._builder import build_model_with_cfg from ._registry import register_model, generate_default_cfgs __all__ = ['SelecSls'] # model_registry will add each entrypoint fn to this class SequentialList(nn.Sequential): def __init__(self, *args): super(SequentialList, self).__init__(*args) @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (List[torch.Tensor]) -> (List[torch.Tensor]) pass @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (torch.Tensor) -> (List[torch.Tensor]) pass def forward(self, x) -> List[torch.Tensor]: for module in self: x = module(x) return x class SelectSeq(nn.Module): def __init__(self, mode='index', index=0): super(SelectSeq, self).__init__() self.mode = mode self.index = index @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (List[torch.Tensor]) -> (torch.Tensor) pass @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (Tuple[torch.Tensor]) -> (torch.Tensor) pass def forward(self, x) -> torch.Tensor: if self.mode == 'index': return x[self.index] else: return torch.cat(x, dim=1) def conv_bn(in_chs, out_chs, k=3, stride=1, padding=None, dilation=1): if padding is None: padding = ((stride - 1) + dilation * (k - 1)) // 2 return nn.Sequential( nn.Conv2d(in_chs, out_chs, k, stride, padding=padding, dilation=dilation, bias=False), nn.BatchNorm2d(out_chs), nn.ReLU(inplace=True) ) class SelecSlsBlock(nn.Module): def __init__(self, in_chs, skip_chs, mid_chs, out_chs, is_first, stride, dilation=1): super(SelecSlsBlock, self).__init__() self.stride = stride self.is_first = is_first assert stride in [1, 2] # Process input with 4 conv blocks with the same number of input and output channels self.conv1 = conv_bn(in_chs, mid_chs, 3, stride, dilation=dilation) self.conv2 = conv_bn(mid_chs, mid_chs, 1) self.conv3 = conv_bn(mid_chs, mid_chs // 2, 3) self.conv4 = conv_bn(mid_chs // 2, mid_chs, 1) self.conv5 = conv_bn(mid_chs, mid_chs // 2, 3) self.conv6 = conv_bn(2 * mid_chs + (0 if is_first else skip_chs), out_chs, 1) def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: if not isinstance(x, list): x = [x] assert len(x) in [1, 2] d1 = self.conv1(x[0]) d2 = self.conv3(self.conv2(d1)) d3 = self.conv5(self.conv4(d2)) if self.is_first: out = self.conv6(torch.cat([d1, d2, d3], 1)) return [out, out] else: return [self.conv6(torch.cat([d1, d2, d3, x[1]], 1)), x[1]] class SelecSls(nn.Module): """SelecSls42 / SelecSls60 / SelecSls84 Parameters ---------- cfg : network config dictionary specifying block type, feature, and head args num_classes : int, default 1000 Number of classification classes. in_chans : int, default 3 Number of input (color) channels. drop_rate : float, default 0. Dropout probability before classifier, for training global_pool : str, default 'avg' Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' """ def __init__(self, cfg, num_classes=1000, in_chans=3, drop_rate=0.0, global_pool='avg'): self.num_classes = num_classes super(SelecSls, self).__init__() self.stem = conv_bn(in_chans, 32, stride=2) self.features = SequentialList(*[cfg['block'](*block_args) for block_args in cfg['features']]) self.from_seq = SelectSeq() # from List[tensor] -> Tensor in module compatible way self.head = nn.Sequential(*[conv_bn(*conv_args) for conv_args in cfg['head']]) self.num_features = cfg['num_features'] self.feature_info = cfg['feature_info'] self.global_pool, self.head_drop, self.fc = create_classifier( self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate, ) for n, m in self.named_modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^stem', blocks=r'^features\.(\d+)', blocks_head=r'^head' ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): assert not enable, 'gradient checkpointing not supported' @torch.jit.ignore def get_classifier(self): return self.fc def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) def forward_features(self, x): x = self.stem(x) x = self.features(x) x = self.head(self.from_seq(x)) return x def forward_head(self, x, pre_logits: bool = False): x = self.global_pool(x) x = self.head_drop(x) return x if pre_logits else self.fc(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _create_selecsls(variant, pretrained, **kwargs): cfg = {} feature_info = [dict(num_chs=32, reduction=2, module='stem.2')] if variant.startswith('selecsls42'): cfg['block'] = SelecSlsBlock # Define configuration of the network after the initial neck cfg['features'] = [ # in_chs, skip_chs, mid_chs, out_chs, is_first, stride (32, 0, 64, 64, True, 2), (64, 64, 64, 128, False, 1), (128, 0, 144, 144, True, 2), (144, 144, 144, 288, False, 1), (288, 0, 304, 304, True, 2), (304, 304, 304, 480, False, 1), ] feature_info.extend([ dict(num_chs=128, reduction=4, module='features.1'), dict(num_chs=288, reduction=8, module='features.3'), dict(num_chs=480, reduction=16, module='features.5'), ]) # Head can be replaced with alternative configurations depending on the problem feature_info.append(dict(num_chs=1024, reduction=32, module='head.1')) if variant == 'selecsls42b': cfg['head'] = [ (480, 960, 3, 2), (960, 1024, 3, 1), (1024, 1280, 3, 2), (1280, 1024, 1, 1), ] feature_info.append(dict(num_chs=1024, reduction=64, module='head.3')) cfg['num_features'] = 1024 else: cfg['head'] = [ (480, 960, 3, 2), (960, 1024, 3, 1), (1024, 1024, 3, 2), (1024, 1280, 1, 1), ] feature_info.append(dict(num_chs=1280, reduction=64, module='head.3')) cfg['num_features'] = 1280 elif variant.startswith('selecsls60'): cfg['block'] = SelecSlsBlock # Define configuration of the network after the initial neck cfg['features'] = [ # in_chs, skip_chs, mid_chs, out_chs, is_first, stride (32, 0, 64, 64, True, 2), (64, 64, 64, 128, False, 1), (128, 0, 128, 128, True, 2), (128, 128, 128, 128, False, 1), (128, 128, 128, 288, False, 1), (288, 0, 288, 288, True, 2), (288, 288, 288, 288, False, 1), (288, 288, 288, 288, False, 1), (288, 288, 288, 416, False, 1), ] feature_info.extend([ dict(num_chs=128, reduction=4, module='features.1'), dict(num_chs=288, reduction=8, module='features.4'), dict(num_chs=416, reduction=16, module='features.8'), ]) # Head can be replaced with alternative configurations depending on the problem feature_info.append(dict(num_chs=1024, reduction=32, module='head.1')) if variant == 'selecsls60b': cfg['head'] = [ (416, 756, 3, 2), (756, 1024, 3, 1), (1024, 1280, 3, 2), (1280, 1024, 1, 1), ] feature_info.append(dict(num_chs=1024, reduction=64, module='head.3')) cfg['num_features'] = 1024 else: cfg['head'] = [ (416, 756, 3, 2), (756, 1024, 3, 1), (1024, 1024, 3, 2), (1024, 1280, 1, 1), ] feature_info.append(dict(num_chs=1280, reduction=64, module='head.3')) cfg['num_features'] = 1280 elif variant == 'selecsls84': cfg['block'] = SelecSlsBlock # Define configuration of the network after the initial neck cfg['features'] = [ # in_chs, skip_chs, mid_chs, out_chs, is_first, stride (32, 0, 64, 64, True, 2), (64, 64, 64, 144, False, 1), (144, 0, 144, 144, True, 2), (144, 144, 144, 144, False, 1), (144, 144, 144, 144, False, 1), (144, 144, 144, 144, False, 1), (144, 144, 144, 304, False, 1), (304, 0, 304, 304, True, 2), (304, 304, 304, 304, False, 1), (304, 304, 304, 304, False, 1), (304, 304, 304, 304, False, 1), (304, 304, 304, 304, False, 1), (304, 304, 304, 512, False, 1), ] feature_info.extend([ dict(num_chs=144, reduction=4, module='features.1'), dict(num_chs=304, reduction=8, module='features.6'), dict(num_chs=512, reduction=16, module='features.12'), ]) # Head can be replaced with alternative configurations depending on the problem cfg['head'] = [ (512, 960, 3, 2), (960, 1024, 3, 1), (1024, 1024, 3, 2), (1024, 1280, 3, 1), ] cfg['num_features'] = 1280 feature_info.extend([ dict(num_chs=1024, reduction=32, module='head.1'), dict(num_chs=1280, reduction=64, module='head.3') ]) else: raise ValueError('Invalid net configuration ' + variant + ' !!!') cfg['feature_info'] = feature_info # this model can do 6 feature levels by default, unlike most others, leave as 0-4 to avoid surprises? return build_model_with_cfg( SelecSls, variant, pretrained, model_cfg=cfg, feature_cfg=dict(out_indices=(0, 1, 2, 3, 4), flatten_sequential=True), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (4, 4), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'fc', **kwargs } default_cfgs = generate_default_cfgs({ 'selecsls42.untrained': _cfg( interpolation='bicubic'), 'selecsls42b.in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic'), 'selecsls60.in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic'), 'selecsls60b.in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic'), 'selecsls84.untrained': _cfg( interpolation='bicubic'), }) @register_model def selecsls42(pretrained=False, **kwargs) -> SelecSls: """Constructs a SelecSls42 model. """ return _create_selecsls('selecsls42', pretrained, **kwargs) @register_model def selecsls42b(pretrained=False, **kwargs) -> SelecSls: """Constructs a SelecSls42_B model. """ return _create_selecsls('selecsls42b', pretrained, **kwargs) @register_model def selecsls60(pretrained=False, **kwargs) -> SelecSls: """Constructs a SelecSls60 model. """ return _create_selecsls('selecsls60', pretrained, **kwargs) @register_model def selecsls60b(pretrained=False, **kwargs) -> SelecSls: """Constructs a SelecSls60_B model. """ return _create_selecsls('selecsls60b', pretrained, **kwargs) @register_model def selecsls84(pretrained=False, **kwargs) -> SelecSls: """Constructs a SelecSls84 model. """ return _create_selecsls('selecsls84', pretrained, **kwargs)
pytorch-image-models/timm/models/selecsls.py/0
{ "file_path": "pytorch-image-models/timm/models/selecsls.py", "repo_id": "pytorch-image-models", "token_count": 6442 }
199
""" Vision Transformer (ViT) in PyTorch A PyTorch implement of Vision Transformers as described in: 'Exploring Plain Vision Transformer Backbones for Object Detection' - https://arxiv.org/abs/2203.16527 'Segment Anything Model (SAM)' - https://github.com/facebookresearch/segment-anything/ """ import logging from functools import partial from typing import Callable, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.jit import Final from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from timm.layers import PatchEmbed, Mlp, DropPath, PatchDropout, LayerNorm2d, ClassifierHead, NormMlpClassifierHead,\ Format, resample_abs_pos_embed_nhwc, RotaryEmbeddingCat, apply_rot_embed_cat, to_2tuple, use_fused_attn from ._builder import build_model_with_cfg from ._manipulate import checkpoint_seq from ._registry import generate_default_cfgs, register_model from ._features_fx import register_notrace_function # model_registry will add each entrypoint fn to this __all__ = ['VisionTransformerSAM'] _logger = logging.getLogger(__name__) def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: q_size (int): size of query q. k_size (int): size of key k. rel_pos (Tensor): relative position embeddings (L, C). Returns: Extracted positional embeddings according to relative positions. """ max_rel_dist = int(2 * max(q_size, k_size) - 1) # Interpolate rel pos if needed. if rel_pos.shape[0] != max_rel_dist: # Interpolate rel pos. rel_pos_resized = F.interpolate( rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=max_rel_dist, mode="linear", ) rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) else: rel_pos_resized = rel_pos # Scale the coords with short length if shapes for q and k are different. q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) return rel_pos_resized[relative_coords.long()] register_notrace_function(get_rel_pos) def get_decomposed_rel_pos_bias( q: torch.Tensor, rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, q_size: Tuple[int, int], k_size: Tuple[int, int], ) -> torch.Tensor: """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py Args: q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. q_size (Tuple): spatial sequence size of query q with (q_h, q_w). k_size (Tuple): spatial sequence size of key k with (k_h, k_w). Returns: bias (Tensor): attention bias to add to attention map """ q_h, q_w = q_size k_h, k_w = k_size Rh = get_rel_pos(q_h, k_h, rel_pos_h) Rw = get_rel_pos(q_w, k_w, rel_pos_w) B, _, dim = q.shape r_q = q.reshape(B, q_h, q_w, dim) rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) attn_bias = rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] return attn_bias.reshape(-1, q_h * q_w, k_h * k_w) class Attention(nn.Module): fused_attn: Final[bool] def __init__( self, dim, num_heads=8, qkv_bias=True, qk_norm=False, attn_drop=0., proj_drop=0., norm_layer=nn.LayerNorm, use_rel_pos: bool = False, input_size: Optional[Tuple[int, int]] = None, rope: Optional[nn.Module] = None, ): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.use_rel_pos = use_rel_pos if self.use_rel_pos: assert rope is None assert ( input_size is not None ), "Input size must be provided if using relative positional encoding." # initialize relative positional embeddings self.rel_pos_h = nn.Parameter(torch.zeros( 2 * input_size[0] - 1, self.head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros( 2 * input_size[1] - 1, self.head_dim)) self.rope = rope def forward(self, x): B, H, W, _ = x.shape N = H * W x = x.reshape(B, N, -1) qkv = self.qkv(x).view(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # qkv with shape (3, B, nHead, H * W, C) q, k, v = qkv.reshape(3, B * self.num_heads, N, -1).unbind(0) # q, k, v with shape (B * nHead, H * W, C) q, k = self.q_norm(q), self.k_norm(k) if self.use_rel_pos: attn_bias = get_decomposed_rel_pos_bias(q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) else: attn_bias = None if self.rope is not None: rope = self.rope.get_embed() q = apply_rot_embed_cat(q, rope).type_as(v) k = apply_rot_embed_cat(k, rope).type_as(v) if self.fused_attn: x = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_bias, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) if attn_bias is not None: attn = attn + attn_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.view(B, self.num_heads, N, -1).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = x.view(B, H, W, -1) return x class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=True, qk_norm=False, proj_drop=0., attn_drop=0., init_values=None, drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, mlp_layer=Mlp, use_rel_pos=False, window_size=0, input_size=None, rope=None, ): super().__init__() self.window_size = window_size self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, attn_drop=attn_drop, proj_drop=proj_drop, norm_layer=norm_layer, use_rel_pos=use_rel_pos, input_size=input_size if window_size == 0 else (window_size, window_size), rope=rope, ) self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = mlp_layer( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, ) self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): B, H, W, _ = x.shape shortcut = x x = self.norm1(x) # Window partition pad_hw: Optional[Tuple[int, int]] = None if self.window_size > 0: x, pad_hw = window_partition(x, self.window_size) x = self.drop_path1(self.ls1(self.attn(x))) # Reverse window partition if self.window_size > 0: x = window_unpartition(x, self.window_size, (H, W), pad_hw) x = shortcut + x x = x.reshape(B, H * W, -1) # MLP is faster for N, L, C tensor x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) x = x.reshape(B, H, W, -1) return x def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: """ Partition into non-overlapping windows with padding if needed. Args: x (tensor): input tokens with [B, H, W, C]. window_size (int): window size. Returns: windows: windows after partition with [B * num_windows, window_size, window_size, C]. (Hp, Wp): padded height and width before partition """ B, H, W, C = x.shape pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) Hp, Wp = H + pad_h, W + pad_w x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows, (Hp, Wp) def window_unpartition( windows: torch.Tensor, window_size: int, hw: Tuple[int, int], pad_hw: Optional[Tuple[int, int]] = None, ) -> torch.Tensor: """ Window unpartition into original sequences and removing padding. Args: windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. window_size (int): window size. pad_hw (Tuple): padded height and width (Hp, Wp). hw (Tuple): original height and width (H, W) before padding. Returns: x: unpartitioned sequences with [B, H, W, C]. """ Hp, Wp = pad_hw if pad_hw is not None else hw H, W = hw B = windows.shape[0] // (Hp * Wp // window_size // window_size) x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) x = x[:, :H, :W, :].contiguous() return x class VisionTransformerSAM(nn.Module): """ Vision Transformer for Segment-Anything Model(SAM) A PyTorch impl of : `Exploring Plain Vision Transformer Backbones for Object Detection` or `Segment Anything Model (SAM)` - https://arxiv.org/abs/2010.11929 """ def __init__( self, img_size: int = 1024, patch_size: int = 16, in_chans: int = 3, num_classes: int = 768, embed_dim: int = 768, depth: int = 12, num_heads: int = 12, mlp_ratio: float = 4., qkv_bias: bool = True, qk_norm: bool = False, init_values: Optional[float] = None, pre_norm: bool = False, drop_rate: float = 0., pos_drop_rate: float = 0., patch_drop_rate: float = 0., proj_drop_rate: float = 0., attn_drop_rate: float = 0., drop_path_rate: float = 0., weight_init: str = '', embed_layer: Callable = partial( PatchEmbed, output_fmt=Format.NHWC, strict_img_size=False), norm_layer: Optional[Callable] = nn.LayerNorm, act_layer: Optional[Callable] = nn.GELU, block_fn: Callable = Block, mlp_layer: Callable = Mlp, use_abs_pos: bool = True, use_rel_pos: bool = False, use_rope: bool = False, window_size: int = 14, global_attn_indexes: Tuple[int, ...] = (), neck_chans: int = 256, global_pool: str = 'avg', head_hidden_size: Optional[int] = None, ref_feat_shape: Optional[Tuple[Tuple[int, int], Tuple[int, int]]] = None ): """ Args: img_size: Input image size. patch_size: Patch size. in_chans: Number of image input channels. num_classes: Mumber of classes for classification head. global_pool: Type of global pooling for final sequence (default: 'token'). embed_dim: Transformer embedding dimension. depth: Depth of transformer. num_heads: Number of attention heads. mlp_ratio: Ratio of mlp hidden dim to embedding dim. qkv_bias: Enable bias for qkv projections if True. init_values: Layer-scale init values (layer-scale enabled if not None). drop_rate: Head dropout rate. pos_drop_rate: Position embedding dropout rate. attn_drop_rate: Attention dropout rate. drop_path_rate: Stochastic depth rate. weight_init: Weight initialization scheme. embed_layer: Patch embedding layer. norm_layer: Normalization layer. act_layer: MLP activation layer. block_fn: Transformer block layer. use_abs_pos: If True, use absolute positional embeddings. use_rel_pos: If True, add relative positional embeddings to the attention map. use_rope: If True, add rotary position embeddings to q/k in attention block. window_size: Window size for window attention blocks. If 0, not use window attention. global_attn_indexes: Indexes for blocks using global attention. Used when window_size > 0. global_pool: Global pooling type. head_hidden_size: If set, use NormMlpHead ref_feat_shape: Tuple of reference feature shapes for ROPE, (global, local) """ super().__init__() norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.num_classes = num_classes self.global_pool = global_pool # num_features for consistency with other models self.num_features = self.embed_dim = embed_dim self.grad_checkpointing = False self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, bias=not pre_norm, # disable bias if pre-norm is used ) grid_size = self.patch_embed.grid_size if use_abs_pos: # Initialize absolute positional embedding with pretrain image size. self.pos_embed = nn.Parameter(torch.zeros(1, grid_size[0], grid_size[1], embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=pos_drop_rate) if patch_drop_rate > 0: self.patch_drop = PatchDropout( patch_drop_rate, num_prefix_tokens=0, ) else: self.patch_drop = nn.Identity() self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() if use_rope: assert not use_rel_pos, "ROPE and relative pos embeddings should not be enabled at same time" if ref_feat_shape is not None: assert len(ref_feat_shape) == 2 ref_feat_shape_global = to_2tuple(ref_feat_shape[0]) ref_feat_shape_window = to_2tuple(ref_feat_shape[1]) else: ref_feat_shape_global = ref_feat_shape_window = None self.rope_global = RotaryEmbeddingCat( embed_dim // num_heads, in_pixels=False, feat_shape=grid_size, ref_feat_shape=ref_feat_shape_global, ) self.rope_window = RotaryEmbeddingCat( embed_dim // num_heads, in_pixels=False, feat_shape=to_2tuple(window_size), ref_feat_shape=ref_feat_shape_window, ) else: self.rope_global = None self.rope_window = None # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] self.blocks = nn.Sequential(*[ block_fn( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_norm=qk_norm, init_values=init_values, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, mlp_layer=mlp_layer, use_rel_pos=use_rel_pos, window_size=window_size if i not in global_attn_indexes else 0, input_size=grid_size, rope=self.rope_window if i not in global_attn_indexes else self.rope_global, ) for i in range(depth)]) if neck_chans: self.neck = nn.Sequential( nn.Conv2d( embed_dim, neck_chans, kernel_size=1, bias=False, ), LayerNorm2d(neck_chans), nn.Conv2d( neck_chans, neck_chans, kernel_size=3, padding=1, bias=False, ), LayerNorm2d(neck_chans), ) self.num_features = neck_chans else: if head_hidden_size: self.neck = nn.Identity() else: # should have a final norm with standard ClassifierHead self.neck = LayerNorm2d(embed_dim) neck_chans = embed_dim # Classifier Head if head_hidden_size: self.head = NormMlpClassifierHead( neck_chans, num_classes, hidden_size=head_hidden_size, pool_type=global_pool, drop_rate=drop_rate, ) else: self.head = ClassifierHead( neck_chans, num_classes, pool_type=global_pool, drop_rate=drop_rate, ) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'dist_token'} @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^pos_embed|patch_embed', # stem and embed blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes=0, global_pool=None): self.head.reset(num_classes, global_pool) def forward_features(self, x): x = self.patch_embed(x) if self.pos_embed is not None: # dynamically resize abs pos embedding if needed x = x + resample_abs_pos_embed_nhwc(self.pos_embed, x.shape[1:3]) x = self.pos_drop(x) x = self.patch_drop(x) x = self.norm_pre(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) x = self.neck(x.permute(0, 3, 1, 2)) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=True) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn( state_dict, model, ): """ Remap SAM checkpoints -> timm """ sam_checkpoint = 'image_encoder.patch_embed.proj.weight' in state_dict out_dict = {} for k, v in state_dict.items(): if k.startswith('image_encoder.'): k = k[14:] k = k.replace('mlp.lin', 'mlp.fc') else: if sam_checkpoint: continue out_dict[k] = v return out_dict def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 1024, 1024), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ # Segment-Anyhing Model (SAM) pretrained - https://github.com/facebookresearch/segment-anything (no classifier head, for fine-tune/features only) 'samvit_base_patch16.sa1b': _cfg( url='https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 1024, 1024), crop_pct=1.0), 'samvit_large_patch16.sa1b': _cfg( url='https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 1024, 1024), crop_pct=1.0), 'samvit_huge_patch16.sa1b': _cfg( url='https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth', hf_hub_id='timm/', license='apache-2.0', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, input_size=(3, 1024, 1024), crop_pct=1.0), 'samvit_base_patch16_224': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=1000, input_size=(3, 224, 224), crop_pct=0.9), }) def _create_vision_transformer(variant, pretrained=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError( 'features_only not implemented for Vision Transformer models.') return build_model_with_cfg( VisionTransformerSAM, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, **kwargs, ) @register_model def samvit_base_patch16(pretrained=False, **kwargs) -> VisionTransformerSAM: """ ViT-B/16 for Segment-Anything """ model_args = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, global_attn_indexes=[2, 5, 8, 11], window_size=14, use_rel_pos=True, img_size=1024, ) model = _create_vision_transformer( 'samvit_base_patch16', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def samvit_large_patch16(pretrained=False, **kwargs) -> VisionTransformerSAM: """ ViT-L/16 for Segment-Anything """ model_args = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, global_attn_indexes=[5, 11, 17, 23], window_size=14, use_rel_pos=True, img_size=1024, ) model = _create_vision_transformer( 'samvit_large_patch16', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def samvit_huge_patch16(pretrained=False, **kwargs) -> VisionTransformerSAM: """ ViT-H/16 for Segment-Anything """ model_args = dict( patch_size=16, embed_dim=1280, depth=32, num_heads=16, global_attn_indexes=[7, 15, 23, 31], window_size=14, use_rel_pos=True, img_size=1024, ) model = _create_vision_transformer( 'samvit_huge_patch16', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def samvit_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformerSAM: """ ViT-B/16 based on samvit arch """ model_args = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, global_attn_indexes=[2, 5, 8, 11], window_size=14, use_rel_pos=True, use_abs_pos=False, img_size=224, neck_chans=None, ) model = _create_vision_transformer( 'samvit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model
pytorch-image-models/timm/models/vision_transformer_sam.py/0
{ "file_path": "pytorch-image-models/timm/models/vision_transformer_sam.py", "repo_id": "pytorch-image-models", "token_count": 12451 }
200
""" Lookahead Optimizer Wrapper. Implementation modified from: https://github.com/alphadl/lookahead.pytorch Paper: `Lookahead Optimizer: k steps forward, 1 step back` - https://arxiv.org/abs/1907.08610 Hacked together by / Copyright 2020 Ross Wightman """ from collections import OrderedDict from typing import Callable, Dict import torch from torch.optim.optimizer import Optimizer from collections import defaultdict class Lookahead(Optimizer): def __init__(self, base_optimizer, alpha=0.5, k=6): # NOTE super().__init__() not called on purpose self._optimizer_step_pre_hooks: Dict[int, Callable] = OrderedDict() self._optimizer_step_post_hooks: Dict[int, Callable] = OrderedDict() if not 0.0 <= alpha <= 1.0: raise ValueError(f'Invalid slow update rate: {alpha}') if not 1 <= k: raise ValueError(f'Invalid lookahead steps: {k}') defaults = dict(lookahead_alpha=alpha, lookahead_k=k, lookahead_step=0) self._base_optimizer = base_optimizer self.param_groups = base_optimizer.param_groups self.defaults = base_optimizer.defaults self.defaults.update(defaults) self.state = defaultdict(dict) # manually add our defaults to the param groups for name, default in defaults.items(): for group in self._base_optimizer.param_groups: group.setdefault(name, default) @torch.no_grad() def update_slow(self, group): for fast_p in group["params"]: if fast_p.grad is None: continue param_state = self._base_optimizer.state[fast_p] if 'lookahead_slow_buff' not in param_state: param_state['lookahead_slow_buff'] = torch.empty_like(fast_p) param_state['lookahead_slow_buff'].copy_(fast_p) slow = param_state['lookahead_slow_buff'] slow.add_(fast_p - slow, alpha=group['lookahead_alpha']) fast_p.copy_(slow) def sync_lookahead(self): for group in self._base_optimizer.param_groups: self.update_slow(group) @torch.no_grad() def step(self, closure=None): loss = self._base_optimizer.step(closure) for group in self._base_optimizer.param_groups: group['lookahead_step'] += 1 if group['lookahead_step'] % group['lookahead_k'] == 0: self.update_slow(group) return loss def state_dict(self): return self._base_optimizer.state_dict() def load_state_dict(self, state_dict): self._base_optimizer.load_state_dict(state_dict) self.param_groups = self._base_optimizer.param_groups
pytorch-image-models/timm/optim/lookahead.py/0
{ "file_path": "pytorch-image-models/timm/optim/lookahead.py", "repo_id": "pytorch-image-models", "token_count": 1134 }
201
""" Scheduler Factory Hacked together by / Copyright 2021 Ross Wightman """ from typing import List, Optional, Union from torch.optim import Optimizer from .cosine_lr import CosineLRScheduler from .multistep_lr import MultiStepLRScheduler from .plateau_lr import PlateauLRScheduler from .poly_lr import PolyLRScheduler from .step_lr import StepLRScheduler from .tanh_lr import TanhLRScheduler def scheduler_kwargs(cfg, decreasing_metric: Optional[bool] = None): """ cfg/argparse to kwargs helper Convert scheduler args in argparse args or cfg (.dot) like object to keyword args. """ eval_metric = getattr(cfg, 'eval_metric', 'top1') if decreasing_metric is not None: plateau_mode = 'min' if decreasing_metric else 'max' else: plateau_mode = 'min' if 'loss' in eval_metric else 'max' kwargs = dict( sched=cfg.sched, num_epochs=getattr(cfg, 'epochs', 100), decay_epochs=getattr(cfg, 'decay_epochs', 30), decay_milestones=getattr(cfg, 'decay_milestones', [30, 60]), warmup_epochs=getattr(cfg, 'warmup_epochs', 5), cooldown_epochs=getattr(cfg, 'cooldown_epochs', 0), patience_epochs=getattr(cfg, 'patience_epochs', 10), decay_rate=getattr(cfg, 'decay_rate', 0.1), min_lr=getattr(cfg, 'min_lr', 0.), warmup_lr=getattr(cfg, 'warmup_lr', 1e-5), warmup_prefix=getattr(cfg, 'warmup_prefix', False), noise=getattr(cfg, 'lr_noise', None), noise_pct=getattr(cfg, 'lr_noise_pct', 0.67), noise_std=getattr(cfg, 'lr_noise_std', 1.), noise_seed=getattr(cfg, 'seed', 42), cycle_mul=getattr(cfg, 'lr_cycle_mul', 1.), cycle_decay=getattr(cfg, 'lr_cycle_decay', 0.1), cycle_limit=getattr(cfg, 'lr_cycle_limit', 1), k_decay=getattr(cfg, 'lr_k_decay', 1.0), plateau_mode=plateau_mode, step_on_epochs=not getattr(cfg, 'sched_on_updates', False), ) return kwargs def create_scheduler( args, optimizer: Optimizer, updates_per_epoch: int = 0, ): return create_scheduler_v2( optimizer=optimizer, **scheduler_kwargs(args), updates_per_epoch=updates_per_epoch, ) def create_scheduler_v2( optimizer: Optimizer, sched: str = 'cosine', num_epochs: int = 300, decay_epochs: int = 90, decay_milestones: List[int] = (90, 180, 270), cooldown_epochs: int = 0, patience_epochs: int = 10, decay_rate: float = 0.1, min_lr: float = 0, warmup_lr: float = 1e-5, warmup_epochs: int = 0, warmup_prefix: bool = False, noise: Union[float, List[float]] = None, noise_pct: float = 0.67, noise_std: float = 1., noise_seed: int = 42, cycle_mul: float = 1., cycle_decay: float = 0.1, cycle_limit: int = 1, k_decay: float = 1.0, plateau_mode: str = 'max', step_on_epochs: bool = True, updates_per_epoch: int = 0, ): t_initial = num_epochs warmup_t = warmup_epochs decay_t = decay_epochs cooldown_t = cooldown_epochs if not step_on_epochs: assert updates_per_epoch > 0, 'updates_per_epoch must be set to number of dataloader batches' t_initial = t_initial * updates_per_epoch warmup_t = warmup_t * updates_per_epoch decay_t = decay_t * updates_per_epoch decay_milestones = [d * updates_per_epoch for d in decay_milestones] cooldown_t = cooldown_t * updates_per_epoch # warmup args warmup_args = dict( warmup_lr_init=warmup_lr, warmup_t=warmup_t, warmup_prefix=warmup_prefix, ) # setup noise args for supporting schedulers if noise is not None: if isinstance(noise, (list, tuple)): noise_range = [n * t_initial for n in noise] if len(noise_range) == 1: noise_range = noise_range[0] else: noise_range = noise * t_initial else: noise_range = None noise_args = dict( noise_range_t=noise_range, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, ) # setup cycle args for supporting schedulers cycle_args = dict( cycle_mul=cycle_mul, cycle_decay=cycle_decay, cycle_limit=cycle_limit, ) lr_scheduler = None if sched == 'cosine': lr_scheduler = CosineLRScheduler( optimizer, t_initial=t_initial, lr_min=min_lr, t_in_epochs=step_on_epochs, **cycle_args, **warmup_args, **noise_args, k_decay=k_decay, ) elif sched == 'tanh': lr_scheduler = TanhLRScheduler( optimizer, t_initial=t_initial, lr_min=min_lr, t_in_epochs=step_on_epochs, **cycle_args, **warmup_args, **noise_args, ) elif sched == 'step': lr_scheduler = StepLRScheduler( optimizer, decay_t=decay_t, decay_rate=decay_rate, t_in_epochs=step_on_epochs, **warmup_args, **noise_args, ) elif sched == 'multistep': lr_scheduler = MultiStepLRScheduler( optimizer, decay_t=decay_milestones, decay_rate=decay_rate, t_in_epochs=step_on_epochs, **warmup_args, **noise_args, ) elif sched == 'plateau': assert step_on_epochs, 'Plateau LR only supports step per epoch.' warmup_args.pop('warmup_prefix', False) lr_scheduler = PlateauLRScheduler( optimizer, decay_rate=decay_rate, patience_t=patience_epochs, cooldown_t=0, **warmup_args, lr_min=min_lr, mode=plateau_mode, **noise_args, ) elif sched == 'poly': lr_scheduler = PolyLRScheduler( optimizer, power=decay_rate, # overloading 'decay_rate' as polynomial power t_initial=t_initial, lr_min=min_lr, t_in_epochs=step_on_epochs, k_decay=k_decay, **cycle_args, **warmup_args, **noise_args, ) if hasattr(lr_scheduler, 'get_cycle_length'): # for cycle based schedulers (cosine, tanh, poly) recalculate total epochs w/ cycles & cooldown t_with_cycles_and_cooldown = lr_scheduler.get_cycle_length() + cooldown_t if step_on_epochs: num_epochs = t_with_cycles_and_cooldown else: num_epochs = t_with_cycles_and_cooldown // updates_per_epoch return lr_scheduler, num_epochs
pytorch-image-models/timm/scheduler/scheduler_factory.py/0
{ "file_path": "pytorch-image-models/timm/scheduler/scheduler_factory.py", "repo_id": "pytorch-image-models", "token_count": 3467 }
202
from typing import Optional, Tuple, List import torch def onnx_forward(onnx_file, example_input): import onnxruntime sess_options = onnxruntime.SessionOptions() session = onnxruntime.InferenceSession(onnx_file, sess_options) input_name = session.get_inputs()[0].name output = session.run([], {input_name: example_input.numpy()}) output = output[0] return output def onnx_export( model: torch.nn.Module, output_file: str, example_input: Optional[torch.Tensor] = None, training: bool = False, verbose: bool = False, check: bool = True, check_forward: bool = False, batch_size: int = 64, input_size: Tuple[int, int, int] = None, opset: Optional[int] = None, dynamic_size: bool = False, aten_fallback: bool = False, keep_initializers: Optional[bool] = None, input_names: List[str] = None, output_names: List[str] = None, ): import onnx if training: training_mode = torch.onnx.TrainingMode.TRAINING model.train() else: training_mode = torch.onnx.TrainingMode.EVAL model.eval() if example_input is None: if not input_size: assert hasattr(model, 'default_cfg') input_size = model.default_cfg.get('input_size') example_input = torch.randn((batch_size,) + input_size, requires_grad=training) # Run model once before export trace, sets padding for models with Conv2dSameExport. This means # that the padding for models with Conv2dSameExport (most models with tf_ prefix) is fixed for # the input img_size specified in this script. # Opset >= 11 should allow for dynamic padding, however I cannot get it to work due to # issues in the tracing of the dynamic padding or errors attempting to export the model after jit # scripting it (an approach that should work). Perhaps in a future PyTorch or ONNX versions... original_out = model(example_input) input_names = input_names or ["input0"] output_names = output_names or ["output0"] dynamic_axes = {'input0': {0: 'batch'}, 'output0': {0: 'batch'}} if dynamic_size: dynamic_axes['input0'][2] = 'height' dynamic_axes['input0'][3] = 'width' if aten_fallback: export_type = torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK else: export_type = torch.onnx.OperatorExportTypes.ONNX torch_out = torch.onnx._export( model, example_input, output_file, training=training_mode, export_params=True, verbose=verbose, input_names=input_names, output_names=output_names, keep_initializers_as_inputs=keep_initializers, dynamic_axes=dynamic_axes, opset_version=opset, operator_export_type=export_type ) if check: onnx_model = onnx.load(output_file) onnx.checker.check_model(onnx_model, full_check=True) # assuming throw on error if check_forward and not training: import numpy as np onnx_out = onnx_forward(output_file, example_input) np.testing.assert_almost_equal(torch_out.data.numpy(), onnx_out, decimal=3) np.testing.assert_almost_equal(original_out.data.numpy(), torch_out.data.numpy(), decimal=5)
pytorch-image-models/timm/utils/onnx.py/0
{ "file_path": "pytorch-image-models/timm/utils/onnx.py", "repo_id": "pytorch-image-models", "token_count": 1392 }
203
[workspace] members = [ "benchmark", "router", "router/client", "router/grpc-metadata", "launcher" ] resolver = "2" [workspace.package] version = "1.4.0" edition = "2021" authors = ["Olivier Dehaene"] homepage = "https://github.com/huggingface/text-generation-inference" [profile.release] debug = 1 incremental = true lto = "off" panic = "abort"
text-generation-inference/Cargo.toml/0
{ "file_path": "text-generation-inference/Cargo.toml", "repo_id": "text-generation-inference", "token_count": 154 }
204
/// MIT License // // Copyright (c) 2020 hatoo // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. use std::collections::BTreeMap; pub(crate) fn histogram(values: &[f64], bins: usize) -> Vec<(f64, usize)> { assert!(bins >= 2); let mut bucket: Vec<usize> = vec![0; bins]; let min = values.iter().collect::<average::Min>().min(); let max = values.iter().collect::<average::Max>().max(); let step = (max - min) / (bins - 1) as f64; for &v in values { let i = std::cmp::min(((v - min) / step).ceil() as usize, bins - 1); bucket[i] += 1; } bucket .into_iter() .enumerate() .map(|(i, v)| (min + step * i as f64, v)) .collect() } pub(crate) fn percentiles(values: &[f64], pecents: &[i32]) -> BTreeMap<String, f64> { pecents .iter() .map(|&p| { let i = (f64::from(p) / 100.0 * values.len() as f64) as usize; (format!("p{p}"), *values.get(i).unwrap_or(&std::f64::NAN)) }) .collect() }
text-generation-inference/benchmark/src/utils.rs/0
{ "file_path": "text-generation-inference/benchmark/src/utils.rs", "repo_id": "text-generation-inference", "token_count": 600 }
205
<html> <head> <!-- Load the latest Swagger UI code and style from npm using unpkg.com --> <script src="https://unpkg.com/swagger-ui-dist@3/swagger-ui-bundle.js"></script> <link rel="stylesheet" type="text/css" href="https://unpkg.com/swagger-ui-dist@3/swagger-ui.css"/> <title>Text Generation Inference API</title> </head> <body> <div id="swagger-ui"></div> <!-- Div to hold the UI component --> <script> window.onload = function () { // Begin Swagger UI call region const ui = SwaggerUIBundle({ url: "openapi.json", //Location of Open API spec in the repo dom_id: '#swagger-ui', deepLinking: true, supportedSubmitMethods: [], presets: [ SwaggerUIBundle.presets.apis, SwaggerUIBundle.SwaggerUIStandalonePreset ], plugins: [ SwaggerUIBundle.plugins.DownloadUrl ], }) window.ui = ui } </script> </body> </html>
text-generation-inference/docs/index.html/0
{ "file_path": "text-generation-inference/docs/index.html", "repo_id": "text-generation-inference", "token_count": 652 }
206
# Installation This section explains how to install the CLI tool as well as installing TGI from source. **The strongly recommended approach is to use Docker, as it does not require much setup. Check [the Quick Tour](./quicktour) to learn how to run TGI with Docker.** ## Install CLI You can use TGI command-line interface (CLI) to download weights, serve and quantize models, or get information on serving parameters. To install the CLI, you need to first clone the TGI repository and then run `make`. ```bash git clone https://github.com/huggingface/text-generation-inference.git && cd text-generation-inference make install ``` If you would like to serve models with custom kernels, run ```bash BUILD_EXTENSIONS=True make install ``` ## Local Installation from Source Before you start, you will need to setup your environment, and install Text Generation Inference. Text Generation Inference is tested on **Python 3.9+**. Text Generation Inference is available on pypi, conda and GitHub. To install and launch locally, first [install Rust](https://rustup.rs/) and create a Python virtual environment with at least Python 3.9, e.g. using conda: ```bash curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh conda create -n text-generation-inference python=3.9 conda activate text-generation-inference ``` You may also need to install Protoc. On Linux: ```bash PROTOC_ZIP=protoc-21.12-linux-x86_64.zip curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*' rm -f $PROTOC_ZIP ``` On MacOS, using Homebrew: ```bash brew install protobuf ``` Then run to install Text Generation Inference: ```bash git clone https://github.com/huggingface/text-generation-inference.git && cd text-generation-inference BUILD_EXTENSIONS=True make install ``` <Tip warning={true}> On some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run: ```bash sudo apt-get install libssl-dev gcc -y ``` </Tip> Once installation is done, simply run: ```bash make run-falcon-7b-instruct ``` This will serve Falcon 7B Instruct model from the port 8080, which we can query.
text-generation-inference/docs/source/installation.md/0
{ "file_path": "text-generation-inference/docs/source/installation.md", "repo_id": "text-generation-inference", "token_count": 702 }
207
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 330, "logprob": null, "text": "ir" }, { "id": 1622, "logprob": -7.8125, "text": "af" }, { "id": 249, "logprob": -4.5, "text": "at" }, { "id": 1480, "logprob": -10.875, "text": "ron" }, { "id": 37, "logprob": -3.6875, "text": ":" } ], "seed": 0, "tokens": [ { "id": 836, "logprob": -1.265625, "special": false, "text": " i" }, { "id": 18, "logprob": -0.119628906, "special": false, "text": "'" }, { "id": 298, "logprob": -2.265625, "special": false, "text": "ve" }, { "id": 650, "logprob": -0.49804688, "special": false, "text": " been" }, { "id": 1241, "logprob": 0.0, "special": false, "text": " using" }, { "id": 334, "logprob": 0.0, "special": false, "text": " it" }, { "id": 312, "logprob": -1.2421875, "special": false, "text": " for" }, { "id": 909, "logprob": -0.99609375, "special": false, "text": " years" }, { "id": 193, "logprob": -0.30273438, "special": false, "text": "\n" }, { "id": 807, "logprob": -1.078125, "special": false, "text": "ik" } ] }, "generated_text": "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron: i've been using it for years\nik" }
text-generation-inference/integration-tests/models/__snapshots__/test_flash_falcon/test_flash_falcon_all_params.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_falcon/test_flash_falcon_all_params.json", "repo_id": "text-generation-inference", "token_count": 1204 }
208
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 50278, "logprob": null, "text": "<|prompter|>" }, { "id": 1276, "logprob": -8.03125, "text": "What" }, { "id": 310, "logprob": -5.421875, "text": " is" }, { "id": 247, "logprob": -2.1601562, "text": " a" }, { "id": 1167, "logprob": -5.4609375, "text": " mem" }, { "id": 70, "logprob": -0.005657196, "text": "e" }, { "id": 13, "logprob": -7.28125, "text": "," }, { "id": 285, "logprob": -0.2980957, "text": " and" }, { "id": 752, "logprob": -2.1679688, "text": " what" }, { "id": 434, "logprob": -5.6210938, "text": "'s" }, { "id": 253, "logprob": -0.81103516, "text": " the" }, { "id": 2892, "logprob": -6.6640625, "text": " history" }, { "id": 3212, "logprob": -2.265625, "text": " behind" }, { "id": 436, "logprob": -11.5078125, "text": " this" }, { "id": 3159, "logprob": -2.1582031, "text": " word" }, { "id": 32, "logprob": -0.008720398, "text": "?" }, { "id": 0, "logprob": -2.4726562, "text": "<|endoftext|>" }, { "id": 50281, "logprob": -18.265625, "text": "<|assistant|>" } ], "seed": null, "tokens": [ { "id": 510, "logprob": -0.63183594, "special": false, "text": "The" }, { "id": 3159, "logprob": -0.5390625, "special": false, "text": " word" }, { "id": 346, "logprob": -0.045684814, "special": false, "text": " \"" }, { "id": 6441, "logprob": -0.002090454, "special": false, "text": "mem" }, { "id": 70, "logprob": -1.3589859e-05, "special": false, "text": "e" }, { "id": 3, "logprob": -0.0009455681, "special": false, "text": "\"" }, { "id": 369, "logprob": -0.088012695, "special": false, "text": " was" }, { "id": 806, "logprob": -0.12585449, "special": false, "text": " first" }, { "id": 908, "logprob": -0.017196655, "special": false, "text": " used" }, { "id": 275, "logprob": -0.49731445, "special": false, "text": " in" } ] }, "generated_text": "The word \"meme\" was first used in" }
text-generation-inference/integration-tests/models/__snapshots__/test_flash_neox_sharded/test_flash_neox.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_neox_sharded/test_flash_neox.json", "repo_id": "text-generation-inference", "token_count": 1970 }
209
[ { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 17, "prefill": [ { "id": 1276, "logprob": null, "text": "What" }, { "id": 310, "logprob": -1.5117188, "text": " is" }, { "id": 18147, "logprob": -8.96875, "text": " Deep" }, { "id": 20727, "logprob": -1.953125, "text": " Learning" }, { "id": 32, "logprob": -0.94189453, "text": "?" } ], "seed": null, "tokens": [ { "id": 428, "logprob": -1.5830078, "special": false, "text": " -" }, { "id": 18147, "logprob": -3.3183594, "special": false, "text": " Deep" }, { "id": 20727, "logprob": -0.32617188, "special": false, "text": " Learning" }, { "id": 187, "logprob": -2.5742188, "special": false, "text": "\n" }, { "id": 30763, "logprob": -1.6015625, "special": false, "text": "Deep" }, { "id": 20727, "logprob": -0.69628906, "special": false, "text": " Learning" }, { "id": 310, "logprob": -0.67822266, "special": false, "text": " is" }, { "id": 247, "logprob": -0.5395508, "special": false, "text": " a" }, { "id": 749, "logprob": -1.8623047, "special": false, "text": " sub" }, { "id": 3423, "logprob": -0.6020508, "special": false, "text": "field" }, { "id": 273, "logprob": -0.0552063, "special": false, "text": " of" }, { "id": 5145, "logprob": -1.0742188, "special": false, "text": " machine" }, { "id": 4715, "logprob": -0.011405945, "special": false, "text": " learning" }, { "id": 326, "logprob": -0.9165039, "special": false, "text": " that" }, { "id": 4648, "logprob": -1.4501953, "special": false, "text": " uses" }, { "id": 13345, "logprob": -1.4960938, "special": false, "text": " artificial" }, { "id": 11454, "logprob": -0.02116394, "special": false, "text": " neural" } ] }, "generated_text": " - Deep Learning\nDeep Learning is a subfield of machine learning that uses artificial neural" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 17, "prefill": [ { "id": 1276, "logprob": null, "text": "What" }, { "id": 310, "logprob": -1.5, "text": " is" }, { "id": 18147, "logprob": -8.984375, "text": " Deep" }, { "id": 20727, "logprob": -1.96875, "text": " Learning" }, { "id": 32, "logprob": -0.93359375, "text": "?" } ], "seed": null, "tokens": [ { "id": 428, "logprob": -1.5800781, "special": false, "text": " -" }, { "id": 18147, "logprob": -3.3242188, "special": false, "text": " Deep" }, { "id": 20727, "logprob": -0.31835938, "special": false, "text": " Learning" }, { "id": 187, "logprob": -2.5644531, "special": false, "text": "\n" }, { "id": 30763, "logprob": -1.5957031, "special": false, "text": "Deep" }, { "id": 20727, "logprob": -0.69628906, "special": false, "text": " Learning" }, { "id": 310, "logprob": -0.68603516, "special": false, "text": " is" }, { "id": 247, "logprob": -0.5258789, "special": false, "text": " a" }, { "id": 749, "logprob": -1.859375, "special": false, "text": " sub" }, { "id": 3423, "logprob": -0.6166992, "special": false, "text": "field" }, { "id": 273, "logprob": -0.056762695, "special": false, "text": " of" }, { "id": 5145, "logprob": -1.0703125, "special": false, "text": " machine" }, { "id": 4715, "logprob": -0.011428833, "special": false, "text": " learning" }, { "id": 326, "logprob": -0.9213867, "special": false, "text": " that" }, { "id": 4648, "logprob": -1.4726562, "special": false, "text": " uses" }, { "id": 13345, "logprob": -1.5039062, "special": false, "text": " artificial" }, { "id": 11454, "logprob": -0.021652222, "special": false, "text": " neural" } ] }, "generated_text": " - Deep Learning\nDeep Learning is a subfield of machine learning that uses artificial neural" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 17, "prefill": [ { "id": 1276, "logprob": null, "text": "What" }, { "id": 310, "logprob": -1.5, "text": " is" }, { "id": 18147, "logprob": -8.984375, "text": " Deep" }, { "id": 20727, "logprob": -1.96875, "text": " Learning" }, { "id": 32, "logprob": -0.93359375, "text": "?" } ], "seed": null, "tokens": [ { "id": 428, "logprob": -1.5800781, "special": false, "text": " -" }, { "id": 18147, "logprob": -3.3242188, "special": false, "text": " Deep" }, { "id": 20727, "logprob": -0.31835938, "special": false, "text": " Learning" }, { "id": 187, "logprob": -2.5644531, "special": false, "text": "\n" }, { "id": 30763, "logprob": -1.5957031, "special": false, "text": "Deep" }, { "id": 20727, "logprob": -0.69628906, "special": false, "text": " Learning" }, { "id": 310, "logprob": -0.68603516, "special": false, "text": " is" }, { "id": 247, "logprob": -0.5258789, "special": false, "text": " a" }, { "id": 749, "logprob": -1.859375, "special": false, "text": " sub" }, { "id": 3423, "logprob": -0.6166992, "special": false, "text": "field" }, { "id": 273, "logprob": -0.056762695, "special": false, "text": " of" }, { "id": 5145, "logprob": -1.0703125, "special": false, "text": " machine" }, { "id": 4715, "logprob": -0.011428833, "special": false, "text": " learning" }, { "id": 326, "logprob": -0.9213867, "special": false, "text": " that" }, { "id": 4648, "logprob": -1.4726562, "special": false, "text": " uses" }, { "id": 13345, "logprob": -1.5039062, "special": false, "text": " artificial" }, { "id": 11454, "logprob": -0.021652222, "special": false, "text": " neural" } ] }, "generated_text": " - Deep Learning\nDeep Learning is a subfield of machine learning that uses artificial neural" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 17, "prefill": [ { "id": 1276, "logprob": null, "text": "What" }, { "id": 310, "logprob": -1.5, "text": " is" }, { "id": 18147, "logprob": -8.984375, "text": " Deep" }, { "id": 20727, "logprob": -1.96875, "text": " Learning" }, { "id": 32, "logprob": -0.93359375, "text": "?" } ], "seed": null, "tokens": [ { "id": 428, "logprob": -1.5800781, "special": false, "text": " -" }, { "id": 18147, "logprob": -3.3242188, "special": false, "text": " Deep" }, { "id": 20727, "logprob": -0.31835938, "special": false, "text": " Learning" }, { "id": 187, "logprob": -2.5644531, "special": false, "text": "\n" }, { "id": 30763, "logprob": -1.5957031, "special": false, "text": "Deep" }, { "id": 20727, "logprob": -0.69628906, "special": false, "text": " Learning" }, { "id": 310, "logprob": -0.68603516, "special": false, "text": " is" }, { "id": 247, "logprob": -0.5258789, "special": false, "text": " a" }, { "id": 749, "logprob": -1.859375, "special": false, "text": " sub" }, { "id": 3423, "logprob": -0.6166992, "special": false, "text": "field" }, { "id": 273, "logprob": -0.056762695, "special": false, "text": " of" }, { "id": 5145, "logprob": -1.0703125, "special": false, "text": " machine" }, { "id": 4715, "logprob": -0.011428833, "special": false, "text": " learning" }, { "id": 326, "logprob": -0.9213867, "special": false, "text": " that" }, { "id": 4648, "logprob": -1.4726562, "special": false, "text": " uses" }, { "id": 13345, "logprob": -1.5039062, "special": false, "text": " artificial" }, { "id": 11454, "logprob": -0.021652222, "special": false, "text": " neural" } ] }, "generated_text": " - Deep Learning\nDeep Learning is a subfield of machine learning that uses artificial neural" } ]
text-generation-inference/integration-tests/models/__snapshots__/test_mpt/test_mpt_load.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_mpt/test_mpt_load.json", "repo_id": "text-generation-inference", "token_count": 7884 }
210
import pytest @pytest.fixture(scope="module") def flash_llama_gptq_handle(launcher): with launcher("huggingface/llama-7b-gptq", num_shard=2, quantize="gptq") as handle: yield handle @pytest.fixture(scope="module") async def flash_llama_gptq(flash_llama_gptq_handle): await flash_llama_gptq_handle.health(300) return flash_llama_gptq_handle.client @pytest.mark.asyncio @pytest.mark.private async def test_flash_llama_gptq(flash_llama_gptq, response_snapshot): response = await flash_llama_gptq.generate( "Test request", max_new_tokens=10, decoder_input_details=True ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.asyncio @pytest.mark.private async def test_flash_llama_gptq_all_params(flash_llama_gptq, response_snapshot): response = await flash_llama_gptq.generate( "Test request", max_new_tokens=10, repetition_penalty=1.2, return_full_text=True, temperature=0.5, top_p=0.9, top_k=10, truncate=5, typical_p=0.9, watermark=True, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.asyncio @pytest.mark.private async def test_flash_llama_gptq_load( flash_llama_gptq, generate_load, response_snapshot ): responses = await generate_load( flash_llama_gptq, "Test request", max_new_tokens=10, n=4 ) assert len(responses) == 4 assert all([r.generated_text == responses[0].generated_text for r in responses]) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_flash_llama_gptq.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_flash_llama_gptq.py", "repo_id": "text-generation-inference", "token_count": 723 }
211
[tool.poetry] name = "text-generation-integration-tests" version = "1.4.0" description = "Text Generation Inference integration tests" authors = ["Nicolas Patry <nicolas@huggingface.co>"] [tool.poetry.dependencies] python = ">=3.9,<3.13" syrupy = "4.0.1" text-generation = "^0.6.0" pytest = "^7.4.0" pytest-asyncio = "^0.21.1" docker = "^6.1.3"
text-generation-inference/integration-tests/pyproject.toml/0
{ "file_path": "text-generation-inference/integration-tests/pyproject.toml", "repo_id": "text-generation-inference", "token_count": 151 }
212
use std::fs; fn main() -> Result<(), Box<dyn std::error::Error>> { println!("cargo:rerun-if-changed=../../proto/generate.proto"); fs::create_dir("src/pb").unwrap_or(()); let mut config = prost_build::Config::new(); config.protoc_arg("--experimental_allow_proto3_optional"); tonic_build::configure() .build_client(true) .build_server(false) .out_dir("src/pb") .include_file("mod.rs") .compile_with_config(config, &["../../proto/generate.proto"], &["../../proto"]) .unwrap_or_else(|e| panic!("protobuf compilation failed: {e}")); Ok(()) }
text-generation-inference/router/client/build.rs/0
{ "file_path": "text-generation-inference/router/client/build.rs", "repo_id": "text-generation-inference", "token_count": 270 }
213
#include "q4_matmul.cuh" #include "column_remap.cuh" #include "../util.cuh" #include "../matrix.cuh" #include "../cu_compat.cuh" #include "../cuda_buffers.cuh" #if defined(USE_ROCM) #include "../hip_compat.cuh" #endif const int THREADS_X = 32; // Block size and thread count along columns in w and out const int THREADS_Y = 1; // Block size and thread count along rows in x and out typedef void (*fp_q4_matmul_kernel) ( const half*, const uint32_t*, half*, const half*, const uint32_t*, const int, const int, const int, const int, const int, const uint32_t*, bool ); template<bool use_half2, bool use_groupsize, bool use_x_map> __global__ void q4_matmul_kernel ( const half* __restrict__ x, const uint32_t* __restrict__ w, half* __restrict__ out, const half* __restrict__ w_scales, const uint32_t* __restrict__ w_zeros, const int height, const int dim, const int width, const int groupsize, const int block_size_z, const uint32_t* __restrict__ x_map, bool no_zero ) { // Start of block int x_column = block_size_z * blockIdx.z; int x_column_end = min(dim, block_size_z * (blockIdx.z + 1)); int w_column = THREADS_X * blockIdx.x + threadIdx.x; int x_row = THREADS_Y * blockIdx.y + threadIdx.y; int iterations = (x_column_end - x_column) / 8; // Views MatrixView_half x_(x, height, dim); MatrixView_half w_scales_(w_scales, dim / groupsize, width); MatrixView_q4_row w_zeros_(w_zeros, dim / groupsize, width); MatrixView_q4_column w_(w, dim, width); MatrixView_half_rw out_(out, height, width); // Zero output if (!no_zero && blockIdx.z == 0 && (threadIdx.x & 1) == 0) { *((uint32_t*) out_.item_ptr(x_row, w_column)) = 0; __syncthreads(); } // Loop over part of x row (and w column) half2 acc = {}; half acc_h = {}; if constexpr (use_groupsize) { // For quant matrices where groupsize divides BLOCK_SIZE_Z we always start on a group boundary, so this // could be slightly faster for (int k = x_column, group = x_column / groupsize; k < x_column + iterations * 8; group++, k += groupsize) { if constexpr (use_half2) { half2 w_scale = w_scales_.item_half2half2(group, w_column); uint32_t w_zero = w_zeros_.item(group, w_column) + 1; if constexpr (use_x_map) acc = dot_product_8_x_map(acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8, x_map); else acc = dot_product_8 (acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8); } else { half w_scale = w_scales_.item(group, w_column); uint32_t w_zero = w_zeros_.item(group, w_column) + 1; if constexpr (use_x_map) acc_h = dot_product_8_x_map_h(acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8, x_map); else acc_h = dot_product_8_h (acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8); } } } else { // Otherwise assume groupsize is a multiple of 8, do 8 columns per iteration and trust the cache for (int k = x_column; k < x_column + iterations * 8; k += 8) { if constexpr (use_half2) { int group = k / groupsize; half2 w_scale = w_scales_.item_half2half2(group, w_column); uint32_t w_zero = w_zeros_.item(group, w_column) + 1; if constexpr (use_x_map) acc = dot_product_8_x_map(acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1, x_map); else acc = dot_product_8 (acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1); } else { int group = k / groupsize; half w_scale = w_scales_.item(group, w_column); uint32_t w_zero = w_zeros_.item(group, w_column) + 1; if constexpr (use_x_map) acc_h = dot_product_8_x_map_h(acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1, x_map); else acc_h = dot_product_8_h (acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1); } } } // Add to block result if constexpr (use_half2) { half result = __hadd(__low2half(acc), __high2half(acc)); atomicAdd(out_.item_ptr(x_row, w_column), result); } else { atomicAdd(out_.item_ptr(x_row, w_column), acc_h); } } fp_q4_matmul_kernel q4_matmul_kernel_pick(ExLlamaTuning* tuningParams, int block_size_z, int groupsize, uint32_t* x_map) { // <bool use_half2, bool use_groupsize, bool use_x_map> if (tuningParams->matmul_no_half2) { if (block_size_z % groupsize == 0) { if (x_map) return q4_matmul_kernel<false, true, true >; else return q4_matmul_kernel<false, true, false>; } else { if (x_map) return q4_matmul_kernel<false, false, true >; else return q4_matmul_kernel<false, false, false>; } } else { if (block_size_z % groupsize == 0) { if (x_map) return q4_matmul_kernel<true, true, true >; else return q4_matmul_kernel<true, true, false>; } else { if (x_map) return q4_matmul_kernel<true, false, true >; else return q4_matmul_kernel<true, false, false>; } } }; // Compute y = x @ w void q4_matmul_cuda ( ExLlamaTuning* tuningParams, const half* x, const int x_height, const Q4Matrix* w, half* out, bool no_zero, cudaStream_t alt_stream ) { int height = x_height; int dim = w->height; int width = w->width; cudaSetDevice(w->device); uint32_t* x_map = w->cuda_x_map; const half* x_mapped = x; if (x_map && !tuningParams->matmul_fused_remap && !alt_stream) { CudaBuffers* buffers = get_buffers(w->device); column_remap_cuda(x, buffers->temp_state, x_height, dim, w->cuda_x_map); x_mapped = buffers->temp_state; x_map = NULL; } int block_size_z; if (w->width == 4096) block_size_z = 384; // 7B else if (w->width == 11008) block_size_z = 256; else if (w->width == 5120) block_size_z = 384; // 13B else if (w->width == 13824) block_size_z = 256; else if (w->width == 6656) block_size_z = 256; // 33B else if (w->width == 17920) block_size_z = 128; else block_size_z = 256; //if (!no_zero) cudaMemsetAsync(out, 0, x_height * w->width * sizeof(half)); dim3 threads(THREADS_X, THREADS_Y, 1); dim3 blocks ( (width + threads.x - 1) / threads.x, (height + threads.y - 1) / threads.y, (dim + block_size_z - 1) / block_size_z ); fp_q4_matmul_kernel kernel = q4_matmul_kernel_pick(tuningParams, block_size_z, w->groupsize, x_map); kernel<<<blocks, threads, 0, alt_stream>>> (x_mapped, w->cuda_qweight, out, w->cuda_scales, w->cuda_qzeros, height, dim, width, w->groupsize, block_size_z, x_map, no_zero); } void q4_matmul_recons_cuda ( ExLlamaTuning* tuningParams, const half* x, const int x_height, Q4Matrix* w, half* out, const cublasHandle_t handle, bool no_zero ) { int height = x_height; int dim = w->height; int width = w->width; cudaSetDevice(w->device); CudaBuffers* buffers = get_buffers(w->device); const half* x_mapped = x; if (w->cuda_x_map) { column_remap_cuda(x, buffers->temp_state, x_height, dim, w->cuda_x_map); x_mapped = buffers->temp_state; } w->reconstruct(buffers->temp_dq); const half alpha = __float2half(1.0f); const half beta = no_zero ? __float2half(1.0f) : __float2half(0.0f); cublasHgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, width, height, dim, &alpha, buffers->temp_dq, width, x_mapped, dim, &beta, out, width); // const float alpha = 1.0f; // const float beta = no_zero ? 1.0f : 0.0f; // cublasSgemmEx(handle, CUBLAS_OP_N, CUBLAS_OP_N, width, height, dim, &alpha, buffers->temp_dq, CUDA_R_16F, width, // x_mapped, CUDA_R_16F, dim, &beta, out, CUDA_R_16F, width); }
text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/q4_matmul.cu/0
{ "file_path": "text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/q4_matmul.cu", "repo_id": "text-generation-inference", "token_count": 4165 }
214
#include "compat.cuh" __forceinline__ __device__ half2 dot22_8(half2(&dq)[4], const half* a_ptr, const half2 g_result, const half qs_h) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result); return __hfma2(result, __halves2half2(qs_h, qs_h), g_result); } __forceinline__ __device__ half2 dot22_16(half2(&dq)[8], const half* a_ptr, const half2 g_result, const half qs_h) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 8; i++) result = __hfma2(dq[i], *a2_ptr++, result); return __hfma2(result, __halves2half2(qs_h, qs_h), g_result); } __forceinline__ __device__ half2 dot22_32(half2(&dq)[16], const half* a_ptr, const half2 g_result, const half qs_h) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 16; i += 1) result = __hfma2(dq[i], *a2_ptr++, result); return __hfma2(result, __halves2half2(qs_h, qs_h), g_result); } __forceinline__ __device__ float dot22_8_f(half2(&dq)[4], const half* a_ptr, const float g_result, const float qs_f) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result); float result_f = __half2float(__low2half(result)) + __half2float(__high2half(result)); return fma(result_f, qs_f, g_result); } __forceinline__ __device__ float dot22_16_f(half2(&dq)[8], const half* a_ptr, const float g_result, const float qs_f) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 8; i++) result = __hfma2(dq[i], *a2_ptr++, result); float result_f = __half2float(__low2half(result)) + __half2float(__high2half(result)); return fma(result_f, qs_f, g_result); } __forceinline__ __device__ float dot22_32_f(half2(&dq)[16], const half* a_ptr, const float g_result, const float qs_f) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 16; i += 1) result = __hfma2(dq[i], *a2_ptr++, result); float result_f = __half2float(__low2half(result)) + __half2float(__high2half(result)); return fma(result_f, qs_f, g_result); } __forceinline__ __device__ half dot22_8_h(half2(&dq)[4], const half* a_ptr, const half g_result, const half qs_h) { // Use FP32 accumulator to avoid potential overflow since unscaled weights are in the range -128..127 float result = {}; #pragma unroll for (int i = 0; i < 4; i++) { half2 w01 = dq[i]; float w0 = __low2float(w01); float w1 = __high2float(w01); float x0 = __half2float(*a_ptr++); float x1 = __half2float(*a_ptr++); result = fma(w0, x0, result); result = fma(w1, x1, result); } float qs = __half2float(qs_h); result *= qs; half result_h = __float2half_rn(result); return __hadd(result_h, g_result); } __forceinline__ __device__ half dot22_16_h(half2(&dq)[8], const half* a_ptr, const half g_result, const half qs_h) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 8; i++) result = __hfma2(dq[i], *a2_ptr++, result); half result_h = __hadd(__low2half(result), __high2half(result)); return __hfma(result_h, qs_h, g_result); } __forceinline__ __device__ half dot22_32_h(half2(&dq)[16], const half* a_ptr, const half g_result, const half qs_h) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 16; i += 1) result = __hfma2(dq[i], *a2_ptr++, result); half result_h = __hadd(__low2half(result), __high2half(result)); return __hfma(result_h, qs_h, g_result); } typedef void (*fp_gemm_half_q_half_kernel) ( const half*, const uint32_t*, const uint32_t*, const half*, half*, const int, const int, const int, const int, const uint16_t*, const uint16_t*, const int, const int, const int, const int, const int, const int, const bool, const half*, const int ); template <int m_count, bool use_r_weights, bool mul_r_weights> __global__ void gemm_half_q_half_kernel ( const half* __restrict__ a, const uint32_t* __restrict__ b_q_weight, const uint32_t* __restrict__ b_q_scale, const half* __restrict__ b_q_scale_max, half* __restrict__ c, const int size_m, const int size_n, const int size_k, const int groups, const uint16_t* __restrict__ b_q_group_map, const uint16_t* __restrict__ b_q_perm, const int rows_8, const int rows_6, const int rows_5, const int rows_4, const int rows_3, const int rows_2, const bool clear, const half* r_weights, const int r_weights_stride ) { MatrixView_half a_(a, size_m, size_k); MatrixView_half_rw c_(c, size_m, size_n); MatrixView_q4_row b_q_scale_(b_q_scale, groups, size_n); int t = threadIdx.x; // Block int offset_n = blockIdx.x * EXL2_BLOCK_KN_SIZE * 4; int offset_m = blockIdx.y * m_count; int offset_k = blockIdx.z * EXL2_BLOCK_KN_SIZE; int end_n = min(offset_n + EXL2_BLOCK_KN_SIZE * 4, size_n); int end_m = min(offset_m + m_count, size_m); int end_k = min(offset_k + EXL2_BLOCK_KN_SIZE, size_k); int n = offset_n + t * 4; // Read weights half_uint16 weights[MAX_Q_GEMM_WEIGHTS]; if constexpr (use_r_weights) { uint16_t any_w = 0; const half* w_ptr = r_weights; for (int m = 0; m < m_count; ++m) { weights[m].as_half = *w_ptr; w_ptr += r_weights_stride; any_w |= weights[m].as_uint16; } if (!any_w) return; // Early exit if all weights are zero -- does not zero output (!!!) } // Preload block_a __shared__ half block_a[m_count][EXL2_BLOCK_KN_SIZE]; if (offset_k + t < end_k) { for (int m = 0; m < m_count; ++m) { const half* a_ptr = a_.item_ptr(offset_m + m, 0); half* block_a_ptr = block_a[m]; half a0 = a_ptr[b_q_perm[offset_k + t]]; // half a0 = a_ptr[offset_k + t]; block_a_ptr[t] = a0; } } // Clear if (n >= size_n) return; if (clear && blockIdx.z == 0) // && (threadIdx.x & 1) == 0) { for (int m = 0; m < m_count; m++) *((uint64_t*) c_.item_ptr(offset_m + m, n)) = 0; } __syncthreads(); // Find initial group //int group = offset_k / groupsize; int group = b_q_group_map[offset_k * 2]; // if (offset_m == 0 && t == 0) // DBGI2(offset_k, group); // Preload scales half scales[EXL2_MAX_GROUPS_IN_BLOCK][4]; //int groups_in_block = DIVIDE((end_k - offset_k), groupsize); int temp_k = offset_k; for (int g = 0; temp_k < end_k; g++) { int qscales[4]; b_q_scale_.item4(qscales, group + g, n); qscales[0]++; qscales[1]++; qscales[2]++; qscales[3]++; half maxscale = b_q_scale_max[group + g]; scales[g][0] = __hmul(__int2half_rn(qscales[0] * qscales[0]), maxscale); scales[g][1] = __hmul(__int2half_rn(qscales[1] * qscales[1]), maxscale); scales[g][2] = __hmul(__int2half_rn(qscales[2] * qscales[2]), maxscale); scales[g][3] = __hmul(__int2half_rn(qscales[3] * qscales[3]), maxscale); temp_k += b_q_group_map[temp_k * 2 + 1]; } // a, b offset int pre_rows_8 = min(rows_8, offset_k); int pre_rows_6 = offset_k > rows_8 ? min(rows_6, offset_k) - rows_8 : 0; int pre_rows_5 = offset_k > rows_6 ? min(rows_5, offset_k) - rows_6 : 0; int pre_rows_4 = offset_k > rows_5 ? min(rows_4, offset_k) - rows_5 : 0; int pre_rows_3 = offset_k > rows_4 ? min(rows_3, offset_k) - rows_4 : 0; int pre_rows_2 = offset_k > rows_3 ? min(rows_2, offset_k) - rows_3 : 0; int qk = 0; qk += pre_rows_8 / 32 * 8; qk += pre_rows_6 / 32 * 6; qk += pre_rows_5 / 32 * 5; qk += pre_rows_4 / 32 * 4; qk += pre_rows_3 / 32 * 3; qk += pre_rows_2 / 32 * 2; const uint32_t* b_ptr = b_q_weight + qk * size_n + n; const half* a_ptr = &block_a[0][0]; int a_stride = EXL2_BLOCK_KN_SIZE; // Initial group int scales_idx = 0; half qs_h0 = scales[scales_idx][0]; half qs_h1 = scales[scales_idx][1]; half qs_h2 = scales[scales_idx][2]; half qs_h3 = scales[scales_idx][3]; int nextgroup = offset_k + b_q_group_map[offset_k * 2 + 1]; // Column result half block_c[m_count][4] = {}; // Dequantize groups int k = offset_k; while (k < rows_8 && k < end_k) { if (k == nextgroup) { group++; scales_idx++; qs_h0 = scales[scales_idx][0]; qs_h1 = scales[scales_idx][1]; qs_h2 = scales[scales_idx][2]; qs_h3 = scales[scales_idx][3]; nextgroup += b_q_group_map[k * 2 + 1]; } #pragma unroll for (int j = 0; j < 4; j++) { int4 load_int4[2]; load_int4[0] = *((int4*) b_ptr); b_ptr += size_n; load_int4[1] = *((int4*) b_ptr); b_ptr += size_n; half2 dq[4][4]; dequant_8bit_8(load_int4[0].x, load_int4[1].x, dq[0], size_n); dequant_8bit_8(load_int4[0].y, load_int4[1].y, dq[1], size_n); dequant_8bit_8(load_int4[0].z, load_int4[1].z, dq[2], size_n); dequant_8bit_8(load_int4[0].w, load_int4[1].w, dq[3], size_n); for (int m = 0; m < m_count; m++) { if constexpr (use_r_weights) { if (!weights[m].as_uint16) continue; } block_c[m][0] = dot22_8_h(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_h0); block_c[m][1] = dot22_8_h(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_h1); block_c[m][2] = dot22_8_h(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_h2); block_c[m][3] = dot22_8_h(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_h3); } a_ptr += 8; } k += 32; } while (k < rows_6 && k < end_k) { if (k == nextgroup) { group++; scales_idx++; qs_h0 = scales[scales_idx][0]; qs_h1 = scales[scales_idx][1]; qs_h2 = scales[scales_idx][2]; qs_h3 = scales[scales_idx][3]; nextgroup += b_q_group_map[k * 2 + 1]; } #pragma unroll for (int j = 0; j < 2; j++) { int4 load_int4[3]; load_int4[0] = *((int4*) b_ptr); b_ptr += size_n; load_int4[1] = *((int4*) b_ptr); b_ptr += size_n; load_int4[2] = *((int4*) b_ptr); b_ptr += size_n; half2 dq[4][8]; dequant_6bit_16(load_int4[0].x, load_int4[1].x, load_int4[2].x, dq[0], size_n); dequant_6bit_16(load_int4[0].y, load_int4[1].y, load_int4[2].y, dq[1], size_n); dequant_6bit_16(load_int4[0].z, load_int4[1].z, load_int4[2].z, dq[2], size_n); dequant_6bit_16(load_int4[0].w, load_int4[1].w, load_int4[2].w, dq[3], size_n); for (int m = 0; m < m_count; m++) { if constexpr (use_r_weights) { if (!weights[m].as_uint16) continue; } block_c[m][0] = dot22_16_h(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_h0); block_c[m][1] = dot22_16_h(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_h1); block_c[m][2] = dot22_16_h(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_h2); block_c[m][3] = dot22_16_h(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_h3); } a_ptr += 16; } k += 32; } while (k < rows_5 && k < end_k) { if (k == nextgroup) { group++; scales_idx++; qs_h0 = scales[scales_idx][0]; qs_h1 = scales[scales_idx][1]; qs_h2 = scales[scales_idx][2]; qs_h3 = scales[scales_idx][3]; nextgroup += b_q_group_map[k * 2 + 1]; } #pragma unroll for (int j = 0; j < 1; j++) { int4 load_int4[5]; load_int4[0] = *((int4*) b_ptr); b_ptr += size_n; load_int4[1] = *((int4*) b_ptr); b_ptr += size_n; load_int4[2] = *((int4*) b_ptr); b_ptr += size_n; load_int4[3] = *((int4*) b_ptr); b_ptr += size_n; load_int4[4] = *((int4*) b_ptr); b_ptr += size_n; half2 dq[4][16]; dequant_5bit_32(load_int4[0].x, load_int4[1].x, load_int4[2].x, load_int4[3].x, load_int4[4].x, dq[0], size_n); dequant_5bit_32(load_int4[0].y, load_int4[1].y, load_int4[2].y, load_int4[3].y, load_int4[4].y, dq[1], size_n); dequant_5bit_32(load_int4[0].z, load_int4[1].z, load_int4[2].z, load_int4[3].z, load_int4[4].z, dq[2], size_n); dequant_5bit_32(load_int4[0].w, load_int4[1].w, load_int4[2].w, load_int4[3].w, load_int4[4].w, dq[3], size_n); for (int m = 0; m < m_count; m++) { if constexpr (use_r_weights) { if (!weights[m].as_uint16) continue; } block_c[m][0] = dot22_32_h(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_h0); block_c[m][1] = dot22_32_h(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_h1); block_c[m][2] = dot22_32_h(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_h2); block_c[m][3] = dot22_32_h(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_h3); } a_ptr += 32; } k += 32; } while (k < rows_4 && k < end_k) { if (k == nextgroup) { group++; scales_idx++; qs_h0 = scales[scales_idx][0]; qs_h1 = scales[scales_idx][1]; qs_h2 = scales[scales_idx][2]; qs_h3 = scales[scales_idx][3]; nextgroup += b_q_group_map[k * 2 + 1]; } #pragma unroll for (int j = 0; j < 4; j++) { int4 load_int4[1]; load_int4[0] = *((int4*) b_ptr); b_ptr += size_n; half2 dq[4][4]; dequant_4bit_8(load_int4[0].x, dq[0], size_n); dequant_4bit_8(load_int4[0].y, dq[1], size_n); dequant_4bit_8(load_int4[0].z, dq[2], size_n); dequant_4bit_8(load_int4[0].w, dq[3], size_n); for (int m = 0; m < m_count; m++) { if constexpr (use_r_weights) { if (!weights[m].as_uint16) continue; } block_c[m][0] = dot22_8_h(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_h0); block_c[m][1] = dot22_8_h(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_h1); block_c[m][2] = dot22_8_h(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_h2); block_c[m][3] = dot22_8_h(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_h3); } a_ptr += 8; } k += 32; } while (k < rows_3 && k < end_k) { if (k == nextgroup) { group++; scales_idx++; qs_h0 = scales[scales_idx][0]; qs_h1 = scales[scales_idx][1]; qs_h2 = scales[scales_idx][2]; qs_h3 = scales[scales_idx][3]; nextgroup += b_q_group_map[k * 2 + 1]; } #pragma unroll for (int j = 0; j < 1; j++) { int4 load_int4[3]; load_int4[0] = *((int4*) b_ptr); b_ptr += size_n; load_int4[1] = *((int4*) b_ptr); b_ptr += size_n; load_int4[2] = *((int4*) b_ptr); b_ptr += size_n; half2 dq[4][16]; dequant_3bit_32(load_int4[0].x, load_int4[1].x, load_int4[2].x, dq[0], size_n); dequant_3bit_32(load_int4[0].y, load_int4[1].y, load_int4[2].y, dq[1], size_n); dequant_3bit_32(load_int4[0].z, load_int4[1].z, load_int4[2].z, dq[2], size_n); dequant_3bit_32(load_int4[0].w, load_int4[1].w, load_int4[2].w, dq[3], size_n); for (int m = 0; m < m_count; m++) { if constexpr (use_r_weights) { if (!weights[m].as_uint16) continue; } block_c[m][0] = dot22_32_h(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_h0); block_c[m][1] = dot22_32_h(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_h1); block_c[m][2] = dot22_32_h(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_h2); block_c[m][3] = dot22_32_h(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_h3); } a_ptr += 32; } k += 32; } while (k < rows_2 && k < end_k) { if (k == nextgroup) { group++; scales_idx++; qs_h0 = scales[scales_idx][0]; qs_h1 = scales[scales_idx][1]; qs_h2 = scales[scales_idx][2]; qs_h3 = scales[scales_idx][3]; nextgroup += b_q_group_map[k * 2 + 1]; } #pragma unroll for (int j = 0; j < 1; j++) { int4 load_int4[1]; load_int4[0] = *((int4*) b_ptr); b_ptr += size_n; half2 dq[4][8]; dequant_2bit_16(load_int4[0].x, dq[0], size_n); dequant_2bit_16(load_int4[0].y, dq[1], size_n); dequant_2bit_16(load_int4[0].z, dq[2], size_n); dequant_2bit_16(load_int4[0].w, dq[3], size_n); for (int m = 0; m < m_count; m++) { if constexpr (use_r_weights) { if (!weights[m].as_uint16) continue; } block_c[m][0] = dot22_16_h(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_h0); block_c[m][1] = dot22_16_h(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_h1); block_c[m][2] = dot22_16_h(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_h2); block_c[m][3] = dot22_16_h(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_h3); } a_ptr += 16; } k += 16; } // Accumulate column sums in c for (int m = 0; m < m_count; m++) { half2* out = (half2*)c_.item_ptr(offset_m + m, n); half2 result01 = __halves2half2(block_c[m][0], block_c[m][1]); half2 result23 = __halves2half2(block_c[m][2], block_c[m][3]); if constexpr (mul_r_weights) { half2 w_mul2 = __half2half2(weights[m].as_half); result01 = __hmul2(result01, w_mul2); result23 = __hmul2(result23, w_mul2); } atomicAdd(out , result01); atomicAdd(out + 1, result23); // *out = result01; // *(out + 1) = result23; } } template <bool use_r_weights, bool mul_r_weights> struct map_m_count_exl2 { static constexpr fp_gemm_half_q_half_kernel pick_gemm_half_q_half_kernel(const int m_count) { #if EXL2_BLOCK_M_SIZE_MAX >= 1 if (m_count == 1) return gemm_half_q_half_kernel<1, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 2 if (m_count == 2) return gemm_half_q_half_kernel<2, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 3 if (m_count == 3) return gemm_half_q_half_kernel<3, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 4 if (m_count == 4) return gemm_half_q_half_kernel<4, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 5 if (m_count == 5) return gemm_half_q_half_kernel<5, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 6 if (m_count == 6) return gemm_half_q_half_kernel<6, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 7 if (m_count == 7) return gemm_half_q_half_kernel<7, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 8 if (m_count == 8) return gemm_half_q_half_kernel<8, use_r_weights, mul_r_weights>; #endif return NULL; } }; fp_gemm_half_q_half_kernel pick_gemm_half_q_half_kernel(const int m_count, bool r_weights, bool mul_r_weights) { if (!r_weights && !mul_r_weights) return map_m_count_exl2<false, false>::pick_gemm_half_q_half_kernel(m_count); if (!r_weights && mul_r_weights) return map_m_count_exl2<false, true>::pick_gemm_half_q_half_kernel(m_count); if ( r_weights && !mul_r_weights) return map_m_count_exl2< true, false>::pick_gemm_half_q_half_kernel(m_count); if ( r_weights && mul_r_weights) return map_m_count_exl2< true, true>::pick_gemm_half_q_half_kernel(m_count); return NULL; }
text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/cuda/q_gemm_kernel.cuh/0
{ "file_path": "text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/cuda/q_gemm_kernel.cuh", "repo_id": "text-generation-inference", "token_count": 11459 }
215
import os import sys import typer from pathlib import Path from loguru import logger from typing import Optional from enum import Enum from huggingface_hub import hf_hub_download app = typer.Typer() class Quantization(str, Enum): bitsandbytes = "bitsandbytes" bitsandbytes_nf4 = "bitsandbytes-nf4" bitsandbytes_fp4 = "bitsandbytes-fp4" gptq = "gptq" awq = "awq" eetq = "eetq" class Dtype(str, Enum): float16 = "float16" bloat16 = "bfloat16" @app.command() def serve( model_id: str, revision: Optional[str] = None, sharded: bool = False, quantize: Optional[Quantization] = None, speculate: Optional[int] = None, dtype: Optional[Dtype] = None, trust_remote_code: bool = False, uds_path: Path = "/tmp/text-generation-server", logger_level: str = "INFO", json_output: bool = False, otlp_endpoint: Optional[str] = None, ): if sharded: assert ( os.getenv("RANK", None) is not None ), "RANK must be set when sharded is True" assert ( os.getenv("WORLD_SIZE", None) is not None ), "WORLD_SIZE must be set when sharded is True" assert ( os.getenv("MASTER_ADDR", None) is not None ), "MASTER_ADDR must be set when sharded is True" assert ( os.getenv("MASTER_PORT", None) is not None ), "MASTER_PORT must be set when sharded is True" # Remove default handler logger.remove() logger.add( sys.stdout, format="{message}", filter="text_generation_server", level=logger_level, serialize=json_output, backtrace=True, diagnose=False, ) # Import here after the logger is added to log potential import exceptions from text_generation_server import server from text_generation_server.tracing import setup_tracing # Setup OpenTelemetry distributed tracing if otlp_endpoint is not None: setup_tracing(shard=os.getenv("RANK", 0), otlp_endpoint=otlp_endpoint) # Downgrade enum into str for easier management later on quantize = None if quantize is None else quantize.value dtype = None if dtype is None else dtype.value if dtype is not None and quantize not in { None, "bitsandbytes", "bitsandbytes-nf4", "bitsandbytes-fp4", }: raise RuntimeError( "Only 1 can be set between `dtype` and `quantize`, as they both decide how goes the final model." ) server.serve( model_id, revision, sharded, quantize, speculate, dtype, trust_remote_code, uds_path, ) @app.command() def download_weights( model_id: str, revision: Optional[str] = None, extension: str = ".safetensors", auto_convert: bool = True, logger_level: str = "INFO", json_output: bool = False, trust_remote_code: bool = False, ): # Remove default handler logger.remove() logger.add( sys.stdout, format="{message}", filter="text_generation_server", level=logger_level, serialize=json_output, backtrace=True, diagnose=False, ) # Import here after the logger is added to log potential import exceptions from text_generation_server import utils # Test if files were already download try: utils.weight_files(model_id, revision, extension) logger.info("Files are already present on the host. " "Skipping download.") return # Local files not found except (utils.LocalEntryNotFoundError, FileNotFoundError, utils.EntryNotFoundError): pass is_local_model = (Path(model_id).exists() and Path(model_id).is_dir()) or os.getenv( "WEIGHTS_CACHE_OVERRIDE", None ) is not None if not is_local_model: try: adapter_config_filename = hf_hub_download( model_id, revision=revision, filename="adapter_config.json" ) utils.download_and_unload_peft( model_id, revision, trust_remote_code=trust_remote_code ) is_local_model = True utils.weight_files(model_id, revision, extension) return except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass try: import json medusa_head = hf_hub_download( model_id, revision=revision, filename="medusa_lm_head.pt" ) if auto_convert: medusa_sf = Path(medusa_head[: -len(".pt")] + ".safetensors") if not medusa_sf.exists(): utils.convert_files([Path(medusa_head)], [medusa_sf], []) medusa_config = hf_hub_download( model_id, revision=revision, filename="config.json" ) with open(medusa_config, "r") as f: config = json.load(f) model_id = config["base_model_name_or_path"] revision = "main" try: utils.weight_files(model_id, revision, extension) logger.info( f"Files for parent {model_id} are already present on the host. " "Skipping download." ) return # Local files not found except ( utils.LocalEntryNotFoundError, FileNotFoundError, utils.EntryNotFoundError, ): pass except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass # Try to download weights from the hub try: filenames = utils.weight_hub_files(model_id, revision, extension) utils.download_weights(filenames, model_id, revision) # Successfully downloaded weights return # No weights found on the hub with this extension except utils.EntryNotFoundError as e: # Check if we want to automatically convert to safetensors or if we can use .bin weights instead if not extension == ".safetensors" or not auto_convert: raise e elif (Path(model_id) / "medusa_lm_head.pt").exists(): # Try to load as a local Medusa model try: import json medusa_head = Path(model_id) / "medusa_lm_head.pt" if auto_convert: medusa_sf = Path(model_id) / "medusa_lm_head.safetensors" if not medusa_sf.exists(): utils.convert_files([Path(medusa_head)], [medusa_sf], []) medusa_config = Path(model_id) / "config.json" with open(medusa_config, "r") as f: config = json.load(f) model_id = config["base_model_name_or_path"] revision = "main" try: utils.weight_files(model_id, revision, extension) logger.info( f"Files for parent {model_id} are already present on the host. " "Skipping download." ) return # Local files not found except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass elif (Path(model_id) / "adapter_config.json").exists(): # Try to load as a local PEFT model try: utils.download_and_unload_peft( model_id, revision, trust_remote_code=trust_remote_code ) utils.weight_files(model_id, revision, extension) return except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): pass # Try to see if there are local pytorch weights try: # Get weights for a local model, a hub cached model and inside the WEIGHTS_CACHE_OVERRIDE local_pt_files = utils.weight_files(model_id, revision, ".bin") # No local pytorch weights except utils.LocalEntryNotFoundError: if extension == ".safetensors": logger.warning( f"No safetensors weights found for model {model_id} at revision {revision}. " f"Downloading PyTorch weights." ) # Try to see if there are pytorch weights on the hub pt_filenames = utils.weight_hub_files(model_id, revision, ".bin") # Download pytorch weights local_pt_files = utils.download_weights(pt_filenames, model_id, revision) if auto_convert: logger.warning( f"No safetensors weights found for model {model_id} at revision {revision}. " f"Converting PyTorch weights to safetensors." ) # Safetensors final filenames local_st_files = [ p.parent / f"{p.stem.lstrip('pytorch_')}.safetensors" for p in local_pt_files ] try: import transformers import json if is_local_model: config_filename = os.path.join(model_id, "config.json") else: config_filename = hf_hub_download( model_id, revision=revision, filename="config.json" ) with open(config_filename, "r") as f: config = json.load(f) architecture = config["architectures"][0] class_ = getattr(transformers, architecture) # Name for this varible depends on transformers version. discard_names = getattr(class_, "_tied_weights_keys", []) except Exception as e: discard_names = [] # Convert pytorch weights to safetensors utils.convert_files(local_pt_files, local_st_files, discard_names) @app.command() def quantize( model_id: str, output_dir: str, revision: Optional[str] = None, logger_level: str = "INFO", json_output: bool = False, trust_remote_code: bool = False, upload_to_model_id: Optional[str] = None, percdamp: float = 0.01, act_order: bool = False, ): if revision is None: revision = "main" download_weights( model_id=model_id, revision=revision, logger_level=logger_level, json_output=json_output, ) from text_generation_server.utils.gptq.quantize import quantize quantize( model_id=model_id, bits=4, groupsize=128, output_dir=output_dir, revision=revision, trust_remote_code=trust_remote_code, upload_to_model_id=upload_to_model_id, percdamp=percdamp, act_order=act_order, ) if __name__ == "__main__": app()
text-generation-inference/server/text_generation_server/cli.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/cli.py", "repo_id": "text-generation-inference", "token_count": 4994 }
216
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Idefics.""" from typing import Callable, Dict, List, Optional, Union, Iterable import numpy as np from PIL import Image from transformers.image_processing_utils import BaseImageProcessor, BatchFeature from transformers.image_transforms import ( resize, to_channel_dimension_format, rescale, normalize, ) from transformers.image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from io import BytesIO import base64 import requests from transformers import TensorType, is_torch_available IDEFICS_STANDARD_MEAN = [0.48145466, 0.4578275, 0.40821073] IDEFICS_STANDARD_STD = [0.26862954, 0.26130258, 0.27577711] def convert_to_rgb(image): # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background # for transparent images. The call to `alpha_composite` handles this case if image.mode == "RGB": return image image_rgba = image.convert("RGBA") background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) alpha_composite = Image.alpha_composite(background, image_rgba) alpha_composite = alpha_composite.convert("RGB") return alpha_composite class IdeficsImageProcessor(BaseImageProcessor): r""" Constructs a Idefics image processor. Args: image_size (`int`, *optional*, defaults to `224`): Resize to image size image_num_channels (`int`, *optional*, defaults to `3`): Number of image channels. image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, image_size: int = 224, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, image_num_channels: Optional[int] = 3, **kwargs, ) -> None: super().__init__(**kwargs) self.image_size = image_size self.image_num_channels = image_num_channels self.image_mean = image_mean self.image_std = image_std def preprocess( self, images: ImageInput, image_num_channels: Optional[int] = 3, image_size: Optional[Dict[str, int]] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, transform: Callable = None, **kwargs, ) -> TensorType.PYTORCH: """ Preprocess a batch of images. Args: images (`ImageInput`): A list of images to preprocess. image_size (`int`, *optional*, defaults to `self.image_size`): Resize to image size image_num_channels (`int`, *optional*, defaults to `self.image_num_channels`): Number of image channels. image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. transform (`Callable`, *optional*, defaults to `None`): A custom transform function that accepts a single image can be passed for training. For example, `torchvision.Compose` can be used to compose multiple transforms. If `None` - an inference mode is assumed - and then a preset of inference-specific transforms will be applied to the images Returns: a PyTorch tensor of the processed images """ image_size = image_size if image_size is not None else self.image_size image_num_channels = ( image_num_channels if image_num_channels is not None else self.image_num_channels ) image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = (image_size, image_size) if len(images) == 0: return [] images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # For training a user needs to pass their own set of transforms as a Callable. # For reference this is what was used in the original IDEFICS training: # transform = transforms.Compose([ # convert_to_rgb, # transforms.RandomResizedCrop((size, size), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC), # transforms.ToTensor(), # transforms.Normalize(mean=image_mean, std=image_std), # ]) if transform is not None: if not is_torch_available(): raise ImportError("To pass in `transform` torch must be installed") import torch images = [transform(x) for x in images] return torch.stack(images) # for inference we do the exact transforms that were used to train IDEFICS images = [convert_to_rgb(x) for x in images] # further transforms expect numpy arrays images = [to_numpy_array(x) for x in images] images = [resize(x, size, resample=PILImageResampling.BICUBIC) for x in images] images = [self.rescale(image=image, scale=1 / 255) for image in images] images = [self.normalize(x, mean=image_mean, std=image_std) for x in images] images = [ to_channel_dimension_format(x, ChannelDimension.FIRST) for x in images ] # TODO: this converts to torch tensors - switch to convert_to_tensors once it becomes available images = BatchFeature( data={"pixel_values": images}, tensor_type=TensorType.PYTORCH )["pixel_values"] return images def fetch_images(self, image_url_or_urls: Union[str, List[str]]): """ Convert a single or a list of urls into the corresponding `PIL.Image` objects. If a single url is passed, the return value will be a single object. If a list is passed a list of objects is returned. """ headers = { "User-Agent": ( "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0" " Safari/537.36" ) } if isinstance(image_url_or_urls, list): return [self.fetch_images(x) for x in image_url_or_urls] elif isinstance(image_url_or_urls, str): image = image_url_or_urls if image.startswith("http://") or image.startswith("https://"): response = requests.get( image_url_or_urls, stream=True, headers=headers, timeout=(1, 5) ) response.raise_for_status() content = response.content elif image.startswith("data:"): # https://stackoverflow.com/questions/17090571/is-there-a-way-to-set-background-image-as-a-base64-encoded-image #  image = image.split(",")[-1] content = base64.b64decode(image) else: raise ValueError(f"Unrecognized image {image}") try: image = Image.open(BytesIO(content)) # image.verify() except Exception: raise ValueError(f"Could not load image from url {image_url_or_urls}") return image else: raise ValueError( f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}" ) def rescale( self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Rescale an image by a scale factor. image = image * scale. Args: image (`np.ndarray`): Image to rescale. scale (`float`): The scaling factor to rescale pixel values by. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The rescaled image. """ # return rescale(image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs) # requires 4.32 return rescale(image, scale=scale, data_format=data_format, **kwargs) def normalize( self, image: np.ndarray, mean: Union[float, Iterable[float]], std: Union[float, Iterable[float]], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Normalize an image. image = (image - image_mean) / image_std. Args: image (`np.ndarray`): Image to normalize. mean (`float` or `Iterable[float]`): Image mean to use for normalization. std (`float` or `Iterable[float]`): Image standard deviation to use for normalization. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The normalized image. """ # TODO 4.32 return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs) import transformers transformers.IdeficsImageProcessor = IdeficsImageProcessor
text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_image_processing.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_image_processing.py", "repo_id": "text-generation-inference", "token_count": 5687 }
217
import torch import torch.distributed from opentelemetry import trace from transformers import AutoTokenizer from typing import Optional from text_generation_server.models import FlashCausalLM from text_generation_server.models.custom_modeling.flash_rw_modeling import ( RWConfig, FlashRWForCausalLM, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) tracer = trace.get_tracer(__name__) class FlashRWSharded(FlashCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: raise NotImplementedError("FlashRW is only available on GPU") tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = RWConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device, dtype, process_group=self.process_group, aliases={ "lm_head.weight": ["transformer.word_embeddings.weight"], "transformer.word_embeddings.weight": ["lm_head.weight"], }, ) config.quantize = quantize if config.quantize == "gptq": weights._set_gptq_params(model_id, revision) model = FlashRWForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(FlashRWSharded, self).__init__( model=model.to(device), tokenizer=tokenizer, num_layers=len(model.transformer.h), num_kv_heads=model.transformer.cache_size, head_size=model.transformer.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, )
text-generation-inference/server/text_generation_server/models/flash_rw.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/flash_rw.py", "repo_id": "text-generation-inference", "token_count": 1158 }
218
import asyncio import os import torch import time from grpc import aio from loguru import logger from grpc_reflection.v1alpha import reflection from pathlib import Path from typing import List, Optional from text_generation_server.cache import Cache from text_generation_server.interceptor import ExceptionInterceptor from text_generation_server.models import Model, get_model from text_generation_server.pb import generate_pb2_grpc, generate_pb2 from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer): def __init__( self, model: Model, cache: Cache, quantize: Optional[str], server_urls: List[str], ): self.cache = cache self.model = model self.quantize = quantize self.server_urls = server_urls # For some reason, inference_mode does not work well with GLOO which we use on CPU if model.device.type == "cuda": # Force inference mode for the lifetime of TextGenerationService self._inference_mode_raii_guard = torch._C._InferenceMode(True) async def Info(self, request, context): return self.model.info async def Health(self, request, context): if self.model.device.type == "cuda": torch.zeros((2, 2)).cuda() return generate_pb2.HealthResponse() async def ServiceDiscovery(self, request, context): return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls) async def ClearCache(self, request, context): if request.HasField("id"): self.cache.delete(request.id) else: self.cache.clear() return generate_pb2.ClearCacheResponse() async def FilterBatch(self, request, context): batch = self.cache.pop(request.batch_id) if batch is None: raise ValueError(f"Batch ID {request.batch_id} not found in cache.") filtered_batch = batch.filter(request.request_ids) self.cache.set(filtered_batch) return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb()) async def Warmup(self, request, context): if self.quantize == "gptq": try: # When using GPTQ, Exllama kernels need some global kernels # For which we have the finale shapes only after the model has loaded # This will allocate those buffers. from text_generation_server.utils.layers import ( create_exllama_buffers, set_device, ) set_device(self.model.device) create_exllama_buffers(request.max_prefill_tokens) except ImportError: pass if ( self.model.batch_type == IdeficsCausalLMBatch ): # Hack, i would rather use kwargs in the `from_pb` call batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.processor, self.model.dtype, self.model.device, ) else: batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.dtype, self.model.device ) max_supported_total_tokens = self.model.warmup(batch) return generate_pb2.WarmupResponse( max_supported_total_tokens=max_supported_total_tokens ) async def Prefill(self, request, context): start = time.time_ns() if ( self.model.batch_type == IdeficsCausalLMBatch ): # Hack, i would rather use kwargs in the `from_pb` call batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.processor, self.model.dtype, self.model.device, ) else: batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.dtype, self.model.device ) generations, next_batch, timings = self.model.generate_token(batch) self.cache.set(next_batch) return generate_pb2.PrefillResponse( generations=[generation.to_pb() for generation in generations], batch=next_batch.to_pb() if next_batch else None, forward_ns=timings[0], decode_ns=timings[1], total_ns=time.time_ns() - start, ) async def Decode(self, request, context): start = time.time_ns() if len(request.batches) == 0: raise ValueError("Must provide at least one batch") batches = [] for batch_pb in request.batches: batch = self.cache.pop(batch_pb.id) if batch is None: raise ValueError(f"Batch ID {batch_pb.id} not found in cache.") batches.append(batch) if len(batches) == 0: raise ValueError("All batches are empty") if len(batches) > 1: start_concat = time.time_ns() batch = self.model.batch_type.concatenate(batches) concat_ns = time.time_ns() - start_concat else: batch = batches[0] concat_ns = None generations, next_batch, timings = self.model.generate_token(batch) self.cache.set(next_batch) return generate_pb2.DecodeResponse( generations=[generation.to_pb() for generation in generations], batch=next_batch.to_pb() if next_batch else None, concat_ns=concat_ns, forward_ns=timings[0], decode_ns=timings[1], total_ns=time.time_ns() - start, ) def serve( model_id: str, revision: Optional[str], sharded: bool, quantize: Optional[str], speculate: Optional[int], dtype: Optional[str], trust_remote_code: bool, uds_path: Path, ): async def serve_inner( model_id: str, revision: Optional[str], sharded: bool = False, quantize: Optional[str] = None, speculate: Optional[int] = None, dtype: Optional[str] = None, trust_remote_code: bool = False, ): unix_socket_template = "unix://{}-{}" if sharded: server_urls = [ unix_socket_template.format(uds_path, rank) for rank in range(int(os.environ["WORLD_SIZE"])) ] local_url = server_urls[int(os.environ["RANK"])] else: local_url = unix_socket_template.format(uds_path, 0) server_urls = [local_url] try: model = get_model( model_id, revision, sharded, quantize, speculate, dtype, trust_remote_code, ) except Exception: logger.exception("Error when initializing model") raise server = aio.server( interceptors=[ ExceptionInterceptor(), UDSOpenTelemetryAioServerInterceptor(), ] ) generate_pb2_grpc.add_TextGenerationServiceServicer_to_server( TextGenerationService(model, Cache(), quantize, server_urls), server ) SERVICE_NAMES = ( generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name, reflection.SERVICE_NAME, ) reflection.enable_server_reflection(SERVICE_NAMES, server) server.add_insecure_port(local_url) await server.start() logger.info("Server started at {}".format(local_url)) try: await server.wait_for_termination() except KeyboardInterrupt: logger.info("Signal received. Shutting down") await server.stop(0) asyncio.run( serve_inner( model_id, revision, sharded, quantize, speculate, dtype, trust_remote_code ) )
text-generation-inference/server/text_generation_server/server.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/server.py", "repo_id": "text-generation-inference", "token_count": 3834 }
219
import math import torch from functools import lru_cache from typing import Optional, List, Dict, Union from transformers import ( LogitsWarper, LogitsProcessor, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper, TypicalLogitsWarper, ) mempool = torch.cuda.graph_pool_handle() if torch.cuda.is_available() else None class StaticWarper: def __init__( self, temperature=1.0, top_k=None, top_p=None, typical_p=None, ): self.warpers = [] if temperature is not None and temperature != 1.0: temperature = float(temperature) self.warpers.append(TemperatureLogitsWarper(temperature)) if top_k is not None and top_k != 0: self.warpers.append(TopKLogitsWarper(top_k=top_k)) if top_p is not None and top_p < 1.0: self.warpers.append(TopPLogitsWarper(top_p=top_p)) if typical_p is not None and typical_p < 1.0: self.warpers.append(TypicalLogitsWarper(mass=typical_p)) self.cuda_graph = None self.static_scores = None self.static_warped_scores = None self.static_next_logprob = None def __call__(self, scores): if torch.cuda.is_available(): if self.cuda_graph is None: self.static_scores = scores self.cuda_graph = torch.cuda.CUDAGraph() with torch.cuda.graph(self.cuda_graph, pool=mempool): local_scores = self.static_scores for warper in self.warpers: local_scores = warper(None, local_scores) self.static_warped_scores = local_scores # Compute logprobs self.static_next_logprob = torch.log_softmax( self.static_warped_scores, -1 ) self.static_scores.copy_(scores) self.cuda_graph.replay() return self.static_warped_scores, self.static_next_logprob # CPU branch for warper in self.warpers: scores = warper(None, scores) return scores, torch.log_softmax(scores, -1) @lru_cache(10) def static_warper( temperature: Optional[float], top_k: Optional[int], top_p: Optional[float], typical_p: Optional[float], ) -> StaticWarper: return StaticWarper( temperature=temperature, top_k=top_k, top_p=top_p, typical_p=typical_p ) class HeterogeneousRepetitionPenaltyLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] enforcing an exponential penalty on repeated sequences. This version allows for a separate value for each sample and runs inplace when possible. It doesn't validate inputs. Args: repetition_penalty (`List[float]`): The parameter for repetition penalty. 1.0 means no penalty. See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. """ def __init__(self, penalty: List[float], dtype: torch.dtype, device: torch.device): self.penalty = penalty self.penalty_tensor = torch.tensor( penalty, dtype=dtype, device=device ).unsqueeze(1) def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: score = torch.gather(scores, 1, input_ids) # if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability score = torch.where( score < 0, score * self.penalty_tensor, score / self.penalty_tensor ) scores.scatter_(1, input_ids, score) return scores def filter(self, indices): self.penalty = [self.penalty[i] for i in indices] if any([x != 1.0 for x in self.penalty]): self.penalty_tensor = self.penalty_tensor[indices] return self return None class HeterogeneousTemperatureLogitsWarper: r""" [`LogitsWarper`] for temperature (exponential scaling output probability distribution). This version allows for a separate value for each sample and runs inplace when possible. It doesn't validate inputs. Args: temperature (`float`): The value used to module the logits distribution. """ def __init__( self, temperature: List[float], dtype: torch.dtype, device: torch.device ): self.temperature = temperature self.temperature_tensor = torch.tensor( temperature, dtype=dtype, device=device ).unsqueeze(1) def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: scores.div_(self.temperature_tensor) return scores def filter(self, indices): self.temperature = [self.temperature[i] for i in indices] if any([x != 1.0 for x in self.temperature]): self.temperature_tensor = self.temperature_tensor[indices] return self return None class HeterogeneousTopPLogitsWarper(LogitsWarper): """ [`LogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off. This version allows for a separate value for each sample and runs inplace when possible. It doesn't validate inputs. Args: top_p (`float`): If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. filter_value (`float`, *optional*, defaults to `-float("Inf")`): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. """ def __init__( self, top_p: List[float], dtype: torch.dtype, device: torch.device, filter_value: float = -math.inf, min_tokens_to_keep: int = 1, ): self.top_p = top_p self.top_p_opposite = 1 - torch.tensor( top_p, dtype=dtype, device=device ).unsqueeze(1) self.filter_value = filter_value self.min_tokens_to_keep = min_tokens_to_keep def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: sorted_logits, sorted_indices = torch.sort(scores, descending=False) probs = sorted_logits.softmax(dim=-1) # This is way faster for some reason for i in range(probs.shape[0]): probs[i] = probs[i].cumsum(dim=-1) # Remove tokens with cumulative top_p above the threshold (token with 0 are kept) sorted_indices_to_remove = probs <= self.top_p_opposite # Keep at least min_tokens_to_keep sorted_indices_to_remove[..., -self.min_tokens_to_keep :] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter( 1, sorted_indices, sorted_indices_to_remove ) warped_scores = scores.masked_fill_(indices_to_remove, self.filter_value) return warped_scores def filter(self, indices): self.top_p = [self.top_p[i] for i in indices] if any([x < 1.0 for x in self.top_p]): self.top_p_opposite = self.top_p_opposite[indices] return self return None class HeterogeneousTopKLogitsWarper(LogitsWarper): r""" [`LogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements. This version allows for a separate value for each sample and runs inplace when possible. It doesn't validate inputs. Args: top_k (`int`): The number of highest probability vocabulary tokens to keep for top-k-filtering. filter_value (`float`, *optional*, defaults to `-float("Inf")`): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. """ def __init__( self, top_k: List[int], device: torch.device, filter_value: float = -math.inf, min_tokens_to_keep: int = 1, ): self.top_k = top_k self.max_top_k = max(top_k) # value - 1 as we will use top_k to index and python uses 0 based numbering self.top_k_tensor = torch.tensor( [max(x - 1, min_tokens_to_keep - 1) for x in top_k], dtype=torch.int64, device=device, ).unsqueeze(1) # 0 is a special value that disables top_k warping for this member of the batch disabled = [x == 0 for x in top_k] if any(disabled): self.top_k_disabled_mask = torch.tensor( disabled, dtype=torch.bool, device=device ).view(-1, 1) else: self.top_k_disabled_mask = None self.filter_value = filter_value def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: # If max_top_k is superior to the vocab, we need to clamp or the warper will fail if scores.size(-1) < self.max_top_k: max_top_k = scores.size(-1) top_k = torch.clamp_max(self.top_k_tensor, max_top_k) else: max_top_k = self.max_top_k top_k = self.top_k_tensor # Get the kth score for each member of the batch kth_scores = torch.gather(torch.topk(scores, max_top_k)[0], 1, top_k) # Mask member of kth_scores that do not want to use top_k warping if self.top_k_disabled_mask is not None: kth_scores.masked_fill_(self.top_k_disabled_mask, self.filter_value) # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = scores < kth_scores scores.masked_fill_(indices_to_remove, self.filter_value) return scores def filter(self, indices): self.top_k = [self.top_k[i] for i in indices] disabled = [x == 0 for x in self.top_k] if not all(disabled): self.top_k_tensor = self.top_k_tensor[indices] self.max_top_k = max(self.top_k) if self.top_k_disabled_mask is not None: self.top_k_disabled_mask = ( self.top_k_disabled_mask[indices] if any(disabled) else None ) return self return None class HeterogeneousTypicalLogitsWarper(LogitsWarper): r""" [`LogitsWarper`] that performs typical decoding. See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information. This version allows for a separate value for each sample and runs inplace when possible. It doesn't validate inputs. Args: mass (`float`): Value of typical_p between 0 and 1 inclusive, defaults to 0.9. filter_value (`float`, *optional*, defaults to `-float("Inf")`): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. """ def __init__( self, mass: List[float], dtype: torch.dtype, device: torch.device, filter_value: float = -math.inf, min_tokens_to_keep: int = 1, ): self.mass = mass self.mass_tensor = torch.tensor(mass, dtype=dtype, device=device).unsqueeze(1) # 1 is a special value that disables typical_p warping for this member of the batch disabled = [x == 1.0 for x in mass] if any(disabled): self.disabled_mask = torch.tensor(disabled, dtype=torch.bool, device=device) else: self.disabled_mask = None self.filter_value = filter_value self.min_tokens_to_keep = min_tokens_to_keep def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: # calculate entropy normalized = torch.nn.functional.log_softmax(scores, dim=-1) p = torch.exp(normalized) ent = -(normalized * p).nansum(-1, keepdim=True) # shift and sort shifted_scores = torch.abs((-normalized) - ent) sorted_scores, sorted_indices = torch.sort(shifted_scores, descending=False) sorted_logits = scores.gather(-1, sorted_indices) probs = sorted_logits.softmax(dim=-1) # This is way faster for some reason for i in range(probs.shape[0]): probs[i] = probs[i].cumsum(dim=-1) # Remove tokens with cumulative mass above the threshold last_ind = (probs < self.mass_tensor).sum(dim=1) last_ind[last_ind < 0] = 0 if self.disabled_mask is not None: last_ind.masked_fill_(self.disabled_mask, scores.shape[-1] - 1) sorted_indices_to_remove = sorted_scores > sorted_scores.gather( 1, last_ind.view(-1, 1) ) if self.min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0 indices_to_remove = sorted_indices_to_remove.scatter( 1, sorted_indices, sorted_indices_to_remove ) warped_scores = scores.masked_fill_(indices_to_remove, self.filter_value) return warped_scores def filter(self, indices): self.mass = [self.mass[i] for i in indices] disabled = [x == 1.0 for x in self.mass] if not all(disabled): self.mass_tensor = self.mass_tensor[indices] if self.disabled_mask is not None: self.disabled_mask = ( self.disabled_mask[indices] if any(disabled) else None ) return self return None class HeterogeneousProcessorWrapper(LogitsProcessor): r""" A wrapper for logit warpers or processors without heterogeneous parameter support. Args: processors (`Dict[int, Union[LogitsProcessor, LogitsWarper]]`): A mapping of sample indices to logit warpers or processors, to be run sequentially. """ def __init__( self, processors: Dict[int, Union[LogitsProcessor, LogitsWarper]], ): self.processors = processors def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: for i, processor in self.processors.items(): scores[i : i + 1] = processor(input_ids[i : i + 1], scores[i : i + 1]) return scores def filter(self, indices): new_processors = {} for i, idx in enumerate(indices): if idx in self.processors: new_processors[i] = self.processors[idx] if new_processors: self.processors = new_processors return self return None
text-generation-inference/server/text_generation_server/utils/logits_process.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/utils/logits_process.py", "repo_id": "text-generation-inference", "token_count": 6610 }
220
import { PaddingDirection, WordPiece, punctuationPreTokenizer, sequencePreTokenizer, whitespacePreTokenizer, Encoding, EncodeOptions, Tokenizer, } from '../../' import { InputSequence } from '../../types' const MOCKS_DIR = __dirname + '/__mocks__' describe('Can modify pretokenizers on the fly', () => { let encoding: Encoding let encode: ( sequence: InputSequence, pair?: InputSequence | null, options?: EncodeOptions | null, ) => Promise<Encoding> let tokenizer: Tokenizer beforeAll(async () => { const model = await WordPiece.fromFile(`${MOCKS_DIR}/vocab.txt`, { continuingSubwordPrefix: '##', }) tokenizer = new Tokenizer(model) encode = tokenizer.encode.bind(tokenizer) }) it('Can change pre tokenizer', async () => { const input = 'my name is john.!?' tokenizer.setPreTokenizer(sequencePreTokenizer([whitespacePreTokenizer()])) encoding = await encode(input, null) expect(encoding.getIds()).toEqual([0, 1, 2, 3, 4, 8]) // Change pre tokenizer tokenizer.setPreTokenizer(sequencePreTokenizer([whitespacePreTokenizer(), punctuationPreTokenizer()])) encoding = await encode(input, null) expect(encoding.getIds()).toEqual([0, 1, 2, 3, 4, 8, 8, 8]) }) }) describe('Encoding', () => { const originalString = 'my name is john' const originalPairString = 'what is yours?' let encoding: Encoding let encodingDual: Encoding let encode: ( sequence: InputSequence, pair?: InputSequence | null, options?: EncodeOptions | null, ) => Promise<Encoding> beforeAll(async () => { const model = await WordPiece.fromFile(`${MOCKS_DIR}/vocab.txt`, { continuingSubwordPrefix: '##', }) const tokenizer = new Tokenizer(model) tokenizer.setPreTokenizer(whitespacePreTokenizer()) encode = tokenizer.encode.bind(tokenizer) }) beforeEach(async () => { encoding = await encode(originalString, null) encodingDual = await encode(originalString, originalPairString) }) it('has a list of defined methods', () => { expect(typeof encoding.wordToTokens).toBe('function') expect(typeof encoding.wordToChars).toBe('function') expect(typeof encoding.tokenToChars).toBe('function') expect(typeof encoding.tokenToWord).toBe('function') expect(typeof encoding.charToToken).toBe('function') expect(typeof encoding.charToWord).toBe('function') expect(typeof encoding.getAttentionMask).toBe('function') expect(typeof encoding.getIds).toBe('function') expect(typeof encoding.getLength).toBe('function') expect(typeof encoding.getOffsets).toBe('function') expect(typeof encoding.getOverflowing).toBe('function') expect(typeof encoding.getSpecialTokensMask).toBe('function') expect(typeof encoding.getTokens).toBe('function') expect(typeof encoding.getTypeIds).toBe('function') expect(typeof encoding.getWordIds).toBe('function') expect(typeof encoding.getSequenceIds).toBe('function') expect(typeof encoding.pad).toBe('function') expect(typeof encoding.truncate).toBe('function') }) describe('truncate', () => { it('accepts `undefined` as second parameter', () => { expect(encoding.truncate(10, undefined)).toBeUndefined() }) it('should throw an Error on invalid direction', () => { const t = () => encoding.truncate(10, 3, 'not_valid') expect(t).toThrow(`not_valid is not a valid truncation direction`) }) }) describe('getWordIds', () => { it('returns the correct list of indexes', () => { const indexes = encoding.getWordIds() expect(indexes).toEqual([0, 1, 2, 3, 3]) }) }) describe('getSequenceIds', () => { it('returns the correct list of indexes', () => { expect(encoding.getSequenceIds()).toEqual([0, 0, 0, 0, 0]) expect(encodingDual.getSequenceIds()).toEqual([0, 0, 0, 0, 0, 1, 1, 1, 1]) }) }) describe('wordToTokens', () => { it('returns the correct indexes', () => { const indexes = encoding.wordToTokens(3) expect(indexes).toEqual([3, 5]) }) it('returns the corrent indexes with pair sequences', () => { expect(encodingDual.wordToTokens(3, 0)).toEqual([3, 5]) expect(encodingDual.wordToTokens(3, 1)).toEqual([8, 9]) }) it('returns undefined when out of range word', () => { const index = encoding.wordToTokens(100) expect(index).toBeNull() }) }) describe('wordToChars', () => { it('returns the correct offsets', () => { const offsets = encoding.wordToChars(3) expect(offsets).toEqual([11, 15]) }) it('returns the correct offsets with pair sequences', () => { expect(encodingDual.wordToChars(3, 0)).toEqual([11, 15]) expect(encodingDual.wordToChars(3, 1)).toEqual([13, 14]) }) it('returns undefined when out of range word', () => { const offsets = encoding.wordToChars(100) expect(offsets).toBeNull() }) }) describe('tokenToSequence', () => { it('returns the correct value', () => { expect(encodingDual.tokenToSequence(4)).toEqual(0) expect(encodingDual.tokenToSequence(6)).toEqual(1) }) }) describe('tokenToChars', () => { it('returns the correct offsets', () => { const offsets = encoding.tokenToChars(3) expect(offsets).toEqual([11, 13]) }) it('returns the correct offsets with pair sequences', () => { expect(encodingDual.tokenToChars(3)).toEqual([11, 13]) expect(encodingDual.tokenToChars(7)).toEqual([8, 13]) }) it('returns undefined when out of range token', () => { const offsets = encoding.tokenToChars(100) expect(offsets).toBeNull() }) }) describe('tokenToWord', () => { it('returns the correct index', () => { const index = encoding.tokenToWord(3) expect(index).toEqual(3) }) it('returns the correct index with pair sequences', () => { expect(encodingDual.tokenToWord(3)).toEqual(3) expect(encodingDual.tokenToWord(7)).toEqual(2) }) it('returns undefined when out of range token', () => { const index = encoding.tokenToWord(100) expect(index).toBeNull() }) }) describe('charToToken', () => { it('returns the correct index', () => { const index = encoding.charToToken(3) expect(index).toEqual(1) }) it('returns the correct index with pair sequences', () => { expect(encodingDual.charToToken(3, 0)).toEqual(1) expect(encodingDual.charToToken(3, 1)).toEqual(5) }) it('returns undefined when out of range char', () => { const index = encoding.charToToken(100) expect(index).toBeNull() }) }) describe('charToWord', () => { it('returns the correct index', () => { const index = encoding.charToWord(3) expect(index).toEqual(1) }) it('returns the correct index with pair sequences', () => { expect(encodingDual.charToWord(3, 0)).toEqual(1) expect(encodingDual.charToWord(3, 1)).toEqual(0) }) it('returns undefined when out of range char', () => { const index = encoding.charToWord(100) expect(index).toBeNull() }) }) describe('pad', () => { it('works correctly with only one parameter', () => { encoding.pad(10) expect(encoding.getTokens()).toHaveLength(10) }) it('accepts `undefined` as second parameter', () => { encoding.pad(10, undefined) expect(encoding.getTokens()).toHaveLength(10) }) it('accepts options as second parameter', () => { encoding.pad(10, { direction: PaddingDirection.Left, padToken: '[PA]', padTypeId: 10, padId: 400, }) const tokens = encoding.getTokens() expect(tokens).toHaveLength(10) expect(tokens[0]).toBe('[PA]') expect(encoding.getTypeIds()[0]).toBe(10) expect(encoding.getIds()[0]).toBe(400) }) }) })
tokenizers/bindings/node/lib/bindings/encoding.test.ts/0
{ "file_path": "tokenizers/bindings/node/lib/bindings/encoding.test.ts", "repo_id": "tokenizers", "token_count": 3021 }
221
{ "name": "tokenizers-freebsd-x64", "version": "0.13.4-rc1", "os": [ "freebsd" ], "cpu": [ "x64" ], "main": "tokenizers.freebsd-x64.node", "files": [ "tokenizers.freebsd-x64.node" ], "description": "Tokenizers platform specific bindings", "keywords": [ "napi-rs", "NAPI", "N-API", "Rust", "node-addon", "node-addon-api" ], "license": "MIT", "engines": { "node": ">= 10" }, "publishConfig": { "registry": "https://registry.npmjs.org/", "access": "public" }, "repository": "tokenizers" }
tokenizers/bindings/node/npm/freebsd-x64/package.json/0
{ "file_path": "tokenizers/bindings/node/npm/freebsd-x64/package.json", "repo_id": "tokenizers", "token_count": 272 }
222
{ "name": "tokenizers-win32-x64-msvc", "version": "0.13.4-rc1", "os": [ "win32" ], "cpu": [ "x64" ], "main": "tokenizers.win32-x64-msvc.node", "files": [ "tokenizers.win32-x64-msvc.node" ], "description": "Tokenizers platform specific bindings", "keywords": [ "napi-rs", "NAPI", "N-API", "Rust", "node-addon", "node-addon-api" ], "license": "MIT", "engines": { "node": ">= 10" }, "publishConfig": { "registry": "https://registry.npmjs.org/", "access": "public" }, "repository": "tokenizers" }
tokenizers/bindings/node/npm/win32-x64-msvc/package.json/0
{ "file_path": "tokenizers/bindings/node/npm/win32-x64-msvc/package.json", "repo_id": "tokenizers", "token_count": 277 }
223
use napi::bindgen_prelude::*; use napi_derive::napi; use tokenizers as tk; use tokenizers::Encoding; use crate::encoding::JsEncoding; #[napi] pub fn slice(s: String, begin_index: Option<i32>, end_index: Option<i32>) -> Result<String> { let len = s.chars().count(); let get_index = |x: i32| -> usize { if x >= 0 { x as usize } else { (len as i32 + x) as usize } }; let begin_index = get_index(begin_index.unwrap_or(0)); let end_index = get_index(end_index.unwrap_or(len as i32)); if let Some(slice) = tk::tokenizer::normalizer::get_range_of(&s, begin_index..end_index) { Ok(slice.to_string()) } else { Err(Error::new( Status::GenericFailure, "Error in offsets".to_string(), )) } } #[napi] pub fn merge_encodings( encodings: Vec<&JsEncoding>, growing_offsets: Option<bool>, ) -> Result<JsEncoding> { let growing_offsets = growing_offsets.unwrap_or(false); let encodings: Vec<_> = encodings .into_iter() .map(|enc| enc.encoding.to_owned().unwrap()) .collect(); let new_encoding = Encoding::merge(encodings, growing_offsets); let js_encoding = JsEncoding { encoding: Some(new_encoding), }; Ok(js_encoding) }
tokenizers/bindings/node/src/utils.rs/0
{ "file_path": "tokenizers/bindings/node/src/utils.rs", "repo_id": "tokenizers", "token_count": 503 }
224
import datasets from tokenizers import Tokenizer, models, normalizers, pre_tokenizers, trainers # Build a tokenizer bpe_tokenizer = Tokenizer(models.BPE()) bpe_tokenizer.pre_tokenizer = pre_tokenizers.Whitespace() bpe_tokenizer.normalizer = normalizers.Lowercase() # Initialize a dataset dataset = datasets.load_dataset("wikitext", "wikitext-103-raw-v1", split="train") # Build an iterator over this dataset def batch_iterator(): batch_size = 1000 for batch in dataset.iter(batch_size=batch_size): yield batch["text"] # And finally train bpe_tokenizer.train_from_iterator(batch_iterator(), length=len(dataset))
tokenizers/bindings/python/examples/train_with_datasets.py/0
{ "file_path": "tokenizers/bindings/python/examples/train_with_datasets.py", "repo_id": "tokenizers", "token_count": 209 }
225
# Generated content DO NOT EDIT class Normalizer: """ Base class for all normalizers This class is not supposed to be instantiated directly. Instead, any implementation of a Normalizer will return an instance of this class when instantiated. """ def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class BertNormalizer(Normalizer): """ BertNormalizer Takes care of normalizing raw text before giving it to a Bert model. This includes cleaning the text, handling accents, chinese chars and lowercasing Args: clean_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to clean the text, by removing any control characters and replacing all whitespaces by the classic one. handle_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to handle chinese chars by putting spaces around them. strip_accents (:obj:`bool`, `optional`): Whether to strip all accents. If this option is not specified (ie == None), then it will be determined by the value for `lowercase` (as in the original Bert). lowercase (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to lowercase. """ def __init__(self, clean_text=True, handle_chinese_chars=True, strip_accents=None, lowercase=True): pass def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class Lowercase(Normalizer): """ Lowercase Normalizer """ def __init__(self): pass def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class NFC(Normalizer): """ NFC Unicode Normalizer """ def __init__(self): pass def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class NFD(Normalizer): """ NFD Unicode Normalizer """ def __init__(self): pass def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class NFKC(Normalizer): """ NFKC Unicode Normalizer """ def __init__(self): pass def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class NFKD(Normalizer): """ NFKD Unicode Normalizer """ def __init__(self): pass def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class Nmt(Normalizer): """ Nmt normalizer """ def __init__(self): pass def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class Precompiled(Normalizer): """ Precompiled normalizer Don't use manually it is used for compatiblity for SentencePiece. """ def __init__(self, precompiled_charsmap): pass def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class Prepend(Normalizer): """ Prepend normalizer """ def __init__(self, prepend): pass def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class Replace(Normalizer): """ Replace normalizer """ def __init__(self, pattern, content): pass def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class Sequence(Normalizer): """ Allows concatenating multiple other Normalizer as a Sequence. All the normalizers run in sequence in the given order Args: normalizers (:obj:`List[Normalizer]`): A list of Normalizer to be run as a sequence """ def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class Strip(Normalizer): """ Strip normalizer """ def __init__(self, left=True, right=True): pass def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass class StripAccents(Normalizer): """ StripAccents normalizer """ def __init__(self): pass def normalize(self, normalized): """ Normalize a :class:`~tokenizers.NormalizedString` in-place This method allows to modify a :class:`~tokenizers.NormalizedString` to keep track of the alignment information. If you just want to see the result of the normalization on a raw string, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize_str` Args: normalized (:class:`~tokenizers.NormalizedString`): The normalized string on which to apply this :class:`~tokenizers.normalizers.Normalizer` """ pass def normalize_str(self, sequence): """ Normalize the given string This method provides a way to visualize the effect of a :class:`~tokenizers.normalizers.Normalizer` but it does not keep track of the alignment information. If you need to get/convert offsets, you can use :meth:`~tokenizers.normalizers.Normalizer.normalize` Args: sequence (:obj:`str`): A string to normalize Returns: :obj:`str`: A string after normalization """ pass
tokenizers/bindings/python/py_src/tokenizers/normalizers/__init__.pyi/0
{ "file_path": "tokenizers/bindings/python/py_src/tokenizers/normalizers/__init__.pyi", "repo_id": "tokenizers", "token_count": 8053 }
226
use std::sync::{Arc, RwLock}; use crate::utils::PyChar; use crate::utils::PyPattern; use pyo3::exceptions; use pyo3::prelude::*; use pyo3::types::*; use serde::de::Error; use serde::{Deserialize, Deserializer, Serialize, Serializer}; use tk::decoders::bpe::BPEDecoder; use tk::decoders::byte_fallback::ByteFallback; use tk::decoders::byte_level::ByteLevel; use tk::decoders::ctc::CTC; use tk::decoders::fuse::Fuse; use tk::decoders::metaspace::Metaspace; use tk::decoders::sequence::Sequence; use tk::decoders::strip::Strip; use tk::decoders::wordpiece::WordPiece; use tk::decoders::DecoderWrapper; use tk::normalizers::replace::Replace; use tk::Decoder; use tokenizers as tk; use super::error::ToPyResult; /// Base class for all decoders /// /// This class is not supposed to be instantiated directly. Instead, any implementation of /// a Decoder will return an instance of this class when instantiated. #[pyclass(dict, module = "tokenizers.decoders", name = "Decoder", subclass)] #[derive(Clone, Deserialize, Serialize)] pub struct PyDecoder { #[serde(flatten)] pub(crate) decoder: PyDecoderWrapper, } impl PyDecoder { pub(crate) fn new(decoder: PyDecoderWrapper) -> Self { PyDecoder { decoder } } pub(crate) fn get_as_subtype(&self, py: Python<'_>) -> PyResult<PyObject> { let base = self.clone(); Ok(match &self.decoder { PyDecoderWrapper::Custom(_) => Py::new(py, base)?.into_py(py), PyDecoderWrapper::Wrapped(inner) => match &*inner.as_ref().read().unwrap() { DecoderWrapper::Metaspace(_) => Py::new(py, (PyMetaspaceDec {}, base))?.into_py(py), DecoderWrapper::WordPiece(_) => Py::new(py, (PyWordPieceDec {}, base))?.into_py(py), DecoderWrapper::ByteFallback(_) => { Py::new(py, (PyByteFallbackDec {}, base))?.into_py(py) } DecoderWrapper::Strip(_) => Py::new(py, (PyStrip {}, base))?.into_py(py), DecoderWrapper::Fuse(_) => Py::new(py, (PyFuseDec {}, base))?.into_py(py), DecoderWrapper::ByteLevel(_) => Py::new(py, (PyByteLevelDec {}, base))?.into_py(py), DecoderWrapper::Replace(_) => Py::new(py, (PyReplaceDec {}, base))?.into_py(py), DecoderWrapper::BPE(_) => Py::new(py, (PyBPEDecoder {}, base))?.into_py(py), DecoderWrapper::CTC(_) => Py::new(py, (PyCTCDecoder {}, base))?.into_py(py), DecoderWrapper::Sequence(_) => { Py::new(py, (PySequenceDecoder {}, base))?.into_py(py) } }, }) } } impl Decoder for PyDecoder { fn decode_chain(&self, tokens: Vec<String>) -> tk::Result<Vec<String>> { self.decoder.decode_chain(tokens) } } #[pymethods] impl PyDecoder { #[staticmethod] fn custom(decoder: PyObject) -> Self { let decoder = PyDecoderWrapper::Custom(Arc::new(RwLock::new(CustomDecoder::new(decoder)))); PyDecoder::new(decoder) } fn __getstate__(&self, py: Python) -> PyResult<PyObject> { let data = serde_json::to_string(&self.decoder).map_err(|e| { exceptions::PyException::new_err(format!( "Error while attempting to pickle Decoder: {}", e )) })?; Ok(PyBytes::new(py, data.as_bytes()).to_object(py)) } fn __setstate__(&mut self, py: Python, state: PyObject) -> PyResult<()> { match state.extract::<&PyBytes>(py) { Ok(s) => { self.decoder = serde_json::from_slice(s.as_bytes()).map_err(|e| { exceptions::PyException::new_err(format!( "Error while attempting to unpickle Decoder: {}", e )) })?; Ok(()) } Err(e) => Err(e), } } /// Decode the given list of tokens to a final string /// /// Args: /// tokens (:obj:`List[str]`): /// The list of tokens to decode /// /// Returns: /// :obj:`str`: The decoded string #[pyo3(text_signature = "(self, tokens)")] fn decode(&self, tokens: Vec<String>) -> PyResult<String> { ToPyResult(self.decoder.decode(tokens)).into() } } macro_rules! getter { ($self: ident, $variant: ident, $($name: tt)+) => {{ let super_ = $self.as_ref(); if let PyDecoderWrapper::Wrapped(ref wrap) = super_.decoder { if let DecoderWrapper::$variant(ref dec) = *wrap.read().unwrap() { dec.$($name)+ } else { unreachable!() } } else { unreachable!() } }}; } macro_rules! setter { ($self: ident, $variant: ident, $name: ident, $value: expr) => {{ let super_ = $self.as_ref(); if let PyDecoderWrapper::Wrapped(ref wrap) = super_.decoder { if let DecoderWrapper::$variant(ref mut dec) = *wrap.write().unwrap() { dec.$name = $value; } } }}; ($self: ident, $variant: ident, @$name: ident, $value: expr) => {{ let super_ = $self.as_ref(); if let PyDecoderWrapper::Wrapped(ref wrap) = super_.decoder { if let DecoderWrapper::$variant(ref mut dec) = *wrap.write().unwrap() { dec.$name($value); } } }}; } /// ByteLevel Decoder /// /// This decoder is to be used in tandem with the :class:`~tokenizers.pre_tokenizers.ByteLevel` /// :class:`~tokenizers.pre_tokenizers.PreTokenizer`. #[pyclass(extends=PyDecoder, module = "tokenizers.decoders", name = "ByteLevel")] pub struct PyByteLevelDec {} #[pymethods] impl PyByteLevelDec { #[new] #[pyo3(signature = (**_kwargs), text_signature = "(self)")] fn new(_kwargs: Option<&PyDict>) -> (Self, PyDecoder) { (PyByteLevelDec {}, ByteLevel::default().into()) } } /// Replace Decoder /// /// This decoder is to be used in tandem with the :class:`~tokenizers.pre_tokenizers.Replace` /// :class:`~tokenizers.pre_tokenizers.PreTokenizer`. #[pyclass(extends=PyDecoder, module = "tokenizers.decoders", name = "Replace")] pub struct PyReplaceDec {} #[pymethods] impl PyReplaceDec { #[new] #[pyo3(text_signature = "(self, pattern, content)")] fn new(pattern: PyPattern, content: String) -> PyResult<(Self, PyDecoder)> { Ok(( PyReplaceDec {}, ToPyResult(Replace::new(pattern, content)).into_py()?.into(), )) } } /// WordPiece Decoder /// /// Args: /// prefix (:obj:`str`, `optional`, defaults to :obj:`##`): /// The prefix to use for subwords that are not a beginning-of-word /// /// cleanup (:obj:`bool`, `optional`, defaults to :obj:`True`): /// Whether to cleanup some tokenization artifacts. Mainly spaces before punctuation, /// and some abbreviated english forms. #[pyclass(extends=PyDecoder, module = "tokenizers.decoders", name = "WordPiece")] pub struct PyWordPieceDec {} #[pymethods] impl PyWordPieceDec { #[getter] fn get_prefix(self_: PyRef<Self>) -> String { getter!(self_, WordPiece, prefix.clone()) } #[setter] fn set_prefix(self_: PyRef<Self>, prefix: String) { setter!(self_, WordPiece, prefix, prefix); } #[getter] fn get_cleanup(self_: PyRef<Self>) -> bool { getter!(self_, WordPiece, cleanup) } #[setter] fn set_cleanup(self_: PyRef<Self>, cleanup: bool) { setter!(self_, WordPiece, cleanup, cleanup); } #[new] #[pyo3(signature = (prefix = String::from("##"), cleanup = true), text_signature = "(self, prefix=\"##\", cleanup=True)")] fn new(prefix: String, cleanup: bool) -> (Self, PyDecoder) { (PyWordPieceDec {}, WordPiece::new(prefix, cleanup).into()) } } /// ByteFallback Decoder /// ByteFallback is a simple trick which converts tokens looking like `<0x61>` /// to pure bytes, and attempts to make them into a string. If the tokens /// cannot be decoded you will get � instead for each inconvertable byte token /// #[pyclass(extends=PyDecoder, module = "tokenizers.decoders", name = "ByteFallback")] pub struct PyByteFallbackDec {} #[pymethods] impl PyByteFallbackDec { #[new] #[pyo3(signature = (), text_signature = "(self)")] fn new() -> (Self, PyDecoder) { (PyByteFallbackDec {}, ByteFallback::new().into()) } } /// Fuse Decoder /// Fuse simply fuses every token into a single string. /// This is the last step of decoding, this decoder exists only if /// there is need to add other decoders *after* the fusion #[pyclass(extends=PyDecoder, module = "tokenizers.decoders", name = "Fuse")] pub struct PyFuseDec {} #[pymethods] impl PyFuseDec { #[new] #[pyo3(signature = (), text_signature = "(self)")] fn new() -> (Self, PyDecoder) { (PyFuseDec {}, Fuse::new().into()) } } /// Strip normalizer /// Strips n left characters of each token, or n right characters of each token #[pyclass(extends=PyDecoder, module = "tokenizers.decoders", name = "Strip")] pub struct PyStrip {} #[pymethods] impl PyStrip { #[getter] fn get_start(self_: PyRef<Self>) -> usize { getter!(self_, Strip, start) } #[setter] fn set_start(self_: PyRef<Self>, start: usize) { setter!(self_, Strip, start, start) } #[getter] fn get_stop(self_: PyRef<Self>) -> usize { getter!(self_, Strip, stop) } #[setter] fn set_stop(self_: PyRef<Self>, stop: usize) { setter!(self_, Strip, stop, stop) } #[getter] fn get_content(self_: PyRef<Self>) -> char { getter!(self_, Strip, content) } #[setter] fn set_content(self_: PyRef<Self>, content: char) { setter!(self_, Strip, content, content) } #[new] #[pyo3(signature = (content=' ', left=0, right=0), text_signature = "(self, content, left=0, right=0)")] fn new(content: char, left: usize, right: usize) -> (Self, PyDecoder) { (PyStrip {}, Strip::new(content, left, right).into()) } } /// Metaspace Decoder /// /// Args: /// replacement (:obj:`str`, `optional`, defaults to :obj:`▁`): /// The replacement character. Must be exactly one character. By default we /// use the `▁` (U+2581) meta symbol (Same as in SentencePiece). /// /// add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`True`): /// Whether to add a space to the first word if there isn't already one. This /// lets us treat `hello` exactly like `say hello`. #[pyclass(extends=PyDecoder, module = "tokenizers.decoders", name = "Metaspace")] pub struct PyMetaspaceDec {} #[pymethods] impl PyMetaspaceDec { #[getter] fn get_replacement(self_: PyRef<Self>) -> String { getter!(self_, Metaspace, get_replacement().to_string()) } #[setter] fn set_replacement(self_: PyRef<Self>, replacement: PyChar) { setter!(self_, Metaspace, @set_replacement, replacement.0); } #[getter] fn get_add_prefix_space(self_: PyRef<Self>) -> bool { getter!(self_, Metaspace, add_prefix_space) } #[setter] fn set_add_prefix_space(self_: PyRef<Self>, add_prefix_space: bool) { setter!(self_, Metaspace, add_prefix_space, add_prefix_space); } #[new] #[pyo3(signature = (replacement = PyChar('▁'), add_prefix_space = true), text_signature = "(self, replacement = \"▁\", add_prefix_space = True)")] fn new(replacement: PyChar, add_prefix_space: bool) -> (Self, PyDecoder) { ( PyMetaspaceDec {}, Metaspace::new(replacement.0, add_prefix_space).into(), ) } } /// BPEDecoder Decoder /// /// Args: /// suffix (:obj:`str`, `optional`, defaults to :obj:`</w>`): /// The suffix that was used to caracterize an end-of-word. This suffix will /// be replaced by whitespaces during the decoding #[pyclass(extends=PyDecoder, module = "tokenizers.decoders", name = "BPEDecoder")] pub struct PyBPEDecoder {} #[pymethods] impl PyBPEDecoder { #[getter] fn get_suffix(self_: PyRef<Self>) -> String { getter!(self_, BPE, suffix.clone()) } #[setter] fn set_suffix(self_: PyRef<Self>, suffix: String) { setter!(self_, BPE, suffix, suffix); } #[new] #[pyo3(signature = (suffix = String::from("</w>")), text_signature = "(self, suffix=\"</w>\")")] fn new(suffix: String) -> (Self, PyDecoder) { (PyBPEDecoder {}, BPEDecoder::new(suffix).into()) } } /// CTC Decoder /// /// Args: /// pad_token (:obj:`str`, `optional`, defaults to :obj:`<pad>`): /// The pad token used by CTC to delimit a new token. /// word_delimiter_token (:obj:`str`, `optional`, defaults to :obj:`|`): /// The word delimiter token. It will be replaced by a <space> /// cleanup (:obj:`bool`, `optional`, defaults to :obj:`True`): /// Whether to cleanup some tokenization artifacts. /// Mainly spaces before punctuation, and some abbreviated english forms. #[pyclass(extends=PyDecoder, module = "tokenizers.decoders", name = "CTC")] pub struct PyCTCDecoder {} #[pymethods] impl PyCTCDecoder { #[getter] fn get_pad_token(self_: PyRef<Self>) -> String { getter!(self_, CTC, pad_token.clone()) } #[setter] fn set_pad_token(self_: PyRef<Self>, pad_token: String) { setter!(self_, CTC, pad_token, pad_token); } #[getter] fn get_word_delimiter_token(self_: PyRef<Self>) -> String { getter!(self_, CTC, word_delimiter_token.clone()) } #[setter] fn set_word_delimiter_token(self_: PyRef<Self>, word_delimiter_token: String) { setter!(self_, CTC, word_delimiter_token, word_delimiter_token); } #[getter] fn get_cleanup(self_: PyRef<Self>) -> bool { getter!(self_, CTC, cleanup) } #[setter] fn set_cleanup(self_: PyRef<Self>, cleanup: bool) { setter!(self_, CTC, cleanup, cleanup); } #[new] #[pyo3(signature = ( pad_token = String::from("<pad>"), word_delimiter_token = String::from("|"), cleanup = true ), text_signature = "(self, pad_token=\"<pad>\", word_delimiter_token=\"|\", cleanup=True)")] fn new(pad_token: String, word_delimiter_token: String, cleanup: bool) -> (Self, PyDecoder) { ( PyCTCDecoder {}, CTC::new(pad_token, word_delimiter_token, cleanup).into(), ) } } /// Sequence Decoder /// /// Args: /// decoders (:obj:`List[Decoder]`) /// The decoders that need to be chained #[pyclass(extends=PyDecoder, module = "tokenizers.decoders", name="Sequence")] pub struct PySequenceDecoder {} #[pymethods] impl PySequenceDecoder { #[new] #[pyo3(signature = (decoders_py), text_signature = "(self, decoders)")] fn new(decoders_py: &PyList) -> PyResult<(Self, PyDecoder)> { let mut decoders: Vec<DecoderWrapper> = Vec::with_capacity(decoders_py.len()); for decoder_py in decoders_py.iter() { let decoder: PyRef<PyDecoder> = decoder_py.extract()?; let decoder = match &decoder.decoder { PyDecoderWrapper::Wrapped(inner) => inner, PyDecoderWrapper::Custom(_) => unimplemented!(), }; decoders.push(decoder.read().unwrap().clone()); } Ok((PySequenceDecoder {}, Sequence::new(decoders).into())) } fn __getnewargs__<'p>(&self, py: Python<'p>) -> &'p PyTuple { PyTuple::new(py, [PyList::empty(py)]) } } #[derive(Clone)] pub(crate) struct CustomDecoder { inner: PyObject, } impl CustomDecoder { pub(crate) fn new(inner: PyObject) -> Self { CustomDecoder { inner } } } impl Decoder for CustomDecoder { fn decode(&self, tokens: Vec<String>) -> tk::Result<String> { Python::with_gil(|py| { let decoded = self .inner .call_method(py, "decode", (tokens,), None)? .extract(py)?; Ok(decoded) }) } fn decode_chain(&self, tokens: Vec<String>) -> tk::Result<Vec<String>> { Python::with_gil(|py| { let decoded = self .inner .call_method(py, "decode_chain", (tokens,), None)? .extract(py)?; Ok(decoded) }) } } impl Serialize for CustomDecoder { fn serialize<S>(&self, _serializer: S) -> std::result::Result<S::Ok, S::Error> where S: Serializer, { Err(serde::ser::Error::custom( "Custom PyDecoder cannot be serialized", )) } } impl<'de> Deserialize<'de> for CustomDecoder { fn deserialize<D>(_deserializer: D) -> std::result::Result<Self, D::Error> where D: Deserializer<'de>, { Err(D::Error::custom("PyDecoder cannot be deserialized")) } } #[derive(Clone, Deserialize, Serialize)] #[serde(untagged)] pub(crate) enum PyDecoderWrapper { Custom(Arc<RwLock<CustomDecoder>>), Wrapped(Arc<RwLock<DecoderWrapper>>), } impl<I> From<I> for PyDecoderWrapper where I: Into<DecoderWrapper>, { fn from(norm: I) -> Self { PyDecoderWrapper::Wrapped(Arc::new(RwLock::new(norm.into()))) } } impl<I> From<I> for PyDecoder where I: Into<DecoderWrapper>, { fn from(dec: I) -> Self { PyDecoder { decoder: dec.into().into(), } } } impl Decoder for PyDecoderWrapper { fn decode_chain(&self, tokens: Vec<String>) -> tk::Result<Vec<String>> { match self { PyDecoderWrapper::Wrapped(inner) => inner.read().unwrap().decode_chain(tokens), PyDecoderWrapper::Custom(inner) => inner.read().unwrap().decode_chain(tokens), } } } /// Decoders Module #[pymodule] pub fn decoders(_py: Python, m: &PyModule) -> PyResult<()> { m.add_class::<PyDecoder>()?; m.add_class::<PyByteLevelDec>()?; m.add_class::<PyReplaceDec>()?; m.add_class::<PyWordPieceDec>()?; m.add_class::<PyByteFallbackDec>()?; m.add_class::<PyFuseDec>()?; m.add_class::<PyStrip>()?; m.add_class::<PyMetaspaceDec>()?; m.add_class::<PyBPEDecoder>()?; m.add_class::<PyCTCDecoder>()?; m.add_class::<PySequenceDecoder>()?; Ok(()) } #[cfg(test)] mod test { use std::sync::{Arc, RwLock}; use pyo3::prelude::*; use tk::decoders::metaspace::Metaspace; use tk::decoders::DecoderWrapper; use crate::decoders::{CustomDecoder, PyDecoder, PyDecoderWrapper}; #[test] fn get_subtype() { Python::with_gil(|py| { let py_dec = PyDecoder::new(Metaspace::default().into()); let py_meta = py_dec.get_as_subtype(py).unwrap(); assert_eq!("Metaspace", py_meta.as_ref(py).get_type().name().unwrap()); }) } #[test] fn serialize() { let py_wrapped: PyDecoderWrapper = Metaspace::default().into(); let py_ser = serde_json::to_string(&py_wrapped).unwrap(); let rs_wrapped = DecoderWrapper::Metaspace(Metaspace::default()); let rs_ser = serde_json::to_string(&rs_wrapped).unwrap(); assert_eq!(py_ser, rs_ser); let py_dec: PyDecoder = serde_json::from_str(&rs_ser).unwrap(); match py_dec.decoder { PyDecoderWrapper::Wrapped(msp) => match *msp.as_ref().read().unwrap() { DecoderWrapper::Metaspace(_) => {} _ => panic!("Expected Metaspace"), }, _ => panic!("Expected wrapped, not custom."), } let obj = Python::with_gil(|py| { let py_msp = PyDecoder::new(Metaspace::default().into()); let obj: PyObject = Py::new(py, py_msp).unwrap().into_py(py); obj }); let py_seq = PyDecoderWrapper::Custom(Arc::new(RwLock::new(CustomDecoder::new(obj)))); assert!(serde_json::to_string(&py_seq).is_err()); } }
tokenizers/bindings/python/src/decoders.rs/0
{ "file_path": "tokenizers/bindings/python/src/decoders.rs", "repo_id": "tokenizers", "token_count": 9016 }
227
import argparse import inspect import os from pathlib import Path import black INDENT = " " * 4 GENERATED_COMMENT = "# Generated content DO NOT EDIT\n" def do_indent(text: str, indent: str): return text.replace("\n", f"\n{indent}") def function(obj, indent, text_signature=None): if text_signature is None: text_signature = obj.__text_signature__ string = "" string += f"{indent}def {obj.__name__}{text_signature}:\n" indent += INDENT string += f'{indent}"""\n' string += f"{indent}{do_indent(obj.__doc__, indent)}\n" string += f'{indent}"""\n' string += f"{indent}pass\n" string += "\n" string += "\n" return string def member_sort(member): if inspect.isclass(member): value = 10 + len(inspect.getmro(member)) else: value = 1 return value def fn_predicate(obj): value = inspect.ismethoddescriptor(obj) or inspect.isbuiltin(obj) if value: return obj.__doc__ and obj.__text_signature__ and not obj.__name__.startswith("_") if inspect.isgetsetdescriptor(obj): return obj.__doc__ and not obj.__name__.startswith("_") return False def get_module_members(module): members = [ member for name, member in inspect.getmembers(module) if not name.startswith("_") and not inspect.ismodule(member) ] members.sort(key=member_sort) return members def pyi_file(obj, indent=""): string = "" if inspect.ismodule(obj): string += GENERATED_COMMENT members = get_module_members(obj) for member in members: string += pyi_file(member, indent) elif inspect.isclass(obj): indent += INDENT mro = inspect.getmro(obj) if len(mro) > 2: inherit = f"({mro[1].__name__})" else: inherit = "" string += f"class {obj.__name__}{inherit}:\n" body = "" if obj.__doc__: body += f'{indent}"""\n{indent}{do_indent(obj.__doc__, indent)}\n{indent}"""\n' fns = inspect.getmembers(obj, fn_predicate) # Init if obj.__text_signature__: body += f"{indent}def __init__{obj.__text_signature__}:\n" body += f"{indent+INDENT}pass\n" body += "\n" for (name, fn) in fns: body += pyi_file(fn, indent=indent) if not body: body += f"{indent}pass\n" string += body string += "\n\n" elif inspect.isbuiltin(obj): string += f"{indent}@staticmethod\n" string += function(obj, indent) elif inspect.ismethoddescriptor(obj): string += function(obj, indent) elif inspect.isgetsetdescriptor(obj): # TODO it would be interesing to add the setter maybe ? string += f"{indent}@property\n" string += function(obj, indent, text_signature="(self)") else: raise Exception(f"Object {obj} is not supported") return string def py_file(module, origin): members = get_module_members(module) string = GENERATED_COMMENT string += f"from .. import {origin}\n" string += "\n" for member in members: name = member.__name__ string += f"{name} = {origin}.{name}\n" return string def do_black(content, is_pyi): mode = black.Mode( target_versions={black.TargetVersion.PY35}, line_length=119, is_pyi=is_pyi, string_normalization=True, experimental_string_processing=False, ) try: return black.format_file_contents(content, fast=True, mode=mode) except black.NothingChanged: return content def write(module, directory, origin, check=False): submodules = [(name, member) for name, member in inspect.getmembers(module) if inspect.ismodule(member)] filename = os.path.join(directory, "__init__.pyi") pyi_content = pyi_file(module) pyi_content = do_black(pyi_content, is_pyi=True) os.makedirs(directory, exist_ok=True) if check: with open(filename, "r") as f: data = f.read() assert data == pyi_content, f"The content of {filename} seems outdated, please run `python stub.py`" else: with open(filename, "w") as f: f.write(pyi_content) filename = os.path.join(directory, "__init__.py") py_content = py_file(module, origin) py_content = do_black(py_content, is_pyi=False) os.makedirs(directory, exist_ok=True) is_auto = False if not os.path.exists(filename): is_auto = True else: with open(filename, "r") as f: line = f.readline() if line == GENERATED_COMMENT: is_auto = True if is_auto: if check: with open(filename, "r") as f: data = f.read() assert data == py_content, f"The content of {filename} seems outdated, please run `python stub.py`" else: with open(filename, "w") as f: f.write(py_content) for name, submodule in submodules: write(submodule, os.path.join(directory, name), f"{name}", check=check) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--check", action="store_true") args = parser.parse_args() import tokenizers write(tokenizers.tokenizers, "py_src/tokenizers/", "tokenizers", check=args.check)
tokenizers/bindings/python/stub.py/0
{ "file_path": "tokenizers/bindings/python/stub.py", "repo_id": "tokenizers", "token_count": 2385 }
228
# Models <tokenizerslangcontent> <python> ## BPE [[autodoc]] tokenizers.models.BPE ## Model [[autodoc]] tokenizers.models.Model ## Unigram [[autodoc]] tokenizers.models.Unigram ## WordLevel [[autodoc]] tokenizers.models.WordLevel ## WordPiece [[autodoc]] tokenizers.models.WordPiece </python> <rust> The Rust API Reference is available directly on the [Docs.rs](https://docs.rs/tokenizers/latest/tokenizers/) website. </rust> <node> The node API has not been documented yet. </node> </tokenizerslangcontent>
tokenizers/docs/source-doc-builder/api/models.mdx/0
{ "file_path": "tokenizers/docs/source-doc-builder/api/models.mdx", "repo_id": "tokenizers", "token_count": 179 }
229
Installation with npm ---------------------------------------------------------------------------------------------------- You can simply install 🤗 Tokenizers with npm using:: npm install tokenizers
tokenizers/docs/source/installation/node.inc/0
{ "file_path": "tokenizers/docs/source/installation/node.inc", "repo_id": "tokenizers", "token_count": 31 }
230
#[macro_use] extern crate criterion; use criterion::Criterion; use std::collections::HashMap; use std::fs::read_to_string; use std::time::{Duration, Instant}; use tokenizers::models::unigram::Unigram; use tokenizers::models::unigram::UnigramTrainer; pub fn bench_train(c: &mut Criterion) { let trainer = UnigramTrainer::builder() .show_progress(false) .unk_token(Some("<UNK>".into())) .build() .unwrap(); let mut model = Unigram::default(); let content = read_to_string("data/small.txt").unwrap(); let mut word_counts = HashMap::new(); content.split_whitespace().for_each(|word| { // This is important for the test of char vs u8 let word = format!("▁{}", word); *word_counts.entry(word).or_insert(0) += 1; }); let sentences: Vec<_> = word_counts .iter() .map(|(s, i)| (s.to_owned(), *i)) .collect(); c.bench_function("Unigram Train vocabulary (small)", |b| { b.iter_custom(|iters| { let mut duration = Duration::new(0, 0); for _i in 0..iters { let sentences = sentences.clone(); let start = Instant::now(); trainer.do_train(sentences, &mut model).unwrap(); duration = duration.checked_add(start.elapsed()).unwrap(); } duration }) }); let content = read_to_string("data/big.txt").unwrap(); // creating `medium` data, which is the first 25% of `data/big.txt` let content = String::from(&content[..(content.len() as f64 * 0.25) as usize]); let mut word_counts = HashMap::new(); content.split_whitespace().for_each(|word| { // This is important for the test of char vs u8 let word = format!("▁{}", word); *word_counts.entry(word).or_insert(0) += 1; }); let sentences: Vec<_> = word_counts .iter() .map(|(s, i)| (s.to_owned(), *i)) .collect(); c.bench_function("Unigram Train vocabulary (medium)", |b| { b.iter_custom(|iters| { let mut duration = Duration::new(0, 0); for _i in 0..iters { let sentences = sentences.clone(); let start = Instant::now(); trainer.do_train(sentences, &mut model).unwrap(); duration = duration.checked_add(start.elapsed()).unwrap(); } duration }) }); } criterion_group! { name = benches_train; config = Criterion::default().sample_size(10); targets = bench_train } criterion_main!(benches_train);
tokenizers/tokenizers/benches/unigram_benchmark.rs/0
{ "file_path": "tokenizers/tokenizers/benches/unigram_benchmark.rs", "repo_id": "tokenizers", "token_count": 1174 }
231
import * as wasm from "unstable_wasm"; console.log(wasm.tokenize("ab")); console.log(wasm.tokenize("abc"));
tokenizers/tokenizers/examples/unstable_wasm/www/index.js/0
{ "file_path": "tokenizers/tokenizers/examples/unstable_wasm/www/index.js", "repo_id": "tokenizers", "token_count": 43 }
232
use super::{super::OrderedVocabIter, trainer::BpeTrainer, Error, Pair, Word}; use crate::tokenizer::{Model, Result, Token}; use crate::utils::cache::{Cache, DEFAULT_CACHE_CAPACITY}; use crate::utils::iter::ResultShunt; use serde_json::Value; use std::borrow::Cow; use std::{ collections::HashMap, fs::File, io::prelude::*, io::{BufRead, BufReader}, path::{Path, PathBuf}, }; pub type Vocab = HashMap<String, u32>; type VocabR = HashMap<u32, String>; pub type MergeMap = HashMap<Pair, (u32, u32)>; pub type Merges = Vec<(String, String)>; struct Config { files: Option<(String, String)>, vocab: Vocab, merges: Merges, cache_capacity: usize, dropout: Option<f32>, unk_token: Option<String>, continuing_subword_prefix: Option<String>, end_of_word_suffix: Option<String>, fuse_unk: bool, byte_fallback: bool, } /// A `BpeBuilder` can be used to create a `BPE` model with a custom configuration. pub struct BpeBuilder { config: Config, } impl Default for BpeBuilder { fn default() -> Self { Self { config: Config { files: None, vocab: HashMap::new(), merges: vec![], cache_capacity: DEFAULT_CACHE_CAPACITY, dropout: None, unk_token: None, continuing_subword_prefix: None, end_of_word_suffix: None, fuse_unk: false, byte_fallback: false, }, } } } impl BpeBuilder { /// Constructs a new `BpeBuilder`. pub fn new() -> Self { Self::default() } /// Set the input files. #[must_use] pub fn files(mut self, vocab: String, merges: String) -> Self { self.config.files = Some((vocab, merges)); self } /// Set the vocab (token -> ID) and merges mappings. #[must_use] pub fn vocab_and_merges(mut self, vocab: Vocab, merges: Merges) -> Self { self.config.vocab = vocab; self.config.merges = merges; self } /// Set the cache's capacity. Set to 0 if you want to disable caching. #[must_use] pub fn cache_capacity(mut self, capacity: usize) -> Self { self.config.cache_capacity = capacity; self } /// Use [dropout](https://arxiv.org/abs/1910.13267) with the model. #[must_use] pub fn dropout(mut self, dropout: f32) -> Self { self.config.dropout = Some(dropout); self } /// Set the `UNK` token for the vocab. #[must_use] pub fn unk_token(mut self, unk_token: String) -> Self { self.config.unk_token = Some(unk_token); self } /// Set the `continuing_subword_prefix` option. #[must_use] pub fn continuing_subword_prefix(mut self, prefix: String) -> Self { self.config.continuing_subword_prefix = Some(prefix); self } /// Set the `end_of_word_suffix` option. #[must_use] pub fn end_of_word_suffix(mut self, prefix: String) -> Self { self.config.end_of_word_suffix = Some(prefix); self } /// Set the `fuse_unk` option. #[must_use] pub fn fuse_unk(mut self, fuse_unk: bool) -> Self { self.config.fuse_unk = fuse_unk; self } /// Set the `byte_fallback` option. #[must_use] pub fn byte_fallback(mut self, byte_fallback: bool) -> Self { self.config.byte_fallback = byte_fallback; self } /// Returns a `BPE` model that uses the `BpeBuilder`'s configuration. pub fn build(mut self) -> Result<BPE> { // Validate dropout. if let Some(p) = self.config.dropout { if p <= 0.0 || p > 1.0 { return Err(Error::InvalidDropout.into()); } } // Read files if necessary if let Some((vocab, merges)) = self.config.files { let (v, m) = BPE::read_file(&vocab, &merges)?; self.config.vocab = v; self.config.merges = m; } let vocab_r = self .config .vocab .iter() .map(|(key, val)| (*val, key.to_owned())) .collect(); let cache = match self.config.cache_capacity { 0 => None, capacity => Some(Cache::new(capacity)), }; let vocab = self.config.vocab; let prefix_len = if let Some(prefix) = &self.config.continuing_subword_prefix { prefix.len() } else { 0 }; let merge_map: MergeMap = self .config .merges .into_iter() .enumerate() .map(|(i, (a, b))| -> Result<(Pair, (u32, u32))> { let a_id = vocab .get(&a) .ok_or_else(|| Error::MergeTokenOutOfVocabulary(a.to_owned()))?; let b_id = vocab .get(&b) .ok_or_else(|| Error::MergeTokenOutOfVocabulary(b.to_owned()))?; let new_token = format!("{}{}", a, &b[prefix_len..]); let new_id = vocab .get(&new_token) .ok_or(Error::MergeTokenOutOfVocabulary(new_token))?; Ok(((*a_id, *b_id), (i as u32, *new_id))) }) .collect::<Result<MergeMap>>()?; // merges.insert(pair, (rank as u32, *new_id)); Ok(BPE { vocab, vocab_r, merges: merge_map, cache, dropout: self.config.dropout, unk_token: self.config.unk_token, continuing_subword_prefix: self.config.continuing_subword_prefix, end_of_word_suffix: self.config.end_of_word_suffix, fuse_unk: self.config.fuse_unk, byte_fallback: self.config.byte_fallback, }) } } /// A [Byte Pair Encoding](https://www.aclweb.org/anthology/P16-1162/) model. #[derive(PartialEq)] pub struct BPE { /// The vocabulary assigns a number to each token. pub(crate) vocab: Vocab, /// Reversed vocabulary, to rebuild sentences. pub(crate) vocab_r: VocabR, /// Contains the mapping between Pairs and their (rank, new_id). pub(crate) merges: MergeMap, /// Contains the cache for optimizing the encoding step. cache: Option<Cache<String, Word>>, /// Dropout probability for merges. 0 = no dropout is the default. At 1.0, tokenization will /// perform no merges, so the result will just be characters. pub dropout: Option<f32>, /// The unknown token to be used when we encounter an unknown char pub unk_token: Option<String>, /// An optional prefix to use on any subword that exist only behind another one pub continuing_subword_prefix: Option<String>, /// An optional suffix to caracterize and end-of-word subword pub end_of_word_suffix: Option<String>, /// Do multiple unk tokens get fused pub fuse_unk: bool, /// Byte fallback from sentence pieces, instead of UNK, uses `"<0x00>"` /// for each byte in the unk token pub byte_fallback: bool, } impl std::fmt::Debug for BPE { fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result { fmt.debug_struct("BPE") .field("dropout", &self.dropout) .field("unk_token", &self.unk_token) .field("continuing_subword_prefix", &self.continuing_subword_prefix) .field("end_of_word_suffix", &self.end_of_word_suffix) .field("fuse_unk", &self.fuse_unk) .field("byte_fallback", &self.byte_fallback) .field("vocab", &self.vocab.len()) .field("merges", &self.merges.len()) .finish() } } impl Default for BPE { fn default() -> Self { Self::builder().build().unwrap() } } impl Clone for BPE { // `Clone` can't be derive because it's not implemented for `Cache`. // To keep things simple when we clone, the new BPE will start with a fresh cache. fn clone(&self) -> Self { let fresh_cache = self.cache.as_ref().map(|cache| cache.fresh()); Self { vocab: self.vocab.clone(), vocab_r: self.vocab_r.clone(), merges: self.merges.clone(), cache: fresh_cache, dropout: self.dropout, unk_token: self.unk_token.clone(), continuing_subword_prefix: self.continuing_subword_prefix.clone(), end_of_word_suffix: self.end_of_word_suffix.clone(), fuse_unk: self.fuse_unk, byte_fallback: self.byte_fallback, } } } /// Converts the merges strings (for example from `merges.txt` file) with the format /// "{pair_a} {pair_b}" into the format expected by the BPE struct pub(crate) fn convert_merges_to_hashmap<I: Iterator<Item = String>>( iter: I, _vocab: &Vocab, ) -> Result<Merges> { let mut merges = vec![]; let lines = iter.filter(|l| !l.starts_with("#version")); for (rank, line) in lines.enumerate() { let parts = line.split(' ').collect::<Vec<_>>(); if parts.len() != 2 { return Err(Error::BadMerges(rank + 1).into()); } merges.push((parts[0].to_string(), parts[1].to_string())); } Ok(merges) } impl BPE { /// Initialize a `BpeBuilder`. pub fn builder() -> BpeBuilder { BpeBuilder::new() } /// Create a new BPE model with the given vocab and merges. pub fn new(vocab: Vocab, merges: Merges) -> Self { Self::builder() .vocab_and_merges(vocab, merges) .build() .unwrap() } /// Initialize a BpeBuilder model from vocab and merges files pub fn from_file(vocab: &str, merges: &str) -> BpeBuilder { Self::builder().files(vocab.to_owned(), merges.to_owned()) } /// Read the given files to extract the vocab and merges pub fn read_file(vocab: &str, merges: &str) -> Result<(Vocab, Merges)> { // Read vocab.json let vocab_file = File::open(vocab)?; let mut vocab_file = BufReader::new(vocab_file); let mut buffer = String::new(); vocab_file.read_to_string(&mut buffer)?; let json: Value = serde_json::from_str(&buffer)?; let mut vocab = HashMap::new(); match json { Value::Object(m) => { for (token, id) in m { if let Value::Number(id) = id { let id = id.as_u64().ok_or(Error::BadVocabulary)? as u32; vocab.insert(token, id); } } } _ => return Err(Box::new(Error::BadVocabulary)), }; // Read merges file let merge_file = File::open(merges)?; let merge_file = BufReader::new(merge_file); let merges = ResultShunt::process(merge_file.lines(), |iter| { convert_merges_to_hashmap(iter, &vocab) })??; Ok((vocab, merges)) } /// Reset the cache. pub fn clear_cache(&self) { if let Some(ref cache) = self.cache { cache.clear() } } pub fn get_vocab(&self) -> Vocab { self.vocab.clone() } pub fn get_unk_token(&self) -> &Option<String> { &self.unk_token } pub fn get_continuing_subword_prefix(&self) -> &Option<String> { &self.continuing_subword_prefix } fn merge_word(&self, w: &str) -> Result<Word> { let mut indices = w.char_indices().map(|(idx, _)| idx).peekable(); let mut word = Word::with_capacity(w.len()); let mut unk: Option<(u32, usize)> = None; while let Some(i) = indices.next() { let end = indices.peek(); let is_first = i == 0; let is_last = end.is_none(); let mut s = if let Some(e) = end { Cow::Borrowed(&w[i..*e]) } else { Cow::Borrowed(&w[i..]) }; let byte_len = s.len(); // Add the `continuing_subword_prefix` if relevant if !is_first { if let Some(ref prefix) = self.continuing_subword_prefix { s = format!("{}{}", prefix, s).into() } } // Add the `end_of_word_suffix` if relevant if is_last { if let Some(ref suffix) = self.end_of_word_suffix { s = format!("{}{}", s, suffix).into() } } if let Some(id) = self.vocab.get(s.as_ref()) { if let Some((unk_id, unk_len)) = unk { word.add(unk_id, unk_len); unk = None; } word.add(*id, byte_len); } else { if self.byte_fallback { let tokens: Option<Vec<_>> = s .bytes() .map(|b| -> Option<&u32> { let code = format!("<{:#04X}>", b); self.vocab.get(&code) }) .collect(); if let Some(tokens) = tokens { for t in tokens { word.add(*t, 1); } continue; } } if let Some(unk_token) = &self.unk_token { unk = match (unk, self.fuse_unk) { (Some((unk_id, unk_len)), true) => { // Fuse unk Some((unk_id, unk_len + byte_len)) } (Some((unk_id, unk_len)), false) => { // Do not fuse unk, add the previous one word.add(unk_id, unk_len); Some(( *self.vocab.get(unk_token).ok_or_else(|| { Error::UnkTokenOutOfVocabulary(unk_token.to_owned()) })?, byte_len, )) } _ => Some(( *self.vocab.get(unk_token).ok_or_else(|| { Error::UnkTokenOutOfVocabulary(unk_token.to_owned()) })?, byte_len, )), }; } } } if let Some((unk_id, unk_len)) = unk { word.add(unk_id, unk_len); } word.merge_all(&self.merges, self.dropout); Ok(word) } fn word_to_tokens<'a, 'b: 'a>(&'a self, word: &'b Word) -> impl Iterator<Item = Token> + 'a { word.get_chars_iter() .zip(word.get_offsets_iter()) .map(move |(id, offsets)| Token::new(id, self.vocab_r[&id].clone(), offsets)) } fn tokenize_with_cache(&self, sequence: &str) -> Result<Vec<Token>> { if let Some(ref hit) = self.cache.as_ref().and_then(|c| c.get(sequence)) { Ok(self.word_to_tokens(hit).collect()) } else { let word = self.merge_word(sequence)?; let ret = self.word_to_tokens(&word).collect(); if let Some(ref cache) = self.cache { cache.set(sequence.to_owned(), word); } Ok(ret) } } } impl Model for BPE { type Trainer = BpeTrainer; fn get_vocab(&self) -> HashMap<String, u32> { self.vocab.clone() } fn get_vocab_size(&self) -> usize { self.vocab.len() } fn tokenize(&self, sequence: &str) -> Result<Vec<Token>> { if sequence.is_empty() { return Ok(vec![]); } if self.dropout.is_none() { self.tokenize_with_cache(sequence) } else { let word = self.merge_word(sequence)?; Ok(self.word_to_tokens(&word).collect()) } } fn token_to_id(&self, token: &str) -> Option<u32> { self.vocab.get(token).copied() } fn id_to_token(&self, id: u32) -> Option<String> { self.vocab_r.get(&id).cloned() } fn save(&self, folder: &Path, name: Option<&str>) -> Result<Vec<PathBuf>> { let vocab_file_name = match name { Some(name) => format!("{}-vocab.json", name), None => "vocab.json".to_string(), }; // Write vocab.json let vocab_path: PathBuf = [folder, Path::new(vocab_file_name.as_str())] .iter() .collect(); let mut vocab_file = File::create(&vocab_path)?; let order_vocab_iter = OrderedVocabIter::new(&self.vocab_r); let serialized = serde_json::to_string(&order_vocab_iter)?; vocab_file.write_all(serialized.as_bytes())?; // Write merges.txt let merges_file_name = match name { Some(name) => format!("{}-merges.txt", name), None => "merges.txt".to_string(), }; let merges_path: PathBuf = [folder, Path::new(merges_file_name.as_str())] .iter() .collect(); let mut merges_file = File::create(&merges_path)?; let mut merges: Vec<(&Pair, &u32)> = self .merges .iter() .map(|(pair, (rank, _))| (pair, rank)) .collect(); merges.sort_unstable_by_key(|k| *k.1); merges_file.write_all(b"#version: 0.2\n")?; merges_file.write_all( &merges .into_iter() .flat_map(|(pair, _)| { format!("{} {}\n", self.vocab_r[&pair.0], self.vocab_r[&pair.1]).into_bytes() }) .collect::<Vec<_>>()[..], )?; Ok(vec![vocab_path, merges_path]) } fn get_trainer(&self) -> BpeTrainer { BpeTrainer::default() } } #[cfg(test)] mod tests { use super::*; use tempfile::NamedTempFile; #[test] fn test_ordered_vocab_iter() { let vocab_r: VocabR = [ (0, "a".into()), (1, "b".into()), (2, "c".into()), (3, "ab".into()), ] .iter() .cloned() .collect(); let order_vocab_iter = OrderedVocabIter::new(&vocab_r); let serialized = serde_json::to_string(&order_vocab_iter).unwrap(); assert_eq!(serialized, "{\"a\":0,\"b\":1,\"c\":2,\"ab\":3}"); } #[test] fn test_unk_not_fused() { let vocab: Vocab = [("<unk>".into(), 0), ("a".into(), 1), ("b".into(), 2)] .iter() .cloned() .collect(); let bpe = BpeBuilder::default() .vocab_and_merges(vocab, vec![]) .unk_token("<unk>".to_string()) .build() .unwrap(); let tokens = bpe.tokenize("c").unwrap(); assert_eq!(tokens, vec![Token::new(0u32, "<unk>".into(), (0, 1)),]); let tokens = bpe.tokenize("cc").unwrap(); assert_eq!( tokens, vec![ Token::new(0u32, "<unk>".into(), (0, 1)), Token::new(0u32, "<unk>".into(), (1, 2)), ] ); let tokens = bpe.tokenize("accb").unwrap(); assert_eq!( tokens, vec![ Token::new(1u32, "a".into(), (0, 1)), Token::new(0u32, "<unk>".into(), (1, 2)), Token::new(0u32, "<unk>".into(), (2, 3)), Token::new(2u32, "b".into(), (3, 4)), ] ); } #[test] fn test_unk_get_fused() { let vocab: Vocab = [("<unk>".into(), 0), ("a".into(), 1), ("b".into(), 2)] .iter() .cloned() .collect(); let bpe = BpeBuilder::default() .vocab_and_merges(vocab, vec![]) .unk_token("<unk>".to_string()) .fuse_unk(true) .build() .unwrap(); let tokens = bpe.tokenize("c").unwrap(); assert_eq!(tokens, vec![Token::new(0u32, "<unk>".into(), (0, 1)),]); let tokens = bpe.tokenize("cc").unwrap(); assert_eq!(tokens, vec![Token::new(0u32, "<unk>".into(), (0, 2)),]); let tokens = bpe.tokenize("accb").unwrap(); assert_eq!( tokens, vec![ Token::new(1u32, "a".into(), (0, 1)), Token::new(0u32, "<unk>".into(), (1, 3)), Token::new(2u32, "b".into(), (3, 4)), ] ); } #[test] // Test tokenization. With dropout set to 0 tokenization is deterministic, // so we know exactly what the result should be. // // To test this, we'll build a simple model to tokenize the word 'unrelated'. fn test_tokenize_with_and_without_dropout() { let vocab: Vocab = [ ("u".into(), 0), ("n".into(), 1), ("r".into(), 2), ("e".into(), 3), ("l".into(), 4), ("a".into(), 5), ("t".into(), 6), ("d".into(), 7), ("re".into(), 8), ("at".into(), 9), ("ed".into(), 10), ("un".into(), 11), ("ated".into(), 12), ("rel".into(), 13), ("related".into(), 14), ("unrelated".into(), 15), ] .iter() .cloned() .collect(); let merges: Merges = vec![ ("r".to_string(), "e".to_string()), ("a".to_string(), "t".to_string()), ("e".to_string(), "d".to_string()), ("u".to_string(), "n".to_string()), ("at".to_string(), "ed".to_string()), ("re".to_string(), "l".to_string()), ("rel".to_string(), "ated".to_string()), ("un".to_string(), "related".to_string()), ]; let mut bpe = BPE::new(vocab, merges); // With no dropout: let tokens = bpe.tokenize("unrelated").unwrap(); assert_eq!(tokens, vec![Token::new(15u32, "unrelated".into(), (0, 9))]); // Now set dropout to 1.0. Result should be no merges performed. bpe.dropout = Some(1.0); let tokens = bpe.tokenize("unrelated").unwrap(); assert_eq!( tokens, vec![ Token::new(0u32, "u".into(), (0, 1)), Token::new(1u32, "n".into(), (1, 2)), Token::new(2u32, "r".into(), (2, 3)), Token::new(3u32, "e".into(), (3, 4)), Token::new(4u32, "l".into(), (4, 5)), Token::new(5u32, "a".into(), (5, 6)), Token::new(6u32, "t".into(), (6, 7)), Token::new(3u32, "e".into(), (7, 8)), Token::new(7u32, "d".into(), (8, 9)), ] ); // Now try with dropout between 0 and 1. bpe.dropout = Some(0.5); let tokens = bpe.tokenize("unrelated").unwrap(); assert!(!tokens.is_empty() && tokens.len() <= 9); } #[test] // Ensure `BPE::from_file` works as expected. fn test_bpe_from_file() { // Set up vocab file. let mut vocab_file = NamedTempFile::new().unwrap(); vocab_file .write_all(b"{\"a\": 0, \"b\": 1, \"c\": 2, \"ab\": 3}") .unwrap(); // Set up merges file. let mut merges_file = NamedTempFile::new().unwrap(); merges_file.write_all(b"#version: 0.2\na b").unwrap(); // Make sure we can instantiate a BPE model from the files. let builder = BPE::from_file( vocab_file.path().to_str().unwrap(), merges_file.path().to_str().unwrap(), ); let bpe = builder.build().unwrap(); // Check merges. assert_eq!(bpe.merges.get(&(0, 1)).unwrap(), &(0u32, 3u32)); // Check vocab. assert_eq!(bpe.vocab.get("a").unwrap(), &0u32); assert_eq!(bpe.vocab.get("b").unwrap(), &1u32); assert_eq!(bpe.vocab.get("c").unwrap(), &2u32); assert_eq!(bpe.vocab.get("ab").unwrap(), &3u32); } #[test] // Ensure `BPE::from_file` works as expected. fn test_bpe_with_continuing_subword_prefix() { let vocab: Vocab = vec![ ("a".to_string(), 0), ("##b".to_string(), 1), ("##c".to_string(), 2), ("ab".to_string(), 3), ("abc".to_string(), 4), ] .into_iter() .collect(); let merges = vec![ ("a".to_string(), "##b".to_string()), ("ab".to_string(), "##c".to_string()), ]; let bpe = BPE::builder() .vocab_and_merges(vocab, merges) .unk_token("[UNK]".to_string()) .continuing_subword_prefix("##".to_string()) .build() .unwrap(); let res = bpe.tokenize("ab"); assert_eq!( res.unwrap(), vec![Token { id: 3, value: "ab".to_string(), offsets: (0, 2) }] ); let res = bpe.tokenize("abc"); assert_eq!( res.unwrap(), vec![Token { id: 4, value: "abc".to_string(), offsets: (0, 3) }] ); } #[test] // Ensure `MergeTokenOutOfVocabulary` error is returned when it should be. fn test_bpe_from_file_merge_token_oov() { // Set up vocab file. let mut vocab_file = NamedTempFile::new().unwrap(); vocab_file .write_all(b"{\"a\": 0, \"b\": 1, \"c\": 2, \"ab\": 3}") .unwrap(); // Set up merges file. let mut merges_file = NamedTempFile::new().unwrap(); merges_file.write_all(b"#version: 0.2\na b\na d").unwrap(); // Ensure the result of BPE::from_file is a MergeTokenOutOfVocabulary error. match BPE::from_file( vocab_file.path().to_str().unwrap(), merges_file.path().to_str().unwrap(), ) .build() { Ok(_) => unreachable!(), Err(err) => match err.downcast_ref::<Error>() { Some(Error::MergeTokenOutOfVocabulary(token)) => { assert_eq!(*token, String::from("d")) } _ => unreachable!(), }, } } #[test] // Ensure `BadMerges` error is returned when there is an invalid line in the // merges.txt file. fn test_bpe_from_file_bad_merges() { // Set up vocab file. let mut vocab_file = NamedTempFile::new().unwrap(); vocab_file .write_all("{\"a\": 0, \"b\": 1, \"c\": 2, \"ab\": 3}".as_bytes()) .unwrap(); // Set up merges file with a bad line. let mut merges_file = NamedTempFile::new().unwrap(); merges_file.write_all(b"#version: 0.2\na b\nc").unwrap(); // Ensure the result of BPE::from_file is a BadMerges error. match BPE::from_file( vocab_file.path().to_str().unwrap(), merges_file.path().to_str().unwrap(), ) .build() { Ok(_) => unreachable!(), Err(err) => match err.downcast_ref::<Error>() { Some(Error::BadMerges(line)) => assert_eq!(*line, 2), _ => unreachable!(), }, } } #[test] fn test_bpe_byte_fallback() { // 0x61 == 'a' in bytes let vocab: Vocab = [("<unk>".into(), 0), ("<0x61>".into(), 1)] .iter() .cloned() .collect(); let bpe = BpeBuilder::default() .vocab_and_merges(vocab, vec![]) .unk_token("<unk>".to_string()) .byte_fallback(true) .build() .unwrap(); let tokens = bpe.tokenize("c").unwrap(); assert_eq!(tokens, vec![Token::new(0u32, "<unk>".into(), (0, 1)),]); let tokens = bpe.tokenize("a").unwrap(); assert_eq!(tokens, vec![Token::new(1u32, "<0x61>".into(), (0, 1)),]); } #[test] fn test_bpe_byte_fallback_newline() { // 0x0A == '\n' in bytes let vocab: Vocab = [("<unk>".into(), 0), ("<0x0A>".into(), 1)] .iter() .cloned() .collect(); let bpe = BpeBuilder::default() .vocab_and_merges(vocab, vec![]) .unk_token("<unk>".to_string()) .byte_fallback(true) .build() .unwrap(); let tokens = bpe.tokenize("\n").unwrap(); assert_eq!(tokens, vec![Token::new(1u32, "<0x0A>".into(), (0, 1)),]); } }
tokenizers/tokenizers/src/models/bpe/model.rs/0
{ "file_path": "tokenizers/tokenizers/src/models/bpe/model.rs", "repo_id": "tokenizers", "token_count": 15137 }
233
use super::WordPiece; use crate::models::bpe::{BpeTrainer, BpeTrainerBuilder, BPE}; use crate::tokenizer::{AddedToken, Result, Trainer}; use serde::{Deserialize, Serialize}; use std::collections::HashSet; /// A `WordPieceTrainerBuilder` can be used to create a `WordPieceTrainer` with a custom /// configuration. pub struct WordPieceTrainerBuilder { bpe_trainer_builder: BpeTrainerBuilder, } impl Default for WordPieceTrainerBuilder { fn default() -> Self { Self { bpe_trainer_builder: BpeTrainerBuilder::new().continuing_subword_prefix("##".into()), } } } impl WordPieceTrainerBuilder { /// Constructs a new `WordPieceTrainerBuilder` pub fn new() -> Self { Self::default() } /// Set the expected minimum frequency #[must_use] pub fn min_frequency(mut self, frequency: u32) -> Self { self.bpe_trainer_builder = self.bpe_trainer_builder.min_frequency(frequency); self } /// Set the vocabulary size #[must_use] pub fn vocab_size(mut self, size: usize) -> Self { self.bpe_trainer_builder = self.bpe_trainer_builder.vocab_size(size); self } /// Set whether to show progress #[must_use] pub fn show_progress(mut self, show: bool) -> Self { self.bpe_trainer_builder = self.bpe_trainer_builder.show_progress(show); self } /// Set the special tokens #[must_use] pub fn special_tokens(mut self, tokens: Vec<AddedToken>) -> Self { self.bpe_trainer_builder = self.bpe_trainer_builder.special_tokens(tokens); self } /// Set whether to limit the alphabet #[must_use] pub fn limit_alphabet(mut self, limit: usize) -> Self { self.bpe_trainer_builder = self.bpe_trainer_builder.limit_alphabet(limit); self } /// Set the initial alphabet #[must_use] pub fn initial_alphabet(mut self, alphabet: HashSet<char>) -> Self { self.bpe_trainer_builder = self.bpe_trainer_builder.initial_alphabet(alphabet); self } /// Set the continuing_subword_prefix #[must_use] pub fn continuing_subword_prefix(mut self, prefix: String) -> Self { self.bpe_trainer_builder = self.bpe_trainer_builder.continuing_subword_prefix(prefix); self } /// Set the end_of_word_suffix #[must_use] pub fn end_of_word_suffix(mut self, suffix: String) -> Self { self.bpe_trainer_builder = self.bpe_trainer_builder.end_of_word_suffix(suffix); self } /// Constructs the final BpeTrainer pub fn build(self) -> WordPieceTrainer { let bpe_trainer = self.bpe_trainer_builder.build(); WordPieceTrainer { bpe_trainer } } } /// Trains a `WordPiece` model. #[derive(Default, Clone, Deserialize, Serialize)] pub struct WordPieceTrainer { bpe_trainer: BpeTrainer, } impl WordPieceTrainer { pub fn min_frequency(&self) -> u32 { self.bpe_trainer.min_frequency } pub fn set_min_frequency(&mut self, freq: u32) { self.bpe_trainer.min_frequency = freq; } pub fn vocab_size(&self) -> usize { self.bpe_trainer.vocab_size } pub fn set_vocab_size(&mut self, size: usize) { self.bpe_trainer.vocab_size = size; } pub fn show_progress(&self) -> bool { self.bpe_trainer.show_progress } pub fn set_show_progress(&mut self, show_progress: bool) { self.bpe_trainer.show_progress = show_progress; } pub fn special_tokens(&self) -> &[AddedToken] { &self.bpe_trainer.special_tokens } pub fn set_special_tokens(&mut self, special_tokens: Vec<AddedToken>) { self.bpe_trainer.special_tokens = special_tokens; } pub fn limit_alphabet(&self) -> Option<usize> { self.bpe_trainer.limit_alphabet } pub fn set_limit_alphabet(&mut self, limit: Option<usize>) { self.bpe_trainer.limit_alphabet = limit; } pub fn initial_alphabet(&self) -> &HashSet<char> { &self.bpe_trainer.initial_alphabet } pub fn set_initial_alphabet(&mut self, alphabet: HashSet<char>) { self.bpe_trainer.initial_alphabet = alphabet; } pub fn continuing_subword_prefix(&self) -> &Option<String> { &self.bpe_trainer.continuing_subword_prefix } pub fn set_continuing_subword_prefix(&mut self, prefix: Option<String>) { self.bpe_trainer.continuing_subword_prefix = prefix; } pub fn end_of_word_suffix(&self) -> &Option<String> { &self.bpe_trainer.end_of_word_suffix } pub fn set_end_of_word_suffix(&mut self, suffix: Option<String>) { self.bpe_trainer.end_of_word_suffix = suffix; } pub fn builder() -> WordPieceTrainerBuilder { WordPieceTrainerBuilder::default() } pub fn train(&self, model: &mut WordPiece) -> Result<Vec<AddedToken>> { let mut bpe = BPE::default(); let special_tokens = self.bpe_trainer.train(&mut bpe)?; let new_wordpiece = WordPiece::from_bpe(&bpe); // Transfer the vocab model.vocab = new_wordpiece.vocab; model.vocab_r = new_wordpiece.vocab_r; // The continuing_subword_prefix is the only other option to be overriden by the trainer model.continuing_subword_prefix = new_wordpiece.continuing_subword_prefix; Ok(special_tokens) } } impl Trainer for WordPieceTrainer { type Model = WordPiece; fn train(&self, model: &mut WordPiece) -> Result<Vec<AddedToken>> { self.train(model) } fn should_show_progress(&self) -> bool { self.bpe_trainer.should_show_progress() } fn feed<I, S, F>(&mut self, iterator: I, process: F) -> Result<()> where I: Iterator<Item = S> + Send, S: AsRef<str> + Send, F: Fn(&str) -> Result<Vec<String>> + Sync, { self.bpe_trainer.feed(iterator, process) } }
tokenizers/tokenizers/src/models/wordpiece/trainer.rs/0
{ "file_path": "tokenizers/tokenizers/src/models/wordpiece/trainer.rs", "repo_id": "tokenizers", "token_count": 2499 }
234
use crate::pre_tokenizers::PreTokenizerWrapper; use crate::tokenizer::{PreTokenizedString, PreTokenizer, Result}; use crate::utils::macro_rules_attribute; use serde::{Deserialize, Serialize}; #[derive(Clone, Debug, PartialEq)] #[macro_rules_attribute(impl_serde_type!)] pub struct Sequence { pretokenizers: Vec<PreTokenizerWrapper>, } impl Sequence { pub fn new(pretokenizers: Vec<PreTokenizerWrapper>) -> Self { Self { pretokenizers } } pub fn get_pre_tokenizers(&self) -> &[PreTokenizerWrapper] { &self.pretokenizers } pub fn get_pre_tokenizers_mut(&mut self) -> &mut [PreTokenizerWrapper] { &mut self.pretokenizers } } impl PreTokenizer for Sequence { fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> Result<()> { for pretokenizer in &self.pretokenizers { pretokenizer.pre_tokenize(pretokenized)?; } Ok(()) } } #[cfg(test)] mod tests { use super::*; use crate::pre_tokenizers::{punctuation::Punctuation, whitespace::WhitespaceSplit}; use crate::{OffsetReferential, OffsetType}; #[test] fn sequence_basic() { let pretokenizers = vec![ PreTokenizerWrapper::WhitespaceSplit(WhitespaceSplit), PreTokenizerWrapper::Punctuation(Punctuation::default()), ]; let pretok = Sequence::new(pretokenizers); let mut pretokenized: PreTokenizedString = "Hey friend! How are you?!?".into(); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Hey", (0, 3)), ("friend", (4, 10)), ("!", (10, 11)), ("How", (16, 19)), ("are", (20, 23)), ("you", (24, 27)), ("?", (27, 28)), ("!", (28, 29)), ("?", (29, 30)), ] ); } }
tokenizers/tokenizers/src/pre_tokenizers/sequence.rs/0
{ "file_path": "tokenizers/tokenizers/src/pre_tokenizers/sequence.rs", "repo_id": "tokenizers", "token_count": 1011 }
235
use crate::{ normalizer::Range, Encoding, NormalizedString, OffsetReferential, Offsets, Result, Token, }; use std::collections::HashMap; /// Various possible types of offsets #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum OffsetType { Byte, Char, } /// Wrapper for a subpart of a `NormalizedString`. /// /// This Split contains the underlying `NormalizedString` as well as its offsets /// in the original string. These offsets are in the `original` referential. /// It also contains any `Token` associated to the current split #[derive(Debug, Clone, PartialEq, Eq)] pub struct Split { /// The underlying `NormalizedString`. Each SubString is represented by a `NormalizedString` /// and in the end we might be carrying a lot of SubString representing various parts of the /// original input string. normalized: NormalizedString, /// Optional Tokens associated to this Split tokens: Option<Vec<Token>>, } impl From<NormalizedString> for Split { fn from(n: NormalizedString) -> Self { Self { normalized: n, tokens: None, } } } impl From<(NormalizedString, Option<Vec<Token>>)> for Split { fn from(f: (NormalizedString, Option<Vec<Token>>)) -> Self { Self { normalized: f.0, tokens: f.1, } } } /// The `PreTokenizedString` is in charge of splitting an underlying string, /// making sure everything is fine while doing so, and providing ways to normalize /// and tokenize these splits. /// Once everything has been normalized and tokenized, the `PreTokenizedString` is able /// to build an `Encoding` with all the relevant offsets and word ids, relative to the /// original string. #[derive(Debug, Clone, PartialEq, Eq)] pub struct PreTokenizedString { original: String, splits: Vec<Split>, } impl PreTokenizedString { /// Split the `PreTokenizedString` by providing a `split_fn` in charge of splitting /// each substring (`NormalizedString`) into multiple parts. /// /// `split_fn` takes a `NormalizedString` and is in charge of returning an iterator /// over the produced `NormalizedString`. `split_fn` is free of modifying these /// `NormalizedString` as relevant, as long as it respects the constraint stated below. /// /// There are only one constraint that *MUST* be respected: /// > The produced `NormalizedString`, if combined back together, must have the /// same `original` string as the original one given to `split_fn`. This concretely /// means that for the offset tracking to work as expected, `split_fn` must produce /// "splits" of the original string. pub fn split<F, U, R>(&mut self, mut split_fn: F) -> Result<()> where F: FnMut(usize, NormalizedString) -> Result<U>, U: IntoIterator<Item = R>, R: Into<Split>, { // new_splits is at least as big as self.splits let mut new_splits = Vec::with_capacity(self.splits.len()); for (i, original_split) in self.splits.drain(..).enumerate() { if original_split.tokens.is_some() { new_splits.push(original_split); continue; } new_splits.extend( split_fn(i, original_split.normalized)? .into_iter() .filter_map(|split| { let split: Split = split.into(); if split.normalized.is_empty() { None } else { Some(split) } }), ); } self.splits = new_splits; Ok(()) } /// Normalized all the splits that do not have attached `Tokens`, using the provided /// `normalize` function. pub fn normalize<F>(&mut self, normalize: F) -> Result<()> where F: Fn(&mut NormalizedString) -> Result<()>, { for split in self.splits.iter_mut().filter(|s| s.tokens.is_none()) { normalize(&mut split.normalized)?; } Ok(()) } /// Tokenize all the splits that do not have attached `Tokens`, using the provided /// `tokenize` function pub fn tokenize<F>(&mut self, tokenize: F) -> Result<()> where F: Fn(&NormalizedString) -> Result<Vec<Token>>, { for split in self.splits.iter_mut().filter(|s| s.tokens.is_none()) { split.tokens = Some(tokenize(&split.normalized)?); } Ok(()) } /// Transform the current `PreTokenizedString` into an `Encoding`. /// /// If a `word_idx` is provided, any word in the generated `Encoding` /// will be set to this value. This is generally used with pre-tokenized /// input, that do not need the `PreTokenizedString` to generate word ids. /// /// This method will fail if some splits do not have associated `Token`. pub fn into_encoding( self, word_idx: Option<u32>, type_id: u32, offset_type: OffsetType, ) -> Result<Encoding> { if self.splits.is_empty() { Ok(Encoding::default()) } else if !self.splits.iter().all(|split| split.tokens.is_some()) { Err("Split has not been tokenized, call `PreTokenizedString::tokenize` first".into()) } else { let offset_converter = match offset_type { OffsetType::Char => Some(BytesToCharOffsetConverter::new(&self.original)), OffsetType::Byte => None, }; Ok(self .splits .into_iter() .enumerate() .flat_map(|(idx, split)| { let normalized = split.normalized; let offsets = normalized.offsets_original(); let offset_converter = &offset_converter; split.tokens.unwrap().into_iter().map(move |token| { let mut offsets = normalized .convert_offsets(Range::Normalized(token.offsets.0..token.offsets.1)) .map_or(token.offsets, |range| { (offsets.0 + range.start, offsets.0 + range.end) }); // Convert to char offsets if relevant if let Some(converter) = offset_converter { offsets = converter.convert(offsets).unwrap_or(offsets); } ( token.id, token.value, offsets, if word_idx.is_some() { word_idx } else { Some(idx as u32) }, type_id, ) }) }) .collect()) } } /// Returns a list of splits, each of them being a slice of the normalized /// string, the associated offsets either in original or normalized /// referential, as well as the potention tokens pub fn get_splits( &self, offset_ref: OffsetReferential, offset_type: OffsetType, ) -> Vec<(&str, Offsets, &Option<Vec<Token>>)> { let offset_converter = match offset_type { OffsetType::Char => Some(BytesToCharOffsetConverter::new(&self.original)), OffsetType::Byte => None, }; let mut offset = 0; self.splits .iter() .map(|split| { let mut offsets = match offset_ref { OffsetReferential::Original => split.normalized.offsets_original(), OffsetReferential::Normalized => { let len = split.normalized.len(); offset += len; (offset - len, offset) } }; // Convert to char offsets if relevant if let Some(ref converter) = offset_converter { offsets = converter.convert(offsets).unwrap_or(offsets); } (split.normalized.get(), offsets, &split.tokens) }) .collect() } } impl From<NormalizedString> for PreTokenizedString { fn from(s: NormalizedString) -> Self { Self { original: s.get_original().to_owned(), splits: vec![Split { normalized: s, tokens: None, }], } } } impl From<&str> for PreTokenizedString { fn from(s: &str) -> Self { let normalized: NormalizedString = s.into(); normalized.into() } } impl From<String> for PreTokenizedString { fn from(s: String) -> Self { let normalized: NormalizedString = s.into(); normalized.into() } } struct BytesToCharOffsetConverter { map: HashMap<usize, usize>, } impl BytesToCharOffsetConverter { pub fn new(sequence: &str) -> Self { Self { map: sequence .char_indices() .enumerate() .flat_map(|(i, (b, c))| { let mut n = 0; std::iter::repeat_with(move || { let o = (b + n, i); n += 1; o }) .take(c.len_utf8()) }) .collect(), } } pub fn convert(&self, offsets: Offsets) -> Option<Offsets> { match (self.map.get(&offsets.0), self.map.get(&offsets.1)) { (Some(start), Some(end)) => Some((*start, *end)), // If we reached the end, `end` is not in the map (Some(start), None) => { // But the one just before should be let last = self.map.get(&(offsets.1 - 1)).copied().unwrap_or(start + 1); Some((*start, last + 1)) } _ => None, } } }
tokenizers/tokenizers/src/tokenizer/pre_tokenizer.rs/0
{ "file_path": "tokenizers/tokenizers/src/tokenizer/pre_tokenizer.rs", "repo_id": "tokenizers", "token_count": 4873 }
236
mod common; use common::*; use tokenizers::tokenizer::AddedToken; macro_rules! check_offsets { ($input: expr, $output:expr, $offset:expr, $result:expr) => { let offsets = $output.get_offsets()[$offset]; assert_eq!(&$input[offsets.0..offsets.1], $result); }; } #[test] fn byte_level_basic() { // Without trimming offsets let tokenizer = get_byte_level(true, false); let input = "Hello there, how are you?"; let output = tokenizer.encode(input, false).unwrap(); check_offsets!(input, output, 0, "Hello"); check_offsets!(input, output, 1, " there"); check_offsets!(input, output, 2, ","); check_offsets!(input, output, 3, " how"); check_offsets!(input, output, 4, " are"); check_offsets!(input, output, 5, " you"); check_offsets!(input, output, 6, "?"); // And when trimming offsets: let tokenizer = get_byte_level(true, true); let input = "Hello there, how are you?"; let output = tokenizer.encode(input, false).unwrap(); check_offsets!(input, output, 0, "Hello"); check_offsets!(input, output, 1, "there"); check_offsets!(input, output, 2, ","); check_offsets!(input, output, 3, "how"); check_offsets!(input, output, 4, "are"); check_offsets!(input, output, 5, "you"); check_offsets!(input, output, 6, "?"); } #[test] fn byte_level_unicode() { let tokenizer = get_byte_level(true, false); let input = "i⭢j"; let output = tokenizer.encode(input, false).unwrap(); check_offsets!(input, output, 1, "⭢"); check_offsets!(input, output, 2, "⭢"); check_offsets!(input, output, 3, "⭢"); } #[test] fn byte_level_double_sequence() { let input_a = "My name is Anthony"; let input_b = "What is my name?"; // Without trimming offsets let tokenizer = get_byte_level(true, false); let output = tokenizer.encode((input_a, input_b), false).unwrap(); let offsets = output.get_offsets(); assert_eq!( offsets, &[ (0, 2), (2, 7), (7, 10), (10, 18), (0, 4), (4, 7), (7, 10), (10, 15), (15, 16) ] ); assert_eq!( output.get_word_ids(), &[ Some(0), Some(1), Some(2), Some(3), Some(0), Some(1), Some(2), Some(3), Some(4) ] ); assert_eq!(output.get_type_ids(), &[0, 0, 0, 0, 1, 1, 1, 1, 1]); // When trimming offsets let tokenizer = get_byte_level(true, true); let output = tokenizer.encode((input_a, input_b), false).unwrap(); let offsets = output.get_offsets(); assert_eq!( offsets, &[ (0, 2), (3, 7), (8, 10), (11, 18), (0, 4), (5, 7), (8, 10), (11, 15), (15, 16) ] ); } #[test] fn byte_level_pre_tokenized_sequence() { let input = ["My", "name", "is", "Anthonino"]; // Without trimming offsets let tokenizer = get_byte_level(true, false); let output = tokenizer.encode(&input[..], false).unwrap(); assert_eq!( output.get_tokens(), &["ĠMy", "Ġname", "Ġis", "ĠAnth", "on", "ino"] ); assert_eq!( output.get_word_ids(), &[Some(0), Some(1), Some(2), Some(3), Some(3), Some(3)] ); assert_eq!( output.get_offsets(), &[(0, 2), (0, 4), (0, 2), (0, 4), (4, 6), (6, 9)] ); } #[test] #[ignore] fn byte_level_pre_tokenized_sequence_with_trimming() { let input = ["My", "name", "is", "Anthonino"]; // When trimming offsets (expect same result) let tokenizer = get_byte_level(true, true); let output = tokenizer.encode(&input[..], false).unwrap(); assert_eq!( output.get_word_ids(), &[Some(0), Some(1), Some(2), Some(3), Some(3), Some(3)] ); assert_eq!( output.get_offsets(), &[(0, 2), (0, 4), (0, 2), (0, 4), (4, 6), (6, 9)] ); } #[test] fn split_on_added_tokens_bert() { let input = "Yesterday I saw a [MASK] far away"; let mut tokenizer = get_bert(); tokenizer.add_special_tokens(&[AddedToken::from("[MASK]", true)]); let output = tokenizer.encode(input, false).unwrap(); assert_eq!( output.get_offsets(), &[ (0, 9), (10, 11), (12, 15), (16, 17), (18, 24), (25, 28), (29, 33) ] ); assert_eq!( output.get_tokens(), &["yesterday", "i", "saw", "a", "[MASK]", "far", "away"] ); assert_eq!( output.get_word_ids(), &[ Some(0), Some(1), Some(2), Some(3), Some(4), Some(5), Some(6) ] ); }
tokenizers/tokenizers/tests/offsets.rs/0
{ "file_path": "tokenizers/tokenizers/tests/offsets.rs", "repo_id": "tokenizers", "token_count": 2497 }
237
FROM rocm/dev-ubuntu-20.04:5.6 # rocm/pytorch has no version with 2.1.0 LABEL maintainer="Hugging Face" ARG DEBIAN_FRONTEND=noninteractive ARG PYTORCH='2.1.0' ARG TORCH_VISION='0.16.0' ARG TORCH_AUDIO='2.1.0' ARG ROCM='5.6' RUN apt update && \ apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip ffmpeg && \ apt clean && \ rm -rf /var/lib/apt/lists/* RUN python3 -m pip install --no-cache-dir --upgrade pip RUN python3 -m pip install torch==$PYTORCH torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO --index-url https://download.pytorch.org/whl/rocm$ROCM RUN python3 -m pip install --no-cache-dir --upgrade pip setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0" ARG REF=main WORKDIR / # Invalidate docker cache from here if new commit is available. ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video] RUN python3 -m pip uninstall -y tensorflow flax # When installing in editable mode, `transformers` is not recognized as a package. # this line must be added in order for python to be aware of transformers. RUN cd transformers && python3 setup.py develop
transformers/docker/transformers-pytorch-amd-gpu/Dockerfile/0
{ "file_path": "transformers/docker/transformers-pytorch-amd-gpu/Dockerfile", "repo_id": "transformers", "token_count": 516 }
238
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Wie kann ich ein Modell zu 🤗 Transformers hinzufügen? Die 🤗 Transformers-Bibliothek ist dank der Beiträge der Community oft in der Lage, neue Modelle anzubieten. Aber das kann ein anspruchsvolles Projekt sein und erfordert eine eingehende Kenntnis der 🤗 Transformers-Bibliothek und des zu implementierenden Modells. Bei Hugging Face versuchen wir, mehr Mitgliedern der Community die Möglichkeit zu geben, aktiv Modelle hinzuzufügen, und wir haben diese Anleitung zusammengestellt, die Sie durch den Prozess des Hinzufügens eines PyTorch-Modells führt (stellen Sie sicher, dass Sie [PyTorch installiert haben](https://pytorch.org/get-started/locally/)). <Tip> Wenn Sie daran interessiert sind, ein TensorFlow-Modell zu implementieren, werfen Sie einen Blick in die Anleitung [How to convert a 🤗 Transformers model to TensorFlow](add_tensorflow_model)! </Tip> Auf dem Weg dorthin, werden Sie: - Einblicke in bewährte Open-Source-Verfahren erhalten - die Konstruktionsprinzipien hinter einer der beliebtesten Deep-Learning-Bibliotheken verstehen - lernen Sie, wie Sie große Modelle effizient testen können - lernen Sie, wie Sie Python-Hilfsprogramme wie `black`, `ruff` und `make fix-copies` integrieren, um sauberen und lesbaren Code zu gewährleisten Ein Mitglied des Hugging Face-Teams wird Ihnen dabei zur Seite stehen, damit Sie nicht alleine sind. 🤗 ❤️ Um loszulegen, öffnen Sie eine [New model addition](https://github.com/huggingface/transformers/issues/new?assignees=&labels=New+model&template=new-model-addition.yml) Ausgabe für das Modell, das Sie in 🤗 Transformers sehen möchten. Wenn Sie nicht besonders wählerisch sind, wenn es darum geht, ein bestimmtes Modell beizusteuern, können Sie nach dem [New model label](https://github.com/huggingface/transformers/labels/New%20model) filtern, um zu sehen, ob es noch unbeanspruchte Modellanfragen gibt, und daran arbeiten. Sobald Sie eine neue Modellanfrage eröffnet haben, sollten Sie sich zunächst mit 🤗 Transformers vertraut machen, falls Sie das noch nicht sind! ## Allgemeiner Überblick über 🤗 Transformers Zunächst sollten Sie sich einen allgemeinen Überblick über 🤗 Transformers verschaffen. 🤗 Transformers ist eine sehr meinungsfreudige Bibliothek, es ist also möglich, dass Es besteht also die Möglichkeit, dass Sie mit einigen der Philosophien oder Designentscheidungen der Bibliothek nicht einverstanden sind. Aus unserer Erfahrung heraus haben wir jedoch dass die grundlegenden Designentscheidungen und Philosophien der Bibliothek entscheidend sind, um 🤗 Transformers effizient zu skalieren. Transformatoren zu skalieren und gleichzeitig die Wartungskosten auf einem vernünftigen Niveau zu halten. Ein guter erster Ansatzpunkt, um die Bibliothek besser zu verstehen, ist die Lektüre der [Dokumentation unserer Philosophie](Philosophie). Als Ergebnis unserer Arbeitsweise gibt es einige Entscheidungen, die wir versuchen, auf alle Modelle anzuwenden: - Komposition wird im Allgemeinen gegenüber Abstraktion bevorzugt - Die Duplizierung von Code ist nicht immer schlecht, wenn sie die Lesbarkeit oder Zugänglichkeit eines Modells stark verbessert - Modelldateien sind so in sich geschlossen wie möglich, so dass Sie, wenn Sie den Code eines bestimmten Modells lesen, idealerweise nur in die entsprechende Datei `modeling_....py` schauen müssen. Unserer Meinung nach ist der Code der Bibliothek nicht nur ein Mittel, um ein Produkt bereitzustellen, *z.B.* die Möglichkeit, BERT für Inferenz zu verwenden, sondern auch als das Produkt selbst, das wir verbessern wollen. Wenn Sie also ein Modell hinzufügen, ist der Benutzer nicht nur die Person, die Ihr Modell verwenden wird, sondern auch jeder, der Ihren Code liest, zu verstehen versucht und ihn möglicherweise verbessert. Lassen Sie uns daher ein wenig tiefer in das allgemeine Design der Bibliothek einsteigen. ### Überblick über die Modelle Um ein Modell erfolgreich hinzuzufügen, ist es wichtig, die Interaktion zwischen Ihrem Modell und seiner Konfiguration zu verstehen, [`PreTrainedModel`] und [`PretrainedConfig`]. Als Beispiel werden wir das Modell, das zu 🤗 Transformers hinzugefügt werden soll, `BrandNewBert` nennen. Schauen wir uns das mal an: <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_overview.png"/> Wie Sie sehen, machen wir in 🤗 Transformers von der Vererbung Gebrauch, aber wir beschränken die Abstraktionsebene auf ein absolutes Minimum. Minimum. Es gibt nie mehr als zwei Abstraktionsebenen für ein Modell in der Bibliothek. `BrandNewBertModel` erbt von `BrandNewBertPreTrainedModel`, das wiederum von [`PreTrainedModel`] erbt und das war's. In der Regel wollen wir sicherstellen, dass ein neues Modell nur von [`PreTrainedModel`] abhängt. Die wichtigen Funktionalitäten, die jedem neuen Modell automatisch zur Verfügung gestellt werden, sind Modell automatisch bereitgestellt werden, sind [`~PreTrainedModel.from_pretrained`] und [`~PreTrainedModel.save_pretrained`], die für die Serialisierung und Deserialisierung verwendet werden. Alle anderen wichtigen Funktionalitäten, wie `BrandNewBertModel.forward` sollten vollständig in der neuen Skript `modeling_brand_new_bert.py` definiert werden. Als nächstes wollen wir sicherstellen, dass ein Modell mit einer bestimmten Kopfebene, wie z.B. `BrandNewBertForMaskedLM` nicht von `BrandNewBertModel` erbt, sondern `BrandNewBertModel` verwendet als Komponente, die im Forward Pass aufgerufen werden kann, um die Abstraktionsebene niedrig zu halten. Jedes neue Modell erfordert eine Konfigurationsklasse, genannt `BrandNewBertConfig`. Diese Konfiguration wird immer als ein Attribut in [PreTrainedModel] gespeichert und kann daher über das Attribut `config` für alle Klassen aufgerufen werden die von `BrandNewBertPreTrainedModel` erben: ```python model = BrandNewBertModel.from_pretrained("brandy/brand_new_bert") model.config # model has access to its config ``` Ähnlich wie das Modell erbt die Konfiguration grundlegende Serialisierungs- und Deserialisierungsfunktionalitäten von [`PretrainedConfig`]. Beachten Sie, dass die Konfiguration und das Modell immer in zwei verschiedene Formate serialisiert werden unterschiedliche Formate serialisiert werden - das Modell in eine *pytorch_model.bin* Datei und die Konfiguration in eine *config.json* Datei. Aufruf von [~PreTrainedModel.save_pretrained`] wird automatisch [~PretrainedConfig.save_pretrained`] auf, so dass sowohl das Modell als auch die Konfiguration gespeichert werden. ### Code-Stil Wenn Sie Ihr neues Modell kodieren, sollten Sie daran denken, dass Transformers eine Bibliothek mit vielen Meinungen ist und dass wir selbst ein paar Macken haben wie der Code geschrieben werden sollte :-) 1. Der Vorwärtsdurchlauf Ihres Modells sollte vollständig in die Modellierungsdatei geschrieben werden und dabei völlig unabhängig von anderen Modellen in der Bibliothek. Wenn Sie einen Block aus einem anderen Modell wiederverwenden möchten, kopieren Sie den Code und fügen ihn mit einem `# Kopiert von` ein (siehe [hier](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/roberta/modeling_roberta.py#L160) für ein gutes Beispiel und [hier](pr_checks#check-copies) für weitere Dokumentation zu Copied from). 2. Der Code sollte vollständig verständlich sein, auch für einen Nicht-Muttersprachler. Das heißt, Sie sollten beschreibende Variablennamen wählen und Abkürzungen vermeiden. Ein Beispiel: `activation` ist `act` vorzuziehen. Von Variablennamen mit nur einem Buchstaben wird dringend abgeraten, es sei denn, es handelt sich um einen Index in einer for-Schleife. 3. Generell ziehen wir längeren expliziten Code einem kurzen magischen Code vor. 4. Vermeiden Sie die Unterklassifizierung von `nn.Sequential` in PyTorch, sondern unterklassifizieren Sie `nn.Module` und schreiben Sie den Vorwärtspass, so dass jeder so dass jeder, der Ihren Code verwendet, ihn schnell debuggen kann, indem er Druckanweisungen oder Haltepunkte hinzufügt. 5. Ihre Funktionssignatur sollte mit einer Typ-Annotation versehen sein. Im Übrigen sind gute Variablennamen viel lesbarer und verständlicher verständlicher als Typ-Anmerkungen. ### Übersicht der Tokenizer Noch nicht ganz fertig :-( Dieser Abschnitt wird bald hinzugefügt! ## Schritt-für-Schritt-Rezept zum Hinzufügen eines Modells zu 🤗 Transformers Jeder hat andere Vorlieben, was die Portierung eines Modells angeht. Daher kann es sehr hilfreich sein, wenn Sie sich Zusammenfassungen ansehen wie andere Mitwirkende Modelle auf Hugging Face portiert haben. Hier ist eine Liste von Blogbeiträgen aus der Community, wie man ein Modell portiert: 1. [Portierung eines GPT2-Modells](https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28) von [Thomas](https://huggingface.co/thomwolf) 2. [Portierung des WMT19 MT-Modells](https://huggingface.co/blog/porting-fsmt) von [Stas](https://huggingface.co/stas) Aus Erfahrung können wir Ihnen sagen, dass die wichtigsten Dinge, die Sie beim Hinzufügen eines Modells beachten müssen, sind: - Erfinden Sie das Rad nicht neu! Die meisten Teile des Codes, den Sie für das neue 🤗 Transformers-Modell hinzufügen werden, existieren bereits irgendwo in 🤗 Transformers. Nehmen Sie sich etwas Zeit, um ähnliche, bereits vorhandene Modelle und Tokenizer zu finden, die Sie kopieren können von. [grep](https://www.gnu.org/software/grep/) und [rg](https://github.com/BurntSushi/ripgrep) sind Ihre Freunde. Beachten Sie, dass es sehr gut möglich ist, dass der Tokenizer Ihres Modells auf einer Modellimplementierung basiert und und der Modellierungscode Ihres Modells auf einer anderen. *Z.B.* Der Modellierungscode von FSMT basiert auf BART, während der Tokenizer-Code von FSMT auf XLM basiert. - Es handelt sich eher um eine technische als um eine wissenschaftliche Herausforderung. Sie sollten mehr Zeit auf die Schaffung einer eine effiziente Debugging-Umgebung zu schaffen, als zu versuchen, alle theoretischen Aspekte des Modells in dem Papier zu verstehen. - Bitten Sie um Hilfe, wenn Sie nicht weiterkommen! Modelle sind der Kernbestandteil von 🤗 Transformers, so dass wir bei Hugging Face mehr als mehr als glücklich, Ihnen bei jedem Schritt zu helfen, um Ihr Modell hinzuzufügen. Zögern Sie nicht zu fragen, wenn Sie merken, dass Sie nicht weiterkommen. Fortschritte machen. Im Folgenden versuchen wir, Ihnen ein allgemeines Rezept an die Hand zu geben, das uns bei der Portierung eines Modells auf 🤗 Transformers am nützlichsten erschien. Die folgende Liste ist eine Zusammenfassung all dessen, was getan werden muss, um ein Modell hinzuzufügen und kann von Ihnen als To-Do verwendet werden Liste verwenden: ☐ (Optional) Verstehen der theoretischen Aspekte des Modells<br> ☐ Vorbereiten der 🤗 Transformers-Entwicklungsumgebung<br> ☐ Debugging-Umgebung des ursprünglichen Repositorys eingerichtet<br> ☐ Skript erstellt, das den Durchlauf `forward()` unter Verwendung des ursprünglichen Repositorys und des Checkpoints erfolgreich durchführt<br> ☐ Erfolgreich das Modellskelett zu 🤗 Transformers hinzugefügt<br> ☐ Erfolgreiche Umwandlung des ursprünglichen Prüfpunkts in den 🤗 Transformers-Prüfpunkt<br> ☐ Erfolgreich den Durchlauf `forward()` in 🤗 Transformers ausgeführt, der eine identische Ausgabe wie der ursprüngliche Prüfpunkt liefert<br> ☐ Modell-Tests in 🤗 Transformers abgeschlossen<br> ☐ Erfolgreich Tokenizer in 🤗 Transformers hinzugefügt<br> ☐ End-to-End-Integrationstests ausgeführt<br> ☐ Docs fertiggestellt<br> ☐ Modellgewichte in den Hub hochgeladen<br> ☐ Die Pull-Anfrage eingereicht<br> ☐ (Optional) Hinzufügen eines Demo-Notizbuchs Für den Anfang empfehlen wir in der Regel, mit einem guten theoretischen Verständnis von `BrandNewBert` zu beginnen. Wie auch immer, wenn Sie es vorziehen, die theoretischen Aspekte des Modells *on-the-job* zu verstehen, dann ist es völlig in Ordnung, direkt in die in die Code-Basis von `BrandNewBert` einzutauchen. Diese Option könnte für Sie besser geeignet sein, wenn Ihre technischen Fähigkeiten besser sind als als Ihre theoretischen Fähigkeiten, wenn Sie Schwierigkeiten haben, die Arbeit von `BrandNewBert` zu verstehen, oder wenn Sie einfach Spaß am Programmieren mehr Spaß am Programmieren haben als am Lesen wissenschaftlicher Abhandlungen. ### 1. (Optional) Theoretische Aspekte von BrandNewBert Sie sollten sich etwas Zeit nehmen, um die Abhandlung von *BrandNewBert* zu lesen, falls eine solche Beschreibung existiert. Möglicherweise gibt es große Abschnitte des Papiers, die schwer zu verstehen sind. Wenn das der Fall ist, ist das in Ordnung - machen Sie sich keine Sorgen! Das Ziel ist ist es nicht, ein tiefes theoretisches Verständnis des Papiers zu erlangen, sondern die notwendigen Informationen zu extrahieren, um das Modell effektiv in 🤗 Transformers zu implementieren. Das heißt, Sie müssen nicht zu viel Zeit auf die theoretischen Aspekten verbringen, sondern sich lieber auf die praktischen Aspekte konzentrieren, nämlich: - Welche Art von Modell ist *brand_new_bert*? BERT-ähnliches Modell nur für den Encoder? GPT2-ähnliches reines Decoder-Modell? BART-ähnliches Encoder-Decoder-Modell? Sehen Sie sich die [model_summary](model_summary) an, wenn Sie mit den Unterschieden zwischen diesen Modellen nicht vertraut sind. - Was sind die Anwendungen von *brand_new_bert*? Textklassifizierung? Texterzeugung? Seq2Seq-Aufgaben, *z.B.,* Zusammenfassungen? - Was ist die neue Eigenschaft des Modells, die es von BERT/GPT-2/BART unterscheidet? - Welches der bereits existierenden [🤗 Transformers-Modelle](https://huggingface.co/transformers/#contents) ist am ähnlichsten ähnlich wie *brand_new_bert*? - Welche Art von Tokenizer wird verwendet? Ein Satzteil-Tokenisierer? Ein Wortstück-Tokenisierer? Ist es derselbe Tokenisierer, der für für BERT oder BART? Nachdem Sie das Gefühl haben, einen guten Überblick über die Architektur des Modells erhalten zu haben, können Sie dem Hugging Face Team schreiben und Ihre Fragen stellen. Dazu können Fragen zur Architektur des Modells gehören, seiner Aufmerksamkeitsebene usw. Wir werden Ihnen gerne weiterhelfen. ### 2. Bereiten Sie als nächstes Ihre Umgebung vor 1. Forken Sie das [Repository](https://github.com/huggingface/transformers), indem Sie auf der Seite des Repositorys auf die Schaltfläche 'Fork' klicken. Seite des Repositorys klicken. Dadurch wird eine Kopie des Codes unter Ihrem GitHub-Benutzerkonto erstellt. 2. Klonen Sie Ihren `transformers` Fork auf Ihre lokale Festplatte und fügen Sie das Basis-Repository als Remote hinzu: ```bash git clone https://github.com/[your Github handle]/transformers.git cd transformers git remote add upstream https://github.com/huggingface/transformers.git ``` 3. Richten Sie eine Entwicklungsumgebung ein, indem Sie z.B. den folgenden Befehl ausführen: ```bash python -m venv .env source .env/bin/activate pip install -e ".[dev]" ``` Abhängig von Ihrem Betriebssystem und da die Anzahl der optionalen Abhängigkeiten von Transformers wächst, kann es sein, dass Sie bei diesem Befehl einen Fehler mit diesem Befehl. Stellen Sie in diesem Fall sicher, dass Sie das Deep Learning Framework, mit dem Sie arbeiten, installieren (PyTorch, TensorFlow und/oder Flax) und führen Sie es aus: ```bash pip install -e ".[quality]" ``` was für die meisten Anwendungsfälle ausreichend sein sollte. Sie können dann zum übergeordneten Verzeichnis zurückkehren ```bash cd .. ``` 4. Wir empfehlen, die PyTorch-Version von *brand_new_bert* zu Transformers hinzuzufügen. Um PyTorch zu installieren, folgen Sie bitte den Anweisungen auf https://pytorch.org/get-started/locally/. **Anmerkung:** Sie müssen CUDA nicht installiert haben. Es reicht aus, das neue Modell auf der CPU zum Laufen zu bringen. 5. Um *brand_new_bert* zu portieren, benötigen Sie außerdem Zugriff auf das Original-Repository: ```bash git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git cd brand_new_bert pip install -e . ``` Jetzt haben Sie eine Entwicklungsumgebung eingerichtet, um *brand_new_bert* auf 🤗 Transformers zu portieren. ### 3.-4. Führen Sie einen Pre-Training-Checkpoint mit dem Original-Repository durch Zunächst werden Sie mit dem ursprünglichen *brand_new_bert* Repository arbeiten. Oft ist die ursprüngliche Implementierung sehr "forschungslastig". Das bedeutet, dass es an Dokumentation mangeln kann und der Code schwer zu verstehen sein kann. Aber das sollte genau Ihre Motivation sein, *brand_new_bert* neu zu implementieren. Eines unserer Hauptziele bei Hugging Face ist es, *die Menschen dazu zu bringen auf den Schultern von Giganten zu stehen*, was sich hier sehr gut darin ausdrückt, dass wir ein funktionierendes Modell nehmen und es umschreiben, um es so es so **zugänglich, benutzerfreundlich und schön** wie möglich zu machen. Dies ist die wichtigste Motivation für die Neuimplementierung von Modelle in 🤗 Transformers umzuwandeln - der Versuch, komplexe neue NLP-Technologie für **jeden** zugänglich zu machen. Sie sollten damit beginnen, indem Sie in das Original-Repository eintauchen. Die erfolgreiche Ausführung des offiziellen Pre-Trainingsmodells im Original-Repository ist oft **der schwierigste** Schritt. Unserer Erfahrung nach ist es sehr wichtig, dass Sie einige Zeit damit verbringen, sich mit der ursprünglichen Code-Basis vertraut zu machen. Sie müssen das Folgende herausfinden: - Wo finden Sie die vortrainierten Gewichte? - Wie lädt man die vorab trainierten Gewichte in das entsprechende Modell? - Wie kann der Tokenizer unabhängig vom Modell ausgeführt werden? - Verfolgen Sie einen Forward Pass, damit Sie wissen, welche Klassen und Funktionen für einen einfachen Forward Pass erforderlich sind. Normalerweise, müssen Sie nur diese Funktionen reimplementieren. - Sie müssen in der Lage sein, die wichtigen Komponenten des Modells zu finden: Wo befindet sich die Klasse des Modells? Gibt es Unterklassen des Modells, *z.B.* EncoderModel, DecoderModel? Wo befindet sich die Selbstaufmerksamkeitsschicht? Gibt es mehrere verschiedene Aufmerksamkeitsebenen, *z.B.* *Selbstaufmerksamkeit*, *Kreuzaufmerksamkeit*...? - Wie können Sie das Modell in der ursprünglichen Umgebung des Repo debuggen? Müssen Sie *print* Anweisungen hinzufügen, können Sie mit einem interaktiven Debugger wie *ipdb* arbeiten oder sollten Sie eine effiziente IDE zum Debuggen des Modells verwenden, wie z.B. PyCharm? Es ist sehr wichtig, dass Sie, bevor Sie mit der Portierung beginnen, den Code im Original-Repository **effizient** debuggen können Repository können! Denken Sie auch daran, dass Sie mit einer Open-Source-Bibliothek arbeiten, also zögern Sie nicht, ein Problem oder oder sogar eine Pull-Anfrage im Original-Repository zu stellen. Die Betreuer dieses Repositorys sind wahrscheinlich sehr froh darüber dass jemand in ihren Code schaut! An diesem Punkt liegt es wirklich an Ihnen, welche Debugging-Umgebung und Strategie Sie zum Debuggen des ursprünglichen Modell zu debuggen. Wir raten dringend davon ab, eine kostspielige GPU-Umgebung einzurichten, sondern arbeiten Sie einfach auf einer CPU, sowohl wenn Sie mit dem in das ursprüngliche Repository einzutauchen und auch, wenn Sie beginnen, die 🤗 Transformers-Implementierung des Modells zu schreiben. Nur ganz am Ende, wenn das Modell bereits erfolgreich auf 🤗 Transformers portiert wurde, sollte man überprüfen, ob das Modell auch auf der GPU wie erwartet funktioniert. Im Allgemeinen gibt es zwei mögliche Debugging-Umgebungen für die Ausführung des Originalmodells - [Jupyter notebooks](https://jupyter.org/) / [google colab](https://colab.research.google.com/notebooks/intro.ipynb) - Lokale Python-Skripte. Jupyter-Notebooks haben den Vorteil, dass sie eine zellenweise Ausführung ermöglichen, was hilfreich sein kann, um logische Komponenten besser voneinander zu trennen und logische Komponenten voneinander zu trennen und schnellere Debugging-Zyklen zu haben, da Zwischenergebnisse gespeichert werden können. Außerdem, Außerdem lassen sich Notebooks oft leichter mit anderen Mitwirkenden teilen, was sehr hilfreich sein kann, wenn Sie das Hugging Face Team um Hilfe bitten möchten. Face Team um Hilfe bitten. Wenn Sie mit Jupyter-Notizbüchern vertraut sind, empfehlen wir Ihnen dringend, mit ihnen zu arbeiten. Der offensichtliche Nachteil von Jupyter-Notizbüchern ist, dass Sie, wenn Sie nicht daran gewöhnt sind, mit ihnen zu arbeiten, einige Zeit damit verbringen müssen einige Zeit damit verbringen müssen, sich an die neue Programmierumgebung zu gewöhnen, und dass Sie möglicherweise Ihre bekannten Debugging-Tools nicht mehr verwenden können wie z.B. `ipdb` nicht mehr verwenden können. Für jede Codebasis ist es immer ein guter erster Schritt, einen **kleinen** vortrainierten Checkpoint zu laden und in der Lage zu sein, einen einzelnen Vorwärtsdurchlauf mit einem Dummy-Integer-Vektor von Eingabe-IDs als Eingabe zu reproduzieren. Ein solches Skript könnte wie folgt aussehen (in Pseudocode): ```python model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/") input_ids = [0, 4, 5, 2, 3, 7, 9] # vector of input ids original_output = model.predict(input_ids) ``` Was die Debugging-Strategie anbelangt, so können Sie im Allgemeinen aus mehreren Strategien wählen: - Zerlegen Sie das ursprüngliche Modell in viele kleine testbare Komponenten und führen Sie für jede dieser Komponenten einen Vorwärtsdurchlauf zur Überprüfung - Zerlegen Sie das ursprüngliche Modell nur in den ursprünglichen *Tokenizer* und das ursprüngliche *Modell*, führen Sie einen Vorwärtsdurchlauf für diese Komponenten durch und verwenden Sie dazwischenliegende Druckanweisungen oder Haltepunkte zur Überprüfung. Auch hier bleibt es Ihnen überlassen, welche Strategie Sie wählen. Oft ist die eine oder die andere Strategie vorteilhaft, je nach der ursprünglichen Codebasis Basis. Wenn die ursprüngliche Codebasis es Ihnen erlaubt, das Modell in kleinere Teilkomponenten zu zerlegen, *z.B.* wenn die ursprüngliche Code-Basis problemlos im Eager-Modus ausgeführt werden kann, lohnt es sich in der Regel, dies zu tun. Es gibt einige wichtige Vorteile am Anfang den schwierigeren Weg zu gehen: - Wenn Sie später das ursprüngliche Modell mit der Hugging Face-Implementierung vergleichen, können Sie automatisch überprüfen, ob für jede Komponente einzeln überprüfen, ob die entsprechende Komponente der 🤗 Transformers-Implementierung übereinstimmt, anstatt sich auf anstatt sich auf den visuellen Vergleich über Druckanweisungen zu verlassen - können Sie das große Problem der Portierung eines Modells in kleinere Probleme der Portierung einzelner Komponenten zerlegen einzelnen Komponenten zu zerlegen und so Ihre Arbeit besser zu strukturieren - Die Aufteilung des Modells in logisch sinnvolle Komponenten hilft Ihnen, einen besseren Überblick über das Design des Modells zu bekommen und somit das Modell besser zu verstehen - In einem späteren Stadium helfen Ihnen diese komponentenweisen Tests dabei, sicherzustellen, dass keine Regressionen auftreten, während Sie fortfahren Ihren Code ändern [Lysandre's](https://gist.github.com/LysandreJik/db4c948f6b4483960de5cbac598ad4ed) Integrationstests für ELECTRA gibt ein schönes Beispiel dafür, wie dies geschehen kann. Wenn die ursprüngliche Codebasis jedoch sehr komplex ist oder nur die Ausführung von Zwischenkomponenten in einem kompilierten Modus erlaubt, könnte es zu zeitaufwändig oder sogar unmöglich sein, das Modell in kleinere testbare Teilkomponenten zu zerlegen. Ein gutes Beispiel ist die [T5's MeshTensorFlow](https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow) Bibliothek, die sehr komplex ist sehr komplex ist und keine einfache Möglichkeit bietet, das Modell in seine Unterkomponenten zu zerlegen. Bei solchen Bibliotheken ist man oft auf die Überprüfung von Druckanweisungen angewiesen. Unabhängig davon, welche Strategie Sie wählen, ist die empfohlene Vorgehensweise oft die gleiche, nämlich dass Sie mit der Fehlersuche in den die Anfangsebenen zuerst und die Endebenen zuletzt debuggen. Es wird empfohlen, dass Sie die Ausgaben der folgenden Ebenen abrufen, entweder durch Druckanweisungen oder Unterkomponentenfunktionen Schichten in der folgenden Reihenfolge abrufen: 1. Rufen Sie die Eingabe-IDs ab, die an das Modell übergeben wurden 2. Rufen Sie die Worteinbettungen ab 3. Rufen Sie die Eingabe der ersten Transformer-Schicht ab 4. Rufen Sie die Ausgabe der ersten Transformer-Schicht ab 5. Rufen Sie die Ausgabe der folgenden n - 1 Transformer-Schichten ab 6. Rufen Sie die Ausgabe des gesamten BrandNewBert Modells ab Die Eingabe-IDs sollten dabei aus einem Array von Ganzzahlen bestehen, *z.B.* `input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]` Die Ausgaben der folgenden Schichten bestehen oft aus mehrdimensionalen Float-Arrays und können wie folgt aussehen: ``` [[ [-0.1465, -0.6501, 0.1993, ..., 0.1451, 0.3430, 0.6024], [-0.4417, -0.5920, 0.3450, ..., -0.3062, 0.6182, 0.7132], [-0.5009, -0.7122, 0.4548, ..., -0.3662, 0.6091, 0.7648], ..., [-0.5613, -0.6332, 0.4324, ..., -0.3792, 0.7372, 0.9288], [-0.5416, -0.6345, 0.4180, ..., -0.3564, 0.6992, 0.9191], [-0.5334, -0.6403, 0.4271, ..., -0.3339, 0.6533, 0.8694]]], ``` Wir erwarten, dass jedes zu 🤗 Transformers hinzugefügte Modell eine Reihe von Integrationstests besteht, was bedeutet, dass das ursprüngliche Modell und die neu implementierte Version in 🤗 Transformers exakt dieselbe Ausgabe liefern müssen, und zwar mit einer Genauigkeit von 0,001! Da es normal ist, dass das exakt gleiche Modell, das in verschiedenen Bibliotheken geschrieben wurde, je nach Bibliotheksrahmen eine leicht unterschiedliche Ausgabe liefern kann eine leicht unterschiedliche Ausgabe liefern kann, akzeptieren wir eine Fehlertoleranz von 1e-3 (0,001). Es reicht nicht aus, wenn das Modell fast das gleiche Ergebnis liefert, sie müssen fast identisch sein. Daher werden Sie sicherlich die Zwischenergebnisse Zwischenergebnisse der 🤗 Transformers-Version mehrfach mit den Zwischenergebnissen der ursprünglichen Implementierung von *brand_new_bert* vergleichen. In diesem Fall ist eine **effiziente** Debugging-Umgebung des ursprünglichen Repositorys absolut wichtig ist. Hier sind einige Ratschläge, um Ihre Debugging-Umgebung so effizient wie möglich zu gestalten. - Finden Sie den besten Weg, um Zwischenergebnisse zu debuggen. Ist das ursprüngliche Repository in PyTorch geschrieben? Dann sollten Sie dann sollten Sie sich wahrscheinlich die Zeit nehmen, ein längeres Skript zu schreiben, das das ursprüngliche Modell in kleinere Unterkomponenten zerlegt, um Zwischenwerte abzurufen. Ist das ursprüngliche Repository in Tensorflow 1 geschrieben? Dann müssen Sie sich möglicherweise auf die TensorFlow Druckoperationen wie [tf.print](https://www.tensorflow.org/api_docs/python/tf/print) verlassen, um die Zwischenwerte auszugeben. Ist das ursprüngliche Repository in Jax geschrieben? Dann stellen Sie sicher, dass das Modell **nicht jitted** ist, wenn wenn Sie den Vorwärtsdurchlauf ausführen, *z.B.* schauen Sie sich [dieser Link](https://github.com/google/jax/issues/196) an. - Verwenden Sie den kleinsten vortrainierten Prüfpunkt, den Sie finden können. Je kleiner der Prüfpunkt ist, desto schneller wird Ihr Debugging-Zyklus wird. Es ist nicht effizient, wenn Ihr vorab trainiertes Modell so groß ist, dass Ihr Vorwärtsdurchlauf mehr als 10 Sekunden dauert. Falls nur sehr große Checkpoints verfügbar sind, kann es sinnvoller sein, ein Dummy-Modell in der neuen Umgebung mit zufällig initialisierten Gewichten zu erstellen und diese Gewichte zum Vergleich mit der 🤗 Transformers-Version Ihres Modells - Vergewissern Sie sich, dass Sie den einfachsten Weg wählen, um einen Forward Pass im ursprünglichen Repository aufzurufen. Idealerweise sollten Sie die Funktion im originalen Repository finden, die **nur** einen einzigen Vorwärtspass aufruft, *d.h.* die oft aufgerufen wird Vorhersagen", "Auswerten", "Vorwärts" oder "Aufruf" genannt wird. Sie wollen keine Funktion debuggen, die `forward` aufruft mehrfach aufruft, *z.B.* um Text zu erzeugen, wie `autoregressive_sample`, `generate`. - Versuchen Sie, die Tokenisierung vom *Forward*-Pass des Modells zu trennen. Wenn das Original-Repository Beispiele zeigt, bei denen Sie eine Zeichenkette eingeben müssen, dann versuchen Sie herauszufinden, an welcher Stelle im Vorwärtsaufruf die Zeichenketteneingabe in Eingabe-IDs geändert wird geändert wird und beginnen Sie an dieser Stelle. Das könnte bedeuten, dass Sie möglicherweise selbst ein kleines Skript schreiben oder den Originalcode so ändern müssen, dass Sie die ids direkt eingeben können, anstatt eine Zeichenkette einzugeben. - Vergewissern Sie sich, dass sich das Modell in Ihrem Debugging-Setup **nicht** im Trainingsmodus befindet, der oft dazu führt, dass das Modell Dies führt häufig zu zufälligen Ergebnissen, da das Modell mehrere Dropout-Schichten enthält. Stellen Sie sicher, dass der Vorwärtsdurchlauf in Ihrer Debugging Umgebung **deterministisch** ist, damit die Dropout-Schichten nicht verwendet werden. Oder verwenden Sie *transformers.utils.set_seed*. wenn sich die alte und die neue Implementierung im selben Framework befinden. Im folgenden Abschnitt finden Sie genauere Details/Tipps, wie Sie dies für *brand_new_bert* tun können. ### 5.-14. Portierung von BrandNewBert auf 🤗 Transformatoren Als nächstes können Sie endlich damit beginnen, neuen Code zu 🤗 Transformers hinzuzufügen. Gehen Sie in den Klon Ihres 🤗 Transformers Forks: ```bash cd transformers ``` In dem speziellen Fall, dass Sie ein Modell hinzufügen, dessen Architektur genau mit der Modellarchitektur eines Modells übereinstimmt, müssen Sie nur ein Konvertierungsskript hinzufügen, wie in [diesem Abschnitt](#write-a-conversion-script) beschrieben. In diesem Fall können Sie einfach die gesamte Modellarchitektur des bereits vorhandenen Modells wiederverwenden. Andernfalls beginnen wir mit der Erstellung eines neuen Modells. Sie haben hier zwei Möglichkeiten: - `transformers-cli add-new-model-like`, um ein neues Modell wie ein bestehendes hinzuzufügen - `transformers-cli add-new-model`, um ein neues Modell aus unserer Vorlage hinzuzufügen (sieht dann aus wie BERT oder Bart, je nachdem, welche Art von Modell Sie wählen) In beiden Fällen werden Sie mit einem Fragebogen aufgefordert, die grundlegenden Informationen zu Ihrem Modell auszufüllen. Für den zweiten Befehl müssen Sie `cookiecutter` installieren, weitere Informationen dazu finden Sie [hier](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model). **Eröffnen Sie einen Pull Request auf dem Haupt-Repositorium huggingface/transformers** Bevor Sie mit der Anpassung des automatisch generierten Codes beginnen, ist es nun an der Zeit, einen "Work in progress (WIP)" Pull Anfrage, *z.B.* "[WIP] Add *brand_new_bert*", in 🤗 Transformers zu öffnen, damit Sie und das Hugging Face Team Seite an Seite an der Integration des Modells in 🤗 Transformers arbeiten können. Sie sollten Folgendes tun: 1. Erstellen Sie eine Verzweigung mit einem beschreibenden Namen von Ihrer Hauptverzweigung ```bash git checkout -b add_brand_new_bert ``` 2. Bestätigen Sie den automatisch generierten Code: ```bash git add . git commit ``` 3. Abrufen und zurücksetzen auf die aktuelle Haupt ```bash git fetch upstream git rebase upstream/main ``` 4. Übertragen Sie die Änderungen auf Ihr Konto mit: ```bash git push -u origin a-descriptive-name-for-my-changes ``` 5. Wenn Sie zufrieden sind, gehen Sie auf die Webseite Ihrer Abspaltung auf GitHub. Klicken Sie auf "Pull request". Stellen Sie sicher, dass Sie das GitHub-Handle einiger Mitglieder des Hugging Face-Teams als Reviewer hinzuzufügen, damit das Hugging Face-Team über zukünftige Änderungen informiert wird. zukünftige Änderungen benachrichtigt wird. 6. Ändern Sie den PR in einen Entwurf, indem Sie auf der rechten Seite der GitHub-Pull-Request-Webseite auf "In Entwurf umwandeln" klicken. Vergessen Sie im Folgenden nicht, wenn Sie Fortschritte gemacht haben, Ihre Arbeit zu committen und in Ihr Konto zu pushen, damit sie in der Pull-Anfrage erscheint. damit sie in der Pull-Anfrage angezeigt wird. Außerdem sollten Sie darauf achten, dass Sie Ihre Arbeit von Zeit zu Zeit mit dem aktuellen main von Zeit zu Zeit zu aktualisieren, indem Sie dies tun: ```bash git fetch upstream git merge upstream/main ``` Generell sollten Sie alle Fragen, die Sie in Bezug auf das Modell oder Ihre Implementierung haben, in Ihrem PR stellen und in der PR diskutiert/gelöst werden. Auf diese Weise wird das Hugging Face Team immer benachrichtigt, wenn Sie neuen Code einreichen oder wenn Sie eine Frage haben. Es ist oft sehr hilfreich, das Hugging Face-Team auf Ihren hinzugefügten Code hinzuweisen, damit das Hugging Face-Team Ihr Problem oder Ihre Frage besser verstehen kann. Face-Team Ihr Problem oder Ihre Frage besser verstehen kann. Gehen Sie dazu auf die Registerkarte "Geänderte Dateien", auf der Sie alle Ihre Änderungen sehen, gehen Sie zu einer Zeile, zu der Sie eine Frage stellen möchten eine Frage stellen möchten, und klicken Sie auf das "+"-Symbol, um einen Kommentar hinzuzufügen. Wenn eine Frage oder ein Problem gelöst wurde, können Sie auf die Schaltfläche "Lösen" des erstellten Kommentars klicken. Auf dieselbe Weise wird das Hugging Face-Team Kommentare öffnen, wenn es Ihren Code überprüft. Wir empfehlen, die meisten Fragen auf GitHub in Ihrem PR zu stellen. Für einige sehr allgemeine Fragen, die für die Öffentlichkeit nicht sehr nützlich sind, können Sie das Hugging Face Team per Slack oder E-Mail zu stellen. **5. Passen Sie den Code der generierten Modelle für brand_new_bert** an. Zunächst werden wir uns nur auf das Modell selbst konzentrieren und uns nicht um den Tokenizer kümmern. Den gesamten relevanten Code sollten Sie finden Sie in den generierten Dateien `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` und `src/transformers/models/brand_new_bert/configuration_brand_new_bert.py`. Jetzt können Sie endlich mit dem Programmieren beginnen :). Der generierte Code in `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` wird entweder die gleiche Architektur wie BERT haben, wenn wenn es sich um ein reines Encoder-Modell handelt oder BART, wenn es sich um ein Encoder-Decoder-Modell handelt. An diesem Punkt sollten Sie sich daran erinnern, was was Sie am Anfang über die theoretischen Aspekte des Modells gelernt haben: *Wie unterscheidet sich das Modell von BERT oder BART?*". Implementieren Sie diese Änderungen, was oft bedeutet, dass Sie die *Selbstaufmerksamkeitsschicht*, die Reihenfolge der Normalisierungsschicht usw. ändern müssen. Schicht usw... Auch hier ist es oft nützlich, sich die ähnliche Architektur bereits bestehender Modelle in Transformers anzusehen, um ein besseres Gefühl dafür zu bekommen ein besseres Gefühl dafür zu bekommen, wie Ihr Modell implementiert werden sollte. **Beachten Sie**, dass Sie an diesem Punkt nicht sehr sicher sein müssen, dass Ihr Code völlig korrekt oder sauber ist. Vielmehr ist es Sie sollten vielmehr eine erste *unbereinigte*, kopierte Version des ursprünglichen Codes in src/transformers/models/brand_new_bert/modeling_brand_new_bert.py" hinzuzufügen, bis Sie das Gefühl haben, dass der gesamte notwendige Code hinzugefügt wurde. Unserer Erfahrung nach ist es viel effizienter, schnell eine erste Version des erforderlichen Codes hinzuzufügen und den Code iterativ mit dem Konvertierungsskript zu verbessern/korrigieren, wie im nächsten Abschnitt beschrieben. Das einzige, was zu diesem Zeitpunkt funktionieren muss, ist, dass Sie die 🤗 Transformers-Implementierung von *brand_new_bert* instanziieren können, *d.h.* der folgende Befehl sollte funktionieren: ```python from transformers import BrandNewBertModel, BrandNewBertConfig model = BrandNewBertModel(BrandNewBertConfig()) ``` Der obige Befehl erstellt ein Modell gemäß den Standardparametern, die in `BrandNewBertConfig()` definiert sind, mit zufälligen Gewichten und stellt damit sicher, dass die `init()` Methoden aller Komponenten funktionieren. Beachten Sie, dass alle zufälligen Initialisierungen in der Methode `_init_weights` Ihres `BrandnewBertPreTrainedModel` stattfinden sollten. Klasse erfolgen sollte. Sie sollte alle Blattmodule in Abhängigkeit von den Variablen der Konfiguration initialisieren. Hier ist ein Beispiel mit der BERT `_init_weights` Methode: ```py def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) ``` Sie können weitere benutzerdefinierte Schemata verwenden, wenn Sie eine spezielle Initialisierung für einige Module benötigen. Zum Beispiel in `Wav2Vec2ForPreTraining` müssen die letzten beiden linearen Schichten die Initialisierung des regulären PyTorch `nn.Linear` haben. aber alle anderen sollten eine Initialisierung wie oben verwenden. Dies ist wie folgt kodiert: ```py def _init_weights(self, module): """Initialize the weights""" if isinstance(module, Wav2Vec2ForPreTraining): module.project_hid.reset_parameters() module.project_q.reset_parameters() module.project_hid._is_hf_initialized = True module.project_q._is_hf_initialized = True elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() ``` Das Flag `_is_hf_initialized` wird intern verwendet, um sicherzustellen, dass wir ein Submodul nur einmal initialisieren. Wenn Sie es auf True` für `module.project_q` und `module.project_hid` setzen, stellen wir sicher, dass die benutzerdefinierte Initialisierung, die wir vorgenommen haben, später nicht überschrieben wird, die Funktion `_init_weights` nicht auf sie angewendet wird. **6. Schreiben Sie ein Konvertierungsskript** Als nächstes sollten Sie ein Konvertierungsskript schreiben, mit dem Sie den Checkpoint, den Sie zum Debuggen von *brand_new_bert* im im ursprünglichen Repository in einen Prüfpunkt konvertieren, der mit Ihrer gerade erstellten 🤗 Transformers-Implementierung von *brand_new_bert*. Es ist nicht ratsam, das Konvertierungsskript von Grund auf neu zu schreiben, sondern die bereits bestehenden Konvertierungsskripten in 🤗 Transformers nach einem Skript zu suchen, das für die Konvertierung eines ähnlichen Modells verwendet wurde, das im demselben Framework wie *brand_new_bert* geschrieben wurde. Normalerweise reicht es aus, ein bereits vorhandenes Konvertierungsskript zu kopieren und es für Ihren Anwendungsfall leicht anzupassen. Zögern Sie nicht, das Hugging Face Team zu bitten, Sie auf ein ähnliches, bereits vorhandenes Konvertierungsskript für Ihr Modell zu finden. - Wenn Sie ein Modell von TensorFlow nach PyTorch portieren, ist ein guter Ausgangspunkt das Konvertierungsskript von BERT [hier] (https://github.com/huggingface/transformers/blob/7acfa95afb8194f8f9c1f4d2c6028224dbed35a2/src/transformers/models/bert/modeling_bert.py#L91) - Wenn Sie ein Modell von PyTorch nach PyTorch portieren, ist ein guter Ausgangspunkt das Konvertierungsskript von BART [hier](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py) Im Folgenden werden wir kurz erklären, wie PyTorch-Modelle Ebenengewichte speichern und Ebenennamen definieren. In PyTorch wird der Name einer Ebene durch den Namen des Klassenattributs definiert, das Sie der Ebene geben. Lassen Sie uns ein Dummy-Modell in PyTorch, das wir `SimpleModel` nennen, wie folgt: ```python from torch import nn class SimpleModel(nn.Module): def __init__(self): super().__init__() self.dense = nn.Linear(10, 10) self.intermediate = nn.Linear(10, 10) self.layer_norm = nn.LayerNorm(10) ``` Jetzt können wir eine Instanz dieser Modelldefinition erstellen, die alle Gewichte ausfüllt: `dense`, `intermediate`, `layer_norm` mit zufälligen Gewichten. Wir können das Modell ausdrucken, um seine Architektur zu sehen ```python model = SimpleModel() print(model) ``` Dies gibt folgendes aus: ``` SimpleModel( (dense): Linear(in_features=10, out_features=10, bias=True) (intermediate): Linear(in_features=10, out_features=10, bias=True) (layer_norm): LayerNorm((10,), eps=1e-05, elementwise_affine=True) ) ``` Wir können sehen, dass die Ebenennamen durch den Namen des Klassenattributs in PyTorch definiert sind. Sie können die Gewichtswerte Werte einer bestimmten Ebene anzeigen lassen: ```python print(model.dense.weight.data) ``` um zu sehen, dass die Gewichte zufällig initialisiert wurden ``` tensor([[-0.0818, 0.2207, -0.0749, -0.0030, 0.0045, -0.1569, -0.1598, 0.0212, -0.2077, 0.2157], [ 0.1044, 0.0201, 0.0990, 0.2482, 0.3116, 0.2509, 0.2866, -0.2190, 0.2166, -0.0212], [-0.2000, 0.1107, -0.1999, -0.3119, 0.1559, 0.0993, 0.1776, -0.1950, -0.1023, -0.0447], [-0.0888, -0.1092, 0.2281, 0.0336, 0.1817, -0.0115, 0.2096, 0.1415, -0.1876, -0.2467], [ 0.2208, -0.2352, -0.1426, -0.2636, -0.2889, -0.2061, -0.2849, -0.0465, 0.2577, 0.0402], [ 0.1502, 0.2465, 0.2566, 0.0693, 0.2352, -0.0530, 0.1859, -0.0604, 0.2132, 0.1680], [ 0.1733, -0.2407, -0.1721, 0.1484, 0.0358, -0.0633, -0.0721, -0.0090, 0.2707, -0.2509], [-0.1173, 0.1561, 0.2945, 0.0595, -0.1996, 0.2988, -0.0802, 0.0407, 0.1829, -0.1568], [-0.1164, -0.2228, -0.0403, 0.0428, 0.1339, 0.0047, 0.1967, 0.2923, 0.0333, -0.0536], [-0.1492, -0.1616, 0.1057, 0.1950, -0.2807, -0.2710, -0.1586, 0.0739, 0.2220, 0.2358]]). ``` Im Konvertierungsskript sollten Sie diese zufällig initialisierten Gewichte mit den genauen Gewichten der entsprechenden Ebene im Kontrollpunkt. *Z.B.* ```python # retrieve matching layer weights, e.g. by # recursive algorithm layer_name = "dense" pretrained_weight = array_of_dense_layer model_pointer = getattr(model, "dense") model_pointer.weight.data = torch.from_numpy(pretrained_weight) ``` Dabei müssen Sie sicherstellen, dass jedes zufällig initialisierte Gewicht Ihres PyTorch-Modells und sein entsprechendes Checkpoint-Gewicht in **Form und Name** genau übereinstimmen. Zu diesem Zweck ist es **notwendig**, assert Anweisungen für die Form hinzuzufügen und die Namen der Checkpoint-Gewichte auszugeben. Sie sollten z.B. Anweisungen hinzufügen wie: ```python assert ( model_pointer.weight.shape == pretrained_weight.shape ), f"Pointer shape of random weight {model_pointer.shape} and array shape of checkpoint weight {pretrained_weight.shape} mismatched" ``` Außerdem sollten Sie die Namen der beiden Gewichte ausdrucken, um sicherzustellen, dass sie übereinstimmen, *z.B.*. ```python logger.info(f"Initialize PyTorch weight {layer_name} from {pretrained_weight.name}") ``` Wenn entweder die Form oder der Name nicht übereinstimmt, haben Sie wahrscheinlich das falsche Kontrollpunktgewicht einer zufällig Ebene der 🤗 Transformers-Implementierung zugewiesen. Eine falsche Form ist höchstwahrscheinlich auf eine falsche Einstellung der Konfigurationsparameter in `BrandNewBertConfig()` zurückzuführen, die nicht genau mit denen übereinstimmen, die für den zu konvertierenden Prüfpunkt verwendet wurden. Es könnte aber auch sein, dass die PyTorch-Implementierung eines Layers erfordert, dass das Gewicht vorher transponiert wird. Schließlich sollten Sie auch überprüfen, ob **alle** erforderlichen Gewichte initialisiert sind und alle Checkpoint-Gewichte ausgeben, die die nicht zur Initialisierung verwendet wurden, um sicherzustellen, dass das Modell korrekt konvertiert wurde. Es ist völlig normal, dass die Konvertierungsversuche entweder mit einer falschen Shape-Anweisung oder einer falschen Namenszuweisung fehlschlagen. Das liegt höchstwahrscheinlich daran, dass entweder Sie haben falsche Parameter in `BrandNewBertConfig()` verwendet, haben eine falsche Architektur in der 🤗 Transformers Implementierung, Sie haben einen Fehler in den `init()` Funktionen einer der Komponenten der 🤗 Transformers Implementierung oder Sie müssen eine der Kontrollpunktgewichte transponieren. Dieser Schritt sollte mit dem vorherigen Schritt wiederholt werden, bis alle Gewichte des Kontrollpunkts korrekt in das Transformers-Modell geladen sind. Nachdem Sie den Prüfpunkt korrekt in die 🤗 Transformers-Implementierung geladen haben, können Sie das Modell das Modell unter einem Ordner Ihrer Wahl `/path/to/converted/checkpoint/folder` speichern, der dann sowohl ein Datei `pytorch_model.bin` und eine Datei `config.json` enthalten sollte: ```python model.save_pretrained("/path/to/converted/checkpoint/folder") ``` **7. Implementieren Sie den Vorwärtspass** Nachdem es Ihnen gelungen ist, die trainierten Gewichte korrekt in die 🤗 Transformers-Implementierung zu laden, sollten Sie nun dafür sorgen sicherstellen, dass der Forward Pass korrekt implementiert ist. In [Machen Sie sich mit dem ursprünglichen Repository vertraut](#34-run-a-pretrained-checkpoint-using-the-original-repository) haben Sie bereits ein Skript erstellt, das einen Forward Pass Durchlauf des Modells unter Verwendung des Original-Repositorys durchführt. Jetzt sollten Sie ein analoges Skript schreiben, das die 🤗 Transformers Implementierung anstelle der Originalimplementierung verwenden. Es sollte wie folgt aussehen: ```python model = BrandNewBertModel.from_pretrained("/path/to/converted/checkpoint/folder") input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19] output = model(input_ids).last_hidden_states ``` Es ist sehr wahrscheinlich, dass die 🤗 Transformers-Implementierung und die ursprüngliche Modell-Implementierung nicht genau die gleiche Ausgabe liefern. beim ersten Mal nicht die gleiche Ausgabe liefern oder dass der Vorwärtsdurchlauf einen Fehler auslöst. Seien Sie nicht enttäuscht - das ist zu erwarten! Erstens, sollten Sie sicherstellen, dass der Vorwärtsdurchlauf keine Fehler auslöst. Es passiert oft, dass die falschen Dimensionen verwendet werden verwendet werden, was zu einem *Dimensionality mismatch* Fehler führt oder dass der falsche Datentyp verwendet wird, *z.B.* `torch.long` anstelle von `torch.float32`. Zögern Sie nicht, das Hugging Face Team um Hilfe zu bitten, wenn Sie bestimmte Fehler nicht lösen können. bestimmte Fehler nicht lösen können. Um sicherzustellen, dass die Implementierung von 🤗 Transformers korrekt funktioniert, müssen Sie sicherstellen, dass die Ausgaben einer Genauigkeit von `1e-3` entsprechen. Zunächst sollten Sie sicherstellen, dass die Ausgabeformen identisch sind, *d.h.*. Die Ausgabeform *outputs.shape* sollte für das Skript der 🤗 Transformers-Implementierung und die ursprüngliche Implementierung ergeben. Als nächstes sollten Sie sicherstellen, dass auch die Ausgabewerte identisch sind. Dies ist einer der schwierigsten Teile des Hinzufügens eines neuen Modells. Häufige Fehler, warum die Ausgaben nicht identisch sind, sind: - Einige Ebenen wurden nicht hinzugefügt, *d.h.* eine *Aktivierungsebene* wurde nicht hinzugefügt, oder die Restverbindung wurde vergessen - Die Worteinbettungsmatrix wurde nicht gebunden - Es werden die falschen Positionseinbettungen verwendet, da die ursprüngliche Implementierung einen Offset verwendet - Dropout wird während des Vorwärtsdurchlaufs angewendet. Um dies zu beheben, stellen Sie sicher, dass *model.training auf False* steht und dass keine Dropout Schicht während des Vorwärtsdurchlaufs fälschlicherweise aktiviert wird, *d.h.* übergeben Sie *self.training* an [PyTorch's functional dropout](https://pytorch.org/docs/stable/nn.functional.html?highlight=dropout#torch.nn.functional.dropout) Der beste Weg, das Problem zu beheben, besteht normalerweise darin, sich den Vorwärtsdurchlauf der ursprünglichen Implementierung und die 🤗 Transformers-Implementierung nebeneinander zu sehen und zu prüfen, ob es Unterschiede gibt. Idealerweise sollten Sie die Zwischenergebnisse beider Implementierungen des Vorwärtsdurchlaufs debuggen/ausdrucken, um die genaue Position im Netzwerk zu finden, an der die 🤗 Transformers-Implementierung eine andere Ausgabe zeigt als die ursprüngliche Implementierung. Stellen Sie zunächst sicher, dass die hartcodierten `input_ids` in beiden Skripten identisch sind. Überprüfen Sie dann, ob die Ausgaben der ersten Transformation von der `input_ids` (normalerweise die Worteinbettungen) identisch sind. Und dann arbeiten Sie sich bis zur allerletzten Schicht des Netzwerks. Irgendwann werden Sie einen Unterschied zwischen den beiden Implementierungen feststellen, der Sie auf den Fehler in der Implementierung von 🤗 Transformers hinweist. Unserer Erfahrung nach ist ein einfacher und effizienter Weg, viele Druckanweisungen hinzuzufügen sowohl in der Original-Implementierung als auch in der 🤗 Transformers-Implementierung an den gleichen Stellen im Netzwerk hinzuzufügen und nacheinander Druckanweisungen zu entfernen, die dieselben Werte für Zwischenpräsentationen anzeigen. Wenn Sie sicher sind, dass beide Implementierungen die gleiche Ausgabe liefern, überprüfen Sie die Ausgaben mit `torch.allclose(original_output, output, atol=1e-3)` überprüfen, haben Sie den schwierigsten Teil hinter sich! Herzlichen Glückwunsch - die Arbeit, die noch zu erledigen ist, sollte ein Kinderspiel sein 😊. **8. Hinzufügen aller notwendigen Modelltests** An diesem Punkt haben Sie erfolgreich ein neues Modell hinzugefügt. Es ist jedoch sehr gut möglich, dass das Modell noch nicht noch nicht vollständig mit dem erforderlichen Design übereinstimmt. Um sicherzustellen, dass die Implementierung vollständig kompatibel mit 🤗 Transformers ist, sollten alle gemeinsamen Tests bestehen. Der Cookiecutter sollte automatisch eine Testdatei für Ihr Modell hinzugefügt haben, wahrscheinlich unter demselben `tests/models/brand_new_bert/test_modeling_brand_new_bert.py`. Führen Sie diese Testdatei aus, um zu überprüfen, ob alle gängigen Tests bestehen: ```bash pytest tests/models/brand_new_bert/test_modeling_brand_new_bert.py ``` Nachdem Sie alle allgemeinen Tests festgelegt haben, müssen Sie nun sicherstellen, dass all die schöne Arbeit, die Sie geleistet haben, gut getestet ist, damit - a) die Community Ihre Arbeit leicht nachvollziehen kann, indem sie sich spezifische Tests von *brand_new_bert* ansieht - b) zukünftige Änderungen an Ihrem Modell keine wichtigen Funktionen des Modells zerstören. Als erstes sollten Sie Integrationstests hinzufügen. Diese Integrationstests tun im Wesentlichen dasselbe wie die Debugging-Skripte die Sie zuvor zur Implementierung des Modells in 🤗 Transformers verwendet haben. Eine Vorlage für diese Modelltests wurde bereits von dem Cookiecutter hinzugefügt, die `BrandNewBertModelIntegrationTests` heißt und nur noch von Ihnen ausgefüllt werden muss. Um sicherzustellen, dass diese Tests erfolgreich sind, führen Sie ```bash RUN_SLOW=1 pytest -sv tests/models/brand_new_bert/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests ``` <Tip> Falls Sie Windows verwenden, sollten Sie `RUN_SLOW=1` durch `SET RUN_SLOW=1` ersetzen. </Tip> Zweitens sollten alle Funktionen, die speziell für *brand_new_bert* sind, zusätzlich in einem separaten Test getestet werden unter `BrandNewBertModelTester`/``BrandNewBertModelTest`. Dieser Teil wird oft vergessen, ist aber in zweierlei Hinsicht äußerst nützlich Weise: - Er hilft dabei, das Wissen, das Sie während der Modellerweiterung erworben haben, an die Community weiterzugeben, indem er zeigt, wie die speziellen Funktionen von *brand_new_bert* funktionieren sollten. - Künftige Mitwirkende können Änderungen am Modell schnell testen, indem sie diese speziellen Tests ausführen. **9. Implementieren Sie den Tokenizer** Als nächstes sollten wir den Tokenizer von *brand_new_bert* hinzufügen. Normalerweise ist der Tokenizer äquivalent oder sehr ähnlich zu einem bereits vorhandenen Tokenizer von 🤗 Transformers. Es ist sehr wichtig, die ursprüngliche Tokenizer-Datei zu finden/extrahieren und es zu schaffen, diese Datei in die 🤗 Transformers Implementierung des Tokenizers zu laden. Um sicherzustellen, dass der Tokenizer korrekt funktioniert, empfiehlt es sich, zunächst ein Skript im ursprünglichen Repository zu erstellen zu erstellen, das eine Zeichenkette eingibt und die `input_ids` zurückgibt. Es könnte etwa so aussehen (in Pseudocode): ```python input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words." model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/") input_ids = model.tokenize(input_str) ``` Möglicherweise müssen Sie noch einmal einen Blick in das ursprüngliche Repository werfen, um die richtige Tokenizer-Funktion zu finden, oder Sie müssen Sie müssen vielleicht sogar Änderungen an Ihrem Klon des Original-Repositorys vornehmen, um nur die `input_ids` auszugeben. Nach dem Schreiben ein funktionierendes Tokenisierungsskript geschrieben, das das ursprüngliche Repository verwendet, sollten Sie ein analoges Skript für 🤗 Transformers erstellt werden. Es sollte ähnlich wie dieses aussehen: ```python from transformers import BrandNewBertTokenizer input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words." tokenizer = BrandNewBertTokenizer.from_pretrained("/path/to/tokenizer/folder/") input_ids = tokenizer(input_str).input_ids ``` Wenn beide `input_ids` die gleichen Werte ergeben, sollte als letzter Schritt auch eine Tokenizer-Testdatei hinzugefügt werden. Analog zu den Modellierungstestdateien von *brand_new_bert* sollten auch die Tokenisierungs-Testdateien von *brand_new_bert* eine Reihe von fest kodierten Integrationstests enthalten. **10. Führen Sie End-to-End-Integrationstests aus** Nachdem Sie den Tokenizer hinzugefügt haben, sollten Sie auch ein paar End-to-End-Integrationstests, die sowohl das Modell als auch den Tokenizer zu `tests/models/brand_new_bert/test_modeling_brand_new_bert.py` in 🤗 Transformers. Ein solcher Test sollte bei einem aussagekräftigen Text-zu-Text-Beispiel zeigen, dass die Implementierung von 🤗 Transformers wie erwartet funktioniert. Ein aussagekräftiges Text-zu-Text-Beispiel kann z.B. *ein Quell-zu-Ziel-Übersetzungspaar, ein Artikel-zu-Zusammenfassung-Paar, ein Frage-zu-Antwort-Paar, usw... Wenn keiner der der portierten Prüfpunkte in einer nachgelagerten Aufgabe feinabgestimmt wurde, genügt es, sich einfach auf die Modelltests zu verlassen. In einem letzten Schritt, um sicherzustellen, dass das Modell voll funktionsfähig ist, sollten Sie alle Tests auch auf der GPU durchführen. Es kann Es kann vorkommen, dass Sie vergessen haben, einige `.to(self.device)` Anweisungen zu internen Tensoren des Modells hinzuzufügen, was in einem solchen Test zu einem Fehler führen würde. Falls Sie keinen Zugang zu einem Grafikprozessor haben, kann das Hugging Face Team diese Tests für Sie durchführen. Tests für Sie übernehmen. **11. Docstring hinzufügen** Nun sind alle notwendigen Funktionen für *brand_new_bert* hinzugefügt - Sie sind fast fertig! Das Einzige, was Sie noch hinzufügen müssen, ist ein schöner Docstring und eine Doku-Seite. Der Cookiecutter sollte eine Vorlagendatei namens `docs/source/model_doc/brand_new_bert.md` hinzugefügt haben, die Sie ausfüllen sollten. Die Benutzer Ihres Modells werden in der Regel zuerst einen Blick auf diese Seite ansehen, bevor sie Ihr Modell verwenden. Daher muss die Dokumentation verständlich und prägnant sein. Es ist sehr nützlich für die Gemeinschaft, einige *Tipps* hinzuzufügen, um zu zeigen, wie das Modell verwendet werden sollte. Zögern Sie nicht, das Hugging Face-Team anzupingen bezüglich der Docstrings. Stellen Sie als nächstes sicher, dass der zu `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` hinzugefügte docstring korrekt ist und alle erforderlichen Eingaben und Ausgaben enthält. Wir haben eine ausführliche Anleitung zum Schreiben von Dokumentationen und unserem Docstring-Format [hier](writing-documentation). Es ist immer gut, sich daran zu erinnern, dass die Dokumentation mindestens so sorgfältig behandelt werden sollte wie der Code in 🤗 Transformers, denn die Dokumentation ist in der Regel der erste Kontaktpunkt der Berührungspunkt der Community mit dem Modell ist. **Code refactor** Großartig, jetzt haben Sie den gesamten erforderlichen Code für *brand_new_bert* hinzugefügt. An diesem Punkt sollten Sie einige mögliche falschen Codestil korrigieren, indem Sie ausführen: ```bash make style ``` und überprüfen Sie, ob Ihr Kodierungsstil die Qualitätsprüfung besteht: ```bash make quality ``` Es gibt noch ein paar andere sehr strenge Designtests in 🤗 Transformers, die möglicherweise noch fehlschlagen, was sich in den den Tests Ihres Pull Requests. Dies liegt oft an fehlenden Informationen im Docstring oder an einer falschen Benennung. Das Hugging Face Team wird Ihnen sicherlich helfen, wenn Sie hier nicht weiterkommen. Und schließlich ist es immer eine gute Idee, den eigenen Code zu refaktorisieren, nachdem man sichergestellt hat, dass er korrekt funktioniert. Wenn alle Tests bestanden haben, ist es nun an der Zeit, den hinzugefügten Code noch einmal durchzugehen und einige Überarbeitungen vorzunehmen. Sie haben nun den Codierungsteil abgeschlossen, herzlichen Glückwunsch! 🎉 Sie sind großartig! 😎 **12. Laden Sie die Modelle in den Model Hub hoch** In diesem letzten Teil sollten Sie alle Checkpoints konvertieren und in den Modell-Hub hochladen und eine Modellkarte für jeden hochgeladenen Modell-Kontrollpunkt. Sie können sich mit den Hub-Funktionen vertraut machen, indem Sie unsere [Model sharing and uploading Page](model_sharing) lesen. Hier sollten Sie mit dem Hugging Face-Team zusammenarbeiten, um einen passenden Namen für jeden Checkpoint festzulegen und die erforderlichen Zugriffsrechte zu erhalten, um das Modell unter der Organisation des Autors *brand_new_bert* hochladen zu können. *brand_new_bert*. Die Methode `push_to_hub`, die in allen Modellen in `transformers` vorhanden ist, ist ein schneller und effizienter Weg, Ihren Checkpoint in den Hub zu pushen. Ein kleines Snippet ist unten eingefügt: ```python brand_new_bert.push_to_hub("brand_new_bert") # Uncomment the following line to push to an organization. # brand_new_bert.push_to_hub("<organization>/brand_new_bert") ``` Es lohnt sich, etwas Zeit darauf zu verwenden, für jeden Kontrollpunkt passende Musterkarten zu erstellen. Die Modellkarten sollten die spezifischen Merkmale dieses bestimmten Prüfpunkts hervorheben, * z.B.* auf welchem Datensatz wurde der Prüfpunkt vortrainiert/abgestimmt? Für welche nachgelagerte Aufgabe sollte das Modell verwendet werden? Und fügen Sie auch etwas Code bei, wie Sie wie das Modell korrekt verwendet wird. **13. (Optional) Notizbuch hinzufügen** Es ist sehr hilfreich, ein Notizbuch hinzuzufügen, in dem im Detail gezeigt wird, wie *brand_new_bert* für Schlussfolgerungen verwendet werden kann und/oder bei einer nachgelagerten Aufgabe feinabgestimmt wird. Dies ist nicht zwingend erforderlich, um Ihren PR zusammenzuführen, aber sehr nützlich für die Gemeinschaft. **14. Reichen Sie Ihren fertigen PR ein** Sie sind jetzt mit der Programmierung fertig und können zum letzten Schritt übergehen, nämlich der Zusammenführung Ihres PR mit main. Normalerweise hat das Hugging Face Team Ihnen an diesem Punkt bereits geholfen haben, aber es lohnt sich, sich etwas Zeit zu nehmen, um Ihrem fertigen PR eine schöne Beschreibung zu geben und eventuell Kommentare zu Ihrem Code hinzuzufügen, wenn Sie Ihren Gutachter auf bestimmte Designentscheidungen hinweisen wollen. Gutachter hinweisen wollen. ### Teilen Sie Ihre Arbeit!! Jetzt ist es an der Zeit, von der Community Anerkennung für Ihre Arbeit zu bekommen! Die Fertigstellung einer Modellergänzung ist ein wichtiger Beitrag zu Transformers und der gesamten NLP-Gemeinschaft. Ihr Code und die portierten vortrainierten Modelle werden sicherlich von Hunderten und vielleicht sogar Tausenden von Entwicklern und Forschern genutzt werden. Sie sollten stolz auf Ihre Arbeit sein und Ihre Ihre Leistung mit der Gemeinschaft teilen. **Sie haben ein weiteres Modell erstellt, das für jeden in der Community super einfach zugänglich ist! 🤯**
transformers/docs/source/de/add_new_model.md/0
{ "file_path": "transformers/docs/source/de/add_new_model.md", "repo_id": "transformers", "token_count": 24171 }
239
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Transformers Agents <Tip warning={true}> Transformers Agents ist eine experimentelle API, die jederzeit geändert werden kann. Die von den Agenten zurückgegebenen Ergebnisse zurückgegeben werden, können variieren, da sich die APIs oder die zugrunde liegenden Modelle ändern können. </Tip> Transformers Version v4.29.0, die auf dem Konzept von *Tools* und *Agenten* aufbaut. Sie können damit spielen in [dieses Colab](https://colab.research.google.com/drive/1c7MHD-T1forUPGcC_jlwsIptOzpG3hSj). Kurz gesagt, es bietet eine API für natürliche Sprache auf der Grundlage von Transformers: Wir definieren eine Reihe von kuratierten Tools und entwerfen einen Agenten, um natürliche Sprache zu interpretieren und diese Werkzeuge zu verwenden. Es ist von vornherein erweiterbar; wir haben einige relevante Tools kuratiert, aber wir werden Ihnen zeigen, wie das System einfach erweitert werden kann, um jedes von der Community entwickelte Tool zu verwenden. Beginnen wir mit einigen Beispielen dafür, was mit dieser neuen API erreicht werden kann. Sie ist besonders leistungsfähig, wenn es um Sie ist besonders leistungsstark, wenn es um multimodale Aufgaben geht. Lassen Sie uns also eine Runde drehen, um Bilder zu erzeugen und Text vorzulesen. ```py agent.run("Caption the following image", image=image) ``` | **Input** | **Output** | |-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------| | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/beaver.png" width=200> | A beaver is swimming in the water | --- ```py agent.run("Read the following text out loud", text=text) ``` | **Input** | **Output** | |-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------| | A beaver is swimming in the water | <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tts_example.wav" type="audio/wav"> your browser does not support the audio element. </audio> --- ```py agent.run( "In the following `document`, where will the TRRF Scientific Advisory Council Meeting take place?", document=document, ) ``` | **Input** | **Output** | |-----------------------------------------------------------------------------------------------------------------------------|----------------| | <img src="https://datasets-server.huggingface.co/assets/hf-internal-testing/example-documents/--/hf-internal-testing--example-documents/test/0/image/image.jpg" width=200> | ballroom foyer | ## Schnellstart Bevor Sie `agent.run` verwenden können, müssen Sie einen Agenten instanziieren, der ein großes Sprachmodell (LLM) ist. Wir bieten Unterstützung für openAI-Modelle sowie für OpenSource-Alternativen von BigCode und OpenAssistant. Die openAI Modelle sind leistungsfähiger (erfordern aber einen openAI-API-Schlüssel, können also nicht kostenlos verwendet werden); Hugging Face bietet kostenlosen Zugang zu Endpunkten für BigCode- und OpenAssistant-Modelle. To start with, please install the `agents` extras in order to install all default dependencies. ```bash pip install transformers[agents] ``` Um openAI-Modelle zu verwenden, instanziieren Sie einen [`OpenAiAgent`], nachdem Sie die `openai`-Abhängigkeit installiert haben: ```bash pip install openai ``` ```py from transformers import OpenAiAgent agent = OpenAiAgent(model="text-davinci-003", api_key="<your_api_key>") ``` Um BigCode oder OpenAssistant zu verwenden, melden Sie sich zunächst an, um Zugriff auf die Inference API zu erhalten: ```py from huggingface_hub import login login("<YOUR_TOKEN>") ``` Dann instanziieren Sie den Agenten ```py from transformers import HfAgent # Starcoder agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") # StarcoderBase # agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoderbase") # OpenAssistant # agent = HfAgent(url_endpoint="https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5") ``` Dies geschieht mit der Inferenz-API, die Hugging Face derzeit kostenlos zur Verfügung stellt. Wenn Sie Ihren eigenen Inferenz Endpunkt für dieses Modell (oder einen anderen) haben, können Sie die obige URL durch Ihren URL-Endpunkt ersetzen. <Tip> StarCoder und OpenAssistant sind kostenlos und leisten bei einfachen Aufgaben bewundernswert gute Arbeit. Allerdings halten die Kontrollpunkte nicht, wenn es um komplexere Aufforderungen geht. Wenn Sie mit einem solchen Problem konfrontiert sind, empfehlen wir Ihnen, das OpenAI Modell auszuprobieren, das zwar leider nicht quelloffen ist, aber zur Zeit eine bessere Leistung erbringt. </Tip> Sie sind jetzt startklar! Lassen Sie uns in die beiden APIs eintauchen, die Ihnen jetzt zur Verfügung stehen. ### Einzelne Ausführung (run) Die Methode der einmaligen Ausführung ist die Verwendung der [`~Agent.run`] Methode des Agenten: ```py agent.run("Draw me a picture of rivers and lakes.") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200> Es wählt automatisch das (oder die) Werkzeug(e) aus, das (die) für die von Ihnen gewünschte Aufgabe geeignet ist (sind) und führt es (sie) entsprechend aus. Es kann eine oder mehrere Aufgaben in der gleichen Anweisung ausführen (je komplexer Ihre Anweisung ist, desto wahrscheinlicher ist ein der Agent scheitern). ```py agent.run("Draw me a picture of the sea then transform the picture to add an island") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/sea_and_island.png" width=200> <br/> Jede [`~Agent.run`] Operation ist unabhängig, so dass Sie sie mehrmals hintereinander mit unterschiedlichen Aufgaben ausführen können. Beachten Sie, dass Ihr `Agent` nur ein großsprachiges Modell ist, so dass kleine Variationen in Ihrer Eingabeaufforderung völlig unterschiedliche Ergebnisse liefern können. unterschiedliche Ergebnisse liefern. Es ist wichtig, dass Sie die Aufgabe, die Sie ausführen möchten, so genau wie möglich erklären. Wir gehen noch weiter ins Detail wie man gute Prompts schreibt [hier](custom_tools#writing-good-user-inputs). Wenn Sie einen Status über Ausführungszeiten hinweg beibehalten oder dem Agenten Nicht-Text-Objekte übergeben möchten, können Sie dies tun, indem Sie Variablen, die der Agent verwenden soll. Sie könnten zum Beispiel das erste Bild von Flüssen und Seen erzeugen, und das Modell bitten, dieses Bild zu aktualisieren und eine Insel hinzuzufügen, indem Sie Folgendes tun: ```python picture = agent.run("Generate a picture of rivers and lakes.") updated_picture = agent.run("Transform the image in `picture` to add an island to it.", picture=picture) ``` <Tip> Dies kann hilfreich sein, wenn das Modell Ihre Anfrage nicht verstehen kann und die Werkzeuge verwechselt. Ein Beispiel wäre: ```py agent.run("Draw me the picture of a capybara swimming in the sea") ``` Hier könnte das Modell auf zwei Arten interpretieren: - Die Funktion `Text-zu-Bild` erzeugt ein Wasserschwein, das im Meer schwimmt. - Oder Sie lassen das `Text-zu-Bild` ein Wasserschwein erzeugen und verwenden dann das Werkzeug `Bildtransformation`, um es im Meer schwimmen zu lassen. Falls Sie das erste Szenario erzwingen möchten, können Sie dies tun, indem Sie die Eingabeaufforderung als Argument übergeben: ```py agent.run("Draw me a picture of the `prompt`", prompt="a capybara swimming in the sea") ``` </Tip> ### Chat-basierte Ausführung (Chat) Der Agent verfügt auch über einen Chat-basierten Ansatz, der die Methode [`~Agent.chat`] verwendet: ```py agent.chat("Generate a picture of rivers and lakes") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200> ```py agent.chat("Transform the picture so that there is a rock in there") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_and_beaver.png" width=200> <br/> Dies ist ein interessanter Ansatz, wenn Sie den Zustand über Anweisungen hinweg beibehalten möchten. Er ist besser für Experimente geeignet, eignet sich aber eher für einzelne Anweisungen als für komplexe Anweisungen (die die [`~Agent.run`] Methode besser verarbeiten kann). Diese Methode kann auch Argumente entgegennehmen, wenn Sie Nicht-Text-Typen oder bestimmte Aufforderungen übergeben möchten. ### ⚠️ Fernausführung Zu Demonstrationszwecken und damit es mit allen Setups verwendet werden kann, haben wir Remote-Executors für mehrere der Standard-Tools erstellt, auf die der Agent in dieser Version Zugriff hat. Diese werden erstellt mit [inference endpoints](https://huggingface.co/inference-endpoints). Wir haben diese vorerst deaktiviert, aber um zu sehen, wie Sie selbst Remote Executors Tools einrichten können, empfehlen wir die Lektüre des [custom tool guide](./custom_tools). ### Was passiert hier? Was sind Tools und was sind Agenten? <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/diagram.png"> #### Agenten Der "Agent" ist hier ein großes Sprachmodell, das wir auffordern, Zugang zu einem bestimmten Satz von Tools zu erhalten. LLMs sind ziemlich gut darin, kleine Codeproben zu erzeugen. Diese API macht sich das zunutze, indem sie das LLM ein kleines Codebeispiel gibt, das eine Aufgabe mit einer Reihe von Werkzeugen ausführt. Diese Aufforderung wird dann ergänzt durch die Aufgabe, die Sie Ihrem Agenten geben, und die Beschreibung der Werkzeuge, die Sie ihm geben. Auf diese Weise erhält er Zugriff auf die Dokumentation der Tools, insbesondere die erwarteten Eingaben und Ausgaben, und kann den entsprechenden Code generieren. #### Tools Tools sind sehr einfach: Sie bestehen aus einer einzigen Funktion mit einem Namen und einer Beschreibung. Wir verwenden dann die Beschreibungen dieser Tools um den Agenten aufzufordern. Anhand der Eingabeaufforderung zeigen wir dem Agenten, wie er die Tools nutzen kann, um das zu tun, was in der in der Abfrage angefordert wurde. Dies geschieht mit brandneuen Tools und nicht mit Pipelines, denn der Agent schreibt besseren Code mit sehr atomaren Tools. Pipelines sind stärker refaktorisiert und fassen oft mehrere Aufgaben in einer einzigen zusammen. Tools sind dafür gedacht, sich auf eine einzige, sehr einfache Aufgabe konzentrieren. #### Code-Ausführung?! Dieser Code wird dann mit unserem kleinen Python-Interpreter auf den mit Ihren Tools übergebenen Eingaben ausgeführt. Wir hören Sie schon schreien "Willkürliche Codeausführung!", aber lassen Sie uns erklären, warum das nicht der Fall ist. Die einzigen Funktionen, die aufgerufen werden können, sind die von Ihnen zur Verfügung gestellten Tools und die Druckfunktion, so dass Sie bereits eingeschränkt sind eingeschränkt, was ausgeführt werden kann. Sie sollten sicher sein, wenn es sich auf die Werkzeuge für das Umarmungsgesicht beschränkt. Dann lassen wir keine Attributsuche oder Importe zu (die ohnehin nicht benötigt werden, um die Inputs/Outputs an eine kleine Gruppe von Funktionen), so dass alle offensichtlichen Angriffe (und Sie müssten den LLM dazu auffordern, sie auszugeben) kein Problem darstellen sollten. Wenn Sie auf Nummer sicher gehen wollen, können Sie die run()-Methode mit dem zusätzlichen Argument return_code=True ausführen. In diesem Fall gibt der Agent nur den auszuführenden Code zur Ausführung zurück und Sie können entscheiden, ob Sie ihn ausführen möchten oder nicht. Die Ausführung bricht bei jeder Zeile ab, in der versucht wird, eine illegale Operation auszuführen, oder wenn ein regulärer Python-Fehler mit dem vom Agenten generierten Code. ### Ein kuratierter Satz von Tools Wir haben eine Reihe von Tools identifiziert, die solche Agenten unterstützen können. Hier ist eine aktualisierte Liste der Tools, die wir integriert haben in `transformers` integriert haben: - **Beantwortung von Fragen zu Dokumenten**: Beantworten Sie anhand eines Dokuments (z.B. PDF) im Bildformat eine Frage zu diesem Dokument ([Donut](./model_doc/donut)) - Beantworten von Textfragen**: Geben Sie einen langen Text und eine Frage an, beantworten Sie die Frage im Text ([Flan-T5](./model_doc/flan-t5)) - **Unbedingte Bildunterschriften**: Beschriften Sie das Bild! ([BLIP](./model_doc/blip)) - **Bildfragebeantwortung**: Beantworten Sie bei einem Bild eine Frage zu diesem Bild ([VILT](./model_doc/vilt)) - **Bildsegmentierung**: Geben Sie ein Bild und einen Prompt an und geben Sie die Segmentierungsmaske dieses Prompts aus ([CLIPSeg](./model_doc/clipseg)) - **Sprache in Text**: Geben Sie eine Audioaufnahme einer sprechenden Person an und transkribieren Sie die Sprache in Text ([Whisper](./model_doc/whisper)) - **Text in Sprache**: wandelt Text in Sprache um ([SpeechT5](./model_doc/speecht5)) - **Zero-Shot-Textklassifizierung**: Ermitteln Sie anhand eines Textes und einer Liste von Bezeichnungen, welcher Bezeichnung der Text am ehesten entspricht ([BART](./model_doc/bart)) - **Textzusammenfassung**: fassen Sie einen langen Text in einem oder wenigen Sätzen zusammen ([BART](./model_doc/bart)) - **Übersetzung**: Übersetzen des Textes in eine bestimmte Sprache ([NLLB](./model_doc/nllb)) Diese Tools sind in Transformatoren integriert und können auch manuell verwendet werden, zum Beispiel: ```py from transformers import load_tool tool = load_tool("text-to-speech") audio = tool("This is a text to speech tool") ``` ### Benutzerdefinierte Tools Wir haben zwar eine Reihe von Tools identifiziert, sind aber der festen Überzeugung, dass der Hauptwert dieser Implementierung darin besteht die Möglichkeit, benutzerdefinierte Tools schnell zu erstellen und weiterzugeben. Indem Sie den Code eines Tools in einen Hugging Face Space oder ein Modell-Repository stellen, können Sie das Tool direkt mit dem Agenten nutzen. Wir haben ein paar neue Funktionen hinzugefügt **transformers-agnostic** Tools zur [`huggingface-tools` Organisation](https://huggingface.co/huggingface-tools) hinzugefügt: - **Text-Downloader**: zum Herunterladen eines Textes von einer Web-URL - **Text zu Bild**: erzeugt ein Bild nach einer Eingabeaufforderung und nutzt dabei stabile Diffusion - **Bildtransformation**: verändert ein Bild anhand eines Ausgangsbildes und einer Eingabeaufforderung, unter Ausnutzung der stabilen pix2pix-Diffusion - **Text zu Video**: Erzeugen eines kleinen Videos nach einer Eingabeaufforderung, unter Verwendung von damo-vilab Das Text-zu-Bild-Tool, das wir von Anfang an verwendet haben, ist ein Remote-Tool, das sich in [*huggingface-tools/text-to-image*](https://huggingface.co/spaces/huggingface-tools/text-to-image)! Wir werden weiterhin solche Tools für diese und andere Organisationen veröffentlichen, um diese Implementierung weiter zu verbessern. Die Agenten haben standardmäßig Zugriff auf die Tools, die sich auf [*huggingface-tools*](https://huggingface.co/huggingface-tools) befinden. Wie Sie Ihre eigenen Tools schreiben und freigeben können und wie Sie jedes benutzerdefinierte Tool, das sich auf dem Hub befindet, nutzen können, erklären wir in [folgender Anleitung](custom_tools). ### Code-Erzeugung Bisher haben wir gezeigt, wie Sie die Agenten nutzen können, um Aktionen für Sie durchzuführen. Der Agent generiert jedoch nur Code den wir dann mit einem sehr eingeschränkten Python-Interpreter ausführen. Falls Sie den generierten Code in einer anderen Umgebung verwenden möchten einer anderen Umgebung verwenden möchten, können Sie den Agenten auffordern, den Code zusammen mit einer Tooldefinition und genauen Importen zurückzugeben. Zum Beispiel die folgende Anweisung ```python agent.run("Draw me a picture of rivers and lakes", return_code=True) ``` gibt den folgenden Code zurück ```python from transformers import load_tool image_generator = load_tool("huggingface-tools/text-to-image") image = image_generator(prompt="rivers and lakes") ``` die Sie dann selbst ändern und ausführen können.
transformers/docs/source/de/transformers_agents.md/0
{ "file_path": "transformers/docs/source/de/transformers_agents.md", "repo_id": "transformers", "token_count": 6629 }
240
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Create a custom architecture An [`AutoClass`](model_doc/auto) automatically infers the model architecture and downloads pretrained configuration and weights. Generally, we recommend using an `AutoClass` to produce checkpoint-agnostic code. But users who want more control over specific model parameters can create a custom 🤗 Transformers model from just a few base classes. This could be particularly useful for anyone who is interested in studying, training or experimenting with a 🤗 Transformers model. In this guide, dive deeper into creating a custom model without an `AutoClass`. Learn how to: - Load and customize a model configuration. - Create a model architecture. - Create a slow and fast tokenizer for text. - Create an image processor for vision tasks. - Create a feature extractor for audio tasks. - Create a processor for multimodal tasks. ## Configuration A [configuration](main_classes/configuration) refers to a model's specific attributes. Each model configuration has different attributes; for instance, all NLP models have the `hidden_size`, `num_attention_heads`, `num_hidden_layers` and `vocab_size` attributes in common. These attributes specify the number of attention heads or hidden layers to construct a model with. Get a closer look at [DistilBERT](model_doc/distilbert) by accessing [`DistilBertConfig`] to inspect it's attributes: ```py >>> from transformers import DistilBertConfig >>> config = DistilBertConfig() >>> print(config) DistilBertConfig { "activation": "gelu", "attention_dropout": 0.1, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` [`DistilBertConfig`] displays all the default attributes used to build a base [`DistilBertModel`]. All attributes are customizable, creating space for experimentation. For example, you can customize a default model to: - Try a different activation function with the `activation` parameter. - Use a higher dropout ratio for the attention probabilities with the `attention_dropout` parameter. ```py >>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4) >>> print(my_config) DistilBertConfig { "activation": "relu", "attention_dropout": 0.4, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` Pretrained model attributes can be modified in the [`~PretrainedConfig.from_pretrained`] function: ```py >>> my_config = DistilBertConfig.from_pretrained("distilbert-base-uncased", activation="relu", attention_dropout=0.4) ``` Once you are satisfied with your model configuration, you can save it with [`~PretrainedConfig.save_pretrained`]. Your configuration file is stored as a JSON file in the specified save directory: ```py >>> my_config.save_pretrained(save_directory="./your_model_save_path") ``` To reuse the configuration file, load it with [`~PretrainedConfig.from_pretrained`]: ```py >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") ``` <Tip> You can also save your configuration file as a dictionary or even just the difference between your custom configuration attributes and the default configuration attributes! See the [configuration](main_classes/configuration) documentation for more details. </Tip> ## Model The next step is to create a [model](main_classes/models). The model - also loosely referred to as the architecture - defines what each layer is doing and what operations are happening. Attributes like `num_hidden_layers` from the configuration are used to define the architecture. Every model shares the base class [`PreTrainedModel`] and a few common methods like resizing input embeddings and pruning self-attention heads. In addition, all models are also either a [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) or [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. This means models are compatible with each of their respective framework's usage. <frameworkcontent> <pt> Load your custom configuration attributes into the model: ```py >>> from transformers import DistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") >>> model = DistilBertModel(my_config) ``` This creates a model with random values instead of pretrained weights. You won't be able to use this model for anything useful yet until you train it. Training is a costly and time-consuming process. It is generally better to use a pretrained model to obtain better results faster, while using only a fraction of the resources required for training. Create a pretrained model with [`~PreTrainedModel.from_pretrained`]: ```py >>> model = DistilBertModel.from_pretrained("distilbert-base-uncased") ``` When you load pretrained weights, the default model configuration is automatically loaded if the model is provided by 🤗 Transformers. However, you can still replace - some or all of - the default model configuration attributes with your own if you'd like: ```py >>> model = DistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config) ``` </pt> <tf> Load your custom configuration attributes into the model: ```py >>> from transformers import TFDistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json") >>> tf_model = TFDistilBertModel(my_config) ``` This creates a model with random values instead of pretrained weights. You won't be able to use this model for anything useful yet until you train it. Training is a costly and time-consuming process. It is generally better to use a pretrained model to obtain better results faster, while using only a fraction of the resources required for training. Create a pretrained model with [`~TFPreTrainedModel.from_pretrained`]: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased") ``` When you load pretrained weights, the default model configuration is automatically loaded if the model is provided by 🤗 Transformers. However, you can still replace - some or all of - the default model configuration attributes with your own if you'd like: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config) ``` </tf> </frameworkcontent> ### Model heads At this point, you have a base DistilBERT model which outputs the *hidden states*. The hidden states are passed as inputs to a model head to produce the final output. 🤗 Transformers provides a different model head for each task as long as a model supports the task (i.e., you can't use DistilBERT for a sequence-to-sequence task like translation). <frameworkcontent> <pt> For example, [`DistilBertForSequenceClassification`] is a base DistilBERT model with a sequence classification head. The sequence classification head is a linear layer on top of the pooled outputs. ```py >>> from transformers import DistilBertForSequenceClassification >>> model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased") ``` Easily reuse this checkpoint for another task by switching to a different model head. For a question answering task, you would use the [`DistilBertForQuestionAnswering`] model head. The question answering head is similar to the sequence classification head except it is a linear layer on top of the hidden states output. ```py >>> from transformers import DistilBertForQuestionAnswering >>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased") ``` </pt> <tf> For example, [`TFDistilBertForSequenceClassification`] is a base DistilBERT model with a sequence classification head. The sequence classification head is a linear layer on top of the pooled outputs. ```py >>> from transformers import TFDistilBertForSequenceClassification >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased") ``` Easily reuse this checkpoint for another task by switching to a different model head. For a question answering task, you would use the [`TFDistilBertForQuestionAnswering`] model head. The question answering head is similar to the sequence classification head except it is a linear layer on top of the hidden states output. ```py >>> from transformers import TFDistilBertForQuestionAnswering >>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased") ``` </tf> </frameworkcontent> ## Tokenizer The last base class you need before using a model for textual data is a [tokenizer](main_classes/tokenizer) to convert raw text to tensors. There are two types of tokenizers you can use with 🤗 Transformers: - [`PreTrainedTokenizer`]: a Python implementation of a tokenizer. - [`PreTrainedTokenizerFast`]: a tokenizer from our Rust-based [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) library. This tokenizer type is significantly faster - especially during batch tokenization - due to its Rust implementation. The fast tokenizer also offers additional methods like *offset mapping* which maps tokens to their original words or characters. Both tokenizers support common methods such as encoding and decoding, adding new tokens, and managing special tokens. <Tip warning={true}> Not every model supports a fast tokenizer. Take a look at this [table](index#supported-frameworks) to check if a model has fast tokenizer support. </Tip> If you trained your own tokenizer, you can create one from your *vocabulary* file: ```py >>> from transformers import DistilBertTokenizer >>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left") ``` It is important to remember the vocabulary from a custom tokenizer will be different from the vocabulary generated by a pretrained model's tokenizer. You need to use a pretrained model's vocabulary if you are using a pretrained model, otherwise the inputs won't make sense. Create a tokenizer with a pretrained model's vocabulary with the [`DistilBertTokenizer`] class: ```py >>> from transformers import DistilBertTokenizer >>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") ``` Create a fast tokenizer with the [`DistilBertTokenizerFast`] class: ```py >>> from transformers import DistilBertTokenizerFast >>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased") ``` <Tip> By default, [`AutoTokenizer`] will try to load a fast tokenizer. You can disable this behavior by setting `use_fast=False` in `from_pretrained`. </Tip> ## Image processor An image processor processes vision inputs. It inherits from the base [`~image_processing_utils.ImageProcessingMixin`] class. To use, create an image processor associated with the model you're using. For example, create a default [`ViTImageProcessor`] if you are using [ViT](model_doc/vit) for image classification: ```py >>> from transformers import ViTImageProcessor >>> vit_extractor = ViTImageProcessor() >>> print(vit_extractor) ViTImageProcessor { "do_normalize": true, "do_resize": true, "image_processor_type": "ViTImageProcessor", "image_mean": [ 0.5, 0.5, 0.5 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": 2, "size": 224 } ``` <Tip> If you aren't looking for any customization, just use the `from_pretrained` method to load a model's default image processor parameters. </Tip> Modify any of the [`ViTImageProcessor`] parameters to create your custom image processor: ```py >>> from transformers import ViTImageProcessor >>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3]) >>> print(my_vit_extractor) ViTImageProcessor { "do_normalize": false, "do_resize": true, "image_processor_type": "ViTImageProcessor", "image_mean": [ 0.3, 0.3, 0.3 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": "PIL.Image.BOX", "size": 224 } ``` ## Backbone <div style="text-align: center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Backbone.png"> </div> Computer vision models consist of a backbone, neck, and head. The backbone extracts features from an input image, the neck combines and enhances the extracted features, and the head is used for the main task (e.g., object detection). Start by initializing a backbone in the model config and specify whether you want to load pretrained weights or load randomly initialized weights. Then you can pass the model config to the model head. For example, to load a [ResNet](../model_doc/resnet) backbone into a [MaskFormer](../model_doc/maskformer) model with an instance segmentation head: <hfoptions id="backbone"> <hfoption id="pretrained weights"> Set `use_pretrained_backbone=True` to load pretrained ResNet weights for the backbone. ```py from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, ResNetConfig config = MaskFormerConfig(backbone="microsoft/resnet50", use_pretrained_backbone=True) # backbone and neck config model = MaskFormerForInstanceSegmentation(config) # head ``` You could also load the backbone config separately and then pass it to the model config. ```py from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, ResNetConfig backbone_config = ResNetConfig.from_pretrained("microsoft/resnet-50") config = MaskFormerConfig(backbone_config=backbone_config) model = MaskFormerForInstanceSegmentation(config) ``` </hfoption> <hfoption id="random weights"> Set `use_pretrained_backbone=False` to randomly initialize a ResNet backbone. ```py from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, ResNetConfig config = MaskFormerConfig(backbone="microsoft/resnet50", use_pretrained_backbone=False) # backbone and neck config model = MaskFormerForInstanceSegmentation(config) # head ``` You could also load the backbone config separately and then pass it to the model config. ```py from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, ResNetConfig backbone_config = ResNetConfig() config = MaskFormerConfig(backbone_config=backbone_config) model = MaskFormerForInstanceSegmentation(config) ``` </hfoption> </hfoptions> [timm](https://hf.co/docs/timm/index) models are loaded with [`TimmBackbone`] and [`TimmBackboneConfig`]. ```python from transformers import TimmBackboneConfig, TimmBackbone backbone_config = TimmBackboneConfig("resnet50") model = TimmBackbone(config=backbone_config) ``` ## Feature extractor A feature extractor processes audio inputs. It inherits from the base [`~feature_extraction_utils.FeatureExtractionMixin`] class, and may also inherit from the [`SequenceFeatureExtractor`] class for processing audio inputs. To use, create a feature extractor associated with the model you're using. For example, create a default [`Wav2Vec2FeatureExtractor`] if you are using [Wav2Vec2](model_doc/wav2vec2) for audio classification: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor() >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": true, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 16000 } ``` <Tip> If you aren't looking for any customization, just use the `from_pretrained` method to load a model's default feature extractor parameters. </Tip> Modify any of the [`Wav2Vec2FeatureExtractor`] parameters to create your custom feature extractor: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000, do_normalize=False) >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": false, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 8000 } ``` ## Processor For models that support multimodal tasks, 🤗 Transformers offers a processor class that conveniently wraps processing classes such as a feature extractor and a tokenizer into a single object. For example, let's use the [`Wav2Vec2Processor`] for an automatic speech recognition task (ASR). ASR transcribes audio to text, so you will need a feature extractor and a tokenizer. Create a feature extractor to handle the audio inputs: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True) ``` Create a tokenizer to handle the text inputs: ```py >>> from transformers import Wav2Vec2CTCTokenizer >>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt") ``` Combine the feature extractor and tokenizer in [`Wav2Vec2Processor`]: ```py >>> from transformers import Wav2Vec2Processor >>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) ``` With two basic classes - configuration and model - and an additional preprocessing class (tokenizer, image processor, feature extractor, or processor), you can create any of the models supported by 🤗 Transformers. Each of these base classes are configurable, allowing you to use the specific attributes you want. You can easily setup a model for training or modify an existing pretrained model to fine-tune.
transformers/docs/source/en/create_a_model.md/0
{ "file_path": "transformers/docs/source/en/create_a_model.md", "repo_id": "transformers", "token_count": 5484 }
241
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Auto Classes In many cases, the architecture you want to use can be guessed from the name or the path of the pretrained model you are supplying to the `from_pretrained()` method. AutoClasses are here to do this job for you so that you automatically retrieve the relevant model given the name/path to the pretrained weights/config/vocabulary. Instantiating one of [`AutoConfig`], [`AutoModel`], and [`AutoTokenizer`] will directly create a class of the relevant architecture. For instance ```python model = AutoModel.from_pretrained("bert-base-cased") ``` will create a model that is an instance of [`BertModel`]. There is one class of `AutoModel` for each task, and for each backend (PyTorch, TensorFlow, or Flax). ## Extending the Auto Classes Each of the auto classes has a method to be extended with your custom classes. For instance, if you have defined a custom class of model `NewModel`, make sure you have a `NewModelConfig` then you can add those to the auto classes like this: ```python from transformers import AutoConfig, AutoModel AutoConfig.register("new-model", NewModelConfig) AutoModel.register(NewModelConfig, NewModel) ``` You will then be able to use the auto classes like you would usually do! <Tip warning={true}> If your `NewModelConfig` is a subclass of [`~transformers.PretrainedConfig`], make sure its `model_type` attribute is set to the same key you use when registering the config (here `"new-model"`). Likewise, if your `NewModel` is a subclass of [`PreTrainedModel`], make sure its `config_class` attribute is set to the same class you use when registering the model (here `NewModelConfig`). </Tip> ## AutoConfig [[autodoc]] AutoConfig ## AutoTokenizer [[autodoc]] AutoTokenizer ## AutoFeatureExtractor [[autodoc]] AutoFeatureExtractor ## AutoImageProcessor [[autodoc]] AutoImageProcessor ## AutoProcessor [[autodoc]] AutoProcessor ## Generic model classes The following auto classes are available for instantiating a base model class without a specific head. ### AutoModel [[autodoc]] AutoModel ### TFAutoModel [[autodoc]] TFAutoModel ### FlaxAutoModel [[autodoc]] FlaxAutoModel ## Generic pretraining classes The following auto classes are available for instantiating a model with a pretraining head. ### AutoModelForPreTraining [[autodoc]] AutoModelForPreTraining ### TFAutoModelForPreTraining [[autodoc]] TFAutoModelForPreTraining ### FlaxAutoModelForPreTraining [[autodoc]] FlaxAutoModelForPreTraining ## Natural Language Processing The following auto classes are available for the following natural language processing tasks. ### AutoModelForCausalLM [[autodoc]] AutoModelForCausalLM ### TFAutoModelForCausalLM [[autodoc]] TFAutoModelForCausalLM ### FlaxAutoModelForCausalLM [[autodoc]] FlaxAutoModelForCausalLM ### AutoModelForMaskedLM [[autodoc]] AutoModelForMaskedLM ### TFAutoModelForMaskedLM [[autodoc]] TFAutoModelForMaskedLM ### FlaxAutoModelForMaskedLM [[autodoc]] FlaxAutoModelForMaskedLM ### AutoModelForMaskGeneration [[autodoc]] AutoModelForMaskGeneration ### TFAutoModelForMaskGeneration [[autodoc]] TFAutoModelForMaskGeneration ### AutoModelForSeq2SeqLM [[autodoc]] AutoModelForSeq2SeqLM ### TFAutoModelForSeq2SeqLM [[autodoc]] TFAutoModelForSeq2SeqLM ### FlaxAutoModelForSeq2SeqLM [[autodoc]] FlaxAutoModelForSeq2SeqLM ### AutoModelForSequenceClassification [[autodoc]] AutoModelForSequenceClassification ### TFAutoModelForSequenceClassification [[autodoc]] TFAutoModelForSequenceClassification ### FlaxAutoModelForSequenceClassification [[autodoc]] FlaxAutoModelForSequenceClassification ### AutoModelForMultipleChoice [[autodoc]] AutoModelForMultipleChoice ### TFAutoModelForMultipleChoice [[autodoc]] TFAutoModelForMultipleChoice ### FlaxAutoModelForMultipleChoice [[autodoc]] FlaxAutoModelForMultipleChoice ### AutoModelForNextSentencePrediction [[autodoc]] AutoModelForNextSentencePrediction ### TFAutoModelForNextSentencePrediction [[autodoc]] TFAutoModelForNextSentencePrediction ### FlaxAutoModelForNextSentencePrediction [[autodoc]] FlaxAutoModelForNextSentencePrediction ### AutoModelForTokenClassification [[autodoc]] AutoModelForTokenClassification ### TFAutoModelForTokenClassification [[autodoc]] TFAutoModelForTokenClassification ### FlaxAutoModelForTokenClassification [[autodoc]] FlaxAutoModelForTokenClassification ### AutoModelForQuestionAnswering [[autodoc]] AutoModelForQuestionAnswering ### TFAutoModelForQuestionAnswering [[autodoc]] TFAutoModelForQuestionAnswering ### FlaxAutoModelForQuestionAnswering [[autodoc]] FlaxAutoModelForQuestionAnswering ### AutoModelForTextEncoding [[autodoc]] AutoModelForTextEncoding ### TFAutoModelForTextEncoding [[autodoc]] TFAutoModelForTextEncoding ## Computer vision The following auto classes are available for the following computer vision tasks. ### AutoModelForDepthEstimation [[autodoc]] AutoModelForDepthEstimation ### AutoModelForImageClassification [[autodoc]] AutoModelForImageClassification ### TFAutoModelForImageClassification [[autodoc]] TFAutoModelForImageClassification ### FlaxAutoModelForImageClassification [[autodoc]] FlaxAutoModelForImageClassification ### AutoModelForVideoClassification [[autodoc]] AutoModelForVideoClassification ### AutoModelForMaskedImageModeling [[autodoc]] AutoModelForMaskedImageModeling ### TFAutoModelForMaskedImageModeling [[autodoc]] TFAutoModelForMaskedImageModeling ### AutoModelForObjectDetection [[autodoc]] AutoModelForObjectDetection ### AutoModelForImageSegmentation [[autodoc]] AutoModelForImageSegmentation ### AutoModelForImageToImage [[autodoc]] AutoModelForImageToImage ### AutoModelForSemanticSegmentation [[autodoc]] AutoModelForSemanticSegmentation ### TFAutoModelForSemanticSegmentation [[autodoc]] TFAutoModelForSemanticSegmentation ### AutoModelForInstanceSegmentation [[autodoc]] AutoModelForInstanceSegmentation ### AutoModelForUniversalSegmentation [[autodoc]] AutoModelForUniversalSegmentation ### AutoModelForZeroShotImageClassification [[autodoc]] AutoModelForZeroShotImageClassification ### TFAutoModelForZeroShotImageClassification [[autodoc]] TFAutoModelForZeroShotImageClassification ### AutoModelForZeroShotObjectDetection [[autodoc]] AutoModelForZeroShotObjectDetection ## Audio The following auto classes are available for the following audio tasks. ### AutoModelForAudioClassification [[autodoc]] AutoModelForAudioClassification ### AutoModelForAudioFrameClassification [[autodoc]] TFAutoModelForAudioClassification ### TFAutoModelForAudioFrameClassification [[autodoc]] AutoModelForAudioFrameClassification ### AutoModelForCTC [[autodoc]] AutoModelForCTC ### AutoModelForSpeechSeq2Seq [[autodoc]] AutoModelForSpeechSeq2Seq ### TFAutoModelForSpeechSeq2Seq [[autodoc]] TFAutoModelForSpeechSeq2Seq ### FlaxAutoModelForSpeechSeq2Seq [[autodoc]] FlaxAutoModelForSpeechSeq2Seq ### AutoModelForAudioXVector [[autodoc]] AutoModelForAudioXVector ### AutoModelForTextToSpectrogram [[autodoc]] AutoModelForTextToSpectrogram ### AutoModelForTextToWaveform [[autodoc]] AutoModelForTextToWaveform ## Multimodal The following auto classes are available for the following multimodal tasks. ### AutoModelForTableQuestionAnswering [[autodoc]] AutoModelForTableQuestionAnswering ### TFAutoModelForTableQuestionAnswering [[autodoc]] TFAutoModelForTableQuestionAnswering ### AutoModelForDocumentQuestionAnswering [[autodoc]] AutoModelForDocumentQuestionAnswering ### TFAutoModelForDocumentQuestionAnswering [[autodoc]] TFAutoModelForDocumentQuestionAnswering ### AutoModelForVisualQuestionAnswering [[autodoc]] AutoModelForVisualQuestionAnswering ### AutoModelForVision2Seq [[autodoc]] AutoModelForVision2Seq ### TFAutoModelForVision2Seq [[autodoc]] TFAutoModelForVision2Seq ### FlaxAutoModelForVision2Seq [[autodoc]] FlaxAutoModelForVision2Seq
transformers/docs/source/en/model_doc/auto.md/0
{ "file_path": "transformers/docs/source/en/model_doc/auto.md", "repo_id": "transformers", "token_count": 2594 }
242
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Blenderbot ## Overview The Blender chatbot model was proposed in [Recipes for building an open-domain chatbot](https://arxiv.org/pdf/2004.13637.pdf) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston on 30 Apr 2020. The abstract of the paper is the following: *Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to their partners, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent persona. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our models and code publicly available. Human evaluations show our best models are superior to existing approaches in multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models.* This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The authors' code can be found [here](https://github.com/facebookresearch/ParlAI) . ## Usage tips and example Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. An example: ```python >>> from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration >>> mname = "facebook/blenderbot-400M-distill" >>> model = BlenderbotForConditionalGeneration.from_pretrained(mname) >>> tokenizer = BlenderbotTokenizer.from_pretrained(mname) >>> UTTERANCE = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer([UTTERANCE], return_tensors="pt") >>> reply_ids = model.generate(**inputs) >>> print(tokenizer.batch_decode(reply_ids)) ["<s> That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?</s>"] ``` ## Implementation Notes - Blenderbot uses a standard [seq2seq model transformer](https://arxiv.org/pdf/1706.03762.pdf) based architecture. - Available checkpoints can be found in the [model hub](https://huggingface.co/models?search=blenderbot). - This is the *default* Blenderbot model class. However, some smaller checkpoints, such as `facebook/blenderbot_small_90M`, have a different architecture and consequently should be used with [BlenderbotSmall](blenderbot-small). ## Resources - [Causal language modeling task guide](../tasks/language_modeling) - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## BlenderbotConfig [[autodoc]] BlenderbotConfig ## BlenderbotTokenizer [[autodoc]] BlenderbotTokenizer - build_inputs_with_special_tokens ## BlenderbotTokenizerFast [[autodoc]] BlenderbotTokenizerFast - build_inputs_with_special_tokens <frameworkcontent> <pt> ## BlenderbotModel See [`~transformers.BartModel`] for arguments to *forward* and *generate* [[autodoc]] BlenderbotModel - forward ## BlenderbotForConditionalGeneration See [`~transformers.BartForConditionalGeneration`] for arguments to *forward* and *generate* [[autodoc]] BlenderbotForConditionalGeneration - forward ## BlenderbotForCausalLM [[autodoc]] BlenderbotForCausalLM - forward </pt> <tf> ## TFBlenderbotModel [[autodoc]] TFBlenderbotModel - call ## TFBlenderbotForConditionalGeneration [[autodoc]] TFBlenderbotForConditionalGeneration - call </tf> <jax> ## FlaxBlenderbotModel [[autodoc]] FlaxBlenderbotModel - __call__ - encode - decode ## FlaxBlenderbotForConditionalGeneration [[autodoc]] FlaxBlenderbotForConditionalGeneration - __call__ - encode - decode </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/blenderbot.md/0
{ "file_path": "transformers/docs/source/en/model_doc/blenderbot.md", "repo_id": "transformers", "token_count": 1405 }
243
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ERNIE ## Overview ERNIE is a series of powerful models proposed by baidu, especially in Chinese tasks, including [ERNIE1.0](https://arxiv.org/abs/1904.09223), [ERNIE2.0](https://ojs.aaai.org/index.php/AAAI/article/view/6428), [ERNIE3.0](https://arxiv.org/abs/2107.02137), [ERNIE-Gram](https://arxiv.org/abs/2010.12148), [ERNIE-health](https://arxiv.org/abs/2110.07244), etc. These models are contributed by [nghuyong](https://huggingface.co/nghuyong) and the official code can be found in [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) (in PaddlePaddle). ### Usage example Take `ernie-1.0-base-zh` as an example: ```Python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh") model = AutoModel.from_pretrained("nghuyong/ernie-1.0-base-zh") ``` ### Model checkpoints | Model Name | Language | Description | |:-------------------:|:--------:|:-------------------------------:| | ernie-1.0-base-zh | Chinese | Layer:12, Heads:12, Hidden:768 | | ernie-2.0-base-en | English | Layer:12, Heads:12, Hidden:768 | | ernie-2.0-large-en | English | Layer:24, Heads:16, Hidden:1024 | | ernie-3.0-base-zh | Chinese | Layer:12, Heads:12, Hidden:768 | | ernie-3.0-medium-zh | Chinese | Layer:6, Heads:12, Hidden:768 | | ernie-3.0-mini-zh | Chinese | Layer:6, Heads:12, Hidden:384 | | ernie-3.0-micro-zh | Chinese | Layer:4, Heads:12, Hidden:384 | | ernie-3.0-nano-zh | Chinese | Layer:4, Heads:12, Hidden:312 | | ernie-health-zh | Chinese | Layer:12, Heads:12, Hidden:768 | | ernie-gram-zh | Chinese | Layer:12, Heads:12, Hidden:768 | You can find all the supported models from huggingface's model hub: [huggingface.co/nghuyong](https://huggingface.co/nghuyong), and model details from paddle's official repo: [PaddleNLP](https://paddlenlp.readthedocs.io/zh/latest/model_zoo/transformers/ERNIE/contents.html) and [ERNIE](https://github.com/PaddlePaddle/ERNIE/blob/repro). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## ErnieConfig [[autodoc]] ErnieConfig - all ## Ernie specific outputs [[autodoc]] models.ernie.modeling_ernie.ErnieForPreTrainingOutput ## ErnieModel [[autodoc]] ErnieModel - forward ## ErnieForPreTraining [[autodoc]] ErnieForPreTraining - forward ## ErnieForCausalLM [[autodoc]] ErnieForCausalLM - forward ## ErnieForMaskedLM [[autodoc]] ErnieForMaskedLM - forward ## ErnieForNextSentencePrediction [[autodoc]] ErnieForNextSentencePrediction - forward ## ErnieForSequenceClassification [[autodoc]] ErnieForSequenceClassification - forward ## ErnieForMultipleChoice [[autodoc]] ErnieForMultipleChoice - forward ## ErnieForTokenClassification [[autodoc]] ErnieForTokenClassification - forward ## ErnieForQuestionAnswering [[autodoc]] ErnieForQuestionAnswering - forward
transformers/docs/source/en/model_doc/ernie.md/0
{ "file_path": "transformers/docs/source/en/model_doc/ernie.md", "repo_id": "transformers", "token_count": 1417 }
244
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # GPT-Sw3 ## Overview The GPT-Sw3 model was first proposed in [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. Since that first paper the authors have extended their work and trained new models on their new 1.2TB corpora named The Nordic Pile. GPT-Sw3 is a collection of large decoder-only pretrained transformer language models that were developed by AI Sweden in collaboration with RISE and the WASP WARA for Media and Language. GPT-Sw3 has been trained on a dataset containing 320B tokens in Swedish, Norwegian, Danish, Icelandic, English, and programming code. The model was pretrained using a causal language modeling (CLM) objective utilizing the NeMo Megatron GPT implementation. This model was contributed by [AI Sweden Models](https://huggingface.co/AI-Sweden-Models). ## Usage example ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("AI-Sweden-Models/gpt-sw3-356m") >>> model = AutoModelForCausalLM.from_pretrained("AI-Sweden-Models/gpt-sw3-356m") >>> input_ids = tokenizer("Träd är fina för att", return_tensors="pt")["input_ids"] >>> generated_token_ids = model.generate(inputs=input_ids, max_new_tokens=10, do_sample=True)[0] >>> print(tokenizer.decode(generated_token_ids)) Träd är fina för att de är färgstarka. Men ibland är det fint ``` ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Causal language modeling task guide](../tasks/language_modeling) <Tip> The implementation uses the `GPT2Model` coupled with our `GPTSw3Tokenizer`. Refer to [GPT2Model documentation](gpt2) for API reference and examples. Note that sentencepiece is required to use our tokenizer and can be installed with `pip install transformers[sentencepiece]` or `pip install sentencepiece` </Tip> ## GPTSw3Tokenizer [[autodoc]] GPTSw3Tokenizer - save_vocabulary
transformers/docs/source/en/model_doc/gpt-sw3.md/0
{ "file_path": "transformers/docs/source/en/model_doc/gpt-sw3.md", "repo_id": "transformers", "token_count": 879 }
245
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # LXMERT ## Overview The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan & Mohit Bansal. It is a series of bidirectional transformer encoders (one for the vision modality, one for the language modality, and then one to fuse both modalities) pretrained using a combination of masked language modeling, visual-language text alignment, ROI-feature regression, masked visual-attribute modeling, masked visual-object modeling, and visual-question answering objectives. The pretraining consists of multiple multi-modal datasets: MSCOCO, Visual-Genome + Visual-Genome Question Answering, VQA 2.0, and GQA. The abstract from the paper is the following: *Vision-and-language reasoning requires an understanding of visual concepts, language semantics, and, most importantly, the alignment and relationships between these two modalities. We thus propose the LXMERT (Learning Cross-Modality Encoder Representations from Transformers) framework to learn these vision-and-language connections. In LXMERT, we build a large-scale Transformer model that consists of three encoders: an object relationship encoder, a language encoder, and a cross-modality encoder. Next, to endow our model with the capability of connecting vision and language semantics, we pre-train the model with large amounts of image-and-sentence pairs, via five diverse representative pretraining tasks: masked language modeling, masked object prediction (feature regression and label classification), cross-modality matching, and image question answering. These tasks help in learning both intra-modality and cross-modality relationships. After fine-tuning from our pretrained parameters, our model achieves the state-of-the-art results on two visual question answering datasets (i.e., VQA and GQA). We also show the generalizability of our pretrained cross-modality model by adapting it to a challenging visual-reasoning task, NLVR, and improve the previous best result by 22% absolute (54% to 76%). Lastly, we demonstrate detailed ablation studies to prove that both our novel model components and pretraining strategies significantly contribute to our strong results; and also present several attention visualizations for the different encoders* This model was contributed by [eltoto1219](https://huggingface.co/eltoto1219). The original code can be found [here](https://github.com/airsplay/lxmert). ## Usage tips - Bounding boxes are not necessary to be used in the visual feature embeddings, any kind of visual-spacial features will work. - Both the language hidden states and the visual hidden states that LXMERT outputs are passed through the cross-modality layer, so they contain information from both modalities. To access a modality that only attends to itself, select the vision/language hidden states from the first input in the tuple. - The bidirectional cross-modality encoder attention only returns attention values when the language modality is used as the input and the vision modality is used as the context vector. Further, while the cross-modality encoder contains self-attention for each respective modality and cross-attention, only the cross attention is returned and both self attention outputs are disregarded. ## Resources - [Question answering task guide](../tasks/question_answering) ## LxmertConfig [[autodoc]] LxmertConfig ## LxmertTokenizer [[autodoc]] LxmertTokenizer ## LxmertTokenizerFast [[autodoc]] LxmertTokenizerFast ## Lxmert specific outputs [[autodoc]] models.lxmert.modeling_lxmert.LxmertModelOutput [[autodoc]] models.lxmert.modeling_lxmert.LxmertForPreTrainingOutput [[autodoc]] models.lxmert.modeling_lxmert.LxmertForQuestionAnsweringOutput [[autodoc]] models.lxmert.modeling_tf_lxmert.TFLxmertModelOutput [[autodoc]] models.lxmert.modeling_tf_lxmert.TFLxmertForPreTrainingOutput <frameworkcontent> <pt> ## LxmertModel [[autodoc]] LxmertModel - forward ## LxmertForPreTraining [[autodoc]] LxmertForPreTraining - forward ## LxmertForQuestionAnswering [[autodoc]] LxmertForQuestionAnswering - forward </pt> <tf> ## TFLxmertModel [[autodoc]] TFLxmertModel - call ## TFLxmertForPreTraining [[autodoc]] TFLxmertForPreTraining - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/lxmert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/lxmert.md", "repo_id": "transformers", "token_count": 1392 }
246
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # mLUKE ## Overview The mLUKE model was proposed in [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. It's a multilingual extension of the [LUKE model](https://arxiv.org/abs/2010.01057) trained on the basis of XLM-RoBERTa. It is based on XLM-RoBERTa and adds entity embeddings, which helps improve performance on various downstream tasks involving reasoning about entities such as named entity recognition, extractive question answering, relation classification, cloze-style knowledge completion. The abstract from the paper is the following: *Recent studies have shown that multilingual pretrained language models can be effectively improved with cross-lingual alignment information from Wikipedia entities. However, existing methods only exploit entity information in pretraining and do not explicitly use entities in downstream tasks. In this study, we explore the effectiveness of leveraging entity representations for downstream cross-lingual tasks. We train a multilingual language model with 24 languages with entity representations and show the model consistently outperforms word-based pretrained models in various cross-lingual transfer tasks. We also analyze the model and the key insight is that incorporating entity representations into the input allows us to extract more language-agnostic features. We also evaluate the model with a multilingual cloze prompt task with the mLAMA dataset. We show that entity-based prompt elicits correct factual knowledge more likely than using only word representations.* This model was contributed by [ryo0634](https://huggingface.co/ryo0634). The original code can be found [here](https://github.com/studio-ousia/luke). ## Usage tips One can directly plug in the weights of mLUKE into a LUKE model, like so: ```python from transformers import LukeModel model = LukeModel.from_pretrained("studio-ousia/mluke-base") ``` Note that mLUKE has its own tokenizer, [`MLukeTokenizer`]. You can initialize it as follows: ```python from transformers import MLukeTokenizer tokenizer = MLukeTokenizer.from_pretrained("studio-ousia/mluke-base") ``` <Tip> As mLUKE's architecture is equivalent to that of LUKE, one can refer to [LUKE's documentation page](luke) for all tips, code examples and notebooks. </Tip> ## MLukeTokenizer [[autodoc]] MLukeTokenizer - __call__ - save_vocabulary
transformers/docs/source/en/model_doc/mluke.md/0
{ "file_path": "transformers/docs/source/en/model_doc/mluke.md", "repo_id": "transformers", "token_count": 825 }
247
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # PhoBERT ## Overview The PhoBERT model was proposed in [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92.pdf) by Dat Quoc Nguyen, Anh Tuan Nguyen. The abstract from the paper is the following: *We present PhoBERT with two versions, PhoBERT-base and PhoBERT-large, the first public large-scale monolingual language models pre-trained for Vietnamese. Experimental results show that PhoBERT consistently outperforms the recent best pre-trained multilingual model XLM-R (Conneau et al., 2020) and improves the state-of-the-art in multiple Vietnamese-specific NLP tasks including Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference.* This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/PhoBERT). ## Usage example ```python >>> import torch >>> from transformers import AutoModel, AutoTokenizer >>> phobert = AutoModel.from_pretrained("vinai/phobert-base") >>> tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base") >>> # INPUT TEXT MUST BE ALREADY WORD-SEGMENTED! >>> line = "Tôi là sinh_viên trường đại_học Công_nghệ ." >>> input_ids = torch.tensor([tokenizer.encode(line)]) >>> with torch.no_grad(): ... features = phobert(input_ids) # Models outputs are now tuples >>> # With TensorFlow 2.0+: >>> # from transformers import TFAutoModel >>> # phobert = TFAutoModel.from_pretrained("vinai/phobert-base") ``` <Tip> PhoBERT implementation is the same as BERT, except for tokenization. Refer to [EART documentation](bert) for information on configuration classes and their parameters. PhoBERT-specific tokenizer is documented below. </Tip> ## PhobertTokenizer [[autodoc]] PhobertTokenizer
transformers/docs/source/en/model_doc/phobert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/phobert.md", "repo_id": "transformers", "token_count": 776 }
248
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # RoBERTa-PreLayerNorm ## Overview The RoBERTa-PreLayerNorm model was proposed in [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli. It is identical to using the `--encoder-normalize-before` flag in [fairseq](https://fairseq.readthedocs.io/). The abstract from the paper is the following: *fairseq is an open-source sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling, and other text generation tasks. The toolkit is based on PyTorch and supports distributed training across multiple GPUs and machines. We also support fast mixed-precision training and inference on modern GPUs.* This model was contributed by [andreasmaden](https://huggingface.co/andreasmadsen). The original code can be found [here](https://github.com/princeton-nlp/DinkyTrain). ## Usage tips - The implementation is the same as [Roberta](roberta) except instead of using _Add and Norm_ it does _Norm and Add_. _Add_ and _Norm_ refers to the Addition and LayerNormalization as described in [Attention Is All You Need](https://arxiv.org/abs/1706.03762). - This is identical to using the `--encoder-normalize-before` flag in [fairseq](https://fairseq.readthedocs.io/). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## RobertaPreLayerNormConfig [[autodoc]] RobertaPreLayerNormConfig <frameworkcontent> <pt> ## RobertaPreLayerNormModel [[autodoc]] RobertaPreLayerNormModel - forward ## RobertaPreLayerNormForCausalLM [[autodoc]] RobertaPreLayerNormForCausalLM - forward ## RobertaPreLayerNormForMaskedLM [[autodoc]] RobertaPreLayerNormForMaskedLM - forward ## RobertaPreLayerNormForSequenceClassification [[autodoc]] RobertaPreLayerNormForSequenceClassification - forward ## RobertaPreLayerNormForMultipleChoice [[autodoc]] RobertaPreLayerNormForMultipleChoice - forward ## RobertaPreLayerNormForTokenClassification [[autodoc]] RobertaPreLayerNormForTokenClassification - forward ## RobertaPreLayerNormForQuestionAnswering [[autodoc]] RobertaPreLayerNormForQuestionAnswering - forward </pt> <tf> ## TFRobertaPreLayerNormModel [[autodoc]] TFRobertaPreLayerNormModel - call ## TFRobertaPreLayerNormForCausalLM [[autodoc]] TFRobertaPreLayerNormForCausalLM - call ## TFRobertaPreLayerNormForMaskedLM [[autodoc]] TFRobertaPreLayerNormForMaskedLM - call ## TFRobertaPreLayerNormForSequenceClassification [[autodoc]] TFRobertaPreLayerNormForSequenceClassification - call ## TFRobertaPreLayerNormForMultipleChoice [[autodoc]] TFRobertaPreLayerNormForMultipleChoice - call ## TFRobertaPreLayerNormForTokenClassification [[autodoc]] TFRobertaPreLayerNormForTokenClassification - call ## TFRobertaPreLayerNormForQuestionAnswering [[autodoc]] TFRobertaPreLayerNormForQuestionAnswering - call </tf> <jax> ## FlaxRobertaPreLayerNormModel [[autodoc]] FlaxRobertaPreLayerNormModel - __call__ ## FlaxRobertaPreLayerNormForCausalLM [[autodoc]] FlaxRobertaPreLayerNormForCausalLM - __call__ ## FlaxRobertaPreLayerNormForMaskedLM [[autodoc]] FlaxRobertaPreLayerNormForMaskedLM - __call__ ## FlaxRobertaPreLayerNormForSequenceClassification [[autodoc]] FlaxRobertaPreLayerNormForSequenceClassification - __call__ ## FlaxRobertaPreLayerNormForMultipleChoice [[autodoc]] FlaxRobertaPreLayerNormForMultipleChoice - __call__ ## FlaxRobertaPreLayerNormForTokenClassification [[autodoc]] FlaxRobertaPreLayerNormForTokenClassification - __call__ ## FlaxRobertaPreLayerNormForQuestionAnswering [[autodoc]] FlaxRobertaPreLayerNormForQuestionAnswering - __call__ </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/roberta-prelayernorm.md/0
{ "file_path": "transformers/docs/source/en/model_doc/roberta-prelayernorm.md", "repo_id": "transformers", "token_count": 1519 }
249
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Splinter ## Overview The Splinter model was proposed in [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy. Splinter is an encoder-only transformer (similar to BERT) pretrained using the recurring span selection task on a large corpus comprising Wikipedia and the Toronto Book Corpus. The abstract from the paper is the following: In several question answering benchmarks, pretrained models have reached human parity through fine-tuning on an order of 100,000 annotated questions and answers. We explore the more realistic few-shot setting, where only a few hundred training examples are available, and observe that standard models perform poorly, highlighting the discrepancy between current pretraining objectives and question answering. We propose a new pretraining scheme tailored for question answering: recurring span selection. Given a passage with multiple sets of recurring spans, we mask in each set all recurring spans but one, and ask the model to select the correct span in the passage for each masked span. Masked spans are replaced with a special token, viewed as a question representation, that is later used during fine-tuning to select the answer span. The resulting model obtains surprisingly good results on multiple benchmarks (e.g., 72.7 F1 on SQuAD with only 128 training examples), while maintaining competitive performance in the high-resource setting. This model was contributed by [yuvalkirstain](https://huggingface.co/yuvalkirstain) and [oriram](https://huggingface.co/oriram). The original code can be found [here](https://github.com/oriram/splinter). ## Usage tips - Splinter was trained to predict answers spans conditioned on a special [QUESTION] token. These tokens contextualize to question representations which are used to predict the answers. This layer is called QASS, and is the default behaviour in the [`SplinterForQuestionAnswering`] class. Therefore: - Use [`SplinterTokenizer`] (rather than [`BertTokenizer`]), as it already contains this special token. Also, its default behavior is to use this token when two sequences are given (for example, in the *run_qa.py* script). - If you plan on using Splinter outside *run_qa.py*, please keep in mind the question token - it might be important for the success of your model, especially in a few-shot setting. - Please note there are two different checkpoints for each size of Splinter. Both are basically the same, except that one also has the pretrained weights of the QASS layer (*tau/splinter-base-qass* and *tau/splinter-large-qass*) and one doesn't (*tau/splinter-base* and *tau/splinter-large*). This is done to support randomly initializing this layer at fine-tuning, as it is shown to yield better results for some cases in the paper. ## Resources - [Question answering task guide](../tasks/question-answering) ## SplinterConfig [[autodoc]] SplinterConfig ## SplinterTokenizer [[autodoc]] SplinterTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## SplinterTokenizerFast [[autodoc]] SplinterTokenizerFast ## SplinterModel [[autodoc]] SplinterModel - forward ## SplinterForQuestionAnswering [[autodoc]] SplinterForQuestionAnswering - forward ## SplinterForPreTraining [[autodoc]] SplinterForPreTraining - forward
transformers/docs/source/en/model_doc/splinter.md/0
{ "file_path": "transformers/docs/source/en/model_doc/splinter.md", "repo_id": "transformers", "token_count": 1101 }
250
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. specific language governing permissions and limitations under the License. --> # TrOCR ## Overview The TrOCR model was proposed in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. TrOCR consists of an image Transformer encoder and an autoregressive text Transformer decoder to perform [optical character recognition (OCR)](https://en.wikipedia.org/wiki/Optical_character_recognition). The abstract from the paper is the following: *Text recognition is a long-standing research problem for document digitalization. Existing approaches for text recognition are usually built based on CNN for image understanding and RNN for char-level text generation. In addition, another language model is usually needed to improve the overall accuracy as a post-processing step. In this paper, we propose an end-to-end text recognition approach with pre-trained image Transformer and text Transformer models, namely TrOCR, which leverages the Transformer architecture for both image understanding and wordpiece-level text generation. The TrOCR model is simple but effective, and can be pre-trained with large-scale synthetic data and fine-tuned with human-labeled datasets. Experiments show that the TrOCR model outperforms the current state-of-the-art models on both printed and handwritten text recognition tasks.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/trocr_architecture.jpg" alt="drawing" width="600"/> <small> TrOCR architecture. Taken from the <a href="https://arxiv.org/abs/2109.10282">original paper</a>. </small> Please refer to the [`VisionEncoderDecoder`] class on how to use this model. This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/microsoft/unilm/tree/6f60612e7cc86a2a1ae85c47231507a587ab4e01/trocr). ## Usage tips - The quickest way to get started with TrOCR is by checking the [tutorial notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/TrOCR), which show how to use the model at inference time as well as fine-tuning on custom data. - TrOCR is pre-trained in 2 stages before being fine-tuned on downstream datasets. It achieves state-of-the-art results on both printed (e.g. the [SROIE dataset](https://paperswithcode.com/dataset/sroie) and handwritten (e.g. the [IAM Handwriting dataset](https://fki.tic.heia-fr.ch/databases/iam-handwriting-database>) text recognition tasks. For more information, see the [official models](https://huggingface.co/models?other=trocr>). - TrOCR is always used within the [VisionEncoderDecoder](vision-encoder-decoder) framework. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with TrOCR. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-classification"/> - A blog post on [Accelerating Document AI](https://huggingface.co/blog/document-ai) with TrOCR. - A blog post on how to [Document AI](https://github.com/philschmid/document-ai-transformers) with TrOCR. - A notebook on how to [finetune TrOCR on IAM Handwriting Database using Seq2SeqTrainer](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TrOCR/Fine_tune_TrOCR_on_IAM_Handwriting_Database_using_Seq2SeqTrainer.ipynb). - A notebook on [inference with TrOCR](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TrOCR/Inference_with_TrOCR_%2B_Gradio_demo.ipynb) and Gradio demo. - A notebook on [finetune TrOCR on the IAM Handwriting Database](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TrOCR/Fine_tune_TrOCR_on_IAM_Handwriting_Database_using_native_PyTorch.ipynb) using native PyTorch. - A notebook on [evaluating TrOCR on the IAM test set](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TrOCR/Evaluating_TrOCR_base_handwritten_on_the_IAM_test_set.ipynb). <PipelineTag pipeline="text-generation"/> - [Casual language modeling](https://huggingface.co/docs/transformers/tasks/language_modeling) task guide. ⚡️ Inference - An interactive-demo on [TrOCR handwritten character recognition](https://huggingface.co/spaces/nielsr/TrOCR-handwritten). ## Inference TrOCR's [`VisionEncoderDecoder`] model accepts images as input and makes use of [`~generation.GenerationMixin.generate`] to autoregressively generate text given the input image. The [`ViTImageProcessor`/`DeiTImageProcessor`] class is responsible for preprocessing the input image and [`RobertaTokenizer`/`XLMRobertaTokenizer`] decodes the generated target tokens to the target string. The [`TrOCRProcessor`] wraps [`ViTImageProcessor`/`DeiTImageProcessor`] and [`RobertaTokenizer`/`XLMRobertaTokenizer`] into a single instance to both extract the input features and decode the predicted token ids. - Step-by-step Optical Character Recognition (OCR) ``` py >>> from transformers import TrOCRProcessor, VisionEncoderDecoderModel >>> import requests >>> from PIL import Image >>> processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") >>> model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") >>> # load image from the IAM dataset >>> url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") >>> pixel_values = processor(image, return_tensors="pt").pixel_values >>> generated_ids = model.generate(pixel_values) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` See the [model hub](https://huggingface.co/models?filter=trocr) to look for TrOCR checkpoints. ## TrOCRConfig [[autodoc]] TrOCRConfig ## TrOCRProcessor [[autodoc]] TrOCRProcessor - __call__ - from_pretrained - save_pretrained - batch_decode - decode ## TrOCRForCausalLM [[autodoc]] TrOCRForCausalLM - forward
transformers/docs/source/en/model_doc/trocr.md/0
{ "file_path": "transformers/docs/source/en/model_doc/trocr.md", "repo_id": "transformers", "token_count": 2132 }
251