|
|
|
|
|
"""Megatron number of micro-batches calculators.""" |
|
|
|
from abc import ABC |
|
from abc import abstractmethod |
|
|
|
|
|
def build_num_microbatches_calculator(args): |
|
|
|
|
|
if args.rampup_batch_size is None: |
|
num_microbatches_calculator = ConstantNumMicroBatches( |
|
args.global_batch_size, args.micro_batch_size, |
|
args.data_parallel_size) |
|
if args.rank == 0: |
|
print('setting number of micro-batches to constant {}'.format( |
|
num_microbatches_calculator.get()), flush=True) |
|
|
|
else: |
|
assert len(args.rampup_batch_size) == 3, 'expected the following ' \ |
|
'format: --rampup_batch_size <start batch size> ' \ |
|
'<batch size incerement> <ramp-up samples>' |
|
start_batch_size = int(args.rampup_batch_size[0]) |
|
batch_size_increment = int(args.rampup_batch_size[1]) |
|
ramup_samples = int(args.rampup_batch_size[2]) |
|
if args.rank == 0: |
|
print('will use batch size rampup starting from global batch ' |
|
'size {} to global batch size {} with batch size increments ' |
|
'{} over {} samples.'.format(start_batch_size, |
|
args.global_batch_size, |
|
batch_size_increment, |
|
ramup_samples), flush=True) |
|
num_microbatches_calculator = RampupBatchsizeNumMicroBatches( |
|
start_batch_size, batch_size_increment, ramup_samples, |
|
args.global_batch_size, args.micro_batch_size, |
|
args.data_parallel_size) |
|
|
|
return num_microbatches_calculator |
|
|
|
|
|
class NumMicroBatchesCalculator(ABC): |
|
|
|
def __init__(self): |
|
self.num_micro_batches = None |
|
self.current_global_batch_size = None |
|
|
|
def get(self): |
|
return self.num_micro_batches |
|
|
|
def get_current_global_batch_size(self): |
|
return self.current_global_batch_size |
|
|
|
@abstractmethod |
|
def update(self, consumed_samples, consistency_check): |
|
pass |
|
|
|
|
|
class ConstantNumMicroBatches(NumMicroBatchesCalculator): |
|
|
|
def __init__(self, global_batch_size, micro_batch_size, data_parallel_size): |
|
micro_batch_times_data_parallel = micro_batch_size * \ |
|
data_parallel_size |
|
assert global_batch_size % micro_batch_times_data_parallel == 0, \ |
|
'global batch size ({}) is not divisible by micro batch size ({})' \ |
|
' times data parallel size ({})'.format(global_batch_size, |
|
micro_batch_size, |
|
data_parallel_size) |
|
self.num_micro_batches = global_batch_size // \ |
|
micro_batch_times_data_parallel |
|
assert self.num_micro_batches >= 1 |
|
self.current_global_batch_size = global_batch_size |
|
|
|
def update(self, consumed_samples, consistency_check): |
|
pass |
|
|
|
|
|
class RampupBatchsizeNumMicroBatches(NumMicroBatchesCalculator): |
|
|
|
def __init__(self, start_batch_size, batch_size_increment, ramup_samples, |
|
global_batch_size, micro_batch_size, data_parallel_size): |
|
"""Batch size ramp up. |
|
Over |
|
steps = (global_batch_size - start_batch_size) / batch_size_increment |
|
increment batch size from start-batch-size to global_batch_size using |
|
rampup-samples / steps |
|
samples. |
|
Arguments: |
|
start_batch_size: global batch size to start with |
|
batch_size_increment: global batch size increments |
|
ramup_samples: number of samples to use ramp up global |
|
batch size from `start_batch_size` to `global_batch_size` |
|
global_batch_size: global batch size post rampup |
|
micro_batch_size: micro batch size |
|
data_parallel_size: data parallel size. |
|
""" |
|
|
|
self.micro_batch_size = micro_batch_size |
|
self.data_parallel_size = data_parallel_size |
|
self.micro_batch_times_data_parallel_size = self.micro_batch_size * \ |
|
self.data_parallel_size |
|
assert self.micro_batch_times_data_parallel_size > 0 |
|
|
|
assert start_batch_size > 0 |
|
self.start_batch_size = start_batch_size |
|
|
|
assert global_batch_size > 0 |
|
self.global_batch_size = global_batch_size |
|
diff_batch_size = self.global_batch_size - self.start_batch_size |
|
assert diff_batch_size >= 0 |
|
assert batch_size_increment > 0 |
|
self.batch_size_increment = batch_size_increment |
|
assert diff_batch_size % batch_size_increment == 0, 'expected ' \ |
|
'global batch size interval ({}) to be divisible by global batch ' \ |
|
'size increment ({})'.format(diff_batch_size, batch_size_increment) |
|
|
|
num_increments = diff_batch_size // self.batch_size_increment |
|
self.ramup_samples = ramup_samples |
|
assert self.ramup_samples >= 0 |
|
self.rampup_samples_per_increment = self.ramup_samples / num_increments |
|
|
|
|
|
self.update(0, False) |
|
|
|
|
|
def update(self, consumed_samples, consistency_check): |
|
|
|
if consumed_samples > self.ramup_samples: |
|
self.current_global_batch_size = self.global_batch_size |
|
else: |
|
steps = int(consumed_samples / self.rampup_samples_per_increment) |
|
self.current_global_batch_size = self.start_batch_size + \ |
|
steps * self.batch_size_increment |
|
assert self.current_global_batch_size <= self.global_batch_size |
|
|
|
if consistency_check: |
|
assert self.current_global_batch_size % \ |
|
self.micro_batch_times_data_parallel_size == 0, 'current global ' \ |
|
'batch size ({}) is not divisible by micro_batch_size ({}) times' \ |
|
'data parallel size ({})'.format(self.current_global_batch_size, |
|
self.micro_batch_size, |
|
self.data_parallel_size) |
|
self.num_micro_batches = self.current_global_batch_size // \ |
|
self.micro_batch_times_data_parallel_size |
|
|