|
from megatron.core.tensor_parallel import mappings |
|
from tests.test_utilities import Utils |
|
import torch |
|
|
|
def test_CopyToModelParallelRegion(): |
|
Utils.initialize_model_parallel(4,2) |
|
input_data = torch.ones((1)).cuda()*Utils.rank |
|
output_data = mappings._CopyToModelParallelRegion.backward(None, input_data) |
|
result = torch.ones(1).cuda() |
|
result = result * 22 if Utils.rank >= 4 else result * 6 |
|
assert(torch.equal(output_data, result)) |
|
assert(torch.equal(input_data, mappings.copy_to_tensor_model_parallel_region(input_data))) |
|
assert(torch.equal(input_data, mappings._CopyToModelParallelRegion.symbolic(None, input_data))) |
|
Utils.destroy_model_parallel() |
|
|
|
def test_ReduceFromModelParallelRegion(): |
|
Utils.initialize_model_parallel(4,2) |
|
input_data = torch.ones((1)).cuda()*Utils.rank |
|
output_data = mappings._ReduceFromModelParallelRegion.symbolic(None, input_data) |
|
result = torch.ones(1).cuda() |
|
result = result * 22 if Utils.rank >= 4 else result * 6 |
|
assert(torch.equal(output_data, result)) |
|
input_data = torch.ones((1)).cuda()*Utils.rank |
|
assert(torch.equal(mappings.reduce_from_tensor_model_parallel_region(input_data), result)) |
|
assert(torch.equal(input_data, mappings._ReduceFromModelParallelRegion.backward(None, input_data))) |
|
Utils.destroy_model_parallel() |
|
|
|
def test_ScatterToModelParallelRegion(): |
|
Utils.initialize_model_parallel(4,2) |
|
input_data = torch.rand((8,4)).cuda() |
|
output_data = mappings.scatter_to_tensor_model_parallel_region(input_data) |
|
req_dim = int(Utils.rank%(Utils.world_size/2)) |
|
assert(torch.equal(output_data, input_data[:,req_dim].reshape((8,1)))) |
|
output_data = mappings._ScatterToModelParallelRegion.symbolic(None, input_data) |
|
assert(torch.equal(output_data, input_data[:, req_dim].reshape((8,1)))) |
|
|
|
input_data = torch.ones(8).cuda() * Utils.rank |
|
actual_output_data = mappings._ScatterToModelParallelRegion.backward(None, input_data) |
|
expected_output = torch.cat(( |
|
torch.ones(8)*0, |
|
torch.ones(8)*1, |
|
torch.ones(8)*2, |
|
torch.ones(8)*3)).cuda() |
|
if (Utils.rank >= 4): |
|
expected_output = expected_output + 4 |
|
assert(torch.equal(actual_output_data, expected_output)) |
|
Utils.destroy_model_parallel() |
|
|
|
def test_GatherFromModelParallelRegion(): |
|
Utils.initialize_model_parallel(4,2) |
|
input_data = torch.rand((8,4)).cuda() |
|
req_dim = int(Utils.rank%(Utils.world_size/2)) |
|
output_data = mappings._GatherFromModelParallelRegion.backward(None, input_data) |
|
assert(torch.equal(output_data, input_data[:, req_dim].reshape((8,1)))) |
|
input_data = torch.ones(8).cuda() * Utils.rank |
|
actual_output_data = mappings.gather_from_tensor_model_parallel_region(input_data) |
|
expected_output = torch.cat(( |
|
torch.ones(8)*0, |
|
torch.ones(8)*1, |
|
torch.ones(8)*2, |
|
torch.ones(8)*3)).cuda() |
|
if (Utils.rank >= 4): |
|
expected_output = expected_output + 4 |
|
assert(torch.equal(actual_output_data, expected_output)) |
|
assert(torch.equal(mappings._GatherFromModelParallelRegion.symbolic(None, input_data), expected_output)) |
|
Utils.destroy_model_parallel() |
|
|
|
def test_ScatterToSequenceParallelRegion(): |
|
Utils.initialize_model_parallel(4,2) |
|
input_data = torch.rand((8,4)).cuda() |
|
req_dim = int(Utils.rank%(Utils.world_size/2))*2 |
|
output_data = mappings._ScatterToSequenceParallelRegion.symbolic(None, input_data) |
|
assert(torch.equal(output_data, input_data[req_dim:req_dim+2, :])) |
|
output_data = mappings.scatter_to_sequence_parallel_region(input_data) |
|
assert(torch.equal(output_data, input_data[req_dim:req_dim+2, :])) |
|
input_data = torch.ones(4).cuda() * Utils.rank |
|
output_data = mappings._ScatterToModelParallelRegion.backward(None, input_data) |
|
expected_output = torch.concat(( |
|
torch.ones(4)*0, |
|
torch.ones(4)*1, |
|
torch.ones(4)*2, |
|
torch.ones(4)*3)).cuda() |
|
if (Utils.rank >= 4): |
|
expected_output = expected_output + 4 |
|
assert(torch.equal(output_data, expected_output)) |
|
Utils.destroy_model_parallel() |
|
|
|
def test_GatherFromSequenceParallelRegion(): |
|
Utils.initialize_model_parallel(4,2) |
|
input_data = torch.ones(4).cuda() * Utils.rank |
|
output_data = mappings.gather_from_sequence_parallel_region(input_data) |
|
expected_output = torch.concat(( |
|
torch.ones(4)*0, |
|
torch.ones(4)*1, |
|
torch.ones(4)*2, |
|
torch.ones(4)*3)).cuda() |
|
if (Utils.rank >= 4): |
|
expected_output = expected_output + 4 |
|
assert(torch.equal(output_data, expected_output)) |
|
assert(torch.equal(mappings._GatherFromSequenceParallelRegion.symbolic(None, input_data), expected_output)) |
|
input_data = torch.vstack(( |
|
torch.ones(4)*0, |
|
torch.ones(4)*1, |
|
torch.ones(4)*2, |
|
torch.ones(4)*3)).cuda() |
|
class Ctx: |
|
tensor_parallel_output_grad = True |
|
output_data = mappings._GatherFromSequenceParallelRegion.backward(Ctx(), input_data) |
|
expected_output = torch.ones((1,4)).cuda() * 4 * int(Utils.rank % 4) |
|
assert(torch.equal(output_data[0], expected_output)) |
|
Utils.destroy_model_parallel() |
|
|
|
def test_ReduceScatterToSequenceParallelRegion(): |
|
Utils.initialize_model_parallel(4,2) |
|
input_data = torch.vstack(( |
|
torch.ones(4)*0, |
|
torch.ones(4)*1, |
|
torch.ones(4)*2, |
|
torch.ones(4)*3)).cuda() |
|
output_data = mappings.reduce_scatter_to_sequence_parallel_region(input_data) |
|
expected_output = torch.ones(4).cuda() * 4 * int(Utils.rank % 4) |
|
assert(torch.equal(output_data[0], expected_output)) |
|
assert(torch.equal(mappings._ReduceScatterToSequenceParallelRegion.symbolic(None, input_data) , expected_output.reshape((1,4)))) |
|
input_data = torch.ones(4).cuda() * Utils.rank |
|
output_data = mappings._ReduceScatterToSequenceParallelRegion.backward(None,input_data) |
|
expected_output = torch.concat(( |
|
torch.ones(4)*0, |
|
torch.ones(4)*1, |
|
torch.ones(4)*2, |
|
torch.ones(4)*3)).cuda() |
|
if (Utils.rank >= 4): |
|
expected_output = expected_output + 4 |
|
assert(torch.equal(output_data, expected_output)) |
|
Utils.destroy_model_parallel() |
|
|
|
|