|
import os |
|
import torch |
|
import megatron.core.parallel_state as ps |
|
|
|
|
|
class Utils: |
|
world_size = torch.cuda.device_count() |
|
rank = int(os.environ['LOCAL_RANK']) |
|
|
|
@staticmethod |
|
def initialize_distributed(): |
|
print(f'Initializing torch.distributed with rank: {Utils.rank}, world_size: {Utils.world_size}') |
|
torch.cuda.set_device(Utils.rank % torch.cuda.device_count()) |
|
init_method = 'tcp://' |
|
master_ip = os.getenv('MASTER_ADDR', 'localhost') |
|
master_port = os.getenv('MASTER_PORT', '6000') |
|
init_method += master_ip + ':' + master_port |
|
torch.distributed.init_process_group(backend='nccl', world_size=Utils.world_size, rank=Utils.rank, init_method=init_method) |
|
|
|
@staticmethod |
|
def destroy_model_parallel(): |
|
ps.destroy_model_parallel() |
|
torch.distributed.barrier() |
|
|
|
@staticmethod |
|
def initialize_model_parallel(tensor_model_parallel_size = 1, pipeline_model_parallel_size = 1, virtual_pipeline_model_parallel_size = None, pipeline_model_parallel_split_rank = None): |
|
ps.destroy_model_parallel() |
|
if not torch.distributed.is_initialized(): |
|
Utils.initialize_distributed() |
|
ps.initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, virtual_pipeline_model_parallel_size, pipeline_model_parallel_split_rank) |