TinyLlama-CPT / multilinguality_megatron /tools /preprocess_instruct_data.py
KshitijAmbilduke's picture
Upload 382 files
9ef89a4 verified
raw
history blame
7.83 kB
# Instruction code heavily inspired by Andreas Köpf
# source: https://github.com/andreaskoepf/epfl-megatron/tree/local_changes/
"""Processing data for instruction tuning.
Example:
python instruct/preprocess_instruct_data.py --input=/pure-mlo-scratch/alhernan/data/medmc/medmc-v1.jsonl \
--output_prefix=/pure-mlo-scratch/alhernan/data/medmc/medmc-v1 \
--tokenizer_type=SentencePieceTokenizer \
--vocab_file=/pure-mlo-scratch/llama/tokenizer.model \
--chunk_size=32 --workers=32 \
--vocab_extra_ids_list "[bib_ref],[/bib_ref],[fig_ref],[/fig_ref],[bib],[/bib],[fig],[/fig],[table],[/table],[formula],[/formula],<|im_start|>,<|im_end|>" \
--question_key=input \
--answer_key=output \
--system_key=instruction
"""
import sys
import json
import time
import itertools
from pathlib import Path
from typing import Optional
from multiprocessing import Pool
from argparse import ArgumentParser, Namespace
import torch
sys.path.append(str(Path(__file__).parent.parent.absolute()))
from megatron.tokenizer import build_tokenizer
from megatron.tokenizer.tokenizer import AbstractTokenizer
from megatron.data.indexed_dataset import make_builder
from megatron.data.instruction_dataset import Role
class Encoder(object):
tokenizer: Optional[AbstractTokenizer] = None
def __init__(self, args: Namespace):
self.args = args
def initializer(self):
Encoder.tokenizer = build_tokenizer(self.args)
def encode(self, line: str) -> tuple[int, list[int], list[int]]:
# get data
assert Encoder.tokenizer is not None
data = json.loads(line)
question = data[self.args.question_key]
answer = data[self.args.answer_key]
system = None if self.args.system_key is None else data[self.args.system_key]
# now format messages
if system is not None:
system = format_message(system, "system")
question = format_message(question, "question")
answer = format_message(answer, "answer")
# tokenize and get roles
tokens = []
roles = []
if system is not None:
system = Encoder.tokenizer.tokenize(system)
tokens += system
roles += [Role.system.value]*len(system)
question = Encoder.tokenizer.tokenize(question)
tokens += question
roles += [Role.prompter.value]*len(question)
answer = Encoder.tokenizer.tokenize(answer)
tokens += answer
roles += [Role.assistant.value]*len(answer)
return len(line), tokens, roles
@property
def special_tokens(self) -> dict:
return self.tokenizer._special_tokens
class DatasetWriter:
def __init__(self, prefix: str, vocab_size: int, dataset_impl: str = "mmap",
feature: str = "text"):
self.vocab_size = vocab_size
self.dataset_impl = dataset_impl
self.bin_fname = f"{prefix}-{feature}.bin"
self.idx_fname = f"{prefix}-{feature}.idx"
self.builder = None
def add_item(self, tokens: list[int]):
self.builder.add_item(torch.IntTensor(tokens))
def __enter__(self):
self.builder = make_builder(self.bin_fname, impl=self.dataset_impl,
vocab_size=self.vocab_size)
return self
def __exit__(self, *_):
self.builder.finalize(self.idx_fname)
self.builder = None
def format_message(message: str, role: str) -> str:
return f"<|im_start|>{role}\n{message}<|im_end|>\n"
def get_args():
parser = ArgumentParser()
group = parser.add_argument_group(title='input data')
group.add_argument('--input', type=str, nargs="+",
help='Path(s) to input JSON file(s)')
group.add_argument('--system_key',
help='key to extract system info from json (optional)')
group.add_argument('--question_key', default='input',
help='key to extract questions from json')
group.add_argument('--answer_key', default='output',
help='key to extract answers from json')
group = parser.add_argument_group(title='tokenizer')
group.add_argument('--tokenizer_type', type=str, required=True,
choices=['BertWordPieceLowerCase','BertWordPieceCase',
'GPT2BPETokenizer', 'SentencePieceTokenizer', 'FalconTokenizer'],
help='What type of tokenizer to use.')
group.add_argument('--vocab_file', type=str, default=None,
help='Path to the vocab file')
group.add_argument('--merge_file', type=str, default=None,
help='Path to the BPE merge file (if necessary).')
group.add_argument('--lang', type=str, default='english',
help='Language to use for NLTK-powered sentence splitting.')
group = parser.add_argument_group(title='output data')
group.add_argument('--output_prefix', type=Path, required=True,
help='Path to binary output file without suffix')
group.add_argument('--dataset_impl', type=str, default='mmap',
choices=['lazy', 'cached', 'mmap'])
group = parser.add_argument_group(title='runtime')
group.add_argument('--workers', type=int, required=True,
help='Number of worker processes to launch')
group.add_argument('--chunk_size', type=int, required=True,
help='Chunk size assigned to each worker process')
group.add_argument('--log_interval', type=int, default=100,
help='Interval between progress updates')
group.add_argument('--vocab_extra_ids', type=int, default=0)
group.add_argument('--vocab_extra_ids_list', type=str, default=None,
help='comma separated list of special vocab ids to add to the tokenizer')
group.add_argument("--no_new_tokens", action="store_false", dest="new_tokens",
help=("Whether to add special tokens (e.g. CLS, MASK, etc) "
"in the sentencepiece tokenizer or not"))
args = parser.parse_args()
args.keep_empty = False
if args.tokenizer_type.lower().startswith('bert'):
if not args.split_sentences:
print("Bert tokenizer detected, are you sure you don't want to split sentences?")
# some default/dummy values for the tokenizer
args.rank = 0
args.make_vocab_size_divisible_by = 128
args.tensor_model_parallel_size = 1
return args
def main():
args = get_args()
startup_start = time.time()
encoder = Encoder(args)
vocab_size = build_tokenizer(args).vocab_size
fs = map(open, args.input)
with Pool(args.workers, initializer=encoder.initializer) as pool, \
DatasetWriter(args.output_prefix, vocab_size, args.dataset_impl,
"text") as token_writer, \
DatasetWriter(args.output_prefix, 16, args.dataset_impl,
"role") as role_writer:
f = itertools.chain(*fs)
docs = pool.imap(encoder.encode, f, args.chunk_size)
startup_end = time.time()
proc_start = time.time()
total_bytes_processed = 0
print("Time to startup:", startup_end - startup_start)
for i, (size, tokens, roles) in enumerate(docs, start=1):
total_bytes_processed += size
token_writer.add_item(tokens)
role_writer.add_item(roles)
if i % args.log_interval == 0:
elapsed = time.time() - proc_start
mbs = total_bytes_processed/1024/1024/elapsed
print(f"Processed {i} documents ({i/elapsed} docs/s, {mbs} MB/s).")
print("Done! Now finalizing.")
for f in fs:
f.close()
if __name__ == '__main__':
main()