KshitijAmbilduke's picture
Upload 382 files
9ef89a4 verified
raw
history blame
27.9 kB
"""
Convert weights from models in other formats (primairly huggingface) to megatron checkpoints.
This script supports converting Falcon, LLaMa and LLaMa 2 weights to megatron checkpoints.
Depending on the model to convert, the inputs might differ.
- Falcon:
Weights are automatically retrieved from the official implementation hosted in huggingface.
Thus, the `--cache-dir` argument is optional, if specified it should point to
the huggingface cache directory where the huggingface Falcon weights will be stored.
You will need to specify the `--size` argument to determine which version to download
(i.e. Falcon 7B or 40B).
- LLaMa, LLaMa 2 and CodeLlama:
Converting llama weights can be done either fetching the weights hosted
in huggingface (recommended as it is the easier method) or directly from the
weights provided by Meta.
- From Meta weights (only available for LLaMa and LLaMa 2):
You will need to specify the `--cache-dir` to the directory where the
llama weights are stored.
This will by default have the form `xB` (e.g. 7B or 70B) for llama v1,
or `llama-2-xb` (e.g. llama-2-7b) for llama v2.
- From huggingface weights:
If `--cache-dir` is not specified or the directory specified does not
contain the format expected from Meta weights, the converter will automatically
retrieve the weights from huggingface, in which case the `--cache-dir` will
have the same semantics as with Falcon.
Note that to download llama v2 weights from huggingface, you will need to
login using `huggingface-cli login` with a huggingface account which has been
granted access to the `meta-llama/Llama-2-7b-hf` model.
In all cases, the megatron checkpoint will be stored in the `--out` argument.
If a huggingface is specified, the intermediate weights (i.e. the huggingface weights)
stored therein will not be removed when the conversion succeeds.
"""
import re
import shutil
import sys
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import Optional
import torch
from tqdm.auto import trange
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, GemmaTokenizer, GemmaForCausalLM
from utils.merge_llama import merge_llama
from utils.permute_qkv import permute_qkv
llama_s2layer = {1:22, 7: 32, 8: 32, 13: 40, 30: 60, 34: 48, 65: 80, 70: 80}
llama_s2heads = {1:32, 7: 32, 8: 32, 13: 40, 30: 52, 34: 64, 65: 64, 70: 64}
llama_s2dense = {
1: 5632,
7: 11008,
8: 14336,
13: 13824,
30: 17920,
34: 22016,
65: 22016,
70: 28672,
} # should be (2/3)*4*d, but it isn't exaclty that
llama_s2hidden = {1: 2048, 7: 4096, 8:4096, 13: 5120, 30: 6656, 34: 8192, 65: 8192, 70: 8192}
gemma_s2layer = {2:18, 7: 28}
gemma_s2heads = {2:8, 7: 16}
gemma_s2dense = {2: 16384, 7: 24576}
gemma_s2hidden = {2: 2048, 7: 3072}
gemma_headsize = {2: 256, 7: 256}
def falcon_to_megatron(weights: dict, size: int) -> dict:
def permute(qkv_w):
return permute_qkv(qkv_w, dim, n_heads, n_heads_kv)
embedding = {}
transformer = {}
if size == 7:
n_layer = 32
dim = 4544
n_heads = 71
n_heads_kv = 1
else:
n_layer = 60
dim = 8192
n_heads = 128
n_heads_kv = 8
# weights independent of layers (i.e. token embeddings and layernorms
assert torch.allclose(
weights["lm_head.weight"], weights["transformer.word_embeddings.weight"]
)
embedding["word_embeddings.weight"] = weights["transformer.word_embeddings.weight"]
transformer["final_layernorm.weight"] = weights["transformer.ln_f.weight"]
transformer["final_layernorm.bias"] = weights["transformer.ln_f.bias"]
# copy weights for each transformer layer
for layer in trange(n_layer, desc="Converting weights"):
prefix1 = f"layers.{layer}"
prefix2 = f"transformer.h.{layer}"
# mlp
transformer[f"{prefix1}.mlp.dense_h_to_4h.weight"] = weights[
f"{prefix2}.mlp.dense_h_to_4h.weight"
]
transformer[f"{prefix1}.mlp.dense_4h_to_h.weight"] = weights[
f"{prefix2}.mlp.dense_4h_to_h.weight"
]
# qkv weights
transformer[f"{prefix1}.attention.query_key_value.weight"] = permute(
weights[f"{prefix2}.self_attention.query_key_value.weight"]
)
# dense
transformer[f"{prefix1}.attention.dense.weight"] = weights[
f"{prefix2}.self_attention.dense.weight"
]
# falcon7 and falcon40 differ in the input layernorms
if size == 7:
transformer[f"{prefix1}.input_layernorm.weight"] = weights[
f"{prefix2}.input_layernorm.weight"
]
transformer[f"{prefix1}.input_layernorm.bias"] = weights[
f"{prefix2}.input_layernorm.bias"
]
else:
transformer[f"{prefix1}.input_layernorm.weight"] = weights[
f"{prefix2}.ln_attn.weight"
]
transformer[f"{prefix1}.mlp_layernorm.weight"] = weights[
f"{prefix2}.ln_mlp.weight"
]
transformer[f"{prefix1}.input_layernorm.bias"] = weights[
f"{prefix2}.ln_attn.bias"
]
transformer[f"{prefix1}.mlp_layernorm.bias"] = weights[
f"{prefix2}.ln_mlp.bias"
]
return {"embedding": embedding, "transformer": transformer}
def llama_to_megatron(
weights: dict, size: int, source: str = "meta", version: int = 1
) -> dict:
def permute(qkv_w):
if source == "hf":
return permute_qkv(qkv_w, hidden, n_heads, n_kv_heads)
return qkv_w
def rearrange_qkv(wq, wk, wv):
wq = torch.split(wq, n_hidden_per_head, dim=0)
wk = torch.split(wk, n_hidden_per_head, dim=0)
wv = torch.split(wv, n_hidden_per_head, dim=0)
assert len(wq) == n_heads
assert len(wk) == n_kv_heads
assert len(wv) == n_kv_heads
n_qs_per_kv = n_heads // n_kv_heads
w_qkv = []
for i in range(n_kv_heads):
w_qkv += [wq[i * n_qs_per_kv + j] for j in range(n_qs_per_kv)]
w_qkv += [wk[i], wv[i]]
return permute(torch.concat(w_qkv))
# config
n_layer = llama_s2layer[size]
hidden = llama_s2hidden[size]
n_heads = llama_s2heads[size]
n_hidden_per_head = hidden // n_heads
if version==1 or size==13:
n_kv_heads=n_heads
elif size==1:
n_kv_heads=4
else:
n_kv_heads=8
# weights independent of layers
embedding = {"word_embeddings.weight": weights["tok_embeddings.weight"]}
transformer = {"final_layernorm.weight": weights["norm.weight"]}
lm_head = weights["output.weight"]
# get all the other weights
for layer in trange(n_layer, desc="Converting weights"):
prefix = f"layers.{layer}"
# identical weights
transformer[f"{prefix}.attention.dense.weight"] = weights[
f"{prefix}.attention.wo.weight"
]
transformer[f"{prefix}.post_attention_layernorm.weight"] = weights[
f"{prefix}.ffn_norm.weight"
]
transformer[f"{prefix}.input_layernorm.weight"] = weights[
f"{prefix}.attention_norm.weight"
]
transformer[f"{prefix}.mlp.dense_4h_to_h.weight"] = weights[
f"{prefix}.feed_forward.w2.weight"
]
# concatenate up, gate mlp weights
transformer[f"{prefix}.mlp.dense_h_to_4h.weight"] = torch.concat(
[
weights[f"{prefix}.feed_forward.w3.weight"],
weights[f"{prefix}.feed_forward.w1.weight"],
]
)
# finally, qkv requires serious manipulation to get right
transformer[f"{prefix}.attention.query_key_value.weight"] = rearrange_qkv(
weights[f"{prefix}.attention.wq.weight"],
weights[f"{prefix}.attention.wk.weight"],
weights[f"{prefix}.attention.wv.weight"],
)
# release references to original weights (free mem)
del weights[f"{prefix}.feed_forward.w3.weight"]
del weights[f"{prefix}.feed_forward.w1.weight"]
del weights[f"{prefix}.attention.wq.weight"]
del weights[f"{prefix}.attention.wk.weight"]
del weights[f"{prefix}.attention.wv.weight"]
return {"embedding": embedding, "transformer": transformer, "lm_head": lm_head}
def gemma_to_megatron(
weights: dict, size: int, source: str = "meta", version: int = 1
) -> dict:
def permute(qkv_w):
return permute_qkv(qkv_w, hidden, n_heads, n_kv_heads, n_hidden_per_head)
def rearrange_qkv(wq, wk, wv):
wq = torch.split(wq, n_hidden_per_head, dim=0)
wk = torch.split(wk, n_hidden_per_head, dim=0)
wv = torch.split(wv, n_hidden_per_head, dim=0)
assert len(wq) == n_heads
assert len(wk) == n_kv_heads
assert len(wv) == n_kv_heads
n_qs_per_kv = n_heads // n_kv_heads
w_qkv = []
for i in range(n_kv_heads):
w_qkv += [wq[i * n_qs_per_kv + j] for j in range(n_qs_per_kv)]
w_qkv += [wk[i], wv[i]]
return permute(torch.concat(w_qkv))
# config
n_layer = gemma_s2layer[size]
hidden = gemma_s2hidden[size]
n_heads = gemma_s2heads[size]
n_hidden_per_head = gemma_headsize[size] #hidden // n_heads
if size==2:
n_kv_heads=1
else:
n_kv_heads=16
# weights independent of layers
embedding = {"word_embeddings.weight": weights["model.embed_tokens.weight"]}
transformer = {"final_layernorm.weight": weights["model.norm.weight"]}
lm_head = weights["lm_head.weight"]
# get all the other weights
for layer in trange(n_layer, desc="Converting weights"):
prefix = f"layers.{layer}"
prefix_old = f"model.layers.{layer}"
# identical weights
transformer[f"{prefix}.attention.dense.weight"] = weights[
f"{prefix_old}.self_attn.o_proj.weight"
]
transformer[f"{prefix}.post_attention_layernorm.weight"] = weights[
f"{prefix_old}.post_attention_layernorm.weight"
]
transformer[f"{prefix}.input_layernorm.weight"] = weights[
f"{prefix_old}.input_layernorm.weight"
]
transformer[f"{prefix}.mlp.dense_4h_to_h.weight"] = weights[
f"{prefix_old}.mlp.down_proj.weight"
]
# concatenate up, gate mlp weights
transformer[f"{prefix}.mlp.dense_h_to_4h.weight"] = torch.concat(
[
weights[f"{prefix_old}.mlp.up_proj.weight"],
weights[f"{prefix_old}.mlp.gate_proj.weight"],
]
)
# finally, qkv requires serious manipulation to get right
transformer[f"{prefix}.self_attention.query_key_value.weight"] = rearrange_qkv(
weights[f"{prefix_old}.self_attn.q_proj.weight"],
weights[f"{prefix_old}.self_attn.k_proj.weight"],
weights[f"{prefix_old}.self_attn.v_proj.weight"],
)
# release references to original weights (free mem)
del weights[f"{prefix_old}.mlp.up_proj.weight"]
del weights[f"{prefix_old}.mlp.down_proj.weight"]
del weights[f"{prefix_old}.self_attn.q_proj.weight"]
del weights[f"{prefix_old}.self_attn.k_proj.weight"]
del weights[f"{prefix_old}.self_attn.v_proj.weight"]
return {"embedding": embedding, "transformer": transformer, "lm_head": lm_head}
def mistral_to_megatron(weights: dict, size: int) -> dict:
assert size == 7
def permute(qkv_w):
# if source == "hf":
# by default, we pull mistrals weights from huggingface
return permute_qkv(qkv_w, hidden, n_heads, n_kv_heads)
# return qkv_w
def rearrange_qkv(wq, wk, wv):
wq = torch.split(wq, n_hidden_per_head, dim=0)
wk = torch.split(wk, n_hidden_per_head, dim=0)
wv = torch.split(wv, n_hidden_per_head, dim=0)
assert len(wq) == n_heads
assert len(wk) == n_kv_heads
assert len(wv) == n_kv_heads
n_qs_per_kv = n_heads // n_kv_heads
w_qkv = []
for i in range(n_kv_heads):
w_qkv += [wq[i * n_qs_per_kv + j] for j in range(n_qs_per_kv)]
w_qkv += [wk[i], wv[i]]
return permute(torch.concat(w_qkv))
# config
if size == 7:
n_layer = 32
hidden = 4096
n_heads = 32
n_kv_heads = 8
n_hidden_per_head = hidden // n_heads
# weights independent of layers
embedding = {"word_embeddings.weight": weights["model.embed_tokens.weight"]}
transformer = {"final_layernorm.weight": weights["model.norm.weight"]}
lm_head = weights["lm_head.weight"]
# get all the other weights
for layer in trange(n_layer, desc="Converting weights"):
prefix = f"layers.{layer}"
hf_prefix = f"model.{prefix}"
# identical weights
transformer[f"{prefix}.attention.dense.weight"] = weights[
f"{hf_prefix}.self_attn.o_proj.weight"
]
transformer[f"{prefix}.post_attention_layernorm.weight"] = weights[
f"{hf_prefix}.post_attention_layernorm.weight"
]
transformer[f"{prefix}.input_layernorm.weight"] = weights[
f"{hf_prefix}.input_layernorm.weight"
]
transformer[f"{prefix}.mlp.dense_4h_to_h.weight"] = weights[
f"{hf_prefix}.mlp.down_proj.weight"
]
# concatenate up, gate mlp weights
transformer[f"{prefix}.mlp.dense_h_to_4h.weight"] = torch.concat(
[
weights[f"{hf_prefix}.mlp.up_proj.weight"], # w3
weights[f"{hf_prefix}.mlp.gate_proj.weight"], # w1
]
)
# finally, qkv requires serious manipulation to get right (probably same as llama-2)
transformer[f"{prefix}.attention.query_key_value.weight"] = rearrange_qkv(
weights[f"{hf_prefix}.self_attn.q_proj.weight"],
weights[f"{hf_prefix}.self_attn.k_proj.weight"],
weights[f"{hf_prefix}.self_attn.v_proj.weight"],
)
# release references to original weights (free mem)
del weights[f"{hf_prefix}.mlp.up_proj.weight"]
del weights[f"{hf_prefix}.mlp.gate_proj.weight"]
del weights[f"{hf_prefix}.self_attn.q_proj.weight"]
del weights[f"{hf_prefix}.self_attn.k_proj.weight"]
del weights[f"{hf_prefix}.self_attn.v_proj.weight"]
return {"embedding": embedding, "transformer": transformer, "lm_head": lm_head}
def main(
model_name: str = "falcon",
size: int = 7,
out: Optional[Path] = None,
cache_dir: Optional[Path] = None,
model_path: Optional[str] = None,
):
if out is None:
out = Path(f"falcon{size}b_megatron.pt").absolute()
# get weights from or specified directory
if model_name == "falcon":
print("Fetching weights from huggingface")
if model_path is None:
model_path = (f"tiiuae/falcon-{size}b",)
model = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True, cache_dir=cache_dir
)
hf_weights = model.state_dict()
elif model_name == "mistral":
print("Fetching weights from huggingface")
if model_path is None:
model_path = "mistralai/Mistral-7B-v0.1"
model = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True, cache_dir=cache_dir
)
hf_weights = model.state_dict()
elif model_name == 'gemma':
print("Fetching weights from huggingface")
if size == 2:
model_path = "google/gemma-2b"
elif size == 7:
model_path = "google/gemma-7b"
model = GemmaForCausalLM.from_pretrained(
model_path, trust_remote_code=True, cache_dir=cache_dir
)
hf_weights = model.state_dict()
else:
print("Getting llama...")
version = 2 if "2" in model_name else 1
hf_weights, llama_source = merge_llama(
size, version, root_dir=cache_dir, model_path=model_path
)
# convert state dict to be megatron-compatible
if model_name == "falcon":
megatron_weights = falcon_to_megatron(hf_weights, size)
elif model_name == "mistral":
megatron_weights = mistral_to_megatron(hf_weights, size)
elif model_name == "gemma":
megatron_weights = gemma_to_megatron(hf_weights, size)
else:
megatron_weights = llama_to_megatron(
hf_weights, size, llama_source, version=1 if model_name == "llama" else 2
)
# save converted weights in specified out
(out / "release" / "mp_rank_00").mkdir(parents=True)
if model_name in {"llama", "llama2", "llama3"} and llama_source == "hf":
tokenizer = None
if model_path is not None:
try:
if model_name == "llama2":
tokenizer = LlamaTokenizer.from_pretrained(
model_path, cache_dir=cache_dir)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_path, cache_dir=cache_dir)
except OSError:
warnings.warn(
f"Model path {model_path} does not have a "
"tokenizer, using default tokenizer instead"
)
if tokenizer is None:
if model_name == "llama2":
name = "meta-llama/Llama-2-7b-hf"
elif model_name == "llama3":
name = "meta-llama/Llama-3-8b"
else:
name = "decapoda-research/llama-7b-hf"
tokenizer = LlamaTokenizer.from_pretrained(name, cache_dir=cache_dir)
if model_name!="llama3":
token_path = out / "tokenizer.model"
vocab_file = tokenizer.vocab_file
shutil.copy(vocab_file, token_path)
print("Saved tokenizer.model in", token_path)
elif model_name == "mistral":
tokenizer = None
if model_path is not None:
try:
tokenizer = LlamaTokenizer.from_pretrained(
model_path, cache_dir=cache_dir
)
except OSError:
warnings.warn(
f"Model path {model_path} does not have a "
"tokenizer, using default tokenizer instead"
)
if tokenizer is None:
tokenizer = LlamaTokenizer.from_pretrained(
"mistralai/Mistral-7B-v0.1", cache_dir=cache_dir
)
token_path = out / "tokenizer.model"
vocab_file = tokenizer.vocab_file
shutil.copy(vocab_file, token_path)
print("Saved tokenizer.model in", token_path)
elif model_name == "gemma":
tokenizer = None
if model_path is not None:
try:
tokenizer = GemmaTokenizer.from_pretrained(
model_path, cache_dir=cache_dir
)
except OSError:
warnings.warn(
f"Model path {model_path} does not have a "
"tokenizer, using default tokenizer instead"
)
if tokenizer is None:
tokenizer = GemmaTokenizer.from_pretrained(
"google/gemma-2b", cache_dir=cache_dir
)
token_path = out / "tokenizer.model"
vocab_file = tokenizer.vocab_file
shutil.copy(vocab_file, token_path)
print("Saved tokenizer.model in", token_path)
# set args
dtype = megatron_weights["embedding"]["word_embeddings.weight"].dtype
if model_name == "falcon":
if size == 7:
args = {
"num_layers": 32,
"hidden_size": 4544,
"num_attention_heads": 71,
"num_attention_heads_kv": 1,
}
else:
args = {
"num_layers": 60,
"hidden_size": 8192,
"num_attention_heads": 128,
"num_attention_heads_kv": 8,
"parallel_layernorm": True,
}
args.update(
{
"tokenizer_type": "FalconTokenizer",
"use_flash_attn": True,
"hidden_dropout": 0.0,
"parallel_attn": True,
"max_position_embeddings": 2048,
"seq_length": 2048,
}
)
elif model_name == "mistral":
assert size == 7
# mistral-7b mostly uses the same args as llama-7b
# https://huggingface.co/mistralai/Mistral-7B-v0.1/blob/main/config.json
args = {
"num_layers": 32,
"hidden_size": 4096,
"num_attention_heads": 32,
"num_attention_heads_kv": 8, # except this - GroupedAttention
"ffn_hidden_size": 14336, # except this
"parallel_attn": False,
"make_vocab_size_divisible_by": 128,
"glu_activation": "swiglu", # == silu
"padded_vocab_size": 32000,
"use_rms_norm": True,
"tie_embed_logits": False,
"tokenizer_type": "SentencePieceTokenizer",
"max_position_embeddings": 32768,
"seq_length": 32768,
"layernorm_epsilon": 1e-5,
"rope_theta": 10000.0,
"sliding_window_size": 4096,
}
elif model_name == "gemma":
args = {
"num_layers": gemma_s2layer[size],
"hidden_size": gemma_s2hidden[size],
"num_attention_heads": gemma_s2heads[size],
"ffn_hidden_size": gemma_s2dense[size],
"head_dim": gemma_headsize[size],
"parallel_attn": False,
"make_vocab_size_divisible_by": 128,
"glu_activation": "geglu",
"padded_vocab_size": 256000,
"use_rms_norm": True,
"tie_embed_logits": True,
"tokenizer_type": "SentencePieceTokenizer",
"max_position_embeddings": 8192,
"seq_length": 8192,
"layernorm_epsilon": 1e-6,
"rope_theta": 10000.0,
"sliding_window_size": 4096,
}
if size==2:
args.update(
{
"num_attention_heads_kv": 1,
}
)
elif size==7:
args.update(
{
"num_attention_heads_kv": 16,
}
)
else: # llama1, llama2, codellama
make_vocab_size_divisible_by = 64
padded_vocab_size = 37005
# if len(tokenizer) % make_vocab_size_divisible_by == 0:
# padded_vocab_size = len(tokenizer)
# else:
# padded_vocab_size = len(tokenizer) + (make_vocab_size_divisible_by - (len(tokenizer) % make_vocab_size_divisible_by))
args = {
"num_layers": llama_s2layer[size],
"hidden_size": llama_s2hidden[size],
"num_attention_heads": llama_s2heads[size],
"ffn_hidden_size": llama_s2dense[size],
"parallel_attn": False,
"make_vocab_size_divisible_by": make_vocab_size_divisible_by, # changed to accommodate for extend32
"glu_activation": "swiglu",
"padded_vocab_size": padded_vocab_size,
"use_rms_norm": True,
"tie_embed_logits": False,
"tokenizer_type": "SentencePieceTokenizer",
}
if model_name == "llama":
args.update(
{
"max_position_embeddings": 2048,
"seq_length": 2048,
"layernorm_epsilon": 1e-6,
}
)
elif model_name == "llama2":
if size==1:
args.update(
{
"num_attention_heads_kv": 4,
"max_position_embeddings": 2048,
"seq_length": 2048,
"layernorm_epsilon": 1e-5,
}
)
args.update(
{
"max_position_embeddings": 4096,
"seq_length": 4096,
"layernorm_epsilon": 1e-5,
}
)
if size >= 34:
args.update({"num_attention_heads_kv": 8})
elif model_name == "llama3":
args.update(
{
"num_attention_heads_kv": 8,
"max_position_embeddings": 8192,
"seq_length": 8192,
"layernorm_epsilon": 1e-6,
"rope_theta": 500000,
"padded_vocab_size": 128256
}
)
elif model_name == "codellama":
args.update(
{
"max_position_embeddings": 16384,
"seq_length": 16384,
"layernorm_epsilon": 1e-5,
"rope_theta": 1e6,
}
)
if size >= 34:
args.update({"num_attention_heads_kv": 8})
if size < 34 and not re.match(r"CodeLlama-\d+b-Python", cache_dir):
args.update({"padded_vocab_size": 32016})
else:
sys.exit(
f"Model name has to be llama, llama2 or codellama, not {model_name}."
)
args.update(
{
"tensor_model_parallel_size": 1,
"pipeline_model_parallel_size": 1,
"iteration": "release",
"bias_gelu_fusion": False,
"bias_droput_fusion": False,
"position_embedding_type": "rotary",
}
)
with open(out / "latest_checkpointed_iteration.txt", "w+") as f:
f.write("release")
final_dict = {
"iteration": "release",
"model": {"language_model": megatron_weights},
"checkpoint_version": 3.0,
"args": Namespace(**args),
}
torch.save(final_dict, out / "release" / "mp_rank_00" / "model_optim_rng.pt")
print("Saved weights in", out)
print("Done")
if __name__ == "__main__":
parser = ArgumentParser(
description="Convert Huggingface llama or falcon weights to "
"megatron-compatible weights"
)
parser.add_argument(
"model", choices={"falcon", "llama", "llama2", "llama3", "codellama", "mistral", "gemma"}
)
parser.add_argument(
"--size",
default=7,
choices={1, 2, 7, 8, 13, 30, 34, 40, 65, 70},
type=int,
help="The size of the model",
)
parser.add_argument(
"--out",
type=Path,
help="Directory to store the megatron weights (as checkpoint)",
)
parser.add_argument(
"--model-path",
help="Sets model_name_or_path when fetching weights from huggingface",
)
parser.add_argument(
"--cache-dir",
type=Path,
help=(
"Directory to use as cache for the huggingface "
"weights, or in case of the llama model, the path "
"of the weights privided Meta"
),
)
args = parser.parse_args()
# small arg verification
if args.model == "falcon":
assert args.size in {7, 40}
elif args.model == "llama":
assert args.size in {7, 13, 30, 65}
elif args.model == "codellama":
assert args.size in {7, 13, 34}
elif args.model == "mistral":
assert args.size in {7}
elif args.model == "gemma":
assert args.size in {2, 7}
else:
assert args.size in {1, 7, 8, 13, 70}
main(args.model, args.size, args.out, args.cache_dir, args.model_path)