staghado's picture
Upload folder using huggingface_hub
c633a0a verified
raw
history blame
14.5 kB
[
{
"id": 0,
"page": 4,
"bounding_box": [
139.5268300374349,
72.198974609375,
472.4731699625651,
255.51202392578125
],
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | p{3cm} | p{3cm} | p{3cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2.5cm} | >{\\centering\\arraybackslash}m{2.5cm} | >{\\centering\\arraybackslash}m{2.5cm} | >{\\centering\\arraybackslash}m{2.5cm} |}\n\\hline\nName & Number of classes & Total number of sample & \\#Input Features\\\\\n\\hline\nExtended Yale Face Dataset (Frontal Pose) & 38 & 2432 & 900 \\\\ \\hline\nExtended Yale Face Dataset (All Poses) & 28 & 11482 & 900 \\\\ \\hline\nNCKU Taiwan Face Dataset & 90 & 3330 & 768 \\\\ \\hline\nMNIST Dataset & 10 & 70000 & 784 \\\\ \\hline\n\\end{tabular}\n \\\\\n\\end{center}\n\\caption{List of datasets used for benchmarking}\n\\label{table:dataset-summary}\n\\end{table}",
"extracted_content": [
[
"Name",
"Number of\nclasses",
"Total number\nof sample",
"#Input\nFeatures"
],
[
"Extended Yale\nFace Dataset\n(Frontal Pose)",
"38",
"2432",
"900"
],
[
"Extended Yale\nFace Dataset\n(All Poses)",
"28",
"11482",
"900"
],
[
"NCKU\nTaiwan Face\nDataset",
"90",
"3330",
"768"
],
[
"MNIST\nDataset",
"10",
"70000",
"784"
]
],
"similarity_score": 0.8833652007648184,
"table_image": "images/1607.01354v1/table_0.png",
"page_image": "pages/1607.01354v1/page_4.png"
},
{
"id": 1,
"page": 5,
"bounding_box": [
167.8785683768136,
334.4599914550781,
444.1215558733259,
504.2229919433594
],
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | c | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nClassifier & Setting & Accuracy in $R^{900}$ & Accuracy in $R^{64}$\\\\\n\\hline\nNeural Network & 75-50-38 & & 98.3\\% \\\\ \\hline\nk-Nearest Neighbor & k=3 & 60.6\\% & 97.3\\% \\\\ \\hline\nk-Nearest Neighbor & k=5 & 60.3\\% & 97.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=7 & 58.5\\% & 97.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=9 & 56.7\\% & 97.5\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results on Extended Yale B (Frontal) Face data set}\n\\label{table:cropped-yale-res}\n\\end{table}",
"extracted_content": [
[
"Classifier",
"Setting",
"Accuracy\nin R900",
"Accuracy\nin R64"
],
[
"Neural\nNetwork",
"75-50-38",
"",
"98.3%"
],
[
"k-Nearest\nNeighbor",
"k=3",
"60.6%",
"97.3%"
],
[
"k-Nearest\nNeighbor",
"k=5",
"60.3%",
"97.5%"
],
[
"k-Nearest\nNeighbor",
"k=7",
"58.5%",
"97.5%"
],
[
"k-Nearest\nNeighbor",
"k=9",
"56.7%",
"97.5%"
]
],
"similarity_score": 0.4260355029585799,
"table_image": "images/1607.01354v1/table_1.png",
"page_image": "pages/1607.01354v1/page_5.png"
},
{
"id": 2,
"page": 6,
"bounding_box": [
133.33400344848633,
72.198974609375,
478.6657485961914,
171.02899169921875
],
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | p{1cm} | p{1cm} | p{1cm} | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | }\n\\hline\nStudy & \\#Subjects & \\#Train Images per Subject & \\#Model Params (million) & Accuracy\\\\\n\\hline\nCurrent Paper & 38 & 48 & 0.5 & 98.3\\% \\\\ \\hline\nHinton et. al. \\cite{conf/icml/TangSH12a} & 10 & 7 & 1.3 & 97\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Comparison of results on Extended Yale B (Frontal) data set}\n\\label{table:yale-frontal-compare}\n\\end{table}",
"extracted_content": [
[
"Study",
"#Subjects",
"#Train\nImages per\nSubject",
"#Model\nParams\n(million)",
"Accuracy"
],
[
"Current\nPaper",
"38",
"48",
"0.5",
"98.3%"
],
[
"Hinton et.\nal. [22]",
"10",
"7",
"1.3",
"97%"
]
],
"similarity_score": 0.7058823529411765,
"table_image": "images/1607.01354v1/table_2.png",
"page_image": "pages/1607.01354v1/page_6.png"
},
{
"id": 3,
"page": 7,
"bounding_box": [
167.8785683768136,
72.198974609375,
444.1215558733259,
241.9630126953125
],
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | c | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nClassifier & Setting & Accuracy in $R^{900}$ & Accuracy in $R^{64}$\\\\\n\\hline\nNeural Network & 75-50-38 & & 95.7\\% \\\\ \\hline\nk-Nearest Neighbor & k=3 & 81.6\\% & 95.4\\% \\\\ \\hline\nk-Nearest Neighbor & k=5 & 81.3\\% & 95.4\\% \\\\ \\hline\nk-Nearest Neighbor & k=7 & 81.0\\% & 95.4\\% \\\\ \\hline\nk-Nearest Neighbor & k=9 & 80.5\\% & 95.3\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results on Extended Yale B (All Pose) face data set}\n\\label{table:yale-all-pose-res}\n\\end{table}",
"extracted_content": [
[
"Classifier",
"Setting",
"Accuracy\nin R900",
"Accuracy\nin R64"
],
[
"Neural\nNetwork",
"75-50-38",
"",
"95.7%"
],
[
"k-Nearest\nNeighbor",
"k=3",
"81.6%",
"95.4%"
],
[
"k-Nearest\nNeighbor",
"k=5",
"81.3%",
"95.4%"
],
[
"k-Nearest\nNeighbor",
"k=7",
"81.0%",
"95.4%"
],
[
"k-Nearest\nNeighbor",
"k=9",
"80.5%",
"95.3%"
]
],
"similarity_score": 0.6444007858546169,
"table_image": "images/1607.01354v1/table_3.png",
"page_image": "pages/1607.01354v1/page_7.png"
},
{
"id": 4,
"page": 7,
"bounding_box": [
167.8785683768136,
277.57000732421875,
444.1215558733259,
447.3340148925781
],
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | c | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nClassifier & Setting & Accuracy in $R^{768}$ & Accuracy in $R^{25}$\\\\\n\\hline\nNeural Network & 25-50-90 & & 99.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=3 & 97.171\\% & 99.6\\% \\\\ \\hline\nk-Nearest Neighbor & k=5 & 94.44\\% & 99.6\\% \\\\ \\hline\nk-Nearest Neighbor & k=7 & 91.81\\% & 99.6\\% \\\\ \\hline\nk-Nearest Neighbor & k=9 & 89.09\\% & 99.6\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results on Taiwan Face data set}\n\\label{table:taiwan-res}\n\\end{table}",
"extracted_content": [
[
"Classifier",
"Setting",
"Accuracy\nin R768",
"Accuracy\nin R25"
],
[
"Neural\nNetwork",
"25-50-90",
"",
"99.5%"
],
[
"k-Nearest\nNeighbor",
"k=3",
"97.171%",
"99.6%"
],
[
"k-Nearest\nNeighbor",
"k=5",
"94.44%",
"99.6%"
],
[
"k-Nearest\nNeighbor",
"k=7",
"91.81%",
"99.6%"
],
[
"k-Nearest\nNeighbor",
"k=9",
"89.09%",
"99.6%"
]
],
"similarity_score": 0.8008130081300813,
"table_image": "images/1607.01354v1/table_4.png",
"page_image": "pages/1607.01354v1/page_7.png"
},
{
"id": 5,
"page": 8,
"bounding_box": [
167.8785683768136,
96.70501708984375,
444.1215558733259,
266.468994140625
],
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | c | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nClassifier & Setting & Accuracy in $R^{784}$ & Accuracy in $R^{36}$\\\\\n\\hline\nNeural Network & 36-5-10 & & 98.08\\% \\\\ \\hline\nk-Nearest Neighbor & k=3 & 97.05\\% & 97.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=5 & 96.88\\% & 97.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=7 & 96.94\\% & 97.6\\% \\\\ \\hline\nk-Nearest Neighbor & k=9 & 96.59\\% & 97.6\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results on MNIST data set}\n\\label{table:mnist-res}\n\\end{table}",
"extracted_content": [
[
"Classifier",
"Setting",
"Accuracy\nin R784",
"Accuracy\nin R36"
],
[
"Neural\nNetwork",
"36-5-10",
"",
"98.08%"
],
[
"k-Nearest\nNeighbor",
"k=3",
"97.05%",
"97.5%"
],
[
"k-Nearest\nNeighbor",
"k=5",
"96.88%",
"97.5%"
],
[
"k-Nearest\nNeighbor",
"k=7",
"96.94%",
"97.6%"
],
[
"k-Nearest\nNeighbor",
"k=9",
"96.59%",
"97.6%"
]
],
"similarity_score": 0.5714285714285714,
"table_image": "images/1607.01354v1/table_5.png",
"page_image": "pages/1607.01354v1/page_8.png"
},
{
"id": 6,
"page": 8,
"bounding_box": [
160.78020629882812,
368.5159912109375,
451.21979370117185,
523.5339965820312
],
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | p{1.2cm} | p{1.8cm} | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2.5cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nStudy & Method & \\#Model Params (million) & Accuracy\\\\\n\\hline\nThis Paper & Discriminative Encoder & 0.23 & 98.08\\% \\\\ \\hline\nHinton et. al. \\cite{journals/jmlr/SalakhutdinovH07} & Autoencoder & 1.7 & 99\\% \\\\ \\hline\nSchmidhuber et. al. \\cite{journals/corr/abs-1003-0358} & Simple Deep Neural Nets + Elastic Distortions & 11.9 mil & 99.65\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Comparison of results on MNIST data set}\n\\label{table:mnist-compare}\n\\end{table}",
"extracted_content": [
[
"Study",
"Method",
"#Model\nParams\n(million)",
"Accuracy"
],
[
"This Paper",
"Discriminative\nEncoder",
"0.23",
"98.08%"
],
[
"Hinton et.\nal. [16]",
"Autoencoder",
"1.7",
"99%"
],
[
"Schmidhuber\net. al. [2]",
"Simple Deep\nNeural Nets +\nElastic\nDistortions",
"11.9 mil",
"99.65%"
]
],
"similarity_score": 0.6913123844731978,
"table_image": "images/1607.01354v1/table_6.png",
"page_image": "pages/1607.01354v1/page_8.png"
},
{
"id": 7,
"page": 9,
"bounding_box": [
72.1658312479655,
97.7020263671875,
551.9191487630209,
294.9620056152344
],
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | p{1cm} | p{0.5cm}| p{0.65cm}| p{1.05cm}| p{1.05cm} | p{0.45cm} | p{0.45cm} |p{0.45cm}| p{0.45cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{1.5cm} | >{\\centering\\arraybackslash}m{1.5cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{1cm} | >{\\centering\\arraybackslash}m{1cm} | >{\\centering\\arraybackslash}m{1cm} | >{\\centering\\arraybackslash}m{1cm} |}\n\\hline\nDataset & Input Space Size & Reduced Space Size & Network (AE) & Network (DE) & IS & PCA & AE & DE\\\\ \\hline\nYale (Frontal Pose) & 900 & 64 & 400-200-64-200-400-900 & 400-200-64-900 & 60.6\\% & 51.4\\% & 82.4\\% & 97.3\\% \\\\ \\hline\nYale (All Poses) & 900 & 64 & 400-200-64-200-400-900 & 400-200-64-900 & 81.6\\% & 74.6\\% & 89.1\\% & 95.4\\% \\\\ \\hline\nTaiwan Face Db & 768 & 25 & 196-64-25-64-196-768 & 196-64-25-768 & 97.1\\% & 96.9\\% & 96.8\\% & 99.6\\% \\\\ \\hline\nMNIST & 784 & 36 & 225-100-36-100-225-784 & 225-100-36-784 & 97.0\\% & 97.3\\% & 97.0\\% & 97.5\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results of 3-NN classifier on all datasets using various dimensionality reduction approaches: IS (original input space), PCA (principal component analysis), AE (autoencoder), DE (discriminative encoder)}\n\\label{table:summary-res}\n\\end{table}",
"extracted_content": [
[
"Dataset",
"Input\nSpace\nSize",
"Reduced\nSpace\nSize",
"Network\n(AE)",
"Network\n(DE)",
"IS",
"PCA",
"AE",
"DE"
],
[
"Yale\n(Frontal\nPose)",
"900",
"64",
"400-200-\n64-200-\n400-900",
"400-200-\n64-900",
"60.6%",
"51.4%",
"82.4%",
"97.3%"
],
[
"Yale (All\nPoses)",
"900",
"64",
"400-200-\n64-200-\n400-900",
"400-200-\n64-900",
"81.6%",
"74.6%",
"89.1%",
"95.4%"
],
[
"Taiwan\nFace Db",
"768",
"25",
"196-64-25-\n64-196-768",
"196-64-25-\n768",
"97.1%",
"96.9%",
"96.8%",
"99.6%"
],
[
"MNIST",
"784",
"36",
"225-100-\n36-100-\n225-784",
"225-100-\n36-784",
"97.0%",
"97.3%",
"97.0%",
"97.5%"
]
],
"similarity_score": 0.4491362763915547,
"table_image": "images/1607.01354v1/table_7.png",
"page_image": "pages/1607.01354v1/page_9.png"
}
]