|
|
|
|
|
|
|
import torch |
|
|
|
|
|
|
|
_MEM_BUFFS = dict() |
|
|
|
|
|
def allocate_mem_buff(name, numel, dtype, track_usage): |
|
"""Allocate a memory buffer.""" |
|
assert name not in _MEM_BUFFS, \ |
|
'memory buffer {} already allocated.'.format(name) |
|
_MEM_BUFFS[name] = MemoryBuffer(name, numel, dtype, track_usage) |
|
return _MEM_BUFFS[name] |
|
|
|
|
|
def get_mem_buff(name): |
|
"""Get the memory buffer.""" |
|
return _MEM_BUFFS[name] |
|
|
|
|
|
class MemoryBuffer: |
|
"""Contiguous memory buffer. |
|
Allocate a contiguous memory of type `dtype` and size `numel`. It is |
|
used to reduce memory fragmentation. |
|
|
|
Usage: After the allocation, the `_start` index is set tot the first |
|
index of the memory. A memory chunk starting from `_start` index |
|
can be `allocated` for an input tensor, with the elements of the |
|
tensor being coppied. The buffer can be reused by resetting the |
|
`_start` index. |
|
|
|
""" |
|
def __init__(self, name, numel, dtype, track_usage): |
|
if torch.distributed.get_rank() == 0: |
|
element_size = torch.tensor([], dtype=dtype).element_size() |
|
print('> building the {} memory buffer with {} num elements ' |
|
'and {} dtype ({:.1f} MB)...'.format( |
|
name, numel, dtype, numel*element_size/1024/1024), |
|
flush=True) |
|
self.name = name |
|
self.numel = numel |
|
self.dtype = dtype |
|
self.data = torch.empty(self.numel, |
|
dtype=self.dtype, |
|
device=torch.cuda.current_device(), |
|
requires_grad=False) |
|
|
|
|
|
self._start = 0 |
|
|
|
|
|
self.track_usage = track_usage |
|
if self.track_usage: |
|
self.in_use_value = 0.0 |
|
self.total_value = 0.0 |
|
|
|
|
|
def reset(self): |
|
"""Reset the buffer start index to the beginning of the buffer.""" |
|
self._start = 0 |
|
|
|
|
|
def is_in_use(self): |
|
"""Whether the current buffer hold on to any memory.""" |
|
return self._start > 0 |
|
|
|
|
|
def numel_in_use(self): |
|
"""Return number of elements in use.""" |
|
return self._start |
|
|
|
|
|
def add(self, tensor): |
|
"""Allocate a chunk of memory from the buffer to tensor and copy |
|
the values.""" |
|
assert tensor.dtype == self.dtype, \ |
|
'Input tensor type {} different from buffer type {}'.format( |
|
tensor.dtype, self.dtype) |
|
|
|
tensor_numel = torch.numel(tensor) |
|
new_start = self._start + tensor_numel |
|
assert new_start <= self.numel, \ |
|
'Not enough memory left in the buffer ({} > {})'.format( |
|
tensor_numel, self.numel - self._start) |
|
|
|
new_tensor = self.data[self._start:new_start] |
|
self._start = new_start |
|
new_tensor = new_tensor.view(tensor.shape) |
|
new_tensor.copy_(tensor) |
|
|
|
return new_tensor |
|
|
|
|
|
def get_data(self): |
|
"""Return the data currently in use.""" |
|
if self.track_usage: |
|
self.in_use_value += float(self._start) |
|
self.total_value += float(self.numel) |
|
return self.data[:self._start] |
|
|
|
|
|
def print_average_usage(self): |
|
"""Print memory usage average over time. We would like this value |
|
to be as high as possible.""" |
|
assert self.track_usage, 'You need to enable track usage.' |
|
if torch.distributed.get_rank() == 0: |
|
print(' > usage of {} memory buffer: {:.2f} %'.format( |
|
self.name, self.in_use_value * 100.0 / self.total_value), |
|
flush=True) |
|
|
|
|
|
|
|
class RingMemBuffer: |
|
"""A ring of memory buffers.""" |
|
|
|
def __init__(self, name, num_buffers, numel, dtype, track_usage): |
|
self.num_buffers = num_buffers |
|
self.buffers = [ |
|
allocate_mem_buff(name+' {}'.format(i), numel, dtype, track_usage) |
|
for i in range(num_buffers)] |
|
self._index = -1 |
|
|
|
|
|
def get_next_buffer(self): |
|
self._index += 1 |
|
self._index = self._index % self.num_buffers |
|
buff = self.buffers[self._index] |
|
assert not buff.is_in_use(), 'buffer is already in use.' |
|
return buff |
|
|