|
[ |
|
{ |
|
"id": 0, |
|
"page": 2, |
|
"bounding_box": [ |
|
113.38600158691406, |
|
419.5950012207031, |
|
505.23199462890625, |
|
497.9010009765625 |
|
], |
|
"latex_content": "\\begin{table}[htpb]\n\\begin{center}\n\\begin{footnotesize}\n\\newcommand{\\tabincell}[2]{\\begin{tabular}{@{}#1@{}}#2\\end{tabular}}\n\\begin{tabular}{c|c|c|c|c}\\hline\nApproach & Communication & Assumptions & Min signal strength & Strength type \\\\\\hline\nLasso &0 &\\tabincell{c}{Mutual Incoherence \\\\Sparse Eigenvalue} & $\\sqrt{\\frac{\\log p}{n}}$ & Element-wise\\\\\\hline\nGroup lasso &$\\Ocal(np)$ & \\tabincell{c}{Mutual Incoherence \\\\Sparse Eigenvalue} &$\\sqrt{\\frac{1}{n}\\rbr{1 + \\frac{\\log p}{m}}}$ &Row-wise \\\\\\hline \nDSML & $\\Ocal(p)$ &\\tabincell{c}{Generalized Coherence \\\\ Restricted Eigenvalue} &$\\sqrt{\\frac{1}{n}\\rbr{1 + \\frac{\\log p}{m}}} + \\frac{|S|\\log p}{n}$ &Row-wise \\\\\\hline\n\\end{tabular}\n\\small \\caption{\\small Lower bound on coefficients required to\n ensure support recovery with $p$ variables, $m$ tasks, $n$\n samples per task and a true support of size $|S|$.}\n\\label{tab:comparison_sparsistency}\n\\end{footnotesize}\n\\end{center}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Approach", |
|
"Communication", |
|
"Assumptions", |
|
"Min signal strength", |
|
"Strength type" |
|
], |
|
[ |
|
"Lasso", |
|
"0", |
|
"Mutual Incoherence\nSparse Eigenvalue", |
|
"q\nlog p\nn", |
|
"Element-wise" |
|
], |
|
[ |
|
"Group lasso", |
|
"O(np)", |
|
"Mutual Incoherence\nSparse Eigenvalue", |
|
"q\n1 \u00001 + log p\u0001\nn m", |
|
"Row-wise" |
|
], |
|
[ |
|
"DSML", |
|
"O(p)", |
|
"Generalized Coherence\nRestricted Eigenvalue", |
|
"q\nn1 \u00001 + lo mg p\u0001+ |S| nlog p", |
|
"Row-wise" |
|
] |
|
], |
|
"similarity_score": 0.6642335766423357, |
|
"table_image": "images/1510.00633v1/table_0.png", |
|
"page_image": "pages/1510.00633v1/page_2.png" |
|
}, |
|
{ |
|
"id": 1, |
|
"page": 3, |
|
"bounding_box": [ |
|
116.75, |
|
95.239990234375, |
|
495.25, |
|
162.74700927734375 |
|
], |
|
"latex_content": "\\begin{table}[htpb]\n\\begin{footnotesize}\n\\newcommand{\\tabincell}[2]{\\begin{tabular}{@{}#1@{}}#2\\end{tabular}}\n\\begin{center}\n\\begin{tabular}{c|c|c|c}\\hline\nApproach & Assumptions & $\\ell_1/\\ell_2$ estimation error & Prediction error \\\\\\hline\nLasso &Restricted Eigenvalue & $ \\sqrt{\\frac{|S|^2 \\log p}{n}}$ & $\\frac{|S| \\log p}{n}$ \\\\\\hline\nGroup lasso & Restricted Eigenvalue & $\\frac{|S|}{\\sqrt{n}} \\sqrt{1 + \\frac{\\log p}{m}}$ &$\\frac{|S|}{n} \\rbr{1 + \\frac{\\log p}{m}}$ \\\\\\hline \nDSML &\\tabincell{c}{Generalized Coherence \\\\ Restricted Eigenvalue} & $\\frac{|S|}{\\sqrt{n}} \\sqrt{1 + \\frac{\\log p}{m}} + \\frac{|S|^2 \\log p}{n}$ &$\\frac{|S|}{n} \\rbr{1 + \\frac{\\log p}{m}} + \\frac{|S|^3 (\\log p)^2}{n^2}$ \\\\\\hline\n\\end{tabular}\n\\end{center}\n\\small \\caption{\\small Comparison of parameter estimation errors and\n prediction errors. The DSML guarantees improve over Lasso and have\n the same leading term as the Group lasso as long as $m<n/(|S|^2\\log\n p)$.}\n\\label{tab:comparison_estimation}\n\\end{footnotesize}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Approach", |
|
"Assumptions", |
|
"\u2113 1/\u2113 estimation error\n2", |
|
"Prediction error" |
|
], |
|
[ |
|
"Lasso", |
|
"Restricted Eigenvalue", |
|
"q\n|S|2 log p\nn", |
|
"|S| log p\nn" |
|
], |
|
[ |
|
"Group lasso", |
|
"Restricted Eigenvalue", |
|
"q\n\u221a|S n| 1 + lo mg p", |
|
"|S|\u00001 + log p\u0001\nn m" |
|
], |
|
[ |
|
"DSML", |
|
"Generalized Coherence\nRestricted Eigenvalue", |
|
"\u221a|S n|q 1 + lo mg p + |S|2 log p\nn", |
|
"|S n|\u00001 + lo mg p\u0001+ |S|3( nlo 2g p)2" |
|
] |
|
], |
|
"similarity_score": 0.3971631205673759, |
|
"table_image": "images/1510.00633v1/table_1.png", |
|
"page_image": "pages/1510.00633v1/page_3.png" |
|
} |
|
] |