text
stringlengths
17
362k
id
stringlengths
13
115
metadata
dict
__index_level_0__
int64
0
75
# global from typing import Optional, Tuple import torch def unravel_index( indices: torch.Tensor, shape: Tuple[int], /, *, out: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor]: temp = indices.to(torch.int32) output = [] for dim in reversed(shape): output.append(temp % dim) temp = temp // dim return tuple(reversed(output)) unravel_index.support_native_out = False
ivy/ivy/functional/backends/torch/experimental/searching.py/0
{ "file_path": "ivy/ivy/functional/backends/torch/experimental/searching.py", "repo_id": "ivy", "token_count": 174 }
26
# global import torch from typing import Optional, Literal, Union, List # local import ivy from ivy.func_wrapper import with_unsupported_dtypes from . import backend_version @with_unsupported_dtypes({"2.2 and below": ("complex",)}, backend_version) def argsort( x: torch.Tensor, /, *, axis: int = -1, descending: bool = False, stable: bool = True, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if out is not None: out = (torch.zeros(x.shape, dtype=x.dtype), out.long()) _, sorted_indices = torch.sort( x, dim=axis, descending=descending, stable=stable, out=out ) return sorted_indices argsort.support_native_out = True @with_unsupported_dtypes({"2.2 and below": ("complex",)}, backend_version) def sort( x: torch.Tensor, /, *, axis: int = -1, descending: bool = False, stable: bool = True, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if out is not None: out = (out, torch.zeros(out.shape, dtype=torch.long)) sorted_tensor, _ = torch.sort( x, dim=axis, descending=descending, stable=stable, out=out ) return sorted_tensor sort.support_native_out = True # msort @with_unsupported_dtypes({"2.2 and below": ("complex",)}, backend_version) def msort( a: Union[torch.Tensor, list, tuple], /, *, out: Optional[torch.Tensor] = None ) -> torch.Tensor: return torch.msort(a, out=out) msort.support_native_out = True @with_unsupported_dtypes({"2.2 and below": ("complex",)}, backend_version) def searchsorted( x: torch.Tensor, v: torch.Tensor, /, *, side: Literal["left", "right"] = "left", sorter: Optional[Union[torch.Tensor, List[int]]] = None, ret_dtype: torch.dtype = torch.int64, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: assert ivy.is_int_dtype(ret_dtype), TypeError( "only Integer data types are supported for ret_dtype." ) if sorter is not None: sorter_dtype = ivy.as_native_dtype(sorter.dtype) assert ivy.is_int_dtype(sorter_dtype), TypeError( f"Only signed integer data type for sorter is allowed, got {sorter_dtype }." ) if sorter_dtype is not torch.int64: sorter = sorter.to(torch.int64) ret_dtype = ivy.as_native_dtype(ret_dtype) func_out = out if ivy.exists(out) and out.dtype != ret_dtype: func_out = None if ret_dtype is torch.int64: return torch.searchsorted( x, v, sorter=sorter, side=side, out_int32=False, out=func_out, ) elif ret_dtype is torch.int32: return torch.searchsorted( x, v, sorter=sorter, side=side, out_int32=True, out=func_out, ) if ivy.exists(out): return ivy.inplace_update( out, torch.searchsorted(x, v, sorter=sorter, side=side).to(out.dtype) ) return torch.searchsorted(x, v, sorter=sorter, side=side).to(ret_dtype) searchsorted.support_native_out = True
ivy/ivy/functional/backends/torch/sorting.py/0
{ "file_path": "ivy/ivy/functional/backends/torch/sorting.py", "repo_id": "ivy", "token_count": 1426 }
27
# global # local import ivy import ivy.functional.frontends.jax as jax_frontend from ivy.func_wrapper import with_unsupported_dtypes class Array: def __init__(self, array, weak_type=False): self._ivy_array = array if isinstance(array, ivy.Array) else ivy.array(array) self.weak_type = weak_type def __repr__(self): main = ( str(self.ivy_array.__repr__()) .replace("ivy.array", "ivy.frontends.jax.Array") .replace(")", "") + ", dtype=" + str(self.ivy_array.dtype) ) if self.weak_type: return main + ", weak_type=True)" return main + ")" # Properties # # ---------- # @property def ivy_array(self): return self._ivy_array @property def dtype(self): return self.ivy_array.dtype @property def shape(self): return tuple(self.ivy_array.shape.shape) @property def at(self): return jax_frontend._src.numpy.lax_numpy._IndexUpdateHelper(self.ivy_array) @property def T(self): return self.ivy_array.T @property def ndim(self): return self.ivy_array.ndim # Instance Methods # # ---------------- # def copy(self, order=None): return jax_frontend.numpy.copy(self._ivy_array, order=order) def diagonal(self, offset=0, axis1=0, axis2=1): return jax_frontend.numpy.diagonal( self._ivy_array, offset=offset, axis1=axis1, axis2=axis2 ) def all(self, *, axis=None, out=None, keepdims=False): return jax_frontend.numpy.all( self._ivy_array, axis=axis, keepdims=keepdims, out=out ) def astype(self, dtype): try: return jax_frontend.numpy.asarray(self, dtype=dtype) except: # noqa: E722 raise ivy.utils.exceptions.IvyException( f"Dtype {self.dtype} is not castable to {dtype}" ) @with_unsupported_dtypes({"2.6.0 and below": ("float16", "bfloat16")}, "paddle") def argmax( self, /, *, axis=None, out=None, keepdims=False, ): return jax_frontend.numpy.argmax( self, axis=axis, out=out, keepdims=keepdims, ) @with_unsupported_dtypes({"2.6.0 and below": ("float16", "bfloat16")}, "paddle") def argmin( self, /, *, axis=None, out=None, keepdims=False, ): return jax_frontend.numpy.argmin( self, axis=axis, out=out, keepdims=keepdims, ) def squeeze(self, axis=None): return jax_frontend.numpy.squeeze(self, axis=axis) def conj(self, /): return jax_frontend.numpy.conj(self._ivy_array) def conjugate(self, /): return jax_frontend.numpy.conjugate(self._ivy_array) def mean(self, *, axis=None, dtype=None, out=None, keepdims=False, where=None): return jax_frontend.numpy.mean( self._ivy_array, axis=axis, dtype=dtype, out=out, keepdims=keepdims, where=where, ) def cumprod(self, axis=None, dtype=None, out=None): return jax_frontend.numpy.cumprod( self, axis=axis, dtype=dtype, out=out, ) def cumsum(self, axis=None, dtype=None, out=None): return jax_frontend.numpy.cumsum( self, axis=axis, dtype=dtype, out=out, ) def nonzero(self, *, size=None, fill_value=None): return jax_frontend.numpy.nonzero( self, size=size, fill_value=fill_value, ) def prod( self, axis=None, dtype=None, keepdims=False, initial=None, where=None, promote_integers=True, out=None, ): return jax_frontend.numpy.product( self, axis=axis, dtype=self.dtype, keepdims=keepdims, initial=initial, where=where, promote_integers=promote_integers, out=out, ) def ravel(self, order="C"): return jax_frontend.numpy.ravel( self, order=order, ) flatten = ravel def sort(self, axis=-1, order=None): return jax_frontend.numpy.sort( self, axis=axis, order=order, ) def sum( self, axis=None, dtype=None, out=None, keepdims=False, initial=None, where=None, promote_integers=True, ): return jax_frontend.numpy.sum( self, axis=axis, dtype=dtype, out=out, keepdims=keepdims, initial=initial, where=where, promote_integers=promote_integers, ) def argsort(self, axis=-1, kind="stable", order=None): return jax_frontend.numpy.argsort(self, axis=axis, kind=kind, order=order) def any(self, *, axis=None, out=None, keepdims=False, where=None): return jax_frontend.numpy.any( self._ivy_array, axis=axis, keepdims=keepdims, out=out, where=where ) def reshape(self, *args, order="C"): if not isinstance(args[0], int): if len(args) > 1: raise TypeError( "Shapes must be 1D sequences of concrete values of integer type," f" got {args}." ) args = args[0] return jax_frontend.numpy.reshape(self, tuple(args), order) def __add__(self, other): return jax_frontend.numpy.add(self, other) def __radd__(self, other): return jax_frontend.numpy.add(other, self) def __sub__(self, other): return jax_frontend.lax.sub(self, other) def __rsub__(self, other): return jax_frontend.lax.sub(other, self) def __mul__(self, other): return jax_frontend.lax.mul(self, other) def __rmul__(self, other): return jax_frontend.lax.mul(other, self) def __div__(self, other): return jax_frontend.numpy.divide(self, other) def __rdiv__(self, other): return jax_frontend.numpy.divide(other, self) def __mod__(self, other): return jax_frontend.numpy.mod(self, other) def __rmod__(self, other): return jax_frontend.numpy.mod(other, self) def __truediv__(self, other): return jax_frontend.numpy.divide(self, other) def __rtruediv__(self, other): return jax_frontend.numpy.divide(other, self) def __matmul__(self, other): return jax_frontend.numpy.dot(self, other) def __rmatmul__(self, other): return jax_frontend.numpy.dot(other, self) def __pos__(self): return self def __neg__(self): return jax_frontend.lax.neg(self) def __eq__(self, other): return jax_frontend.lax.eq(self, other) def __ne__(self, other): return jax_frontend.lax.ne(self, other) def __lt__(self, other): return jax_frontend.lax.lt(self, other) def __le__(self, other): return jax_frontend.lax.le(self, other) def __gt__(self, other): return jax_frontend.lax.gt(self, other) def __ge__(self, other): return jax_frontend.lax.ge(self, other) def __abs__(self): return jax_frontend.numpy.abs(self) def __pow__(self, other): return jax_frontend.lax.pow(self, other) def __rpow__(self, other): other = ivy.asarray(other) return jax_frontend.lax.pow(other, self) def __and__(self, other): return jax_frontend.numpy.bitwise_and(self, other) def __rand__(self, other): return jax_frontend.numpy.bitwise_and(other, self) def __or__(self, other): return jax_frontend.numpy.bitwise_or(self, other) def __ror__(self, other): return jax_frontend.numpy.bitwise_or(other, self) def __xor__(self, other): return jax_frontend.lax.bitwise_xor(self, other) def __rxor__(self, other): return jax_frontend.lax.bitwise_xor(other, self) def __invert__(self): return jax_frontend.lax.bitwise_not(self) def __lshift__(self, other): return jax_frontend.lax.shift_left(self, other) def __rlshift__(self, other): return jax_frontend.lax.shift_left(other, self) def __rshift__(self, other): return jax_frontend.lax.shift_right_logical(self, other) def __rrshift__(self, other): return jax_frontend.lax.shift_right_logical(other, self) def __getitem__(self, idx): return self.at[idx].get() def __setitem__(self, idx, val): raise ivy.utils.exceptions.IvyException( "ivy.functional.frontends.jax.Array object doesn't support assignment" ) def __iter__(self): if self.ndim == 0: raise TypeError("iteration over a 0-d Array not supported") for i in range(self.shape[0]): yield self[i] def round(self, decimals=0): return jax_frontend.numpy.round(self, decimals) def repeat(self, repeats, axis=None, *, total_repeat_length=None): return jax_frontend.numpy.repeat(self, repeats, axis=axis) def searchsorted(self, v, side="left", sorter=None, *, method="scan"): return jax_frontend.numpy.searchsorted(self, v, side=side, sorter=sorter) def max( self, /, *, axis=None, out=None, keepdims=False, where=None, ): return jax_frontend.numpy.max( self, axis=axis, out=out, keepdims=keepdims, where=where ) def ptp(self, *, axis=None, out=None, keepdims=False): return jax_frontend.numpy.ptp(self, axis=axis, keepdims=keepdims) def min( self, /, *, axis=None, out=None, keepdims=False, where=None, ): return jax_frontend.numpy.min( self, axis=axis, out=out, keepdims=keepdims, where=where ) def std( self, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=None ): return jax_frontend.numpy.std( self, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims, where=where, ) def var( self, *, axis=None, dtype=None, out=None, ddof=False, keepdims=False, where=None ): return jax_frontend.numpy.var( self._ivy_array, axis=axis, dtype=dtype, out=out, ddof=int(ddof), keepdims=keepdims, where=where, ) def swapaxes(self, axis1, axis2): return jax_frontend.numpy.swapaxes(self, axis1=axis1, axis2=axis2) # Jax supports DeviceArray from 0.4.13 and below # Hence aliasing it here DeviceArray = Array
ivy/ivy/functional/frontends/jax/array.py/0
{ "file_path": "ivy/ivy/functional/frontends/jax/array.py", "repo_id": "ivy", "token_count": 5697 }
28
# global import inspect import abc # local import ivy from ivy.functional.frontends.jax.func_wrapper import ( to_ivy_arrays_and_back, ) from .creation import linspace, arange, array from .manipulations import transpose, concatenate, expand_dims class _AxisConcat(abc.ABC): axis: int ndmin: int trans1d: int def __getitem__(self, key): key_tup = key if isinstance(key, tuple) else (key,) params = [self.axis, self.ndmin, self.trans1d, -1] directive = key_tup[0] if isinstance(directive, str): key_tup = key_tup[1:] # check two special cases: matrix directives if directive == "r": params[-1] = 0 elif directive == "c": params[-1] = 1 else: vec = directive.split(",") k = len(vec) if k < 4: vec += params[k:] else: # ignore everything after the first three comma-separated ints vec = vec[:3] + [params[-1]] try: params = list(map(int, vec)) except ValueError as err: raise ValueError( f"could not understand directive {directive!r}" ) from err axis, ndmin, trans1d, matrix = params output = [] for item in key_tup: if isinstance(item, slice): newobj = _make_1d_grid_from_slice(item) item_ndim = 0 elif isinstance(item, str): raise TypeError("string directive must be placed at the beginning") else: newobj = array(item, copy=False) item_ndim = newobj.ndim newobj = array(newobj, copy=False, ndmin=ndmin) if trans1d != -1 and ndmin - item_ndim > 0: shape_obj = tuple(range(ndmin)) # Calculate number of left shifts, with overflow protection by mod num_lshifts = ndmin - abs(ndmin + trans1d + 1) % ndmin shape_obj = tuple(shape_obj[num_lshifts:] + shape_obj[:num_lshifts]) newobj = transpose(newobj, shape_obj) output.append(newobj) res = concatenate(tuple(output), axis=axis) if matrix != -1 and res.ndim == 1: # insert 2nd dim at axis 0 or 1 res = expand_dims(res, matrix) return res def __len__(self) -> int: return 0 class RClass(_AxisConcat): axis = 0 ndmin = 1 trans1d = -1 class CClass(_AxisConcat): axis = -1 ndmin = 2 trans1d = 0 # --- Helpers --- # # --------------- # def _make_1d_grid_from_slice(s): step = 1 if s.step is None else s.step start = 0 if s.start is None else s.start if s.step is not None and ivy.is_complex_dtype(s.step): newobj = linspace(start, s.stop, int(abs(step))) else: newobj = arange(start, s.stop, step) return newobj # --- Main --- # # ------------ # @to_ivy_arrays_and_back def choose(arr, choices, out=None, mode="raise"): return ivy.choose(arr, choices, out=out, mode=mode) @to_ivy_arrays_and_back def diag(v, k=0): return ivy.diag(v, k=k) @to_ivy_arrays_and_back def diag_indices(n, ndim=2): idx = ivy.arange(n, dtype=int) return (idx,) * ndim @to_ivy_arrays_and_back def diag_indices_from(arr): print(arr) n = arr.shape[0] ndim = ivy.get_num_dims(arr) if not all(arr.shape[i] == n for i in range(ndim)): raise ValueError("All dimensions of input must be of equal length") idx = ivy.arange(n, dtype=int) return (idx,) * ndim @to_ivy_arrays_and_back def diagonal(a, offset=0, axis1=0, axis2=1): return ivy.diagonal(a, offset=offset, axis1=axis1, axis2=axis2) @to_ivy_arrays_and_back def indices(dimensions, dtype=int, sparse=False): if sparse: return tuple( ivy.arange(dim) .expand_dims( axis=[j for j in range(len(dimensions)) if i != j], ) .astype(dtype) for i, dim in enumerate(dimensions) ) else: grid = ivy.meshgrid(*[ivy.arange(dim) for dim in dimensions], indexing="ij") return ivy.stack(grid, axis=0).astype(dtype) @to_ivy_arrays_and_back def mask_indices(n, mask_func, k=0): mask_func_obj = inspect.unwrap(mask_func) mask_func_name = mask_func_obj.__name__ try: ivy_mask_func_obj = getattr(ivy.functional.frontends.jax.numpy, mask_func_name) a = ivy.ones((n, n)) mask = ivy_mask_func_obj(a, k=k) indices = ivy.argwhere(mask.ivy_array) return indices[:, 0], indices[:, 1] except AttributeError as e: print(f"Attribute error: {e}") @to_ivy_arrays_and_back def take_along_axis(arr, indices, axis, mode="fill"): return ivy.take_along_axis(arr, indices, axis, mode=mode) @to_ivy_arrays_and_back def tril_indices(n, k=0, m=None): return ivy.tril_indices(n, m, k) @to_ivy_arrays_and_back def tril_indices_from(arr, k=0): return ivy.tril_indices(arr.shape[-2], arr.shape[-1], k) @to_ivy_arrays_and_back def triu_indices(n, k=0, m=None): return ivy.triu_indices(n, m, k) @to_ivy_arrays_and_back def triu_indices_from(arr, k=0): return ivy.triu_indices(arr.shape[-2], arr.shape[-1], k) @to_ivy_arrays_and_back def unravel_index(indices, shape): ret = [x.astype(indices.dtype) for x in ivy.unravel_index(indices, shape)] return tuple(ret) c_ = CClass() r_ = RClass()
ivy/ivy/functional/frontends/jax/numpy/indexing.py/0
{ "file_path": "ivy/ivy/functional/frontends/jax/numpy/indexing.py", "repo_id": "ivy", "token_count": 2762 }
29
# local import ivy from ivy.func_wrapper import with_supported_dtypes from ivy.functional.frontends.paddle.func_wrapper import to_ivy_arrays_and_back from ivy.functional.ivy.experimental.layers import _broadcast_pooling_helper # --- Helpers --- # # --------------- # def _conv(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1): dims = len(input.shape) - 2 _valid_shapes(input, weight, bias, stride, padding, groups) if isinstance(padding, str): padding = padding.upper() else: if isinstance(padding, int): padding = [*[(padding, padding) for _ in range(dims)]] else: padding = [*[(p, p) for p in padding]] ret = ivy.conv( input, weight, stride, padding, dims=dims, data_format="channel_first", filter_format="channel_first", dilations=dilation, feature_group_count=groups, ) if bias is not None: return ivy.add(ret, ivy.expand_dims(bias, axis=(0, *range(2, dims + 2)))) return ret def _valid_shapes(input, weight, bias, stride, padding, groups, transpose=False): in_channels = input.shape[1] out_channels = weight.shape[0] if not transpose else weight.shape[1] * groups ivy.utils.assertions.check_equal( in_channels % groups, 0, message="in_channels must be divisible by groups", as_array=False, ) ivy.utils.assertions.check_equal( out_channels % groups, 0, message="out_channels must be divisible by groups", as_array=False, ) if bias is not None: ivy.utils.assertions.check_equal( bias.shape[0], out_channels, message="bias must be same shape as out_channels", as_array=False, ) if padding == "same": if isinstance(stride, int): ivy.utils.assertions.check_equal( stride, 1, message="padding cannot be 'same' for stride > 1", as_array=False, ) else: for i in stride: ivy.utils.assertions.check_equal( i, 1, message="padding cannot be 'same' for stride > 1", as_array=False, ) if not transpose: in_channels_by_groups = weight.shape[1] ivy.utils.assertions.check_equal( in_channels, in_channels_by_groups * groups, message="in_channels must be consistent between input and weight", as_array=False, ) else: ivy.utils.assertions.check_equal( in_channels, weight.shape[0], message="in_channels must be consistent between input and weight", as_array=False, ) # --- Main --- # # ------------ # @with_supported_dtypes( {"2.0.0 and below": ("float16", "float32", "float64")}, "mindspore" ) @to_ivy_arrays_and_back def adaptive_avg_pool2d(input, output_size): return ivy.adaptive_avg_pool2d(input, output_size, data_format="NCHW") @to_ivy_arrays_and_back def avg_pool2d( input, kernel_size=1, stride=1, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=0, ): # Figure out input dims N input_rank = input.ndim if input_rank == 4: # NCHW data_format = "NCHW" kernel_size = _broadcast_pooling_helper(kernel_size, "2d", name="kernel_size") stride = _broadcast_pooling_helper(stride, "2d", name="stride") padding = _broadcast_pooling_helper(padding, "2d", name="padding") kernel_pads = list(zip(kernel_size, padding)) # Padding should be less than or equal to half of kernel size if not all(pad <= kernel / 2 for kernel, pad in kernel_pads): raise ValueError( "pad should be smaller than or equal to half of kernel size, " f"but got padding={padding}, kernel_size={kernel_size}. " ) # Figure out padding string if all(pad == ivy.ceil((kernel - 1) / 2) for kernel, pad in kernel_pads): padding_str = "SAME" else: padding_str = "VALID" return ivy.avg_pool2d( input, kernel_size, stride, padding_str, data_format=data_format, ceil_mode=ceil_mode, count_include_pad=count_include_pad, divisor_override=divisor_override, ) @with_supported_dtypes({"2.0 and below": ("float16", "float32")}, "mindspore") @to_ivy_arrays_and_back def conv1d( input, weight, bias=None, stride=1, pad_mode="valid", padding=0, dilation=1, groups=1, ): if pad_mode in ["valid", "same"]: padding = pad_mode elif pad_mode == "pad": padding = padding else: raise NotImplementedError(f"pad_mode {pad_mode} not implemented") return _conv(input, weight, bias, stride, padding, dilation, groups) @with_supported_dtypes({"2.0 and below": ("float16", "float32")}, "mindspore") @to_ivy_arrays_and_back def conv2d( input, weight, bias=None, stride=1, pad_mode="valid", padding=0, dilation=1, groups=1, ): if pad_mode in ["valid", "same"]: padding = pad_mode elif pad_mode == "pad": padding = padding else: raise NotImplementedError(f"pad_mode {pad_mode} not implemented") return _conv(input, weight, bias, stride, padding, dilation, groups) @with_supported_dtypes({"2.0 and below": ("float16", "float32")}, "mindspore") @to_ivy_arrays_and_back def conv3d( input, weight, bias=None, stride=1, pad_mode="valid", padding=0, dilation=1, groups=1, ): if pad_mode in ["valid", "same"]: padding = pad_mode elif pad_mode == "pad": padding = padding else: raise NotImplementedError(f"pad_mode {pad_mode} not implemented") return _conv(input, weight, bias, stride, padding, dilation, groups) @with_supported_dtypes( { "2.0.0 and below": ( "int8", "int16", "int32", "int64", "float16", "float32", "float64", ) }, "mindspore", ) @to_ivy_arrays_and_back def dropout2d(input, p=0.5, training=True): return ivy.dropout2d(input, p, training=training, data_format="NCHW") @with_supported_dtypes( { "2.0.0 and below": ( "int8", "int16", "int32", "int64", "float16", "float32", "float64", ) }, "mindspore", ) @to_ivy_arrays_and_back def dropout3d(input, p=0.5, training=True): return ivy.dropout3d(input, p, training=training, data_format="NCDHW") @with_supported_dtypes( {"2.0.0 and below": ("float16", "float32", "float64")}, "mindspore", ) @to_ivy_arrays_and_back def fast_gelu(input_x): return (input_x / (1 + ivy.exp(-1.702 * ivy.abs(input_x)))) * ivy.exp( 0.851 * (input_x - ivy.abs(input_x)) ) @to_ivy_arrays_and_back def flatten(input, order="C", *, start_dim=1, end_dim=-1): return ivy.flatten(input, order=order, start_dim=start_dim, end_dim=end_dim) @with_supported_dtypes({"2.0.0 and below": ("float16", "float32")}, "mindspore") @to_ivy_arrays_and_back def gumbel_softmax(logits, tau=1, hard=False, dim=-1): gumbels = -ivy.empty_like(logits).exponential().log() gumbels = (logits + gumbels) / tau y_soft = ivy.softmax(gumbels, axis=dim) if hard: indices = y_soft.max(axis=dim, keepdims=True)[1] y_hard = ivy.zeros_like(logits) updates = ivy.ones_like(indices) y_hard = ivy.scatter_nd(indices, updates, reduction="replace", out=y_hard) ret = y_hard - y_soft.stop_gradient(preserve_type=True) + y_soft else: ret = y_soft return ret @with_supported_dtypes( { "2.0 and below": ( "int8", "int16", "int32", "int64", "float16", "float32", "float64", ) }, "mindspore", ) @to_ivy_arrays_and_back def hardswish(x): return ivy.hardswish(x) @with_supported_dtypes( { "2.0.0 and below": ( "int8", "int16", "int32", "int64", "float16", "float32", "float64", ) }, "mindspore", ) @to_ivy_arrays_and_back def interpolate( input, size=None, scale_factor=None, mode="nearest", align_corners=False, recompute_scale_factor=False, ): return ivy.interpolate( input, size, scale_factor=scale_factor, mode=mode, align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, ) def kl_div(logits, labels, reduction="mean"): """Computes the Kullback-Leibler (KL) Divergence between the logits and the labels. Parameters ---------- logits (numpy array): The input logits array. labels (numpy array): The label array which has the same shape as logits. reduction (str): Specifies the reduction to be applied to the output. Its value must be one of 'none', 'mean', 'batchmean', or 'sum'. Default: 'mean'. Returns ------- float or numpy array: If reduction is 'none', then output is a numpy array and has the same shape as logits. Otherwise, it is a scalar (float). """ assert ivy.shape(logits) == ivy.shape( labels ), "logits and labels must have the same shape." L = labels * (ivy.log(labels) - logits) if reduction == "none": return L elif reduction == "mean": return ivy.mean(L) elif reduction == "batchmean": return ivy.mean(L, axis=0) elif reduction == "sum": return ivy.sum(L) else: raise ValueError( "Invalid reduction mode. Supported values are 'none', 'mean', 'batchmean'," " or 'sum'." ) @with_supported_dtypes({"2.0.0 and below": ("float16", "float32")}, "mindspore") @to_ivy_arrays_and_back def log_softmax(input, axis=-1): return ivy.log_softmax(input) @with_supported_dtypes( { "2.0.0 and below": ( "int8", "int16", "int32", "int64", "uint8", "uint16", "uint32", "uint64", "float16", "float32", "float64", ) }, "mindspore", ) @to_ivy_arrays_and_back def max_pool3d( input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False, ): # ToDo: Add return_indices once superset in implemented if not stride: stride = kernel_size data_format = "NCDHW" return ivy.max_pool3d( input, kernel_size, stride, padding, data_format=data_format, dilation=dilation, ceil_mode=ceil_mode, ) @with_supported_dtypes( { "2.0 and below": ( "int8", "int16", "int32", "int64", "float16", "float32", "float64", ) }, "mindspore", ) @to_ivy_arrays_and_back def pad(input, pad_width, mode="constant", constant_values=0): return ivy.pad(input, pad_width, mode=mode, constant_values=constant_values) @with_supported_dtypes({"2.0.0 and below": ("float16", "float32")}, "mindspore") @to_ivy_arrays_and_back def selu(input_x): return ivy.selu(input_x) @with_supported_dtypes({"2.0.0 and below": ("float32", "float64")}, "mindspore") @to_ivy_arrays_and_back def softshrink(x, lambd=0.5): low = ivy.where(ivy.less(input, -lambd), ivy.add(input, lambd), 0) up = ivy.where(ivy.greater(input, lambd), ivy.subtract(input, lambd), 0) return ivy.add(low, up) @with_supported_dtypes({"2.0 and below": ("float16", "float32")}, "mindspore") @to_ivy_arrays_and_back def softsign(x): return ivy.divide(x, ivy.add(1, ivy.abs(x)))
ivy/ivy/functional/frontends/mindspore/ops/function/nn_func.py/0
{ "file_path": "ivy/ivy/functional/frontends/mindspore/ops/function/nn_func.py", "repo_id": "ivy", "token_count": 5949 }
30
from . import from_shape_or_value from .from_shape_or_value import * from . import from_existing_data from .from_existing_data import * from . import numerical_ranges from .numerical_ranges import * from . import building_matrices from .building_matrices import * from . import matrix_class from .matrix_class import *
ivy/ivy/functional/frontends/numpy/creation_routines/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/creation_routines/__init__.py", "repo_id": "ivy", "token_count": 94 }
31
import inspect import ivy from ivy.functional.frontends.numpy.func_wrapper import ( to_ivy_arrays_and_back, ) @to_ivy_arrays_and_back def diag_indices(n, ndim=2): idx = ivy.arange(n) res = ivy.array((idx,) * ndim) res = tuple(res.astype("int64")) return res @to_ivy_arrays_and_back def indices(dimensions, dtype=int, sparse=False): return ivy.indices(dimensions, dtype=dtype, sparse=sparse) @to_ivy_arrays_and_back def mask_indices(n, mask_func, k=0): mask_func_obj = inspect.unwrap(mask_func) mask_func_name = mask_func_obj.__name__ try: ivy_mask_func_obj = getattr(ivy.functional.frontends.numpy, mask_func_name) a = ivy.ones((n, n)) mask = ivy_mask_func_obj(a, k=k) indices = ivy.argwhere(mask.ivy_array) ret = indices[:, 0], indices[:, 1] return tuple(ret) except AttributeError as e: print(f"Attribute error: {e}") @to_ivy_arrays_and_back def tril_indices(n, k=0, m=None): return ivy.tril_indices(n, m, k) @to_ivy_arrays_and_back def tril_indices_from(arr, k=0): return ivy.tril_indices(arr.shape[0], arr.shape[1], k) # unravel_index @to_ivy_arrays_and_back def unravel_index(indices, shape, order="C"): ret = [x.astype("int64") for x in ivy.unravel_index(indices, shape)] return tuple(ret)
ivy/ivy/functional/frontends/numpy/indexing_routines/generating_index_arrays.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/indexing_routines/generating_index_arrays.py", "repo_id": "ivy", "token_count": 610 }
32
# global import ivy from ivy.functional.frontends.numpy.func_wrapper import ( to_ivy_arrays_and_back, handle_numpy_casting, handle_numpy_dtype, from_zero_dim_arrays_to_scalar, handle_numpy_out, ) # --- Helpers --- # # --------------- # @handle_numpy_out @handle_numpy_dtype @to_ivy_arrays_and_back @handle_numpy_casting @from_zero_dim_arrays_to_scalar def _logical_and( x1, x2, /, out=None, *, where=True, casting="same_kind", order="k", dtype=None, subok=True, ): ret = ivy.logical_and(x1, x2, out=out) if ivy.is_array(where): ret = ivy.where(where, ret, ivy.default(out, ivy.zeros_like(ret)), out=out) return ret @handle_numpy_out @handle_numpy_dtype @to_ivy_arrays_and_back @handle_numpy_casting @from_zero_dim_arrays_to_scalar def _logical_not( x, /, out=None, *, where=True, casting="same_kind", order="k", dtype=None, subok=True, ): ret = ivy.logical_not(x, out=out) if ivy.is_array(where): ret = ivy.where(where, ret, ivy.default(out, ivy.zeros_like(ret)), out=out) return ret @handle_numpy_out @handle_numpy_dtype @to_ivy_arrays_and_back @handle_numpy_casting @from_zero_dim_arrays_to_scalar def _logical_or( x1, x2, /, out=None, *, where=True, casting="same_kind", order="k", dtype=None, subok=True, ): ret = ivy.logical_or(x1, x2, out=out) if ivy.is_array(where): ret = ivy.where(where, ret, ivy.default(out, ivy.zeros_like(ret)), out=out) return ret @handle_numpy_out @handle_numpy_dtype @to_ivy_arrays_and_back @handle_numpy_casting @from_zero_dim_arrays_to_scalar def _logical_xor( x1, x2, /, out=None, *, where=True, casting="same_kind", order="k", dtype=None, subok=True, ): ret = ivy.logical_xor(x1, x2, out=out) if ivy.is_array(where): ret = ivy.where(where, ret, ivy.default(out, ivy.zeros_like(ret)), out=out) return ret
ivy/ivy/functional/frontends/numpy/logic/logical_operations.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/logic/logical_operations.py", "repo_id": "ivy", "token_count": 1007 }
33
# local import ivy from ivy.functional.frontends.numpy.func_wrapper import ( to_ivy_arrays_and_back, ) @to_ivy_arrays_and_back def pad(array, pad_width, mode="constant", **kwargs): return ivy.pad(array, pad_width, mode=mode, **kwargs)
ivy/ivy/functional/frontends/numpy/manipulation_routines/padding_arrays.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/manipulation_routines/padding_arrays.py", "repo_id": "ivy", "token_count": 100 }
34
# global import ivy # local from ivy.functional.frontends.numpy.func_wrapper import ( to_ivy_arrays_and_back, handle_numpy_dtype, from_zero_dim_arrays_to_scalar, handle_numpy_out, ) import ivy.functional.frontends.numpy as np_frontend @handle_numpy_out @handle_numpy_dtype @to_ivy_arrays_and_back def cumprod(a, /, axis=None, dtype=None, out=None): return ivy.cumprod(a, axis=axis, dtype=dtype, out=out) @handle_numpy_out @handle_numpy_dtype @to_ivy_arrays_and_back def cumsum(a, /, axis=None, dtype=None, out=None): return ivy.cumsum(a, axis=axis, dtype=dtype, out=out) @to_ivy_arrays_and_back def diff(x, /, *, n=1, axis=-1, prepend=None, append=None): return ivy.diff(x, n=n, axis=axis, prepend=prepend, append=append) @to_ivy_arrays_and_back def ediff1d(ary, to_end=None, to_begin=None): diffs = ivy.diff(ary) if to_begin is not None: if not isinstance(to_begin, (list, tuple)): to_begin = [to_begin] to_begin = ivy.array(to_begin) diffs = ivy.concat((to_begin, diffs)) if to_end is not None: if not isinstance(to_end, (list, tuple)): to_end = [to_end] to_end = ivy.array(to_end) diffs = ivy.concat((diffs, to_end)) return diffs @handle_numpy_out @handle_numpy_dtype @to_ivy_arrays_and_back def nancumprod(a, /, axis=None, dtype=None, out=None): a = ivy.where(ivy.isnan(a), ivy.ones_like(a), a) return ivy.cumprod(a, axis=axis, dtype=dtype, out=out) @handle_numpy_out @handle_numpy_dtype @to_ivy_arrays_and_back def nancumsum(a, /, axis=None, dtype=None, out=None): a = ivy.where(ivy.isnan(a), ivy.zeros_like(a), a) return ivy.cumsum(a, axis=axis, dtype=dtype, out=out) @handle_numpy_out @handle_numpy_dtype @to_ivy_arrays_and_back @from_zero_dim_arrays_to_scalar def nanprod( a, /, *, axis=None, dtype=None, out=None, keepdims=False, initial=None, where=None ): fill_values = ivy.ones_like(a) a = ivy.where(ivy.isnan(a), fill_values, a) if ivy.is_array(where): a = ivy.where(where, a, ivy.default(out, fill_values), out=out) if initial is not None: a[axis] = 1 s = ivy.shape(a, as_array=False) header = ivy.full(s, initial) a = ivy.concat([header, a], axis=axis) return ivy.prod(a, axis=axis, dtype=dtype, keepdims=keepdims, out=out) @handle_numpy_out @handle_numpy_dtype @to_ivy_arrays_and_back @from_zero_dim_arrays_to_scalar def nansum( a, /, *, axis=None, dtype=None, out=None, keepdims=False, initial=None, where=None ): fill_values = ivy.zeros_like(a) a = ivy.where(ivy.isnan(a), fill_values, a) if ivy.is_array(where): a = ivy.where(where, a, ivy.default(out, fill_values), out=out) if initial is not None: a[axis] = 1 s = ivy.shape(a, as_array=False) header = ivy.full(s, initial) a = ivy.concat([header, a], axis=axis) return ivy.sum(a, axis=axis, dtype=dtype, keepdims=keepdims, out=out) @handle_numpy_out @handle_numpy_dtype @to_ivy_arrays_and_back @from_zero_dim_arrays_to_scalar def prod( x, /, *, axis=None, dtype=None, out=None, keepdims=False, initial=None, where=True, ): if where is not True: x = ivy.where(where, x, ivy.default(out, ivy.ones_like(x)), out=out) if initial is not None: initial = np_frontend.array(initial, dtype=dtype).tolist() if axis is not None: s = ivy.to_list(ivy.shape(x, as_array=True)) s[axis] = 1 header = ivy.full(ivy.Shape(tuple(s)), initial) x = ivy.concat([header, x], axis=axis) else: x[0] *= initial return ivy.prod(x, axis=axis, dtype=dtype, keepdims=keepdims, out=out) @handle_numpy_out @handle_numpy_dtype @to_ivy_arrays_and_back @from_zero_dim_arrays_to_scalar def sum( x, /, *, axis=None, dtype=None, keepdims=False, out=None, initial=None, where=True, ): if ivy.is_array(where): x = ivy.where(where, x, ivy.default(out, ivy.zeros_like(x)), out=out) if initial is not None: s = ivy.to_list(ivy.shape(x, as_array=True)) s[axis] = 1 header = ivy.full(ivy.Shape(tuple(s)), initial) if ivy.is_array(where): x = ivy.where(where, x, ivy.default(out, ivy.zeros_like(x)), out=out) x = ivy.concat([header, x], axis=axis) else: x = ivy.where(ivy.isnan(x), ivy.zeros_like(x), x) return ivy.sum(x, axis=axis, dtype=dtype, keepdims=keepdims, out=out) @to_ivy_arrays_and_back def trapz(y, x=None, dx=1.0, axis=-1): return ivy.trapz(y, x=x, dx=dx, axis=axis)
ivy/ivy/functional/frontends/numpy/mathematical_functions/sums_products_differences.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/mathematical_functions/sums_products_differences.py", "repo_id": "ivy", "token_count": 2315 }
35
# local import ivy from ivy.functional.frontends.numpy import promote_types_of_numpy_inputs from ivy.functional.frontends.numpy.func_wrapper import ( to_ivy_arrays_and_back, from_zero_dim_arrays_to_scalar, handle_numpy_out, ) # --- Helpers --- # # --------------- # # nanargmin and nanargmax composition helper def _nanargminmax(a, axis=None): # check nans nans = ivy.isnan(a).astype(ivy.bool) # replace nans with inf a = ivy.where(nans, ivy.inf, a) if nans is not None: nans = ivy.all(nans, axis=axis) if ivy.any(nans): raise ivy.utils.exceptions.IvyError("All-NaN slice encountered") return a # --- Main --- # # ------------ # @handle_numpy_out @to_ivy_arrays_and_back @from_zero_dim_arrays_to_scalar def argmax( a, /, *, axis=None, out=None, keepdims=False, ): return ivy.argmax(a, axis=axis, out=out, keepdims=keepdims) @handle_numpy_out @to_ivy_arrays_and_back @from_zero_dim_arrays_to_scalar def argmin(a, /, *, axis=None, keepdims=False, out=None): return ivy.argmin(a, axis=axis, out=out, keepdims=keepdims) @to_ivy_arrays_and_back def argwhere(a): return ivy.argwhere(a) @to_ivy_arrays_and_back def extract(cond, arr, /): if cond.dtype == "bool": return arr[cond] else: return arr[cond != 0] @to_ivy_arrays_and_back def flatnonzero(a): return ivy.nonzero(ivy.reshape(a, (-1,))) @handle_numpy_out @to_ivy_arrays_and_back @from_zero_dim_arrays_to_scalar def nanargmax(a, /, *, axis=None, out=None, keepdims=False): a = _nanargminmax(a, axis=axis) return ivy.argmax(a, axis=axis, keepdims=keepdims, out=out) @handle_numpy_out @to_ivy_arrays_and_back @from_zero_dim_arrays_to_scalar def nanargmin(a, /, *, axis=None, out=None, keepdims=False): a = _nanargminmax(a, axis=axis) return ivy.argmin(a, axis=axis, keepdims=keepdims, out=out) @to_ivy_arrays_and_back def nonzero(a): return ivy.nonzero(a) @to_ivy_arrays_and_back def searchsorted(a, v, side="left", sorter=None): return ivy.searchsorted(a, v, side=side, sorter=sorter) @to_ivy_arrays_and_back def where(cond, x1=None, x2=None, /): if x1 is None and x2 is None: # numpy where behaves as np.asarray(condition).nonzero() when x and y # not included return ivy.asarray(cond).nonzero() elif x1 is not None and x2 is not None: x1, x2 = promote_types_of_numpy_inputs(x1, x2) return ivy.where(cond, x1, x2) else: raise ivy.utils.exceptions.IvyException("where takes either 1 or 3 arguments")
ivy/ivy/functional/frontends/numpy/sorting_searching_counting/searching.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/sorting_searching_counting/searching.py", "repo_id": "ivy", "token_count": 1190 }
36
import sys import ivy from ivy.utils.exceptions import handle_exceptions from ivy.functional.frontends import set_frontend_to_specific_version # global from numbers import Number from typing import Union, Tuple, Iterable # Constructing dtypes are required as ivy.<dtype> # will change dynamically on the backend and may not be available int8 = ivy.IntDtype("int8") int16 = ivy.IntDtype("int16") int32 = ivy.IntDtype("int32") int64 = ivy.IntDtype("int64") uint8 = ivy.UintDtype("uint8") float16 = ivy.FloatDtype("float16") float32 = ivy.FloatDtype("float32") float64 = ivy.FloatDtype("float64") complex64 = ivy.ComplexDtype("complex64") complex128 = ivy.ComplexDtype("complex128") bool = ivy.Dtype("bool") # data type promotion paddle_promotion_table = { (uint8, uint8): uint8, (uint8, int8): int16, (uint8, int16): int16, (uint8, int32): int32, (uint8, int64): int64, (uint8, float16): float16, (uint8, float32): float32, (uint8, float64): float64, (uint8, bool): uint8, (uint8, complex64): complex64, (uint8, complex128): complex128, (int8, uint8): int16, (int8, int8): int8, (int8, int16): int16, (int8, int32): int32, (int8, int64): int64, (int8, float16): float16, (int8, float32): float32, (int8, float64): float64, (int8, bool): int8, (int8, complex64): complex64, (int8, complex128): complex128, (int16, uint8): int16, (int16, int8): int16, (int16, int16): int16, (int16, int32): int32, (int16, int64): int64, (int16, float16): float16, (int16, float32): float32, (int16, float64): float64, (int16, bool): int16, (int16, complex64): complex64, (int16, complex128): complex128, (int32, uint8): int32, (int32, int8): int32, (int32, int16): int32, (int32, int32): int32, (int32, int64): int64, (int32, float16): float16, (int32, float32): float32, (int32, float64): float64, (int32, bool): int32, (int32, complex64): complex64, (int32, complex128): complex128, (int64, uint8): int64, (int64, int8): int64, (int64, int16): int64, (int64, int32): int64, (int64, int64): int64, (int64, float16): float16, (int64, float32): float32, (int64, float64): float64, (int64, bool): int64, (int64, complex64): complex64, (int64, complex128): complex128, (float16, uint8): float16, (float16, int8): float16, (float16, int16): float16, (float16, int32): float16, (float16, int64): float16, (float16, float16): float16, (float16, float32): float32, (float16, float64): float64, (float16, bool): float16, (float16, complex64): complex64, (float16, complex128): complex128, (float32, uint8): float32, (float32, int8): float32, (float32, int16): float32, (float32, int32): float32, (float32, int64): float32, (float32, float16): float32, (float32, float32): float32, (float32, float64): float64, (float32, bool): float32, (float32, complex64): complex64, (float32, complex128): complex128, (float64, uint8): float64, (float64, int8): float64, (float64, int16): float64, (float64, int32): float64, (float64, int64): float64, (float64, float16): float64, (float64, float32): float64, (float64, float64): float64, (float64, bool): float64, (float64, complex64): complex128, (float64, complex128): complex128, (bool, uint8): uint8, (bool, int8): int8, (bool, int16): int16, (bool, int32): int32, (bool, int64): int64, (bool, float16): float16, (bool, float32): float32, (bool, float64): float64, (bool, bool): bool, (bool, complex64): complex64, (bool, complex128): complex128, (complex64, uint8): complex64, (complex64, int8): complex64, (complex64, int16): complex64, (complex64, int32): complex64, (complex64, int64): complex64, (complex64, float16): complex64, (complex64, float32): complex64, (complex64, float64): complex128, (complex64, bool): complex64, (complex64, complex64): complex64, (complex64, complex128): complex128, (complex128, uint8): complex128, (complex128, int8): complex128, (complex128, int16): complex128, (complex128, int32): complex128, (complex128, int64): complex128, (complex128, float16): complex128, (complex128, float32): complex128, (complex128, float64): complex128, (complex128, bool): complex128, (complex128, complex64): complex128, (complex128, complex128): complex128, } @handle_exceptions def promote_types_paddle( type1: Union[ivy.Dtype, ivy.NativeDtype], type2: Union[ivy.Dtype, ivy.NativeDtype], /, ) -> ivy.Dtype: """Promote the datatypes type1 and type2, returning the data type they promote to. Parameters ---------- type1 the first of the two types to promote type2 the second of the two types to promote Returns ------- ret The type that both input types promote to """ try: ret = paddle_promotion_table[(ivy.as_ivy_dtype(type1), ivy.as_ivy_dtype(type2))] except KeyError as e: raise ivy.utils.exceptions.IvyException( "these dtypes are not type promotable" ) from e return ret @handle_exceptions def promote_types_of_paddle_inputs( x1: Union[ivy.Array, Number, Iterable[Number]], x2: Union[ivy.Array, Number, Iterable[Number]], /, ) -> Tuple[ivy.Array, ivy.Array]: """Promote the dtype of the given native array inputs to a common dtype based on type promotion rules. While passing float or integer values or any other non-array input to this function, it should be noted that the return will be an array-like object. Therefore, outputs from this function should be used as inputs only for those functions that expect an array-like or tensor-like objects, otherwise it might give unexpected results. """ type1 = ivy.default_dtype(item=x1).strip("u123456789") type2 = ivy.default_dtype(item=x2).strip("u123456789") if hasattr(x1, "dtype") and not hasattr(x2, "dtype") and type1 == type2: x1 = ivy.asarray(x1) x2 = ivy.asarray( x2, dtype=x1.dtype, device=ivy.default_device(item=x1, as_native=False) ) elif not hasattr(x1, "dtype") and hasattr(x2, "dtype") and type1 == type2: x1 = ivy.asarray( x1, dtype=x2.dtype, device=ivy.default_device(item=x2, as_native=False) ) x2 = ivy.asarray(x2) else: x1 = ivy.asarray(x1) x2 = ivy.asarray(x2) promoted = promote_types_paddle(x1.dtype, x2.dtype) x1 = ivy.asarray(x1, dtype=promoted) x2 = ivy.asarray(x2, dtype=promoted) return x1, x2 from . import nn from . import tensor from .tensor.tensor import Tensor from . import vision from .attribute import * from .creation import * from .fft import * from .linalg import * from .logic import * from .manipulation import * from .math import * from .random import * from .search import * from .stat import * _frontend_array = Tensor # setting to specific version # # --------------------------- # if ivy.is_local(): module = ivy.utils._importlib.import_cache[__name__] else: module = sys.modules[__name__] __version__ = set_frontend_to_specific_version(module)
ivy/ivy/functional/frontends/paddle/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/paddle/__init__.py", "repo_id": "ivy", "token_count": 3090 }
37
# global from ..search import * # noqa: F401
ivy/ivy/functional/frontends/paddle/tensor/search.py/0
{ "file_path": "ivy/ivy/functional/frontends/paddle/tensor/search.py", "repo_id": "ivy", "token_count": 16 }
38
# global import ivy atto = ivy.atto centi = ivy.centi deci = ivy.deci deka = ivy.deka exa = ivy.exa exbi = ivy.exbi femto = ivy.femto gibi = ivy.gibi giga = ivy.giga golden = ivy.golden golden_ratio = ivy.golden_ratio hecto = ivy.hecto # Binary prefixes # # ------# kibi = ivy.kibi kilo = ivy.kilo mebi = ivy.mebi mega = ivy.mega micro = ivy.micro milli = ivy.milli nano = ivy.nano pebi = ivy.pebi peta = ivy.peta # Mathematical constants # # ------# pi = ivy.pi pico = ivy.pico quecto = ivy.quecto # SI prefixes # # ------# quetta = ivy.quetta ronna = ivy.ronna ronto = ivy.ronto tebi = ivy.tebi tera = ivy.tera yobi = ivy.yobi yocto = ivy.yocto yotta = ivy.yotta zebi = ivy.zebi zepto = ivy.zepto zetta = ivy.zetta
ivy/ivy/functional/frontends/scipy/constants/constants.py/0
{ "file_path": "ivy/ivy/functional/frontends/scipy/constants/constants.py", "repo_id": "ivy", "token_count": 362 }
39
from .stats import * from . import contingency from . import distributions from . import mstats from . import qmc from . import sampling
ivy/ivy/functional/frontends/scipy/stats/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/scipy/stats/__init__.py", "repo_id": "ivy", "token_count": 33 }
40
from ivy.functional.frontends.sklearn.base import BaseEstimator, TransformerMixin import ivy class LabelEncoder(TransformerMixin, BaseEstimator): def fit(self, y): shape = y.shape if len(shape) == 2 and shape[1] == 1: y = y.reshape(-1) elif len(shape) != 1: raise ValueError("y should be a 1d array, or column") self.classes_ = ivy.unique_values(y) return self def fit_transform(self, y): raise NotImplementedError def transform(self, y): raise NotImplementedError def inverse_transform(self, y): raise NotImplementedError
ivy/ivy/functional/frontends/sklearn/preprocessing/_label.py/0
{ "file_path": "ivy/ivy/functional/frontends/sklearn/preprocessing/_label.py", "repo_id": "ivy", "token_count": 268 }
41
# global import inspect from typing import Callable, Dict, Optional import functools # local import ivy import ivy.functional.frontends.tensorflow as frontend import ivy.functional.frontends.numpy as np_frontend # --- Helpers --- # # --------------- # def _ivy_array_to_tensorflow(x): if isinstance(x, ivy.Array) or ivy.is_native_array(x): return frontend.EagerTensor(x) return x def _native_to_ivy_array(x): if isinstance(x, ivy.NativeArray): return ivy.array(x) return x def _tf_frontend_array_to_ivy(x): if hasattr(x, "ivy_array"): return x.ivy_array return x def _to_ivy_array(x): return _tf_frontend_array_to_ivy(_native_to_ivy_array(x)) # update kwargs dictionary keys helper def _update_kwarg_keys(kwargs: Dict, to_update: Dict) -> Dict: """Update the key-word only arguments dictionary. Parameters ---------- kwargs A dictionary containing key-word only arguments to be updated. to_update The dictionary containing keys to update from raw_ops function the mapping is raw_ops argument name against corresponding tf_frontend argument name. Returns ------- ret An updated dictionary with new keyword mapping """ new_kwargs = {} for key, value in kwargs.items(): if to_update.__contains__(key): new_kwargs.update({to_update[key]: value}) else: new_kwargs.update({key: value}) return new_kwargs # --- Main --- # # ------------ # def handle_tf_dtype(fn: Callable) -> Callable: @functools.wraps(fn) def _handle_tf_dtype(*args, dtype=None, **kwargs): if len(args) > (dtype_pos + 1): dtype = args[dtype_pos] kwargs = { **dict( zip( list(inspect.signature(fn).parameters.keys())[ dtype_pos + 1 : len(args) ], args[dtype_pos + 1 :], ) ), **kwargs, } args = args[:dtype_pos] elif len(args) == (dtype_pos + 1): dtype = args[dtype_pos] args = args[:-1] if dtype is not None: dtype = to_ivy_dtype(dtype) return fn(*args, dtype=dtype, **kwargs) return fn(*args, **kwargs) dtype_pos = list(inspect.signature(fn).parameters).index("dtype") _handle_tf_dtype.handle_tf_dtype = True return _handle_tf_dtype def inputs_to_ivy_arrays(fn: Callable) -> Callable: @functools.wraps(fn) def _inputs_to_ivy_arrays_tf(*args, **kwargs): """Convert all `TensorFlow.Tensor` instances in both the positional and keyword arguments into `ivy.Array` instances, and then call the function with the updated arguments. Parameters ---------- args The arguments to be passed to the function. kwargs The keyword arguments to be passed to the function. Returns ------- The return of the function, with ivy arrays passed in the arguments. """ has_out = False out = None if "out" in kwargs: out = kwargs["out"] del kwargs["out"] has_out = True # convert all arrays in the inputs to ivy.Array instances ivy_args = ivy.nested_map( _to_ivy_array, args, include_derived=True, shallow=False ) ivy_kwargs = ivy.nested_map( _to_ivy_array, kwargs, include_derived=True, shallow=False ) if has_out: ivy_kwargs["out"] = out return fn(*ivy_args, **ivy_kwargs) _inputs_to_ivy_arrays_tf.inputs_to_ivy_arrays_tf = True return _inputs_to_ivy_arrays_tf def map_raw_ops_alias( alias: callable, kwargs_to_update: Optional[Dict] = None ) -> callable: """Map the raw_ops function with its respective frontend alias function, as the implementations of raw_ops is way similar to that of frontend functions, except that only arguments are passed as key-word only in raw_ops functions. Parameters ---------- alias: The frontend function that is being referenced to as an alias to the current raw_ops function. kwargs_to_update: A dictionary containing key-word args to update to conform with a given raw_ops function Returns ------- ret A decorated tf_frontend function to alias a given raw_ops function. Only accepting key-word only arguments. """ def _wrap_raw_ops_alias(fn: callable, kw_update: Dict) -> callable: # removing decorators from frontend function fn = inspect.unwrap(fn) # changing all the params to keyword-only sig = inspect.signature(fn) new_params = [] kw_update_rev = ( {value: key for key, value in kw_update.items()} if kw_update else {} ) for param in sig.parameters.values(): # updating the name of the parameter name = ( kw_update_rev[param.name] if kw_update and kw_update_rev.__contains__(param.name) else param.name ) new_params.append(param.replace(name=name, kind=param.KEYWORD_ONLY)) new_signature = sig.replace(parameters=new_params) def _wraped_fn(**kwargs): # update kwargs dictionary keys if kw_update: kwargs = _update_kwarg_keys(kwargs, kw_update) return fn(**kwargs) _wraped_fn.__signature__ = new_signature return _wraped_fn _wrap_raw_ops_alias.wrap_raw_ops_alias = True return _wrap_raw_ops_alias(alias, kwargs_to_update) def outputs_to_frontend_arrays(fn: Callable) -> Callable: @functools.wraps(fn) def _outputs_to_frontend_arrays_tf(*args, **kwargs): """Call the function, and then convert all `tensorflow.Tensor` instances in the function return into `ivy.Array` instances. Parameters ---------- args The arguments to be passed to the function. kwargs The keyword arguments to be passed to the function. Returns ------- The return of the function, with ivy arrays as tensorflow.Tensor arrays. """ # call unmodified function ret = fn(*args, **kwargs) # convert all arrays in the return to `frontend.Tensorflow.tensor` instances return ivy.nested_map( _ivy_array_to_tensorflow, ret, include_derived={"tuple": True} ) _outputs_to_frontend_arrays_tf.outputs_to_frontend_arrays_tf = True return _outputs_to_frontend_arrays_tf def to_ivy_arrays_and_back(fn: Callable) -> Callable: return outputs_to_frontend_arrays(inputs_to_ivy_arrays(fn)) def to_ivy_dtype(dtype): if not dtype or isinstance(dtype, str): return dtype if isinstance(dtype, np_frontend.dtype): return dtype.ivy_dtype return frontend.as_dtype(dtype).ivy_dtype
ivy/ivy/functional/frontends/tensorflow/func_wrapper.py/0
{ "file_path": "ivy/ivy/functional/frontends/tensorflow/func_wrapper.py", "repo_id": "ivy", "token_count": 3218 }
42
from . import ragged
ivy/ivy/functional/frontends/tensorflow/ragged/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/tensorflow/ragged/__init__.py", "repo_id": "ivy", "token_count": 6 }
43
# global import functools from typing import Callable # local import ivy import ivy.functional.frontends.torch as torch_frontend numpy_compatible_args = { "axis": "dim", "keepdims": "keepdim", "x": "input", "a": "input", "x1": "input", "x2": "other", } class AccumulateGrad: def __init__(self) -> None: self.next_functions = () self.__name__ = "AccumulateGrad" def __repr__(self): return self.__name__ def __eq__(self, __value: object) -> bool: return self.__name__ == __value def __call__(self, grads): self.__self__._grads = grads return None class GradFn: def __init__(self, fn, args, kwargs) -> None: self._inputs = [] self._fns = [] self.next_functions = [] for idx, input in [*enumerate(args), *kwargs.items()]: if isinstance(input, torch_frontend.Tensor) and input.requires_grad: self._inputs.append(input.detach()) def wrap_fn(idx): def d_fn(x): if idx in kwargs: return fn( *args, **{ key: value for key, value in kwargs.items() if key != idx }, idx=x, ) return fn(*args[:idx], x, *args[idx + 1 :], **kwargs) return d_fn self._fns.append(to_ivy_arrays_and_back(ivy.jac(wrap_fn(idx)))) if input.grad_fn is not None: self.next_functions.append(input.grad_fn) elif input.is_leaf: acc_grad = AccumulateGrad() acc_grad.__self__ = input self.next_functions.append(acc_grad) self.__name__ = fn.__name__.capitalize() + "Backward" def __call__(self, prev_grads): result = [] for input_tensor, jac_fn in zip(self._inputs, self._fns): jacobian = jac_fn(input_tensor) dims = list(range(jacobian.dim())) permuted_dims = dims[input_tensor.dim() :] + dims[: input_tensor.dim()] result.append( ( jacobian.permute(dims=permuted_dims).reshape( shape=(*input_tensor.shape, -1) ) * prev_grads.ravel() ).sum(-1) ) return result def __repr__(self): return self.__name__ def __eq__(self, __value: object) -> bool: return self.__name__ == __value # --- Helpers --- # # --------------- # def _from_ivy_array_to_torch_frontend_tensor( x, nested=False, include_derived=None, requires_grad=False ): if nested: return ivy.nested_map( functools.partial( _from_ivy_array_to_torch_frontend_tensor, requires_grad=requires_grad ), x, include_derived, shallow=False, ) elif isinstance(x, ivy.Array) or ivy.is_native_array(x): a = torch_frontend.Tensor(x, _init_overload=True, requires_grad=requires_grad) return a return x def _to_ivy_array(x): # if x is a native array return it as an ivy array if isinstance(x, ivy.NativeArray): return ivy.array(x) # else if x is a frontend torch Tensor (or any frontend "Tensor" actually) return the wrapped ivy array # noqa: E501 elif hasattr(x, "ivy_array"): return x.ivy_array # else just return x return x # --- Main --- # # ------------ # def inputs_to_ivy_arrays(fn: Callable) -> Callable: @functools.wraps(fn) def _inputs_to_ivy_arrays_torch(*args, **kwargs): """Convert `Tensor` into `ivy.Array` instances. Convert all `Tensor` instances in both the positional and keyword arguments into `ivy.Array` instances, and then call the function with the updated arguments. """ # convert all input arrays to ivy.Array instances new_args = ivy.nested_map( _to_ivy_array, args, include_derived={"tuple": True}, shallow=False ) new_kwargs = ivy.nested_map( _to_ivy_array, kwargs, include_derived={"tuple": True}, shallow=False ) return fn(*new_args, **new_kwargs) _inputs_to_ivy_arrays_torch.inputs_to_ivy_arrays_torch = True return _inputs_to_ivy_arrays_torch # noqa: F811 def numpy_to_torch_style_args(func): # noqa """Convert argument names from NumPy style to PyTorch style.""" @functools.wraps(func) def wrapper(*args, **kwargs): new_kwargs = { numpy_compatible_args.get(key, key): value for key, value in kwargs.items() } return func(*args, **new_kwargs) wrapper.numpy_to_torch_style_args = True return wrapper def outputs_to_frontend_arrays(fn: Callable) -> Callable: @functools.wraps(fn) def outputs_to_frontend_arrays_torch(*args, **kwargs): """Convert `ivy.Array` into `Tensor` instances. Call the function, and then convert all `ivy.Array` instances returned by the function into `Tensor` instances. """ # call unmodified function # ToDo: Remove this default dtype setting # once frontend specific backend setting is added set_default_dtype = False if not ("dtype" in kwargs and ivy.exists(kwargs["dtype"])) and all( not (ivy.is_array(i) or hasattr(i, "ivy_array")) for i in args ): if ivy.current_backend_str() == "jax": import jax jax.config.update("jax_enable_x64", True) ivy.set_default_int_dtype("int64") ivy.set_default_float_dtype(torch_frontend.get_default_dtype()) set_default_dtype = True try: ret = fn(*args, **kwargs) finally: if set_default_dtype: ivy.unset_default_int_dtype() ivy.unset_default_float_dtype() # convert all arrays in the return to `torch_frontend.Tensor` instances ret = _from_ivy_array_to_torch_frontend_tensor( ret, nested=True, include_derived={"tuple": True}, requires_grad=kwargs.get( "requires_grad", any( isinstance(i, torch_frontend.Tensor) and i.requires_grad for i in args ), ), ) def array_fn(x): return ivy.is_array(x) or hasattr(x, "ivy_array") if "inplace" in kwargs and kwargs["inplace"]: first_array = ivy.func_wrapper._get_first_array( *args, array_fn=array_fn, **kwargs ) native_ret_data = ret.ivy_array.data if ivy.is_ivy_array(first_array): first_array.data = native_ret_data elif ivy.is_native_array(first_array): ivy.inplace_update(first_array, native_ret_data) ret = torch_frontend.Tensor(first_array, _init_overload=True) else: first_array.ivy_array.data = native_ret_data ret = first_array # logic for setting is_leaf if ret is not None and isinstance(ret, torch_frontend.Tensor): if fn.__name__ in dir(torch_frontend.creation_ops): ret.is_leaf = True elif all( not isinstance(i, torch_frontend.Tensor) or (not i.requires_grad and not i.grad_fn) for i in args ): ret.is_leaf = True else: ret.is_leaf = False # set grad_fn if any( isinstance(i, torch_frontend.Tensor) and i.requires_grad for i in [*args, *kwargs.values()] ): # ToDo: Implement for unbind grad_fn = GradFn(fn, args, kwargs) grad_fn.__self__ = ret ret.grad_fn = grad_fn return ret outputs_to_frontend_arrays_torch.outputs_to_frontend_arrays_torch = True return outputs_to_frontend_arrays_torch def outputs_to_native_arrays(fn: Callable): @functools.wraps(fn) def outputs_to_native_arrays_torch(*args, **kwargs): ret = fn(*args, **kwargs) if isinstance(ret, torch_frontend.Tensor): ret = ret.ivy_array.data return ret outputs_to_native_arrays_torch.outputs_to_native_arrays_torch = True return outputs_to_native_arrays_torch def to_ivy_arrays_and_back(fn: Callable) -> Callable: """Wrap `fn` so it receives and returns `ivy.Array` instances. Wrap `fn` so that input arrays are all converted to `ivy.Array` instances and return arrays are all converted to `Tensor` instances. """ return outputs_to_frontend_arrays(inputs_to_ivy_arrays(fn)) def to_ivy_shape(fn: Callable) -> Callable: """Wrap `fn` so it receives `ivy.Shape` instances. Wrap `fn` so that any `torch_frontend.Size` arguments are converted to `ivy.Shape` instances. """ @functools.wraps(fn) def to_ivy_shape_torch(*args, **kwargs): new_kwargs = { key: ( value.ivy_shape if key in ["shape", "size"] and isinstance(value, ivy.functional.frontends.torch.Size) else value ) for key, value in kwargs.items() } # if any of the args are instance of torch_frontend.Size, # convert them to ivy.Shape. new_args = ivy.nested_map( lambda x: ( x.ivy_shape if isinstance(x, ivy.functional.frontends.torch.Size) else x ), args, shallow=False, ) return fn(*new_args, **new_kwargs) to_ivy_shape_torch.to_ivy_shape_torch = True return to_ivy_shape_torch
ivy/ivy/functional/frontends/torch/func_wrapper.py/0
{ "file_path": "ivy/ivy/functional/frontends/torch/func_wrapper.py", "repo_id": "ivy", "token_count": 5148 }
44
import ivy from ivy.functional.frontends.torch.func_wrapper import to_ivy_arrays_and_back from ivy.func_wrapper import with_supported_dtypes @to_ivy_arrays_and_back def embedding( input, weight, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, ): # TODO: add support for the remaining arguments ivy.utils.assertions.check_equal( len(weight.shape), 2, message="weight must be 2-d", as_array=False ) input = ivy.astype(input, "int64") if max_norm is None: ret = ivy.embedding(weight, input) else: if norm_type == 2.0: ret = ivy.embedding(weight, input, max_norm=max_norm) else: ret = ivy.embedding(weight, input, max_norm=None) # perform the re-norm using ivy functions norms = ivy.vector_norm(ret, ord=norm_type, axis=-1, keepdims=True) norms = ivy.repeat(norms, ret.shape[-1], axis=-1) ret = ivy.where(norms > max_norm, ret * max_norm / norms, ret) ret = ivy.where(norms < -max_norm, ret * -max_norm / norms, ret) return ret @with_supported_dtypes({"2.2 and below": ("int64",)}, "torch") @to_ivy_arrays_and_back def one_hot(tensor, num_classes=-1): return ivy.astype(ivy.one_hot(tensor, num_classes), tensor.dtype)
ivy/ivy/functional/frontends/torch/nn/functional/sparse_functions.py/0
{ "file_path": "ivy/ivy/functional/frontends/torch/nn/functional/sparse_functions.py", "repo_id": "ivy", "token_count": 605 }
45
from . import core from .core import * from . import gbm from .gbm import * from . import linear from .linear import * from . import objective from .objective import * from . import sklearn from .sklearn import * from . import training from .training import * _frontend_array = DMatrix
ivy/ivy/functional/frontends/xgboost/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/xgboost/__init__.py", "repo_id": "ivy", "token_count": 82 }
46
# global import ast import logging import inspect import math import functools from numbers import Number from typing import Union, Tuple, List, Optional, Callable, Iterable, Any import numpy as np import importlib # local import ivy from ivy.utils.backend import current_backend from ivy.func_wrapper import ( handle_array_function, handle_out_argument, to_native_arrays_and_back, inputs_to_native_arrays, handle_nestable, handle_array_like_without_promotion, inputs_to_ivy_arrays, inputs_to_native_shapes, handle_device, handle_backend_invalid, ) from ivy.utils.exceptions import handle_exceptions # Helpers # # --------# def _is_valid_dtypes_attributes(fn: Callable) -> bool: if hasattr(fn, "supported_dtypes") and hasattr(fn, "unsupported_dtypes"): fn_supported_dtypes = fn.supported_dtypes fn_unsupported_dtypes = fn.unsupported_dtypes if isinstance(fn_supported_dtypes, dict): if isinstance(fn_unsupported_dtypes, dict): backend_str = ivy.current_backend_str() if ( backend_str in fn_supported_dtypes and backend_str in fn_unsupported_dtypes ): return False elif isinstance(fn_unsupported_dtypes, tuple): return False return True def _handle_nestable_dtype_info(fn): @functools.wraps(fn) def _handle_nestable_dtype_info_wrapper(type): if isinstance(type, ivy.Container): type = type.cont_map(lambda x, kc: fn(x)) type.__dict__["max"] = type.cont_map(lambda x, kc: x.max) type.__dict__["min"] = type.cont_map(lambda x, kc: x.min) return type return fn(type) return _handle_nestable_dtype_info_wrapper # Unindent every line in the source such that # class methods can be traced as normal methods def _lstrip_lines(source: str) -> str: # Separate all lines source = source.split("\n") # Check amount of indent before first character indent = len(source[0]) - len(source[0].lstrip()) # Remove same spaces from all lines for i in range(len(source)): source[i] = source[i][indent:] source = "\n".join(source) return source # Get the list of function used the function def _get_function_list(func): tree = ast.parse(_lstrip_lines(inspect.getsource(func))) names = {} # Extract all the call names for node in ast.walk(tree): if isinstance(node, ast.Call): nodef = node.func if isinstance(nodef, ast.Name): names[nodef.id] = getattr( func, "__self__", getattr( importlib.import_module(func.__module__), func.__qualname__.split(".")[0], None, ), ) elif isinstance(nodef, ast.Attribute): if ( hasattr(nodef, "value") and hasattr(nodef.value, "id") and nodef.value.id not in ["ivy", "self"] and "_frontend" not in nodef.value.id ): continue names[ast.unparse(nodef)] = getattr( func, "__self__", getattr( importlib.import_module(func.__module__), func.__qualname__.split(".")[0], None, ), ) return names # Get the reference of the functions from string def _get_functions_from_string(func_names, module): ret = set() # We only care about the functions in the ivy or the same module for orig_func_name in func_names.keys(): func_name = orig_func_name.split(".")[-1] if hasattr(ivy, func_name) and callable(getattr(ivy, func_name, None)): ret.add(getattr(ivy, func_name)) elif hasattr(module, func_name) and callable(getattr(module, func_name, None)): ret.add(getattr(module, func_name)) elif callable(getattr(func_names[orig_func_name], func_name, None)): ret.add(getattr(func_names[orig_func_name], func_name)) return ret # Get dtypes/device of nested functions, used for unsupported and supported dtypes # IMPORTANT: a few caveats: # 1. The base functions must be defined in ivy or the same module # 2. If the dtypes/devices are set not in the base function, it will not be detected # 3. Nested function cannot be parsed, due to be unable to get function reference # 4. Functions need to be directly called, not assigned to a variable def _nested_get(f, base_set, merge_fn, get_fn, wrapper=set): visited = set() to_visit = [f] out = base_set while to_visit: fn = to_visit.pop() if fn in visited: continue visited.add(fn) # if it's in the backend, we can get the dtypes directly # if it's in the front end, we need to recurse # if it's einops, we need to recurse if not getattr(fn, "__module__", None): continue is_frontend_fn = "frontend" in fn.__module__ is_backend_fn = "backend" in fn.__module__ and not is_frontend_fn is_einops_fn = hasattr(fn, "__name__") and "einops" in fn.__name__ if is_backend_fn: f_supported = get_fn(fn, False) if hasattr(fn, "partial_mixed_handler"): f_supported = merge_fn( wrapper(f_supported["compositional"]), wrapper(f_supported["primary"]), ) logging.warning( "This function includes the mixed partial function" f" 'ivy.{fn.__name__}'. Please note that the returned data types" " may not be exhaustive. Please check the dtypes of" f" `ivy.{fn.__name__}` for more details" ) out = merge_fn(wrapper(f_supported), out) continue elif is_frontend_fn or (hasattr(fn, "__name__") and is_einops_fn): f_supported = wrapper(get_fn(fn, False)) out = merge_fn(f_supported, out) # skip if it's not a function if not (inspect.isfunction(fn) or inspect.ismethod(fn)): continue fl = _get_function_list(fn) res = list(_get_functions_from_string(fl, __import__(fn.__module__))) if is_frontend_fn: frontends = { "jax_frontend": "ivy.functional.frontends.jax", "jnp_frontend": "ivy.functional.frontends.jax.numpy", "np_frontend": "ivy.functional.frontends.numpy", "tf_frontend": "ivy.functional.frontends.tensorflow", "torch_frontend": "ivy.functional.frontends.torch", "paddle_frontend": "ivy.functional.frontends.paddle", } for key in fl: if "frontend" in key: frontend_fn = fl[key] for frontend in frontends: if frontend in key: key = key.replace(frontend, frontends[frontend]) if "(" in key: key = key.split("(")[0] frontend_module = ".".join(key.split(".")[:-1]) if ( frontend_module == "" ): # single edge case: fn='frontend_outputs_to_ivy_arrays' continue frontend_fl = {key: frontend_fn} res += list( _get_functions_from_string( frontend_fl, importlib.import_module(frontend_module) ) ) to_visit.extend(set(res)) return out # allow passing "integer" if all integer dtypes are supported/unsupported for e.g. def _expand_typesets(dtypes): typesets = { "valid": ivy.valid_dtypes, "numeric": ivy.valid_numeric_dtypes, "float": ivy.valid_float_dtypes, "integer": ivy.valid_int_dtypes, "unsigned": ivy.valid_uint_dtypes, "complex": ivy.valid_complex_dtypes, } dtypes = list(dtypes) typeset_list = [] for i, dtype in reversed(list(enumerate(dtypes))): if dtype in typesets: typeset_list.extend(typesets[dtype]) dtypes.pop(i) dtypes += typeset_list return dtypes # Get the list of dtypes supported by the function # by default returns the supported dtypes def _get_dtypes(fn, complement=True): supported = set(ivy.valid_dtypes) # We only care about getting dtype info from the base function # if we do need to at some point use dtype information from the parent function # we can comment out the following condition is_frontend_fn = "frontend" in fn.__module__ is_backend_fn = "backend" in fn.__module__ and not is_frontend_fn has_unsupported_dtypes_attr = hasattr(fn, "unsupported_dtypes") if not is_backend_fn and not is_frontend_fn and not has_unsupported_dtypes_attr: if complement: supported = set(ivy.all_dtypes).difference(supported) return supported # Their values are formatted like either # 1. fn.supported_dtypes = ("float16",) # Could also have the "all" value for the framework basic = [ ("supported_dtypes", set.intersection, ivy.valid_dtypes), ("unsupported_dtypes", set.difference, ivy.invalid_dtypes), ] for key, merge_fn, base in basic: if hasattr(fn, key): dtypes = getattr(fn, key) # only einops allowed to be a dictionary if isinstance(dtypes, dict): dtypes = dtypes.get(ivy.current_backend_str(), base) ivy.utils.assertions.check_isinstance(dtypes, tuple) if not dtypes: dtypes = base dtypes = _expand_typesets(dtypes) supported = merge_fn(supported, set(dtypes)) if complement: supported = set(ivy.all_dtypes).difference(supported) return tuple(supported) # Array API Standard # # -------------------# Finfo = None Iinfo = None @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def astype( x: Union[ivy.Array, ivy.NativeArray], dtype: Union[ivy.Dtype, ivy.NativeDtype], /, *, copy: bool = True, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Copy an array to a specified data type irrespective of :ref:`type- promotion` rules. .. note:: Casting floating-point ``NaN`` and ``infinity`` values to integral data types is not specified and is implementation-dependent. .. note:: When casting a boolean input array to a numeric data type, a value of ``True`` must cast to a numeric value equal to ``1``, and a value of ``False`` must cast to a numeric value equal to ``0``. When casting a numeric input array to ``bool``, a value of ``0`` must cast to ``False``, and a non-zero value must cast to ``True``. Parameters ---------- x array to cast. dtype desired data type. copy specifies whether to copy an array when the specified ``dtype`` matches the data type of the input array ``x``. If ``True``, a newly allocated array must always be returned. If ``False`` and the specified ``dtype`` matches the data type of the input array, the input array must be returned; otherwise, a newly allocated must be returned. Default: ``True``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array having the specified data type. The returned array must have the same shape as ``x``. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([1, 2]) >>> y = ivy.zeros_like(x) >>> y = ivy.astype(x, ivy.float64) >>> print(y) ivy.array([1., 2.]) >>> x = ivy.array([3.141, 2.718, 1.618]) >>> y = ivy.zeros_like(x) >>> ivy.astype(x, ivy.int32, out=y) >>> print(y) ivy.array([3., 2., 1.]) >>> x = ivy.array([[-1, -2], [0, 2]]) >>> ivy.astype(x, ivy.float64, out=x) >>> print(x) ivy.array([[-1., -2.], [0., 2.]]) With :class:`ivy.NativeArray` input: >>> x = ivy.native_array([3.141, 2.718, 1.618]) >>> y = ivy.astype(x, ivy.int32) >>> print(y) ivy.array([3, 2, 1]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([0,2,1]),b=ivy.array([1,0,0])) >>> print(ivy.astype(x, ivy.bool)) { a: ivy.array([False, True, True]), b: ivy.array([True, False, False]) } With :class:`ivy.Array` instance method: >>> x = ivy.array([[-1, -2], [0, 2]]) >>> print(x.astype(ivy.float64)) ivy.array([[-1., -2.], [0., 2.]]) With :class:`ivy.Container` instance method: >>> x = ivy.Container(a=ivy.array([False,True,True]), ... b=ivy.array([3.14, 2.718, 1.618])) >>> print(x.astype(ivy.int32)) { a: ivy.array([0, 1, 1]), b: ivy.array([3, 2, 1]) } """ return current_backend(x).astype(x, dtype, copy=copy, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @to_native_arrays_and_back @handle_array_function @handle_device def broadcast_arrays(*arrays: Union[ivy.Array, ivy.NativeArray]) -> List[ivy.Array]: """Broadcasts one or more arrays against one another. Parameters ---------- arrays an arbitrary number of arrays to-be broadcasted. Returns ------- ret A list containing broadcasted arrays of type `ivy.Array` Each array must have the same shape, and each array must have the same dtype as its corresponding input array. Examples -------- With :class:`ivy.Array` input: >>> x1 = ivy.array([1, 2, 3]) >>> x2 = ivy.array([4, 5, 6]) >>> y = ivy.broadcast_arrays(x1, x2) >>> print(y) [ivy.array([1, 2, 3]), ivy.array([4, 5, 6])] With :class:`ivy.NativeArray` inputs: >>> x1 = ivy.native_array([0.3, 4.3]) >>> x2 = ivy.native_array([3.1, 5]) >>> x3 = ivy.native_array([2, 0]) >>> y = ivy.broadcast_arrays(x1, x2, x3) [ivy.array([0.3, 4.3]), ivy.array([3.1, 5.]), ivy.array([2, 0])] With mixed :class:`ivy.Array` and :class:`ivy.NativeArray` inputs: >>> x1 = ivy.array([1, 2]) >>> x2 = ivy.native_array([0.3, 4.3]) >>> y = ivy.broadcast_arrays(x1, x2) >>> print(y) [ivy.array([1, 2]), ivy.array([0.3, 4.3])] With :class:`ivy.Container` inputs: >>> x1 = ivy.Container(a=ivy.array([3, 1]), b=ivy.zeros(2)) >>> x2 = ivy.Container(a=ivy.array([4, 5]), b=ivy.array([2, -1])) >>> y = ivy.broadcast_arrays(x1, x2) >>> print(y) [{ a: ivy.array([3, 1]), b: ivy.array([0., 0.]) }, { a: ivy.array([4, 5]), b: ivy.array([2, -1]) }] With mixed :class:`ivy.Array` and :class:`ivy.Container` inputs: >>> x1 = ivy.zeros(2) >>> x2 = ivy.Container(a=ivy.array([4, 5]), b=ivy.array([2, -1])) >>> y = ivy.broadcast_arrays(x1, x2) >>> print(y) [{ a: ivy.array([0., 0.]), b: ivy.array([0., 0.]) }, { a: ivy.array([4, 5]), b: ivy.array([2, -1]) }] """ return current_backend(arrays[0]).broadcast_arrays(*arrays) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @inputs_to_native_shapes @to_native_arrays_and_back @handle_array_function @handle_device def broadcast_to( x: Union[ivy.Array, ivy.NativeArray], /, shape: Tuple[int, ...], *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Broadcasts an array to a specified shape. Parameters ---------- x array to broadcast. shape array shape. Must be compatible with x (see Broadcasting). If the array is incompatible with the specified shape, the function should raise an exception. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array having a specified shape. Must have the same data type as x. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([1, 2, 3]) >>> y = ivy.broadcast_to(x, (3, 3)) >>> print(y) ivy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) With :class:`ivy.NativeArray` input: >>> x = ivy.native_array([0.1 , 0.3]) >>> y = ivy.broadcast_to(x, (3, 2)) >>> print(y) ivy.array([[0.1, 0.3], [0.1, 0.3], [0.1, 0.3]]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([1, 2, 3]), ... b=ivy.array([4, 5, 6])) >>> y = ivy.broadcast_to(x, (3, 3)) >>> print(y) { a: ivy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]), b: ivy.array([[4, 5, 6], [4, 5, 6], [4, 5, 6]]) } """ return current_backend(x).broadcast_to(x, shape, out=out) @handle_exceptions @handle_nestable @inputs_to_ivy_arrays @handle_array_function @handle_device def can_cast( from_: Union[ivy.Dtype, ivy.Array, ivy.NativeArray], to: ivy.Dtype, /, ) -> bool: """Determine if one data type can be cast to another data type according to :ref:`type- promotion` rules. Parameters ---------- from_ input data type or array from which to cast. to desired data type. Returns ------- ret ``True`` if the cast can occur according to :ref:`type-promotion` rules; otherwise, ``False``. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ API_specification/generated/array_api.can_cast.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Dtype` input: >>> print(ivy.can_cast(ivy.uint8, ivy.int32)) True >>> print(ivy.can_cast(ivy.float64, 'int64')) False With :class:`ivy.Array` input: >>> x = ivy.array([1., 2., 3.]) >>> print(ivy.can_cast(x, ivy.float64)) True With :class:`ivy.NativeArray` input: >>> x = ivy.native_array([[-1, -1, -1], ... [1, 1, 1]], ... dtype='int16') >>> print(ivy.can_cast(x, 'uint8')) False With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([0., 1., 2.]), ... b=ivy.array([3, 4, 5])) >>> print(ivy.can_cast(x, 'int64')) { a: False, b: True } """ if isinstance(from_, (ivy.Array, ivy.NativeArray)): from_ = from_.dtype dtype = ivy.promote_types(from_, to) return dtype == to @handle_exceptions @handle_backend_invalid @inputs_to_native_arrays @handle_device def finfo( type: Union[ivy.Dtype, str, ivy.Array, ivy.NativeArray], /, ) -> Finfo: """Machine limits for floating-point data types. Parameters ---------- type the kind of floating-point data-type about which to get information. Returns ------- ret an object having the following attributes: - **bits**: *int* number of bits occupied by the floating-point data type. - **eps**: *float* difference between 1.0 and the next smallest representable floating-point number larger than 1.0 according to the IEEE-754 standard. - **max**: *float* largest representable number. - **min**: *float* smallest representable number. - **smallest_normal**: *float* smallest positive floating-point number with full precision. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ API_specification/generated/array_api.finfo.html>`_ in the standard. Examples -------- With :class:`ivy.Dtype` input: >>> y = ivy.finfo(ivy.float32) >>> print(y) finfo(resolution=1e-06, min=-3.4028235e+38, max=3.4028235e+38, dtype=float32) With :code:`str` input: >>> y = ivy.finfo('float32') >>> print(y) finfo(resolution=1e-06, min=-3.4028235e+38, max=3.4028235e+38, dtype=float32) With :class:`ivy.Array` input: >>> x = ivy.array([1.3,2.1,3.4], dtype=ivy.float64) >>> print(ivy.finfo(x)) finfo(resolution=1e-15, min=-1.7976931348623157e+308, \ max=1.7976931348623157e+308, dtype=float64) >>> x = ivy.array([0.7,8.4,3.14], dtype=ivy.float16) >>> print(ivy.finfo(x)) finfo(resolution=0.001, min=-6.55040e+04, max=6.55040e+04, dtype=float16) With :class:`ivy.Container` input: >>> c = ivy.Container(x=ivy.array([-9.5,1.8,-8.9], dtype=ivy.float16), ... y=ivy.array([7.6,8.1,1.6], dtype=ivy.float64)) >>> print(ivy.finfo(c)) { x: finfo(resolution=0.001, min=-6.55040e+04, max=6.55040e+04, dtype=float16), y: finfo(resolution=1e-15, min=-1.7976931348623157e+308, \ max=1.7976931348623157e+308, dtype=float64) } """ return current_backend(None).finfo(type) @handle_exceptions @handle_backend_invalid @inputs_to_native_arrays @handle_device def iinfo( type: Union[ivy.Dtype, str, ivy.Array, ivy.NativeArray], /, ) -> Iinfo: """Machine limits for integer data types. Parameters ---------- type the kind of integer data-type about which to get information. Returns ------- ret a class with that encapsules the following attributes: - **bits**: *int* number of bits occupied by the type. - **max**: *int* largest representable number. - **min**: *int* smallest representable number. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ API_specification/generated/array_api.iinfo.html>`_ in the standard. Examples -------- With :class:`ivy.Dtype` input: >>> ivy.iinfo(ivy.int32) iinfo(min=-2147483648, max=2147483647, dtype=int32) With :code:`str` input: >>> ivy.iinfo('int32') iinfo(min=-2147483648, max=2147483647, dtype=int32) With :class:`ivy.Array` input: >>> x = ivy.array([13,21,34], dtype=ivy.int8) >>> ivy.iinfo(x) iinfo(min=-128, max=127, dtype=int8) With :class:`ivy.NativeArray` input: >>> x = ivy.native_array([7,84,314], dtype=ivy.int64) >>> ivy.iinfo(x) iinfo(min=-9223372036854775808, max=9223372036854775807, dtype=int64) With :class:`ivy.Container` input: >>> c = ivy.Container(x=ivy.array([0,1800,89], dtype=ivy.uint16), ... y=ivy.array([76,81,16], dtype=ivy.uint32)) >>> ivy.iinfo(c) { x: iinfo(min=0, max=65535, dtype=uint16), y: iinfo(min=0, max=4294967295, dtype=uint32) } """ return current_backend(None).iinfo(type) @handle_exceptions @handle_backend_invalid @handle_nestable @inputs_to_native_arrays @handle_device def result_type( *arrays_and_dtypes: Union[ivy.Array, ivy.NativeArray, ivy.Dtype] ) -> ivy.Dtype: """Return the dtype that results from applying the type promotion rules (see :ref:`type-promotion`) to the arguments. .. note:: If provided mixed dtypes (e.g., integer and floating-point), the returned dtype will be implementation-specific. Parameters ---------- arrays_and_dtypes an arbitrary number of input arrays and/or dtypes. Returns ------- ret the dtype resulting from an operation involving the input arrays and dtypes. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ API_specification/generated/array_api.result_type.html>`_ in the standard. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([3, 4, 5]) >>> y = ivy.array([3., 4., 5.]) >>> d = ivy.result_type(x, y) >>> print(d) float32 With :class:`ivy.Dtype` input: >>> d = ivy.result_type(ivy.uint8, ivy.uint64) >>> print(d) uint64 With :class:`ivy.Container` input: >>> x = ivy.Container(a = ivy.array([3, 4, 5])) >>> d = x.a.dtype >>> print(d) int32 >>> x = ivy.Container(a = ivy.array([3, 4, 5])) >>> d = ivy.result_type(x, ivy.float64) >>> print(d) { a: float64 } """ return current_backend(arrays_and_dtypes[0]).result_type(*arrays_and_dtypes) # Extra # # ------# default_dtype_stack = [] default_float_dtype_stack = [] default_int_dtype_stack = [] default_uint_dtype_stack = [] default_complex_dtype_stack = [] class DefaultDtype: """Ivy's DefaultDtype class.""" def __init__(self, dtype: ivy.Dtype): self._dtype = dtype def __enter__(self): set_default_dtype(self._dtype) return self def __exit__(self, exc_type, exc_val, exc_tb): unset_default_dtype() if self and (exc_type is not None): raise exc_val return self class DefaultFloatDtype: """Ivy's DefaultFloatDtype class.""" def __init__(self, float_dtype: ivy.Dtype): self._float_dtype = float_dtype def __enter__(self): set_default_float_dtype(self._float_dtype) return self def __exit__(self, exc_type, exc_val, exc_tb): unset_default_float_dtype() if self and (exc_type is not None): raise exc_val return self class DefaultIntDtype: """Ivy's DefaultIntDtype class.""" def __init__(self, int_dtype: ivy.Dtype): self._int_dtype = int_dtype def __enter__(self): set_default_int_dtype(self._int_dtype) return self def __exit__(self, exc_type, exc_val, exc_tb): unset_default_int_dtype() if self and (exc_type is not None): raise exc_val return self class DefaultUintDtype: """Ivy's DefaultUintDtype class.""" def __init__(self, uint_dtype: ivy.UintDtype): self._uint_dtype = uint_dtype def __enter__(self): set_default_uint_dtype(self._uint_dtype) return self def __exit__(self, exc_type, exc_val, exc_tb): unset_default_uint_dtype() if self and (exc_type is not None): raise exc_val return self class DefaultComplexDtype: """Ivy's DefaultComplexDtype class.""" def __init__(self, complex_dtype: ivy.Dtype): self._complex_dtype = complex_dtype def __enter__(self): set_default_complex_dtype(self._complex_dtype) return self def __exit__(self, exc_type, exc_val, exc_tb): unset_default_complex_dtype() if self and (exc_type is not None): raise exc_val return self @handle_exceptions def dtype_bits(dtype_in: Union[ivy.Dtype, ivy.NativeDtype, str], /) -> int: """Get the number of bits used for representing the input data type. Parameters ---------- dtype_in The data type to determine the number of bits for. Returns ------- ret The number of bits used to represent the data type. Examples -------- With :class:`ivy.Dtype` inputs: >>> x = ivy.dtype_bits(ivy.float32) >>> print(x) 32 >>> x = ivy.dtype_bits('int64') >>> print(x) 64 With :class:`ivy.NativeDtype` inputs: >>> x = ivy.dtype_bits(ivy.native_bool) >>> print(x) 1 """ return current_backend(dtype_in).dtype_bits(dtype_in) @handle_exceptions def is_hashable_dtype(dtype_in: Union[ivy.Dtype, ivy.NativeDtype], /) -> bool: """Check if the given data type is hashable or not. Parameters ---------- dtype_in The data type to check. Returns ------- ret True if data type is hashable else False """ # Doing something like isinstance(dtype_in, collections.abc.Hashable) # fails where the `__hash__` method is overridden to simply raise an # exception. # [See `tensorflow.python.trackable.data_structures.ListWrapper`] try: hash(dtype_in) return True except TypeError: return False @handle_exceptions def as_ivy_dtype(dtype_in: Union[ivy.Dtype, str], /) -> ivy.Dtype: """Convert native data type to string representation. Parameters ---------- dtype_in The data type to convert to string. Returns ------- ret data type string 'float32' """ return current_backend(None).as_ivy_dtype(dtype_in) @handle_exceptions def as_native_dtype(dtype_in: Union[ivy.Dtype, ivy.NativeDtype], /) -> ivy.NativeDtype: """Convert data type string representation to native data type. Parameters ---------- dtype_in The data type string to convert to native data type. Returns ------- ret data type e.g. ivy.float32. """ return current_backend(None).as_native_dtype(dtype_in) def _check_float64(input) -> bool: if ivy.is_array(input): return ivy.dtype(input) == "float64" if math.isfinite(input): m, e = math.frexp(input) return (abs(input) > 3.4028235e38) or (e < -126) or (e > 128) return False def _check_complex128(input) -> bool: if ivy.is_array(input): return ivy.dtype(input) == "complex128" elif isinstance(input, np.ndarray): return str(input.dtype) == "complex128" if hasattr(input, "real") and hasattr(input, "imag"): return _check_float64(input.real) and _check_float64(input.imag) return False @handle_exceptions def closest_valid_dtype(type: Union[ivy.Dtype, str, None], /) -> Union[ivy.Dtype, str]: """Determine the closest valid datatype to the datatype passed as input. Parameters ---------- type The data type for which to check the closest valid type for. Returns ------- ret The closest valid data type as a native ivy.Dtype Examples -------- With :class:`ivy.Dtype` input: >>> xType = ivy.float16 >>> yType = ivy.closest_valid_dtype(xType) >>> print(yType) float16 With :class:`ivy.NativeDtype` inputs: >>> xType = ivy.native_uint16 >>> yType = ivy.closest_valid_dtype(xType) >>> print(yType) uint16 With :code:`str` input: >>> xType = 'int32' >>> yType = ivy.closest_valid_dtype(xType) >>> print(yType) int32 """ return current_backend(type).closest_valid_dtype(type) @handle_exceptions @handle_nestable @inputs_to_ivy_arrays def default_float_dtype( *, input: Optional[Union[ivy.Array, ivy.NativeArray]] = None, float_dtype: Optional[Union[ivy.FloatDtype, ivy.NativeDtype]] = None, as_native: bool = False, ) -> Union[ivy.Dtype, str, ivy.NativeDtype]: """ Parameters ---------- input Number or array for inferring the float dtype. float_dtype The float dtype to be returned. as_native Whether to return the float dtype as native dtype. Returns ------- Return ``float_dtype`` as native or ivy dtype if provided, else if ``input`` is given, return its float dtype, otherwise return the global default float dtype. Examples -------- >>> ivy.default_float_dtype() 'float32' >>> ivy.set_default_float_dtype(ivy.FloatDtype("float64")) >>> ivy.default_float_dtype() 'float64' >>> ivy.default_float_dtype(float_dtype=ivy.FloatDtype("float16")) 'float16' >>> ivy.default_float_dtype(input=4294.967346) 'float32' >>> x = ivy.array([9.8,8.9], dtype="float16") >>> ivy.default_float_dtype(input=x) 'float16' """ global default_float_dtype_stack if ivy.exists(float_dtype): if as_native is True: return ivy.as_native_dtype(float_dtype) return ivy.FloatDtype(ivy.as_ivy_dtype(float_dtype)) as_native = ivy.default(as_native, False) if ivy.exists(input): if ivy.is_array(input): ret = ivy.dtype(input) elif isinstance(input, np.ndarray): ret = str(input.dtype) elif isinstance(input, (list, tuple, dict)): if ivy.nested_argwhere( input, lambda x: _check_float64(x), stop_after_n_found=1 ): ret = ivy.float64 else: if not default_float_dtype_stack: def_dtype = default_dtype() if ivy.is_float_dtype(def_dtype): ret = def_dtype else: ret = "float32" else: ret = default_float_dtype_stack[-1] elif isinstance(input, Number): if _check_float64(input): ret = ivy.float64 else: if not default_float_dtype_stack: def_dtype = default_dtype() if ivy.is_float_dtype(def_dtype): ret = def_dtype else: ret = "float32" else: ret = default_float_dtype_stack[-1] else: if not default_float_dtype_stack: def_dtype = default_dtype() if ivy.is_float_dtype(def_dtype): ret = def_dtype else: ret = "float32" else: ret = default_float_dtype_stack[-1] if as_native: return ivy.as_native_dtype(ret) return ivy.FloatDtype(ivy.as_ivy_dtype(ret)) @handle_exceptions def infer_default_dtype( dtype: Union[ivy.Dtype, ivy.NativeDtype, str], as_native: bool = False ) -> Union[ivy.Dtype, ivy.NativeDtype]: """Summary. Parameters ---------- dtype as_native (Default value = False) Returns ------- Return the default data type for the “kind” (integer or floating-point) of dtype Examples -------- >>> ivy.set_default_int_dtype("int32") >>> ivy.infer_default_dtype("int8") 'int8' >>> ivy.set_default_float_dtype("float64") >>> ivy.infer_default_dtype("float32") 'float64' >>> ivy.set_default_uint_dtype("uint32") >>> x = ivy.array([0], dtype="uint64") >>> ivy.infer_default_dtype(x.dtype) 'uint32' """ if ivy.is_complex_dtype(dtype): default_dtype = ivy.default_complex_dtype(as_native=as_native) elif ivy.is_float_dtype(dtype): default_dtype = ivy.default_float_dtype(as_native=as_native) elif ivy.is_uint_dtype(dtype): default_dtype = ivy.default_uint_dtype(as_native=as_native) elif ivy.is_int_dtype(dtype): default_dtype = ivy.default_int_dtype(as_native=as_native) elif as_native: default_dtype = ivy.as_native_dtype("bool") else: default_dtype = ivy.as_ivy_dtype("bool") return default_dtype @handle_exceptions @inputs_to_ivy_arrays def default_dtype( *, dtype: Optional[Union[ivy.Dtype, str]] = None, item: Optional[Union[ivy.Array, ivy.NativeArray]] = None, as_native: bool = False, ) -> Union[ivy.Dtype, ivy.NativeDtype, str]: """ Parameters ---------- item Number or array for inferring the dtype. dtype The dtype to be returned. as_native Whether to return the dtype as native dtype. Returns ------- Return ``dtype`` as native or ivy dtype if provided, else if ``item`` is given, return its dtype, otherwise return the global default dtype. Examples -------- >>> ivy.default_dtype() 'float32' >>> ivy.set_default_dtype(ivy.bool) >>> ivy.default_dtype() 'bool' >>> ivy.set_default_dtype(ivy.int16) >>> ivy.default_dtype() 'int16' >>> ivy.set_default_dtype(ivy.float64) >>> ivy.default_dtype() 'float64' >>> ivy.default_dtype(dtype="int32") 'int32' >>> ivy.default_dtype(dtype=ivy.float16) 'float16' >>> ivy.default_dtype(item=53.234) 'float64' >>> ivy.default_dtype(item=[1, 2, 3]) 'int32' >>> x = ivy.array([5.2, 9.7], dtype="complex128") >>> ivy.default_dtype(item=x) 'complex128' """ if ivy.exists(dtype): if as_native is True: return ivy.as_native_dtype(dtype) return ivy.as_ivy_dtype(dtype) as_native = ivy.default(as_native, False) if ivy.exists(item): if hasattr(item, "override_dtype_check"): return item.override_dtype_check() elif isinstance(item, (list, tuple, dict)) and len(item) == 0: pass elif ivy.is_complex_dtype(item): return ivy.default_complex_dtype(input=item, as_native=as_native) elif ivy.is_float_dtype(item): return ivy.default_float_dtype(input=item, as_native=as_native) elif ivy.is_uint_dtype(item): return ivy.default_int_dtype(input=item, as_native=as_native) elif ivy.is_int_dtype(item): return ivy.default_int_dtype(input=item, as_native=as_native) elif as_native: return ivy.as_native_dtype("bool") else: return "bool" global default_dtype_stack if not default_dtype_stack: global default_float_dtype_stack if default_float_dtype_stack: ret = default_float_dtype_stack[-1] else: ret = "float32" else: ret = default_dtype_stack[-1] if as_native: return ivy.as_native_dtype(ret) return ivy.as_ivy_dtype(ret) @handle_exceptions @inputs_to_ivy_arrays def default_int_dtype( *, input: Optional[Union[ivy.Array, ivy.NativeArray]] = None, int_dtype: Optional[Union[ivy.IntDtype, ivy.NativeDtype]] = None, as_native: bool = False, ) -> Union[ivy.IntDtype, ivy.NativeDtype]: """ Parameters ---------- input Number or array for inferring the int dtype. int_dtype The int dtype to be returned. as_native Whether to return the int dtype as native dtype. Returns ------- Return ``int_dtype`` as native or ivy dtype if provided, else if ``input`` is given, return its int dtype, otherwise return the global default int dtype. Examples -------- >>> ivy.set_default_int_dtype(ivy.intDtype("int16")) >>> ivy.default_int_dtype() 'int16' >>> ivy.default_int_dtype(input=4294967346) 'int64' >>> ivy.default_int_dtype(int_dtype=ivy.intDtype("int8")) 'int8' >>> x = ivy.array([9,8], dtype="int32") >>> ivy.default_int_dtype(input=x) 'int32' """ global default_int_dtype_stack if ivy.exists(int_dtype): if as_native is True: return ivy.as_native_dtype(int_dtype) return ivy.IntDtype(ivy.as_ivy_dtype(int_dtype)) as_native = ivy.default(as_native, False) if ivy.exists(input): if ivy.is_array(input): ret = ivy.dtype(input) elif isinstance(input, ivy.Shape): ret = ivy.default_int_dtype() elif isinstance(input, np.ndarray): ret = str(input.dtype) elif isinstance(input, (list, tuple, dict)): if ivy.nested_argwhere( input, lambda x: ( ivy.dtype(x) == "uint64" if ivy.is_array(x) else x > 9223372036854775807 and x != ivy.inf ), stop_after_n_found=1, ): ret = ivy.uint64 elif ivy.nested_argwhere( input, lambda x: ( ivy.dtype(x) == "int64" if ivy.is_array(x) else x > 2147483647 and x != ivy.inf ), stop_after_n_found=1, ): ret = ivy.int64 else: if not default_int_dtype_stack: def_dtype = ivy.default_dtype() if ivy.is_int_dtype(def_dtype): ret = def_dtype else: ret = "int32" else: ret = default_int_dtype_stack[-1] elif isinstance(input, Number): if ( input > 9223372036854775807 and input != ivy.inf and ivy.backend != "torch" ): ret = ivy.uint64 elif input > 2147483647 and input != ivy.inf: ret = ivy.int64 else: if not default_int_dtype_stack: def_dtype = ivy.default_dtype() if ivy.is_int_dtype(def_dtype): ret = def_dtype else: ret = "int32" else: ret = default_int_dtype_stack[-1] else: if not default_int_dtype_stack: def_dtype = ivy.default_dtype() if ivy.is_int_dtype(def_dtype): ret = def_dtype else: ret = "int32" else: ret = default_int_dtype_stack[-1] if as_native: return ivy.as_native_dtype(ret) return ivy.IntDtype(ivy.as_ivy_dtype(ret)) @handle_exceptions @inputs_to_ivy_arrays def default_uint_dtype( *, input: Optional[Union[ivy.Array, ivy.NativeArray]] = None, uint_dtype: Optional[Union[ivy.UintDtype, ivy.NativeDtype]] = None, as_native: bool = False, ) -> Union[ivy.UintDtype, ivy.NativeDtype]: """ Parameters ---------- input Number or array for inferring the uint dtype. uint_dtype The uint dtype to be returned. as_native Whether to return the uint dtype as native dtype. Returns ------- Return ``uint_dtype`` as native or ivy dtype if provided, else if ``input`` is given, return its uint dtype, otherwise return the global default uint dtype. Examples -------- >>> ivy.set_default_uint_dtype(ivy.UintDtype("uint16")) >>> ivy.default_uint_dtype() 'uint16' >>> ivy.default_uint_dtype(input=4294967346) 'uint64' >>> ivy.default_uint_dtype(uint_dtype=ivy.UintDtype("uint8")) 'uint8' >>> x = ivy.array([9,8], dtype="uint32") >>> ivy.default_uint_dtype(input=x) 'uint32' """ global default_uint_dtype_stack if ivy.exists(uint_dtype): if as_native is True: return ivy.as_native_dtype(uint_dtype) return ivy.UintDtype(ivy.as_ivy_dtype(uint_dtype)) as_native = ivy.default(as_native, False) if ivy.exists(input): if ivy.is_array(input): ret = ivy.dtype(input) elif isinstance(input, np.ndarray): ret = input.dtype elif isinstance(input, (list, tuple, dict)): def is_native(x): return ivy.is_native_array(x) if ivy.nested_argwhere( input, lambda x: ( ivy.dtype(x) == "uint64" if is_native(x) else x > 9223372036854775807 and x != ivy.inf ), stop_after_n_found=1, ): ret = ivy.uint64 else: if default_uint_dtype_stack: ret = default_uint_dtype_stack[-1] else: def_dtype = ivy.default_dtype() if ivy.is_uint_dtype(def_dtype): ret = def_dtype else: ret = "uint32" elif isinstance(input, Number): if input > 4294967295 and input != ivy.inf and ivy.backend != "torch": ret = ivy.uint64 else: if default_uint_dtype_stack: ret = default_uint_dtype_stack[-1] else: def_dtype = ivy.default_dtype() if ivy.is_uint_dtype(def_dtype): ret = def_dtype else: ret = "uint32" else: if default_uint_dtype_stack: ret = default_uint_dtype_stack[-1] else: def_dtype = ivy.default_dtype() if ivy.is_uint_dtype(def_dtype): ret = def_dtype else: ret = "uint32" if as_native: return ivy.as_native_dtype(ret) return ivy.UintDtype(ivy.as_ivy_dtype(ret)) @handle_exceptions @handle_nestable @inputs_to_ivy_arrays @handle_device def default_complex_dtype( *, input: Optional[Union[ivy.Array, ivy.NativeArray]] = None, complex_dtype: Optional[Union[ivy.ComplexDtype, ivy.NativeDtype]] = None, as_native: bool = False, ) -> Union[ivy.Dtype, str, ivy.NativeDtype]: """ Parameters ---------- input Number or array for inferring the complex dtype. complex_dtype The complex dtype to be returned. as_native Whether to return the complex dtype as native dtype. Returns ------- Return ``complex_dtype`` as native or ivy dtype if provided, else if ``input`` is given, return its complex dtype, otherwise return the global default complex dtype. Examples -------- >>> ivy.default_complex_dtype() 'complex64' >>> ivy.set_default_complex_dtype(ivy.ComplexDtype("complex64")) >>> ivy.default_complex_dtype() 'complex64' >>> ivy.default_complex_dtype(complex_dtype=ivy.ComplexDtype("complex128")) 'complex128' >>> ivy.default_complex_dtype(input=4294.967346) 'complex64' >>> x = ivy.array([9.8,8.9], dtype="complex128") >>> ivy.default_complex_dtype(input=x) 'complex128' """ global default_complex_dtype_stack if ivy.exists(complex_dtype): if as_native is True: return ivy.as_native_dtype(complex_dtype) return ivy.ComplexDtype(ivy.as_ivy_dtype(complex_dtype)) as_native = ivy.default(as_native, False) if ivy.exists(input): if ivy.is_array(input): ret = ivy.dtype(input) elif isinstance(input, np.ndarray): ret = str(input.dtype) elif isinstance(input, (list, tuple, dict)): if ivy.nested_argwhere( input, lambda x: _check_complex128(x), stop_after_n_found=1 ): ret = ivy.complex128 else: if not default_complex_dtype_stack: def_dtype = default_dtype() if ivy.is_complex_dtype(def_dtype): ret = def_dtype else: ret = "complex64" else: ret = default_complex_dtype_stack[-1] elif isinstance(input, Number): if _check_complex128(input): ret = ivy.complex128 else: if not default_complex_dtype_stack: def_dtype = default_dtype() if ivy.is_complex_dtype(def_dtype): ret = def_dtype else: ret = "complex64" else: ret = default_complex_dtype_stack[-1] else: if not default_complex_dtype_stack: def_dtype = default_dtype() if ivy.is_complex_dtype(def_dtype): ret = def_dtype else: ret = "complex64" else: ret = default_complex_dtype_stack[-1] if as_native: return ivy.as_native_dtype(ret) return ivy.ComplexDtype(ivy.as_ivy_dtype(ret)) @handle_exceptions @handle_backend_invalid @handle_nestable @inputs_to_native_arrays @handle_device def dtype( x: Union[ivy.Array, ivy.NativeArray], *, as_native: bool = False ) -> Union[ivy.Dtype, ivy.NativeDtype]: """Get the data type for input array x. Parameters ---------- x Tensor for which to get the data type. as_native Whether or not to return the dtype in string format. Default is ``False``. Returns ------- ret Data type of the array. Examples -------- With :class:`ivy.Array` inputs: >>> x1 = ivy.array([1.0, 2.0, 3.5, 4.5, 5, 6]) >>> y = ivy.dtype(x1) >>> print(y) float32 With :class:`ivy.NativeArray` inputs: >>> x1 = ivy.native_array([1, 0, 1, -1, 0]) >>> y = ivy.dtype(x1) >>> print(y) int32 With :class:`ivy.Container` inputs: >>> x = ivy.Container(a=ivy.native_array([1.0, 2.0, -1.0, 4.0, 1.0]), ... b=ivy.native_array([1, 0, 0, 0, 1])) >>> y = ivy.dtype(x.a) >>> print(y) float32 """ return current_backend(x).dtype(x, as_native=as_native) @handle_exceptions @handle_nestable def function_supported_dtypes(fn: Callable, recurse: bool = True) -> Union[Tuple, dict]: """Return the supported data types of the current backend's function. The function returns a dict containing the supported dtypes for the compositional and primary implementations in case of partial mixed functions. Parameters ---------- fn The function to check for the supported dtype attribute recurse Whether to recurse into used ivy functions. Default is ``True``. Returns ------- ret Tuple or dict containing the supported dtypes of the function Examples -------- >>> print(ivy.function_supported_dtypes(ivy.acosh)) ('bool', 'float64', 'int64', 'uint8', 'int8', 'float32', 'int32', 'int16', \ 'bfloat16') """ ivy.utils.assertions.check_true( _is_valid_dtypes_attributes(fn), "supported_dtypes and unsupported_dtypes attributes cannot both exist " "in a particular backend", ) if hasattr(fn, "partial_mixed_handler"): return { "compositional": function_supported_dtypes(fn.compos, recurse=recurse), "primary": _get_dtypes(fn, complement=False), } else: supported_dtypes = set(_get_dtypes(fn, complement=False)) if recurse: supported_dtypes = _nested_get( fn, supported_dtypes, set.intersection, function_supported_dtypes ) return ( supported_dtypes if isinstance(supported_dtypes, dict) else tuple(supported_dtypes) ) @handle_exceptions @handle_nestable def function_unsupported_dtypes( fn: Callable, recurse: bool = True ) -> Union[Tuple, dict]: """Return the unsupported data types of the current backend's function. The function returns a dict containing the unsupported dtypes for the compositional and primary implementations in case of partial mixed functions. Parameters ---------- fn The function to check for the unsupported dtype attribute recurse Whether to recurse into used ivy functions. Default is ``True``. Returns ------- ret Tuple or dict containing the unsupported dtypes of the function Examples -------- >>> ivy.set_backend('torch') >>> print(ivy.function_unsupported_dtypes(ivy.acosh)) ('float16','uint16','uint32','uint64') """ ivy.utils.assertions.check_true( _is_valid_dtypes_attributes(fn), "supported_dtypes and unsupported_dtypes attributes cannot both exist " "in a particular backend", ) if hasattr(fn, "partial_mixed_handler"): return { "compositional": function_unsupported_dtypes(fn.compos, recurse=recurse), "primary": _get_dtypes(fn, complement=True), } else: unsupported_dtypes = set(_get_dtypes(fn, complement=True)) if recurse: unsupported_dtypes = _nested_get( fn, unsupported_dtypes, set.union, function_unsupported_dtypes ) return ( unsupported_dtypes if isinstance(unsupported_dtypes, dict) else tuple(unsupported_dtypes) ) @handle_exceptions def invalid_dtype(dtype_in: Union[ivy.Dtype, ivy.NativeDtype, str, None], /) -> bool: """Determine whether the provided data type is not support by the current framework. Parameters ---------- dtype_in The data type for which to check for backend non-support Returns ------- ret Boolean, whether the data-type string is un-supported. Examples -------- >>> print(ivy.invalid_dtype(None)) False >>> print(ivy.invalid_dtype("uint64")) False >>> print(ivy.invalid_dtype(ivy.float64)) False >>> print(ivy.invalid_dtype(ivy.native_uint8)) False """ if dtype_in is None: return False return ivy.as_ivy_dtype(dtype_in) in ivy.invalid_dtypes @handle_exceptions @handle_nestable @inputs_to_native_arrays def is_bool_dtype( dtype_in: Union[ivy.Dtype, str, ivy.Array, ivy.NativeArray, Number], /, ) -> bool: """Determine whether the input data type is a bool data type. Parameters ---------- dtype_in input data type to test. Returns ------- ret "True" if the input data type is a bool, otherwise "False". Both the description and the type hints above assumes an array input for simplicity but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. """ if ivy.is_array(dtype_in): dtype_in = ivy.dtype(dtype_in) elif isinstance(dtype_in, np.ndarray): return "bool" in dtype_in.dtype.name elif isinstance(dtype_in, Number): return isinstance(dtype_in, (bool, np.bool_)) and not isinstance(dtype_in, bool) elif isinstance(dtype_in, (list, tuple, dict)): return bool( ivy.nested_argwhere( dtype_in, lambda x: isinstance(x, (bool, np.bool_)) and x is not int, ) ) return "bool" in ivy.as_ivy_dtype(dtype_in) @handle_exceptions @handle_nestable @inputs_to_native_arrays def is_int_dtype( dtype_in: Union[ivy.Dtype, str, ivy.Array, ivy.NativeArray, Number], /, ) -> bool: """Determine whether the input data type is an int data type. Parameters ---------- dtype_in input data type to test. Returns ------- ret "True" if the input data type is an integer, otherwise "False". Both the description and the type hints above assumes an array input for simplicity but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Dtype` input: >>> x = ivy.is_int_dtype(ivy.float64) >>> print(x) False With :class:`ivy.Array` input: >>> x = ivy.array([1., 2., 3.]) >>> print(ivy.is_int_dtype(x), x.dtype) False float32 With :class:`ivy.NativeArray` input: >>> x = ivy.native_array([[-1, -1, -1], [1, 1, 1]], dtype=ivy.int16) >>> print(ivy.is_int_dtype(x)) True With :code:`Number` input: >>> x = 1 >>> print(ivy.is_int_dtype(x)) True With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([0., 1., 2.]),b=ivy.array([3, 4, 5])) >>> print(ivy.is_int_dtype(x)) { a: False, b: True } """ if ivy.is_array(dtype_in): dtype_in = ivy.dtype(dtype_in) elif isinstance(dtype_in, ivy.Shape): dtype_in = ivy.default_int_dtype() elif isinstance(dtype_in, np.ndarray): return "int" in dtype_in.dtype.name elif isinstance(dtype_in, Number): return isinstance(dtype_in, (int, np.integer)) and not isinstance( dtype_in, bool ) elif isinstance(dtype_in, (list, tuple, dict)): def nested_fun(x): return ( isinstance(x, (int, np.integer)) or (ivy.is_array(x) and "int" in ivy.dtype(x)) ) and x is not bool return bool(ivy.nested_argwhere(dtype_in, nested_fun)) return "int" in ivy.as_ivy_dtype(dtype_in) @handle_exceptions def check_float(x: Any) -> bool: """Check if the input is a float or a float-like object. Parameters ---------- x Input to check. Returns ------- ret "True" if the input is a float or a float-like object, otherwise "False". """ return isinstance(x, (int, float)) and x is not bool @handle_exceptions @handle_nestable @inputs_to_native_arrays def is_float_dtype( dtype_in: Union[ivy.Dtype, str, ivy.Array, ivy.NativeArray, Number], /, ) -> bool: """Determine whether the input data type is a float dtype. Parameters ---------- dtype_in The array or data type to check Returns ------- ret Whether or not the array or data type is of a floating point dtype Examples -------- >>> x = ivy.is_float_dtype(ivy.float32) >>> print(x) True >>> arr = ivy.array([1.2, 3.2, 4.3], dtype=ivy.float32) >>> print(ivy.is_float_dtype(arr)) True """ if ivy.is_array(dtype_in): dtype_in = ivy.dtype(dtype_in) elif isinstance(dtype_in, ivy.Shape): dtype_in = ivy.default_int_dtype() elif isinstance(dtype_in, np.ndarray): return "float" in dtype_in.dtype.name elif isinstance(dtype_in, Number): return isinstance(dtype_in, (float, np.floating)) elif isinstance(dtype_in, (list, tuple, dict)): return bool( ivy.nested_argwhere( dtype_in, lambda x: isinstance(x, (float, np.floating)) or (ivy.is_array(x) and "float" in ivy.dtype(x)), ) ) return "float" in as_ivy_dtype(dtype_in) @handle_exceptions @handle_nestable @inputs_to_native_arrays def is_uint_dtype( dtype_in: Union[ivy.Dtype, str, ivy.Array, ivy.NativeArray, Number], /, ) -> bool: """Determine whether the input data type is a uint dtype. Parameters ---------- dtype_in The array or data type to check Returns ------- ret Whether or not the array or data type is of a uint dtype Examples -------- >>> ivy.is_uint_dtype(ivy.UintDtype("uint16")) True >>> ivy.is_uint_dtype(ivy.Dtype("uint8")) True >>> ivy.is_uint_dtype(ivy.IntDtype("int64")) False """ if ivy.is_array(dtype_in): dtype_in = ivy.dtype(dtype_in) elif isinstance(dtype_in, ivy.Shape): dtype_in = ivy.default_int_dtype() elif isinstance(dtype_in, np.ndarray): return "uint" in dtype_in.dtype.name elif isinstance(dtype_in, Number): return isinstance(dtype_in, np.unsignedinteger) elif isinstance(dtype_in, (list, tuple, dict)): return ivy.nested_argwhere( dtype_in, lambda x: isinstance(x, np.unsignedinteger) or (ivy.is_array(x) and "uint" in ivy.dtype(x)), ) return "uint" in as_ivy_dtype(dtype_in) @handle_exceptions @handle_nestable @inputs_to_ivy_arrays def is_complex_dtype( dtype_in: Union[ivy.Dtype, str, ivy.Array, ivy.NativeArray, Number], /, ) -> bool: """Determine whether the input data type is a complex dtype. Parameters ---------- dtype_in The array or data type to check Returns ------- ret Whether or not the array or data type is of a complex dtype Examples -------- >>> ivy.is_complex_dtype(ivy.ComplexDtype("complex64")) True >>> ivy.is_complex_dtype(ivy.Dtype("complex128")) True >>> ivy.is_complex_dtype(ivy.IntDtype("int64")) False """ if ivy.is_array(dtype_in): dtype_in = ivy.dtype(dtype_in) elif isinstance(dtype_in, ivy.Shape): dtype_in = ivy.default_int_dtype() elif isinstance(dtype_in, np.ndarray): return "complex" in dtype_in.dtype.name elif isinstance(dtype_in, Number): return isinstance(dtype_in, (complex, np.complexfloating)) elif isinstance(dtype_in, (list, tuple, dict)): return ivy.nested_argwhere( dtype_in, lambda x: isinstance(x, (complex, np.complexfloating)) or (ivy.is_array(x) and "complex" in ivy.dtype(x)), ) return "complex" in as_ivy_dtype(dtype_in) @handle_exceptions def promote_types( type1: Union[ivy.Dtype, ivy.NativeDtype], type2: Union[ivy.Dtype, ivy.NativeDtype], /, *, array_api_promotion: bool = False, ) -> ivy.Dtype: """Promote the datatypes type1 and type2, returning the data type they promote to. Parameters ---------- type1 the first of the two types to promote type2 the second of the two types to promote array_api_promotion whether to only use the array api promotion rules Returns ------- ret The type that both input types promote to """ # in case either is of none type if not (type1 and type2): return type1 if type1 else type2 query = [ivy.as_ivy_dtype(type1), ivy.as_ivy_dtype(type2)] query = tuple(query) if query not in ivy.promotion_table: query = (query[1], query[0]) def _promote(query): if array_api_promotion: return ivy.array_api_promotion_table[query] return ivy.promotion_table[query] return _promote(query) @handle_exceptions def set_default_dtype(dtype: Union[ivy.Dtype, ivy.NativeDtype, str], /): """Set the datatype `dtype` as default data type. Parameters ---------- dtype the data_type to set as default data type Examples -------- With :class:`ivy.Dtype` input: >>> ivy.set_default_dtype(ivy.bool) >>> ivy.default_dtype_stack ['bool'] >>> ivy.unset_default_dtype() >>> ivy.set_default_dtype("float64") >>> ivy.default_dtype_stack ['float64'] >>> ivy.unset_default_dtype() With :class:`ivy.NativeDtype` input: >>> ivy.set_default_dtype(ivy.native_uint64) >>> ivy.default_dtype_stack ['uint64'] """ dtype = ivy.as_ivy_dtype(dtype) ivy.utils.assertions._check_jax_x64_flag(dtype) global default_dtype_stack default_dtype_stack.append(dtype) @handle_exceptions def set_default_float_dtype(float_dtype: Union[ivy.Dtype, str], /): """Set the 'float_dtype' as the default data type. Parameters ---------- float_dtype The float data type to be set as the default. Examples -------- With :class: `ivy.Dtype` input: >>> ivy.set_default_float_dtype(ivy.floatDtype("float64")) >>> ivy.default_float_dtype() 'float64' >>> ivy.set_default_float_dtype(ivy.floatDtype("float32")) >>> ivy.default_float_dtype() 'float32' """ float_dtype = ivy.FloatDtype(ivy.as_ivy_dtype(float_dtype)) ivy.utils.assertions._check_jax_x64_flag(float_dtype) global default_float_dtype_stack default_float_dtype_stack.append(float_dtype) @handle_exceptions def set_default_int_dtype(int_dtype: Union[ivy.Dtype, str], /): """Set the 'int_dtype' as the default data type. Parameters ---------- int_dtype The integer data type to be set as the default. Examples -------- With :class: `ivy.Dtype` input: >>> ivy.set_default_int_dtype(ivy.intDtype("int64")) >>> ivy.default_int_dtype() 'int64' >>> ivy.set_default_int_dtype(ivy.intDtype("int32")) >>> ivy.default_int_dtype() 'int32' """ int_dtype = ivy.IntDtype(ivy.as_ivy_dtype(int_dtype)) ivy.utils.assertions._check_jax_x64_flag(int_dtype) global default_int_dtype_stack default_int_dtype_stack.append(int_dtype) @handle_exceptions def set_default_uint_dtype(uint_dtype: Union[ivy.Dtype, str], /): """Set the uint dtype to be default. Parameters ---------- uint_dtype The uint dtype to be set as default. Examples -------- >>> ivy.set_default_uint_dtype(ivy.UintDtype("uint8")) >>> ivy.default_uint_dtype() 'uint8' >>> ivy.set_default_uint_dtype(ivy.UintDtype("uint64")) >>> ivy.default_uint_dtype() 'uint64' """ uint_dtype = ivy.UintDtype(ivy.as_ivy_dtype(uint_dtype)) ivy.utils.assertions._check_jax_x64_flag(uint_dtype) global default_uint_dtype_stack default_uint_dtype_stack.append(uint_dtype) @handle_exceptions def set_default_complex_dtype(complex_dtype: Union[ivy.Dtype, str], /): """Set the 'complex_dtype' as the default data type. Parameters ---------- complex_dtype The complex data type to be set as the default. Examples -------- With :class: `ivy.Dtype` input: >>> ivy.set_default_complex_dtype(ivy.ComplexDtype("complex64")) >>> ivy.default_complex_dtype() 'complex64' >>> ivy.set_default_float_dtype(ivy.ComplexDtype("complex128")) >>> ivy.default_complex_dtype() 'complex128' """ complex_dtype = ivy.ComplexDtype(ivy.as_ivy_dtype(complex_dtype)) ivy.utils.assertions._check_jax_x64_flag(complex_dtype) global default_complex_dtype_stack default_complex_dtype_stack.append(complex_dtype) @handle_exceptions def type_promote_arrays( x1: Union[ivy.Array, ivy.NativeArray], x2: Union[ivy.Array, ivy.NativeArray], /, ) -> Tuple: """Type promote the input arrays, returning new arrays with the shared correct data type. Parameters ---------- x1 the first of the two arrays to type promote x2 the second of the two arrays to type promote Returns ------- ret1, ret2 The input arrays after type promotion """ new_type = ivy.promote_types(ivy.dtype(x1), ivy.dtype(x2)) return ivy.astype(x1, new_type), ivy.astype(x2, new_type) @handle_exceptions def unset_default_dtype(): """Reset the current default dtype to the previous state. Examples -------- >>> ivy.set_default_dtype(ivy.int32) >>> ivy.set_default_dtype(ivy.bool) >>> ivy.default_dtype_stack ['int32', 'bool'] >>> ivy.unset_default_dtype() >>> ivy.default_dtype_stack ['int32'] >>> ivy.unset_default_dtype() >>> ivy.default_dtype_stack [] """ global default_dtype_stack if default_dtype_stack: default_dtype_stack.pop(-1) @handle_exceptions def unset_default_float_dtype(): """Reset the current default float dtype to the previous state. Examples -------- >>> ivy.set_default_float_dtype(ivy.float32) >>> ivy.set_default_float_dtype(ivy.float64) >>> ivy.default_float_dtype_stack ['float32','float64'] >>> ivy.unset_default_float_dtype() >>> ivy.default_float_dtype_stack ['float32'] """ global default_float_dtype_stack if default_float_dtype_stack: default_float_dtype_stack.pop(-1) @handle_exceptions def unset_default_int_dtype(): """Reset the current default int dtype to the previous state. Examples -------- >>> ivy.set_default_int_dtype(ivy.intDtype("int16")) >>> ivy.default_int_dtype() 'int16' >>> ivy.unset_default_int_dtype() >>> ivy.default_int_dtype() 'int32' """ global default_int_dtype_stack if default_int_dtype_stack: default_int_dtype_stack.pop(-1) @handle_exceptions def unset_default_uint_dtype(): """Reset the current default uint dtype to the previous state. Examples -------- >>> ivy.set_default_uint_dtype(ivy.UintDtype("uint8")) >>> ivy.default_uint_dtype() 'uint8' >>> ivy.unset_default_uint_dtype() >>> ivy.default_uint_dtype() 'uint32' """ global default_uint_dtype_stack if default_uint_dtype_stack: default_uint_dtype_stack.pop(-1) @handle_exceptions def unset_default_complex_dtype(): """Reset the current default complex dtype to the previous state. Examples -------- >>> ivy.set_default_complex_dtype(ivy.complex64) >>> ivy.set_default_complex_dtype(ivy.complex128) >>> ivy.default_complex_dtype_stack ['complex64','complex128'] >>> ivy.unset_default_complex_dtype() >>> ivy.default_complex_dtype_stack ['complex64'] """ global default_complex_dtype_stack if default_complex_dtype_stack: default_complex_dtype_stack.pop(-1) @handle_exceptions def valid_dtype(dtype_in: Union[ivy.Dtype, ivy.NativeDtype, str, None], /) -> bool: """Determine whether the provided data type is supported by the current framework. Parameters ---------- dtype_in The data type for which to check for backend support Returns ------- ret Boolean, whether or not the data-type string is supported. Examples -------- >>> print(ivy.valid_dtype(None)) True >>> print(ivy.valid_dtype(ivy.float64)) True >>> print(ivy.valid_dtype('bool')) True >>> print(ivy.valid_dtype(ivy.native_float16)) True """ if dtype_in is None: return True return ivy.as_ivy_dtype(dtype_in) in ivy.valid_dtypes @handle_exceptions def promote_types_of_inputs( x1: Union[ivy.NativeArray, Number, Iterable[Number]], x2: Union[ivy.NativeArray, Number, Iterable[Number]], /, *, array_api_promotion: bool = False, ) -> Tuple[ivy.NativeArray, ivy.NativeArray]: """Promote the dtype of the given native array inputs to a common dtype based on type promotion rules. While passing float or integer values or any other non-array input to this function, it should be noted that the return will be an array-like object. Therefore, outputs from this function should be used as inputs only for those functions that expect an array-like or tensor-like objects, otherwise it might give unexpected results. """ def _special_case(a1, a2): # check for float number and integer array case return isinstance(a1, float) and "int" in str(a2.dtype) def _get_target_dtype(scalar, arr): # identify a good dtype to give the scalar value, # based on it's own type and that of the arr value if _special_case(scalar, arr): return "float64" elif arr.dtype == bool and not isinstance(scalar, bool): return None # let ivy infer a dtype elif isinstance(scalar, complex) and not ivy.is_complex_dtype(arr): return "complex128" else: return arr.dtype if hasattr(x1, "dtype") and not hasattr(x2, "dtype"): device = ivy.default_device(item=x1, as_native=True) x2 = ivy.asarray(x2, dtype=_get_target_dtype(x2, x1), device=device) elif hasattr(x2, "dtype") and not hasattr(x1, "dtype"): device = ivy.default_device(item=x2, as_native=True) x1 = ivy.asarray(x1, dtype=_get_target_dtype(x1, x2), device=device) elif not (hasattr(x1, "dtype") or hasattr(x2, "dtype")): x1 = ivy.asarray(x1) x2 = ivy.asarray(x2) if x1.dtype != x2.dtype: promoted = promote_types( x1.dtype, x2.dtype, array_api_promotion=array_api_promotion ) x1 = ivy.astype(x1, promoted, copy=False) x2 = ivy.astype(x2, promoted, copy=False) ivy.utils.assertions._check_jax_x64_flag(x1.dtype) return ivy.to_native(x1), ivy.to_native(x2) @handle_exceptions def is_native_dtype(dtype_in: Union[ivy.Dtype, ivy.NativeDtype], /) -> bool: """Determine whether the input dtype is a Native dtype. Parameters ---------- dtype_in Determine whether the input data type is a native data type object. Returns ------- ret Boolean, whether or not dtype_in is a native data type. Examples -------- >>> ivy.set_backend('numpy') >>> ivy.is_native_dtype(np.int32) True >>> ivy.set_backend('numpy') >>> ivy.is_native_array(ivy.float64) False """ return current_backend(None).is_native_dtype(dtype_in)
ivy/ivy/functional/ivy/data_type.py/0
{ "file_path": "ivy/ivy/functional/ivy/data_type.py", "repo_id": "ivy", "token_count": 33761 }
47
# global import ivy from ivy.func_wrapper import handle_array_function from ivy.functional.ivy.gradients import gradient_descent_update from ivy.utils.exceptions import handle_exceptions # local from typing import Optional, Union, Callable, Tuple, Any # Extra # # ------# # Private # def _compute_cost_and_update_grads( cost_fn, order, batch, variables, outer_v, keep_outer_v, average_across_steps_or_final, all_grads, unique_outer, batched, num_tasks, ): """Compute cost and update gradients. This function computes the cost and updates gradients for optimization. Parameters ---------- cost_fn : function The cost function. order : int The order of computation. batch : object The batch data. variables : ivy.Container The variables for optimization. outer_v : object Outer variable. keep_outer_v : bool Whether to keep outer variable. average_across_steps_or_final : bool Whether to average across steps or final. all_grads : list List to accumulate gradients. unique_outer : bool Whether outer variables are unique. batched : bool Whether the data is batched. num_tasks : int Number of tasks. Returns ------- object The computed cost. Examples -------- >>> # Example usage here >>> pass """ if order == 1: def cost_fn_with_variable(v): return cost_fn( batch, v=variables.cont_set_at_key_chains(v) if unique_outer else v ) cost, inner_grads = ivy.execute_with_gradients( cost_fn_with_variable, ( variables.cont_at_key_chains(outer_v, ignore_none=True) if keep_outer_v else variables.cont_prune_key_chains(outer_v, ignore_none=True) ), retain_grads=False, ) var = ( variables.cont_at_key_chains(outer_v, ignore_none=True) if keep_outer_v else variables.cont_prune_key_chains(outer_v, ignore_none=True) ) inner_grads = ivy.Container( { k: ivy.zeros_like(v) if k not in inner_grads else inner_grads[k] for k, v in var.cont_to_iterator() } ) if batched: inner_grads = ivy.multiply(inner_grads, num_tasks) if average_across_steps_or_final: all_grads.append(inner_grads) else: cost = cost_fn(batch, v=variables) return cost def _train_task( inner_batch, outer_batch, inner_cost_fn, outer_cost_fn, variables, inner_grad_steps, inner_learning_rate, inner_optimization_step, order, average_across_steps, inner_v, keep_innver_v, outer_v, keep_outer_v, batched, num_tasks, stop_gradients, ): # init total_cost = 0 all_grads = [] # inner and outer unique_inner = inner_v is not None unique_outer = outer_v is not None # iterate through inner loop training steps for i in range(inner_grad_steps): # compute inner gradient for update the inner variables cost, inner_update_grads = ivy.execute_with_gradients( lambda v: inner_cost_fn( inner_batch, v=variables.cont_set_at_key_chains(v) if unique_inner else v, ), ( variables.cont_at_key_chains(inner_v, ignore_none=True) if keep_innver_v else variables.cont_prune_key_chains(inner_v, ignore_none=True) ), retain_grads=order > 1, ) var = ( variables.cont_at_key_chains(inner_v, ignore_none=True) if keep_innver_v else variables.cont_prune_key_chains(inner_v, ignore_none=True) ) inner_update_grads = ivy.Container( { k: ( ivy.zeros_like(v) if k not in inner_update_grads else inner_update_grads[k] ) for k, v in var.cont_to_iterator() } ) if batched: inner_update_grads = ivy.multiply(inner_update_grads, num_tasks) # compute the cost to be optimized, and update all_grads if fist order method if outer_cost_fn is None and not unique_inner and not unique_outer: all_grads.append(inner_update_grads) else: cost = _compute_cost_and_update_grads( inner_cost_fn if outer_cost_fn is None else outer_cost_fn, order, outer_batch, variables, outer_v, keep_outer_v, average_across_steps, all_grads, unique_outer, batched, num_tasks, ) # update cost and update parameters total_cost = total_cost + cost if unique_inner: variables = variables.cont_set_at_key_chains( inner_optimization_step( ( variables.cont_at_key_chains(inner_v) if keep_innver_v else variables.cont_prune_key_chains(inner_v) ), inner_update_grads, inner_learning_rate, stop_gradients=stop_gradients, ) ) else: variables = inner_optimization_step( variables, inner_update_grads, inner_learning_rate, stop_gradients=stop_gradients, ) # once training is finished, compute the final cost, and update # all_grads if fist order method final_cost = _compute_cost_and_update_grads( inner_cost_fn if outer_cost_fn is None else outer_cost_fn, order, outer_batch, variables, outer_v, keep_outer_v, True, all_grads, unique_outer, batched, num_tasks, ) # update variables if stop_gradients: variables = variables.stop_gradient() if not batched: variables = variables.expand_dims(axis=0) # average the cost or gradients across all timesteps if this option is chosen if average_across_steps: total_cost = total_cost + final_cost if order == 1: all_grads = sum(all_grads) / max(len(all_grads), 1) return total_cost / (inner_grad_steps + 1), variables, all_grads # else return only the final values if order == 1: all_grads = all_grads[-1] return final_cost, variables, all_grads def _train_tasks_batched( batch, inner_batch_fn, outer_batch_fn, inner_cost_fn, outer_cost_fn, variables, inner_grad_steps, inner_learning_rate, inner_optimization_step, order, average_across_steps, inner_v, keep_innver_v, outer_v, keep_outer_v, return_inner_v, num_tasks, stop_gradients, ): inner_batch = batch outer_batch = batch if inner_batch_fn is not None: inner_batch = inner_batch_fn(inner_batch) if outer_batch_fn is not None: outer_batch = outer_batch_fn(outer_batch) cost, updated_ivs, grads = _train_task( inner_batch, outer_batch, inner_cost_fn, outer_cost_fn, variables, inner_grad_steps, inner_learning_rate, inner_optimization_step, order, average_across_steps, inner_v, keep_innver_v, outer_v, keep_outer_v, True, num_tasks, stop_gradients, ) grads = grads.mean(axis=0) if isinstance(grads, ivy.Container) else grads if order == 1: if return_inner_v in ["all", True]: return cost, grads, updated_ivs elif return_inner_v == "first": return cost, grads, updated_ivs[0:1] return cost, grads if return_inner_v in ["all", True]: return cost, updated_ivs elif return_inner_v == "first": return cost, updated_ivs[0:1] return cost def _train_tasks_with_for_loop( batch, inner_sub_batch_fn, outer_sub_batch_fn, inner_cost_fn, outer_cost_fn, variables, inner_grad_steps, inner_learning_rate, inner_optimization_step, order, average_across_steps, inner_v, keep_innver_v, outer_v, keep_outer_v, return_inner_v, num_tasks, stop_gradients, ): total_cost = 0 updated_ivs_to_return = [] all_grads = [] if isinstance(inner_v, (list, tuple)) and isinstance( inner_v[0], (list, tuple, dict, type(None)) ): inner_v_seq = True else: inner_v_seq = False if isinstance(outer_v, (list, tuple)) and isinstance( outer_v[0], (list, tuple, dict, type(None)) ): outer_v_seq = True else: outer_v_seq = False for i, sub_batch in enumerate(batch.cont_unstack_conts(0, True, num_tasks)): if inner_sub_batch_fn is not None: inner_sub_batch = inner_sub_batch_fn(sub_batch) else: inner_sub_batch = sub_batch if outer_sub_batch_fn is not None: outer_sub_batch = outer_sub_batch_fn(sub_batch) else: outer_sub_batch = sub_batch iv = inner_v[i] if inner_v_seq else inner_v ov = outer_v[i] if outer_v_seq else outer_v cost, updated_iv, grads = _train_task( inner_sub_batch, outer_sub_batch, inner_cost_fn, outer_cost_fn, variables, inner_grad_steps, inner_learning_rate, inner_optimization_step, order, average_across_steps, iv, keep_innver_v, ov, keep_outer_v, False, num_tasks, stop_gradients, ) if (return_inner_v == "first" and i == 0) or return_inner_v in ["all", True]: updated_ivs_to_return.append(updated_iv) total_cost = total_cost + cost all_grads.append(grads) if order == 1: if return_inner_v: return ( total_cost / num_tasks, sum(all_grads) / num_tasks, ivy.concat(updated_ivs_to_return, axis=0), ) return total_cost / num_tasks, sum(all_grads) / num_tasks if return_inner_v: return total_cost / num_tasks, ivy.concat(updated_ivs_to_return, axis=0) return total_cost / num_tasks def _train_tasks( batch, inner_batch_fn, outer_batch_fn, inner_cost_fn, outer_cost_fn, variables, inner_grad_steps, inner_learning_rate, inner_optimization_step, order, average_across_steps, batched, inner_v, keep_innver_v, outer_v, keep_outer_v, return_inner_v, num_tasks, stop_gradients, ): if batched: return _train_tasks_batched( batch, inner_batch_fn, outer_batch_fn, inner_cost_fn, outer_cost_fn, variables, inner_grad_steps, inner_learning_rate, inner_optimization_step, order, average_across_steps, inner_v, keep_innver_v, outer_v, keep_outer_v, return_inner_v, num_tasks, stop_gradients, ) return _train_tasks_with_for_loop( batch, inner_batch_fn, outer_batch_fn, inner_cost_fn, outer_cost_fn, variables, inner_grad_steps, inner_learning_rate, inner_optimization_step, order, average_across_steps, inner_v, keep_innver_v, outer_v, keep_outer_v, return_inner_v, num_tasks, stop_gradients, ) # Public # # First Order @handle_exceptions @handle_array_function def fomaml_step( batch: ivy.Container, inner_cost_fn: Callable, outer_cost_fn: Callable, variables: ivy.Container, inner_grad_steps: int, inner_learning_rate: float, /, *, inner_optimization_step: Callable = gradient_descent_update, inner_batch_fn: Optional[Callable] = None, outer_batch_fn: Optional[Callable] = None, average_across_steps: bool = False, batched: bool = True, inner_v: Optional[ivy.Container] = None, keep_inner_v: bool = True, outer_v: Optional[ivy.Container] = None, keep_outer_v: bool = True, return_inner_v: Union[str, bool] = False, num_tasks: Optional[int] = None, stop_gradients: bool = True, ) -> Tuple[ivy.Array, ivy.Container, Any]: """Perform step of first order MAML. Parameters ---------- batch The input batch inner_cost_fn callable for the inner loop cost function, receiving sub-batch, inner vars and outer vars outer_cost_fn callable for the outer loop cost function, receiving task-specific sub-batch, inner vars and outer vars. If None, the cost from the inner loop will also be optimized in the outer loop. variables Variables to be optimized during the meta step inner_grad_steps Number of gradient steps to perform during the inner loop. inner_learning_rate The learning rate of the inner loop. inner_optimization_step The function used for the inner loop optimization. Default is ivy.gradient_descent_update. inner_batch_fn Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is ``None``. outer_batch_fn Function to apply to the task sub-batch, before passing to the outer_cost_fn. Default is ``None``. average_across_steps Whether to average the inner loop steps for the outer loop update. Default is ``False``. batched Whether to batch along the time dimension, and run the meta steps in batch. Default is ``True``. inner_v Nested variable keys to be optimized during the inner loop, with same keys and boolean values. (Default value = None) keep_inner_v If True, the key chains in inner_v will be kept, otherwise they will be removed. Default is ``True``. outer_v Nested variable keys to be optimized during the inner loop, with same keys and boolean values. (Default value = None) keep_outer_v If True, the key chains in inner_v will be kept, otherwise they will be removed. Default is ``True``. return_inner_v Either 'first', 'all', or False. 'first' means the variables for the first task inner loop will also be returned. variables for all tasks will be returned with 'all'. Default is ``False``. num_tasks Number of unique tasks to inner-loop optimize for the meta step. Determined from batch by default. stop_gradients Whether to stop the gradients of the cost. Default is ``True``. Returns ------- ret The cost and the gradients with respect to the outer loop variables. """ if num_tasks is None: num_tasks = batch.cont_shape[0] rets = _train_tasks( batch, inner_batch_fn, outer_batch_fn, inner_cost_fn, outer_cost_fn, variables, inner_grad_steps, inner_learning_rate, inner_optimization_step, 1, average_across_steps, batched, inner_v, keep_inner_v, outer_v, keep_outer_v, return_inner_v, num_tasks, stop_gradients, ) cost = rets[0] if stop_gradients: cost = ivy.stop_gradient(cost, preserve_type=False) grads = rets[1] if return_inner_v: return cost, grads, rets[2] return cost, grads fomaml_step.computes_gradients = True @handle_exceptions @handle_array_function def reptile_step( batch: ivy.Container, cost_fn: Callable, variables: ivy.Container, inner_grad_steps: int, inner_learning_rate: float, /, *, inner_optimization_step: Callable = gradient_descent_update, batched: bool = True, return_inner_v: Union[str, bool] = False, num_tasks: Optional[int] = None, stop_gradients: bool = True, ) -> Tuple[ivy.Array, ivy.Container, Any]: """Perform a step of Reptile. Parameters ---------- batch The input batch. cost_fn The cost function that receives the task-specific sub-batch and variables, and returns the cost. variables Variables to be optimized. inner_grad_steps Number of gradient steps to perform during the inner loop. inner_learning_rate The learning rate of the inner loop. inner_optimization_step The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is `gradient_descent_update`. batched Whether to batch along the time dimension and run the meta steps in batch. Default is `True`. return_inner_v Either `'first'`, `'all'`, or `False`. If `'first'`, the variables for the first task inner loop will also be returned. If `'all'`, variables for all tasks will be returned. Default is `False`. num_tasks Number of unique tasks to inner-loop optimize for the meta step. Determined from the batch by default. stop_gradients Whether to stop the gradients of the cost. Default is `True`. Returns ------- ret The cost, the gradients with respect to the outer loop variables, and additional information from the inner loop optimization. Examples -------- With :class:`ivy.Container` input: >>> from ivy.functional.ivy.gradients import gradient_descent_update >>> import ivy >>> from ivy.functional.ivy.gradients import _variable >>> ivy.set_backend("torch") >>> def inner_cost_fn(batch_in, v): ... return batch_in.mean().x / v.mean().latent >>> num_tasks = 2 >>> batch = ivy.Container({"x": ivy.arange(1, num_tasks + 1, dtype="float32")}) >>> variables = ivy.Container({ ... "latent": _variable(ivy.repeat(ivy.array([[1.0]]), num_tasks, axis=0)) ... }) >>> cost, gradients = ivy.reptile_step(batch, inner_cost_fn, variables, 5, 0.01, ... num_tasks=num_tasks) >>> print(cost) ivy.array(1.4485182) >>> print(gradients) { latent: ivy.array([-139.9569855]) } >>> batch = ivy.Container({"x": ivy.arange(1, 4, dtype="float32")}) >>> variables = ivy.Container({ ... "latent": _variable(ivy.array([1.0, 2.0])) ... }) >>> cost, gradients, firsts = ivy.reptile_step(batch, inner_cost_fn, variables, 4, ... 0.025, batched=False, num_tasks=2, ... return_inner_v='first') >>> print(cost) ivy.array(0.9880483) >>> print(gradients) { latent: ivy.array([-13.01766968, -13.01766968]) } >>> print(firsts) { latent: ivy.array([[1.02197957, 2.02197981]]) } """ if num_tasks is None: num_tasks = batch.cont_shape[0] rets = _train_tasks( batch, None, None, cost_fn, None, variables, inner_grad_steps, inner_learning_rate, inner_optimization_step, 1, True, batched, None, True, None, True, return_inner_v, num_tasks, stop_gradients, ) cost = rets[0] if stop_gradients: cost = ivy.stop_gradient(cost, preserve_type=False) grads = rets[1] / inner_learning_rate if return_inner_v: return cost, grads, rets[2] return cost, grads reptile_step.computes_gradients = True # Second Order @handle_exceptions @handle_array_function def maml_step( batch: ivy.Container, inner_cost_fn: Callable, outer_cost_fn: Callable, variables: ivy.Container, inner_grad_steps: int, inner_learning_rate: float, /, *, inner_optimization_step: Callable = gradient_descent_update, inner_batch_fn: Optional[Callable] = None, outer_batch_fn: Optional[Callable] = None, average_across_steps: bool = False, batched: bool = True, inner_v: Optional[ivy.Container] = None, keep_inner_v: bool = True, outer_v: Optional[ivy.Container] = None, keep_outer_v: bool = True, return_inner_v: Union[str, bool] = False, num_tasks: Optional[int] = None, stop_gradients: bool = True, ) -> Tuple[ivy.Array, ivy.Container, Any]: """Perform step of vanilla second order MAML. Parameters ---------- batch The input batch inner_cost_fn callable for the inner loop cost function, receiving sub-batch, inner vars and outer vars outer_cost_fn callable for the outer loop cost function, receiving task-specific sub-batch, inner vars and outer vars. If None, the cost from the inner loop will also be optimized in the outer loop. variables Variables to be optimized during the meta step inner_grad_steps Number of gradient steps to perform during the inner loop. inner_learning_rate The learning rate of the inner loop. inner_optimization_step The function used for the inner loop optimization. Default is ivy.gradient_descent_update. inner_batch_fn Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is ``None``. outer_batch_fn Function to apply to the task sub-batch, before passing to the outer_cost_fn. Default is ``None``. average_across_steps Whether to average the inner loop steps for the outer loop update. Default is ``False``. batched Whether to batch along the time dimension, and run the meta steps in batch. Default is ``True``. inner_v Nested variable keys to be optimized during the inner loop, with same keys and boolean values. (Default value = None) keep_inner_v If True, the key chains in inner_v will be kept, otherwise they will be removed. Default is ``True``. outer_v Nested variable keys to be optimized during the inner loop, with same keys and boolean values. (Default value = None) keep_outer_v If True, the key chains in inner_v will be kept, otherwise they will be removed. Default is ``True``. return_inner_v Either 'first', 'all', or False. 'first' means the variables for the first task inner loop will also be returned. variables for all tasks will be returned with 'all'. Default is ``False``. num_tasks Number of unique tasks to inner-loop optimize for the meta step. Determined from batch by default. stop_gradients Whether to stop the gradients of the cost. Default is ``True``. Returns ------- ret The cost and the gradients with respect to the outer loop variables. Examples -------- With :class:`ivy.Container` input: >>> import ivy >>> from ivy.functional.ivy.gradients import _variable >>> ivy.set_backend("torch") >>> def inner_cost_fn(sub_batch, v): ... return sub_batch.mean().x / v.mean().latent >>> def outer_cost_fn(sub_batch,v): ... return sub_batch.mean().x / v.mean().latent >>> num_tasks = 2 >>> batch = ivy.Container({"x": ivy.arange(1, num_tasks + 1, dtype="float32")}) >>> variables = ivy.Container({ ... "latent": _variable(ivy.repeat(ivy.array([[1.0]]), num_tasks, axis=0)) ... }) >>> cost = ivy.maml_step(batch, inner_cost_fn, outer_cost_fn, variables, 5, 0.01) >>> print(cost) (ivy.array(1.40069818), { latent: ivy.array([-1.13723135]) }, ()) """ if num_tasks is None: num_tasks = batch.cont_shape[0] unique_outer = outer_v is not None func_ret, grads = ivy.execute_with_gradients( lambda v: _train_tasks( batch, inner_batch_fn, outer_batch_fn, inner_cost_fn, outer_cost_fn, variables.cont_set_at_key_chains(v) if unique_outer else v, inner_grad_steps, inner_learning_rate, inner_optimization_step, 2, average_across_steps, batched, inner_v, keep_inner_v, outer_v, keep_outer_v, return_inner_v, num_tasks, False, ), ( variables.cont_at_key_chains(outer_v, ignore_none=True) if keep_outer_v else variables.cont_prune_key_chains(outer_v, ignore_none=True) ), ) if isinstance(func_ret, tuple): grads = grads["0"] if "0" in grads else grads cost = func_ret[0] rest = func_ret[1] else: cost = func_ret rest = () if stop_gradients: cost = ivy.stop_gradient(cost, preserve_type=False) return cost, grads.sum(axis=0), rest maml_step.computes_gradients = True
ivy/ivy/functional/ivy/meta.py/0
{ "file_path": "ivy/ivy/functional/ivy/meta.py", "repo_id": "ivy", "token_count": 11923 }
48
"""Base class for deriving trainable modules.""" # global from collections import OrderedDict import os import copy import dill from typing import Optional, Tuple, Dict # local import ivy from ivy.data_classes.container import Container from ivy.functional.ivy.gradients import _is_variable from ivy.stateful.helpers import ModuleHelpers from ivy.stateful.converters import ModuleConverters class ModuleMeta: def __new__(cls, *args, **kwargs): # check the module of the class # if it's stateful, it's internal # we leave this untouched if "stateful" in cls.__module__: # we are not assigning it a variable pass else: # first check if a var is already assigned # this would mean it is a nested custom class if not hasattr(Module, "_init_var"): # if not , create it and add Module._init_var = [cls] else: Module._init_var.append(cls) instance = super().__new__(cls) return instance class Module(ModuleHelpers, ModuleConverters, ModuleMeta): """Module is a base class for deriving trainable modules.""" def __init__( self, /, *args, v=None, buffers=None, build_mode="on_init", store_vars=True, with_partial_v=False, dynamic_backend=None, training=True, dtype=None, device=None, **kwargs, ): """Initialize Ivy layer, which is a stateful object consisting of trainable variables. Parameters ---------- args Positional arguments to the _build method. v Ivy container of trainable variables. Created internally by default. buffers Ivy container of buffers/non-trainable arrays in the state_dict. build_mode How the Module is built, either on initialization (now), explicitly by the user by calling build(), or the first time the __call__ method is run. Default is on initialization. store_vars Whether or not to store the variables created. Default is ``True``. with_partial_v Whether to allow partial specification of variables. Default is ``False``. dynamic_backend When the value is true, allow conversion of arrays from a different backend to the current backend if v passed in the input contains arrays created with different backend. training specifies whether the module is in training or evaluation mode. Default is ``True``. dtype Data type to be used for creating model variables. (Default value = None). device Device on which to create the module's variables 'cuda:0', 'cuda:1', 'cpu' etc. (Default value = None). kwargs Keyword arguments to the _build method. """ valid_build_modes = ["on_init", "explicit", "on_call"] ivy.utils.assertions.check_elem_in_list(build_mode, valid_build_modes) self._build_mode = build_mode self._with_partial_v = with_partial_v self._store_vars = store_vars self._built = False self._v_from_constructor = ( v if isinstance(v, Container) or v is None else Container(v) ) self._v = v if v is not None else Container() self._buffers = Container(ivy.default(buffers, {})) self._module_dict = Container() self._args = args self._kwargs = kwargs self._module_graph = None self._target = None self._lazy_traced = False self._training = training self._dynamic_backend = dynamic_backend self._device = ivy.default(device, ivy.default_device()) self._dtype = ivy.default(dtype, ivy.default_dtype()) if build_mode != "on_init": return if hasattr(Module, "_init_var"): if "stateful" in self.__module__: # we know we are operating within the # context of another class, and it's a # stateful class internally defined # so we freeze weight generation # unless `v` or `with_partial_v` is passed if v or with_partial_v: # build only if `v` or `with_partial_v` self.build(*args, dynamic_backend=dynamic_backend, **kwargs) # we don't want to delete the class variable now # since there could be other child modules return # we know this is the custom class that has triggered the # class var, so we do the building, and after that delete # the class variable, but before that we check if it's a # nested scenario, because if it's another custom class initialised # within another one, then we have to hold variable initialisation # here too, unless `v` or `with_partial_v` if len(Module._init_var) > 1 and not v and not with_partial_v: # hold off initialisation, delete key for this class and # move on Module._init_var.pop() return self.build(*args, dynamic_backend=dynamic_backend, **kwargs) if Module._init_var[-1] == self.__class__.__name__: # you delete it, only if this is the class that caused it's creation Module._init_var.pop() # do a final check if _init_var becomes empty, then delete it all together if not Module._init_var: del Module._init_var return self.build(*args, dynamic_backend=dynamic_backend, **kwargs) # Public Methods # # ---------------# def build( self, *args, from_call=False, device=None, dtype=None, dynamic_backend=None, **kwargs, ): """Build the internal layers and variables for this module. Parameters ---------- args Positional arguments to the _build method. from_call If True, denote that this build is triggered by calling. Otherwise, triggered by initializing the module. Default is ``False``. device The device we want to build module on. None for default device. Default is ``None``. dtype The data type for building the module. Default is ``None``. dynamic_backend Whether to use dynamic backend setting to deal if variables are passed as input and created with a different backend to the current backend. kwargs Keyword arguments to the _build method. Returns ------- ret True for successfully built a module. """ self._device = ivy.default(device, self._device) self._dtype = ivy.default(dtype, self._dtype) self._dynamic_backend = ivy.default(dynamic_backend, self._dynamic_backend) # return False if not from_call but build_mode is on_call if not from_call and self._build_mode == "on_call": return self.v # why are we adding this kwarg in user-defined build ? # it results in the error while doing `from_haiku_module` if haiku's forward # therefore leaving it commented out # kwargs["dtype"] = dtype # build local Module, and any child modules flagged with "explicit" build mode # this gets the child modules initialised at best, their weights # remain un-generated built = ivy.default(self._build(*args, **kwargs), True) # this creates weights for this Module only created = Container( self._create_variables(device=self._device, dtype=dtype), dynamic_backend=self._dynamic_backend, ) # build variables based on locally built layers, if v not passed in constructor created_n_found = Container( dict( **self._find_variables( obj=self, without_initialisation=( True if self._v_from_constructor and not self._with_partial_v else False ), ), **created, ), dynamic_backend=self._dynamic_backend, ) created_n_found.cont_config["build_callable"] = True if ivy.exists(self._v_from_constructor): if self._with_partial_v: if self._v_from_constructor: created_n_found.cont_assert_contains_sub_structure( self._v_from_constructor, partial=True ) self._v = created_n_found.cont_set_at_key_chains( self._v_from_constructor ) else: created_n_found, _ = self._remove_duplicate_variables( created_n_found, created ) ivy.Container.cont_assert_identical_structure( [created_n_found, self._v_from_constructor], assert_and_assign=True, ) self._v = created_n_found else: self._v = created_n_found # remove duplicates self._v, keychain_mappings = self._remove_duplicate_variables(self._v, created) # build any child 'on_call' layers if not built and from_call: # update child modules to share the same device for v in self.__dict__.values(): if isinstance(v, ivy.Module): v._device = self._device # build during forward pass self._forward(*args, **kwargs) # re-build variables based on additional child on-call layers, if v not # passed in constructor if not ivy.exists(self._v_from_constructor): created_n_found = Container( dict( **self._find_variables(obj=self), **self._create_variables(device=self._device, dtype=dtype), ), dynamic_backend=self._dynamic_backend, ) self._v = created_n_found # remove further duplicates with self.v self._v, keychain_mappings = self._remove_duplicate_variables( self._v, created ) # set built flag built = True # wrap call methods if the module is fully built if built: self._wrap_call_methods(keychain_mappings, obj=self) # flag built and remove local variables if specified self._built = bool(built) v_ret = self.v if not self._store_vars: # ToDo: verify variables in self.v are released once this method exits self._v = ivy.Container() # compute the module dict self._compute_module_dict() # once all variables built, find and assign buffers self._find_buffers() return v_ret if bool(v_ret) or isinstance(built, bool) else built def trace_graph( self, args: Optional[Tuple] = None, kwargs: Optional[Dict] = None, **trace_kwargs, ): """Trace the `ivy.Module`'s `_unified_ivy_graph` or `_call` method to the target backend. Parameters ---------- args: arguments used to trace. Defaults to None. kwargs: keyword arguments used to trace. Defaults to None. trace_kwargs: keyword arguments passed to the trace function. """ # no arguments given to trace, so delay the compilation if not (args or kwargs): self._lazy_traced = True return # we do not need convert the args to source args = ivy.default(args, ()) kwargs = ivy.default(kwargs, {}) # shallow copy the kwargs dict kwargs = copy.copy(kwargs) kwargs["v"] = self.v fn_to_trace = ivy.default(self._module_graph, self._call) self._module_graph = ivy.trace_graph( fn_to_trace, **trace_kwargs, args=args, kwargs=kwargs ) self._lazy_traced = False def register_buffer(self, name, value): """Register a buffer. Parameters ---------- name Name of the buffer value Value of the buffer """ if value is not None: self._buffers.update({name: value}) else: super().__setattr__(name, value) def register_parameter(self, name, value): """Register a parameter. Parameters ---------- name Name of the parameter value Value of the parameter """ self._v.update({name: value}) def train(self, mode: bool = True): """Enable or disable training mode.""" self._training = mode for module in self.v: module = getattr(self, module, None) if isinstance(module, ivy.Module): module.train(mode=mode) return self def eval(self): """Disable training mode.""" return self.train(mode=False) def to_device(self, device): """Move the weights and buffers to the specified device.""" self._device = ivy.default(device, self._device) for obj in self.state_dict.values(): if isinstance(obj, ivy.Module): obj.to_device(device) elif ivy.is_array(obj) or ivy.is_ivy_container(obj): ivy.to_device(obj, device, out=obj) return self def show_graph( self, randomness_factor: float = 0.1, save_to_disk: bool = False, notebook: bool = False, with_edge_labels: bool = True, with_arg_labels: bool = True, with_output_labels: bool = True, output_connected_only: bool = True, highlight_subgraph: Optional[int] = None, fname: Optional[str] = None, ): if not ivy.exists(self._module_graph): raise ValueError("You must trace the module to display the graph.") return self._module_graph.show( save_to_disk=save_to_disk, notebook=notebook, with_edge_labels=with_edge_labels, with_arg_labels=with_arg_labels, with_output_labels=with_output_labels, output_connected_only=output_connected_only, randomness_factor=randomness_factor, highlight_subgraph=highlight_subgraph, fname=fname, ) def save_weights(self, weights_path, /): """Save the weights on the Module. Parameters ---------- weights_path The hdf5 file for saving the weights. Returns ------- None """ os.makedirs("/".join(weights_path.split("/")[:-1]), exist_ok=True) self.v.cont_to_disk_as_hdf5(weights_path) def save(self, filename): """Save the module object to disk using pickle. Parameters ---------- filename : str The name of the file to save the module object to. """ if ivy.current_backend_str() == "paddle": self._convert_tensors_to_numpy() with open(filename, "wb") as f: dill.dump(self, f) if ivy.current_backend_str() == "paddle": self._convert_numpy_to_tensors() @staticmethod def load(filename): """Load a module object from disk using pickle. Parameters ---------- filename : str The name of the file to load the module object from. Returns ------- Module The loaded module object. """ with open(filename, "rb") as f: loaded = dill.load(f) if ivy.current_backend_str() == "paddle": loaded._convert_numpy_to_tensors() return loaded # Dunder Methods # # ---------------# def __call__( self, *args, v=None, buffers=None, **kwargs, ): """Forward an input through current module. Parameters ---------- args Positional args to the build method. v If given, use this container as internal variables temporarily. Default is ``None``. buffers If given, use this container as internal buffers temporarily. Default is ``None``. kwargs Keyword arguments to the build method. Returns ------- ret """ if self._lazy_traced: # we are creating graph since we want to transpile module, # so set the appropriate backend if self._target: ivy.set_backend(self._target) self.trace_graph(args=args, kwargs=kwargs) if self._target: ivy.previous_backend() if self._module_graph: # we need `v` in kwargs, since this is a traced call v = v if v else self.v return self._module_graph(*args, v=v, **kwargs) # convert variables to native arrays so that they can be tracked v = ivy.to_native(v) ret = self._call(*args, v=v, buffers=buffers, **kwargs) return ret def __getattribute__(self, name): if name == "v": if not super().__getattribute__("_v") and not self.built: self._build_and_return_v( *self._args, dynamic_backend=self._dynamic_backend, **self._kwargs ) return super().__getattribute__(name) def __setattr__(self, name, value): if name in ["v", "buffers"]: name = "_" + name if isinstance(value, Module): ret = super().__setattr__(name, value) if ( hasattr(self, "_build_mode") and self.build_mode == "on_init" and self.built ): self._rebuild() return ret return super().__setattr__(name, value) def __delattr__(self, name): if hasattr(self, name): if isinstance(getattr(self, name), Module): super().__delattr__(name) if self.build_mode == "on_init": self._rebuild() return super().__delattr__(name) def __repr__(self): extra_lines = [] extra_repr = self._extra_repr() if extra_repr: extra_lines = extra_repr.split("\n") child_lines = [] for key in self.v.keys(): if isinstance(getattr(self, key, None), Module): mod_str = repr(getattr(self, key)) mod_str = self._addindent(mod_str, 2) child_lines.append(f"({key}): {mod_str}") lines = extra_lines + child_lines main_str = f"{self.__class__.__name__}(" if lines: # simple one-liner info, which most builtin Modules will use if len(extra_lines) == 1 and not child_lines: main_str += extra_lines[0] else: main_str += "\n " + "\n ".join(lines) + "\n" main_str += ")" return main_str # Methods to be Optionally Overridden # # -----------------------------------# def _create_variables(self, *, device=None, dtype=None): """Create internal trainable variables, and return as arbitrary nested dict. Overridable. Parameters ---------- device The device string, specifying the device on which to create the variables. dtype The dtype string, specifying the dtype on which to create the variables. Returns ------- ret An empty set. """ return {} def _build(self, *args, **kwargs) -> bool: """Build the internal layers and variables for this module. Overridable. Returns ------- ret False or empty Container if the build only partially completed (i.e. some child Modules have "on_call" build mode). Alternatively, return True or a container of the built variables if the module is built. """ return True def _forward(self, *args, **kwargs): """Forward pass of the layer, called after handling the optional input variables. Raises ------ NotImplementedError """ raise ivy.utils.exceptions.IvyNotImplementedException def _extra_repr(self) -> str: """Set the extra representation of the module. To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable. """ return "" # Properties # # -----------# @property def device(self): return self._device @property def dtype(self): return self._dtype @property def build_mode(self): return self._build_mode @property def built(self): return self._built @property def training(self): return self._training @property def v(self): return self._v @property def buffers(self): return self._buffers @property def state_dict(self): """Return the state_dict which is a collection of the variables and buffers.""" return {**self.v, **self.buffers} @property def module_dict(self): return self._module_dict class _HaikuIvyModule(Module): def __init__(self, *args, params_hk, native_module, device, devices, **kwargs): self._native_module = native_module self._args = args self._kwargs = kwargs ivy.Module.__init__( self, params_hk, *args, build_mode="on_init", device=device, devices=devices, **kwargs, ) def _create_variables(self, device, dtype): return self._hk_params def _build(self, params_hk, *args, **kwargs): pass args, kwargs = ivy.args_to_native(*args, **kwargs) # noinspection PyUnresolvedReferences params_dict = self._hk_flat_map_to_dict(params_hk) self._hk_params = ivy.Container(params_dict, dynamic_backend=False) param_iterator = self._hk_params.cont_to_iterator() _, param0 = next(param_iterator, ["_", 0]) if hasattr(param0, "device"): self._device = ivy.as_ivy_dev(param0.device()) else: self._device = ivy.as_ivy_dev("cpu") def _forward(self, *a, **kw): a, kw = ivy.args_to_native(*a, **kw) params_hk = self._dict_to_hk_flat_map(self.v.cont_to_dict()) ret = self._native_module.apply(params_hk, 0, *a, **kw) nested = isinstance(ret, tuple) return ivy.to_native(ret, nested=nested) def _hk_flat_map_to_dict(self, hk_flat_map): from haiku._src.data_structures import FlatMapping ret_dict = {} for k, v in hk_flat_map.items(): new_k = k.replace("/", "|") if isinstance(v, FlatMapping): ret_dict[new_k] = self._hk_flat_map_to_dict(v) else: ret_dict[new_k] = v return ret_dict def _dict_to_hk_flat_map(self, dict_in): from haiku._src.data_structures import FlatMapping ret_flat_map = {} for k, v in dict_in.items(): new_k = k.replace("|", "/") if isinstance(v, dict): ret_flat_map[new_k] = self._dict_to_hk_flat_map(v) else: ret_flat_map[new_k] = v return FlatMapping(ret_flat_map) class _FlaxIvyModule(Module): def __init__(self, *args, params_fx, native_module, device, devices, **kwargs): self._native_module = native_module self._args = args self._kwargs = kwargs ivy.Module.__init__( self, params_fx, *args, build_mode="on_init", device=device, devices=devices, **kwargs, ) def _create_variables(self, device, dtype): return self._fx_params def _build(self, params_fx, *args, **kwargs): import flax args, kwargs = ivy.args_to_native(*args, **kwargs) # noinspection PyUnresolvedReferences params_dict = flax.core.unfreeze(params_fx) self._fx_params = ivy.Container(params_dict, dynamic_backend=False) param_iterator = self._fx_params.cont_to_iterator() _, param0 = next(param_iterator, ["_", 0]) self._device = ivy.as_ivy_dev(ivy.dev(param0)) def _forward(self, *a, **kw): import flax a, kw = ivy.args_to_native(*a, **kw) params_fx = flax.core.freeze(self.v.cont_to_dict()) ret = self._native_module.apply(params_fx, *a, **kw) nested = isinstance(ret, tuple) return ivy.to_native(ret, nested=nested) class _KerasIvyModule(Module): def __init__(self, *args, native_module, device, devices, **kwargs): self._native_module = native_module self._args = args self._kwargs = kwargs ivy.Module.__init__(self, *args, device=device, devices=devices, **kwargs) def _create_variables(self, device=None, dtype=None): return self._native_params def _build(self, *args, **kwargs): self._native_params = ivy.Container( OrderedDict( sorted([(param.name, param) for param in self._native_module.variables]) ), dynamic_backend=False, ) def _forward(self, *a, **kw): a, kw = ivy.args_to_native(*a, **kw) ret = self._native_module(*a, **kw) nested = isinstance(ret, tuple) return ivy.to_native(ret, nested=nested) class _PaddleIvyModule(Module): def __init__(self, *args, native_module, device, devices, **kwargs): self._native_module = native_module self._args = args self._kwargs = kwargs ivy.Module.__init__(self, *args, device=device, devices=devices, **kwargs) def _create_variables(self, device=None, dtype=None): return self._native_params def _build(self, *args, **kwargs): self._native_params = ivy.Container( OrderedDict( sorted( [ (k.replace(".", "/"), v) for k, v in dict(self._native_module.named_parameters()).items() ] ) ), dynamic_backend=False, ) def _forward(self, *a, **kw): a, kw = ivy.args_to_native(*a, **kw) ret = self._native_module(*a, **kw) nested = isinstance(ret, tuple) return ivy.to_native(ret, nested=nested) class _TorchIvyModule(Module): def __init__(self, *args, native_module, device, devices, inplace_update, **kwargs): self._native_module = native_module self._args = args self._kwargs = kwargs self._update_v = ( self._inplace_update_v if inplace_update else self._replace_update_v ) ivy.Module.__init__(self, *args, device=device, devices=devices, **kwargs) def _create_variables(self, device=None, dtype=None): return self._native_params def _build(self, *args, **kwargs): self._native_params = ivy.Container( OrderedDict( sorted( [ (k.replace(".", "/"), v) for k, v in dict(self._native_module.named_parameters()).items() ] ) ), dynamic_backend=False, ) @staticmethod def _inplace_update(p, v): p.data = v.data def _inplace_update_v(self, new_v): ivy.Container.cont_multi_map( lambda xs, kc: self._inplace_update(xs[0], xs[1]), [self._native_params, new_v], ) def _replace_update_v(self, new_v, native=None): import torch native = ivy.default(native, self._native_module) for k, v in new_v.items(): if isinstance(v, ivy.Container): # noinspection PyProtectedMember native._modules[k] = self._replace_update_v(v, native._modules[k]) elif _is_variable(v): # noinspection PyProtectedMember native.__setattr__(k, v) elif isinstance(v, torch.Tensor): # noinspection PyProtectedMember native.__setattr__( k, torch.nn.Parameter(v, requires_grad=v.requires_grad) ) else: raise ivy.utils.exceptions.IvyException( f"found item in variable container {v} which was neither a sub" " ivy.Container nor a variable." ) return native def _forward(self, *a, **kw): a, kw = ivy.args_to_native(*a, **kw) self._update_v(self.v) ret = self._native_module(*a, **kw) nested = isinstance(ret, tuple) return ivy.to_native(ret, nested=nested)
ivy/ivy/stateful/module.py/0
{ "file_path": "ivy/ivy/stateful/module.py", "repo_id": "ivy", "token_count": 14058 }
49
# global from typing import get_type_hints # local import ivy def _is_optional(typ): # noinspection PyBroadException try: rep = typ.__repr__().split(".")[1] if rep.startswith("Optional") or ( rep.startswith("Union") and type(None) in typ.__args__ ): return True except BaseException as error: print(f"Exception occurred: {error}") return False def _is_union(typ): # noinspection PyBroadException try: rep = typ.__repr__().split(".")[1] if rep.startswith("Union"): return True except BaseException as error: print(f"Exception occurred: {error}") return False def _is_dict(typ): # noinspection PyBroadException try: rep = typ.__repr__().split(".")[1] if rep.startswith("Dict"): return True except BaseException as error: print(f"Exception occurred: {error}") return False def _is_iterable(typ): # noinspection PyBroadException try: rep = typ.__repr__().split(".")[1] if rep.startswith("List") or rep.startswith("Tuple"): return True except BaseException as error: print(f"Exception occurred: {error}") return False def _correct_index(is_opt, is_dict, is_iter): if is_opt: return ["optional"] elif is_dict: return [str] elif is_iter: return [int] return [] def _get_array_idxs(typ, idx_so_far=None): idx_so_far = ivy.default(idx_so_far, []) these_idxs = [] if not hasattr(typ, "__args__"): return these_idxs is_opt = _is_optional(typ) is_union = _is_union(typ) is_dict = _is_dict(typ) is_iter = _is_iterable(typ) for a in typ.__args__: a_repr = repr(a) if ( "[" not in a_repr and "]" not in a_repr and "ivy." in a_repr and (".Array" in a_repr or ".NativeArray" in a_repr) ): these_idxs.append(idx_so_far + _correct_index(is_opt, is_dict, is_iter)) if is_union: break else: these_idxs += _get_array_idxs( a, idx_so_far + _correct_index(is_opt, is_dict, is_iter) ) return these_idxs def fn_array_spec(fn): """Return a specification of the function, indicating all arguments which include arrays, and the indexes of these. Parameters ---------- fn function to inspect Returns ------- ret specification """ try: # this is because it raises error if python version 3.8.0, in certain cases type_hints = get_type_hints(fn) except Exception: type_hints = {} array_idxs = [] for i, (k, v) in enumerate(type_hints.items()): a_idxs = _get_array_idxs(v) if not a_idxs: continue a_idxs = [[(i, k)] + a for a in a_idxs] array_idxs += a_idxs return array_idxs def add_array_specs(): for k, v in ivy.__dict__.items(): if callable(v) and k[0].islower(): v.array_spec = fn_array_spec(v)
ivy/ivy/utils/inspection.py/0
{ "file_path": "ivy/ivy/utils/inspection.py", "repo_id": "ivy", "token_count": 1483 }
50
# Hypothesis strategies from . import hypothesis_helpers from .hypothesis_helpers import * # Testing from . import assertions from .assertions import * from . import function_testing from .function_testing import * from . import testing_helpers from .testing_helpers import *
ivy/ivy_tests/test_ivy/helpers/__init__.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/helpers/__init__.py", "repo_id": "ivy", "token_count": 73 }
51
from abc import ABC, abstractproperty, abstractmethod from dataclasses import dataclass from typing import List import ivy @dataclass class SupportedDeviecs: valid_devices: List[str] invalid_devices: List[str] # TODO can be refactored and be constructed dynamically @dataclass class SupportedDtypes: valid_dtypes: List[str] invalid_dtypes: List[str] valid_numeric_dtypes: List[str] invalid_numeric_dtypes: List[str] valid_int_dtypes: List[str] invalid_int_dtypes: List[str] valid_uint_dtypes: List[str] invalid_uint_dtypes: List[str] valid_float_dtypes: List[str] invalid_float_dtypes: List[str] valid_complex_dtypes: List[str] invalid_complex_dtypes: List[str] class FrontendConfig(ABC): @abstractproperty def supported_dtypes(self) -> SupportedDtypes: pass @abstractproperty def supported_devices(self) -> SupportedDeviecs: pass @abstractproperty def Dtype(self): pass @abstractproperty def Device(self): pass @abstractmethod def native_array(self, x): pass @abstractmethod def is_native_array(self, x): pass @abstractmethod def to_numpy(self, x): pass @abstractmethod def as_native_dtype(self, dtype: str): pass @abstractmethod def as_native_device(self, device: str): pass @abstractmethod def isscalar(self, x): pass class FrontendConfigWithBackend(FrontendConfig): backend_str = None def __init__(self): self.backend = ivy.with_backend(self.backend_str) @property def Dtype(self): return self.backend.Dtype @property def Device(self): return self.backend.Device @property def supported_devices(self): return SupportedDeviecs( valid_devices=self.backend.valid_devices, invalid_devices=self.backend.invalid_devices, ) @property def supported_dtypes(self): return SupportedDtypes( valid_dtypes=self.backend.valid_dtypes, invalid_dtypes=self.backend.invalid_dtypes, valid_numeric_dtypes=self.backend.valid_numeric_dtypes, invalid_numeric_dtypes=self.backend.invalid_numeric_dtypes, valid_int_dtypes=self.backend.valid_int_dtypes, invalid_int_dtypes=self.backend.invalid_int_dtypes, valid_uint_dtypes=self.backend.valid_uint_dtypes, invalid_uint_dtypes=self.backend.invalid_uint_dtypes, valid_float_dtypes=self.backend.valid_float_dtypes, invalid_float_dtypes=self.backend.invalid_float_dtypes, valid_complex_dtypes=self.backend.valid_complex_dtypes, invalid_complex_dtypes=self.backend.invalid_complex_dtypes, ) def native_array(self, x): return self.backend.native_array(x) def is_native_array(self, x): return self.backend.is_native_array(x) def to_numpy(self, x): return self.backend.to_numpy(x) def as_native_dtype(self, dtype: str): return self.backend.as_native_dtype(dtype) def as_native_device(self, device: str): return self.backend.as_native_dev(device) def isscalar(self, x): return self.backend.isscalar(x)
ivy/ivy_tests/test_ivy/test_frontends/config/base.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/config/base.py", "repo_id": "ivy", "token_count": 1442 }
52
# global from hypothesis import strategies as st # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # fft @handle_frontend_test( fn_tree="jax.numpy.fft.fft", dtype_values_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("complex"), num_arrays=1, min_value=-1e5, max_value=1e5, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, allow_inf=False, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", valid_axis=True, force_int_axis=True, ), n=st.integers(min_value=2, max_value=10), norm=st.sampled_from(["backward", "ortho", "forward", None]), ) def test_jax_numpy_fft( dtype_values_axis, n, norm, frontend, backend_fw, test_flags, fn_tree, on_device ): dtype, values, axis = dtype_values_axis helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=values[0], n=n, axis=axis, norm=norm, atol=1e-02, rtol=1e-02, ) # fft2 @handle_frontend_test( fn_tree="jax.numpy.fft.fft2", dtype_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("complex"), num_arrays=1, min_value=-1e5, max_value=1e5, min_num_dims=2, max_num_dims=5, min_dim_size=2, max_dim_size=5, allow_inf=False, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ), axes=st.sampled_from([(0, 1), (-1, -2), (1, 0)]), s=st.tuples( st.integers(min_value=2, max_value=256), st.integers(min_value=2, max_value=256) ), norm=st.sampled_from(["backward", "ortho", "forward", None]), ) def test_jax_numpy_fft2( dtype_values, s, axes, norm, frontend, backend_fw, test_flags, fn_tree, on_device, ): dtype, values = dtype_values helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=values[0], s=s, axes=axes, norm=norm, atol=1e-02, rtol=1e-02, ) # fftfreq @handle_frontend_test( fn_tree="jax.numpy.fft.fftfreq", n=st.integers(min_value=10, max_value=100), sample_rate=st.integers(min_value=1, max_value=10), dtype=st.one_of(helpers.get_dtypes("float", full=False), st.none()), ) def test_jax_numpy_fftfreq( n, sample_rate, dtype, backend_fw, frontend, test_flags, fn_tree, on_device ): d = 1 / sample_rate dtype = dtype[0] if dtype is not None else None helpers.test_frontend_function( input_dtypes=[int], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=True, n=n, d=d, dtype=dtype, ) # fftshift @handle_frontend_test( fn_tree="jax.numpy.fft.fftshift", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=(4,), array_api_dtypes=True ), ) def test_jax_numpy_fftshift( dtype_and_x, backend_fw, frontend, test_flags, fn_tree, on_device ): input_dtype, arr = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=True, x=arr[0], axes=None, ) # ifft @handle_frontend_test( fn_tree="jax.numpy.fft.ifft", dtype_values_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("complex"), num_arrays=1, min_value=-1e5, max_value=1e5, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, allow_inf=False, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", valid_axis=True, force_int_axis=True, ), n=st.integers(min_value=2, max_value=10), norm=st.sampled_from(["backward", "ortho", "forward", None]), ) def test_jax_numpy_ifft( dtype_values_axis, n, norm, frontend, backend_fw, test_flags, fn_tree, on_device ): dtype, values, axis = dtype_values_axis helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=values[0], n=n, axis=axis, norm=norm, atol=1e-02, rtol=1e-02, ) # ifft2 @handle_frontend_test( fn_tree="jax.numpy.fft.ifft2", dtype_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=1, min_value=-1e5, max_value=1e5, min_num_dims=2, max_num_dims=5, min_dim_size=2, max_dim_size=5, allow_inf=False, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ), axes=st.sampled_from([(0, 1), (-1, -2), (1, 0)]), s=st.tuples( st.integers(min_value=2, max_value=256), st.integers(min_value=2, max_value=256) ), norm=st.sampled_from(["backward", "ortho", "forward", None]), ) def test_jax_numpy_ifft2( dtype_values, s, axes, norm, frontend, backend_fw, test_flags, fn_tree, on_device, ): dtype, values = dtype_values helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=values[0], s=s, axes=axes, norm=norm, atol=1e-02, rtol=1e-02, ) # rfft @handle_frontend_test( fn_tree="jax.numpy.fft.rfft", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("float"), num_arrays=1, min_value=-1e5, max_value=1e5, min_num_dims=1, min_dim_size=2, allow_inf=False, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", valid_axis=True, force_int_axis=True, ), n=st.one_of( st.integers(min_value=2, max_value=10), st.just(None), ), norm=st.sampled_from(["backward", "ortho", "forward", None]), ) def test_jax_numpy_rfft( dtype_input_axis, n, norm, frontend, backend_fw, test_flags, fn_tree, on_device ): input_dtype, x, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], n=n, axis=axis, norm=norm, atol=1e-04, rtol=1e-04, )
ivy/ivy_tests/test_ivy/test_frontends/test_jax/test_numpy/test_fft.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_jax/test_numpy/test_fft.py", "repo_id": "ivy", "token_count": 3924 }
53
import numpy from ivy_tests.test_ivy.test_frontends import NativeClass numpy_classes_to_ivy_classes = {numpy._NoValue: None} def convnumpy(argument): """Convert NativeClass in argument to ivy frontend counterpart for numpy.""" if isinstance(argument, NativeClass): return numpy_classes_to_ivy_classes.get(argument._native_class) return argument
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/__init__.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/__init__.py", "repo_id": "ivy", "token_count": 129 }
54
# global import numpy as np from hypothesis import strategies as st # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # --- Helpers --- # # --------------- # # resize @st.composite def dtype_and_resize(draw): dtype, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=2, max_dim_size=10, ), ) ) new_shape = draw( helpers.get_shape( allow_none=False, min_num_dims=2, max_num_dims=5, min_dim_size=2, max_dim_size=10, ), ) return dtype, x, new_shape @st.composite def dtypes_x_reshape(draw): dtypes, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), ) ) shape = draw(helpers.reshape_shapes(shape=np.array(x).shape)) return dtypes, x, shape # asanyarray @handle_frontend_test( fn_tree="numpy.asanyarray", dtype_and_a=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")), test_with_out=st.just(False), ) def test_numpy_asanyarray( *, dtype_and_a, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, a = dtype_and_a helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=a[0], ) # asarray_chkfinite @handle_frontend_test( fn_tree="numpy.asarray_chkfinite", dtype_and_a=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")), test_with_out=st.just(False), ) def test_numpy_asarray_chkfinite( *, dtype_and_a, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, a = dtype_and_a helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=a[0], ) # asfarray @handle_frontend_test( fn_tree="numpy.asfarray", dtype_and_a=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")), ) def test_numpy_asfarray( *, dtype_and_a, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, a = dtype_and_a helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=a[0], ) @handle_frontend_test( fn_tree="numpy.broadcast_to", dtype_x_shape=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ret_shape=True ), factor=helpers.ints(min_value=1, max_value=5), test_with_out=st.just(False), ) def test_numpy_broadcast_to( *, dtype_x_shape, factor, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x, shape = dtype_x_shape broadcast_shape = (factor,) + shape helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, array=x[0], shape=broadcast_shape, ) # moveaxis @handle_frontend_test( fn_tree="numpy.moveaxis", dtype_and_a=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=-100, max_value=100, shape=st.shared( helpers.get_shape( min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ), key="a_s_d", ), ), source=helpers.get_axis( allow_none=False, unique=True, shape=st.shared( helpers.get_shape( min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ), key="a_s_d", ), min_size=1, force_int=True, ), destination=helpers.get_axis( allow_none=False, unique=True, shape=st.shared( helpers.get_shape( min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ), key="a_s_d", ), min_size=1, force_int=True, ), test_with_out=st.just(False), ) def test_numpy_moveaxis( *, dtype_and_a, source, destination, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, a = dtype_and_a helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=a[0], source=source, destination=destination, ) @handle_frontend_test( fn_tree="numpy.ravel", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), order=st.sampled_from(["C", "F", "A", "K"]), test_with_out=st.just(False), ) def test_numpy_ravel( *, dtype_and_x, order, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], order=order, ) # require @handle_frontend_test( fn_tree="numpy.require", dtype_and_a=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")), requirements=st.sampled_from(["C", "F", "A", "O", "W", "E"]), like=st.just(None), test_with_out=st.just(False), ) def test_numpy_require( *, dtype_and_a, requirements, like, on_device, fn_tree, frontend, backend_fw, test_flags, ): dtype, a = dtype_and_a helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=a[0], dtype=np.dtype(dtype[0]), requirements=requirements, like=like, ) # reshape @handle_frontend_test( fn_tree="numpy.reshape", dtypes_x_shape=dtypes_x_reshape(), order=st.sampled_from(["C", "F", "A"]), ) def test_numpy_reshape( *, dtypes_x_shape, order, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtypes, x, shape = dtypes_x_shape helpers.test_frontend_function( input_dtypes=dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], newshape=shape, order=order, ) @handle_frontend_test( fn_tree="numpy.resize", dtypes_x_shape=dtype_and_resize(), ) def test_numpy_resize( *, dtypes_x_shape, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x, new_shape = dtypes_x_shape helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], newshape=new_shape, )
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_manipulation_routines/test_changing_array_shape.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_manipulation_routines/test_changing_array_shape.py", "repo_id": "ivy", "token_count": 4373 }
55
# global from hypothesis import assume, strategies as st import numpy as np # local import ivy_tests.test_ivy.helpers as helpers import ivy_tests.test_ivy.test_frontends.test_numpy.helpers as np_frontend_helpers from ivy_tests.test_ivy.helpers import handle_frontend_test import ivy # --- Helpers --- # # --------------- # @st.composite def _get_clip_inputs(draw): shape = draw( helpers.get_shape( min_num_dims=1, max_num_dims=5, min_dim_size=2, max_dim_size=10 ) ) x_dtype, x, casting, dtype = draw( np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=shape, ) ], ), ) min = draw( helpers.array_values(dtype=x_dtype[0], shape=shape, min_value=-50, max_value=5) ) max = draw( helpers.array_values(dtype=x_dtype[0], shape=shape, min_value=6, max_value=50) ) return x_dtype, x, min, max, casting, dtype # --- Main --- # # ------------ # # absolute @handle_frontend_test( fn_tree="numpy.absolute", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), ) ], ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="absolute" ), ) def test_numpy_absolute( dtypes_values_casting, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], out=None, where=where, casting=casting, order="K", dtype=dtype, subok=True, ) # cbrt @handle_frontend_test( fn_tree="numpy.cbrt", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ) ], ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="cbrt" ), ) def test_numpy_cbrt( dtypes_values_casting, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-2, atol=1e-2, x=x[0], out=None, where=where, casting=casting, order="K", dtype=dtype, subok=True, ) # clip @handle_frontend_test( fn_tree="numpy.clip", input_and_ranges=_get_clip_inputs(), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="clip" ), test_with_out=st.just(False), ) def test_numpy_clip( input_and_ranges, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, min, max, casting, dtype = input_and_ranges where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], a_min=min, a_max=max, out=None, where=where, casting=casting, order="K", dtype=dtype, subok=True, ) @handle_frontend_test( fn_tree="numpy.convolve", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=1, max_num_dims=1, num_arrays=2, min_value=-10, max_value=10, shared_dtype=True, ), mode=st.sampled_from(["valid", "same", "full"]), test_with_out=st.just(False), ) def test_numpy_convolve( dtype_and_x, mode, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, xs = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=xs[0], v=xs[1], mode=mode, ) # copysign @handle_frontend_test( fn_tree="numpy.copysign", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, min_value=-100, max_value=100, ) ], ), where=np_frontend_helpers.where(), test_with_out=st.just(False), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="copysign" ), ) def test_numpy_copysign( dtypes_values_casting, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, xs, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-2, atol=1e-2, x1=xs[0], x2=xs[1], out=None, where=where, casting=casting, order="K", dtype=dtype, subok=True, ) # fabs @handle_frontend_test( fn_tree="numpy.fabs", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ) ], ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="fabs" ), ) def test_numpy_fabs( dtypes_values_casting, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], out=None, where=where, casting=casting, order="K", dtype=dtype, subok=True, ) # gcd @handle_frontend_test( fn_tree="numpy.gcd", dtype_and_inputs=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), num_arrays=2, shared_dtype=False, min_num_dims=1, max_num_dims=3, min_value=-100, max_value=100, allow_nan=False, ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="gcd" ), ) def test_numpy_gcd( dtype_and_inputs, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, xs = dtype_and_inputs where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x1=xs[0], x2=xs[1], out=None, where=where, ) # heaviside @handle_frontend_test( fn_tree="numpy.heaviside", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, ) ], ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="heaviside" ), ) def test_numpy_heaviside( dtypes_values_casting, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, (x1_list, x2_list), casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x1=x1_list, x2=x2_list, out=None, where=where, casting=casting, order="K", dtype=dtype, subok=True, ) # interp @handle_frontend_test( fn_tree="numpy.interp", xp_and_fp=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, min_num_dims=1, max_num_dims=1, min_dim_size=3, min_value=-10000, max_value=10000, ), x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")), left=st.one_of(st.none(), st.floats()), right=st.one_of(st.none(), st.floats()), period=st.one_of( st.none(), st.floats( allow_nan=False, allow_infinity=False, allow_subnormal=False, min_value=0.1, max_value=1.0e5, exclude_min=True, ), ), test_with_out=st.just(False), ) def test_numpy_interp( frontend, test_flags, fn_tree, backend_fw, on_device, xp_and_fp, x, left, right, period, ): input_dtypes, xp_fp = xp_and_fp xp = ivy.array(xp_fp[0]) fp = ivy.array(xp_fp[1]) if period is None: xp_order = ivy.argsort(xp) xp = xp[xp_order] fp = fp[xp_order] previous = xp[0] for i in xp[1:]: assume(i > previous) previous = i x_dtype, x = x np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes + x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], xp=xp, fp=fp, left=left, right=right, period=period, ) # lcm @handle_frontend_test( fn_tree="numpy.lcm", dtype_and_inputs=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), num_arrays=2, shared_dtype=True, min_num_dims=1, max_num_dims=3, min_value=-100, max_value=100, allow_nan=False, ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="lcm" ), ) def test_numpy_lcm( dtype_and_inputs, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, xs = dtype_and_inputs where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x1=xs[0], x2=xs[1], out=None, where=where, ) # nan_to_num @handle_frontend_test( fn_tree="numpy.nan_to_num", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=-np.inf, max_value=+np.inf, allow_nan=True, ), posinf=st.one_of(st.none(), st.floats(min_value=0, max_value=10000)), neginf=st.one_of(st.none(), st.floats(min_value=-10000, max_value=0)), nan=st.floats(min_value=0, max_value=10), copy=st.booleans(), test_with_out=st.just(False), test_with_copy=st.just(True), ) def test_numpy_nan_to_num( dtype_and_x, copy, nan, fn_tree, frontend, test_flags, backend_fw, on_device, posinf, neginf, ): input_dtype, x = dtype_and_x # to avoid overflow errors of tf as you can't easily create a tensor # close to tf.dtype.max or tf.dtype.min, we need to assume that if ivy.current_backend_str() == "tensorflow": assume(posinf is not None and neginf is not None) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], copy=copy, nan=nan, posinf=posinf, neginf=neginf, ) # real_if_close @handle_frontend_test( fn_tree="numpy.real_if_close", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), min_dim_size=1, min_num_dims=1, ).filter(lambda x: "bfloat16" not in x[0]), tol=st.integers(min_value=1, max_value=1000), test_with_out=st.just(False), ) def test_numpy_real_if_close( dtype_and_x, tol, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_x np_frontend_helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], tol=tol, ) # reciprocal @handle_frontend_test( fn_tree="numpy.reciprocal", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ) ], ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="reciprocal" ), ) def test_numpy_reciprocal( dtypes_values_casting, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], atol=1e-2, out=None, where=where, casting=casting, order="K", dtype=dtype, subok=True, ) # sign @handle_frontend_test( fn_tree="numpy.sign", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), ) ], ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="sign" ), ) def test_numpy_sign( dtypes_values_casting, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], out=None, where=where, casting=casting, order="K", dtype=dtype, subok=True, ) # sqrt @handle_frontend_test( fn_tree="numpy.sqrt", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ) ], ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="sqrt" ), ) def test_numpy_sqrt( dtypes_values_casting, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], atol=1e-2, out=None, where=where, casting=casting, order="K", dtype=dtype, subok=True, ) # square @handle_frontend_test( fn_tree="numpy.square", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), ) ], ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="square" ), ) def test_numpy_square( dtypes_values_casting, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], out=None, where=where, casting=casting, order="K", dtype=dtype, subok=True, )
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_mathematical_functions/test_miscellaneous.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_mathematical_functions/test_miscellaneous.py", "repo_id": "ivy", "token_count": 10471 }
56
import hypothesis.extra.numpy as hnp from hypothesis import strategies as st import numpy as np # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # --- Helpers --- # # --------------- # @st.composite def _broadcastable_trio(draw): dtype = draw(helpers.get_dtypes("valid", full=False)) shapes_st = draw( hnp.mutually_broadcastable_shapes(num_shapes=3, min_dims=1, min_side=1) ) cond_shape, x1_shape, x2_shape = shapes_st.input_shapes cond = draw(hnp.arrays(hnp.boolean_dtypes(), cond_shape)) x1 = draw(helpers.array_values(dtype=dtype[0], shape=x1_shape)) x2 = draw(helpers.array_values(dtype=dtype[0], shape=x2_shape)) return cond, x1, x2, (dtype * 2) @st.composite def _extract_strategy(draw): dtype_and_cond = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ) ) dtype_and_arr = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ) ) return dtype_and_cond, dtype_and_arr # searchsorted @st.composite def _search_sorted_values(draw): case = st.booleans() if case: # when x is 1-D and v is N-D dtype_x, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes( "numeric", full=False, key="searchsorted" ), shape=(draw(st.integers(min_value=1, max_value=5)),), ), ) dtype_v, v = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes( "numeric", full=False, key="searchsorted" ), min_num_dims=1, ) ) else: # when x is N-D and v is N-D lead_dim = draw( helpers.get_shape(min_num_dims=1), ) nx = draw(st.integers(min_value=1, max_value=5)) nv = draw(st.integers(min_value=1, max_value=5)) dtype_x, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes( "numeric", full=False, key="searchsorted" ), shape=lead_dim + (nx,), ), ) dtype_v, v = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes( "numeric", full=False, key="searchsorted" ), shape=lead_dim + (nv,), ), ) input_dtypes = dtype_x + dtype_v xs = x + v side = draw(st.sampled_from(["left", "right"])) use_sorter = draw(st.booleans()) if use_sorter: sorter_dtype = draw(st.sampled_from(["int32", "int64"])) input_dtypes.append(sorter_dtype) sorter = np.argsort(xs[0], axis=-1).astype(sorter_dtype) else: sorter = None xs[0] = np.sort(xs[0], axis=-1) return input_dtypes, xs, side, sorter # --- Main --- # # ------------ # # argmax @handle_frontend_test( fn_tree="numpy.argmax", dtype_x_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_axis=-1, max_axis=0, min_num_dims=1, force_int_axis=True, ), keep_dims=st.booleans(), test_with_out=st.just(False), ) def test_numpy_argmax( dtype_x_axis, frontend, test_flags, fn_tree, backend_fw, on_device, keep_dims, ): input_dtype, x, axis = dtype_x_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], axis=axis, keepdims=keep_dims, ) # argmin @handle_frontend_test( fn_tree="numpy.argmin", dtype_x_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_axis=-1, max_axis=0, min_num_dims=1, force_int_axis=True, ), keep_dims=st.booleans(), test_with_out=st.just(False), ) def test_numpy_argmin( dtype_x_axis, frontend, test_flags, fn_tree, backend_fw, on_device, keep_dims, ): input_dtype, x, axis = dtype_x_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], axis=axis, keepdims=keep_dims, ) # argwhere @handle_frontend_test( fn_tree="numpy.argwhere", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), test_with_out=st.just(False), ) def test_numpy_argwhere( dtype_and_x, frontend, test_flags, fn_tree, backend_fw, on_device, ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], ) # extract @handle_frontend_test( fn_tree="numpy.extract", dtype_and_x=_extract_strategy(), test_with_out=st.just(False), ) def test_numpy_extract( dtype_and_x, frontend, test_flags, fn_tree, backend_fw, on_device, ): dtype_cond, cond = dtype_and_x[0] dtype_arr, arr = dtype_and_x[1] helpers.test_frontend_function( input_dtypes=dtype_cond + dtype_arr, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, cond=cond[0], arr=arr[0], ) # flatnonzero @handle_frontend_test( fn_tree="numpy.flatnonzero", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), test_with_out=st.just(False), ) def test_numpy_flatnonzero( dtype_and_x, frontend, test_flags, fn_tree, backend_fw, on_device, ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], ) # nanargmax @handle_frontend_test( fn_tree="numpy.nanargmax", dtype_x_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_axis=-1, max_axis=0, min_num_dims=1, force_int_axis=True, ), keep_dims=st.booleans(), test_with_out=st.just(False), ) def test_numpy_nanargmax( dtype_x_axis, frontend, test_flags, fn_tree, backend_fw, on_device, keep_dims, ): input_dtype, x, axis = dtype_x_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], axis=axis, keepdims=keep_dims, ) # nanargmin @handle_frontend_test( fn_tree="numpy.nanargmin", dtype_x_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_axis=-1, max_axis=0, min_num_dims=1, force_int_axis=True, ), keep_dims=st.booleans(), test_with_out=st.just(False), ) def test_numpy_nanargmin( dtype_x_axis, frontend, test_flags, fn_tree, backend_fw, on_device, keep_dims, ): input_dtype, x, axis = dtype_x_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], axis=axis, keepdims=keep_dims, ) # nonzero @handle_frontend_test( fn_tree="numpy.nonzero", dtype_and_a=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), test_with_out=st.just(False), ) def test_numpy_nonzero( dtype_and_a, frontend, test_flags, fn_tree, backend_fw, on_device, ): dtype, a = dtype_and_a helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=a[0], ) @handle_frontend_test( fn_tree="numpy.searchsorted", dtype_x_v_side_sorter=_search_sorted_values(), test_with_out=st.just(False), ) def test_numpy_searchsorted( dtype_x_v_side_sorter, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, xs, side, sorter = dtype_x_v_side_sorter helpers.test_frontend_function( input_dtypes=input_dtypes + ["int64"], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=xs[0], v=xs[1], side=side, sorter=sorter, ) # where @handle_frontend_test( fn_tree="numpy.where", broadcastables=_broadcastable_trio(), test_with_out=st.just(False), ) def test_numpy_where( broadcastables, frontend, test_flags, fn_tree, backend_fw, on_device, ): cond, x1, x2, dtype = broadcastables helpers.test_frontend_function( input_dtypes=["bool", dtype], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, cond=cond, x1=x1, x2=x2, )
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_sorting_searching_counting/test_searching.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_sorting_searching_counting/test_searching.py", "repo_id": "ivy", "token_count": 5148 }
57
# global from hypothesis import strategies as st # local import ivy_tests.test_ivy.helpers as helpers import ivy_tests.test_ivy.helpers.globals as test_globals from ivy_tests.test_ivy.helpers import handle_frontend_test, BackendHandler # --- Helpers --- # # --------------- # @st.composite def _input_fill_and_dtype(draw): dtype = draw(helpers.get_dtypes("float", full=False)) with BackendHandler.update_backend(test_globals.CURRENT_BACKEND) as ivy_backend: dtype_and_input = draw(helpers.dtype_and_values(dtype=dtype)) if ivy_backend.is_uint_dtype(dtype[0]): fill_values = draw(st.integers(min_value=0, max_value=5)) elif ivy_backend.is_int_dtype(dtype[0]): fill_values = draw(st.integers(min_value=-5, max_value=5)) else: fill_values = draw(st.floats(min_value=-5, max_value=5)) dtype_to_cast = draw(helpers.get_dtypes("float", full=False)) return dtype, dtype_and_input[1], fill_values, dtype_to_cast[0] # --- Main --- # # ------------ # # arange @handle_frontend_test( fn_tree="paddle.arange", start=helpers.ints(min_value=-50, max_value=0), end=helpers.ints(min_value=1, max_value=50), step=helpers.ints(min_value=1, max_value=5), dtype=helpers.get_dtypes("float"), test_with_out=st.just(False), ) def test_paddle_arange( start, end, step, dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, start=start, end=end, step=step, dtype=dtype[0], ) # assign @handle_frontend_test( fn_tree="paddle.assign", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2, shared_dtype=True, ), test_with_out=st.just(True), ) def test_paddle_assign( dtype_and_x, test_flags, backend_fw, frontend, fn_tree, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], output=x[1], ) # clone @handle_frontend_test( fn_tree="paddle.clone", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), test_with_copy=st.just(True), ) def test_paddle_clone( *, dtype_and_x, test_flags, frontend, backend_fw, fn_tree, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], ) # complex @handle_frontend_test( fn_tree="paddle.complex", dtype_and_arrays=helpers.dtype_and_values( available_dtypes=["float32", "float64"], shared_dtype=True, num_arrays=2 ), ) def test_paddle_complex( dtype_and_arrays, test_flags, backend_fw, frontend, fn_tree, on_device, ): input_dtype, (real, imag) = dtype_and_arrays helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, real=real, imag=imag, ) # diag @handle_frontend_test( fn_tree="paddle.diag", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=2, min_dim_size=1, max_dim_size=5, ), k=helpers.ints(min_value=-1, max_value=1), p=st.one_of( helpers.ints(min_value=-25, max_value=25), helpers.floats(min_value=-25, max_value=25), ), ) def test_paddle_diag( dtype_and_x, k, p, backend_fw, frontend, test_flags, fn_tree, on_device, ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], offset=k, padding_value=p, ) # diagflat @handle_frontend_test( fn_tree="paddle.diagflat", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), offset=st.integers(min_value=-4, max_value=4), test_with_out=st.just(False), ) def test_paddle_diagflat( dtype_and_values, offset, test_flags, backend_fw, frontend, fn_tree, on_device, ): input_dtype, x = dtype_and_values helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, x=x[0], offset=offset, ) # empty @handle_frontend_test( fn_tree="paddle.empty", shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), dtype=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), ) def test_paddle_empty( shape, dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, shape=shape, dtype=dtype[0], ) # empty_like @handle_frontend_test( fn_tree="paddle.empty_like", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), dtype=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), ) def test_paddle_empty_like( dtype_and_x, dtype, test_flags, frontend, backend_fw, fn_tree, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, x=x[0], dtype=dtype[0], ) # eye @handle_frontend_test( fn_tree="paddle.eye", num_rows=helpers.ints(min_value=3, max_value=10), num_columns=st.none() | helpers.ints(min_value=3, max_value=10), dtypes=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), ) def test_paddle_eye( *, num_rows, num_columns, dtypes, on_device, fn_tree, test_flags, frontend, backend_fw, ): helpers.test_frontend_function( input_dtypes=dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, num_rows=num_rows, num_columns=num_columns, dtype=dtypes[0], ) # full @handle_frontend_test( fn_tree="paddle.full", shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), input_fill_dtype=_input_fill_and_dtype(), test_with_out=st.just(False), ) def test_paddle_full( shape, input_fill_dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x, fill, dtype_to_cast = input_fill_dtype helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, shape=shape, fill_value=fill, dtype=dtype_to_cast, ) # full_like @handle_frontend_test( fn_tree="paddle.full_like", input_fill_dtype=_input_fill_and_dtype(), test_with_out=st.just(False), ) def test_paddle_full_like( input_fill_dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x, fill, dtype_to_cast = input_fill_dtype helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], fill_value=fill, dtype=dtype_to_cast, ) # linspace @handle_frontend_test( fn_tree="paddle.linspace", start=helpers.floats(min_value=-10, max_value=10), stop=helpers.floats(min_value=-10, max_value=10), num=helpers.ints(min_value=1, max_value=5), dtype=helpers.get_dtypes("float"), test_with_out=st.just(False), ) def test_paddle_linspace( start, stop, num, dtype, frontend, test_flags, fn_tree, on_device, backend_fw, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, start=start, stop=stop, num=num, dtype=dtype[0], ) # logspace @handle_frontend_test( fn_tree="paddle.logspace", start=helpers.floats(min_value=-10, max_value=10), stop=helpers.floats(min_value=-10, max_value=10), num=helpers.ints(min_value=1, max_value=5), base=st.floats(min_value=0.1, max_value=10.0), dtype=helpers.get_dtypes("float"), test_with_out=st.just(False), ) def test_paddle_logspace( start, stop, num, base, dtype, frontend, test_flags, fn_tree, on_device, backend_fw, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, start=start, stop=stop, num=num, base=base, dtype=dtype[0], ) @handle_frontend_test( fn_tree="paddle.meshgrid", dtype_and_arrays=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=st.integers(min_value=2, max_value=5), min_num_dims=1, max_num_dims=1, shared_dtype=True, ), test_with_out=st.just(False), ) def test_paddle_meshgrid( dtype_and_arrays, test_flags, backend_fw, frontend, fn_tree, on_device, ): input_dtype, arrays = dtype_and_arrays args = {} i = 0 for x_ in arrays: args[f"x{i}"] = x_ i += 1 test_flags.num_positional_args = len(arrays) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **args, ) # ones @handle_frontend_test( fn_tree="paddle.ones", shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), dtype=helpers.get_dtypes("valid"), test_with_out=st.just(False), ) def test_paddle_ones( shape, dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, shape=shape, dtype=dtype[0], ) # ones_like @handle_frontend_test( fn_tree="paddle.ones_like", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), dtype=helpers.get_dtypes("valid"), test_with_out=st.just(False), ) def test_paddle_ones_like( dtype_and_x, dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], dtype=dtype[0], ) # Tests # # ----- # # to_tensor @handle_frontend_test( fn_tree="paddle.to_tensor", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), dtype=helpers.get_dtypes("valid"), ) def test_paddle_to_tensor( *, dtype_and_x, dtype, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, data=input[0], dtype=dtype[0], place=on_device, ) # tril @handle_frontend_test( fn_tree="paddle.tril", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=2, ), diagonal=st.integers(min_value=-100, max_value=100), ) def test_paddle_tril( *, dtype_and_values, diagonal, backend_fw, on_device, fn_tree, frontend, test_flags, ): dtype, values = dtype_and_values helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=values[0], diagonal=diagonal, ) # tril_indices @handle_frontend_test( fn_tree="paddle.tril_indices", dtype=helpers.get_dtypes("valid", full=False), row=st.integers(min_value=1, max_value=5), col=st.integers(min_value=1, max_value=5), offset=st.integers(min_value=-4, max_value=4), test_with_out=st.just(False), ) def test_paddle_tril_indices( row, col, offset, dtype, test_flags, backend_fw, frontend, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, row=row, col=col, offset=offset, dtype=dtype[0], ) # triu @handle_frontend_test( fn_tree="paddle.triu", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=2, ), diagonal=st.integers(min_value=-100, max_value=100), ) def test_paddle_triu( *, dtype_and_values, diagonal, on_device, backend_fw, fn_tree, frontend, test_flags, ): dtype, values = dtype_and_values helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=values[0], diagonal=diagonal, ) # triu_indices @handle_frontend_test( fn_tree="paddle.triu_indices", dtype=helpers.get_dtypes("valid", full=False), row=st.integers(min_value=1, max_value=5), col=st.integers(min_value=1, max_value=5), offset=st.integers(min_value=-4, max_value=4), test_with_out=st.just(False), ) def test_paddle_triu_indices( row, col, offset, dtype, test_flags, backend_fw, frontend, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, row=row, col=col, offset=offset, dtype=dtype[0], ) # zeros @handle_frontend_test( fn_tree="paddle.zeros", shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), dtype=helpers.get_dtypes("valid"), test_with_out=st.just(False), ) def test_paddle_zeros( shape, dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, shape=shape, dtype=dtype[0], ) # zeros_like @handle_frontend_test( fn_tree="paddle.zeros_like", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), dtype=helpers.get_dtypes("valid"), test_with_out=st.just(False), ) def test_paddle_zeros_like( dtype_and_x, dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], dtype=dtype[0], )
ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_creation.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_creation.py", "repo_id": "ivy", "token_count": 9079 }
58
# global import ivy from hypothesis import assume, strategies as st # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # --- Helpers --- # # --------------- # @st.composite def _affine_grid_helper(draw): align_corners = draw(st.booleans()) dims = draw(st.integers(4, 5)) if dims == 4: size = draw( st.tuples( st.integers(1, 20), st.integers(1, 20), st.integers(2, 20), st.integers(2, 20), ) ) theta_dtype, theta = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=0, max_value=1, shape=(size[0], 2, 3), ) ) return theta_dtype, theta[0], size, align_corners else: size = draw( st.tuples( st.integers(1, 20), st.integers(1, 20), st.integers(2, 20), st.integers(2, 20), st.integers(2, 20), ) ) theta_dtype, theta = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=0, max_value=1, shape=(size[0], 3, 4), ) ) return theta_dtype, theta[0], size, align_corners @st.composite def _image_shape_helper(draw, data_format): n = draw(helpers.ints(min_value=1, max_value=10), label="batch") c = draw(st.sampled_from([1, 3]), label="channel") h = draw(helpers.ints(min_value=1, max_value=100), label="height") w = draw(helpers.ints(min_value=1, max_value=100), label="width") if data_format == "NCHW": shape = (n, c, h, w) else: shape = (n, h, w, c) return shape # --- Main --- # # ------------ # @handle_frontend_test( fn_tree="paddle.nn.functional.affine_grid", dtype_and_input_and_other=_affine_grid_helper(), ) def test_paddle_affine_grid( *, dtype_and_input_and_other, on_device, backend_fw, fn_tree, frontend, test_flags ): dtype, theta, size, align_corners = dtype_and_input_and_other helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, theta=theta, out_shape=size, align_corners=align_corners, ) # channel_shuffle @handle_frontend_test( fn_tree="paddle.nn.functional.channel_shuffle", dtype_and_x=helpers.dtype_and_values( available_dtypes=["float32", "float64"], shape=_image_shape_helper(data_format=st.sampled_from(["NCHW", "NHWC"])), ), groups=helpers.ints(min_value=1), data_format=st.sampled_from(["NCHW", "NHWC"]), ) def test_paddle_channel_shuffle( *, dtype_and_x, groups, data_format, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x if data_format == "NCHW": assume(ivy.shape(x[0])[1] % groups == 0) else: assume(ivy.shape(x[0])[3] % groups == 0) helpers.test_frontend_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, on_device=on_device, frontend=frontend, fn_tree=fn_tree, x=x[0], groups=groups, data_format=data_format, ) # pixel_shuffle @handle_frontend_test( fn_tree="paddle.nn.functional.pixel_shuffle", dtype_and_x=helpers.dtype_and_values( available_dtypes=["float32", "float64"], min_value=0, min_num_dims=4, max_num_dims=4, min_dim_size=3, ), factor=helpers.ints(min_value=1), data_format=st.sampled_from(["NCHW", "NHWC"]), ) def test_paddle_pixel_shuffle( *, dtype_and_x, factor, data_format, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x if data_format == "NCHW": assume(ivy.shape(x[0])[1] % (factor**2) == 0) else: assume(ivy.shape(x[0])[3] % (factor**2) == 0) helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], upscale_factor=factor, data_format=data_format, backend_to_test=backend_fw, ) # pixel_unshuffle @handle_frontend_test( fn_tree="paddle.nn.functional.pixel_unshuffle", dtype_and_x=helpers.dtype_and_values( available_dtypes=["float32", "float64"], min_value=0, min_num_dims=4, max_num_dims=4, min_dim_size=3, ), factor=helpers.ints(min_value=1), data_format=st.sampled_from(["NCHW", "NHWC"]), ) def test_paddle_pixel_unshuffle( *, dtype_and_x, factor, data_format, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x if data_format == "NCHW": assume(ivy.shape(x[0])[2] % factor == 0) assume(ivy.shape(x[0])[3] % factor == 0) else: assume(ivy.shape(x[0])[1] % factor == 0) assume(ivy.shape(x[0])[2] % factor == 0) helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], downscale_factor=factor, data_format=data_format, backend_to_test=backend_fw, )
ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_nn/test_functional/test_vision.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_nn/test_functional/test_vision.py", "repo_id": "ivy", "token_count": 2970 }
59
from ivy_tests.test_ivy.test_frontends import NativeClass scipy_classes_to_ivy_classes = {} def convscipy(argument): """Convert NativeClass in argument to ivy frontend counterpart for scipy.""" if isinstance(argument, NativeClass): return scipy_classes_to_ivy_classes.get(argument._native_class) return argument
ivy/ivy_tests/test_ivy/test_frontends/test_scipy/__init__.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_scipy/__init__.py", "repo_id": "ivy", "token_count": 121 }
60
# global from hypothesis import strategies as st # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # --- Helpers --- # # --------------- # @st.composite def _valid_idct(draw): dtype, x = draw( helpers.dtype_and_values( available_dtypes=["float32", "float64"], max_value=65280, min_value=-65280, min_num_dims=1, min_dim_size=2, shared_dtype=True, ) ) n = None axis = -1 norm = draw(st.sampled_from([None, "ortho"])) type = draw(helpers.ints(min_value=1, max_value=4)) if norm == "ortho" and type == 1: norm = None return dtype, x, type, n, axis, norm @st.composite def _valid_stft(draw): dtype, x = draw( helpers.dtype_and_values( available_dtypes=["float32", "float64"], max_value=65280, min_value=-65280, min_num_dims=1, min_dim_size=2, shared_dtype=True, ) ) frame_length = draw(helpers.ints(min_value=16, max_value=100)) frame_step = draw(helpers.ints(min_value=1, max_value=50)) return dtype, x, frame_length, frame_step # --- Main --- # # ------------ # # dct @handle_frontend_test( fn_tree="tensorflow.signal.dct", dtype_and_x=helpers.dtype_and_values( available_dtypes=["float32", "float64"], max_value=65280, min_value=-65280, min_num_dims=1, min_dim_size=2, shared_dtype=True, ), n=helpers.ints(min_value=1, max_value=3), norm=st.sampled_from([None, "ortho"]), type=helpers.ints(min_value=1, max_value=4), # dtype_x_and_args=_valid_idct(), test_with_out=st.just(False), ) def test_tensorflow_dct( *, dtype_and_x, n, norm, type, frontend, test_flags, fn_tree, backend_fw, on_device, ): ( input_dtype, x, ) = dtype_and_x if norm == "ortho" and type == 1: norm = None axis = -1 helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], type=type, n=n, axis=axis, norm=norm, # atol=1e-01, ) # idct @handle_frontend_test( fn_tree="tensorflow.signal.idct", dtype_x_and_args=_valid_idct(), test_with_out=st.just(False), ) def test_tensorflow_idct( *, dtype_x_and_args, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x, type, n, axis, norm = dtype_x_and_args helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], type=type, n=n, axis=axis, norm=norm, atol=1e-01, ) # kaiser_bessel_derived_window @handle_frontend_test( fn_tree="tensorflow.signal.kaiser_bessel_derived_window", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), max_num_dims=0, min_value=1, max_value=10, ), beta=st.floats(min_value=1, max_value=5), # dtype=helpers.get_dtypes("float", full=False), test_with_out=st.just(False), ) def test_tensorflow_kaiser_bessel_derived_window( *, dtype_and_x, beta, test_flags, backend_fw, fn_tree, on_device, frontend, # dtype ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, frontend=frontend, fn_tree=fn_tree, on_device=on_device, window_length=int(x[0]), beta=beta, # dtype=dtype[0], ) # kaiser_window @handle_frontend_test( fn_tree="tensorflow.signal.kaiser_window", dtype_and_window_length=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer") ), dtype_and_beta=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric") ), dtype=helpers.get_dtypes("numeric"), test_with_out=st.just(False), ) def test_tensorflow_kaiser_window( *, dtype_and_window_length, dtype_and_beta, dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): window_length_dtype, window_length = dtype_and_window_length beta_dtype, beta = dtype_and_beta helpers.test_frontend_function( input_dtypes=[window_length_dtype[0], beta_dtype[0]], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, window_length=window_length, beta=beta, dtype=dtype, ) # test stft @handle_frontend_test( fn_tree="tensorflow.signal.stft", dtype_x_and_args=_valid_stft(), test_with_out=st.just(False), ) def test_tensorflow_stft( *, dtype_x_and_args, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x, frame_length, frame_step = dtype_x_and_args helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, signals=x[0], frame_length=frame_length, frame_step=frame_step, fft_length=None, window_fn=None, pad_end=True, atol=1e-02, rtol=1e-02, ) # vorbis_window @handle_frontend_test( fn_tree="tensorflow.signal.vorbis_window", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), max_num_dims=0, min_value=1, max_value=10, ), # dtype=helpers.get_dtypes("float", full=False), test_with_out=st.just(False), ) def test_tensorflow_vorbis_window( *, dtype_and_x, test_flags, backend_fw, fn_tree, on_device, frontend # ,dtype ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, atol=1e-02, window_length=int(x[0]), # dtype=dtype[0], )
ivy/ivy_tests/test_ivy/test_frontends/test_tensorflow/test_signal.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_tensorflow/test_signal.py", "repo_id": "ivy", "token_count": 3359 }
61
# local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test @handle_frontend_test( fn_tree="torch.special.erfcx", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_erfcx( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], )
ivy/ivy_tests/test_ivy/test_frontends/test_torch/test_special_funcs.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_torch/test_special_funcs.py", "repo_id": "ivy", "token_count": 335 }
62
"""Collection of tests for elementwise functions.""" # global import math import numpy as np from hypothesis import assume from hypothesis import strategies as st # local import ivy import ivy_tests.test_ivy.helpers as helpers import ivy_tests.test_ivy.helpers.globals as test_globals from ivy_tests.test_ivy.helpers import handle_test from ivy_tests.test_ivy.helpers.pipeline_helper import BackendHandler _one = np.asarray(1, dtype="uint8") _zero = np.asarray(0, dtype="uint8") # --- Helpers --- # # --------------- # # this is not used yet and will be used when ``where`` argument is added # back to elementwise functions @st.composite def _array_with_mask(draw): dtype, x, shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ret_shape=True ) ) dtype2, where = draw( helpers.dtype_and_values(available_dtypes=["bool"], shape=shape) ) return ([dtype[0], dtype2[0]], x, where) # trapz @st.composite def _either_x_dx(draw): rand = (draw(st.integers(min_value=0, max_value=1)),) if rand == 0: either_x_dx = draw( helpers.dtype_and_values( available_dtypes=st.shared( helpers.get_dtypes("float"), key="trapz_dtype" ), min_value=-100, max_value=100, min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ) ) return rand, either_x_dx else: either_x_dx = draw( st.floats(min_value=-10, max_value=10), ) return rand, either_x_dx @st.composite def min_max_helper(draw): use_where = draw(st.booleans()) if use_where: dtype_and_x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric", full=False), num_arrays=2, small_abs_safety_factor=6, large_abs_safety_factor=6, safety_factor_scale="log", ) ) else: dtype_and_x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric", full=False), num_arrays=2, min_value=-1e5, max_value=1e5, small_abs_safety_factor=6, large_abs_safety_factor=6, safety_factor_scale="log", ) ) return dtype_and_x, use_where @st.composite def pow_helper(draw, available_dtypes=None): if available_dtypes is None: available_dtypes = helpers.get_dtypes("numeric") dtype1, x1 = draw( helpers.dtype_and_values( available_dtypes=available_dtypes, small_abs_safety_factor=16, large_abs_safety_factor=16, safety_factor_scale="log", ) ) dtype1 = dtype1[0] def cast_filter(dtype1_x1_dtype2): dtype1, _, dtype2 = dtype1_x1_dtype2 with BackendHandler.update_backend(test_globals.CURRENT_BACKEND) as ivy_backend: if ivy_backend.can_cast(dtype1, dtype2): return True return False dtype1, x1, dtype2 = draw( helpers.get_castable_dtype(draw(available_dtypes), dtype1, x1).filter( cast_filter ) ) with BackendHandler.update_backend(test_globals.CURRENT_BACKEND) as ivy_backend: if ivy_backend.is_int_dtype(dtype2): max_val = ivy_backend.iinfo(dtype2).max else: max_val = ivy_backend.finfo(dtype2).max max_x1 = np.max(np.abs(x1[0])) if max_x1 in [0, 1]: max_value = None else: max_value = int(math.log(max_val) / math.log(max_x1)) if abs(max_value) > abs(max_val) / 40 or max_value < 0: max_value = None dtype_and_x2 = draw( st.one_of( helpers.dtype_and_values( small_abs_safety_factor=16, large_abs_safety_factor=16, safety_factor_scale="log", max_value=max_value, dtype=[dtype2], ), st.floats(max_value=max_value), st.integers(max_value=max_value), ) ) input_dtypes = [dtype1] if isinstance(dtype_and_x2, tuple): input_dtypes += dtype_and_x2[0] x2 = dtype_and_x2[1][0] else: x2 = dtype_and_x2 return input_dtypes, [x1[0], x2] # --- Main --- # # ------------ # def not_too_close_to_zero(x): return np.where(np.isclose(x, 0), x + 1, x) # abs @handle_test( fn_tree="functional.ivy.abs", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), ) def test_abs(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # acos @handle_test( fn_tree="functional.ivy.acos", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), large_abs_safety_factor=4, small_abs_safety_factor=4, safety_factor_scale="log", ), ) def test_acos(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x=x[0], ) # acosh @handle_test( fn_tree="functional.ivy.acosh", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), min_value=1, large_abs_safety_factor=2.1, small_abs_safety_factor=2.1, safety_factor_scale="log", ), ) def test_acosh(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x=x[0], ) # add @handle_test( fn_tree="functional.ivy.add", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ), alpha=st.integers(min_value=1, max_value=5), ) def test_add(*, dtype_and_x, alpha, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, rtol_=1e-1, atol_=1e-1, on_device=on_device, x1=x[0], x2=x[1], alpha=alpha, ) # angle @handle_test( fn_tree="functional.ivy.angle", dtype_and_x=helpers.dtype_and_values( available_dtypes=["float64"], min_value=-5, max_value=5, max_dim_size=5, max_num_dims=5, min_dim_size=1, min_num_dims=1, allow_inf=False, allow_nan=False, ), deg=st.booleans(), test_gradients=st.just(False), ) def test_angle( *, dtype_and_x, deg, test_flags, backend_fw, fn_name, on_device, ): input_dtype, z = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, z=z[0], deg=deg, ) # asin @handle_test( fn_tree="functional.ivy.asin", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), safety_factor_scale="log", large_abs_safety_factor=4, small_abs_safety_factor=4, ), ) def test_asin(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x=x[0], ) # asinh @handle_test( fn_tree="functional.ivy.asinh", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), large_abs_safety_factor=4, small_abs_safety_factor=4, safety_factor_scale="log", ), ) def test_asinh(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x=x[0], ) # atan @handle_test( fn_tree="functional.ivy.atan", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), large_abs_safety_factor=4, small_abs_safety_factor=4, safety_factor_scale="log", ), ) def test_atan(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x=x[0], ) # atan2 @handle_test( fn_tree="functional.ivy.atan2", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), ) def test_atan2(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x assume(not (np.any(np.isclose(x[0], 0)) or np.any(np.isclose(x[1], 0)))) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x1=x[0], x2=x[1], ) # atanh @handle_test( fn_tree="functional.ivy.atanh", dtype_and_x=helpers.dtype_and_values( min_value=1e-30, max_value=1e30, available_dtypes=helpers.get_dtypes("float_and_complex"), ), ) def test_atanh(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x=x[0], ) # bitwise_and @handle_test( fn_tree="functional.ivy.bitwise_and", dtype_and_x=helpers.dtype_and_values( available_dtypes=st.one_of(st.just(("bool",)), helpers.get_dtypes("integer")), num_arrays=2, array_api_dtypes=True, ), test_gradients=st.just(False), ) def test_bitwise_and(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # bitwise_invert @handle_test( fn_tree="functional.ivy.bitwise_invert", dtype_and_x=helpers.dtype_and_values( available_dtypes=st.one_of(st.just(("bool",)), helpers.get_dtypes("integer")), array_api_dtypes=True, ), test_gradients=st.just(False), ) def test_bitwise_invert(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # bitwise_left_shift @handle_test( fn_tree="functional.ivy.bitwise_left_shift", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), num_arrays=2, array_api_dtypes=True, ), ground_truth_backend="numpy", # tensorflow gt has maximum shift that is equal test_gradients=st.just(False), ) def test_bitwise_left_shift(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # negative shifts will throw an exception # shifts >= dtype width produce backend-defined behavior dtype = np.promote_types(input_dtype[0], input_dtype[1]) bit_cap = ( np.iinfo(dtype).bits - np.maximum(np.ceil(np.log2(np.abs(x[0]))).astype(input_dtype[1]), 0) - 1 ) bit_cap = np.iinfo(dtype).bits if "u" in dtype.name else bit_cap x[1] = np.asarray( np.clip( x[1], 0, bit_cap, dtype=input_dtype[1], ) ) helpers.test_function( # to dtype bits - 1 while other backends overflow to zero input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # bitwise_or @handle_test( fn_tree="functional.ivy.bitwise_or", dtype_and_x=helpers.dtype_and_values( available_dtypes=st.one_of(st.just(("bool",)), helpers.get_dtypes("integer")), num_arrays=2, array_api_dtypes=True, ), test_gradients=st.just(False), ) def test_bitwise_or(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # bitwise_right_shift @handle_test( fn_tree="functional.ivy.bitwise_right_shift", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), num_arrays=2, array_api_dtypes=True, ), test_gradients=st.just(False), ) def test_bitwise_right_shift( *, dtype_and_x, test_flags, backend_fw, fn_name, on_device ): input_dtype, x = dtype_and_x # negative shifts will throw an exception # shifts >= dtype width produce backend-defined behavior x[1] = np.asarray( np.clip(x[1], 0, np.iinfo(input_dtype[1]).bits - 1), dtype=input_dtype[1] ) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # bitwise_xor @handle_test( fn_tree="functional.ivy.bitwise_xor", dtype_and_x=helpers.dtype_and_values( available_dtypes=st.one_of(st.just(("bool",)), helpers.get_dtypes("integer")), num_arrays=2, array_api_dtypes=True, ), test_gradients=st.just(False), ) def test_bitwise_xor(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # ceil @handle_test( fn_tree="functional.ivy.ceil", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), small_abs_safety_factor=3, safety_factor_scale="linear", ), ) def test_ceil(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # cos @handle_test( fn_tree="functional.ivy.cos", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex") ), ) def test_cos(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # cosh @handle_test( fn_tree="functional.ivy.cosh", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), ), ) def test_cosh(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) @handle_test( fn_tree="functional.ivy.deg2rad", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), safety_factor_scale="log", large_abs_safety_factor=2, small_abs_safety_factor=2, ), ) def test_deg2rad(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, atol_=1e-2, rtol_=1e-2, x=x[0], ) # divide @handle_test( fn_tree="functional.ivy.divide", test_gradients=st.just(False), dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric", full=False), num_arrays=2, large_abs_safety_factor=2, small_abs_safety_factor=2, safety_factor_scale="log", ), ) def test_divide(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # prevent too close to zero assume(not np.any(np.isclose(x[1], 0))) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # equal @handle_test( fn_tree="functional.ivy.equal", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid", full=False), num_arrays=2 ), test_gradients=st.just(False), ) def test_equal(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # Extra # # ------# # erf @handle_test( fn_tree="functional.ivy.erf", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")), ) def test_erf(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x=x[0], ) # exp @handle_test( fn_tree="functional.ivy.exp", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex") ), ) def test_exp(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # exp2 @handle_test( fn_tree="functional.ivy.exp2", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), min_value=-10, max_value=10, min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ), test_gradients=st.just(False), ) def test_exp2(dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, x=np.asarray(x[0], dtype=input_dtype[0]), ) # expm1 @handle_test( fn_tree="functional.ivy.expm1", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), # Can't use linear or log safety factor, since the function is exponential, # next best option is a hardcoded maximum that won't break any data type. # expm1 is designed for very small values anyway max_value=20.0, ), ) def test_expm1(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x=x[0], ) # floor @handle_test( fn_tree="functional.ivy.floor", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric") ), ) def test_floor(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x assume(not np.any(np.isclose(x[0], 0))) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) @handle_test( fn_tree="functional.ivy.floor_divide", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, allow_inf=False, large_abs_safety_factor=4, safety_factor_scale="linear", shared_dtype=True, ), test_gradients=st.just(False), ) def test_floor_divide(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # Make sure it's not dividing value too close to zero assume(not np.any(np.isclose(x[1], 0))) # Absolute tolerance is 1, # due to flooring can cause absolute error of 1 due to precision helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], atol_=1, ) # fmin @handle_test( fn_tree="functional.ivy.fmin", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_value=-10, max_value=10, num_arrays=2, shared_dtype=False, min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, allow_nan=True, ), test_gradients=st.just(False), ) def test_fmin(dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, x1=x[0], x2=x[1], ) # fmod @handle_test( fn_tree="functional.ivy.fmod", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2, shared_dtype=False, large_abs_safety_factor=6, small_abs_safety_factor=6, safety_factor_scale="log", ), test_gradients=st.just(False), ) def test_fmod(dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # Make sure values is not too close to zero assume(not np.any(np.isclose(x[0], 0))) assume(not np.any(np.isclose(x[1], 0))) # jax raises inconsistent gradients for negative numbers in x1 if (np.any(x[0] < 0) or np.any(x[1] < 0)) and ivy.current_backend_str() == "jax": test_flags.test_gradients = False test_flags.as_variable = [test_flags.as_variable, False] helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, x1=x[0], x2=x[1], ) # gcd @handle_test( fn_tree="functional.ivy.gcd", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), num_arrays=2, shared_dtype=False, min_num_dims=1, max_num_dims=3, min_value=-100, max_value=100, allow_nan=False, ), test_gradients=st.just(False), ) def test_gcd(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # greater @handle_test( fn_tree="functional.ivy.greater", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2 ), test_gradients=st.just(False), ) def test_greater(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # bfloat16 is not supported assume("bfloat16" not in input_dtype) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # greater_equal @handle_test( fn_tree="functional.ivy.greater_equal", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2 ), test_gradients=st.just(False), ) def test_greater_equal(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # bfloat16 is not supported by numpy assume("bfloat16" not in input_dtype) # make sure they're not too close together assume(not (np.any(np.isclose(x[0], x[1])) or np.any(np.isclose(x[1], x[0])))) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # imag @handle_test( fn_tree="functional.ivy.imag", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_value=-5, max_value=5, max_dim_size=5, max_num_dims=5, min_dim_size=1, min_num_dims=1, allow_inf=False, allow_nan=False, ), test_gradients=st.just(False), test_instance_method=st.just(False), ) def test_imag( *, dtype_and_x, test_flags, backend_fw, fn_name, on_device, ): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, val=x[0], ) # isfinite @handle_test( fn_tree="functional.ivy.isfinite", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric") ), test_gradients=st.just(False), ) def test_isfinite(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # isinf @handle_test( fn_tree="functional.ivy.isinf", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric") ), detect_positive=st.booleans(), detect_negative=st.booleans(), test_gradients=st.just(False), ) def test_isinf( *, dtype_and_x, detect_positive, detect_negative, test_flags, backend_fw, fn_name, on_device, ): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], detect_positive=detect_positive, detect_negative=detect_negative, ) # isnan @handle_test( fn_tree="functional.ivy.isnan", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric") ), test_gradients=st.just(False), ) def test_isnan(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # isreal @handle_test( fn_tree="functional.ivy.isreal", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("real_and_complex") ), test_gradients=st.just(False), ) def test_isreal(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # lcm @handle_test( fn_tree="functional.ivy.lcm", dtype_and_x=helpers.dtype_and_values( available_dtypes=["int16", "int32", "int64"], num_arrays=2, shared_dtype=False, min_num_dims=1, max_num_dims=3, min_value=-100, max_value=100, allow_nan=False, ), test_gradients=st.just(False), ) def test_lcm(dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, x1=x[0], x2=x[1], ) # less @handle_test( fn_tree="functional.ivy.less", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, min_num_dims=1, ), test_gradients=st.just(False), ) def test_less(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # bfloat16 is not supported by numpy assume("bfloat16" not in input_dtype) # make sure they're not too close together assume(not (np.any(np.isclose(x[0], x[1])) or np.any(np.isclose(x[1], x[0])))) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # less_equal @handle_test( fn_tree="functional.ivy.less_equal", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2 ), test_gradients=st.just(False), ground_truth_backend="jax", ) def test_less_equal(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # bfloat16 is not supported by numpy assume("bfloat16" not in input_dtype) # make sure they're not too close together assume(not (np.any(np.isclose(x[0], x[1])) or np.any(np.isclose(x[1], x[0])))) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # log @handle_test( fn_tree="functional.ivy.log", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), safety_factor_scale="log", ), ) def test_log(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # avoid logging values too close to zero assume(not np.any(np.isclose(x[0], 0))) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # log10 @handle_test( fn_tree="functional.ivy.log10", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), safety_factor_scale="log", ), ) def test_log10(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # avoid logging values too close to zero assume(not np.any(np.isclose(x[0], 0))) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x=x[0], ) # log1p @handle_test( fn_tree="functional.ivy.log1p", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), small_abs_safety_factor=2, large_abs_safety_factor=2.1, safety_factor_scale="log", ), ) def test_log1p(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # avoid logging values too close to zero assume(not np.any(np.isclose(x[0], 0))) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # log2 @handle_test( fn_tree="functional.ivy.log2", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), safety_factor_scale="log", ), ) def test_log2(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # avoid logging values too close to zero assume(not np.any(np.isclose(x[0], 0))) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, x=x[0], ) # logaddexp @handle_test( fn_tree="functional.ivy.logaddexp", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, abs_smallest_val=0.137, min_value=-80, max_value=80, ), ) def test_logaddexp(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-1, atol_=1e-1, x1=x[0], x2=x[1], ) # logaddexp2 @handle_test( fn_tree="functional.ivy.logaddexp2", dtype_and_x=helpers.dtype_and_values( available_dtypes=["float32", "float64"], num_arrays=2, shared_dtype=True, min_num_dims=1, max_num_dims=3, min_value=-100, max_value=100, allow_nan=False, ), test_gradients=st.just(False), ) def test_logaddexp2(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-02, atol_=1e-02, x1=x[0], x2=x[1], ) # logical_and @handle_test( fn_tree="functional.ivy.logical_and", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2 ), test_gradients=st.just(False), ) def test_logical_and(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # logical_not @handle_test( fn_tree="functional.ivy.logical_not", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), test_gradients=st.just(False), ) def test_logical_not(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # logical_or @handle_test( fn_tree="functional.ivy.logical_or", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2 ), test_gradients=st.just(False), ) def test_logical_or(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # logical_xor @handle_test( fn_tree="functional.ivy.logical_xor", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2 ), test_gradients=st.just(False), ) def test_logical_xor(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # maximum @handle_test( fn_tree="functional.ivy.maximum", dtype_and_x_and_use_where=min_max_helper(), test_gradients=st.just(False), ground_truth_backend="jax", ) def test_maximum( *, dtype_and_x_and_use_where, test_flags, backend_fw, fn_name, on_device ): (input_dtype, x), use_where = dtype_and_x_and_use_where helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x1=x[0], x2=x[1], use_where=use_where, ) # minimum @handle_test( fn_tree="functional.ivy.minimum", dtype_and_x_and_use_where=min_max_helper(), test_gradients=st.just(False), ground_truth_backend="jax", ) def test_minimum( *, dtype_and_x_and_use_where, test_flags, backend_fw, fn_name, on_device ): (input_dtype, x), use_where = dtype_and_x_and_use_where helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x1=x[0], x2=x[1], use_where=use_where, ) # multiply @handle_test( fn_tree="functional.ivy.multiply", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2 ), ground_truth_backend="torch", ) def test_multiply(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # nan_to_num @handle_test( fn_tree="functional.ivy.nan_to_num", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=1, max_num_dims=3, min_value=-100, max_value=100, allow_nan=True, allow_inf=True, ), copy=st.booleans(), nan=st.floats(min_value=0.0, max_value=100), posinf=st.floats(min_value=5e100, max_value=5e100), neginf=st.floats(min_value=-5e100, max_value=-5e100), test_gradients=st.just(False), test_with_copy=st.just(True), ) def test_nan_to_num( *, dtype_and_x, copy, nan, posinf, neginf, test_flags, backend_fw, fn_name, on_device, ): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], copy=copy, nan=nan, posinf=posinf, neginf=neginf, ) # negative @handle_test( fn_tree="functional.ivy.negative", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric") ), ) def test_negative(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # not_equal @handle_test( fn_tree="functional.ivy.not_equal", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid", full=True), num_arrays=2 ), test_gradients=st.just(False), ) def test_not_equal(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], ) # positive @handle_test( fn_tree="functional.ivy.positive", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric") ), ) def test_positive(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # pow @handle_test( fn_tree="functional.ivy.pow", dtype_and_x=pow_helper(), test_gradients=st.just(False), ground_truth_backend="numpy", ) def test_pow(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x try: helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x1=x[0], x2=x[1], ) except Exception as e: if any( error_string in str(e) for error_string in ["overflow", "too large to convert to"] ): assume(False) else: raise @handle_test( fn_tree="functional.ivy.rad2deg", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), ) def test_rad2deg(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, rtol_=1e-2, atol_=1e-2, fn_name=fn_name, on_device=on_device, x=x[0], ) # real @handle_test( fn_tree="functional.ivy.real", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("real_and_complex") ), ) def test_real(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # reciprocal @handle_test( fn_tree="functional.ivy.reciprocal", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), small_abs_safety_factor=4, large_abs_safety_factor=4, safety_factor_scale="log", num_arrays=1, ), ) def test_reciprocal(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-1, atol_=1e-1, x=x[0], ) # remainder @handle_test( fn_tree="functional.ivy.remainder", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, large_abs_safety_factor=6, small_abs_safety_factor=6, safety_factor_scale="log", ), modulus=st.booleans(), ) def test_remainder(*, dtype_and_x, modulus, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # Make sure values is not too close to zero assume(not np.any(np.isclose(x[0], 0))) assume(not np.any(np.isclose(x[1], 0))) # jax raises inconsistent gradients for negative numbers in x1 if (np.any(x[0] < 0) or np.any(x[1] < 0)) and ivy.current_backend_str() == "jax": test_flags.test_gradients = False test_flags.as_variable = [test_flags.as_variable, False] helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=x[0], x2=x[1], rtol_=1e-2, atol_=1e-2, modulus=modulus, ) # round @handle_test( fn_tree="functional.ivy.round", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric") ), decimals=st.integers(min_value=0, max_value=5), ground_truth_backend="numpy", ) def test_round(*, dtype_and_x, decimals, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], decimals=decimals, ) # sign @handle_test( fn_tree="functional.ivy.sign", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), large_abs_safety_factor=5, small_abs_safety_factor=5, safety_factor_scale="log", ), np_variant=st.booleans(), ) def test_sign(*, dtype_and_x, np_variant, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x assume(not np.any(np.isclose(x[0], 0))) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], np_variant=np_variant, ) # sin @handle_test( fn_tree="functional.ivy.sin", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex") ), ) def test_sin(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x if "paddle" in backend_fw and input_dtype[0] == "float16": assume(not test_flags.test_gradients) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # sinh @handle_test( fn_tree="functional.ivy.sinh", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex") ), ) def test_sinh(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # sqrt @handle_test( fn_tree="functional.ivy.sqrt", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), allow_inf=False, # Safety factor is to account for complex, where taking square root # involves taking absolute value first large_abs_safety_factor=2, small_abs_safety_factor=2, safety_factor_scale="log", ).filter(lambda x: x[0][0] not in ["bfloat16"]), ) def test_sqrt(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x=x[0], ) # square @handle_test( fn_tree="functional.ivy.square", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), large_abs_safety_factor=2, safety_factor_scale="log", ), ) def test_square(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # subtract @handle_test( fn_tree="functional.ivy.subtract", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ), alpha=st.integers(min_value=1, max_value=5), ) def test_subtract(*, dtype_and_x, alpha, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-1, atol_=1e-1, x1=x[0], x2=x[1], alpha=alpha, ) # tan @handle_test( fn_tree="functional.ivy.tan", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex") ), ) def test_tan(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-1, atol_=1e-1, x=x[0], ) # tanh @handle_test( fn_tree="functional.ivy.tanh", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex") ), complex_mode=st.sampled_from(["jax", "split", "magnitude"]), ) def test_tanh(*, dtype_and_x, complex_mode, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], complex_mode=complex_mode, atol_=1e-02, # for `test_flags.test_gradients and 'bfloat16' in input_dtype` ) @handle_test( fn_tree="functional.ivy.trapz", dtype_values_axis=helpers.dtype_values_axis( available_dtypes=st.shared(helpers.get_dtypes("float"), key="trapz_dtype"), min_value=-100, max_value=100, min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, allow_neg_axes=True, valid_axis=True, force_int_axis=True, ), rand_either=_either_x_dx(), test_gradients=st.just(False), ) def test_trapz( dtype_values_axis, rand_either, test_flags, backend_fw, fn_name, on_device ): input_dtype, y, axis = dtype_values_axis rand, either_x_dx = rand_either if rand == 0: dtype_x, x = either_x_dx x = np.asarray(x, dtype=dtype_x) dx = None else: x = None dx = either_x_dx helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, rtol_=1e-1, atol_=1e-1, y=np.asarray(y[0], dtype=input_dtype[0]), x=x, dx=dx, axis=axis, ) # trunc @handle_test( fn_tree="functional.ivy.trunc", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric") ), ) def test_trunc(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=x[0], ) # trunc_divide @handle_test( fn_tree="functional.ivy.trunc_divide", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, large_abs_safety_factor=2, small_abs_safety_factor=2, safety_factor_scale="log", ), ) def test_trunc_divide(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x # prevent too close to zero assume(not np.any(np.isclose(x[1], 0))) helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-2, atol_=1e-2, x1=x[0], x2=x[1], )
ivy/ivy_tests/test_ivy/test_functional/test_core/test_elementwise.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_functional/test_core/test_elementwise.py", "repo_id": "ivy", "token_count": 27905 }
63
# global import os import queue import pytest import random import numpy as np import multiprocessing import pickle # local import ivy from ivy.functional.ivy.gradients import _variable from ivy.data_classes.container import Container from ivy.utils.exceptions import IvyException def test_container_all_false(on_device): assert Container({"a": False, "b": {"c": [], "d": 0}}).cont_all_false() assert not Container({"a": False, "b": {"c": [1], "d": 0}}).cont_all_false() # noinspection PyBroadException try: assert Container( {"a": ivy.array([1], device=on_device), "b": {"c": [1], "d": True}} ).cont_all_false(assert_is_bool=True) error_raised = False except IvyException: error_raised = True assert error_raised @pytest.mark.parametrize("include_empty", [True, False]) def test_container_all_key_chains(include_empty, on_device): a_val = Container() if include_empty else ivy.array([1], device=on_device) bc_val = Container() if include_empty else ivy.array([2], device=on_device) bd_val = Container() if include_empty else ivy.array([3], device=on_device) dict_in = {"a": a_val, "b": {"c": bc_val, "d": bd_val}} container = Container(dict_in) kcs = container.cont_all_key_chains(include_empty) assert kcs[0] == "a" assert kcs[1] == "b/c" assert kcs[2] == "b/d" def test_container_all_true(on_device): assert not Container( {"a": ivy.array([1], device=on_device), "b": {"c": [], "d": True}} ).cont_all_true() assert Container( {"a": ivy.array([1], device=on_device), "b": {"c": [1], "d": True}} ).cont_all_true() # noinspection PyBroadException try: assert Container( {"a": ivy.array([1], device=on_device), "b": {"c": [1], "d": True}} ).cont_all_true(assert_is_bool=True) error_raised = False except IvyException: error_raised = True assert error_raised def test_container_as_bools(on_device): dict_in = {"a": ivy.array([1], device=on_device), "b": {"c": [], "d": True}} container = Container(dict_in) container_bools = container.cont_as_bools() assert container_bools["a"] is True assert container_bools.a is True assert container_bools["b"]["c"] is False assert container_bools.b.c is False assert container_bools["b"]["d"] is True assert container_bools.b.d is True def test_container_assert_contains(on_device): arr0 = ivy.array([0.0], device=on_device) arr1 = ivy.array([1.0], device=on_device) arr2 = ivy.array([2.0], device=on_device) sub_cont = Container({"c": arr1, "d": arr2}) container = Container({"a": arr0, "b": sub_cont}) # keys assert "a" in container assert "b" in container assert "c" not in container assert "b/c" in container assert "d" not in container assert "b/d" in container # sub-container container.cont_assert_contains_sub_container(container) container.cont_assert_contains_sub_container(sub_cont) assert sub_cont in container # partial sub-container partial_sub_cont = Container({"b": {"d": arr2}}) container.cont_assert_contains_sub_container(container, partial=True) container.cont_assert_contains_sub_container(partial_sub_cont, partial=True) try: partial_sub_cont.cont_assert_contains_sub_container(container, partial=True) error_caught = False except IvyException: error_caught = True assert error_caught # sub-structure sub_struc = Container( { "c": ivy.array([3.0], device=on_device), "d": ivy.array([4.0], device=on_device), } ) try: not container.cont_assert_contains_sub_container(sub_struc) error_caught = False except IvyException: error_caught = True assert error_caught assert sub_struc not in container container.cont_assert_contains_sub_structure(sub_struc) container.cont_assert_contains_sub_structure(container) # partial sub-structure partial_sub_struc = Container({"b": {"d": ivy.array([4.0], device=on_device)}}) container.cont_assert_contains_sub_structure(container, partial=True) container.cont_assert_contains_sub_structure(partial_sub_struc, partial=True) try: partial_sub_struc.cont_assert_contains_sub_structure(container, partial=True) error_caught = False except IvyException: error_caught = True assert error_caught def test_container_assert_identical(on_device): # without key_chains specification arr1 = ivy.array([1], device=on_device) arr2 = ivy.array([2], device=on_device) arr3 = ivy.array([3], device=on_device) container0 = Container({"a": arr1, "b": {"c": arr2, "d": arr3}}) container1 = Container({"a": arr1, "b": {"c": arr2, "d": arr3}}) container2 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container3 = Container({"b": {"d": arr3}}) container4 = Container({"d": arr3}) # the same ivy.Container.cont_assert_identical([container0, container1]) ivy.Container.cont_assert_identical([container1, container0]) # not the same try: ivy.Container.cont_assert_identical([container0, container2]) error_caught = False except IvyException: error_caught = True assert error_caught try: ivy.Container.cont_assert_identical([container1, container2]) error_caught = False except IvyException: error_caught = True assert error_caught # partial ivy.Container.cont_assert_identical([container0, container3], partial=True) ivy.Container.cont_assert_identical([container3, container0], partial=True) try: ivy.Container.cont_assert_identical([container4, container0], partial=True) error_caught = False except IvyException: error_caught = True assert error_caught def test_container_assert_identical_structure(on_device): # without key_chains specification container0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container1 = Container( { "a": ivy.array([3], device=on_device), "b": { "c": ivy.array([4], device=on_device), "d": ivy.array([5], device=on_device), }, } ) container2 = Container( { "a": ivy.array([3], device=on_device), "b": { "c": ivy.array([4], device=on_device), "d": ivy.array([5], device=on_device), "e": ivy.array([6], device=on_device), }, } ) container3 = Container( { "a": ivy.array([3], device=on_device), "b": { "c": ivy.array([4], device=on_device), "d": ivy.array([5], device=on_device), }, "e": ivy.array([6], device=on_device), } ) container4 = Container({"b": {"d": ivy.array([4], device=on_device)}}) container5 = Container({"d": ivy.array([4], device=on_device)}) # with identical ivy.Container.cont_assert_identical_structure([container0, container1]) ivy.Container.cont_assert_identical_structure([container1, container0]) ivy.Container.cont_assert_identical_structure([container1, container0, container1]) # without identical try: ivy.Container.cont_assert_identical_structure( [container0, container1, container2, container3] ) error_caught = False except IvyException: error_caught = True # partial try: ivy.Container.cont_assert_identical_structure( [container0, container1, container2, container3, container4, container5], partial=True, ) error_caught = False except IvyException: error_caught = True assert error_caught try: ivy.Container.cont_assert_identical_structure( [container0, container5], partial=True ) error_caught = False except IvyException: error_caught = True assert error_caught def test_container_at_key_chain(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container = Container(dict_in) # explicit function call sub_container = container.cont_at_key_chain("b") assert np.allclose(ivy.to_numpy(sub_container["c"]), np.array([2])) sub_container = container.cont_at_key_chain("b/c") assert np.allclose(ivy.to_numpy(sub_container), np.array([2])) # overridden built-in function call sub_container = container["b"] assert np.allclose(ivy.to_numpy(sub_container["c"]), np.array([2])) sub_container = container["b/c"] assert np.allclose(ivy.to_numpy(sub_container), np.array([2])) def test_container_at_key_chains(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container = Container(dict_in) target_cont = Container({"a": True, "b": {"c": True}}) new_container = container.cont_at_key_chains(target_cont) assert np.allclose(ivy.to_numpy(new_container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(new_container["b"]["c"]), np.array([2])) assert "d" not in new_container["b"] new_container = container.cont_at_key_chains(["b/c", "b/d"]) assert "a" not in new_container assert np.allclose(ivy.to_numpy(new_container["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(new_container["b"]["d"]), np.array([3])) new_container = container.cont_at_key_chains("b/c") assert "a" not in new_container assert np.allclose(ivy.to_numpy(new_container["b"]["c"]), np.array([2])) assert "d" not in new_container["b"] def test_container_at_keys(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container = Container(dict_in) new_container = container.cont_at_keys(["a", "c"]) assert np.allclose(ivy.to_numpy(new_container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(new_container["b"]["c"]), np.array([2])) assert "d" not in new_container["b"] new_container = container.cont_at_keys("c") assert "a" not in new_container assert np.allclose(ivy.to_numpy(new_container["b"]["c"]), np.array([2])) assert "d" not in new_container["b"] new_container = container.cont_at_keys(["b"]) assert "a" not in new_container assert np.allclose(ivy.to_numpy(new_container["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(new_container["b"]["d"]), np.array([3])) def test_container_combine(on_device): container_0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_1 = Container( { "a": ivy.array([4], device=on_device), "b": { "c": ivy.array([5], device=on_device), "e": ivy.array([6], device=on_device), }, } ) container_comb = ivy.Container.cont_combine(container_0, container_1) assert np.equal(ivy.to_numpy(container_comb.a), np.array([4])) assert np.equal(ivy.to_numpy(container_comb.b.c), np.array([5])) assert np.equal(ivy.to_numpy(container_comb.b.d), np.array([3])) assert np.equal(ivy.to_numpy(container_comb.b.e), np.array([6])) def test_container_common_key_chains(on_device): arr1 = ivy.array([1], device=on_device) arr2 = ivy.array([2], device=on_device) arr3 = ivy.array([3], device=on_device) cont0 = Container({"a": arr1, "b": {"c": arr2, "d": arr3}}) cont1 = Container({"b": {"c": arr2, "d": arr3, "e": arr1}}) cont2 = Container({"a": arr1, "b": {"d": arr3, "e": arr1}}) # 0 common_kcs = Container.cont_common_key_chains([cont0]) assert len(common_kcs) == 3 assert "a" in common_kcs assert "b/c" in common_kcs assert "b/d" in common_kcs # 0-1 common_kcs = Container.cont_common_key_chains([cont0, cont1]) assert len(common_kcs) == 2 assert "b/c" in common_kcs assert "b/d" in common_kcs # 0-2 common_kcs = Container.cont_common_key_chains([cont0, cont2]) assert len(common_kcs) == 2 assert "a" in common_kcs assert "b/d" in common_kcs # 1-2 common_kcs = Container.cont_common_key_chains([cont1, cont2]) assert len(common_kcs) == 2 assert "b/d" in common_kcs assert "b/e" in common_kcs # all common_kcs = Container.cont_common_key_chains([cont0, cont1, cont2]) assert len(common_kcs) == 1 assert "b/d" in common_kcs def test_container_cont_inplace_update(on_device): container0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([1], device=on_device), "d": ivy.array([2], device=on_device), }, } ) id0 = id(container0) container1 = Container( { "a": ivy.array([0], device=on_device), "b": { "c": ivy.array([0], device=on_device), "d": ivy.array([0], device=on_device), }, } ) id1 = id(container1) assert ivy.Container.cont_all_false(container0.all_equal(container1)) container0.inplace_update(container1) assert id0 == id(container0) assert id1 == id(container1) assert ivy.Container.cont_all_true(container0.all_equal(container1)) def test_container_contains(on_device): arr0 = ivy.array([0.0], device=on_device) arr1 = ivy.array([1.0], device=on_device) arr2 = ivy.array([2.0], device=on_device) sub_cont = Container({"c": arr1, "d": arr2}) container = Container({"a": arr0, "b": sub_cont}) # keys assert "a" in container assert "b" in container assert "c" not in container assert "b/c" in container assert "d" not in container assert "b/d" in container # sub-container assert container.cont_contains_sub_container(container) assert container.cont_contains_sub_container(sub_cont) assert sub_cont in container # partial sub-container partial_sub_cont = Container({"b": {"d": arr2}}) assert container.cont_contains_sub_container(container, partial=True) assert container.cont_contains_sub_container(partial_sub_cont, partial=True) assert not partial_sub_cont.cont_contains_sub_container(container, partial=True) # sub-structure sub_struc = Container( { "c": ivy.array([3.0], device=on_device), "d": ivy.array([4.0], device=on_device), } ) assert not container.cont_contains_sub_container(sub_struc) assert sub_struc not in container assert container.cont_contains_sub_structure(sub_struc) assert container.cont_contains_sub_structure(container) # partial sub-structure partial_sub_struc = Container({"b": {"d": ivy.array([4.0], device=on_device)}}) assert container.cont_contains_sub_structure(container, partial=True) assert container.cont_contains_sub_structure(partial_sub_struc, partial=True) assert not partial_sub_struc.cont_contains_sub_structure(container, partial=True) def test_container_copy(on_device): dict_in = { "a": ivy.array([0.0], device=on_device), "b": { "c": ivy.array([1.0], device=on_device), "d": ivy.array([2.0], device=on_device), }, } cont = Container(dict_in) cont_deepcopy = cont.cont_copy() assert np.allclose(ivy.to_numpy(cont.a), ivy.to_numpy(cont_deepcopy.a)) assert np.allclose(ivy.to_numpy(cont.b.c), ivy.to_numpy(cont_deepcopy.b.c)) assert np.allclose(ivy.to_numpy(cont.b.d), ivy.to_numpy(cont_deepcopy.b.d)) assert id(cont) != id(cont_deepcopy) assert id(cont.a) == id(cont_deepcopy.a) assert id(cont.b.c) == id(cont_deepcopy.b.c) assert id(cont.b.d) == id(cont_deepcopy.b.d) def test_container_create_if_absent(on_device): dict_in = { "a": ivy.array([[[1.0], [2.0], [3.0]]], device=on_device), "b": { "c": ivy.array([[[2.0], [4.0], [6.0]]], device=on_device), "d": ivy.array([[[3.0], [6.0], [9.0]]], device=on_device), }, } # depth 1 container = Container(dict_in) container.cont_create_if_absent("a", None, True) assert np.allclose(ivy.to_numpy(container.a), np.array([[[1.0], [2.0], [3.0]]])) container.cont_create_if_absent("e", ivy.array([[[4.0], [8.0], [12.0]]]), True) assert np.allclose(ivy.to_numpy(container.e), np.array([[[4.0], [8.0], [12.0]]])) # depth 2 container.cont_create_if_absent("f/g", np.array([[[5.0], [10.0], [15.0]]]), True) assert np.allclose(ivy.to_numpy(container.f.g), np.array([[[5.0], [10.0], [15.0]]])) @pytest.mark.parametrize("inplace", [True, False]) def test_container_cutoff_at_depth(inplace, on_device): # values a_val = ivy.array([1], device=on_device) bcde_val = ivy.array([2], device=on_device) # depth 1 cont = Container({"a": a_val, "b": {"c": {"d": {"e": bcde_val}}}}) cont_cutoff = cont.cont_cutoff_at_depth(1, inplace=inplace) if inplace: cont_cutoff = cont assert np.allclose(ivy.to_numpy(cont_cutoff.a), ivy.to_numpy(a_val)) assert not cont_cutoff.b # depth 2 cont = Container({"a": a_val, "b": {"c": {"d": {"e": bcde_val}}}}) cont_cutoff = cont.cont_cutoff_at_depth(2, inplace=inplace) if inplace: cont_cutoff = cont assert np.allclose(ivy.to_numpy(cont_cutoff.a), ivy.to_numpy(a_val)) assert not cont_cutoff.b.c # depth 3 cont = Container({"a": a_val, "b": {"c": {"d": {"e": bcde_val}}}}) cont_cutoff = cont.cont_cutoff_at_depth(3, inplace=inplace) if inplace: cont_cutoff = cont assert np.allclose(ivy.to_numpy(cont_cutoff.a), ivy.to_numpy(a_val)) assert not cont_cutoff.b.c.d # depth 4 cont = Container({"a": a_val, "b": {"c": {"d": {"e": bcde_val}}}}) cont_cutoff = cont.cont_cutoff_at_depth(4, inplace=inplace) if inplace: cont_cutoff = cont assert np.allclose(ivy.to_numpy(cont_cutoff.a), ivy.to_numpy(a_val)) assert np.allclose(ivy.to_numpy(cont_cutoff.b.c.d.e), ivy.to_numpy(bcde_val)) @pytest.mark.parametrize("inplace", [True, False]) def test_container_cutoff_at_height(inplace, on_device): # values d_val = ivy.array([2], device=on_device) e_val = ivy.array([3], device=on_device) # height 0 cont = Container({"a": {"c": {"d": d_val}}, "b": {"c": {"d": {"e": e_val}}}}) cont_cutoff = cont.cont_cutoff_at_height(0, inplace=inplace) if inplace: cont_cutoff = cont assert np.allclose(ivy.to_numpy(cont_cutoff.a.c.d), ivy.to_numpy(d_val)) assert np.allclose(ivy.to_numpy(cont_cutoff.b.c.d.e), ivy.to_numpy(e_val)) # height 1 cont = Container({"a": {"c": {"d": d_val}}, "b": {"c": {"d": {"e": e_val}}}}) cont_cutoff = cont.cont_cutoff_at_height(1, inplace=inplace) if inplace: cont_cutoff = cont assert not cont_cutoff.a.c assert not cont_cutoff.b.c.d # height 2 cont = Container({"a": {"c": {"d": d_val}}, "b": {"c": {"d": {"e": e_val}}}}) cont_cutoff = cont.cont_cutoff_at_height(2, inplace=inplace) if inplace: cont_cutoff = cont assert not cont_cutoff.a assert not cont_cutoff.b.c # height 3 cont = Container({"a": {"c": {"d": d_val}}, "b": {"c": {"d": {"e": e_val}}}}) cont_cutoff = cont.cont_cutoff_at_height(3, inplace=inplace) if inplace: cont_cutoff = cont assert not cont_cutoff.a assert not cont_cutoff.b # height 4 cont = Container({"a": {"c": {"d": d_val}}, "b": {"c": {"d": {"e": e_val}}}}) cont_cutoff = cont.cont_cutoff_at_height(4, inplace=inplace) if inplace: cont_cutoff = cont assert not cont_cutoff def test_container_deep_copy(on_device): dict_in = { "a": ivy.array([0.0], device=on_device), "b": { "c": ivy.array([1.0], device=on_device), "d": ivy.array([2.0], device=on_device), }, } cont = Container(dict_in) cont_deepcopy = cont.cont_deep_copy() assert np.allclose(ivy.to_numpy(cont.a), ivy.to_numpy(cont_deepcopy.a)) assert np.allclose(ivy.to_numpy(cont.b.c), ivy.to_numpy(cont_deepcopy.b.c)) assert np.allclose(ivy.to_numpy(cont.b.d), ivy.to_numpy(cont_deepcopy.b.d)) assert id(cont.a) != id(cont_deepcopy.a) assert id(cont.b.c) != id(cont_deepcopy.b.c) assert id(cont.b.d) != id(cont_deepcopy.b.d) def test_container_depth(on_device): cont_depth1 = Container( {"a": ivy.array([1], device=on_device), "b": ivy.array([2], device=on_device)} ) assert cont_depth1.cont_max_depth == 1 cont_depth2 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) assert cont_depth2.cont_max_depth == 2 cont_depth3 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": {"d": ivy.array([2], device=on_device)}, "e": ivy.array([3], device=on_device), }, } ) assert cont_depth3.cont_max_depth == 3 cont_depth4 = Container( { "a": ivy.array([1], device=on_device), "b": {"c": {"d": {"e": ivy.array([2], device=on_device)}}}, } ) assert cont_depth4.cont_max_depth == 4 def test_container_dev_str(on_device): dict_in = { "a": ivy.array([[[1.0], [2.0], [3.0]]], device=on_device), "b": { "c": ivy.array([[[2.0], [4.0], [6.0]]], device=on_device), "d": ivy.array([[[3.0], [6.0], [9.0]]], device=on_device), }, } container = Container(dict_in) assert container.cont_dev_str == on_device def test_container_diff(on_device): # all different arrays container_0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_1 = Container( { "a": ivy.array([4], device=on_device), "b": { "c": ivy.array([5], device=on_device), "d": ivy.array([6], device=on_device), }, } ) container_diff = ivy.Container.cont_diff(container_0, container_1) assert np.equal(ivy.to_numpy(container_diff.a.diff_0), np.array([1])) assert np.equal(ivy.to_numpy(container_diff.a.diff_1), np.array([4])) assert np.equal(ivy.to_numpy(container_diff.b.c.diff_0), np.array([2])) assert np.equal(ivy.to_numpy(container_diff.b.c.diff_1), np.array([5])) assert np.equal(ivy.to_numpy(container_diff.b.d.diff_0), np.array([3])) assert np.equal(ivy.to_numpy(container_diff.b.d.diff_1), np.array([6])) container_diff_diff_only = ivy.Container.cont_diff( container_0, container_1, mode="diff_only" ) assert container_diff_diff_only.cont_to_dict() == container_diff.cont_to_dict() container_diff_same_only = ivy.Container.cont_diff( container_0, container_1, mode="same_only" ) assert container_diff_same_only.cont_to_dict() == {} # some different arrays container_0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_1 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([5], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_diff = ivy.Container.cont_diff(container_0, container_1) assert np.equal(ivy.to_numpy(container_diff.a), np.array([1])) assert np.equal(ivy.to_numpy(container_diff.b.c.diff_0), np.array([2])) assert np.equal(ivy.to_numpy(container_diff.b.c.diff_1), np.array([5])) assert np.equal(ivy.to_numpy(container_diff.b.d), np.array([3])) container_diff_diff_only = ivy.Container.cont_diff( container_0, container_1, mode="diff_only" ) assert "a" not in container_diff_diff_only assert "b" in container_diff_diff_only assert "c" in container_diff_diff_only["b"] assert "d" not in container_diff_diff_only["b"] container_diff_same_only = ivy.Container.cont_diff( container_0, container_1, mode="same_only" ) assert "a" in container_diff_same_only assert "b" in container_diff_same_only assert "c" not in container_diff_same_only["b"] assert "d" in container_diff_same_only["b"] # all different keys container_0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_1 = Container( { "e": ivy.array([1], device=on_device), "f": { "g": ivy.array([2], device=on_device), "h": ivy.array([3], device=on_device), }, } ) container_diff = ivy.Container.cont_diff(container_0, container_1) assert np.equal(ivy.to_numpy(container_diff.a.diff_0), np.array([1])) assert np.equal(ivy.to_numpy(container_diff.b.diff_0.c), np.array([2])) assert np.equal(ivy.to_numpy(container_diff.b.diff_0.d), np.array([3])) assert np.equal(ivy.to_numpy(container_diff.e.diff_1), np.array([1])) assert np.equal(ivy.to_numpy(container_diff.f.diff_1.g), np.array([2])) assert np.equal(ivy.to_numpy(container_diff.f.diff_1.h), np.array([3])) container_diff_diff_only = ivy.Container.cont_diff( container_0, container_1, mode="diff_only" ) assert container_diff_diff_only.cont_to_dict() == container_diff.cont_to_dict() container_diff_same_only = ivy.Container.cont_diff( container_0, container_1, mode="same_only" ) assert container_diff_same_only.cont_to_dict() == {} # some different keys container_0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_1 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "e": ivy.array([3], device=on_device), }, } ) container_diff = ivy.Container.cont_diff(container_0, container_1) assert np.equal(ivy.to_numpy(container_diff.a), np.array([1])) assert np.equal(ivy.to_numpy(container_diff.b.c), np.array([2])) assert np.equal(ivy.to_numpy(container_diff.b.d.diff_0), np.array([3])) assert np.equal(ivy.to_numpy(container_diff.b.e.diff_1), np.array([3])) container_diff_diff_only = ivy.Container.cont_diff( container_0, container_1, mode="diff_only" ) assert "a" not in container_diff_diff_only assert "b" in container_diff_diff_only assert "c" not in container_diff_diff_only["b"] assert "d" in container_diff_diff_only["b"] assert "e" in container_diff_diff_only["b"] container_diff_same_only = ivy.Container.cont_diff( container_0, container_1, mode="same_only" ) assert "a" in container_diff_same_only assert "b" in container_diff_same_only assert "c" in container_diff_same_only["b"] assert "d" not in container_diff_same_only["b"] assert "e" not in container_diff_same_only["b"] # same containers container_0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_1 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_diff = ivy.Container.cont_diff(container_0, container_1) assert np.equal(ivy.to_numpy(container_diff.a), np.array([1])) assert np.equal(ivy.to_numpy(container_diff.b.c), np.array([2])) assert np.equal(ivy.to_numpy(container_diff.b.d), np.array([3])) container_diff_diff_only = ivy.Container.cont_diff( container_0, container_1, mode="diff_only" ) assert container_diff_diff_only.cont_to_dict() == {} container_diff_same_only = ivy.Container.cont_diff( container_0, container_1, mode="same_only" ) assert container_diff_same_only.cont_to_dict() == container_diff.cont_to_dict() # all different strings container_0 = Container({"a": "1", "b": {"c": "2", "d": "3"}}) container_1 = Container({"a": "4", "b": {"c": "5", "d": "6"}}) container_diff = ivy.Container.cont_diff(container_0, container_1) assert container_diff.a.diff_0 == "1" assert container_diff.a.diff_1 == "4" assert container_diff.b.c.diff_0 == "2" assert container_diff.b.c.diff_1 == "5" assert container_diff.b.d.diff_0 == "3" assert container_diff.b.d.diff_1 == "6" container_diff_diff_only = ivy.Container.cont_diff( container_0, container_1, mode="diff_only" ) assert container_diff_diff_only.cont_to_dict() == container_diff.cont_to_dict() container_diff_same_only = ivy.Container.cont_diff( container_0, container_1, mode="same_only" ) assert container_diff_same_only.cont_to_dict() == {} def test_container_duplicate_array_keychains(on_device): arr1 = ivy.array([1], device=on_device) arr2 = ivy.array([2], device=on_device) container0 = Container({"a": arr1, "b": {"c": arr1, "d": arr2}}) container1 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([1], device=on_device), "d": ivy.array([2], device=on_device), }, } ) res = ivy.Container.cont_duplicate_array_keychains(container0) assert res == (("a", "b/c"),) res = ivy.Container.cont_duplicate_array_keychains(container1) assert res == () def test_container_find_sub_container(on_device): arr1 = ivy.array([1], device=on_device) arr2 = ivy.array([2], device=on_device) arr3 = ivy.array([3], device=on_device) dict_in = {"a": arr1, "b": {"c": arr2, "d": arr3}} top_cont = Container(dict_in) # full sub_cont = Container(dict_in["b"]) assert sub_cont in top_cont found_kc = top_cont.cont_find_sub_container(sub_cont) assert found_kc == "b" found_kc = top_cont.cont_find_sub_container(top_cont) assert found_kc == "" # partial partial_sub_cont = Container({"d": arr3}) found_kc = top_cont.cont_find_sub_container(partial_sub_cont, partial=True) assert found_kc == "b" assert partial_sub_cont.cont_find_sub_container(top_cont, partial=True) is False partial_sub_cont = Container({"b": {"d": arr3}}) found_kc = top_cont.cont_find_sub_container(partial_sub_cont, partial=True) assert found_kc == "" assert partial_sub_cont.cont_find_sub_container(top_cont, partial=True) is False def test_container_find_sub_structure(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } top_cont = Container(dict_in) # full sub_cont = Container( {"c": ivy.array([4], device=on_device), "d": ivy.array([5], device=on_device)} ) assert not top_cont.cont_find_sub_container(sub_cont) found_kc = top_cont.cont_find_sub_structure(sub_cont) assert found_kc == "b" found_kc = top_cont.cont_find_sub_structure(top_cont) assert found_kc == "" # partial partial_sub_cont = Container({"d": ivy.array([5], device=on_device)}) found_kc = top_cont.cont_find_sub_structure(partial_sub_cont, partial=True) assert found_kc == "b" partial_sub_cont = Container({"b": {"d": ivy.array([5], device=on_device)}}) found_kc = top_cont.cont_find_sub_structure(partial_sub_cont, partial=True) assert found_kc == "" def test_container_flatten_key_chains(on_device): container = Container( { "a": ivy.array([1], device=on_device), "b": { "c": {"d": ivy.array([2], device=on_device)}, "e": {"f": {"g": ivy.array([3], device=on_device)}}, }, } ) # full container_flat = container.cont_flatten_key_chains() assert np.allclose(ivy.to_numpy(container_flat["a"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_flat.a), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_flat["b__c__d"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_flat.b__c__d), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_flat["b__e__f__g"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_flat.b__e__f__g), np.array([[3]])) # above height 1 container_flat = container.cont_flatten_key_chains(above_height=1) assert np.allclose(ivy.to_numpy(container_flat["a"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_flat.a), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_flat["b__c"]["d"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_flat.b__c.d), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_flat["b__e__f"]["g"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_flat.b__e__f.g), np.array([[3]])) # below depth 1 container_flat = container.cont_flatten_key_chains(below_depth=1) assert np.allclose(ivy.to_numpy(container_flat["a"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_flat.a), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_flat["b"]["c__d"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_flat.b.c__d), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_flat["b"]["e__f__g"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_flat.b.e__f__g), np.array([[3]])) # above height 1, below depth 1 container_flat = container.cont_flatten_key_chains(above_height=1, below_depth=1) assert np.allclose(ivy.to_numpy(container_flat["a"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_flat.a), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_flat["b"]["c"]["d"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_flat.b.c.d), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_flat["b"]["e__f"]["g"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_flat.b.e__f.g), np.array([[3]])) def test_container_format_key_chains(on_device): dict_in = { "_a": ivy.array([1], device=on_device), "b ": { "c": ivy.array([2], device=on_device), "d-": ivy.array([3], device=on_device), }, } cont = Container(dict_in) cont_formatted = cont.cont_format_key_chains( lambda s: s.replace("_", "").replace(" ", "").replace("-", "") ) assert np.allclose(ivy.to_numpy(cont_formatted["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(cont_formatted.a), np.array([1])) assert np.allclose(ivy.to_numpy(cont_formatted["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(cont_formatted.b.c), np.array([2])) assert np.allclose(ivy.to_numpy(cont_formatted["b"]["d"]), np.array([3])) assert np.allclose(ivy.to_numpy(cont_formatted.b.d), np.array([3])) def test_container_from_dict(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container = Container(dict_in) assert np.allclose(ivy.to_numpy(container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(container.a), np.array([1])) assert np.allclose(ivy.to_numpy(container["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(container.b.c), np.array([2])) assert np.allclose(ivy.to_numpy(container["b"]["d"]), np.array([3])) assert np.allclose(ivy.to_numpy(container.b.d), np.array([3])) def test_container_from_dict_w_cont_types(on_device): # ToDo: add tests for backends other than jax if ivy.current_backend_str() == "jax": pytest.skip() from haiku._src.data_structures import FlatMapping dict_in = { "a": ivy.array([1], device=on_device), "b": FlatMapping( { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), } ), } container = Container(dict_in) assert np.allclose(ivy.to_numpy(container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(container.a), np.array([1])) assert np.allclose(ivy.to_numpy(container["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(container.b.c), np.array([2])) assert np.allclose(ivy.to_numpy(container["b"]["d"]), np.array([3])) assert np.allclose(ivy.to_numpy(container.b.d), np.array([3])) def test_container_from_flat_list(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container = Container(dict_in) flat_list = [4, 5, 6] container = container.cont_from_flat_list(flat_list) assert np.allclose(ivy.to_numpy(container["a"]), np.array([4])) assert np.allclose(ivy.to_numpy(container.a), np.array([4])) assert np.allclose(ivy.to_numpy(container["b"]["c"]), np.array([5])) assert np.allclose(ivy.to_numpy(container.b.c), np.array([5])) assert np.allclose(ivy.to_numpy(container["b"]["d"]), np.array([6])) assert np.allclose(ivy.to_numpy(container.b.d), np.array([6])) def test_container_from_kwargs(on_device): container = Container( a=ivy.array([1], device=on_device), b={ "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, ) assert np.allclose(ivy.to_numpy(container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(container.a), np.array([1])) assert np.allclose(ivy.to_numpy(container["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(container.b.c), np.array([2])) assert np.allclose(ivy.to_numpy(container["b"]["d"]), np.array([3])) assert np.allclose(ivy.to_numpy(container.b.d), np.array([3])) def test_container_from_list(on_device): list_in = [ ivy.array([1], device=on_device), [ivy.array([2], device=on_device), ivy.array([3], device=on_device)], ] container = Container(list_in, types_to_iteratively_nest=[list]) assert np.allclose(ivy.to_numpy(container["it_0"]), np.array([1])) assert np.allclose(ivy.to_numpy(container.it_0), np.array([1])) assert np.allclose(ivy.to_numpy(container["it_1"]["it_0"]), np.array([2])) assert np.allclose(ivy.to_numpy(container.it_1.it_0), np.array([2])) assert np.allclose(ivy.to_numpy(container["it_1"]["it_1"]), np.array([3])) assert np.allclose(ivy.to_numpy(container.it_1.it_1), np.array([3])) @pytest.mark.skip("Prevents PyTest from Terminating.") def test_container_from_queues(on_device): if "gpu" in on_device: # Cannot re-initialize CUDA in forked subprocess. 'spawn' # start method must be used. pytest.skip() if ivy.gpu_is_available() and ivy.current_backend_str() == "jax": # Not found a way to set default on_device for JAX, and this causes # issues with multiprocessing and CUDA, even when device=cpu # ToDo: find a fix for this problem ^^ pytest.skip() def worker_fn(in_queue, out_queue, load_size, worker_id): keep_going = True while keep_going: try: keep_going = in_queue.get(timeout=0.1) except queue.Empty: continue out_queue.put( { "a": [ ivy.to_native(ivy.array([1.0, 2.0, 3.0], device=on_device)) * worker_id ] * load_size } ) workers = [] in_queues = [] out_queues = [] queue_load_sizes = [1, 2, 1] for i, queue_load_size in enumerate(queue_load_sizes): input_queue = multiprocessing.Queue() output_queue = multiprocessing.Queue() worker = multiprocessing.Process( target=worker_fn, args=(input_queue, output_queue, queue_load_size, i + 1) ) worker.start() in_queues.append(input_queue) out_queues.append(output_queue) workers.append(worker) container = Container( queues=out_queues, queue_load_sizes=queue_load_sizes, queue_timeout=0.25 ) # queue 0 queue_was_empty = False try: container[0] except queue.Empty: queue_was_empty = True assert queue_was_empty in_queues[0].put(True) assert np.allclose(ivy.to_numpy(container[0].a), np.array([1.0, 2.0, 3.0])) assert np.allclose(ivy.to_numpy(container[0].a), np.array([1.0, 2.0, 3.0])) # queue 1 queue_was_empty = False try: container[1] except queue.Empty: queue_was_empty = True assert queue_was_empty queue_was_empty = False try: container[2] except queue.Empty: queue_was_empty = True assert queue_was_empty in_queues[1].put(True) assert np.allclose(ivy.to_numpy(container[1].a), np.array([2.0, 4.0, 6.0])) assert np.allclose(ivy.to_numpy(container[1].a), np.array([2.0, 4.0, 6.0])) assert np.allclose(ivy.to_numpy(container[2].a), np.array([2.0, 4.0, 6.0])) assert np.allclose(ivy.to_numpy(container[2].a), np.array([2.0, 4.0, 6.0])) # queue 2 queue_was_empty = False try: container[3] except queue.Empty: queue_was_empty = True assert queue_was_empty in_queues[2].put(True) assert np.allclose(ivy.to_numpy(container[3].a), np.array([3.0, 6.0, 9.0])) assert np.allclose(ivy.to_numpy(container[3].a), np.array([3.0, 6.0, 9.0])) # stop workers in_queues[0].put(False) in_queues[1].put(False) in_queues[2].put(False) in_queues[0].close() in_queues[1].close() in_queues[2].close() # join workers for worker in workers: worker.join() del container def test_container_from_tuple(on_device): tuple_in = ( ivy.array([1], device=on_device), (ivy.array([2], device=on_device), ivy.array([3], device=on_device)), ) container = Container(tuple_in, types_to_iteratively_nest=[tuple]) assert np.allclose(ivy.to_numpy(container["it_0"]), np.array([1])) assert np.allclose(ivy.to_numpy(container.it_0), np.array([1])) assert np.allclose(ivy.to_numpy(container["it_1"]["it_0"]), np.array([2])) assert np.allclose(ivy.to_numpy(container.it_1.it_0), np.array([2])) assert np.allclose(ivy.to_numpy(container["it_1"]["it_1"]), np.array([3])) assert np.allclose(ivy.to_numpy(container.it_1.it_1), np.array([3])) def test_container_has_key(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container = Container(dict_in) assert container.cont_has_key("a") # noqa assert container.cont_has_key("b") # noqa assert container.cont_has_key("c") # noqa assert container.cont_has_key("d") # noqa assert not container.cont_has_key("e") # noqa assert not container.cont_has_key("f") # noqa def test_container_has_key_chain(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container = Container(dict_in) assert container.cont_has_key_chain("a") assert container.cont_has_key_chain("b") assert container.cont_has_key_chain("b/c") assert container.cont_has_key_chain("b/d") assert not container.cont_has_key_chain("b/e") assert not container.cont_has_key_chain("c") def test_container_identical(on_device): # without key_chains specification arr1 = ivy.array([1], device=on_device) arr2 = ivy.array([2], device=on_device) arr3 = ivy.array([3], device=on_device) container0 = Container({"a": arr1, "b": {"c": arr2, "d": arr3}}) container1 = Container({"a": arr1, "b": {"c": arr2, "d": arr3}}) container2 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container3 = Container({"b": {"d": arr3}}) container4 = Container({"d": arr3}) # the same assert ivy.Container.cont_identical([container0, container1]) assert ivy.Container.cont_identical([container1, container0]) # not the same assert not ivy.Container.cont_identical([container0, container2]) assert not ivy.Container.cont_identical([container2, container0]) assert not ivy.Container.cont_identical([container1, container2]) assert not ivy.Container.cont_identical([container2, container1]) # partial assert ivy.Container.cont_identical([container0, container3], partial=True) assert ivy.Container.cont_identical([container3, container0], partial=True) assert not ivy.Container.cont_identical([container0, container4], partial=True) assert not ivy.Container.cont_identical([container4, container0], partial=True) def test_container_identical_array_shapes(on_device): # without key_chains specification container0 = Container( { "a": ivy.array([1, 2], device=on_device), "b": { "c": ivy.array([2, 3, 4], device=on_device), "d": ivy.array([3, 4, 5, 6], device=on_device), }, } ) container1 = Container( { "a": ivy.array([1, 2, 3, 4], device=on_device), "b": { "c": ivy.array([3, 4], device=on_device), "d": ivy.array([3, 4, 5], device=on_device), }, } ) container2 = Container( { "a": ivy.array([1, 2, 3, 4], device=on_device), "b": { "c": ivy.array([3, 4], device=on_device), "d": ivy.array([3, 4, 5, 6], device=on_device), }, } ) # with identical assert ivy.Container.cont_identical_array_shapes([container0, container1]) assert ivy.Container.cont_identical_array_shapes([container1, container0]) assert ivy.Container.cont_identical_array_shapes( [container1, container0, container1] ) assert not ivy.Container.cont_identical([container0, container2]) assert not ivy.Container.cont_identical([container1, container2]) assert not ivy.Container.cont_identical([container0, container1, container2]) def test_container_identical_configs(on_device): container0 = Container({"a": ivy.array([1], device=on_device)}, print_limit=5) container1 = Container({"a": ivy.array([1], device=on_device)}, print_limit=5) container2 = Container({"a": ivy.array([1], device=on_device)}, print_limit=10) # with identical assert ivy.Container.cont_identical_configs([container0, container1]) assert ivy.Container.cont_identical_configs([container1, container0]) assert ivy.Container.cont_identical_configs([container1, container0, container1]) # without identical assert not ivy.Container.cont_identical_configs([container1, container2]) assert not ivy.Container.cont_identical_configs( [container1, container0, container2] ) def test_container_identical_structure(on_device): # without key_chains specification container0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container1 = Container( { "a": ivy.array([3], device=on_device), "b": { "c": ivy.array([4], device=on_device), "d": ivy.array([5], device=on_device), }, } ) container2 = Container( { "a": ivy.array([3], device=on_device), "b": { "c": ivy.array([4], device=on_device), "d": ivy.array([5], device=on_device), "e": ivy.array([6], device=on_device), }, } ) container3 = Container( { "a": ivy.array([3], device=on_device), "b": { "c": ivy.array([4], device=on_device), "d": ivy.array([5], device=on_device), }, "e": ivy.array([6], device=on_device), } ) container4 = Container({"b": {"d": ivy.array([4], device=on_device)}}) container5 = Container({"d": ivy.array([4], device=on_device)}) # with identical assert ivy.Container.cont_identical_structure([container0, container1]) assert ivy.Container.cont_identical_structure([container1, container0]) assert ivy.Container.cont_identical_structure([container1, container0, container1]) # without identical assert not ivy.Container.cont_identical_structure([container2, container3]) assert not ivy.Container.cont_identical_structure([container0, container3]) assert not ivy.Container.cont_identical_structure([container1, container2]) assert not ivy.Container.cont_identical_structure( [container1, container0, container2] ) # partial assert ivy.Container.cont_identical_structure( [container0, container4], partial=True ) assert ivy.Container.cont_identical_structure( [container1, container4], partial=True ) assert ivy.Container.cont_identical_structure( [container2, container4], partial=True ) assert ivy.Container.cont_identical_structure( [container3, container4], partial=True ) assert ivy.Container.cont_identical_structure( [container4, container4], partial=True ) assert not ivy.Container.cont_identical_structure( [container0, container5], partial=True ) assert not ivy.Container.cont_identical_structure( [container1, container5], partial=True ) assert not ivy.Container.cont_identical_structure( [container2, container5], partial=True ) assert not ivy.Container.cont_identical_structure( [container3, container5], partial=True ) assert not ivy.Container.cont_identical_structure( [container4, container5], partial=True ) def test_container_if_exists(on_device): dict_in = { "a": ivy.array([[[1.0], [2.0], [3.0]]], device=on_device), "b": { "c": ivy.array([[[2.0], [4.0], [6.0]]], device=on_device), "d": ivy.array([[[3.0], [6.0], [9.0]]], device=on_device), }, } container = Container(dict_in) assert np.allclose( ivy.to_numpy(container.cont_if_exists("a")), np.array([[[1.0], [2.0], [3.0]]]) ) assert "c" not in container assert container.cont_if_exists("c") is None container["c"] = ivy.array([[[1.0], [2.0], [3.0]]], device=on_device) assert np.allclose( ivy.to_numpy(container.cont_if_exists("c")), np.array([[[1.0], [2.0], [3.0]]]) ) assert container.cont_if_exists("d") is None container.d = ivy.array([[[1.0], [2.0], [3.0]]], device=on_device) assert np.allclose( ivy.to_numpy(container.cont_if_exists("d")), np.array([[[1.0], [2.0], [3.0]]]) ) def test_container_inplace(on_device): container0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([1], device=on_device), "d": ivy.array([2], device=on_device), }, } ) const = 3 arr = ivy.array([1], device=on_device) container1 = Container( { "a": ivy.array([3], device=on_device), "b": { "c": ivy.array([4], device=on_device), "d": ivy.array([5], device=on_device), }, } ) special_funcs = [ "__add__", "__and__", "__floordiv__", "__lshift__", "__matmul__", "__mod__", "__mul__", "__pow__", "__rshift__", "__sub__", "__truediv__", "__xor__", ] for func_str in special_funcs: func = getattr(Container, func_str) ifunc = getattr(Container, f"{func_str[:2]}i{func_str[2:]}") for value in [ const, arr, container1, ]: if value == const and func_str == "__matmul__": continue container0_copy = container0.cont_deep_copy() id_before_op = id(container0_copy) og_ids = container0_copy.cont_map(lambda x, _: id(x)) ifunc(container0_copy, value) op_ids = container0_copy.cont_map(lambda x, _: id(x)) assert func(container0, value) == container0_copy # values assert id(container0_copy) == id_before_op # container ids assert og_ids == op_ids # value ids @pytest.mark.parametrize("include_empty", [True, False]) def test_container_key_chains_containing(include_empty, on_device): a_val = Container() if include_empty else ivy.array([1], device=on_device) bc_val = Container() if include_empty else ivy.array([2], device=on_device) bd_val = Container() if include_empty else ivy.array([3], device=on_device) dict_in = {"a_sub": a_val, "b": {"c": bc_val, "d_sub": bd_val}} container = Container(dict_in) kcs = container.cont_key_chains_containing("sub", include_empty) assert kcs[0] == "a_sub" assert kcs[1] == "b/d_sub" def test_container_list_join(on_device): container_0 = Container( { "a": [ivy.array([1], device=on_device)], "b": { "c": [ivy.array([2], device=on_device)], "d": [ivy.array([3], device=on_device)], }, } ) container_1 = Container( { "a": [ivy.array([4], device=on_device)], "b": { "c": [ivy.array([5], device=on_device)], "d": [ivy.array([6], device=on_device)], }, } ) container_list_joined = ivy.Container.cont_list_join([container_0, container_1]) assert np.allclose(ivy.to_numpy(container_list_joined["a"][0]), np.array([1])) assert np.allclose(ivy.to_numpy(container_list_joined.a[0]), np.array([1])) assert np.allclose(ivy.to_numpy(container_list_joined["b"]["c"][0]), np.array([2])) assert np.allclose(ivy.to_numpy(container_list_joined.b.c[0]), np.array([2])) assert np.allclose(ivy.to_numpy(container_list_joined["b"]["d"][0]), np.array([3])) assert np.allclose(ivy.to_numpy(container_list_joined.b.d[0]), np.array([3])) assert np.allclose(ivy.to_numpy(container_list_joined["a"][1]), np.array([4])) assert np.allclose(ivy.to_numpy(container_list_joined.a[1]), np.array([4])) assert np.allclose(ivy.to_numpy(container_list_joined["b"]["c"][1]), np.array([5])) assert np.allclose(ivy.to_numpy(container_list_joined.b.c[1]), np.array([5])) assert np.allclose(ivy.to_numpy(container_list_joined["b"]["d"][1]), np.array([6])) assert np.allclose(ivy.to_numpy(container_list_joined.b.d[1]), np.array([6])) def test_container_list_stack(on_device): container_0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_1 = Container( { "a": ivy.array([4], device=on_device), "b": { "c": ivy.array([5], device=on_device), "d": ivy.array([6], device=on_device), }, } ) container_list_stacked = ivy.Container.cont_list_stack( [container_0, container_1], 0 ) assert np.allclose(ivy.to_numpy(container_list_stacked["a"][0]), np.array([1])) assert np.allclose(ivy.to_numpy(container_list_stacked.a[0]), np.array([1])) assert np.allclose(ivy.to_numpy(container_list_stacked["b"]["c"][0]), np.array([2])) assert np.allclose(ivy.to_numpy(container_list_stacked.b.c[0]), np.array([2])) assert np.allclose(ivy.to_numpy(container_list_stacked["b"]["d"][0]), np.array([3])) assert np.allclose(ivy.to_numpy(container_list_stacked.b.d[0]), np.array([3])) assert np.allclose(ivy.to_numpy(container_list_stacked["a"][1]), np.array([4])) assert np.allclose(ivy.to_numpy(container_list_stacked.a[1]), np.array([4])) assert np.allclose(ivy.to_numpy(container_list_stacked["b"]["c"][1]), np.array([5])) assert np.allclose(ivy.to_numpy(container_list_stacked.b.c[1]), np.array([5])) assert np.allclose(ivy.to_numpy(container_list_stacked["b"]["d"][1]), np.array([6])) assert np.allclose(ivy.to_numpy(container_list_stacked.b.d[1]), np.array([6])) @pytest.mark.parametrize("inplace", [True, False]) def test_container_map(inplace, on_device): # without key_chains specification dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container_orig = Container(dict_in) container = container_orig.cont_deep_copy() container_mapped = container.cont_map(lambda x, _: x + 1, inplace=inplace) if inplace: container_iterator = container.cont_to_iterator() else: container_iterator = container_mapped.cont_to_iterator() for (key, value), expected_value in zip( container_iterator, [ ivy.array([2], device=on_device), ivy.array([3], device=on_device), ivy.array([4], device=on_device), ], ): assert ivy.to_numpy(value) == ivy.to_numpy(expected_value) # with key_chains to apply container = container_orig.cont_deep_copy() container_mapped = container.cont_map( lambda x, _: x + 1, ["a", "b/c"], inplace=inplace ) if inplace: container_mapped = container assert np.allclose(ivy.to_numpy(container_mapped["a"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_mapped.a), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_mapped["b"]["c"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_mapped.b.c), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_mapped["b"]["d"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_mapped.b.d), np.array([[3]])) # with key_chains to apply pruned container = container_orig.cont_deep_copy() container_mapped = container.cont_map( lambda x, _: x + 1, ["a", "b/c"], prune_unapplied=True, inplace=inplace ) if inplace: container_mapped = container assert np.allclose(ivy.to_numpy(container_mapped["a"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_mapped.a), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_mapped["b"]["c"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_mapped.b.c), np.array([[3]])) if not inplace: assert "b/d" not in container_mapped # with key_chains to not apply container = container_orig.cont_deep_copy() container_mapped = container.cont_map( lambda x, _: x + 1, Container({"a": None, "b": {"d": None}}), to_apply=False, inplace=inplace, ) if inplace: container_mapped = container assert np.allclose(ivy.to_numpy(container_mapped["a"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_mapped.a), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_mapped["b"]["c"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_mapped.b.c), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_mapped["b"]["d"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_mapped.b.d), np.array([[3]])) # with key_chains to not apply pruned container = container_orig.cont_deep_copy() container_mapped = container.cont_map( lambda x, _: x + 1, Container({"a": None, "b": {"d": None}}), to_apply=False, prune_unapplied=True, inplace=inplace, ) if inplace: container_mapped = container if not inplace: assert "a" not in container_mapped assert np.allclose(ivy.to_numpy(container_mapped["b"]["c"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_mapped.b.c), np.array([[3]])) if not inplace: assert "b/d" not in container_mapped # with sequences container_orig = Container( { "a": ivy.array([1], device=on_device), "b": [ivy.array([2], device=on_device), ivy.array([3], device=on_device)], } ) container = container_orig.cont_deep_copy() container_mapped = container.cont_map( lambda x, _: x + 1, inplace=inplace, map_sequences=True ) if inplace: container_mapped = container assert np.allclose(ivy.to_numpy(container_mapped["a"]), np.array([2])) assert np.allclose(ivy.to_numpy(container_mapped["b"][0]), np.array([3])) assert np.allclose(ivy.to_numpy(container_mapped["b"][1]), np.array([4])) @pytest.mark.parametrize("inplace", [True, False]) def test_container_map_sub_conts(inplace, on_device): # without key_chains specification container_orig = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) def _add_e_attr(cont_in): cont_in.e = ivy.array([4], device=on_device) return cont_in # with self container = container_orig.cont_deep_copy() container_mapped = container.cont_map_sub_conts( lambda c, _: _add_e_attr(c), inplace=inplace ) if inplace: container_mapped = container assert "e" in container_mapped assert np.array_equal(ivy.to_numpy(container_mapped.e), np.array([4])) assert "e" in container_mapped.b assert np.array_equal(ivy.to_numpy(container_mapped.b.e), np.array([4])) # without self container = container_orig.cont_deep_copy() container_mapped = container.cont_map_sub_conts( lambda c, _: _add_e_attr(c), include_self=False, inplace=inplace ) if inplace: container_mapped = container assert "e" not in container_mapped assert "e" in container_mapped.b assert np.array_equal(ivy.to_numpy(container_mapped.b.e), np.array([4])) def test_container_multi_map(on_device): # without key_chains specification container0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container1 = Container( { "a": ivy.array([3], device=on_device), "b": { "c": ivy.array([4], device=on_device), "d": ivy.array([5], device=on_device), }, } ) # with key_chains to apply container_mapped = ivy.Container.cont_multi_map( lambda x, _: x[0] + x[1], [container0, container1], assert_identical=True ) assert np.allclose(ivy.to_numpy(container_mapped["a"]), np.array([[4]])) assert np.allclose(ivy.to_numpy(container_mapped.a), np.array([[4]])) assert np.allclose(ivy.to_numpy(container_mapped["b"]["c"]), np.array([[6]])) assert np.allclose(ivy.to_numpy(container_mapped.b.c), np.array([[6]])) assert np.allclose(ivy.to_numpy(container_mapped["b"]["d"]), np.array([[8]])) assert np.allclose(ivy.to_numpy(container_mapped.b.d), np.array([[8]])) # with sequences container0 = Container( { "a": ivy.array([1], device=on_device), "b": [ ivy.array([2], device=on_device), ivy.array([3], device=on_device), ], } ) container1 = Container( { "a": ivy.array([3], device=on_device), "b": [ ivy.array([4], device=on_device), ivy.array([5], device=on_device), ], } ) container_mapped = ivy.Container.cont_multi_map( lambda x, _: x[0] + x[1], [container0, container1], map_nests=True, assert_identical=True, ) assert np.allclose(ivy.to_numpy(container_mapped["a"]), np.array([4])) assert np.allclose(ivy.to_numpy(container_mapped["b"][0]), np.array([6])) assert np.allclose(ivy.to_numpy(container_mapped["b"][1]), np.array([8])) # Non identical containers a = ivy.Container(a={"b": 2, "c": 4}, d={"e": 6, "f": 9}) b = ivy.Container(a=2, d=3) container_mapped = ivy.Container.cont_multi_map(lambda xs, _: xs[0] / xs[1], [a, b]) assert np.allclose(ivy.to_numpy(container_mapped["a"].b), 1) assert np.allclose(ivy.to_numpy(container_mapped["a"]["c"]), 2) assert np.allclose(ivy.to_numpy(container_mapped.d.e), 2) assert np.allclose(ivy.to_numpy(container_mapped["d"].f), 3) def test_container_num_arrays(on_device): dict_in = { "a": ivy.array([[0.0, 1.0, 2.0, 3.0]], device=on_device), "b": { "c": ivy.array([[5.0, 10.0, 15.0, 20.0]], device=on_device), "d": ivy.array([[10.0, 9.0, 8.0, 7.0]], device=on_device), }, } container = Container(dict_in) assert container.cont_num_arrays() == 3 dict_in = { "a": ivy.array([[0.0, 1.0, 2.0, 3.0]], device=on_device), "b": { "c": _variable(ivy.array([[5.0, 10.0, 15.0, 20.0]], device=on_device)), "d": ivy.array([[10.0, 9.0, 8.0, 7.0]], device=on_device), }, } container = Container(dict_in) assert ( container.cont_num_arrays() == 3 if ivy.current_backend_str() in ("numpy", "jax") else 2 ) # noinspection PyUnresolvedReferences def test_container_overwrite_at_key_chain(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container_orig = Container(dict_in) # explicit function call container = container_orig.cont_copy() # noinspection PyBroadException try: container.cont_overwrite_at_key_chain("b/e", ivy.array([4], device=on_device)) exception_raised = False except Exception: exception_raised = True assert exception_raised container = container.cont_overwrite_at_key_chain( "b/d", ivy.array([4], device=on_device) ) assert np.allclose(ivy.to_numpy(container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(container["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(container["b"]["d"]), np.array([4])) def test_container_overwrite_at_key_chains(on_device): container = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) target_container = Container( { "a": ivy.array([4], device=on_device), "b": {"d": ivy.array([5], device=on_device)}, } ) new_container = container.cont_overwrite_at_key_chains( target_container, inplace=False ) assert np.allclose(ivy.to_numpy(new_container["a"]), np.array([4])) assert np.allclose(ivy.to_numpy(new_container["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(new_container["b"]["d"]), np.array([5])) target_container = Container({"b": {"c": ivy.array([7], device=on_device)}}) new_container = container.cont_overwrite_at_key_chains( target_container, inplace=False ) assert np.allclose(ivy.to_numpy(new_container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(new_container["b"]["c"]), np.array([7])) assert np.allclose(ivy.to_numpy(new_container["b"]["d"]), np.array([3])) # noinspection PyBroadException try: container.cont_overwrite_at_key_chains( Container({"b": {"e": ivy.array([5], device=on_device)}}) ) exception_raised = False except Exception: exception_raised = True assert exception_raised def test_container_pickle(on_device): dict_in = { "a": ivy.array([np.float32(1.0)], device=on_device), "b": { "c": ivy.array([np.float32(2.0)], device=on_device), "d": ivy.array([np.float32(3.0)], device=on_device), }, } # without module attribute cont = Container(dict_in) # paddle tansor can't be pickled directly as mentioned # in the issue https://github.com/PaddlePaddle/Paddle/issues/41107 if ivy.backend == "paddle": cont = cont.to_numpy() assert cont._local_ivy is None pickled = pickle.dumps(cont) cont_again = pickle.loads(pickled) assert cont_again._local_ivy is None ivy.Container.cont_identical_structure([cont, cont_again]) ivy.Container.cont_identical_configs([cont, cont_again]) # with module attribute cont = Container(dict_in, ivyh=ivy) # paddle tansor can't be pickled directly as mentioned # in the issue https://github.com/PaddlePaddle/Paddle/issues/41107 if ivy.backend == "paddle": cont = cont.to_numpy() assert cont._local_ivy is ivy pickled = pickle.dumps(cont) cont_again = pickle.loads(pickled) # noinspection PyUnresolvedReferences assert cont_again._local_ivy.current_backend_str() is ivy.current_backend_str() ivy.Container.cont_identical_structure([cont, cont_again]) ivy.Container.cont_identical_configs([cont, cont_again]) def test_container_prune_empty(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": {"c": {}, "d": ivy.array([3], device=on_device)}, } container = Container(dict_in) container_pruned = container.cont_prune_empty() assert np.allclose(ivy.to_numpy(container_pruned["a"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_pruned.a), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_pruned["b"]["d"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_pruned.b.d), np.array([[3]])) assert "c" not in container_pruned["b"] def _test_exception(container_in): try: _ = container_in.b.c return False except AttributeError: return True assert _test_exception(container_pruned) def test_container_prune_key_chain(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": {"c": ivy.array([2], device=on_device), "d": None}, } container = Container(dict_in) container_pruned = container.cont_prune_key_chain("b/c") assert np.allclose(ivy.to_numpy(container_pruned["a"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_pruned.a), np.array([[1]])) assert container_pruned["b"]["d"] is None assert container_pruned.b.d is None assert "c" not in container_pruned["b"].keys() def _test_exception(container_in): try: _ = container_in.b.c return False except AttributeError: return True assert _test_exception(container_pruned) container_pruned = container.cont_prune_key_chain("b") assert np.allclose(ivy.to_numpy(container_pruned["a"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_pruned.a), np.array([[1]])) assert "b" not in container_pruned.keys() def _test_exception(container_in): try: _ = container_in.b return False except AttributeError: return True assert _test_exception(container_pruned) def test_container_prune_key_chains(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container = Container(dict_in) container_pruned = container.cont_prune_key_chains(["a", "b/c"]) assert "a" not in container_pruned assert np.allclose(ivy.to_numpy(container_pruned["b"]["d"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_pruned.b.d), np.array([[3]])) assert "c" not in container_pruned["b"] def _test_a_exception(container_in): try: _ = container_in.a return False except AttributeError: return True def _test_bc_exception(container_in): try: _ = container_in.b.c return False except AttributeError: return True assert _test_a_exception(container_pruned) assert _test_bc_exception(container_pruned) container_pruned = container.cont_prune_key_chains( Container({"a": True, "b": {"c": True}}) ) assert "a" not in container_pruned assert np.allclose(ivy.to_numpy(container_pruned["b"]["d"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_pruned.b.d), np.array([[3]])) assert "c" not in container_pruned["b"] assert _test_a_exception(container_pruned) assert _test_bc_exception(container_pruned) def test_container_prune_key_from_key_chains(on_device): container = Container( { "Ayy": ivy.array([1], device=on_device), "Bee": { "Cee": ivy.array([2], device=on_device), "Dee": ivy.array([3], device=on_device), }, "Beh": { "Ceh": ivy.array([4], device=on_device), "Deh": ivy.array([5], device=on_device), }, } ) # absolute container_pruned = container.cont_prune_key_from_key_chains("Bee") assert np.allclose(ivy.to_numpy(container_pruned["Ayy"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_pruned.Ayy), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_pruned["Cee"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_pruned.Cee), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_pruned["Dee"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_pruned.Dee), np.array([[3]])) assert "Bee" not in container_pruned # containing container_pruned = container.cont_prune_key_from_key_chains(containing="B") assert np.allclose(ivy.to_numpy(container_pruned["Ayy"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_pruned.Ayy), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_pruned["Cee"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_pruned.Cee), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_pruned["Dee"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_pruned.Dee), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_pruned["Ceh"]), np.array([[4]])) assert np.allclose(ivy.to_numpy(container_pruned.Ceh), np.array([[4]])) assert np.allclose(ivy.to_numpy(container_pruned["Deh"]), np.array([[5]])) assert np.allclose(ivy.to_numpy(container_pruned.Deh), np.array([[5]])) assert "Bee" not in container_pruned assert "Beh" not in container_pruned def test_container_prune_keys(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container = Container(dict_in) container_pruned = container.cont_prune_keys(["a", "c"]) assert "a" not in container_pruned assert np.allclose(ivy.to_numpy(container_pruned["b"]["d"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_pruned.b.d), np.array([[3]])) assert "c" not in container_pruned["b"] def _test_a_exception(container_in): try: _ = container_in.a return False except AttributeError: return True def _test_bc_exception(container_in): try: _ = container_in.b.c return False except AttributeError: return True def _test_bd_exception(container_in): try: _ = container_in.b.d return False except AttributeError: return True assert _test_a_exception(container_pruned) assert _test_bc_exception(container_pruned) container_pruned = container.cont_prune_keys(["a", "d"]) assert "a" not in container_pruned assert np.allclose(ivy.to_numpy(container_pruned["b"]["c"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_pruned.b.c), np.array([[2]])) assert "d" not in container_pruned["b"] assert _test_a_exception(container_pruned) assert _test_bd_exception(container_pruned) def test_container_prune_keys_from_key_chains(on_device): container = Container( { "Ayy": ivy.array([1], device=on_device), "Bee": { "Cee": ivy.array([2], device=on_device), "Dee": ivy.array([3], device=on_device), }, "Eee": {"Fff": ivy.array([4], device=on_device)}, } ) # absolute container_pruned = container.cont_prune_keys_from_key_chains(["Bee", "Eee"]) assert np.allclose(ivy.to_numpy(container_pruned["Ayy"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_pruned.Ayy), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_pruned["Cee"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_pruned.Cee), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_pruned["Dee"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_pruned.Dee), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_pruned["Fff"]), np.array([[4]])) assert np.allclose(ivy.to_numpy(container_pruned.Fff), np.array([[4]])) assert "Bee" not in container_pruned assert "Eee" not in container_pruned # containing container_pruned = container.cont_prune_keys_from_key_chains(containing=["B", "E"]) assert np.allclose(ivy.to_numpy(container_pruned["Ayy"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_pruned.Ayy), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_pruned["Cee"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_pruned.Cee), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_pruned["Dee"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_pruned.Dee), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_pruned["Fff"]), np.array([[4]])) assert np.allclose(ivy.to_numpy(container_pruned.Fff), np.array([[4]])) assert "Bee" not in container_pruned assert "Eee" not in container_pruned def test_container_reduce(on_device): container_a = ivy.Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_b = ivy.Container( { "a": ivy.array([2], device=on_device), "b": { "c": ivy.array([4], device=on_device), "d": ivy.array([6], device=on_device), }, } ) res = ivy.Container.cont_reduce([container_a, container_b], lambda x: x[0] + x[1]) assert np.allclose(ivy.to_numpy(res.a), np.array([3.0])) assert np.allclose(ivy.to_numpy(res.b.c), np.array([6])) assert np.allclose(ivy.to_numpy(res.b.d), np.array([9])) def test_container_remove_key_length_limit(on_device): cont = Container( { "a": ivy.array([0.0], device=on_device), "b": { "c": ivy.array([1.0], device=on_device), "d": ivy.array([2.0], device=on_device), }, } ) cont.cont_with_key_length_limit(5, inplace=True) default_key_length_limit = cont._key_length_limit id_cont = id(cont) cont1 = cont.cont_remove_key_length_limit() assert cont1._key_length_limit is None assert id(cont1) != id(cont) assert cont._key_length_limit == default_key_length_limit assert cont.b._key_length_limit == default_key_length_limit assert cont._key_length_limit != cont1._key_length_limit cont.cont_remove_key_length_limit(inplace=True) assert cont._key_length_limit is None assert cont.b._key_length_limit is None assert id(cont) == id_cont def test_container_remove_print_limit(on_device): cont = Container( { "a": ivy.array([0.0], device=on_device), "b": { "c": ivy.array([1.0], device=on_device), "d": ivy.array([2.0], device=on_device), }, } ) default_print_limit = cont._print_limit id_cont = id(cont) cont1 = cont.cont_remove_print_limit() assert cont1._print_limit is None assert id(cont1) != id(cont) assert cont._print_limit == default_print_limit assert cont._print_limit != cont1._print_limit assert cont.b._print_limit == default_print_limit cont.cont_remove_print_limit(inplace=True) assert cont._print_limit is None assert cont.b._print_limit is None assert id(cont) == id_cont def test_container_reshape_like(on_device): container = Container( { "a": ivy.array([[1.0]], device=on_device), "b": { "c": ivy.array([[3.0], [4.0]], device=on_device), "d": ivy.array([[5.0], [6.0], [7.0]], device=on_device), }, } ) new_shapes = Container({"a": (1,), "b": {"c": (1, 2, 1), "d": (3, 1, 1)}}) # without leading shape container_reshaped = container.cont_reshape_like(new_shapes) assert list(container_reshaped["a"].shape) == [1] assert list(container_reshaped.a.shape) == [1] assert list(container_reshaped["b"]["c"].shape) == [1, 2, 1] assert list(container_reshaped.b.c.shape) == [1, 2, 1] assert list(container_reshaped["b"]["d"].shape) == [3, 1, 1] assert list(container_reshaped.b.d.shape) == [3, 1, 1] # with leading shape container = Container( { "a": ivy.array([[[1.0]], [[1.0]], [[1.0]]], device=on_device), "b": { "c": ivy.array( [[[3.0], [4.0]], [[3.0], [4.0]], [[3.0], [4.0]]], device=on_device ), "d": ivy.array( [ [[5.0], [6.0], [7.0]], [[5.0], [6.0], [7.0]], [[5.0], [6.0], [7.0]], ], device=on_device, ), }, } ) container_reshaped = container.cont_reshape_like(new_shapes, leading_shape=[3]) assert list(container_reshaped["a"].shape) == [3, 1] assert list(container_reshaped.a.shape) == [3, 1] assert list(container_reshaped["b"]["c"].shape) == [3, 1, 2, 1] assert list(container_reshaped.b.c.shape) == [3, 1, 2, 1] assert list(container_reshaped["b"]["d"].shape) == [3, 3, 1, 1] assert list(container_reshaped.b.d.shape) == [3, 3, 1, 1] def test_container_restructure(on_device): container = Container( { "a": ivy.array([[1, 2], [3, 4]], device=on_device), "b": { "c": ivy.array([[2, 4], [6, 8]], device=on_device), "d": ivy.array([3, 6, 9, 12], device=on_device), }, } ) container_restructured = container.cont_restructure( { "a": {"key_chain": "A", "pattern": "a b -> b a"}, "b/c": {"key_chain": "B/C", "pattern": "a b -> (a b)"}, "b/d": { "key_chain": "B/D", "pattern": "(a b) -> a b", "axes_lengths": {"a": 2, "b": 2}, }, }, keep_orig=False, ) assert np.allclose( ivy.to_numpy(container_restructured["A"]), np.array([[1, 3], [2, 4]]) ) assert np.allclose( ivy.to_numpy(container_restructured.A), np.array([[1, 3], [2, 4]]) ) assert np.allclose( ivy.to_numpy(container_restructured["B/C"]), np.array([2, 4, 6, 8]) ) assert np.allclose(ivy.to_numpy(container_restructured.B.C), np.array([2, 4, 6, 8])) assert np.allclose( ivy.to_numpy(container_restructured["B/D"]), np.array([[3, 6], [9, 12]]) ) assert np.allclose( ivy.to_numpy(container_restructured.B.D), np.array([[3, 6], [9, 12]]) ) def test_container_restructure_key_chains(on_device): # single container = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_restructured = container.cont_restructure_key_chains({"a": "A"}) assert np.allclose(ivy.to_numpy(container_restructured["A"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_restructured.A), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_restructured["b/c"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_restructured.b.c), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_restructured["b/d"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_restructured.b.d), np.array([[3]])) # full container = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_restructured = container.cont_restructure_key_chains( {"a": "A", "b/c": "B/C", "b/d": "B/D"} ) assert np.allclose(ivy.to_numpy(container_restructured["A"]), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_restructured.A), np.array([[1]])) assert np.allclose(ivy.to_numpy(container_restructured["B/C"]), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_restructured.B.C), np.array([[2]])) assert np.allclose(ivy.to_numpy(container_restructured["B/D"]), np.array([[3]])) assert np.allclose(ivy.to_numpy(container_restructured.B.D), np.array([[3]])) # noinspection PyUnresolvedReferences def test_container_set_at_key_chain(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container_orig = Container(dict_in) # explicit function call container = container_orig.cont_copy() container = container.cont_set_at_key_chain("b/e", ivy.array([4], device=on_device)) assert np.allclose(ivy.to_numpy(container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(container["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(container["b"]["d"]), np.array([3])) assert np.allclose(ivy.to_numpy(container["b"]["e"]), np.array([4])) container = container.cont_set_at_key_chain("f", ivy.array([5], device=on_device)) assert np.allclose(ivy.to_numpy(container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(container["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(container["b"]["d"]), np.array([3])) assert np.allclose(ivy.to_numpy(container["b"]["e"]), np.array([4])) assert np.allclose(ivy.to_numpy(container["f"]), np.array([5])) # overridden built-in function call container = container_orig.cont_copy() assert "b/e" not in container container["b/e"] = ivy.array([4], device=on_device) assert np.allclose(ivy.to_numpy(container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(container["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(container["b"]["d"]), np.array([3])) assert np.allclose(ivy.to_numpy(container["b"]["e"]), np.array([4])) assert "f" not in container container["f"] = ivy.array([5], device=on_device) assert np.allclose(ivy.to_numpy(container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(container["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(container["b"]["d"]), np.array([3])) assert np.allclose(ivy.to_numpy(container["b"]["e"]), np.array([4])) assert np.allclose(ivy.to_numpy(container["f"]), np.array([5])) def test_container_set_at_key_chains(on_device): container = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) target_container = Container( { "a": ivy.array([4], device=on_device), "b": {"d": ivy.array([5], device=on_device)}, } ) new_container = container.cont_set_at_key_chains(target_container, inplace=False) assert np.allclose(ivy.to_numpy(new_container["a"]), np.array([4])) assert np.allclose(ivy.to_numpy(new_container["b"]["c"]), np.array([2])) assert np.allclose(ivy.to_numpy(new_container["b"]["d"]), np.array([5])) target_container = Container({"b": {"c": ivy.array([7], device=on_device)}}) new_container = container.cont_set_at_key_chains(target_container, inplace=False) assert np.allclose(ivy.to_numpy(new_container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(new_container["b"]["c"]), np.array([7])) assert np.allclose(ivy.to_numpy(new_container["b"]["d"]), np.array([3])) # noinspection PyUnresolvedReferences def test_container_set_at_keys(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container_orig = Container(dict_in) # explicit function call orig_container = container_orig.cont_copy() container = orig_container.cont_set_at_keys({"b": ivy.array([4], device=on_device)}) assert np.allclose(ivy.to_numpy(container["a"]), np.array([1])) assert np.allclose(ivy.to_numpy(container["b"]), np.array([4])) assert not container.cont_has_key("c") # noqa assert not container.cont_has_key("d") # noqa container = orig_container.cont_set_at_keys( {"a": ivy.array([5], device=on_device), "c": ivy.array([6], device=on_device)} ) assert np.allclose(ivy.to_numpy(container["a"]), np.array([5])) assert np.allclose(ivy.to_numpy(container["b"]["c"]), np.array([6])) assert np.allclose(ivy.to_numpy(container["b"]["d"]), np.array([3])) def test_container_shapes(on_device): dict_in = { "a": ivy.array([[[1.0], [2.0], [3.0]]], device=on_device), "b": { "c": ivy.array([[[2.0], [4.0]]], device=on_device), "d": ivy.array([[9.0]], device=on_device), }, } container_shapes = Container(dict_in).cont_shapes assert list(container_shapes["a"]) == [1, 3, 1] assert list(container_shapes.a) == [1, 3, 1] assert list(container_shapes["b"]["c"]) == [1, 2, 1] assert list(container_shapes.b.c) == [1, 2, 1] assert list(container_shapes["b"]["d"]) == [1, 1] assert list(container_shapes.b.d) == [1, 1] def test_container_show(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } cont = Container(dict_in) print(cont) cont.cont_show() def test_container_show_sub_container(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } top_cont = Container(dict_in) sub_cont = Container(dict_in["b"]) top_cont.cont_show_sub_container("b") top_cont.cont_show_sub_container(sub_cont) def test_container_size_ordered_arrays(on_device): dict_in = { "a": ivy.array([[0.0, 1.0, 2.0, 3.0]], device=on_device), "b": { "c": ivy.array([[5.0, 10.0]], device=on_device), "d": ivy.array([[10.0, 9.0, 8.0]], device=on_device), }, } container = Container(dict_in) size_ordered = container.cont_size_ordered_arrays() assert np.allclose(ivy.to_numpy(size_ordered.a), np.array([[0.0, 1.0, 2.0, 3.0]])) assert np.allclose(ivy.to_numpy(size_ordered.b__c), np.array([[5.0, 10.0]])) assert np.allclose(ivy.to_numpy(size_ordered.b__d), np.array([[10.0, 9.0, 8.0]])) for v, arr in zip( size_ordered.values(), [ np.array([[5.0, 10.0]]), np.array([[10.0, 9.0, 8.0]]), np.array([[0.0, 1.0, 2.0, 3.0]]), ], ): assert np.allclose(ivy.to_numpy(v), arr) def test_container_slice(on_device): dict_in = { "a": ivy.array([[0.0], [1.0]], device=on_device), "b": { "c": ivy.array([[1.0], [2.0]], device=on_device), "d": ivy.array([[2.0], [3.0]], device=on_device), }, } container = Container(dict_in) container0 = container[0] container1 = container[1] assert np.array_equal(ivy.to_numpy(container0["a"]), np.array([0.0])) assert np.array_equal(ivy.to_numpy(container0.a), np.array([0.0])) assert np.array_equal(ivy.to_numpy(container0["b"]["c"]), np.array([1.0])) assert np.array_equal(ivy.to_numpy(container0.b.c), np.array([1.0])) assert np.array_equal(ivy.to_numpy(container0["b"]["d"]), np.array([2.0])) assert np.array_equal(ivy.to_numpy(container0.b.d), np.array([2.0])) assert np.array_equal(ivy.to_numpy(container1["a"]), np.array([1.0])) assert np.array_equal(ivy.to_numpy(container1.a), np.array([1.0])) assert np.array_equal(ivy.to_numpy(container1["b"]["c"]), np.array([2.0])) assert np.array_equal(ivy.to_numpy(container1.b.c), np.array([2.0])) assert np.array_equal(ivy.to_numpy(container1["b"]["d"]), np.array([3.0])) assert np.array_equal(ivy.to_numpy(container1.b.d), np.array([3.0])) @pytest.mark.parametrize("str_slice", [True, False]) def test_container_slice_keys(str_slice, on_device): # values a_val = ivy.array([1], device=on_device) b_val = ivy.array([2], device=on_device) c_val = ivy.array([3], device=on_device) d_val = ivy.array([4], device=on_device) e_val = ivy.array([5], device=on_device) # slice if str_slice: slc = "b:d" else: slc = slice(1, 4, 1) # without dict cont = Container({"a": a_val, "b": b_val, "c": c_val, "d": d_val, "e": e_val}) cont_sliced = cont.cont_slice_keys(slc) assert "a" not in cont_sliced assert np.allclose(ivy.to_numpy(cont_sliced.b), ivy.to_numpy(b_val)) assert np.allclose(ivy.to_numpy(cont_sliced.c), ivy.to_numpy(c_val)) assert np.allclose(ivy.to_numpy(cont_sliced.d), ivy.to_numpy(d_val)) assert "e" not in cont_sliced # with dict, depth 0 sub_cont = Container({"a": a_val, "b": b_val, "c": c_val, "d": d_val, "e": e_val}) cont = Container( {"a": sub_cont, "b": sub_cont, "c": sub_cont, "d": sub_cont, "e": sub_cont} ) cont_sliced = cont.cont_slice_keys({0: slc}) assert "a" not in cont_sliced assert Container.cont_identical([cont_sliced.b, sub_cont]) assert Container.cont_identical([cont_sliced.c, sub_cont]) assert Container.cont_identical([cont_sliced.d, sub_cont]) assert "e" not in cont_sliced # with dict, depth 1 sub_cont = Container({"a": a_val, "b": b_val, "c": c_val, "d": d_val, "e": e_val}) sub_sub_cont = Container({"b": b_val, "c": c_val, "d": d_val}) cont = Container( {"a": sub_cont, "b": sub_cont, "c": sub_cont, "d": sub_cont, "e": sub_cont} ) cont_sliced = cont.cont_slice_keys({1: slc}) assert Container.cont_identical([cont_sliced.a, sub_sub_cont]) assert Container.cont_identical([cont_sliced.b, sub_sub_cont]) assert Container.cont_identical([cont_sliced.c, sub_sub_cont]) assert Container.cont_identical([cont_sliced.d, sub_sub_cont]) assert Container.cont_identical([cont_sliced.e, sub_sub_cont]) # with dict, depth 0, 1 sub_cont = Container({"a": a_val, "b": b_val, "c": c_val, "d": d_val, "e": e_val}) sub_sub_cont = Container({"b": b_val, "c": c_val, "d": d_val}) cont = Container( {"a": sub_cont, "b": sub_cont, "c": sub_cont, "d": sub_cont, "e": sub_cont} ) cont_sliced = cont.cont_slice_keys({0: slc, 1: slc}) assert "a" not in cont_sliced assert Container.cont_identical([cont_sliced.b, sub_sub_cont]) assert Container.cont_identical([cont_sliced.c, sub_sub_cont]) assert Container.cont_identical([cont_sliced.d, sub_sub_cont]) assert "e" not in cont_sliced # all depths sub_cont = Container({"a": a_val, "b": b_val, "c": c_val, "d": d_val, "e": e_val}) sub_sub_cont = Container({"b": b_val, "c": c_val, "d": d_val}) cont = Container( {"a": sub_cont, "b": sub_cont, "c": sub_cont, "d": sub_cont, "e": sub_cont} ) cont_sliced = cont.cont_slice_keys(slc, all_depths=True) assert "a" not in cont_sliced assert Container.cont_identical([cont_sliced.b, sub_sub_cont]) assert Container.cont_identical([cont_sliced.c, sub_sub_cont]) assert Container.cont_identical([cont_sliced.d, sub_sub_cont]) assert "e" not in cont_sliced def test_container_slice_via_key(on_device): dict_in = { "a": { "x": ivy.array([0.0], device=on_device), "y": ivy.array([1.0], device=on_device), }, "b": { "c": { "x": ivy.array([1.0], device=on_device), "y": ivy.array([2.0], device=on_device), }, "d": { "x": ivy.array([2.0], device=on_device), "y": ivy.array([3.0], device=on_device), }, }, } container = Container(dict_in) containerx = container.cont_slice_via_key("x") containery = container.cont_slice_via_key("y") assert np.array_equal(ivy.to_numpy(containerx["a"]), np.array([0.0])) assert np.array_equal(ivy.to_numpy(containerx.a), np.array([0.0])) assert np.array_equal(ivy.to_numpy(containerx["b"]["c"]), np.array([1.0])) assert np.array_equal(ivy.to_numpy(containerx.b.c), np.array([1.0])) assert np.array_equal(ivy.to_numpy(containerx["b"]["d"]), np.array([2.0])) assert np.array_equal(ivy.to_numpy(containerx.b.d), np.array([2.0])) assert np.array_equal(ivy.to_numpy(containery["a"]), np.array([1.0])) assert np.array_equal(ivy.to_numpy(containery.a), np.array([1.0])) assert np.array_equal(ivy.to_numpy(containery["b"]["c"]), np.array([2.0])) assert np.array_equal(ivy.to_numpy(containery.b.c), np.array([2.0])) assert np.array_equal(ivy.to_numpy(containery["b"]["d"]), np.array([3.0])) assert np.array_equal(ivy.to_numpy(containery.b.d), np.array([3.0])) def test_container_sort_by_key(on_device): dict_in = { "b": ivy.array([1], device=on_device), "a": { "d": ivy.array([2], device=on_device), "c": ivy.array([3], device=on_device), }, } container = Container(dict_in) container_sorted = container.cont_sort_by_key() for k, k_true in zip(container_sorted.keys(), ["a", "b"]): assert k == k_true for k, k_true in zip(container_sorted.a.keys(), ["c", "d"]): assert k == k_true def test_container_split_conts(on_device): dict_in = { "a": ivy.array([[1], [2], [3]], device=on_device), "b": { "c": ivy.array([[2], [3], [4]], device=on_device), "d": ivy.array([[3], [4], [5]], device=on_device), }, } container = Container(dict_in) # without key_chains specification container_split = container.split_conts(1, -1) for cont, a, bc, bd in zip(container_split, [1, 2, 3], [2, 3, 4], [3, 4, 5]): assert np.array_equal(ivy.to_numpy(cont["a"])[0], np.array([a])) assert np.array_equal(ivy.to_numpy(cont.a)[0], np.array([a])) assert np.array_equal(ivy.to_numpy(cont["b"]["c"])[0], np.array([bc])) assert np.array_equal(ivy.to_numpy(cont.b.c)[0], np.array([bc])) assert np.array_equal(ivy.to_numpy(cont["b"]["d"])[0], np.array([bd])) assert np.array_equal(ivy.to_numpy(cont.b.d)[0], np.array([bd])) def test_container_structural_diff(on_device): # all different keys or shapes container_0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_1 = Container( { "a": ivy.array([[4]], device=on_device), "b": { "c": ivy.array([[[5]]], device=on_device), "e": ivy.array([3], device=on_device), }, } ) container_diff = ivy.Container.cont_structural_diff(container_0, container_1) assert np.equal(ivy.to_numpy(container_diff.a.diff_0), np.array([1])) assert np.equal(ivy.to_numpy(container_diff.a.diff_1), np.array([[4]])) assert np.equal(ivy.to_numpy(container_diff.b.c.diff_0), np.array([2])) assert np.equal(ivy.to_numpy(container_diff.b.c.diff_1), np.array([[[5]]])) assert np.equal(ivy.to_numpy(container_diff.b.d.diff_0), np.array([3])) assert np.equal(ivy.to_numpy(container_diff.b.e.diff_1), np.array([3])) container_diff_diff_only = ivy.Container.cont_structural_diff( container_0, container_1, mode="diff_only" ) assert container_diff_diff_only.cont_to_dict() == container_diff.cont_to_dict() container_diff_same_only = ivy.Container.cont_structural_diff( container_0, container_1, mode="same_only" ) assert container_diff_same_only.cont_to_dict() == {} # some different shapes container_0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_1 = Container( { "a": ivy.array([4], device=on_device), "b": { "c": ivy.array([[5]], device=on_device), "d": ivy.array([6], device=on_device), }, } ) container_diff = ivy.Container.cont_structural_diff(container_0, container_1) assert np.equal(ivy.to_numpy(container_diff.a), np.array([1])) assert np.equal(ivy.to_numpy(container_diff.b.c.diff_0), np.array([2])) assert np.equal(ivy.to_numpy(container_diff.b.c.diff_1), np.array([5])) assert np.equal(ivy.to_numpy(container_diff.b.d), np.array([3])) container_diff_diff_only = ivy.Container.cont_structural_diff( container_0, container_1, mode="diff_only" ) assert "a" not in container_diff_diff_only assert "b" in container_diff_diff_only assert "c" in container_diff_diff_only["b"] assert "d" not in container_diff_diff_only["b"] container_diff_same_only = ivy.Container.cont_structural_diff( container_0, container_1, mode="same_only" ) assert "a" in container_diff_same_only assert "b" in container_diff_same_only assert "c" not in container_diff_same_only["b"] assert "d" in container_diff_same_only["b"] # all different keys container_0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_1 = Container( { "e": ivy.array([4], device=on_device), "f": { "g": ivy.array([5], device=on_device), "h": ivy.array([6], device=on_device), }, } ) container_diff = ivy.Container.cont_structural_diff(container_0, container_1) assert np.equal(ivy.to_numpy(container_diff.a.diff_0), np.array([1])) assert np.equal(ivy.to_numpy(container_diff.b.diff_0.c), np.array([2])) assert np.equal(ivy.to_numpy(container_diff.b.diff_0.d), np.array([3])) assert np.equal(ivy.to_numpy(container_diff.e.diff_1), np.array([4])) assert np.equal(ivy.to_numpy(container_diff.f.diff_1.g), np.array([5])) assert np.equal(ivy.to_numpy(container_diff.f.diff_1.h), np.array([6])) container_diff_diff_only = ivy.Container.cont_structural_diff( container_0, container_1, mode="diff_only" ) assert container_diff_diff_only.cont_to_dict() == container_diff.cont_to_dict() container_diff_same_only = ivy.Container.cont_structural_diff( container_0, container_1, mode="same_only" ) assert container_diff_same_only.cont_to_dict() == {} # some different keys container_0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_1 = Container( { "a": ivy.array([4], device=on_device), "b": { "c": ivy.array([5], device=on_device), "e": ivy.array([6], device=on_device), }, } ) container_diff = ivy.Container.cont_structural_diff(container_0, container_1) assert np.equal(ivy.to_numpy(container_diff.a), np.array([1])) assert np.equal(ivy.to_numpy(container_diff.b.c), np.array([2])) assert np.equal(ivy.to_numpy(container_diff.b.d.diff_0), np.array([3])) assert np.equal(ivy.to_numpy(container_diff.b.e.diff_1), np.array([6])) container_diff_diff_only = ivy.Container.cont_structural_diff( container_0, container_1, mode="diff_only" ) assert "a" not in container_diff_diff_only assert "b" in container_diff_diff_only assert "c" not in container_diff_diff_only["b"] assert "d" in container_diff_diff_only["b"] assert "e" in container_diff_diff_only["b"] container_diff_same_only = ivy.Container.cont_structural_diff( container_0, container_1, mode="same_only" ) assert "a" in container_diff_same_only assert "b" in container_diff_same_only assert "c" in container_diff_same_only["b"] assert "d" not in container_diff_same_only["b"] assert "e" not in container_diff_same_only["b"] # all same container_0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } ) container_1 = Container( { "a": ivy.array([4], device=on_device), "b": { "c": ivy.array([5], device=on_device), "d": ivy.array([6], device=on_device), }, } ) container_diff = ivy.Container.cont_structural_diff(container_0, container_1) assert np.equal(ivy.to_numpy(container_diff.a), np.array([1])) assert np.equal(ivy.to_numpy(container_diff.b.c), np.array([2])) assert np.equal(ivy.to_numpy(container_diff.b.d), np.array([3])) container_diff_diff_only = ivy.Container.cont_structural_diff( container_0, container_1, mode="diff_only" ) assert container_diff_diff_only.cont_to_dict() == {} container_diff_same_only = ivy.Container.cont_structural_diff( container_0, container_1, mode="same_only" ) assert container_diff_same_only.cont_to_dict() == container_diff.cont_to_dict() def test_container_to_and_from_disk_as_hdf5(on_device): if ivy.current_backend_str() == "tensorflow": # container disk saving requires eager execution pytest.skip() save_filepath = "container_on_disk.hdf5" dict_in_1 = { "a": ivy.array([np.float32(1.0)], device=on_device), "b": { "c": ivy.array([np.float32(2.0)], device=on_device), "d": ivy.array([np.float32(3.0)], device=on_device), }, } container1 = Container(dict_in_1) dict_in_2 = { "a": ivy.array([np.float32(1.0), np.float32(1.0)], device=on_device), "b": { "c": ivy.array([np.float32(2.0), np.float32(2.0)], device=on_device), "d": ivy.array([np.float32(3.0), np.float32(3.0)], device=on_device), }, } container2 = Container(dict_in_2) # saving container1.cont_to_disk_as_hdf5(save_filepath, max_batch_size=2) assert os.path.exists(save_filepath) # loading loaded_container = Container.cont_from_disk_as_hdf5(save_filepath, slice(1)) assert np.array_equal(ivy.to_numpy(loaded_container.a), ivy.to_numpy(container1.a)) assert np.array_equal( ivy.to_numpy(loaded_container.b.c), ivy.to_numpy(container1.b.c) ) assert np.array_equal( ivy.to_numpy(loaded_container.b.d), ivy.to_numpy(container1.b.d) ) # appending container1.cont_to_disk_as_hdf5(save_filepath, max_batch_size=2, starting_index=1) assert os.path.exists(save_filepath) # loading after append loaded_container = Container.cont_from_disk_as_hdf5(save_filepath) assert np.array_equal(ivy.to_numpy(loaded_container.a), ivy.to_numpy(container2.a)) assert np.array_equal( ivy.to_numpy(loaded_container.b.c), ivy.to_numpy(container2.b.c) ) assert np.array_equal( ivy.to_numpy(loaded_container.b.d), ivy.to_numpy(container2.b.d) ) # load slice loaded_sliced_container = Container.cont_from_disk_as_hdf5( save_filepath, slice(1, 2) ) assert np.array_equal( ivy.to_numpy(loaded_sliced_container.a), ivy.to_numpy(container1.a) ) assert np.array_equal( ivy.to_numpy(loaded_sliced_container.b.c), ivy.to_numpy(container1.b.c) ) assert np.array_equal( ivy.to_numpy(loaded_sliced_container.b.d), ivy.to_numpy(container1.b.d) ) # file size file_size, batch_size = Container.h5_file_size(save_filepath) assert file_size == 6 * np.dtype(np.float32).itemsize assert batch_size == 2 os.remove(save_filepath) def test_container_to_and_from_disk_as_json(on_device): save_filepath = "container_on_disk.json" dict_in = { "a": 1.274e-7, "b": {"c": True, "d": ivy.array([np.float32(3.0)], device=on_device)}, } container = Container(dict_in) # saving container.cont_to_disk_as_json(save_filepath) assert os.path.exists(save_filepath) # loading loaded_container = Container.cont_from_disk_as_json(save_filepath) assert np.array_equal(loaded_container.a, container.a) assert np.array_equal(loaded_container.b.c, container.b.c) assert isinstance(loaded_container.b.d, str) os.remove(save_filepath) def test_container_to_and_from_disk_as_pickled(on_device): save_filepath = "container_on_disk.pickled" dict_in = { "a": ivy.array([np.float32(1.0)], device=on_device), "b": { "c": ivy.array([np.float32(2.0)], device=on_device), "d": ivy.array([np.float32(3.0)], device=on_device), }, } container = Container(dict_in) # paddle tansor can't be pickled directly as mentioned # in the issue https://github.com/PaddlePaddle/Paddle/issues/41107 if ivy.backend == "paddle": container = container.to_numpy() # saving container.cont_to_disk_as_pickled(save_filepath) assert os.path.exists(save_filepath) # loading loaded_container = Container.cont_from_disk_as_pickled(save_filepath) assert np.array_equal(ivy.to_numpy(loaded_container.a), ivy.to_numpy(container.a)) assert np.array_equal( ivy.to_numpy(loaded_container.b.c), ivy.to_numpy(container.b.c) ) assert np.array_equal( ivy.to_numpy(loaded_container.b.d), ivy.to_numpy(container.b.d) ) os.remove(save_filepath) def test_container_to_dict(on_device): container0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([True], device=on_device), "d": { "g": ivy.array([2.0], device=on_device), "h": ivy.array([3], device=on_device), }, }, } ) res = ivy.Container.cont_to_dict(container0) assert res == {"a": 1, "b": {"c": True, "d": {"g": 2.0, "h": 3}}} def test_container_to_disk_shuffle_and_from_disk_as_hdf5(on_device): if ivy.current_backend_str() == "tensorflow": # container disk saving requires eager execution pytest.skip() save_filepath = "container_on_disk.hdf5" dict_in = { "a": ivy.array([1, 2, 3], device=on_device), "b": { "c": ivy.array([1, 2, 3], device=on_device), "d": ivy.array([1, 2, 3], device=on_device), }, } container = Container(dict_in) # saving container.cont_to_disk_as_hdf5(save_filepath, max_batch_size=3) assert os.path.exists(save_filepath) # shuffling Container.shuffle_h5_file(save_filepath) # loading container_shuffled = Container.cont_from_disk_as_hdf5(save_filepath, slice(3)) # testing data = np.array([1, 2, 3]) random.seed(0) random.shuffle(data) assert (ivy.to_numpy(container_shuffled["a"]) == data).all() assert (ivy.to_numpy(container_shuffled.a) == data).all() assert (ivy.to_numpy(container_shuffled["b"]["c"]) == data).all() assert (ivy.to_numpy(container_shuffled.b.c) == data).all() assert (ivy.to_numpy(container_shuffled["b"]["d"]) == data).all() assert (ivy.to_numpy(container_shuffled.b.d) == data).all() os.remove(save_filepath) def test_container_to_flat_list(on_device): dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } container = Container(dict_in) container_flat_list = container.cont_to_flat_list() for value, expected_value in zip( container_flat_list, [ ivy.array([1], device=on_device), ivy.array([2], device=on_device), ivy.array([3], device=on_device), ], ): assert value == expected_value @pytest.mark.parametrize("include_empty", [True, False]) def test_container_to_iterator(include_empty, on_device): a_val = Container() if include_empty else ivy.array([1], device=on_device) bc_val = Container() if include_empty else ivy.array([2], device=on_device) bd_val = Container() if include_empty else ivy.array([3], device=on_device) dict_in = {"a": a_val, "b": {"c": bc_val, "d": bd_val}} container = Container(dict_in) # with key chains container_iterator = container.cont_to_iterator(include_empty=include_empty) for (key_chain, value), expected in zip( container_iterator, [("a", a_val), ("b/c", bc_val), ("b/d", bd_val)] ): expected_key_chain = expected[0] expected_value = expected[1] assert key_chain == expected_key_chain assert value is expected_value # with leaf keys container_iterator = container.cont_to_iterator( leaf_keys_only=True, include_empty=include_empty ) for (key_chain, value), expected in zip( container_iterator, [("a", a_val), ("c", bc_val), ("d", bd_val)] ): expected_key_chain = expected[0] expected_value = expected[1] assert key_chain == expected_key_chain assert value is expected_value @pytest.mark.parametrize("include_empty", [True, False]) def test_container_to_iterator_keys(include_empty, on_device): a_val = Container() if include_empty else ivy.array([1], device=on_device) bc_val = Container() if include_empty else ivy.array([2], device=on_device) bd_val = Container() if include_empty else ivy.array([3], device=on_device) dict_in = {"a": a_val, "b": {"c": bc_val, "d": bd_val}} container = Container(dict_in) # with key chains container_iterator = container.cont_to_iterator_keys(include_empty=include_empty) for key_chain, expected_key_chain in zip(container_iterator, ["a", "b/c", "b/d"]): assert key_chain == expected_key_chain # with leaf keys container_iterator = container.cont_to_iterator_keys( leaf_keys_only=True, include_empty=include_empty ) for key, expected_key in zip(container_iterator, ["a", "c", "d"]): assert key == expected_key @pytest.mark.parametrize("include_empty", [True, False]) def test_container_to_iterator_values(include_empty, on_device): a_val = Container() if include_empty else ivy.array([1], device=on_device) bc_val = Container() if include_empty else ivy.array([2], device=on_device) bd_val = Container() if include_empty else ivy.array([3], device=on_device) dict_in = {"a": a_val, "b": {"c": bc_val, "d": bd_val}} container = Container(dict_in) # with key chains container_iterator = container.cont_to_iterator_values(include_empty=include_empty) for value, expected_value in zip(container_iterator, [a_val, bc_val, bd_val]): assert value is expected_value def test_container_to_nested_list(on_device): container0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([True], device=on_device), "d": { "g": ivy.array([2.0], device=on_device), "h": ivy.array([3], device=on_device), }, }, } ) res = ivy.Container.cont_to_nested_list(container0) assert res == [1, [True, [2.0, 3]]] def test_container_to_raw(on_device): tuple_in = ( ivy.array([1], device=on_device), (ivy.array([2], device=on_device), ivy.array([3], device=on_device)), ) container = Container(tuple_in, types_to_iteratively_nest=[tuple]) raw = container.cont_to_raw() assert np.allclose(ivy.to_numpy(raw[0]), np.array([1])) assert np.allclose(ivy.to_numpy(raw[1][0]), np.array([2])) assert np.allclose(ivy.to_numpy(raw[1][1]), np.array([3])) def test_container_trim_key(on_device): key = "abcdefg" max_length = 3 trimmed_key = ivy.Container.cont_trim_key(key, max_length) assert trimmed_key == "adg" def test_container_try_kc(on_device): cont = Container( { "a": ivy.array([0.0], device=on_device), "b": { "c": ivy.array([1.0], device=on_device), "d": ivy.array([2.0], device=on_device), }, } ) assert cont.cont_try_kc("a") == cont.a assert cont.cont_try_kc("b/c") == cont.b.c assert cont.cont_try_kc("b/d") == cont.b.d assert cont.cont_try_kc("b/e") is cont def test_container_unify(on_device): # on_devices and containers on_devices = [] dev0 = on_device on_devices.append(dev0) conts = {} conts[dev0] = Container( { "a": ivy.array([1], device=dev0), "b": {"c": ivy.array([2], device=dev0), "d": ivy.array([3], device=dev0)}, } ) if "gpu" in on_device and ivy.num_gpus() > 1: idx = ivy.num_gpus() - 1 dev1 = on_device[:-1] + str(idx) on_devices.append(dev1) conts[dev1] = Container( { "a": ivy.array([4], device=dev1), "b": { "c": ivy.array([5], device=dev1), "d": ivy.array([6], device=dev1), }, } ) # test container_unified = ivy.Container.cont_unify(conts, dev0, "concat", 0) assert np.allclose(ivy.to_numpy(container_unified.a[0]), np.array([1])) assert np.allclose(ivy.to_numpy(container_unified.b.c[0]), np.array([2])) assert np.allclose(ivy.to_numpy(container_unified.b.d[0]), np.array([3])) if len(on_devices) > 1: assert np.allclose(ivy.to_numpy(container_unified.a[1]), np.array([4])) assert np.allclose(ivy.to_numpy(container_unified.b.c[1]), np.array([5])) assert np.allclose(ivy.to_numpy(container_unified.b.d[1]), np.array([6])) def test_container_unstack_conts(on_device): dict_in = { "a": ivy.array([[1], [2], [3]], device=on_device), "b": { "c": ivy.array([[2], [3], [4]], device=on_device), "d": ivy.array([[3], [4], [5]], device=on_device), }, } container = Container(dict_in) # without key_chains specification container_unstacked = container.cont_unstack_conts(0) for cont, a, bc, bd in zip(container_unstacked, [1, 2, 3], [2, 3, 4], [3, 4, 5]): assert np.array_equal(ivy.to_numpy(cont["a"]), np.array([a])) assert np.array_equal(ivy.to_numpy(cont.a), np.array([a])) assert np.array_equal(ivy.to_numpy(cont["b"]["c"]), np.array([bc])) assert np.array_equal(ivy.to_numpy(cont.b.c), np.array([bc])) assert np.array_equal(ivy.to_numpy(cont["b"]["d"]), np.array([bd])) assert np.array_equal(ivy.to_numpy(cont.b.d), np.array([bd])) def test_container_with_default_key_color(on_device): cont = Container( { "a": ivy.array([0.0], device=on_device), "b": { "c": ivy.array([1.0], device=on_device), "d": ivy.array([2.0], device=on_device), }, } ) default_default_key_color = cont._default_key_color id_cont = id(cont) cont1 = cont.cont_with_default_key_color("red") assert cont1._default_key_color == "red" assert id(cont1) != id(cont) assert cont._default_key_color == default_default_key_color assert cont.b._default_key_color == default_default_key_color assert cont._default_key_color != cont1._default_key_color cont.cont_with_default_key_color("red", inplace=True) assert cont._default_key_color == "red" assert cont.b._default_key_color == "red" assert id(cont) == id_cont def test_container_with_entries_as_lists(on_device): if ivy.current_backend_str() == "tensorflow": # to_list() requires eager execution pytest.skip() dict_in = { "a": ivy.array([1], device=on_device), "b": {"c": ivy.array([2.0], device=on_device), "d": "some string"}, } container = Container(dict_in) container_w_list_entries = container.cont_with_entries_as_lists() for (key, value), expected_value in zip( container_w_list_entries.cont_to_iterator(), [[1], [2.0], "some string"] ): assert value == expected_value def test_container_with_ivy_backend(on_device): container0 = Container( { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([1], device=on_device), "d": ivy.array([2], device=on_device), }, } ) id_container0 = id(container0) container0 = ivy.Container.cont_with_ivy_backend(container0, "numpy") assert container0.cont_config["ivyh"] == "numpy" assert id_container0 != id(container0) id_container0 = id(container0) ivy.Container.cont_with_ivy_backend(container0, "torch", inplace=True) assert container0.cont_config["ivyh"] == "torch" assert id(container0) == id_container0 def test_container_with_key_length_limit(on_device): cont = Container( { "a": ivy.array([0.0], device=on_device), "b": { "c": ivy.array([1.0], device=on_device), "d": ivy.array([2.0], device=on_device), }, } ) default_key_length_limit = cont._key_length_limit id_cont = id(cont) cont1 = cont.cont_with_key_length_limit(5) assert cont1._key_length_limit == 5 assert id(cont1) != id(cont) assert cont._key_length_limit == default_key_length_limit assert cont.b._key_length_limit == default_key_length_limit assert cont._key_length_limit != cont1._key_length_limit cont.cont_with_key_length_limit(5, inplace=True) assert cont._key_length_limit == 5 assert cont.b._key_length_limit == 5 assert id(cont) == id_cont def test_container_with_print_indent(on_device): cont = Container( { "a": ivy.array([0.0], device=on_device), "b": { "c": ivy.array([1.0], device=on_device), "d": ivy.array([2.0], device=on_device), }, } ) default_print_indent = cont._print_indent id_cont = id(cont) cont1 = cont.cont_with_print_indent(default_print_indent + 5) assert cont1._print_indent == default_print_indent + 5 assert id(cont1) != id(cont) assert cont._print_indent == default_print_indent assert cont.b._print_indent == default_print_indent assert cont._print_indent != cont1._print_indent cont.cont_with_print_indent(default_print_indent + 5, inplace=True) assert cont._print_indent == default_print_indent + 5 assert cont.b._print_indent == default_print_indent + 5 assert id(cont) == id_cont def test_container_with_print_limit(on_device): cont = Container( { "a": ivy.array([0.0], device=on_device), "b": { "c": ivy.array([1.0], device=on_device), "d": ivy.array([2.0], device=on_device), }, } ) default_print_limit = cont._print_limit id_cont = id(cont) cont1 = cont.cont_with_print_limit(default_print_limit + 5) assert cont1._print_limit == default_print_limit + 5 assert id(cont1) != id(cont) assert cont._print_limit == default_print_limit assert cont._print_limit != cont1._print_limit cont.cont_with_print_limit(default_print_limit + 5, inplace=True) assert cont._print_limit == default_print_limit + 5 assert cont.b._print_limit == default_print_limit + 5 assert id(cont) == id_cont def test_container_with_print_line_spacing(on_device): cont = Container( { "a": ivy.array([0.0], device=on_device), "b": { "c": ivy.array([1.0], device=on_device), "d": ivy.array([2.0], device=on_device), }, } ) default_print_line_spacing = cont._print_line_spacing id_cont = id(cont) cont1 = cont.cont_with_print_line_spacing(default_print_line_spacing + 5) assert cont1._print_line_spacing == default_print_line_spacing + 5 assert id(cont1) != id(cont) assert cont._print_line_spacing == default_print_line_spacing assert cont.b._print_line_spacing == default_print_line_spacing assert cont._print_line_spacing != cont1._print_line_spacing cont.cont_with_print_line_spacing(default_print_line_spacing + 5, inplace=True) assert cont._print_line_spacing == default_print_line_spacing + 5 assert cont.b._print_line_spacing == default_print_line_spacing + 5 assert id(cont) == id_cont def test_jax_pytree_compatibility(on_device): if ivy.current_backend_str() != "jax": pytest.skip() # import from jax.tree_util import tree_flatten # dict in dict_in = { "a": ivy.array([1], device=on_device), "b": { "c": ivy.array([2], device=on_device), "d": ivy.array([3], device=on_device), }, } # container container = Container(dict_in) # container flattened cont_values = tree_flatten(container)[0] # dict flattened true_values = tree_flatten(dict_in)[0] # assertion for i, true_val in enumerate(true_values): assert np.array_equal(ivy.to_numpy(cont_values[i]), ivy.to_numpy(true_val))
ivy/ivy_tests/test_ivy/test_misc/test_container.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_misc/test_container.py", "repo_id": "ivy", "token_count": 61238 }
64
"""Collection of tests for unified neural network activations.""" # global from hypothesis import strategies as st, assume # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_method # ELU @handle_method( method_tree="stateful.activations.ELU.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, min_num_dims=2, large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", ), method_num_positional_args=helpers.num_positional_args(fn_name="ELU._forward"), test_gradients=st.just(True), alpha=helpers.floats(min_value=0.1, max_value=1), ) def test_elu( *, dtype_and_x, alpha, test_gradients, class_name, method_name, ground_truth_backend, backend_fw, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0], "alpha": alpha}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) # GEGLU @handle_method( method_tree="stateful.activations.GEGLU.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", ), method_num_positional_args=helpers.num_positional_args(fn_name="GEGLU._forward"), test_gradients=st.just(True), ) def test_geglu( *, dtype_and_x, test_gradients, class_name, method_name, backend_fw, ground_truth_backend, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x # last dim must be even, this could replaced with a private helper assume(x[0].shape[-1] % 2 == 0) helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"inputs": x[0]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) # GELU @handle_method( method_tree="stateful.activations.GELU.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), large_abs_safety_factor=1, small_abs_safety_factor=1, safety_factor_scale="linear", ), approximate=st.booleans(), method_num_positional_args=helpers.num_positional_args(fn_name="GELU._forward"), test_gradients=st.just(True), ) def test_gelu( *, dtype_and_x, approximate, test_gradients, method_name, class_name, backend_fw, ground_truth_backend, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, init_all_as_kwargs_np={"approximate": approximate}, method_input_dtypes=input_dtype, method_all_as_kwargs_np={"x": x[0]}, class_name=class_name, method_name=method_name, atol_=1e-2, rtol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) # Hardswish @handle_method( method_tree="stateful.activations.Hardswish.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", min_num_dims=2, ), method_num_positional_args=helpers.num_positional_args( fn_name="Hardswish._forward" ), test_gradients=st.just(True), ) def test_hardswish( *, dtype_and_x, test_gradients, class_name, method_name, ground_truth_backend, backend_fw, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) @handle_method( method_tree="stateful.activations.LeakyReLU.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes( "float_and_complex", full=False, key="leaky_relu" ), large_abs_safety_factor=16, small_abs_safety_factor=16, safety_factor_scale="log", ), alpha=st.floats(min_value=-1e-4, max_value=1e-4), method_num_positional_args=helpers.num_positional_args( fn_name="LeakyReLU._forward" ), test_gradients=st.just(True), ) def test_leaky_relu( *, dtype_and_x, alpha, test_gradients, class_name, method_name, backend_fw, ground_truth_backend, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={"alpha": alpha}, method_all_as_kwargs_np={"x": x[0]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) # LogSoftmax @handle_method( method_tree="stateful.activations.LogSoftmax.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), min_num_dims=2, large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", ), axis=helpers.ints(min_value=-1, max_value=0), method_num_positional_args=helpers.num_positional_args( fn_name="LogSoftmax._forward" ), test_gradients=st.just(True), ) def test_log_softmax( *, dtype_and_x, axis, test_gradients, class_name, method_name, backend_fw, ground_truth_backend, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={"axis": axis}, method_all_as_kwargs_np={"x": x[0]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) # Logit @handle_method( method_tree="stateful.activations.Logit.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", min_num_dims=2, ), method_num_positional_args=helpers.num_positional_args(fn_name="Logit._forward"), eps=helpers.floats(min_value=1e-4, max_value=1e-2), test_gradients=st.just(True), ) def test_logit( *, dtype_and_x, eps, test_gradients, class_name, method_name, ground_truth_backend, backend_fw, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0], "eps": eps}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) # Logsigmoid @handle_method( method_tree="stateful.activations.LogSigmoid.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", min_num_dims=2, ), method_num_positional_args=helpers.num_positional_args( fn_name="LogSigmoid._forward" ), test_gradients=st.just(True), ) def test_logsigmoid( *, dtype_and_x, test_gradients, class_name, method_name, ground_truth_backend, backend_fw, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) @handle_method( method_tree="stateful.activations.Mish.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", ), method_num_positional_args=helpers.num_positional_args(fn_name="Mish._forward"), test_gradients=st.just(True), ) def test_mish( *, dtype_and_x, test_gradients, class_name, method_name, backend_fw, ground_truth_backend, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) # PReLU @handle_method( method_tree="stateful.activations.PReLU.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, min_num_dims=2, large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", ), method_num_positional_args=helpers.num_positional_args(fn_name="PReLU._forward"), test_gradients=st.just(True), ) def test_prelu( *, dtype_and_x, test_gradients, class_name, method_name, ground_truth_backend, backend_fw, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0], "slope": x[1]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) @handle_method( method_tree="stateful.activations.ReLU.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", ), method_num_positional_args=helpers.num_positional_args(fn_name="ReLU._forward"), test_gradients=st.just(True), ) def test_relu( *, dtype_and_x, test_gradients, class_name, method_name, backend_fw, ground_truth_backend, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) # ReLU6 @handle_method( method_tree="stateful.activations.ReLU6.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", min_num_dims=2, ), method_num_positional_args=helpers.num_positional_args(fn_name="ReLU6._forward"), test_gradients=st.just(True), ) def test_relu6( *, dtype_and_x, test_gradients, class_name, method_name, ground_truth_backend, backend_fw, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) # SeLU @handle_method( method_tree="stateful.activations.SeLU.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", min_num_dims=2, ), method_num_positional_args=helpers.num_positional_args(fn_name="SeLU._forward"), test_gradients=st.just(True), ) def test_selu( *, dtype_and_x, test_gradients, class_name, method_name, ground_truth_backend, backend_fw, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) # Sigmoid @handle_method( method_tree="stateful.activations.Sigmoid.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", min_num_dims=2, ), method_num_positional_args=helpers.num_positional_args(fn_name="Sigmoid._forward"), test_gradients=st.just(True), ) def test_sigmoid( *, dtype_and_x, test_gradients, class_name, method_name, ground_truth_backend, backend_fw, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) @handle_method( method_tree="stateful.activations.SiLU.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", ), method_num_positional_args=helpers.num_positional_args(fn_name="SiLU._forward"), test_gradients=st.just(True), ) def test_silu( *, dtype_and_x, test_gradients, class_name, method_name, backend_fw, ground_truth_backend, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) @handle_method( method_tree="stateful.activations.Softmax.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), min_num_dims=1, large_abs_safety_factor=10, small_abs_safety_factor=10, safety_factor_scale="log", ), axis=helpers.ints(min_value=-1, max_value=0), method_num_positional_args=helpers.num_positional_args(fn_name="Softmax._forward"), test_gradients=st.just(True), ) def test_softmax( *, dtype_and_x, axis, test_gradients, class_name, method_name, backend_fw, ground_truth_backend, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0], "axis": axis}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) @handle_method( method_tree="stateful.activations.Softplus.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=1, large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", ), beta=st.one_of(helpers.number(min_value=0.1, max_value=10), st.none()), threshold=st.one_of(helpers.number(min_value=0.1, max_value=30), st.none()), method_num_positional_args=helpers.num_positional_args(fn_name="Softplus._forward"), test_gradients=st.just(True), ) def test_softplus( *, dtype_and_x, beta, threshold, test_gradients, class_name, method_name, backend_fw, ground_truth_backend, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0], "beta": beta, "threshold": threshold}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, ) # Tanh @handle_method( method_tree="stateful.activations.Tanh.__call__", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", min_num_dims=2, ), method_num_positional_args=helpers.num_positional_args(fn_name="Tanh._forward"), test_gradients=st.just(True), ) def test_tanh( *, dtype_and_x, test_gradients, class_name, method_name, ground_truth_backend, backend_fw, init_flags, method_flags, on_device, ): input_dtype, x = dtype_and_x helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, init_input_dtypes=input_dtype, method_input_dtypes=input_dtype, init_all_as_kwargs_np={}, method_all_as_kwargs_np={"x": x[0]}, class_name=class_name, method_name=method_name, rtol_=1e-2, atol_=1e-2, test_gradients=test_gradients, on_device=on_device, )
ivy/ivy_tests/test_ivy/test_stateful/test_activations.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_stateful/test_activations.py", "repo_id": "ivy", "token_count": 11062 }
65
import sys from get_all_tests import BACKENDS def main(): if len(sys.argv) < 2: return test = sys.argv[1] with open("tests_to_run", "w") as f: if "," in test: f.write(test + "\n") else: for backend in BACKENDS: f.write(f"{test},{backend}\n") if __name__ == "__main__": main()
ivy/scripts/setup_tests/setup_tests.py/0
{ "file_path": "ivy/scripts/setup_tests/setup_tests.py", "repo_id": "ivy", "token_count": 188 }
66
<component name="InspectionProjectProfileManager"> <settings> <option name="PROJECT_PROFILE" value="Default" /> <option name="USE_PROJECT_PROFILE" value="false" /> <version value="1.0" /> </settings> </component>
ivy/.idea/inspectionProfiles/profiles_settings.xml/0
{ "file_path": "ivy/.idea/inspectionProfiles/profiles_settings.xml", "repo_id": "ivy", "token_count": 78 }
0
> 🚀 We are granting access to **Ivy\'s Tracer and Transpiler** > to all of our users, [sign up on our console](https://console.unify.ai/) if you > want to test them out! <img class="only-dark" width="100%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logo_dark.png#gh-dark-mode-only"/> <img class="only-light" width="100%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logo.png?raw=true#gh-light-mode-only"/> ------------------------------------------------------------------------ <div style="display: block;" align="center"> <a href="https://unify.ai/"> <img class="dark-light" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/website_button.svg"> </a> <img class="dark-light" width="5%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/empty.png"> <a href="https://unify.ai/docs/ivy"> <img class="dark-light" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/docs_button.svg"> </a> <img class="dark-light" width="5%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/empty.png"> <a href="https://unify.ai/demos"> <img class="dark-light" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/examples_button.svg"> </a> <img class="dark-light" width="5%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/empty.png"> <a href="https://unify.ai/docs/ivy/overview/design.html"> <img class="dark-light" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/design_button.svg"> </a> <img class="dark-light" width="5%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/empty.png"> <a href="https://unify.ai/docs/ivy/overview/faq.html"> <img class="dark-light" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/faq_button.svg"> </a> </div> ------------------------------------------------------------------------ # Status <div> <a href="https://github.com/unifyai/ivy/issues"> <img class="dark-light" style="padding-right: 4px; padding-bottom: 4px;" src="https://img.shields.io/github/issues/unifyai/ivy"> </a> <a href="https://github.com/unifyai/ivy/network/members"> <img class="dark-light" style="padding-right: 4px; padding-bottom: 4px;" src="https://img.shields.io/github/forks/unifyai/ivy"> </a> <a href="https://github.com/unifyai/ivy/stargazers"> <img class="dark-light" style="padding-right: 4px; padding-bottom: 4px;" src="https://img.shields.io/github/stars/unifyai/ivy"> </a> <a href="https://github.com/unifyai/ivy/pulls"> <img class="dark-light" style="padding-right: 4px; padding-bottom: 4px;" src="https://img.shields.io/badge/PRs-welcome-brightgreen.svg"> </a> <a href="https://pypi.org/project/ivy"> <img class="dark-light" style="padding-right: 4px; padding-bottom: 4px;" src="https://badge.fury.io/py/ivy.svg"> </a> <a href="https://github.com/unifyai/ivy/actions?query=workflow%3Adocs"> <img class="dark-light" style="padding-right: 4px; padding-bottom: 4px;" src="https://github.com/unifyai/ivy/actions/workflows/docs.yml/badge.svg"> </a> <a href="https://github.com/unifyai/ivy/actions?query=workflow%3Atest-ivy"> <img class="dark-light" style="padding-right: 4px; padding-bottom: 4px;" src="https://github.com/unifyai/ivy/actions/workflows/intelligent-tests.yml/badge.svg"> </a> <a href="https://discord.gg/sXyFF8tDtm"> <img class="dark-light" style="padding-right: 4px; padding-bottom: 4px;" src="https://img.shields.io/discord/799879767196958751?color=blue&label=%20&logo=discord&logoColor=white"> </a> </div> <br clear="all" /> ------------------------------------------------------------------------ # Unified AI <div style="display: block;" align="center"> <div> <a href="https://jax.readthedocs.io"> <img class="dark-light" width="10%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/jax_logo.png"> </a> <img class="dark-light" width="5%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/empty.png"> <img class="dark-light" width="5%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/empty.png"> <a href="https://www.tensorflow.org"> <img class="dark-light" width="10%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/tensorflow_logo.png"> </a> <img class="dark-light" width="5%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/empty.png"> <img class="dark-light" width="5%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/empty.png"> <a href="https://pytorch.org"> <img class="dark-light" width="10%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/pytorch_logo.png"> </a> <img class="dark-light" width="5%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/empty.png"> <img class="dark-light" width="5%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/empty.png"> <a href="https://numpy.org"> <img class="dark-light" width="10%" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/numpy_logo.png"> </a> </div> </div> <br clear="all" /> ------------------------------------------------------------------------ Ivy is an open-source machine learning framework that enables you to: - 🔥 **Autotune your model**: Automatically find the optimal framework, compiler infrastructure and hardware for your specific use case using `ivy.autotune`. - 🔄 **Convert code into any framework**: Use and build on top of any model, library, or device by converting any code from one framework to another using `ivy.transpile`. - ⚒️ **Write framework-agnostic code**: Write your code once in ivy and then choose the most appropriate ML framework as the backend to leverage all the benefits and tools. [Join our growing community](https://discord.com/invite/sXyFF8tDtm) 🌍 to connect with people using Ivy. **Let\'s** [unify.ai](https://unify.ai) **together 🦾** ------------------------------------------------------------------------ # Getting started The best way to get familiar with Ivy is to go through the [Demos](https://unify.ai/docs/ivy/demos/examples_and_demos.html), a good starting point is [Learn The Basics](https://unify.ai/docs/ivy/demos/learn_the_basics.html). The most important notebooks are: - [How to convert your code between frameworks?](https://unify.ai/docs/ivy/demos/learn_the_basics/04_transpile_code.html) - [How to write framework-agnostic code?](https://unify.ai/docs/ivy/demos/learn_the_basics/01_write_ivy_code.html) - Accelerate your development (WIP) - Autotune and optimize models (WIP) ------------------------------------------------------------------------ ## Installing ivy There are various ways to use Ivy, depending on your preferred environment: ### Installing using pip The easiest way to set up Ivy is to install it using pip with the following command: ``` bash pip install ivy ``` or alternatively: ``` bash python3 -m pip install ivy ``` <details> <summary>Docker</summary> If you prefer to use containers, we also have pre-built Docker images with all the supported frameworks and some relevant packages already installed, which you can pull from: ``` bash docker pull unifyai/ivy:latest ``` If you are working on a GPU device, you can pull from: ``` bash docker pull unifyai/ivy:latest-gpu ``` </details> <details> <summary>From Source</summary> You can also install Ivy from source if you want to take advantage of the latest changes, but we can\'t ensure everything will work as expected. :sweat_smile: ``` bash git clone https://github.com/unifyai/ivy.git cd ivy pip install --user -e . ``` or alternatively, for the last step: ``` bash python3 -m pip install --user -e . ``` If you want to set up testing and various frameworks it\'s probably best to check out the [Contributing - Setting Up](https://unify.ai/docs/ivy/overview/contributing/setting_up. html#setting-up) page, where OS-specific and IDE-specific instructions and video tutorials to do so are available! </details> ------------------------------------------------------------------------ ## Using Ivy After installing Ivy, you can start using it straight away, for example: <details> <summary><b>Transpiling any code from one framework to another</b></summary> ``` python import ivy import torch import jax def jax_fn(x): a = jax.numpy.dot(x, x) b = jax.numpy.mean(x) return x * a + b jax_x = jax.numpy.array([1, 2, 3]) torch_x = torch.tensor([1, 2, 3]) torch_fn = ivy.transpile(jax_fn, source="jax", to="torch", args=(jax_x,)) ret = torch_fn(torch_x) ``` </details> <details> <summary><b>Running your code with any backend</b></summary> ``` python import ivy import torch import jax ivy.set_backend("jax") x = jax.numpy.array([1, 2, 3]) y = jax.numpy.array([3, 2, 1]) z = ivy.add(x, y) ivy.set_backend('torch') x = torch.tensor([1, 2, 3]) y = torch.tensor([3, 2, 1]) z = ivy.add(x, y) ``` </details> ------------------------------------------------------------------------ # Documentation You can find Ivy's documentation on the [Docs page](https://unify.ai/docs/ivy/), which includes: - [Motivation](https://unify.ai/docs/ivy/overview/background.html): This contextualizes the problem Ivy is trying to solve by going over - The current [ML Explosion](https://unify.ai/docs/ivy/overview/background/ml_explosion.html#ml-explosion). - Explaining why it is important [to solve this problem](https://unify.ai/docs/ivy/overview/background/why_unify.html#why-unify). - Explaining how we adhere to existing [standards](https://unify.ai/docs/ivy/overview/background/standardization.html#standardization) to make this happen. - [Related Work](https://unify.ai/docs/ivy/overview/related_work.html): Which paints a picture of the role Ivy plays in the ML stack, comparing it to other existing solutions in terms of functionalities and abstraction level. - [Design](https://unify.ai/docs/ivy/overview/design.html): A user-focused guide about the design decision behind the architecture and the main building blocks of Ivy. - [Deep Dive](https://unify.ai/docs/ivy/overview/deep_dive.html): Which delves deeper into the implementation details of Ivy and is oriented towards potential contributors to the code base. ------------------------------------------------------------------------ # Examples The [Examples page](https://unify.ai/demos/) features a wide range of demos and tutorials showcasing the functionalities of Ivy along with multiple use cases, but feel free to check out some shorter framework-specific examples here ⬇️ <details> <summary><b>I'm using PyTorch&ensp;<img class="dark-light" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/torch_small_logo.png"></b></summary> <blockquote>You can use Ivy to get PyTorch code from: <details> <summary>Any model</summary> <blockquote> <details> <summary>From TensorFlow</summary> ``` python import ivy import torch import tensorflow as tf # Get a pretrained keras model eff_encoder = tf.keras.applications.efficientnet_v2.EfficientNetV2B0( include_top=False, weights="imagenet", input_shape=(224, 224, 3) ) # Transpile it into a torch.nn.Module with the corresponding parameters noise = tf.random.normal(shape=(1, 224, 224, 3)) torch_eff_encoder = ivy.transpile(eff_encoder, to="torch", args=(noise,)) # Build a classifier using the transpiled encoder class Classifier(torch.nn.Module): def __init__(self, num_classes=20): super().__init__() self.encoder = torch_eff_encoder self.fc = torch.nn.Linear(1280, num_classes) def forward(self, x): x = self.encoder(x) return self.fc(x) # Initialize a trainable, customizable, torch.nn.Module classifier = Classifier() ret = classifier(torch.rand((1, 244, 244, 3))) ``` </details> <details> <summary>From JAX</summary> ``` python import ivy import jax import torch # Get a pretrained haiku model # https://unify.ai/demos/scripts/deepmind_perceiver_io.py from deepmind_perceiver_io import key, perceiver_backbone # Transpile it into a torch.nn.Module with the corresponding parameters dummy_input = jax.random.uniform(key, shape=(1, 3, 224, 224)) params = perceiver_backbone.init(rng=key, images=dummy_input) backbone = ivy.transpile( perceiver_backbone, to="torch", params_v=params, kwargs={"images": dummy_input} ) # Build a classifier using the transpiled backbone class PerceiverIOClassifier(torch.nn.Module): def __init__(self, num_classes=20): super().__init__() self.backbone = backbone self.max_pool = torch.nn.MaxPool2d((512, 1)) self.flatten = torch.nn.Flatten() self.fc = torch.nn.Linear(1024, num_classes) def forward(self, x): x = self.backbone(images=x) x = self.flatten(self.max_pool(x)) return self.fc(x) # Initialize a trainable, customizable, torch.nn.Module classifier = PerceiverIOClassifier() ret = classifier(torch.rand((1, 3, 224, 224))) ``` </details> </blockquote> </details> <details> <summary>Any library</summary> <blockquote> <details> <summary>From Tensorflow</summary> ``` python import ivy import torch import os os.environ["SM_FRAMEWORK"] = "tf.keras" import segmentation_models as sm # transpile sm from tensorflow to torch torch_sm = ivy.transpile(sm, source="tensorflow", to="torch") # get some image-like arrays output = torch.rand((1, 3, 512, 512)) target = torch.rand((1, 3, 512, 512)) # and use the transpiled version of any function from the library! out = torch_sm.metrics.iou_score(output, target) ``` </details> <details> <summary>From JAX</summary> ``` python import ivy import rax import torch # transpile rax from jax to torch torch_rax = ivy.transpile(rax, source="jax", to="torch") # get some arrays scores = torch.tensor([2.2, 1.3, 5.4]) labels = torch.tensor([1.0, 0.0, 0.0]) # and use the transpiled version of any function from the library! out = torch_rax.poly1_softmax_loss(scores, labels) ``` </details> <details> <summary>From NumPy</summary> ``` python import ivy import torch import madmom # transpile madmon from numpy to torch torch_madmom = ivy.transpile(madmom, source="numpy", to="torch") # get some arrays freqs = torch.arange(20) * 10 # and use the transpiled version of any function from the library! out = torch_madmom.audio.filters.hz2midi(freqs) ``` </details> </blockquote> </details> <details> <summary>Any function</summary> <blockquote> <details> <summary>From Tensorflow</summary> ``` python import ivy import tensorflow as tf import torch def loss(predictions, targets): return tf.sqrt(tf.reduce_mean(tf.square(predictions - targets))) # transpile any function from tf to torch torch_loss = ivy.transpile(loss, source="tensorflow", to="torch") # get some arrays p = torch.tensor([3.0, 2.0, 1.0]) t = torch.tensor([0.0, 0.0, 0.0]) # and use the transpiled version! out = torch_loss(p, t) ``` </details> <details> <summary>From JAX</summary> ``` python import ivy import jax.numpy as jnp import torch def loss(predictions, targets): return jnp.sqrt(jnp.mean((predictions - targets) ** 2)) # transpile any function from jax to torch torch_loss = ivy.transpile(loss, source="jax", to="torch") # get some arrays p = torch.tensor([3.0, 2.0, 1.0]) t = torch.tensor([0.0, 0.0, 0.0]) # and use the transpiled version! out = torch_loss(p, t) ``` </details> <details> <summary>From NumPy</summary> ``` python import ivy import numpy as np import torch def loss(predictions, targets): return np.sqrt(np.mean((predictions - targets) ** 2)) # transpile any function from numpy to torch torch_loss = ivy.transpile(loss, source="numpy", to="torch") # get some arrays p = torch.tensor([3.0, 2.0, 1.0]) t = torch.tensor([0.0, 0.0, 0.0]) # and use the transpiled version! out = torch_loss(p, t) ``` </details> </blockquote> </details> </blockquote> </details> <details> <summary><b>I'm using TensorFlow&ensp;<img class="dark-light" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/tf_small_logo.png"></b></summary> <blockquote>You can use Ivy to get TensorFlow code from: <details> <summary>Any model</summary> <blockquote> <details> <summary>From PyTorch</summary> ``` python import ivy import torch import timm import tensorflow as tf # Get a pretrained pytorch model mlp_encoder = timm.create_model("mixer_b16_224", pretrained=True, num_classes=0) # Transpile it into a keras.Model with the corresponding parameters noise = torch.randn(1, 3, 224, 224) mlp_encoder = ivy.transpile(mlp_encoder, to="tensorflow", args=(noise,)) # Build a classifier using the transpiled encoder class Classifier(tf.keras.Model): def __init__(self): super().__init__() self.encoder = mlp_encoder self.output_dense = tf.keras.layers.Dense(units=1000, activation="softmax") def call(self, x): x = self.encoder(x) return self.output_dense(x) # Transform the classifier and use it as a standard keras.Model x = tf.random.normal(shape=(1, 3, 224, 224)) model = Classifier() ret = model(x) ``` </details> <details> <summary>From JAX</summary> ``` python import ivy import jax import tensorflow as tf # Get a pretrained haiku model # https://unify.ai/demos/scripts/deepmind_perceiver_io.py from deepmind_perceiver_io import key, perceiver_backbone # Transpile it into a tf.keras.Model with the corresponding parameters dummy_input = jax.random.uniform(key, shape=(1, 3, 224, 224)) params = perceiver_backbone.init(rng=key, images=dummy_input) backbone = ivy.transpile( perceiver_backbone, to="tensorflow", params_v=params, args=(dummy_input,) ) # Build a classifier using the transpiled backbone class PerceiverIOClassifier(tf.keras.Model): def __init__(self, num_classes=20): super().__init__() self.backbone = backbone self.max_pool = tf.keras.layers.MaxPooling1D(pool_size=512) self.flatten = tf.keras.layers.Flatten() self.fc = tf.keras.layers.Dense(num_classes) def call(self, x): x = self.backbone(x) x = self.flatten(self.max_pool(x)) return self.fc(x) # Initialize a trainable, customizable, tf.keras.Model x = tf.random.normal(shape=(1, 3, 224, 224)) classifier = PerceiverIOClassifier() ret = classifier(x) ``` </details> </blockquote> </details> <details> <summary>Any library</summary> <blockquote> <details> <summary>From PyTorch</summary> ``` python import ivy import kornia import requests import numpy as np import tensorflow as tf from PIL import Image # transpile kornia from torch to tensorflow tf_kornia = ivy.transpile(kornia, source="torch", to="tensorflow") # get an image url = "http://images.cocodataset.org/train2017/000000000034.jpg" raw_img = Image.open(requests.get(url, stream=True).raw) # convert it to the format expected by kornia img = np.array(raw_img) img = tf.transpose(tf.constant(img), (2, 0, 1)) img = tf.expand_dims(img, 0) / 255 # and use the transpiled version of any function from the library! out = tf_kornia.enhance.sharpness(img, 5) ``` </details> <details> <summary>From JAX</summary> ``` python import ivy import rax import tensorflow as tf # transpile rax from jax to tensorflow tf_rax = ivy.transpile(rax, source="jax", to="tensorflow") # get some arrays scores = tf.constant([2.2, 1.3, 5.4]) labels = tf.constant([1.0, 0.0, 0.0]) # and use the transpiled version of any function from the library! out = tf_rax.poly1_softmax_loss(scores, labels) ``` </details> <details> <summary>From NumPy</summary> ``` python import ivy import madmom import tensorflow as tf # transpile madmom from numpy to tensorflow tf_madmom = ivy.transpile(madmom, source="numpy", to="tensorflow") # get some arrays freqs = tf.range(20) * 10 # and use the transpiled version of any function from the library! out = tf_madmom.audio.filters.hz2midi(freqs) ``` </details> </blockquote> </details> <details> <summary>Any function</summary> <blockquote> <details> <summary>From PyTorch</summary> ``` python import ivy import torch import tensorflow as tf def loss(predictions, targets): return torch.sqrt(torch.mean((predictions - targets) ** 2)) # transpile any function from torch to tensorflow tf_loss = ivy.transpile(loss, source="torch", to="tensorflow") # get some arrays p = tf.constant([3.0, 2.0, 1.0]) t = tf.constant([0.0, 0.0, 0.0]) # and use the transpiled version! out = tf_loss(p, t) ``` </details> <details> <summary>From JAX</summary> ``` python import ivy import jax.numpy as jnp import tensorflow as tf def loss(predictions, targets): return jnp.sqrt(jnp.mean((predictions - targets) ** 2)) # transpile any function from jax to tensorflow tf_loss = ivy.transpile(loss, source="jax", to="tensorflow") # get some arrays p = tf.constant([3.0, 2.0, 1.0]) t = tf.constant([0.0, 0.0, 0.0]) # and use the transpiled version! out = tf_loss(p, t) ``` </details> <details> <summary>From NumPy</summary> ``` python import ivy import numpy as np import tensorflow as tf def loss(predictions, targets): return np.sqrt(np.mean((predictions - targets) ** 2)) # transpile any function from numpy to tensorflow tf_loss = ivy.transpile(loss, source="numpy", to="tensorflow") # get some arrays p = tf.constant([3.0, 2.0, 1.0]) t = tf.constant([0.0, 0.0, 0.0]) # and use the transpiled version! out = tf_loss(p, t) ``` </details> </blockquote> </details> </blockquote> </details> <details> <summary><b>I'm using Jax&ensp;<img class="dark-light" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/jax_small_logo.png"></b></summary> <blockquote>You can use Ivy to get JAX code from: <details> <summary>Any model</summary> <blockquote> <details> <summary>From PyTorch</summary> ``` python import ivy import timm import torch import jax import haiku as hk # Get a pretrained pytorch model mlp_encoder = timm.create_model("mixer_b16_224", pretrained=True, num_classes=0) # Transpile it into a hk.Module with the corresponding parameters noise = torch.randn(1, 3, 224, 224) mlp_encoder = ivy.transpile(mlp_encoder, to="jax", args=(noise,)) # Build a classifier using the transpiled encoder class Classifier(hk.Module): def __init__(self, num_classes=1000): super().__init__() self.encoder = mlp_encoder() self.fc = hk.Linear(output_size=num_classes, with_bias=True) def __call__(self, x): x = self.encoder(x) x = self.fc(x) return x def _forward_classifier(x): module = Classifier() return module(x) # Transform the classifier and use it as a standard hk.Module rng_key = jax.random.PRNGKey(42) x = jax.random.uniform(key=rng_key, shape=(1, 3, 224, 224), dtype=jax.numpy.float32) forward_classifier = hk.transform(_forward_classifier) params = forward_classifier.init(rng=rng_key, x=x) ret = forward_classifier.apply(params, None, x) ``` </details> <details> <summary>From TensorFlow</summary> ``` python import ivy import jax import haiku as hk import tensorflow as tf # Get a pretrained keras model eff_encoder = tf.keras.applications.efficientnet_v2.EfficientNetV2B0( include_top=False, weights="imagenet", input_shape=(224, 224, 3) ) # Transpile it into a hk.Module with the corresponding parameters noise = tf.random.normal(shape=(1, 224, 224, 3)) hk_eff_encoder = ivy.transpile(eff_encoder, to="jax", args=(noise,)) # Build a classifier using the transpiled encoder class Classifier(hk.Module): def __init__(self, num_classes=1000): super().__init__() self.encoder = hk_eff_encoder() self.fc = hk.Linear(output_size=num_classes, with_bias=True) def __call__(self, x): x = self.encoder(x) x = self.fc(x) return x def _forward_classifier(x): module = Classifier() return module(x) # Transform the classifier and use it as a standard hk.Module rng_key = jax.random.PRNGKey(42) dummy_x = jax.random.uniform(key=rng_key, shape=(1, 224, 224, 3)) forward_classifier = hk.transform(_forward_classifier) params = forward_classifier.init(rng=rng_key, x=dummy_x) ret = forward_classifier.apply(params, None, dummy_x) ``` </details> </blockquote> </details> <details> <summary>Any library</summary> <blockquote> <details> <summary>From PyTorch</summary> ``` python import ivy import kornia import requests import jax.numpy as jnp from PIL import Image # transpile kornia from torch to jax jax_kornia = ivy.transpile(kornia, source="torch", to="jax") # get an image url = "http://images.cocodataset.org/train2017/000000000034.jpg" raw_img = Image.open(requests.get(url, stream=True).raw) # convert it to the format expected by kornia img = jnp.transpose(jnp.array(raw_img), (2, 0, 1)) img = jnp.expand_dims(img, 0) / 255 # and use the transpiled version of any function from the library! out = jax_kornia.enhance.sharpness(img, 5) ``` </details> <details> <summary>From TensorFlow</summary> ``` python import ivy import jax import os os.environ["SM_FRAMEWORK"] = "tf.keras" import segmentation_models as sm # transpile sm from tensorflow to jax jax_sm = ivy.transpile(sm, source="tensorflow", to="jax") # get some image-like arrays key = jax.random.PRNGKey(23) key1, key2 = jax.random.split(key) output = jax.random.uniform(key1, (1, 3, 512, 512)) target = jax.random.uniform(key2, (1, 3, 512, 512)) # and use the transpiled version of any function from the library! out = jax_sm.metrics.iou_score(output, target) ``` </details> <details> <summary>From NumPy</summary> ``` python import ivy import madmom import jax.numpy as jnp # transpile madmon from numpy to jax jax_madmom = ivy.transpile(madmom, source="numpy", to="jax") # get some arrays freqs = jnp.arange(20) * 10 # and use the transpiled version of any function from the library! out = jax_madmom.audio.filters.hz2midi(freqs) ``` </details> </blockquote> </details> <details> <summary>Any function</summary> <blockquote> <details> <summary>From PyTorch</summary> ``` python import ivy import torch import jax.numpy as jnp def loss(predictions, targets): return torch.sqrt(torch.mean((predictions - targets) ** 2)) # transpile any function from torch to jax jax_loss = ivy.transpile(loss, source="torch", to="jax") # get some arrays p = jnp.array([3.0, 2.0, 1.0]) t = jnp.array([0.0, 0.0, 0.0]) # and use the transpiled version! out = jax_loss(p, t) ``` </details> <details> <summary>From TensorFlow</summary> ``` python import ivy import tensorflow as tf import jax.numpy as jnp def loss(predictions, targets): return tf.sqrt(tf.reduce_mean(tf.square(predictions - targets))) # transpile any function from tf to jax jax_loss = ivy.transpile(loss, source="tensorflow", to="jax") # get some arrays p = jnp.array([3.0, 2.0, 1.0]) t = jnp.array([0.0, 0.0, 0.0]) # and use the transpiled version! out = jax_loss(p, t) ``` </details> <details> <summary>From NumPy</summary> ``` python import ivy import numpy as np import jax import jax.numpy as jnp jax.config.update('jax_enable_x64', True) def loss(predictions, targets): return np.sqrt(np.mean((predictions - targets) ** 2)) # transpile any function from numpy to jax jax_loss = ivy.transpile(loss, source="numpy", to="jax") # get some arrays p = jnp.array([3.0, 2.0, 1.0]) t = jnp.array([0.0, 0.0, 0.0]) # and use the transpiled version! out = jax_loss(p, t) ``` </details> </blockquote> </details> </blockquote> </details> <details> <summary><b>I'm using NumPy&ensp;<img class="dark-light" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/logos/supported/numpy_small_logo.png"></b></summary> <blockquote>You can use Ivy to get NumPy code from: <details> <summary>Any library</summary> <blockquote> <details> <summary>From PyTorch</summary> ``` python import ivy import kornia import requests import numpy as np from PIL import Image # transpile kornia from torch to np np_kornia = ivy.transpile(kornia, source="torch", to="numpy") # get an image url = "http://images.cocodataset.org/train2017/000000000034.jpg" raw_img = Image.open(requests.get(url, stream=True).raw) # convert it to the format expected by kornia img = np.transpose(np.array(raw_img), (2, 0, 1)) img = np.expand_dims(img, 0) / 255 # and use the transpiled version of any function from the library! out = np_kornia.enhance.sharpness(img, 5) ``` </details> <details> <summary>From TensorFlow</summary> ``` python import ivy import numpy as np import os os.environ["SM_FRAMEWORK"] = "tf.keras" import segmentation_models as sm # transpile sm from tensorflow to numpy np_sm = ivy.transpile(sm, source="tensorflow", to="numpy") # get some image-like arrays output = np.random.rand(1, 3, 512, 512).astype(dtype=np.float32) target = np.random.rand(1, 3, 512, 512).astype(dtype=np.float32) # and use the transpiled version of any function from the library! out = np_sm.metrics.iou_score(output, target) ``` </details> <details> <summary>From Jax</summary> ``` python import ivy import rax import numpy as np # transpile rax from jax to numpy np_rax = ivy.transpile(rax, source="jax", to="numpy") # get some arrays scores = np.array([2.2, 1.3, 5.4]) labels = np.array([1.0, 0.0, 0.0]) # and use the transpiled version of any function from the library! out = np_rax.poly1_softmax_loss(scores, labels) ``` </details> </blockquote> </details> <details> <summary>Any function</summary> <blockquote> <details> <summary>From PyTorch</summary> ``` python import ivy import torch import numpy as np def loss(predictions, targets): return torch.sqrt(torch.mean((predictions - targets) ** 2)) # transpile any function from torch to numpy np_loss = ivy.transpile(loss, source="torch", to="numpy") # get some arrays p = np.array([3.0, 2.0, 1.0]) t = np.array([0.0, 0.0, 0.0]) # and use the transpiled version! out = np_loss(p, t) ``` </details> <details> <summary>From TensorFlow</summary> ``` python import ivy import tensorflow as tf import numpy as np def loss(predictions, targets): return tf.sqrt(tf.reduce_mean(tf.square(predictions - targets))) # transpile any function from tf to numpy np_loss = ivy.transpile(loss, source="tensorflow", to="numpy") # get some arrays p = np.array([3.0, 2.0, 1.0]) t = np.array([0.0, 0.0, 0.0]) # and use the transpiled version! out = np_loss(p, t) ``` </details> <details> <summary>From JAX</summary> ``` python import ivy import jax.numpy as jnp import numpy as np def loss(predictions, targets): return jnp.sqrt(jnp.mean((predictions - targets) ** 2)) # transpile any function from jax to numpy np_loss = ivy.transpile(loss, source="jax", to="numpy") # get some arrays p = np.array([3.0, 2.0, 1.0]) t = np.array([0.0, 0.0, 0.0]) # and use the transpiled version! out = np_loss(p, t) ``` </details> </blockquote> </details> </blockquote> </details> <details> <summary> <b>I'm using Ivy&ensp;<img height="25px" width="25px" class="dark-light" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/logos/ivy_logo_only.svg"></b> </summary> Or you can use Ivy as a framework, breaking yourself (and your code) free from deciding which community to support, allowing anyone to run your code in their framework of choice! ``` python import ivy # A simple image classification model class IvyNet(ivy.Module): def __init__( self, h_w=(32, 32), input_channels=3, output_channels=512, num_classes=2, data_format="NCHW", device="cpu", ): self.h_w = h_w self.input_channels = input_channels self.output_channels = output_channels self.num_classes = num_classes self.data_format = data_format self.device = device super().__init__() def _build(self, *args, **kwargs): self.extractor = ivy.Sequential( ivy.Conv2D(self.input_channels, 6, [5, 5], 1, "SAME", data_format=self.data_format), ivy.GELU(), ivy.Conv2D(6, 16, [5, 5], 1, "SAME", data_format=self.data_format), ivy.GELU(), ivy.Conv2D(16, self.output_channels, [5, 5], 1, "SAME", data_format=self.data_format), ivy.GELU(), ) self.classifier = ivy.Sequential( # Since the padding is "SAME", this would be image_height x image_width x output_channels ivy.Linear(self.h_w[0] * self.h_w[1] * self.output_channels, 512), ivy.GELU(), ivy.Linear(512, self.num_classes), ) def _forward(self, x): x = self.extractor(x) # flatten all dims except batch dim x = ivy.flatten(x, start_dim=1, end_dim=-1) logits = self.classifier(x) probs = ivy.softmax(logits) return logits, probs ``` After building your model in Ivy, you can set your favourite framework as the backend to use its operations under the hood! ``` python ivy.set_backend("torch") model = IvyNet() x = torch.randn(1, 3, 32, 32) logits, probs = model(x) ``` ``` python ivy.set_backend("tensorflow") model = IvyNet() x = tf.random.uniform(shape=(1, 3, 32, 32)) logits, probs = model(x) ``` ``` python ivy.set_backend("jax") model = IvyNet() x = jax.random.uniform(key, shape=(1, 3, 32, 32)) logits, probs = model(x) ``` ``` python ivy.set_backend("numpy") model = IvyNet() x = np.random.uniform(size=(1, 3, 32, 32)) logits, probs = model(x) ``` Last but not least, we can also build the training pipeline in pure ivy ⬇️ <details> <summary><a>Let's define some helper functions first</a></summary> ``` python # helper function for loading the dataset in batches def generate_batches(images, classes, dataset_size, batch_size=32): targets = {k: v for v, k in enumerate(np.unique(classes))} y_train = [targets[classes[i]] for i in range(len(classes))] if batch_size > dataset_size: raise ivy.utils.exceptions.IvyError("Use a smaller batch size") for idx in range(0, dataset_size, batch_size): yield ivy.stack(images[idx : min(idx + batch_size, dataset_size)]), ivy.array( y_train[idx : min(idx + batch_size, dataset_size)] ) # helper function to get the number of current predictions def num_correct(preds, labels): return (preds.argmax() == labels).sum().to_numpy().item() # define a loss function def loss_fn(params): v, model, x, y = params y_pred, probs = model(x) return ivy.cross_entropy(y, probs), probs ``` </details> <details> <summary><a>And train this model!</a></summary> ``` python # train the model on gpu if it's available device = "cuda:0" if ivy.gpu_is_available() else "cpu" # training hyperparams optimizer= ivy.Adam(1e-4) batch_size = 64 num_epochs = 20 num_classes = 10 model = IvyNet( h_w=(28, 28), input_channels=1, output_channels=120, num_classes=num_classes, device=device, ) model_name = type(model).__name__.lower() # training loop def train(images, classes, epochs, model, device, num_classes=10, batch_size=32): # training metrics epoch_loss = 0.0 running_loss = 0.0 fields = ["epoch", "epoch_loss", "training_accuracy"] metrics = [] dataset_size = len(images) for epoch in range(epochs): train_loss, train_correct = 0, 0 train_loop = tqdm( generate_batches(images, classes, len(images), batch_size=batch_size), total=dataset_size // batch_size, position=0, leave=True, ) for xbatch, ybatch in train_loop: if device != "cpu": xbatch, ybatch = xbatch.to_device("gpu:0"), ybatch.to_device("gpu:0") # Since the cross entropy function expects the target classes to be in one-hot encoded format ybatch_encoded = ivy.one_hot(ybatch, num_classes) # update model params loss_probs, grads = ivy.execute_with_gradients( loss_fn, (model.v, model, xbatch, ybatch_encoded), ) model.v = optimizer.step(model.v, grads["0"]) batch_loss = ivy.to_numpy(loss_probs[0]).mean().item() # batch mean loss epoch_loss += batch_loss * xbatch.shape[0] train_correct += num_correct(loss_probs[1], ybatch) train_loop.set_description(f"Epoch [{epoch + 1:2d}/{epochs}]") train_loop.set_postfix( running_loss=batch_loss, accuracy_percentage=(train_correct / dataset_size) * 100, ) epoch_loss = epoch_loss / dataset_size training_accuracy = train_correct / dataset_size metrics.append([epoch, epoch_loss, training_accuracy]) train_loop.write( f"\nAverage training loss: {epoch_loss:.6f}, Train Correct: {train_correct}", end="\n", ) # write metrics for plotting with open(f"/{model_name}_train_summary.csv", "w") as f: f = csv.writer(f) f.writerow(fields) f.writerows(metrics) # assuming the dataset(images and classes) are already prepared in a folder train(images, classes, num_epochs, model, device, num_classes = num_classes, batch_size = batch_size) ``` </details> </details> ------------------------------------------------------------------------ # Diving deeper Although the [Docs](https://unify.ai/docs/ivy/) are the best place to learn more, in the next section we will take a look at how Ivy works both as a transpiler and a framework in a bit more detail to get an idea of why and where to use it. <details> <summary><b>Ivy as a transpiler</b></summary> Ivy\'s transpiler allows you to use code from any other framework (or from any other version of the same framework!) in your own code, by just adding one line of code. Under the hood, Ivy traces a computational graph and leverages the frontends and backends to link one framework to another. This way, Ivy makes all ML-related projects available for you, independently of the framework you want to use to research, develop, or deploy systems. Feel free to head over to the docs for the full API reference, but the functions you\'d most likely want to use are: ``` python # Traces an efficient fully-functional graph from a function, removing all wrapping and redundant code ivy.trace_graph() # Converts framework-specific code to a different framework ivy.transpile() # Converts framework-specific code to Ivy ivy.unify() ``` These functions can be used eagerly or lazily. If you pass the necessary arguments for function tracing, the graph tracing/transpilation step will happen instantly (eagerly). Otherwise, the graph tracing/transpilation will happen only when the returned function is first invoked. ``` python import ivy import jax ivy.set_backend("jax") # Simple JAX function to transpile def test_fn(x): return jax.numpy.sum(x) x1 = ivy.array([1., 2.]) ``` ``` python # Arguments are available -> transpilation happens eagerly eager_graph = ivy.transpile(test_fn, source="jax", to="torch", args=(x1,)) # eager_graph is now torch code and runs efficiently ret = eager_graph(x1) ``` ``` python # Arguments are not available -> transpilation happens lazily lazy_graph = ivy.transpile(test_fn, source="jax", to="torch") # The transpiled graph is initialized, transpilation will happen here ret = lazy_graph(x1) # lazy_graph is now torch code and runs efficiently ret = lazy_graph(x1) ``` If you want to learn more, you can find more information in the [Ivy as a transpiler section of the docs!](https://unify.ai/docs/ivy/overview/design/ivy_as_a_transpiler.html) ## When should I use Ivy as a transpiler? If you want to use building blocks published in other frameworks (neural networks, layers, array computing libraries, training pipelines\...), you want to integrate code developed in various frameworks, or maybe straight up move code from one framework to another, the transpiler is definitely the tool 🔧 for the job! As the output of transpilation is native code in the target framework, you can use the converted code just as if it was code originally developed in that framework, applying framework-specific optimizations or tools, instantly exposing your project to all of the unique perks of a different framework. </details> <details> <summary><b>Ivy as a framework</b></summary> The Ivy framework is built on top of various essential components, mainly the [Backend Handler](https://unify.ai/docs/ivy/overview/design/building_blocks.html#backend-handler), which manages what framework is being used behind the scenes and the [Backend Functional APIs](https://unify.ai/docs/ivy/overview/design/building_blocks.html#backend-functional-apis), which provide framework-specific implementations of the Ivy functions. Likewise, classes such as `ivy.Container` or `ivy.Array` are also available, facilitating the use of structured data and array-like objects (learn more about them [here!](https://unify.ai/docs/ivy/overview/design/ivy_as_a_framework.html)). All of the functionalities in Ivy are exposed through the `Ivy functional API` and the `Ivy stateful API`. All functions in the [Functional API](https://unify.ai/docs/ivy/overview/design/building_blocks.html#ivy-functional-api) are **Framework Agnostic Functions**, which means that we can use them like this: ``` python import ivy import jax.numpy as jnp import tensorflow as tf import numpy as np import torch def mse_loss(y, target): return ivy.mean((y - target)**2) jax_mse = mse_loss(jnp.ones((5,)), jnp.ones((5,))) tf_mse = mse_loss(tf.ones((5,)), tf.ones((5,))) np_mse = mse_loss(np.ones((5,)), np.ones((5,))) torch_mse = mse_loss(torch.ones((5,)), torch.ones((5,))) ``` In the example above we show how Ivy\'s functions are compatible with tensors from different frameworks. This is the same for ALL Ivy functions. They can accept tensors from any framework and return the correct result. The [Ivy Stateful API](https://unify.ai/docs/ivy/overview/design/ivy_as_a_framework/ivy_stateful_api.html), on the other hand, allows you to define trainable modules and layers, which you can use alone or as a part of any other framework code! ``` python import ivy class Regressor(ivy.Module): def __init__(self, input_dim, output_dim): self.input_dim = input_dim self.output_dim = output_dim super().__init__() def _build(self, *args, **kwargs): self.linear0 = ivy.Linear(self.input_dim, 128) self.linear1 = ivy.Linear(128, self.output_dim) def _forward(self, x): x = self.linear0(x) x = ivy.functional.relu(x) x = self.linear1(x) return x ``` If we put it all together, we\'ll have something like this. This example uses PyTorch as the backend, but this can easily be changed to your favorite frameworks, such as TensorFlow, or JAX. ``` python import ivy class Regressor(ivy.Module): def __init__(self, input_dim, output_dim): self.input_dim = input_dim self.output_dim = output_dim super().__init__() def _build(self, *args, **kwargs): self.linear0 = ivy.Linear(self.input_dim, 128) self.linear1 = ivy.Linear(128, self.output_dim) def _forward(self, x): x = self.linear0(x) x = ivy.functional.relu(x) x = self.linear1(x) return x ivy.set_backend('torch') # set backend to PyTorch (or any other backend!) model = Regressor(input_dim=1, output_dim=1) optimizer = ivy.Adam(0.3) n_training_examples = 2000 noise = ivy.random.random_normal(shape=(n_training_examples, 1), mean=0, std=0.1) x = ivy.linspace(-6, 3, n_training_examples).reshape((n_training_examples, 1)) y = 0.2 * x ** 2 + 0.5 * x + 0.1 + noise def loss_fn(v, x, target): pred = model(x, v=v) return ivy.mean((pred - target) ** 2) for epoch in range(40): # forward pass pred = model(x) # compute loss and gradients loss, grads = ivy.execute_with_gradients(lambda params: loss_fn(*params), (model.v, x, y)) # update parameters model.v = optimizer.step(model.v, grads) # print current loss print(f'Epoch: {epoch + 1:2d} --- Loss: {ivy.to_numpy(loss).item():.5f}') print('Finished training!') ``` The model\'s output can be visualized as follows: <div align="center"> <img width="50%" class="dark-light" src="https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/regressor_lq.gif"> </div> As always, you can find more information about [Ivy as a framework in the docs!](https://unify.ai/docs/ivy/overview/design/ivy_as_a_framework.html) <h2> When should I use Ivy as a framework? </h2> As Ivy supports multiple backends, writing code in Ivy breaks you free from framework limitations. If you want to publish highly flexible code for everyone to use, independently of the framework they are using, or you plan to develop ML-related tools and want them to be interoperable with not only the already existing frameworks, but also with future frameworks, then Ivy is for you! </details> ------------------------------------------------------------------------ # Contributing We believe that everyone can contribute and make a difference. Whether it\'s writing code 💻, fixing bugs 🐛, or simply sharing feedback 💬, your contributions are definitely welcome and appreciated 🙌 Check out all of our open tasks, and find out more info in our [Contributing guide](https://unify.ai/docs/ivy/overview/contributing.html) in the docs! Join our amazing community as a code contributor, and help accelerate our journey to unify all ML frameworks! <a href="https://github.com/unifyai/ivy/graphs/contributors"> <img class="dark-light" src="https://contrib.rocks/image?repo=unifyai/ivy&anon=0&columns=20&max=100&r=true" /> </a> ------------------------------------------------------------------------ # Community In order to achieve the ambitious goal of unifying AI, we definitely need as many hands as possible on it! Whether you are a seasoned developer or just starting out, you\'ll find a place here! Join the Ivy community on our [Discord](https://discord.gg/sXyFF8tDtm) 👾 server, which is the perfect place to ask questions, share ideas, and get help from both fellow developers and the Ivy Team directly! Also! Feel free to follow us on [Twitter](https://twitter.com/letsunifyai) 🐦 as well, we use it to share updates, sneak peeks, and all sorts of relevant news, certainly a great way to stay in the loop 😄 Can\'t wait to see you there! ------------------------------------------------------------------------ # Citation If you use Ivy for your work, please don\'t forget to give proper credit by including the accompanying [paper](https://arxiv.org/abs/2102.02886) 📄 in your references. It\'s a small way to show appreciation and help to continue to support this and other open source projects 🙌 @article{lenton2021ivy, title={Ivy: Templated deep learning for inter-framework portability}, author={Lenton, Daniel and Pardo, Fabio and Falck, Fabian and James, Stephen and Clark, Ronald}, journal={arXiv preprint arXiv:2102.02886}, year={2021} }
ivy/README.md/0
{ "file_path": "ivy/README.md", "repo_id": "ivy", "token_count": 17922 }
1
Building the Docs ================= This document describes how to build the Ivy docs. If you want to know more about how our custom building pipeline work, check our `Building the Docs Pipeline <../deep_dive/building_the_docs_pipeline.rst>`_ deep dive .. warning:: Be aware that the doc-builder was developed originally for Linux, although, in theory, you can run it on any platform (supporting either docker or windows), it's only tested it on Linux. If you find any windows related issues, feel free to open an issue for that to review it. .. note:: Recommendation: You can use the convenience script if you build the docs regularly, as it will not re-download the dependencies. If you have a slow internet connection, you can use GitHub Codespaces since it will help you to build the docs faster since our script downloads large dependency files. Building the Docs using Docker ------------------------------ Using convenience script ~~~~~~~~~~~~~~~~~~~~~~~~ The easiest way to build the docs is to use the ``docs/make_docs.sh`` script. .. code-block:: bash cd docs ./make_docs.sh This script will build the docs for Ivy and store it in ``docs/build``. Using existing image on Docker Hub ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You can also use the ``unifyai/doc-builder`` image hosted on `Docker Hub <https://hub.docker.com/r/unifyai/doc-builder>`_ to build the docs. Run ``docker run`` to build the docs. The following command will build the docs for the project in the current directory and output them to ``docs/build``. .. code-block:: bash cd <ivy directory> docker run --rm -v $(pwd):/project unifyai/doc-builder This command will mount the module directory to ``/project`` in the container, the current directory should be the root of ``ivy``. Building the image locally ~~~~~~~~~~~~~~~~~~~~~~~~~~ You can also build the image locally. You will first need to clone the ``doc-builder`` repository. Run this command if you are using HTTPS: .. code-block:: bash git clone https://github.com/unifyai/doc-builder.git Or this command if you are using SSH: .. code-block:: bash git clone git@github.com:unifyai/doc-builder.git Then, run the following command to build the image: .. code-block:: bash cd doc-builder docker build -t unifyai/doc-builder . Building the Docs without Docker -------------------------------- You can also build the docs without Docker. You will first need to clone the ``unifyai/doc-builder`` repository. Then use the convenience script ``make_docs_without_docker.sh``. Run this command if you are using HTTPS: .. code-block:: bash git clone https://github.com/unifyai/doc-builder.git Or this command if you are using SSH: .. code-block:: bash git clone git@github.com:unifyai/doc-builder.git Then, run the following command to build the docs: .. code-block:: bash cd doc-builder ./make_docs_without_docker.sh <ivy directory> The script will install the required dependencies for `sphinx <https://www.sphinx-doc.org>`_ which is used to build the docs, as well as dependencies required by Ivy. Then it will build the docs for Ivy and store it in ``docs/build``.
ivy/docs/overview/contributing/building_the_docs.rst/0
{ "file_path": "ivy/docs/overview/contributing/building_the_docs.rst", "repo_id": "ivy", "token_count": 902 }
2
Devices ======= .. _`backend setting`: https://github.com/unifyai/ivy/blob/1eb841cdf595e2bb269fce084bd50fb79ce01a69/ivy/backend_handler.py#L204 .. _`infer_device`: https://github.com/unifyai/ivy/blob/1eb841cdf595e2bb269fce084bd50fb79ce01a69/ivy/func_wrapper.py#L286 .. _`ivy.Device`: https://github.com/unifyai/ivy/blob/0b89c7fa050db13ef52b0d2a3e1a5fb801a19fa2/ivy/__init__.py#L42 .. _`empty class`: https://github.com/unifyai/ivy/blob/0b89c7fa050db13ef52b0d2a3e1a5fb801a19fa2/ivy/__init__.py#L34 .. _`device class`: https://github.com/unifyai/ivy/blob/0b89c7fa050db13ef52b0d2a3e1a5fb801a19fa2/ivy/functional/backends/torch/__init__.py#L13 .. _`device.py`: https://github.com/unifyai/ivy/blob/08ebc4d6d5e200dcbb8498b213538ffd550767f3/ivy/functional/ivy/device.py .. _`ivy.total_mem_on_dev`: https://github.com/unifyai/ivy/blob/08ebc4d6d5e200dcbb8498b213538ffd550767f3/ivy/functional/ivy/device.py#L460 .. _`ivy.dev_util`: https://github.com/unifyai/ivy/blob/08ebc4d6d5e200dcbb8498b213538ffd550767f3/ivy/functional/ivy/device.py#L600 .. _`ivy.num_cpu_cores`: https://github.com/unifyai/ivy/blob/08ebc4d6d5e200dcbb8498b213538ffd550767f3/ivy/functional/ivy/device.py#L659 .. _`ivy.default_device`: https://github.com/unifyai/ivy/blob/08ebc4d6d5e200dcbb8498b213538ffd550767f3/ivy/functional/ivy/device.py#L720 .. _`ivy.set_soft_device_mode`: https://github.com/unifyai/ivy/blob/afca97b95d7101c45fa647b308fc8c41f97546e3/ivy/functional/ivy/device.py#L292 .. _`@handle_device_shifting`: https://github.com/unifyai/ivy/blob/afca97b95d7101c45fa647b308fc8c41f97546e3/ivy/func_wrapper.py#L797 .. _`ivy.functional.ivy`: https://github.com/unifyai/ivy/tree/afca97b95d7101c45fa647b308fc8c41f97546e3/ivy/functional/ivy .. _`tensorflow soft device handling function`: https://github.com/unifyai/ivy/blob/afca97b95d7101c45fa647b308fc8c41f97546e3/ivy/functional/backends/tensorflow/device.py#L102 .. _`numpy soft device handling function`: https://github.com/unifyai/ivy/blob/afca97b95d7101c45fa647b308fc8c41f97546e3/ivy/functional/backends/numpy/device.py#L88 .. _`ivy implementation`: https://github.com/unifyai/ivy/blob/afca97b95d7101c45fa647b308fc8c41f97546e3/ivy/functional/ivy/device.py#L138 .. _`tf.device`: https://www.tensorflow.org/api_docs/python/tf/device .. _`ivy.DefaultDevice`: https://github.com/unifyai/ivy/blob/afca97b95d7101c45fa647b308fc8c41f97546e3/ivy/functional/ivy/device.py#L52 .. _`__enter__`: https://github.com/unifyai/ivy/blob/afca97b95d7101c45fa647b308fc8c41f97546e3/ivy/functional/ivy/device.py#L76 .. _`__exit__`: https://github.com/unifyai/ivy/blob/afca97b95d7101c45fa647b308fc8c41f97546e3/ivy/functional/ivy/device.py#L98 .. _`ivy.unset_soft_device_mode()`: https://github.com/unifyai/ivy/blob/2f90ce7b6a4c8ddb7227348d58363cd2a3968602/ivy/functional/ivy/device.py#L317 .. _`ivy.unset_default_device()`: https://github.com/unifyai/ivy/blob/2f90ce7b6a4c8ddb7227348d58363cd2a3968602/ivy/functional/ivy/device.py#L869 .. _`repo`: https://github.com/unifyai/ivy .. _`discord`: https://discord.gg/sXyFF8tDtm .. _`devices thread`: https://discord.com/channels/799879767196958751/1189906353653817354 The devices currently supported by Ivy are as follows: * cpu * gpu:idx * tpu:idx In a similar manner to the :class:`ivy.Dtype` and :class:`ivy.NativeDtype` classes (see `Data Types <data_types.rst>`_), there is both an `ivy.Device`_ class and an :class:`ivy.NativeDevice` class, with :class:`ivy.NativeDevice` initially set as an `empty class`_. The :class:`ivy.Device` class derives from :code:`str`, and has simple logic in the constructor to verify that the string formatting is correct. When a backend is set, the :class:`ivy.NativeDevice` is replaced with the backend-specific `device class`_. Device Module ------------- The `device.py`_ module provides a variety of functions for working with devices. A few examples include :func:`ivy.get_all_ivy_arrays_on_dev` which gets all arrays which are currently alive on the specified device, :func:`ivy.dev` which gets the device for input array, and :func:`ivy.num_gpus` which determines the number of available GPUs for use with the backend framework. Many functions in the :mod:`device.py` module are *convenience* functions, which means that they do not directly modify arrays, as explained in the `Function Types <function_types.rst>`_ section. For example, the following are all convenience functions: `ivy.total_mem_on_dev`_, which gets the total amount of memory for a given device, `ivy.dev_util`_, which gets the current utilization (%) for a given device, `ivy.num_cpu_cores`_, which determines the number of cores available in the CPU, and `ivy.default_device`_, which returns the correct device to use. `ivy.default_device`_ is arguably the most important function. Any function in the functional API that receives a :code:`device` argument will make use of this function, as explained below. Arguments in other Functions ---------------------------- Like with :code:`dtype`, all :code:`device` arguments are also keyword-only. All creation functions include the :code:`device` argument, for specifying the device on which to place the created array. Some other functions outside of the :code:`creation.py` submodule also support the :code:`device` argument, such as :func:`ivy.random_uniform` which is located in :mod:`random.py`, but this is simply because of dual categorization. :func:`ivy.random_uniform` is also essentially a creation function, despite not being located in :mod:`creation.py`. The :code:`device` argument is generally not included for functions which accept arrays in the input and perform operations on these arrays. In such cases, the device of the output arrays is the same as the device for the input arrays. In cases where the input arrays are located on different devices, an error will generally be thrown, unless the function is specific to distributed training. The :code:`device` argument is handled in `infer_device`_ for all functions which have the :code:`@infer_device` decorator, similar to how :code:`dtype` is handled. This function calls `ivy.default_device`_ in order to determine the correct device. As discussed in the `Function Wrapping <function_wrapping.rst>`_ section, this is applied to all applicable functions dynamically during `backend setting`_. Overall, `ivy.default_device`_ infers the device as follows: #. if the :code:`device` argument is provided, use this directly #. otherwise, if an array is present in the arguments (very rare if the :code:`device` argument is present), set :code:`arr` to this array. This will then be used to infer the device by calling :func:`ivy.dev` on the array #. otherwise, if no arrays are present in the arguments (by far the most common case if the :code:`device` argument is present), then use the global default device, which currently can either be :code:`cpu`, :code:`gpu:idx` or :code:`tpu:idx`. The default device is settable via :func:`ivy.set_default_device`. For the majority of functions which defer to `infer_device`_ for handling the device, these steps will have been followed and the :code:`device` argument will be populated with the correct value before the backend-specific implementation is even entered into. Therefore, whereas the :code:`device` argument is listed as optional in the ivy API at :mod:`ivy/functional/ivy/category_name.py`, the argument is listed as required in the backend-specific implementations at :mod:`ivy/functional/backends/backend_name/category_name.py`. This is exactly the same as with the :code:`dtype` argument, as explained in the `Data Types <data_types.rst>`_ section. Let's take a look at the function :func:`ivy.zeros` as an example. The implementation in :mod:`ivy/functional/ivy/creation.py` has the following signature: .. code-block:: python @outputs_to_ivy_arrays @handle_out_argument @infer_dtype @infer_device def zeros( shape: Union[int, Sequence[int]], *, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, device: Optional[Union[ivy.Device, ivy.NativeDevice]] = None, ) -> ivy.Array: Whereas the backend-specific implementations in :mod:`ivy/functional/backends/backend_name/creation.py` all list :code:`device` as required. Jax: .. code-block:: python def zeros( shape: Union[int, Sequence[int]], *, dtype: jnp.dtype, device: jaxlib.xla_extension.Device, ) -> JaxArray: NumPy: .. code-block:: python def zeros( shape: Union[int, Sequence[int]], *, dtype: np.dtype, device: str, ) -> np.ndarray: TensorFlow: .. code-block:: python def zeros( shape: Union[int, Sequence[int]], *, dtype: tf.DType, device: str, ) -> Tensor: PyTorch: .. code-block:: python def zeros( shape: Union[int, Sequence[int]], *, dtype: torch.dtype, device: torch.device, ) -> Tensor: This makes it clear that these backend-specific functions are only entered into once the correct :code:`device` has been determined. However, the :code:`device` argument for functions without the :code:`@infer_device` decorator is **not** handled by `infer_device`_, and so these defaults must be handled by the backend-specific implementations themselves, by calling :func:`ivy.default_device` internally. Device handling --------------- Different frameworks handle devices differently while performing an operation. For example, torch expects all the tensors to be on the same device while performing an operation, or else, it throws a device exception. On the other hand, tensorflow doesn't care about this, it moves all the tensors to the same device before performing an operation. **Controlling Device Handling Behaviour** In Ivy, users can control the device on which the operation is to be executed using `ivy.set_soft_device_mode`_ flag. There are two cases for this, either the soft device mode is set to :code:`True` or :code:`False`. **When ivy.set_soft_device_mode(True)**: a. All the input arrays are moved to :code:`ivy.default_device()` while performing an operation. If the array is already present in the default device, no device shifting is done. In the example below, even though the input arrays :code:`x` and :code:`y` are created on different devices('cpu' and 'gpu:0'), the arrays are moved to :code:`ivy.default_device()` while performing :code:`ivy.add` operation, and the output array will be on this device. .. code-block:: python ivy.set_backend("torch") ivy.set_soft_device_mode(True) x = ivy.array([1], device="cpu") y = ivy.array([34], device="gpu:0") ivy.add(x, y) The priority of device shifting is the following in this mode: #. The ``device`` argument. #. device the arrays are on. #. :code:`default_device` **When ivy.set_soft_device_mode(False)**: a. If any of the input arrays are on a different device, a device exception is raised. In the example below, since the input arrays are on different devices('cpu' and 'gpu:0'), an :code:`IvyBackendException` is raised while performing :code:`ivy.add`. .. code-block:: python ivy.set_backend("torch") ivy.set_soft_device_mode(False) x = ivy.array([1], device="cpu") y = ivy.array([34], device="gpu:0") ivy.add(x, y) This is the exception you will get while running the code above: .. code-block:: python IvyBackendException: torch: add: File "/content/ivy/ivy/utils/exceptions.py", line 210, in _handle_exceptions return fn(*args, **kwargs) File "/content/ivy/ivy/func_wrapper.py", line 1013, in _handle_nestable return fn(*args, **kwargs) File "/content/ivy/ivy/func_wrapper.py", line 905, in _handle_out_argument return fn(*args, out=out, **kwargs) File "/content/ivy/ivy/func_wrapper.py", line 441, in _inputs_to_native_arrays return fn(*new_args, **new_kwargs) File "/content/ivy/ivy/func_wrapper.py", line 547, in _outputs_to_ivy_arrays ret = fn(*args, **kwargs) File "/content/ivy/ivy/func_wrapper.py", line 358, in _handle_array_function return fn(*args, **kwargs) File "/content/ivy/ivy/func_wrapper.py", line 863, in _handle_device_shifting raise ivy.utils.exceptions.IvyException( During the handling of the above exception, another exception occurred: Expected all input arrays to be on the same device, but found at least two devices - ('cpu', 'gpu:0'), set `ivy.set_soft_device_mode(True)` to handle this problem. b. If all the input arrays are on the same device, the operation is executed without raising any device exceptions. The example below runs without issues since both the input arrays are on 'gpu:0' device: .. code-block:: python ivy.set_backend("torch") ivy.set_soft_device_mode(False) x = ivy.array([1], device="gpu:0") y = ivy.array([34], device="gpu:0") ivy.add(x, y) The code to handle all these cases are present inside `@handle_device_shifting`_ decorator, which is wrapped around all the functions that accept at least one array as input(except mixed and compositional functions) in `ivy.functional.ivy`_ submodule. The decorator calls :code:`ivy.handle_soft_device_variable` function under the hood to handle device shifting for each backend. The priority of device shifting is following in this mode: #. The ``device`` argument. #. :code:`default_device` **Soft Device Handling Function** This is a function which plays a crucial role in the :code:`handle_device_shifting` decorator. The purpose of this function is to ensure that the function :code:`fn` passed to it is executed on the device passed in :code:`device_shifting_dev` argument. If it is passed as :code:`None`, then the function will be executed on the default device. Most of the backend implementations are very similar, first they move all the arrays to the desired device using :code:`ivy.nested_map` and then execute the function inside the device handling context manager from that native framework. The purpose of executing the function inside the context manager is to handle the functions that do not accept any arrays, the only way in that case to let the native framework know on which device we want the function to be executed on is through the context manager. This approach is used in most backend implementations with the exception being tensorflow, where we don't have to move all the tensors to the desired device because just using its context manager is enough, it moves all the tensors itself internally, and numpy, since it only accepts `cpu` as a device. **Forcing Operations on User Specified Device** The `ivy.DefaultDevice`_ context manager can be used to force the operations to be performed on to a specific device. For example, in the code below, both :code:`x` and :code:`y` will be moved from 'gpu:0' to 'cpu' device and :code:`ivy.add` operation will be performed on 'cpu' device: .. code-block:: python x = ivy.array([1], device="gpu:0") y = ivy.array([34], device="gpu:0") with ivy.DefaultDevice("cpu"): z = ivy.add(x, y) On entering :code:`ivy.DefaultDevice("cpu")` context manager, under the hood, the default device is set to 'cpu' and soft device mode is turned on. All these happens under the `__enter__`_ method of the context manager. So from now on, all the operations will be executed on 'cpu' device. On exiting the context manager(`__exit__`_ method), the default device and soft device mode is reset to the previous state using `ivy.unset_default_device()`_ and `ivy.unset_soft_device_mode()`_ respectively, to move back to the previous state. There are some functions(mostly creation function) which accept a :code:`device` argument. This is for specifying on which device the function is executed on and the device of the returned array. :code:`handle_device_shifting` deals with this argument by first checking if it exists and then setting :code:`device_shifting_dev` to that which is then passed to the :code:`handle_soft_device_variable` function depending on the :code:`soft_device` mode. **Round Up** This should have hopefully given you a good feel for devices, and how these are handled in Ivy. If you have any questions, please feel free to reach out on `discord`_ in the `devices thread`_! **Video** .. raw:: html <iframe width="420" height="315" allow="fullscreen;" src="https://www.youtube.com/embed/RZmTUwTYhKI" class="video"> </iframe>
ivy/docs/overview/deep_dive/devices.rst/0
{ "file_path": "ivy/docs/overview/deep_dive/devices.rst", "repo_id": "ivy", "token_count": 5589 }
3
Operating Modes =============== .. _`array_significant_figures`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/__init__.py#L865 .. _`array_decimal_values`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/__init__.py#L904 .. _`warning_level`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/__init__.py#L931 .. _`nan_policy`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/__init__.py#L964 .. _`dynamic_backend`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/__init__.py#L998 .. _`precise_mode`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/functional/ivy/general.py#L87 .. _`array_mode`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/functional/ivy/general.py#L437 .. _`nestable_mode`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/functional/ivy/general.py#L490 .. _`exception_trace_mode`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/functional/ivy/general.py#L542 .. _`show_func_wrapper_trace_mode`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/functional/ivy/general.py#L597 .. _`min_denominator`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/functional/ivy/general.py#L2119 .. _`min_base`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/functional/ivy/general.py#L2174 .. _`queue_timeout`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/functional/ivy/general.py#L2444 .. _`tmp_dir`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/functional/ivy/general.py#L2502 .. _`shape_array_mode`: https://github.com/unifyai/ivy/blob/59cd7b5c4e2ca2fc6fc3c3ff728c3f210d9f740c/ivy/functional/ivy/general.py#L3418 Global Parameter Properties --------------------------- There are a variety of global settings in ivy, each of which comes with: ``ivy.<setting>`` (getter), ``ivy.set_<setting>`` (setter), and ``ivy.unset_<setting>`` (unsetter). Some of them are: #. `array_significant_figures`_: Determines the number of significant figures to be shown when printing. #. `array_decimal_values`_: Determines the number of decimal values to be shown when printing. #. `warning_level`_: Determines the warning level to be shown when one occurs. #. `nan_policy`_: Determines the policy of handling related to ``nan``. #. `dynamic_backend`_: Determines if the global dynamic backend setting is active or not. #. `precise_mode`_: Determines whether to use a promotion table that avoids any precision loss or a compute efficient table that avoids most wider-than-necessary promotions. #. `array_mode`_: Determines the mode of whether to convert inputs to ``ivy.NativeArray``, then convert the outputs back to ``ivy.Array``. #. `nestable_mode`_: Determines the mode of whether to check if function inputs are ``ivy.Container``. #. `exception_trace_mode`_: Determines how much details of the ivy exception traces to be shown in the log. #. `show_func_wrapper_trace_mode`_: Determines whether to show ``func_wrapper`` related traces in the log. #. `min_denominator`_: Determines the global global minimum denominator used by ivy for numerically stable division. #. `min_base`_: Determines the global global minimum base used by ivy for numerically stablestable power raising. #. `queue_timeout`_: Determines the timeout value (in seconds) for the global queue. #. `tmp_dir`_: Determines the name for the temporary folder if it is used. #. `shape_array_mode`_: Determines whether to return shape as ``ivy.Array``. Let's look into more details about getter and setter below! Getter: ``ivy.<setting>`` attribute ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ``ivy.<setting>`` is a read-only static attribute. It acts as a getter and it will change internally whenever its related setter is used. Should a user attempts to set the attribute directly, an error will be raised, suggesting them to change its value through the respective setter or unsetter. .. code-block:: python >>> ivy.array_mode True >>> ivy.array_mode = False File "<stdin>", line 1, in <module> File ".../ivy/ivy/__init__.py", line 1306, in __setattr__ raise ivy.utils.exceptions.IvyException( IvyException: Property: array_mode is read only! Please use the setter: set_array_mode() for setting its value! Setter: ``ivy.set_<setting>`` and ``ivy.unset_<setting>`` functions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ In order to change the value of a property, setter functions must be used. .. code-block:: python >>> ivy.array_mode True >>> ivy.set_array_mode(False) >>> ivy.array_mode False >>> ivy.unset_array_mode() >>> ivy.array_mode True
ivy/docs/overview/deep_dive/operating_modes.rst/0
{ "file_path": "ivy/docs/overview/deep_dive/operating_modes.rst", "repo_id": "ivy", "token_count": 1964 }
4
Why Unify? ========== “What is the point of unifying all ML frameworks?” you may ask. You may be perfectly happy with the framework you currently use, and that’s great! We live in a time where great ML tools are in abundance, and that’s a wonderful thing! Ivy just makes a wonderful thing **even better**… We’ll give two clear examples of how Ivy can streamline your ML workflow and save you **weeks** of development time. No More Re-implementations 🚧 ----------------------------- Let’s say `DeepMind <https://deepmind.com>`_ release an awesome paper in JAX, and you’d love to try it out using your own framework of choice. Let’s use `PerceiverIO <https://deepmind.com/research/open-source/perceiver-IO>`_ as an example. What happens currently is: #. A slew of open-source developers rush to re-implement the code in all ML frameworks, leading to many different versions (`a <https://github.com/lucidrains/perceiver-pytorch>`_, `b <https://github.com/krasserm/perceiver-io>`_, `c <https://github.com/Rishit-dagli/Perceiver>`_, `d <https://github.com/esceptico/perceiver-io>`_, `e <https://github.com/huggingface/transformers/tree/v4.16.1/src/transformers/models/perceiver>`_, `f <https://github.com/keras-team/keras-io/blob/master/examples/vision/perceiver_image_classification.py>`_, `g <https://github.com/deepmind/deepmind-research/tree/21084c8489c34defe7d4e20be89715bba914945c/perceiver>`_). #. These implementations all inevitably deviate from the original, often leading to: erroneous training, poor convergence, performance issues etc. Entirely new papers can even be published for having managed to `get things working in a new framework <https://link.springer.com/chapter/10.1007/978-3-030-01424-7_10>`_. #. These repositories become full of issues, pull requests, and confusion over why things do or don’t work exactly as expected in the original paper and codebase (`a <https://github.com/lucidrains/perceiver-pytorch/issues>`_, `b <https://github.com/krasserm/perceiver-io/issues>`_, `c <https://github.com/Rishit-dagli/Perceiver/issues>`_, `d <https://github.com/esceptico/perceiver-io/issues>`_, `e <https://github.com/huggingface/transformers/issues>`_, `f <https://github.com/keras-team/keras-io/issues>`_, `g <https://github.com/deepmind/deepmind-research/issues>`_). #. In total, 100s of hours are spent on: developing each spin-off codebase, testing the code, discussing the errors, and iterating to try and address them. This is all for the sake of re-implementing a single project in multiple frameworks. With Ivy, this process becomes: #. With one line, convert the code directly to your framework with a computation graph guaranteed to be identical to the original. We have turned a 4-step process which can take 100s of hours into a 1-step process which takes a few seconds. .. image:: https://github.com/unifyai/unifyai.github.io/blob/main/img/externally_linked/background/why_unify/perceiver_effort.png?raw=true :align: center :width: 100% Taking things further, we can use this automatic conversion tool to open up **all** ML tools to **everyone** regardless of their framework. “Infinite” Shelf-Life ✅ ------------------------ Wouldn’t it be nice if we could write some code once and know that it won’t become quickly obsolete among the frantic rush of framework development? A lot of developers have spent a lot of time porting TensorFlow code to PyTorch in the last few years, with examples being `Lucid <https://github.com/greentfrapp/lucent>`_, `Honk <https://github.com/castorini/honk>`_ and `Improving Language Understanding <https://github.com/huggingface/pytorch-openai-transformer-lm>`_. The pattern hasn’t changed, developers are now spending many hours porting code to JAX. For example: `TorchVision <https://github.com/rolandgvc/flaxvision>`_, `TensorFlow Graph Nets library <https://github.com/deepmind/jraph>`_, `TensorFlow Probability <https://github.com/deepmind/distrax>`_, `TensorFlow Sonnet <https://github.com/deepmind/dm-haiku>`_. What about the next framework that gets released in a few years from now, must we continue re-implementing everything over and over again? With Ivy, you can write your code **once**, and then it will support all future ML frameworks with **zero** changes needed. .. image:: https://github.com/unifyai/unifyai.github.io/blob/main/img/externally_linked/background/why_unify/future_proof.png?raw=true :align: center :width: 80% The same can be said about high-level code for: Modules, Optimizers and Trainers etc. Currently, the status quo is to continue implementing new high-level libraries for each new framework, with examples being: (a) `Sonnet <https://github.com/deepmind/sonnet>`_, `Keras <https://github.com/keras-team/keras>`_ and `Dopamine <https://github.com/google/dopamine>`_ for TensorFlow (b) `Ignite <https://github.com/pytorch/ignite>`_, `Catalyst <https://github.com/catalyst-team/catalyst>`_, `Lightning <https://github.com/PyTorchLightning/pytorch-lightning>`_, and `FastAI <https://github.com/fastai/fastai>`_ for PyTorch, and (c) `Haiku <https://github.com/deepmind/dm-haiku>`_, `Flax <https://github.com/google/flax>`_, `Trax <https://github.com/google/trax>`_ and `Objax <https://github.com/google/objax>`_ for JAX. With Ivy, we have implemented Modules, Optimizers, and Trainers **once** with simultaneous support for all **current** and **future** frameworks. .. image:: https://github.com/unifyai/unifyai.github.io/blob/main/img/externally_linked/background/why_unify/reinvented_wheels.png?raw=true :align: center :width: 100% **Round Up** Hopefully, this has given you some idea of the many benefits that a fully unified ML framework could offer 🙂 Please reach out on `discord <https://discord.gg/sXyFF8tDtm>`_ if you have any questions!
ivy/docs/overview/motivation/why_unify.rst/0
{ "file_path": "ivy/docs/overview/motivation/why_unify.rst", "repo_id": "ivy", "token_count": 1838 }
5
.. _`RWorks Wrapper Frameworks`: Wrapper Frameworks ================== .. _`EagerPy`: https://eagerpy.jonasrauber.de/ .. _`PyTorch`: https://pytorch.org/ .. _`TensorFlow`: https://www.tensorflow.org/ .. _`JAX`: https://jax.readthedocs.io/ .. _`NumPy`: https://numpy.org/ .. _`Keras`: https://keras.io/ .. _`Microsoft Cognitive Toolkit`: https://learn.microsoft.com/en-us/cognitive-toolkit/ .. _`Theano`: https://github.com/Theano/Theano .. _`PlaidML`: https://github.com/plaidml/plaidml .. _`Thinc`: https://thinc.ai/ .. _`MXNet`: https://mxnet.apache.org/ .. _`TensorLy`: http://tensorly.org/ .. _`NeuroPod`: https://neuropod.ai/ .. _`CuPy`: https://cupy.dev/ .. _`SciPy`: https://scipy.org/ .. _`TorchScript`: https://pytorch.org/docs/stable/jit.html .. _`discord`: https://discord.gg/sXyFF8tDtm .. |eagerpy| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/wrapper_frameworks/eagerpy.png :height: 15pt :class: dark-light .. |keras| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/wrapper_frameworks/keras.png :height: 20pt :class: dark-light .. |thinc| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/wrapper_frameworks/thinc.png :height: 15pt .. |tensorly| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/wrapper_frameworks/tensorly.png :height: 20pt There are a variety of wrapper frameworks which wrap around other ML frameworks, enabling these ML frameworks to be switched in and out very easily in the backend, and enabling framework-agnostic code to be written, both for deployment and for training. These wrapper frameworks can be considered as “higher level” than the individual ML frameworks that they wrap, given that they abstract these ML frameworks into the backend, and they typically do not go any lower level than this, often being pure Python projects, delegating all lower level compiler code handling to the frameworks being wrapped. EagerPy |eagerpy| ----------------- `EagerPy`_ lets users write code that automatically works natively with `PyTorch`_, `TensorFlow`_, `JAX`_, and `NumPy`_. Key differences to Ivy are the lack of transpiler support and the lack of a stateful API for constructing high level classes such as network layers, optimizers, initializers, and trainers in the framework. Keras |keras| ------------- `Keras`_ includes high level classes for building network layers, optimizers, initializers, and trainers, and also a lower level functional API. Up until version 2.3, Keras supported multiple backends, including `TensorFlow`_, `Microsoft Cognitive Toolkit`_, `Theano`_, and `PlaidML`_, but as of version 2.4, only TensorFlow is supported. Thinc |thinc| ------------- `Thinc`_ is a lightweight library that offers a functional-programming API for composing models, with support for layers defined in `PyTorch`_, `TensorFlow`_ or `MXNet`_. Thinc can be used as an interface layer, a standalone toolkit, or a way to develop new models. The focus is very much on high level training workflows, and unlike `EagerPy`_ and `Keras`_, the framework does not implement an extensive functional API at the array processing level. For example, common functions such as :func:`linspace`, :func:`arange`, :func:`scatter`, :func:`gather`, :func:`split`, :func:`unstack`, and many more are not present in the framework. Thinc instead focuses on tools to compose neural networks based on the most common building blocks, with high level APIs for: Models, Layers, Optimizers, Initializers, Schedules, and Losses. TensorLy |tensorly| ------------------- `TensorLy`_ provides utilities to use a variety of tensor methods, from core tensor operations and tensor algebra to tensor decomposition and regression. It supports `PyTorch`_, `Numpy`_, `CuPy`_, `JAX`_, `TensorFlow`_, `MXNet`_ and `SciPy`_ in the backend. The API is fully functional and strongly focused on high dimensional tensor methods, such as :code:`partial_SVD`, :code:`kron` and :code:`tucker_mode_dot`, and it does not include a stateful API for constructing high level classes such as network layers, optimizers, initializers and trainers. There is also no support for some simpler and more common array processing functions such as :func:`scatter`, :func:`gather`, :func:`minimum`, :func:`maximum`, :func:`logical_or`, :func:`logical_and`, and many others. NeuroPod -------- `Neuropod`_ is a library that provides a uniform interface to run deep learning models from multiple frameworks in C++ and Python. Neuropod makes it easy for researchers to build models in a framework of their choice while also simplifying the deployment of these models. It currently supports `TensorFlow`_, `PyTorch`_, `TorchScript`_, and `Keras`_. Compared to other wrapper frameworks, NeuroPod is very high level. It wraps entire models which have already been trained, in a manner where the interface to these models is unified. It excels in a setting where multiple networks, which may have been trained in a variety of frameworks, must all act as subsystems performing specific tasks as part of a larger complex system, and the network interfaces in this larger system should be unified. This abstraction enables subsystem networks to be quickly replaced by other networks performing the same role, irrespective of which framework the subsystem is running under the hood.
ivy/docs/overview/related_work/wrapper_frameworks.rst/0
{ "file_path": "ivy/docs/overview/related_work/wrapper_frameworks.rst", "repo_id": "ivy", "token_count": 1609 }
6
# global import abc from typing import Tuple, Optional, List, Union # local import ivy Finfo = None Iinfo = None class _ArrayWithDataTypes(abc.ABC): def astype( self: ivy.Array, dtype: ivy.Dtype, /, *, copy: bool = True, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Copy an array to a specified data type irrespective of :ref:`type- promotion` rules. .. note:: Casting floating-point ``NaN`` and ``infinity`` values to integral data types is not specified and is implementation-dependent. .. note:: When casting a boolean input array to a numeric data type, a value of ``True`` must cast to a numeric value equal to ``1``, and a value of ``False`` must cast to a numeric value equal to ``0``. When casting a numeric input array to ``bool``, a value of ``0`` must cast to ``False``, and a non-zero value must cast to ``True``. Parameters ---------- self array to cast. dtype desired data type. copy specifies whether to copy an array when the specified ``dtype`` matches the data type of the input array ``x``. If ``True``, a newly allocated array must always be returned. If ``False`` and the specified ``dtype`` matches the data type of the input array, the input array must be returned; otherwise, a newly allocated must be returned. Default: ``True``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array having the specified data type. The returned array must have the same shape as ``x``. Examples -------- Using :class:`ivy.Array` instance method: >>> x = ivy.array([[-1, -2], [0, 2]]) >>> print(x.astype(ivy.float64)) ivy.array([[-1., -2.], [0., 2.]]) """ return ivy.astype(self._data, dtype, copy=copy, out=out) def broadcast_arrays( self: ivy.Array, *arrays: Union[ivy.Array, ivy.NativeArray] ) -> List[ivy.Array]: """`ivy.Array` instance method variant of `ivy.broadcast_arrays`. This method simply wraps the function, and so the docstring for `ivy.broadcast_arrays` also applies to this method with minimal changes. Parameters ---------- self An input array to be broadcasted against other input arrays. arrays an arbitrary number of arrays to-be broadcasted. Each array must have the same shape. Each array must have the same dtype as its corresponding input array. Returns ------- ret A list containing broadcasted arrays of type `ivy.Array` Examples -------- With :class:`ivy.Array` inputs: >>> x1 = ivy.array([1, 2]) >>> x2 = ivy.array([0.2, 0.]) >>> x3 = ivy.zeros(2) >>> y = x1.broadcast_arrays(x2, x3) >>> print(y) [ivy.array([1, 2]), ivy.array([0.2, 0. ]), ivy.array([0., 0.])] With mixed :class:`ivy.Array` and :class:`ivy.NativeArray` inputs: >>> x1 = ivy.array([-1., 3.4]) >>> x2 = ivy.native_array([2.4, 5.1]) >>> y = x1.broadcast_arrays(x2) >>> print(y) [ivy.array([-1., 3.4]), ivy.array([2.4, 5.1])] """ return ivy.broadcast_arrays(self._data, *arrays) def broadcast_to( self: ivy.Array, /, shape: Tuple[int, ...], *, out: Optional[ivy.Array] = None ) -> ivy.Array: """`ivy.Array` instance method variant of `ivy.broadcast_to`. This method simply wraps the function, and so the docstring for `ivy.broadcast_to` also applies to this method with minimal changes. Parameters ---------- self input array to be broadcasted. shape desired shape to be broadcasted to. out Optional array to store the broadcasted array. Returns ------- ret Returns the broadcasted array of shape 'shape' Examples -------- With :class:`ivy.Array` instance method: >>> x = ivy.array([1, 2, 3]) >>> y = x.broadcast_to((3,3)) >>> print(y) ivy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) """ return ivy.broadcast_to(self._data, shape=shape, out=out) def can_cast(self: ivy.Array, to: ivy.Dtype) -> bool: """`ivy.Array` instance method variant of `ivy.can_cast`. This method simply wraps the function, and so the docstring for `ivy.can_cast` also applies to this method with minimal changes. Parameters ---------- self input array from which to cast. to desired data type. Returns ------- ret ``True`` if the cast can occur according to :ref:`type-promotion` rules; otherwise, ``False``. Examples -------- >>> x = ivy.array([1., 2., 3.]) >>> print(x.dtype) float32 >>> x = ivy.array([4., 5., 6.]) >>> print(x.can_cast(ivy.float64)) True """ return ivy.can_cast(self._data, to) def dtype( self: ivy.Array, as_native: bool = False ) -> Union[ivy.Dtype, ivy.NativeDtype]: """`ivy.Array` instance method variant of `ivy.dtype`. This method helps to get the data type of the array. Parameters ---------- self The input array. as_native Whether to return the native data type of the array. If True, returns the native data type. Default is False. Returns ------- ret The data type of the array. If as_native is True, returns the native data type. Examples -------- >>> x = ivy.array([1, 2, 3]) >>> y = x.dtype() >>> print(y) int32 >>> x= ivy.array([1.0, 2.0, 3.0], dtype=ivy.float64) >>> y = x.dtype(as_native=True) >>> print(y) float64 """ return ivy.dtype(self._data, as_native=as_native) def finfo(self: ivy.Array, /) -> Finfo: """Array instance method variant of `ivy.finfo`. Parameters ---------- self input array. Returns ------- ret An instance of the `Finfo` class, containing information about the floating point data type of the input array. Example ------- >>> x = ivy.array([0.7,8.4,3.14], dtype=ivy.float32) >>> print(x.finfo()) finfo(resolution=1e-06, min=-3.4028235e+38, max=3.4028235e+38, dtype=float32) """ return ivy.finfo(self._data) def iinfo(self: ivy.Array, /) -> Iinfo: """`ivy.Array` instance method variant of `ivy.iinfo`. This method simply wraps the function, and so the docstring for `ivy.iinfo` also applies to this method with minimal changes. Parameters ---------- self input array. Returns ------- ret An instance of the `Iinfo` class, containing information about the integer data type of the input array. Examples -------- >>> x = ivy.array([-119,122,14], dtype=ivy.int8)) >>> x.iinfo() iinfo(min=-128, max=127, dtype=int8) >>> x = ivy.array([-12,54,1,9,-1220], dtype=ivy.int16)) >>> x.iinfo() iinfo(min=-32768, max=32767, dtype=int16) """ return ivy.iinfo(self._data) def is_bool_dtype(self: ivy.Array) -> bool: return ivy.is_bool_dtype(self._data) def is_float_dtype(self: ivy.Array) -> bool: """`ivy.Array` instance method variant of `ivy.is_float_dtype`. This method simply checks to see if the array is of type `float`. Parameters ---------- self Input array from which to check for float dtype. Returns ------- ret Boolean value of whether the array is of type `float`. Examples -------- >>> x = ivy.array([1, 2, 3], dtype=ivy.int8) >>> print(x.is_float_dtype()) False >>> x = ivy.array([2.3, 4.5, 6.8], dtype=ivy.float32) >>> print( x.is_float_dtype()) True """ return ivy.is_float_dtype(self._data) def is_int_dtype(self: ivy.Array) -> bool: return ivy.is_int_dtype(self._data) def is_uint_dtype(self: ivy.Array) -> bool: return ivy.is_uint_dtype(self._data) def result_type( self: ivy.Array, *arrays_and_dtypes: Union[ivy.Array, ivy.NativeArray, ivy.Dtype], ) -> ivy.Dtype: """`ivy.Array` instance method variant of `ivy.result_type`. This method simply wraps the function, and so the docstring for `ivy.result_type` also applies to this method with minimal changes. Parameters ---------- self input array from which to cast. arrays_and_dtypes an arbitrary number of input arrays and/or dtypes. Returns ------- ret the dtype resulting from an operation involving the input arrays and dtypes. Examples -------- >>> x = ivy.array([0, 1, 2]) >>> print(x.dtype) int32 >>> x.result_type(ivy.float64) <dtype:'float64'> """ return ivy.result_type(self._data, *arrays_and_dtypes)
ivy/ivy/data_classes/array/data_type.py/0
{ "file_path": "ivy/ivy/data_classes/array/data_type.py", "repo_id": "ivy", "token_count": 4581 }
7
# global import abc from typing import ( Optional, Union, Sequence, Tuple, List, Iterable, Callable, Literal, Any, ) from numbers import Number # local import ivy from ivy import handle_view class _ArrayWithManipulationExperimental(abc.ABC): @handle_view def moveaxis( self: ivy.Array, source: Union[int, Sequence[int]], destination: Union[int, Sequence[int]], /, *, copy: Optional[bool] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.moveaxis. This method simply wraps the function, and so the docstring for ivy.unstack also applies to this method with minimal changes. Parameters ---------- a The array whose axes should be reordered. source Original positions of the axes to move. These must be unique. destination Destination positions for each of the original axes. These must also be unique. copy boolean indicating whether or not to copy the input array. If True, the function must always copy. If False, the function must never copy. In case copy is False we avoid copying by returning a view of the input array. out optional output array, for writing the result to. Returns ------- ret Array with moved axes. This array is a view of the input array. Examples -------- >>> x = ivy.zeros((3, 4, 5)) >>> x.moveaxis(0, -1).shape (4, 5, 3) >>> x.moveaxis(-1, 0).shape (5, 3, 4) """ return ivy.moveaxis(self._data, source, destination, copy=copy, out=out) def heaviside( self: ivy.Array, x2: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.heaviside. This method simply wraps the function, and so the docstring for ivy.heaviside also applies to this method with minimal changes. Parameters ---------- self input array. x2 values to use where x1 is zero. out optional output array, for writing the result to. Returns ------- ret output array with element-wise Heaviside step function of x1. This is a scalar if both x1 and x2 are scalars. Examples -------- >>> x1 = ivy.array([-1.5, 0, 2.0]) >>> x2 = ivy.array([0.5]) >>> ivy.heaviside(x1, x2) ivy.array([0.0000, 0.5000, 1.0000]) >>> x1 = ivy.array([-1.5, 0, 2.0]) >>> x2 = ivy.array([1.2, -2.0, 3.5]) >>> ivy.heaviside(x1, x2) ivy.array([0., -2., 1.]) """ return ivy.heaviside(self._data, x2, out=out) @handle_view def flipud( self: ivy.Array, /, *, copy: Optional[bool] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.flipud. This method simply wraps the function, and so the docstring for ivy.flipud also applies to this method with minimal changes. Parameters ---------- self The array to be flipped. copy boolean indicating whether or not to copy the input array. If True, the function must always copy. If False, the function must never copy. In case copy is False we avoid copying by returning a view of the input array. out optional output array, for writing the result to. Returns ------- ret Array corresponding to input array with elements order reversed along axis 0. Examples -------- >>> m = ivy.diag([1, 2, 3]) >>> m.flipud() ivy.array([[ 0., 0., 3.], [ 0., 2., 0.], [ 1., 0., 0.]]) """ return ivy.flipud(self._data, copy=copy, out=out) def vstack( self: ivy.Array, arrays: Union[ Tuple[Union[ivy.Array, ivy.NativeArray]], List[Union[ivy.Array, ivy.NativeArray]], ], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.vstack. This method simply wraps the function, and so the docstring for ivy.vstack also applies to this method with minimal changes. Examples -------- >>> x = ivy.array([[1, 2]]) >>> y = [ivy.array([[5, 6]]), ivy.array([[7, 8]])] >>> print(x.vstack(y)) ivy.array([[1, 2], [5, 6], [7, 8]]) """ if not isinstance(arrays, (list, tuple)): arrays = [arrays] if isinstance(arrays, tuple): x = (self._data) + arrays else: x = [self._data] + arrays return ivy.vstack(x, out=out) def hstack( self: ivy.Array, arrays: Union[ Tuple[Union[ivy.Array, ivy.NativeArray]], List[Union[ivy.Array, ivy.NativeArray]], ], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.hstack. This method simply wraps the function, and so the docstring for ivy.hstack also applies to this method with minimal changes. Examples -------- >>> x = ivy.array([[1, 2]]) >>> y = [ivy.array([[5, 6]]), ivy.array([[7, 8]])] >>> print(x.vstack(y)) ivy.array([1, 2, 5, 6, 7, 8]) """ if not isinstance(arrays, (list, tuple)): arrays = [arrays] if isinstance(arrays, tuple): x = (self._data,) + arrays else: x = [self._data] + arrays return ivy.hstack(x, out=out) @handle_view def rot90( self: ivy.Array, /, *, copy: Optional[bool] = None, k: int = 1, axes: Tuple[int, int] = (0, 1), out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.rot90. This method simply wraps the function, and so the docstring for ivy.rot90 also applies to this method with minimal changes. Parameters ---------- self Input array of two or more dimensions. copy boolean indicating whether or not to copy the input array. If True, the function must always copy. If False, the function must never copy. In case copy is False we avoid copying by returning a view of the input array. k Number of times the array is rotated by 90 degrees. axes The array is rotated in the plane defined by the axes. Axes must be different. out Optional output, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Array with a rotated view of input array. Examples -------- >>> m = ivy.array([[1,2], [3,4]]) >>> m.rot90() ivy.array([[2, 4], [1, 3]]) >>> m = ivy.array([[1,2], [3,4]]) >>> m.rot90(k=2) ivy.array([[4, 3], [2, 1]]) >>> m = ivy.array([[[0, 1],\ [2, 3]],\ [[4, 5],\ [6, 7]]]) >>> m.rot90(k=2, axes=(1,2)) ivy.array([[[3, 2], [1, 0]], [[7, 6], [5, 4]]]) """ return ivy.rot90(self._data, copy=copy, k=k, axes=axes, out=out) def top_k( self: ivy.Array, k: int, /, *, axis: int = -1, largest: bool = True, sorted: bool = True, out: Optional[tuple] = None, ) -> Tuple[ivy.Array, ivy.NativeArray]: """ivy.Array instance method variant of ivy.top_k. This method simply wraps the function, and so the docstring for ivy.top_k also applies to this method with minimal changes. Parameters ---------- self The array to compute top_k for. k Number of top elements to return must not exceed the array size. axis The axis along which we must return the top elements default value is 1. largest If largest is set to False we return k smallest elements of the array. sorted If sorted is set to True we return the elements in sorted order. out: Optional output tuple, for writing the result to. Must have two arrays, with a shape that the returned tuple broadcast to. Returns ------- ret A named tuple with values and indices of top k elements. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([2., 1., -3., 5., 9., 0., -4]) >>> y = x.top_k(2) >>> print(y) top_k(values=ivy.array([9., 5.]), indices=ivy.array([4, 3])) """ return ivy.top_k(self, k, axis=axis, largest=largest, sorted=sorted, out=out) @handle_view def fliplr( self: ivy.Array, /, *, copy: Optional[bool] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.fliplr. This method simply wraps the function, and so the docstring for ivy.fliplr also applies to this method with minimal changes. Parameters ---------- self The array to be flipped. Must be at least 2-D. copy boolean indicating whether or not to copy the input array. If True, the function must always copy. If False, the function must never copy. In case copy is False we avoid copying by returning a view of the input array. out optional output array, for writing the result to. Returns ------- ret Array corresponding to input array with elements order reversed along axis 1. Examples -------- >>> m = ivy.diag([1, 2, 3]) >>> m.fliplr() ivy.array([[0, 0, 1], [0, 2, 0], [3, 0, 0]]) """ return ivy.fliplr(self._data, copy=copy, out=out) def i0( self: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.i0. This method simply wraps the function, and so the docstring for ivy.i0 also applies to this method with minimal changes. Parameters ---------- self Input array. out Optional output, for writing the result to. Returns ------- ret Array with modified Bessel function of the first kind, order 0. Examples -------- >>> x = ivy.array([[1, 2, 3]]) >>> x.i0() ivy.array([1.26606588, 2.2795853 , 4.88079259]) """ return ivy.i0(self._data, out=out) @handle_view def flatten( self: ivy.Array, *, copy: Optional[bool] = None, start_dim: int = 0, end_dim: int = -1, order: str = "C", out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.flatten. This method simply wraps the function, and so the docstring for ivy.flatten also applies to this method with minimal changes. Parameters ---------- self input array to flatten. copy boolean indicating whether or not to copy the input array. If True, the function must always copy. If False, the function must never copy. In case copy is False we avoid copying by returning a view of the input array. start_dim first dim to flatten. If not set, defaults to 0. end_dim last dim to flatten. If not set, defaults to -1. order Read the elements of the input container using this index order, and place the elements into the reshaped array using this index order. ‘C’ means to read / write the elements using C-like index order, with the last axis index changing fastest, back to the first axis index changing slowest. ‘F’ means to read / write the elements using Fortran-like index order, with the first index changing fastest, and the last index changing slowest. Note that the ‘C’ and ‘F’ options take no account of the memory layout of the underlying array, and only refer to the order of indexing. Default order is 'C'. out Optional output, for writing the result to. Returns ------- ret the flattened array over the specified dimensions. Examples -------- >>> x = ivy.array([[1,2], [3,4]]) >>> x.flatten() ivy.array([1, 2, 3, 4]) >>> x = ivy.array([[1,2], [3,4]]) >>> x.flatten(order='F') ivy.array([1, 3, 2, 4]) >>> x = ivy.array( [[[[ 5, 5, 0, 6], [17, 15, 11, 16], [ 6, 3, 13, 12]], [[ 6, 18, 10, 4], [ 5, 1, 17, 3], [14, 14, 18, 6]]], [[[12, 0, 1, 13], [ 8, 7, 0, 3], [19, 12, 6, 17]], [[ 4, 15, 6, 15], [ 0, 5, 17, 9], [ 9, 3, 6, 19]]], [[[17, 13, 11, 16], [ 4, 18, 17, 4], [10, 10, 9, 1]], [[19, 17, 13, 10], [ 4, 19, 16, 17], [ 2, 12, 8, 14]]]] ) >>> x.flatten(start_dim = 1, end_dim = 2) ivy.array( [[[ 5, 5, 0, 6], [17, 15, 11, 16], [ 6, 3, 13, 12], [ 6, 18, 10, 4], [ 5, 1, 17, 3], [14, 14, 18, 6]], [[12, 0, 1, 13], [ 8, 7, 0, 3], [19, 12, 6, 17], [ 4, 15, 6, 15], [ 0, 5, 17, 9], [ 9, 3, 6, 19]], [[17, 13, 11, 16], [ 4, 18, 17, 4], [10, 10, 9, 1], [19, 17, 13, 10], [ 4, 19, 16, 17], [ 2, 12, 8, 14]]])) """ return ivy.flatten( self._data, copy=copy, start_dim=start_dim, end_dim=end_dim, order=order, out=out, ) def pad( self: ivy.Array, pad_width: Union[Iterable[Tuple[int]], int], /, *, mode: Union[ Literal[ "constant", "dilated", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty", ], Callable, ] = "constant", stat_length: Union[Iterable[Tuple[int]], int] = 1, constant_values: Union[Iterable[Tuple[Number]], Number] = 0, end_values: Union[Iterable[Tuple[Number]], Number] = 0, reflect_type: Literal["even", "odd"] = "even", out: Optional[ivy.Array] = None, **kwargs: Optional[Any], ) -> ivy.Array: """ivy.Array instance method variant of ivy.pad. This method simply wraps the function, and so the docstring for ivy.pad also applies to this method with minimal changes. """ return ivy.pad( self._data, pad_width, mode=mode, stat_length=stat_length, constant_values=constant_values, end_values=end_values, reflect_type=reflect_type, out=out, **kwargs, ) @handle_view def vsplit( self: ivy.Array, indices_or_sections: Union[int, Sequence[int], ivy.Array], /, *, copy: Optional[bool] = None, ) -> List[ivy.Array]: """ivy.Array instance method variant of ivy.vsplit. This method simply wraps the function, and so the docstring for ivy.vsplit also applies to this method with minimal changes. Parameters ---------- self Input array. copy boolean indicating whether or not to copy the input array. If True, the function must always copy. If False, the function must never copy. In case copy is False we avoid copying by returning a view of the input array. indices_or_sections If indices_or_sections is an integer n, the array is split into n equal sections, provided that n must be a divisor of the split axis. If indices_or_sections is a sequence of ints or 1-D array, then input is split at each of the indices. Returns ------- ret input array split vertically. Examples -------- >>> ary = ivy.array( [[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]] ) >>> ary.vsplit(2) [ivy.array([[[0., 1.], [2., 3.]]]), ivy.array([[[4., 5.], [6., 7.]]])]) """ return ivy.vsplit(self._data, indices_or_sections, copy=copy) @handle_view def dsplit( self: ivy.Array, indices_or_sections: Union[int, Sequence[int], ivy.Array], /, *, copy: Optional[bool] = None, ) -> List[ivy.Array]: """ivy.Array instance method variant of ivy.dsplit. This method simply wraps the function, and so the docstring for ivy.dsplit also applies to this method with minimal changes. Parameters ---------- self Input array. indices_or_sections If indices_or_sections is an integer n, the array is split into n equal sections, provided that n must be a divisor of the split axis. If indices_or_sections is a sequence of ints or 1-D array, then input is split at each of the indices. copy boolean indicating whether or not to copy the input array. If True, the function must always copy. If False, the function must never copy. In case copy is False we avoid copying by returning a view of the input array. Returns ------- ret input array split along the 3rd axis. Examples -------- >>> ary = ivy.array( [[[ 0., 1., 2., 3.], [ 4., 5., 6., 7.]], [[ 8., 9., 10., 11.], [12., 13., 14., 15.]]] ) >>> ary.dsplit(2) [ivy.array([[[ 0., 1.], [ 4., 5.]], [[ 8., 9.], [12., 13.]]]), ivy.array([[[ 2., 3.], [ 6., 7.]], [[10., 11.], [14., 15.]]])] """ return ivy.dsplit(self._data, indices_or_sections, copy=copy) @handle_view def atleast_1d( self: ivy.Array, *arys: Union[ivy.Array, bool, Number], copy: Optional[bool] = None, ) -> List[ivy.Array]: """ivy.Array instance method variant of ivy.atleast_1d. This method simply wraps the function, and so the docstring for ivy.atleast_1d also applies to this method with minimal changes. Parameters ---------- self Input array. Cannot be a scalar input. arys An arbitrary number of input arrays. copy boolean indicating whether or not to copy the input array. If True, the function must always copy. If False, the function must never copy. In case copy is False we avoid copying by returning a view of the input array. Returns ------- ret List of arrays, each with a.ndim >= 1. Copies are made only if necessary. Examples -------- >>> a1 = ivy.array([[1,2,3]]) >>> a2 = ivy.array(4) >>> a1.atleast_1d(a2,5,6) [ivy.array([[1, 2, 3]]), ivy.array([4]), ivy.array([5]), ivy.array([6])] """ return ivy.atleast_1d(self._data, *arys, copy=copy) def dstack( self: ivy.Array, arrays: Union[ Tuple[Union[ivy.Array, ivy.NativeArray]], List[Union[ivy.Array, ivy.NativeArray]], ], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.dstack. This method simply wraps the function, and so the docstring for ivy.dstack also applies to this method with minimal changes. Examples -------- >>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([2, 3, 4]) >>> x.dstack(y) ivy.array([[[1, 2], [2, 3], [3, 4]]]) """ if not isinstance(arrays, (list, tuple)): arrays = [arrays] if isinstance(arrays, tuple): x = (self._data,) + arrays else: x = [self._data] + arrays return ivy.dstack(x, out=out) @handle_view def atleast_2d( self: ivy.Array, *arys: ivy.Array, copy: Optional[bool] = None, ) -> List[ivy.Array]: """ivy.Array instance method variant of ivy.atleast_2d. This method simply wraps the function, and so the docstring for ivy.atleast_2d also applies to this method with minimal changes. Parameters ---------- self Input array. Cannot be a scalar input. arys An arbitrary number of input arrays. copy boolean indicating whether or not to copy the input array. If True, the function must always copy. If False, the function must never copy. In case copy is False we avoid copying by returning a view of the input array. Returns ------- ret List of arrays, each with a.ndim >= 2. Copies are made only if necessary. Examples -------- >>> a1 = ivy.array([[1,2,3]]) >>> a2 = ivy.array(4) >>> a1.atleast_2d(a2,5,6) [ivy.array([[1, 2, 3]]), ivy.array([[4]]), ivy.array([[5]]), ivy.array([[6]])] """ return ivy.atleast_2d(self._data, *arys, copy=copy) @handle_view def atleast_3d( self: ivy.Array, *arys: Union[ivy.Array, bool, Number], copy: Optional[bool] = None, ) -> List[ivy.Array]: """ivy.Array instance method variant of ivy.atleast_3d. This method simply wraps the function, and so the docstring for ivy.atleast_3d also applies to this method with minimal changes. Parameters ---------- self Input array. Cannot be a scalar input. arys An arbitrary number of input arrays. copy boolean indicating whether or not to copy the input array. If True, the function must always copy. If False, the function must never copy. In case copy is False we avoid copying by returning a view of the input array. Returns ------- ret List of arrays, each with a.ndim >= 3. Copies are made only if necessary and views with three or more dimensions are returned. For example, a 1-D array of shape (N,) becomes a view of shape (1, N, 1), and a 2-D array of shape (M, N) becomes a view of shape (M, N, 1). Examples -------- >>> a1 = ivy.array([[1,2,3]]) >>> a2 = ivy.array([4,8]) >>> a1.atleast_3d(a2,5,6) [ivy.array([[[1], [2], [3]]]), ivy.array([[[4], [8]]]), ivy.array([[[5]]]), ivy.array([[[6]]])] """ return ivy.atleast_3d(self._data, *arys, copy=copy) def take_along_axis( self: ivy.Array, indices: ivy.Array, axis: int, /, *, mode: str = "fill", out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.take_along_axis. This method simply wraps the function, and so the docstring for ivy.take_along_axis also applies to this method with minimal changes. Parameters ---------- self The source array. indices The indices of the values to extract. axis The axis over which to select values. mode One of: 'clip', 'fill', 'drop'. Parameter controlling how out-of-bounds indices will be handled. out Optional output, for writing the result to. Returns ------- ret The returned array has the same shape as indices. Examples -------- >>> arr = ivy.array([[4, 3, 5], [1, 2, 1]]) >>> indices = ivy.array([[0, 1, 1], [2, 0, 0]]) >>> y = arr.take_along_axis(indices, 1) >>> print(y) ivy.array([[4, 3, 3], [1, 1, 1]]) """ return ivy.take_along_axis(self._data, indices, axis, mode=mode, out=out) @handle_view def hsplit( self: ivy.Array, indices_or_sections: Union[int, Tuple[int, ...]], /, *, copy: Optional[bool] = None, ) -> List[ivy.Array]: """ivy.Array instance method variant of ivy.hsplit. This method simply wraps the function, and so the docstring for ivy.hsplit also applies to this method with minimal changes. Parameters ---------- self Input array. indices_or_sections If indices_or_sections is an integer n, the array is split into n equal sections, provided that n must be a divisor of the split axis. If indices_or_sections is a sequence of ints or 1-D array, then input is split at each of the indices. copy boolean indicating whether or not to copy the input array. If True, the function must always copy. If False, the function must never copy. In case copy is False we avoid copying by returning a view of the input array. Returns ------- ret list of arrays split horizontally from input array. Examples -------- >>> ary = ivy.array( [[0., 1., 2., 3.], [4., 5., 6, 7.], [8., 9., 10., 11.], [12., 13., 14., 15.]] ) >>> ary.hsplit(2) [ivy.array([[ 0., 1.], [ 4., 5.], [ 8., 9.], [12., 13.]]), ivy.array([[ 2., 3.], [ 6., 7.], [10., 11.], [14., 15.]])) """ return ivy.hsplit(self._data, indices_or_sections, copy=copy) @handle_view def expand( self: ivy.Array, shape: Union[ivy.Shape, ivy.NativeShape], /, *, copy: Optional[bool] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Broadcast the input Array following the given shape and the broadcast rule. Parameters ---------- self Array input. shape A 1-D Array indicates the shape you want to expand to, following the broadcast rule copy boolean indicating whether or not to copy the input array. If True, the function must always copy. If False, the function must never copy. In case copy is False we avoid copying by returning a view of the input array. out optional output array, for writing the result to. Returns ------- ret Output Array """ return ivy.expand(self._data, shape, copy=copy, out=out) def as_strided( self: ivy.Array, shape: Union[ivy.Shape, ivy.NativeShape, Sequence[int]], strides: Sequence[int], /, ) -> ivy.Array: """Create a copy of the input array with the given shape and strides. Parameters ---------- self Input Array. shape The shape of the new array. strides The strides of the new array (specified in bytes). Returns ------- ret Output Array """ return ivy.as_strided(self._data, shape, strides) @handle_view def concat_from_sequence( self: ivy.Array, /, input_sequence: Union[ Tuple[Union[ivy.Array, ivy.NativeArray]], List[Union[ivy.Array, ivy.NativeArray]], ], *, new_axis: int = 0, axis: int = 0, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Concatenate a sequence of arrays along a new or an existing axis. Parameters ---------- self Array input. input_sequence A sequence of arrays. new_axis Insert and concatenate on a new axis or not, default 0 means do not insert new axis. new_axis = 0: concatenate new_axis = 1: stack axis The axis along which the arrays will be concatenated. out Optional output array, for writing the result to. Returns ------- ret Output Array """ if new_axis == 0: return ivy.concat_from_sequence( [self._data] + input_sequence, new_axis=new_axis, axis=axis, out=out ) elif new_axis == 1: if not isinstance(input_sequence, (tuple, list)): input_sequence = [input_sequence] if isinstance(input_sequence, tuple): input_sequence = (self._data,) + input_sequence else: input_sequence = [self._data] + input_sequence return ivy.concat_from_sequence( input_sequence, new_axis=new_axis, axis=axis, out=out ) @handle_view def associative_scan( self: ivy.Array, fn: Callable, /, *, reverse: bool = False, axis: int = 0, ) -> ivy.Array: """Perform an associative scan over the given array. Parameters ---------- self The array to scan over. fn The associative function to apply. reverse Whether to scan in reverse with respect to the given axis. axis The axis to scan over. Returns ------- ret The result of the scan. """ return ivy.associative_scan(self._data, fn, reverse=reverse, axis=axis) def unique_consecutive( self: ivy.Array, /, *, axis: Optional[int] = None, ) -> Tuple[ivy.Array, ivy.Array, ivy.Array]: """ivy.Array instance method variant of ivy.unique_consecutive. This method simply wraps the function, and so the docstring for ivy.unique_consecutive also applies to this method with minimal changes. """ return ivy.unique_consecutive(self._data, axis=axis) def fill_diagonal( self: ivy.Array, v: Union[int, float], /, *, wrap: bool = False, ) -> ivy.Array: """ivy.Array instance method variant of ivy.fill_diag. This method simply wraps the function, and so the docstring for ivy.fill_diag also applies to this method with minimal changes. """ return ivy.fill_diagonal(self._data, v, wrap=wrap) def take( self: ivy.Array, indices: Union[int, ivy.Array, ivy.NativeArray], /, *, axis: Optional[int] = None, mode: str = "fill", fill_value: Optional[Number] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.take. This method simply wraps the function, and so the docstring for ivy.take also applies to this method with minimal changes. Parameters ---------- self input array indices array indices. Must have an integer data type. axis axis over which to select values. If `axis` is negative, the function must determine the axis along which to select values by counting from the last dimension. By default, the flattened input array is used. mode specifies how out-of-bounds `indices` will behave. - ‘raise’ – raise an error - ‘wrap’ – wrap around - ‘clip’ – clip to the range (all indices that are too large are replaced by the index that addresses the last element along that axis. Note that this disables indexing with negative numbers.) - 'fill' (default) = returns invalid values (e.g. NaN) for out-of bounds indices (see also fill_value below) fill_value fill value to return for out-of-bounds slices (Defaults to NaN for inexact types, the largest negative value for signed types, the largest positive value for unsigned types, and True for booleans.) out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array having the same data type as `x`. The output array must have the same rank (i.e., number of dimensions) as `x` and must have the same shape as `x`, except for the axis specified by `axis` whose size must equal the number of elements in `indices`. Examples -------- With `ivy.Array` input: >>> x = ivy.array([4,5,6]) >>> indices = ivy.array([2,1,0]) >>> y = x.take(indices) >>> print(y) ivy.array([6, 5, 4]) >>> x = ivy.array([4.7,5.2,6.5]) >>> indices = ivy.array([[0,1]]) >>> y = ivy.zeros_like(indices, dtype=x.dtype) >>> x.take(indices, out=y) >>> print(y) ivy.array([[4.7, 5.2]]) >>> x = ivy.array([False, False, True]) >>> indices = ivy.array([[4,3,2]]) >>> y = ivy.zeros_like(indices, dtype=x.dtype) >>> x.take(indices, out=y, mode="wrap") >>> print(y) ivy.array([[False, False, True]]) """ return ivy.take( self, indices, axis=axis, mode=mode, fill_value=fill_value, out=out ) def unflatten( self: ivy.Array, /, shape: Union[Tuple[int], ivy.Array, ivy.NativeArray], dim: Optional[int] = 0, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.unflatten. This method simply wraps the function, and so the docstring for ivy.unflatten also applies to this method with minimal changes. Parameters ---------- self input array shape array indices. Must have an integer data type. dim axis over which to unflatten. If `axis` is negative, the function must determine the axis along which to select values by counting from the last dimension. By default, the flattened input array is used. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array having the same data type as `x`. The output array must have the same rank (i.e., number of dimensions) as `x` and must have the same shape as `x`, except for the axis specified by `dim` which is replaced with a tuple specified in `shape`. Examples -------- With 'ivy.Array' input: >>> x = ivy.array([[1.2, 2.3, 3.4, 4.5], ... [5.6, 6.7, 7.8, 8.9]]) >>> dim = 1 >>> shape = (2, 2) >>> y = ivy.zeros([2, 2, 2]) >>> x.unflatten(shape=shape, dim=dim, out=y) >>> print(y) ivy.array([[[1.2, 2.3], [3.4, 4.5]], [[5.6, 6.7], [7.8, 8.9]]]) """ return ivy.unflatten( self._data, shape=shape, dim=dim, out=out, ) def trim_zeros( self: ivy.Array, /, *, trim: Optional[str] = "fb", ) -> ivy.Array: """ivy.Array instance method variant of ivy.trim_zeros. This method simply wraps the function, and so the docstring for ivy.trim_zeros also applies to this method with minimal changes. Parameters ---------- self : 1-D array Input array. trim : str, optional A string with 'f' representing trim from front and 'b' to trim from back. Default is 'fb', trim zeros from both front and back of the array. Returns ------- 1-D array The result of trimming the input. The input data type is preserved. Examples -------- >>> a = ivy.array([0, 0, 0, 0, 8, 3, 0, 0, 7, 1, 0]) >>> ivy.trim_zeros(a) array([8, 3, 0, 0, 7, 1]) >>> ivy.trim_zeros(a, 'b') array([0, 0, 0, 0, 8, 3, 0, 0, 7, 1]) >>> ivy.trim_zeros([0, 8, 3, 0, 0]) [8, 3] """ return ivy.trim_zeros(self, trim=trim) def unfold( self: Union[ivy.Array, ivy.NativeArray], /, mode: Optional[int] = 0, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.unfold. This method simply wraps the function, and so the docstring for ivy.unfold also applies to this method with minimal changes. Parameters ---------- self input tensor to be unfolded mode indexing starts at 0, therefore mode is in ``range(0, tensor.ndim)`` out optional output array, for writing the result to. Returns ------- ret unfolded_tensor of shape ``(tensor.shape[mode], -1)`` """ return ivy.unfold(self._data, mode, out=out) def fold( self: Union[ivy.Array, ivy.NativeArray], /, mode: int, shape: Union[ivy.Shape, ivy.NativeShape, Sequence[int]], *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.fold. This method simply wraps the function, and so the docstring for ivy.fold also applies to this method with minimal changes. Parameters ---------- input unfolded tensor of shape ``(shape[mode], -1)`` mode the mode of the unfolding shape shape of the original tensor before unfolding out optional output array, for writing the result to. Returns ------- ret folded_tensor of shape `shape` """ return ivy.fold(self._data, mode, shape, out=out) def partial_unfold( self: Union[ivy.Array, ivy.NativeArray], /, mode: Optional[int] = 0, skip_begin: Optional[int] = 1, skip_end: Optional[int] = 0, ravel_tensors: Optional[bool] = False, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.partial_unfold. This method simply wraps the function, and so the docstring for ivy.partial_unfold also applies to this method with minimal changes. Parameters ---------- self tensor of shape n_samples x n_1 x n_2 x ... x n_i mode indexing starts at 0, therefore mode is in range(0, tensor.ndim) skip_begin number of dimensions to leave untouched at the beginning skip_end number of dimensions to leave untouched at the end ravel_tensors if True, the unfolded tensors are also flattened out optional output array, for writing the result to. Returns ------- ret partially unfolded tensor """ return ivy.partial_unfold( self._data, mode=mode, skip_begin=skip_begin, skip_end=skip_end, ravel_tensors=ravel_tensors, out=out, ) def partial_fold( self: Union[ivy.Array, ivy.NativeArray], /, mode: int, shape: Union[ivy.Shape, ivy.NativeShape, Sequence[int]], skip_begin: Optional[int] = 1, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.partial_fold. This method simply wraps the function, and so the docstring for ivy.partial_fold also applies to this method with minimal changes. Parameters ---------- x a partially unfolded tensor mode indexing starts at 0, therefore mode is in range(0, tensor.ndim) shape the shape of the original full tensor (including skipped dimensions) skip_begin number of dimensions left untouched at the beginning out optional output array, for writing the result to. Returns ------- partially re-folded tensor """ return ivy.partial_fold(self._data, mode, shape, skip_begin, out=out) def partial_tensor_to_vec( self: Union[ivy.Array, ivy.NativeArray], /, skip_begin: Optional[int] = 1, skip_end: Optional[int] = 0, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.partial_tensor_to_vec. This method simply wraps the function, and so the docstring for ivy.partial_tensor_to_vec also applies to this method with minimal changes. Parameters ---------- x tensor to partially vectorise skip_begin number of dimensions to leave untouched at the beginning skip_end number of dimensions to leave untouched at the end out optional output array, for writing the result to. Returns ------- partially vectorised tensor with the `skip_begin` first and `skip_end` last dimensions untouched """ return ivy.partial_tensor_to_vec(self._data, skip_begin, skip_end, out=out) def partial_vec_to_tensor( self: Union[ivy.Array, ivy.NativeArray], /, shape: Union[ivy.Shape, ivy.NativeShape, Sequence[int]], skip_begin: Optional[int] = 1, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.partial_vec_to_tensor. This method simply wraps the function, and so the docstring for ivy.partial_vec_to_tensor also applies to this method with minimal changes. Parameters ---------- x a partially vectorised tensor shape the shape of the original full tensor (including skipped dimensions) skip_begin number of dimensions to leave untouched at the beginning out optional output array, for writing the result to. Returns ------- ret full tensor """ return ivy.partial_vec_to_tensor(self._data, shape, skip_begin, out=out) def matricize( self: Union[ivy.Array, ivy.NativeArray], /, row_modes: Sequence[int], column_modes: Optional[Sequence[int]] = None, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.matricize. This method simply wraps the function, and so the docstring for ivy.matricize also applies to this method with minimal changes. Parameters ---------- self the input tensor row_modes modes to use as row of the matrix (in the desired order) column_modes modes to use as column of the matrix, in the desired order if None, the modes not in `row_modes` will be used in ascending order out optional output array, for writing the result to. ret ------- ivy.Array : tensor of size (ivy.prod(x.shape[i] for i in row_modes), -1) """ return ivy.matricize(self._data, row_modes, column_modes, out=out) def soft_thresholding( self: Union[ivy.Array, ivy.NativeArray], /, threshold: Union[float, ivy.Array, ivy.NativeArray], *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.soft_thresholding. This method simply wraps the function, and so the docstring for ivy.soft_thresholding also applies to this method with minimal changes. Parameters ---------- x input array threshold float or array with shape tensor.shape * If float the threshold is applied to the whole tensor * If array, one threshold is applied per elements, 0 values are ignored out optional output array, for writing the result to. Returns ------- ivy.Array thresholded tensor on which the operator has been applied """ return ivy.soft_thresholding(self._data, threshold, out=out) def column_stack( self: ivy.Array, arrays: Sequence[Union[ivy.Array, ivy.NativeArray]], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.column_stack. This method simply wraps the function, and so the docstring for ivy.column_stack also applies to this method with minimal changes. Parameters ---------- self Array that will be stacked at the beginning of the provided array iterable. arrays Arrays to be stacked. out Output array. Returns ------- ret Stacked input. """ if not isinstance(arrays, (list, tuple)): arrays = [arrays] if isinstance(arrays, tuple): x = (self._data) + arrays else: x = [self._data] + arrays return ivy.column_stack(x, out=out) def put_along_axis( self: ivy.Array, indices: ivy.Array, values: ivy.Array, axis: int, /, *, mode: Literal["sum", "min", "max", "mul", "mean", "replace"] = "replace", out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.put_along_axis. This method simply wraps the function, and so the docstring for ivy.put_along_axis also applies to this method with minimal changes. """ return ivy.put_along_axis(self._data, indices, values, axis, mode=mode, out=out)
ivy/ivy/data_classes/array/experimental/manipulation.py/0
{ "file_path": "ivy/ivy/data_classes/array/experimental/manipulation.py", "repo_id": "ivy", "token_count": 23636 }
8
# global import abc from typing import Optional, Union # local import ivy class _ArrayWithRandom(abc.ABC): def random_uniform( self: ivy.Array, /, *, high: Union[float, ivy.Array, ivy.NativeArray] = 1.0, shape: Optional[Union[ivy.Array, ivy.Shape, ivy.NativeShape]] = None, device: Optional[Union[ivy.Device, ivy.NativeDevice]] = None, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, seed: Optional[int] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.random_uniform. This method simply wraps the function, and so the docstring for ivy.random_uniform also applies to this method with minimal changes. Parameters ---------- self Lower boundary of the output interval. All values generated will be greater than or equal to ``low``. If array, must have same shape as ``high``. high Upper boundary of the output interval. All the values generated will be less than ``high``. If array, must have same shape as ``low``. shape If the given shape is, e.g ``(m, n, k)``, then ``m * n * k`` samples are drawn. Can only be specified when ``low`` and ``high`` are numeric values, else exception will be raised. Default is ``None``, where a single value is returned. device device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. (Default value = None). dtype output array data type. If ``dtype`` is ``None``, the output array data type will be the default floating-point data type. Default ``None`` seed A python integer. Used to create a random seed distribution out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Drawn samples from the parameterized uniform distribution. Examples -------- >>> x = ivy.array([[9.8, 3.4], [5.8, 7.2]]) >>> x.random_uniform(high=10.2) ivy.array([[9.86, 4.89], [7.06, 7.47]]) >>> x.random_uniform(high=10.2, device='cpu') ivy.array([[9.86, 4.89], [7.06, 7.47]]) >>> x.random_uniform(high=14.2, dtype='float16') ivy.array([[9.86, 4.89], [7.06, 7.47]]) >>> x.random_uniform(high=10.8, device='cpu', dtype='float64') ivy.array([[9.86, 4.89], [7.06, 7.47]]) >>> z = ivy.ones((2,2)) >>> x.random_uniform(high=11.2, device='cpu', dtype='float64', out=z) ivy.array([[10.1 , 6.53], [ 7.94, 8.85]]) >>> x = ivy.array([8.7, 9.3]) >>> y = ivy.array([12.8, 14.5]) >>> x.random_uniform(y) ivy.array([12.1, 14. ]) >>> x.random_uniform(high=y, device='cpu') ivy.array([12.1, 14. ]) >>> x.random_uniform(high=y, dtype='float16') ivy.array([12.1, 14. ]) >>> x.random_uniform(high=y, device='cpu', dtype='float64') ivy.array([12.1, 14. ]) >>> z = ivy.ones((2,)) >>> x.random_uniform(high=y, device='cpu', dtype='float64', out=z) ivy.array([12.1, 14. ]) """ return ivy.random_uniform( low=self._data, high=high, shape=shape, device=device, dtype=dtype, seed=seed, out=out, ) def random_normal( self: ivy.Array, /, *, std: Union[float, ivy.Array, ivy.NativeArray] = 1.0, shape: Optional[Union[ivy.Shape, ivy.NativeShape]] = None, device: Optional[Union[ivy.Device, ivy.NativeDevice]] = None, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, seed: Optional[int] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.random_normal. This method simply wraps the function, and so the docstring for ivy.random_normal also applies to this method with minimal changes. Parameters ---------- self The mean of the normal distribution to sample from. Default is ``0.0``. std The standard deviation of the normal distribution to sample from. Must be non-negative. Default is ``1.0``. shape If the given shape is, e.g ``(m, n, k)``, then ``m * n * k`` samples are drawn. Can only be specified when ``mean`` and ``std`` are numeric values, else exception will be raised. Default is ``None``, where a single value is returned. device device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. (Default value = None). dtype output array data type. If ``dtype`` is ``None``, the output array data type will be the default floating-point data type. Default ``None`` seed A python integer. Used to create a random seed distribution out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Drawn samples from the parameterized normal distribution. Examples -------- >>> x = ivy.array([[9.8, 3.4], [5.8, 7.2]]) >>> x.random_normal(std=10.2) ivy.array([[19. , -6.44 ], [ 5.72 , 0.235]]) >>> x.random_normal(std=10.2, device='cpu') ivy.array([[18.7 , 25.2 ], [27.5 , -3.22]]) >>> x.random_normal(std=14.2, dtype='float16') ivy.array([[26.6 , 12.1 ], [ 4.56, 5.49]]) >>> x.random_normal(std=10.8, device='cpu', dtype='float64') ivy.array([[ 1.02, -1.39], [14.2 , -1. ]]) >>> z = ivy.ones((2,2)) >>> x.random_normal(std=11.2, device='cpu', dtype='float64', out=z) ivy.array([[ 7.72, -8.32], [ 4.95, 15.8 ]]) >>> x = ivy.array([8.7, 9.3]) >>> y = ivy.array([12.8, 14.5]) >>> x.random_normal(std=y) ivy.array([-10.8, 12.1]) >>> x.random_normal(std=y, device='cpu') ivy.array([ 13. , -26.9]) >>> x.random_normal(std=y, dtype='float16') ivy.array([14.3 , -0.807]) >>> x.random_normal(std=y, device='cpu', dtype='float64') ivy.array([21.3 , 3.85]) >>> z = ivy.ones((2,)) >>> x.random_normal(std=y, device='cpu', dtype='float64', out=z) ivy.array([ 4.32, 42.2 ]) """ return ivy.random_normal( mean=self._data, std=std, shape=shape, device=device, dtype=dtype, seed=seed, out=out, ) def multinomial( self: ivy.Array, population_size: int, num_samples: int, /, *, batch_size: int = 1, replace: bool = True, device: Optional[Union[ivy.Device, ivy.NativeDevice]] = None, seed: Optional[int] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.multinomial. This method simply wraps the function, and so the docstring for ivy.multinomial also applies to this method with minimal changes. Parameters ---------- self The unnormalized probabilities for all elements in population, default is uniform *[batch_shape, population_size]* population_size The size of the population from which to draw samples. num_samples Number of independent samples to draw from the population. batch_size Number of tensors to generate. Default is 1. replace Whether to replace samples once they've been drawn. Default is ``True``. device device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. (Default value = None) seed A python integer. Used to create a random seed distribution out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Drawn samples from the parameterized normal distribution. """ return ivy.multinomial( population_size, num_samples, batch_size=batch_size, probs=self._data, replace=replace, device=device, seed=seed, out=out, ) def randint( self: ivy.Array, high: Union[int, ivy.Array, ivy.NativeArray], /, *, shape: Optional[Union[ivy.Shape, ivy.NativeShape]] = None, device: Optional[Union[ivy.Device, ivy.NativeDevice]] = None, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, seed: Optional[int] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.randint. This method simply wraps the function, and so the docstring for ivy.randint also applies to this method with minimal changes. Parameters ---------- self Lowest integer that can be drawn from the distribution. high One above the highest integer that can be drawn from the distribution. shape If the given shape is, e.g ``(m, n, k)``, then ``m * n * k`` samples are drawn. Can only be specified when ``low`` and ``high`` are numeric values, else exception will be raised. Default is ``None``, where a single value is returned. device device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. (Default value = None). dtype output array data type. If ``dtype`` is ``None``, the output array data type will be the default integer data type. Default ``None`` seed A python integer. Used to create a random seed distribution out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Returns an array with the given shape filled with integers from the uniform distribution in the “half-open” interval [low, high) Examples -------- >>> x = ivy.array([[1, 2], [0, 5]]) >>> x.randint(10) ivy.array([[1, 5], [9, 7]]) >>> x.randint(8, device='cpu') ivy.array([[6, 5], [0, 5]]) >>> x.randint(9, dtype='int8') ivy.array([[1, 2], [7, 7]]) >>> x.randint(14, device='cpu', dtype='int16') ivy.array([[6, 5], [0, 5]]) >>> z = ivy.ones((2,2)) >>> x.randint(16, device='cpu', dtype='int64', out=z) ivy.array([[1, 2], [7, 7]]) >>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([23, 25, 98]) >>> x.randint(y) ivy.array([ 5, 14, 18]) >>> x.randint(y, device='cpu') ivy.array([20, 13, 46]) >>> x.randint(y, dtype='int32') ivy.array([ 9, 18, 33]) >>> x.randint(y, device='cpu', dtype='int16') ivy.array([ 9, 20, 85]) >>> z = ivy.ones((3,)) >>> x.randint(y, device='cpu', dtype='int64', out=z) ivy.array([20, 13, 46]) """ return ivy.randint( self._data, high, shape=shape, device=device, dtype=dtype, seed=seed, out=out, ) def shuffle( self: ivy.Array, axis: Optional[int] = 0, /, *, seed: Optional[int] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.shuffle. This method simply wraps the function, and so the docstring for ivy.shuffle also applies to this method with minimal changes. Parameters ---------- self Input array. Should have a numeric data type. axis The axis which x is shuffled along. Default is 0. seed A python integer. Used to create a random seed distribution out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret An array object, shuffled along the first dimension. Examples -------- >>> x = ivy.array([5, 2, 9]) >>> y = x.shuffle() >>> print(y) ivy.array([2, 5, 9]) """ return ivy.shuffle(self, axis, seed=seed, out=out)
ivy/ivy/data_classes/array/random.py/0
{ "file_path": "ivy/ivy/data_classes/array/random.py", "repo_id": "ivy", "token_count": 6435 }
9
from .activations import _ContainerWithActivationExperimental from .conversions import _ContainerWithConversionExperimental from .creation import _ContainerWithCreationExperimental from .data_type import _ContainerWithData_typeExperimental from .device import _ContainerWithDeviceExperimental from .elementwise import _ContainerWithElementWiseExperimental from .general import _ContainerWithGeneralExperimental from .gradients import _ContainerWithGradientsExperimental from .image import _ContainerWithImageExperimental from .layers import _ContainerWithLayersExperimental from .linear_algebra import _ContainerWithLinearAlgebraExperimental from .manipulation import _ContainerWithManipulationExperimental from .norms import _ContainerWithNormsExperimental from .random import _ContainerWithRandomExperimental from .searching import _ContainerWithSearchingExperimental from .set import _ContainerWithSetExperimental from .sorting import _ContainerWithSortingExperimental from .statistical import _ContainerWithStatisticalExperimental from .utility import _ContainerWithUtilityExperimental from .losses import _ContainerWithLossesExperimental
ivy/ivy/data_classes/container/experimental/__init__.py/0
{ "file_path": "ivy/ivy/data_classes/container/experimental/__init__.py", "repo_id": "ivy", "token_count": 259 }
10
# global from typing import Optional, Union, List, Dict, Tuple # local import ivy from ivy.data_classes.container.base import ContainerBase class _ContainerWithSearchingExperimental(ContainerBase): @staticmethod def static_unravel_index( indices: ivy.Container, shape: Union[Tuple[int], ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[Union[ivy.Array, ivy.Container]] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.unravel_index. This method simply wraps the function, and so the docstring for ivy.unravel_index also applies to this method with minimal changes. Parameters ---------- indices Input container including arrays. shape The shape of the array to use for unraveling indices. out optional output array, for writing the result to. Returns ------- ret Container with tuples that have arrays with the same shape as the arrays in the input container. Examples -------- With one :class:`ivy.Container` input: >>> indices = ivy.Container(a=ivy.array([22, 41, 37])), b=ivy.array([30, 2])) >>> ivy.Container.static_unravel_index(indices, (7,6)) { a: (ivy.array([3, 6, 6]), ivy.array([4, 5, 1])) b: (ivy.array([5, 0], ivy.array([0, 2]))) } """ return ContainerBase.cont_multi_map_in_function( "unravel_index", indices, shape, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def unravel_index( self: ivy.Container, shape: Union[Tuple[int], ivy.Container], /, *, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.unravel_index. This method simply wraps the function, and so the docstring for ivy.unravel_index also applies to this method with minimal changes. Parameters ---------- self Input container including arrays. shape The shape of the array to use for unraveling indices. out optional output array, for writing the result to. Returns ------- ret Container with tuples that have arrays with the same shape as the arrays in the input container. Examples -------- With one :class:`ivy.Container` input: >>> indices = ivy.Container(a=ivy.array([22, 41, 37])), b=ivy.array([30, 2])) >>> indices.unravel_index((7, 6)) { a: (ivy.array([3, 6, 6]), ivy.array([4, 5, 1])) b: (ivy.array([5, 0], ivy.array([0, 2]))) } """ return self.static_unravel_index(self, shape, out=out)
ivy/ivy/data_classes/container/experimental/searching.py/0
{ "file_path": "ivy/ivy/data_classes/container/experimental/searching.py", "repo_id": "ivy", "token_count": 1491 }
11
# global from typing import Optional, List, Union, Dict, Literal # local from ivy.data_classes.container.base import ContainerBase import ivy # ToDo: implement all methods here as public instance methods # noinspection PyMissingConstructor class _ContainerWithSorting(ContainerBase): @staticmethod def _static_argsort( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, axis: Union[int, ivy.Container] = -1, descending: Union[bool, ivy.Container] = False, stable: Union[bool, ivy.Container] = True, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.argsort. This method simply wraps the function, and so the docstring for ivy.argsort also applies to this method with minimal changes. Parameters ---------- x input array or container. Should have a numeric data type. axis axis along which to sort. If set to ``-1``, the function must sort along the last axis. Default: ``-1``. descending sort order. If ``True``, the returned indices sort ``x`` in descending order (by value). If ``False``, the returned indices sort ``x`` in ascending order (by value). Default: ``False``. stable sort stability. If ``True``, the returned indices must maintain the relative order of ``x`` values which compare as equal. If ``False``, the returned indices may or may not maintain the relative order of ``x`` values which compare as equal (i.e., the relative order of ``x`` values which compare as equal is implementation-dependent). Default: ``True``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container containing the index values of sorted array. The returned array must have a data type determined by :ref:`type-promotion`. Examples -------- With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([7, 2, 1]), ... b=ivy.array([3, 2])) >>> y = ivy.Container.static_argsort(x, axis=-1, descending=True, stable=False) >>> print(y) { a: ivy.array([0, 1, 2]), b: ivy.array([0, 1]) } >>> x = ivy.Container(a=ivy.array([7, 2, 1]), ... b=ivy.array([[3, 2], [7, 0.2]])) >>> y = ivy.Container.static_argsort(x, axis=-1, descending=True, stable=False) >>> print(y) { a: ivy.array([0, 1, 2]), b: ivy.array([[0, 1]],[0, 1]]) } With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([2, 5, 1]), ... b=ivy.array([1, 5], [.2,.1])) >>> y = ivy.Container.static_argsort(x,axis=-1, descending=True, stable=False) >>> print(y) { a: ivy.array([2, 0, 1]), b: ivy.array([[1, 0],[0,1]]) } >>> x = ivy.Container(a=ivy.native_array([2, 5, 1]), ... b=ivy.array([1, 5], [.2,.1])) >>> y = ivy.Container.static_argsort(x, axis=-1, descending=True, stable=False) >>> print(y) { a: ivy.array([2, 0, 1]), b: ivy.array([[1, 0],[0,1]]) } """ return ContainerBase.cont_multi_map_in_function( "argsort", x, axis=axis, descending=descending, stable=stable, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def argsort( self: ivy.Container, /, *, axis: Union[int, ivy.Container] = -1, descending: Union[bool, ivy.Container] = False, stable: Union[bool, ivy.Container] = True, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.argsort. This method simply wraps the function, and so the docstring for ivy.argsort also applies to this method with minimal changes. Parameters ---------- self input array or container. Should have a numeric data type. axis axis along which to sort. If set to ``-1``, the function must sort along the last axis. Default: ``-1``. descending sort order. If ``True``, the returned indices sort ``x`` in descending order (by value). If ``False``, the returned indices sort ``x`` in ascending order (by value). Default: ``False``. stable sort stability. If ``True``, the returned indices must maintain the relative order of ``x`` values which compare as equal. If ``False``, the returned indices may or may not maintain the relative order of ``x`` values which compare as equal (i.e., the relative order of ``x`` values which compare as equal is implementation-dependent). Default: ``True``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container containing the index values of sorted array. The returned array must have a data type determined by :ref:`type-promotion`. Examples -------- >>> x = ivy.Container(a=ivy.array([7, 2, 1]), ... b=ivy.array([3, 2])) >>> y = x.argsort(axis=-1, descending=True, stable=False) >>> print(y) { a: ivy.array([0, 1, 2]), b: ivy.array([0, 1]) } """ return self._static_argsort( self, axis=axis, descending=descending, stable=stable, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_sort( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, axis: Union[int, ivy.Container] = -1, descending: Union[bool, ivy.Container] = False, stable: Union[bool, ivy.Container] = True, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.sort. This method simply wraps the function, and so the docstring for ivy.sort also applies to this method with minimal changes. Examples -------- With one :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([5, 9, 0.2]), ... b=ivy.array([[8, 1], [5, 0.8]])) >>> y = ivy.Container.static_sort(x) >>> print(y) { a: ivy.array([0.2, 5., 9.]), b: ivy.array([[1., 8.], [0.8, 5.]]) } >>> x = ivy.Container(a=ivy.array([8, 0.5, 6]), ... b=ivy.array([[9, 0.7], [0.4, 0]])) >>> y = ivy.Container.static_sort(x) >>> print(y) { a: ivy.array([0.5, 6., 8.]), b: ivy.array([[0.7, 9.], [0., 0.4]]) } """ return ContainerBase.cont_multi_map_in_function( "sort", x, axis=axis, descending=descending, stable=stable, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def sort( self: ivy.Container, /, *, axis: Union[int, ivy.Container] = -1, descending: Union[bool, ivy.Container] = False, stable: Union[bool, ivy.Container] = True, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.sort. This method simply wraps the function, and so the docstring for ivy.sort also applies to this method with minimal changes. Examples -------- >>> x = ivy.Container(a=ivy.array([5, 9, 0.2]), ... b=ivy.array([8, 1])) >>> y = x.sort() >>> print(y) { a: ivy.array([0.2, 5., 9.]), b: ivy.array([1, 8]) } >>> x = ivy.Container(a=ivy.array([5, 9, 0.2]), ... b=ivy.array([[8, 1], [5, 0.8]])) >>> y = x.sort() >>> print(y) { a: ivy.array([0.2, 5., 9.]), b: ivy.array([[1., 8.], [0.8, 5.]]) } >>> x = ivy.Container(a=ivy.array([8, 0.5, 6]), ... b=ivy.array([[9, 0.7], [0.4, 0]])) >>> y = ivy.sort(x) >>> print(y) { a: ivy.array([0.5, 6., 8.]), b: ivy.array([[0.7, 9.],[0., 0.4]]) } >>> x = ivy.Container(a=ivy.native_array([8, 0.5, 6]), ... b=ivy.array([[9, 0.7], [0.4, 0]])) >>> y = ivy.sort(x) >>> print(y) { a: ivy.array([0.5, 6., 8.]), b: ivy.array([[0.7, 9.],[0., 0.4]]) } """ return self._static_sort( self, axis=axis, descending=descending, stable=stable, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def static_msort( a: Union[ivy.Array, ivy.NativeArray, ivy.Container, list, tuple], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.msort. This method simply wraps the function, and so the docstring for ivy.msort also applies to this method with minimal changes. Parameters ---------- a array-like or container input. out optional output container, for writing the result to. Returns ------- ret a container containing sorted input arrays. Examples -------- With :class:`ivy.Container` input: >>> a = ivy.Container(x = ivy.asarray([[8, 9, 6],[6, 2, 6]]), ... y = ivy.asarray([[7, 2],[3, 4]]) >>> ivy.Container.static_lexsort(a) { x: ivy.array( [[6, 2, 6], [8, 9, 6]] ), y: ivy.array( [[3, 4], [7, 2]] ) } """ return ContainerBase.cont_multi_map_in_function( "msort", a, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def msort( self: ivy.Container, /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.msort. This method simply wraps the function, and so the docstring for ivy.msort also applies to this method with minimal changes. Parameters ---------- self input container with array-like inputs to sort. out optional output container, for writing the result to. Returns ------- ret a container containing the sorted input arrays. Examples -------- >>> a = ivy.Container(x = ivy.asarray([[8, 9, 6],[6, 2, 6]]), ... y = ivy.asarray([[7, 2],[3, 4]]) >>> a.msort() { x: ivy.array( [[6, 2, 6], [8, 9, 6]] ), y: ivy.array( [[3, 4], [7, 2]] ) } """ return self.static_msort( self, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_searchsorted( x1: Union[ivy.Array, ivy.NativeArray, ivy.Container], v: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, side: Union[str, ivy.Container] = "left", sorter: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container, List[int]] ] = None, ret_dtype: Union[ivy.Dtype, ivy.Container] = ivy.int64, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.searchsorted. This method simply wraps the function, and so the docstring for ivy.searchsorted also applies to this method with minimal changes. """ return ContainerBase.cont_multi_map_in_function( "searchsorted", x1, v, side=side, sorter=sorter, ret_dtype=ret_dtype, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def searchsorted( self: ivy.Container, v: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, side: Union[Literal["left", "right"], ivy.Container] = "left", sorter: Optional[ Union[ivy.Array, ivy.NativeArray, List[int], ivy.Container] ] = None, ret_dtype: Union[ivy.Dtype, ivy.NativeDtype, ivy.Container] = ivy.int64, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.searchsorted. This method simply wraps the function, and so the docstring for ivy.searchsorted also applies to this method with minimal changes. """ return self._static_searchsorted( self, v, side=side, sorter=sorter, ret_dtype=ret_dtype, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, )
ivy/ivy/data_classes/container/sorting.py/0
{ "file_path": "ivy/ivy/data_classes/container/sorting.py", "repo_id": "ivy", "token_count": 8973 }
12
[package] name = "xlar" version = "0.1.0" edition = "2021" [lib] name = "xlar" crate-type = ["cdylib"] [dependencies] thiserror = "1" libc = "0.2" num-traits = "0.2" num-derive = "0.3" zip = "0.6.4" pyo3 = { version = "0.19.1", features = ["extension-module"] } ndarray = "0.15.6" numpy = "0.19.0" half = "2.3.1" [build-dependencies] bindgen = "0.64" cc = "1.0" [dev-dependencies] anyhow = "1.0" clap = { version = "4.2.4", features = ["derive"] } fancy-regex = "0.11.0" rand = "0.8.5" serde_json = "1.0.96"
ivy/ivy/engines/XLA/rust_api/Cargo.toml/0
{ "file_path": "ivy/ivy/engines/XLA/rust_api/Cargo.toml", "repo_id": "ivy", "token_count": 261 }
13
#include <stdbool.h> #include <stddef.h> #include <stdint.h> #ifdef __cplusplus #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wuninitialized" #pragma GCC diagnostic ignored "-Wdeprecated-declarations" #pragma GCC diagnostic ignored "-Winvalid-offsetof" #pragma GCC diagnostic ignored "-Wreturn-type" #include "tensorflow/compiler/xla/client/client_library.h" #include "tensorflow/compiler/xla/client/lib/constants.h" #include "tensorflow/compiler/xla/client/lib/matrix.h" #include "tensorflow/compiler/xla/client/lib/math.h" #include "tensorflow/compiler/xla/client/padding.h" #include "tensorflow/compiler/xla/client/xla_builder.h" #include "tensorflow/compiler/xla/literal_util.h" #include "tensorflow/compiler/xla/pjrt/gpu/gpu_helpers.h" #include "tensorflow/compiler/xla/pjrt/gpu/se_gpu_pjrt_client.h" #include "tensorflow/compiler/xla/pjrt/pjrt_client.h" #include "tensorflow/compiler/xla/pjrt/pjrt_stream_executor_client.h" #include "tensorflow/compiler/xla/pjrt/tfrt_cpu_pjrt_client.h" #include "tensorflow/compiler/xla/pjrt/tpu_client.h" #include "tensorflow/compiler/xla/service/hlo_parser.h" #include "tensorflow/compiler/xla/shape_util.h" #include "tensorflow/compiler/xla/statusor.h" #pragma GCC diagnostic pop using namespace xla; extern "C" { typedef std::shared_ptr<PjRtClient> *pjrt_client; typedef PjRtLoadedExecutable *pjrt_loaded_executable; typedef PjRtDevice *pjrt_device; typedef PjRtBuffer *pjrt_buffer; typedef XlaBuilder *xla_builder; typedef XlaOp *xla_op; typedef Status *status; typedef Shape *shape; typedef Literal *literal; typedef XlaComputation *xla_computation; typedef HloModule *hlo_module; typedef HloModuleProto *hlo_module_proto; typedef HloComputation *hlo_computation; #else typedef struct _pjrt_client *pjrt_client; typedef struct _pjrt_loaded_executable *pjrt_loaded_executable; typedef struct _pjrt_device *pjrt_device; typedef struct _pjrt_buffer *pjrt_buffer; typedef struct _xla_builder *xla_builder; typedef struct _xla_op *xla_op; typedef struct _status *status; typedef struct _shape *shape; typedef struct _literal *literal; typedef struct _xla_computation *xla_computation; typedef struct _hlo_module *hlo_module; typedef struct _hlo_module_proto *hlo_module_proto; typedef struct _hlo_computation *hlo_computation; #endif status pjrt_cpu_client_create(pjrt_client *); status pjrt_gpu_client_create(pjrt_client *, double, bool); status pjrt_tpu_client_create(pjrt_client *, int); void pjrt_client_free(pjrt_client); int pjrt_client_device_count(pjrt_client); int pjrt_client_addressable_device_count(pjrt_client); void pjrt_client_devices(pjrt_client, pjrt_device *); void pjrt_client_addressable_devices(pjrt_client, pjrt_device *); char *pjrt_client_platform_name(pjrt_client); char *pjrt_client_platform_version(pjrt_client); void pjrt_loaded_executable_free(pjrt_loaded_executable); int pjrt_device_id(pjrt_device); int pjrt_device_process_index(pjrt_device); int pjrt_device_local_hardware_id(pjrt_device); status pjrt_device_transfer_to_infeed(pjrt_device, const literal); status pjrt_device_transfer_from_outfeed(pjrt_device, literal); char *pjrt_device_kind(pjrt_device); char *pjrt_device_debug_string(pjrt_device); char *pjrt_device_to_string(pjrt_device); status pjrt_buffer_from_host_literal(const pjrt_client, const pjrt_device, const literal, pjrt_buffer *); status pjrt_buffer_from_host_buffer(const pjrt_client, const pjrt_device, const void *, int, int, const int64_t *, pjrt_buffer *); status pjrt_buffer_to_literal_sync(pjrt_buffer, literal *); status pjrt_buffer_copy_raw_to_host_sync(pjrt_buffer, void *, size_t, size_t); shape pjrt_buffer_on_device_shape(pjrt_buffer); status pjrt_buffer_copy_to_device(pjrt_buffer, pjrt_device, pjrt_buffer *); void pjrt_buffer_free(pjrt_buffer); xla_builder xla_builder_create(const char *); void xla_builder_free(xla_builder); xla_op constant_literal(const xla_builder, const literal); xla_op parameter(const xla_builder, int64_t, int, int, const int64_t *, const char *); xla_op parameter_s(const xla_builder, int64_t, const shape, const char *); xla_op infeed(const xla_builder, int, int, const int64_t *, const char *); void outfeed(const xla_op, int, int, const int64_t *, const char *); // Ops xla_op op_add(const xla_op, const xla_op); xla_op op_sub(const xla_op, const xla_op); xla_op op_mul(const xla_op, const xla_op); xla_op op_div(const xla_op, const xla_op); xla_op op_rem(const xla_op, const xla_op); xla_op op_max(const xla_op, const xla_op); xla_op op_min(const xla_op, const xla_op); xla_op op_and(const xla_op, const xla_op); xla_op op_or(const xla_op, const xla_op); xla_op op_xor(const xla_op, const xla_op); xla_op op_atan2(const xla_op, const xla_op); xla_op op_pow(const xla_op, const xla_op); xla_op op_dot(const xla_op, const xla_op); xla_op op_dot_general(const xla_op, const xla_op, const int64_t *, size_t, const int64_t *, size_t, const int64_t *, size_t, const int64_t *, size_t); xla_op op_eq(const xla_op, const xla_op); xla_op op_ne(const xla_op, const xla_op); xla_op op_ge(const xla_op, const xla_op); xla_op op_gt(const xla_op, const xla_op); xla_op op_le(const xla_op, const xla_op); xla_op op_lt(const xla_op, const xla_op); xla_op op_shift_left(const xla_op, const xla_op); xla_op op_shift_right_arith(const xla_op, const xla_op); xla_op op_shift_right_logic(const xla_op, const xla_op); xla_op op_population_count(const xla_op); xla_op op_not(const xla_op); xla_op op_abs(const xla_op); xla_op op_exp(const xla_op); xla_op op_expm1(const xla_op); xla_op op_floor(const xla_op); xla_op op_ceil(const xla_op); xla_op op_round(const xla_op); xla_op op_round_nearest_even(const xla_op); xla_op op_log(const xla_op); xla_op op_log1p(const xla_op); xla_op op_logistic(const xla_op); xla_op op_sign(const xla_op); xla_op op_clz(const xla_op); xla_op op_cos(const xla_op); xla_op op_sin(const xla_op); xla_op op_tanh(const xla_op); xla_op op_real(const xla_op); xla_op op_imag(const xla_op); xla_op op_conj(const xla_op); xla_op op_square(const xla_op); xla_op op_sqrt(const xla_op); xla_op op_rsqrt(const xla_op); xla_op op_cbrt(const xla_op); xla_op op_is_finite(const xla_op); xla_op op_neg(const xla_op); xla_op op_lower_triangle(const xla_op); xla_op op_upper_triangle(const xla_op); xla_op op_erf(const xla_op); xla_op op_einsum1(const xla_op, const char *); xla_op op_einsum2(const xla_op, const xla_op, const char *); xla_op op_copy(const xla_op); xla_op op_clone(const xla_op); xla_op op_zeros_like(const xla_op); xla_op op_zero_like(const xla_op); xla_op op_zero(const xla_builder, int); xla_op op_one(const xla_builder, int); xla_op op_min_value(const xla_builder, int); xla_op op_max_value(const xla_builder, int); xla_op op_reshape(const xla_op, size_t, const int64_t *); xla_op op_dynamic_reshape(const xla_op, size_t, const xla_op *, size_t, const int64_t *, const bool *); xla_op op_broadcast(const xla_op, size_t, const int64_t *); xla_op op_broadcast_in_dim(const xla_op, size_t, const int64_t *, size_t, const int64_t *); xla_op op_collapse(const xla_op, size_t, const int64_t *); xla_op op_transpose(const xla_op, size_t, const int64_t *); xla_op op_clamp(const xla_op, const xla_op, const xla_op); xla_op op_select(const xla_op, const xla_op, const xla_op); xla_op op_call(const xla_builder, const xla_computation, size_t, const xla_op *); xla_op op_map(const xla_builder, size_t, const xla_op *, const xla_computation, size_t, const int64_t *, size_t, const xla_op *); xla_op op_rng_uniform(const xla_op, const xla_op, int, int, const int64_t *); xla_op op_rng_normal(const xla_op, const xla_op, int, int, const int64_t *); xla_op op_pad(const xla_op, const xla_op, size_t, const int64_t *, const int64_t *, const int64_t *); xla_op op_pad_in_dim(const xla_op, const xla_op, int64_t, int64_t, int64_t); xla_op op_slice(const xla_op, size_t, const int64_t *, size_t, const int64_t *, size_t, const int64_t *); xla_op op_slice_in_dim(const xla_op, int64_t, int64_t, int64_t, int64_t); xla_op op_dynamic_slice(const xla_op, size_t, const xla_op *, size_t, const int64_t *); xla_op op_dynamic_update_slice(const xla_op, const xla_op, size_t, const xla_op *); xla_op op_concat_in_dim(const xla_op, const xla_op *, size_t, int64_t); xla_op op_tuple(const xla_builder, const xla_op *, size_t); xla_op op_get_tuple_element(const xla_op, int64_t); xla_op op_gather(const xla_op, const xla_op, const int64_t *, size_t, const int64_t *, size_t, const int64_t *, size_t, const int64_t *, const int64_t *, size_t); xla_op op_scatter(size_t, const xla_op *, const xla_op, size_t, const xla_op *, const xla_computation, size_t, const int64_t *, size_t, const int64_t *, size_t, const int64_t *, int64_t); xla_op op_convert_element_type(const xla_op, int); xla_op op_dimensions_size(const xla_op, int64_t); xla_op op_reduce(const xla_op, const xla_op, const xla_computation, const int64_t *, size_t); xla_op op_internal_error(const xla_builder, const char *); xla_op op_unknown_error(const xla_builder, const char *); xla_op op_invalid_argument_error(const xla_builder, const char *); xla_op op_iota1(const xla_builder, int, size_t); xla_op op_iota(const xla_builder, int, size_t, const int64_t *, int64_t); xla_op op_while(const xla_computation, const xla_computation, const xla_op); xla_op op_conditional(const xla_op, const xla_op, const xla_computation, const xla_op, const xla_computation); xla_op op_conv(const xla_op, const xla_op, size_t, const int64_t *, const char*, int64_t, int64_t); xla_op op_conv_general_dilated(const xla_op, const xla_op, size_t, const int64_t *, size_t, const int64_t *, size_t, const int64_t *, size_t, const int64_t *, const int64_t *, const int64_t *, size_t, const int64_t *, const int64_t *, const int64_t *, size_t, const int64_t *, const int64_t *, const int64_t *, size_t, const int64_t *, int64_t, int64_t); xla_op op_batch_norm_inference(const xla_op, const xla_op, const xla_op, const xla_op, const xla_op, float, int64_t); xla_builder op_builder(const xla_op); int xla_op_valid(const xla_op); void xla_op_free(xla_op); int shape_dimensions_size(const shape); size_t shape_tuple_shapes_size(const shape); shape shape_tuple_shapes(const shape, int); int shape_element_type(const shape); int64_t shape_dimensions(const shape, int); void shape_free(shape); shape make_shape_array(int, size_t, const int64_t *); shape make_shape_tuple(size_t, const shape *); status get_shape(const xla_builder, const xla_op, shape *); status get_element_type(const xla_builder, const xla_op, int *); status get_dimensions_size(const xla_builder, const xla_op, int *); status get_dimensions(const xla_builder, const xla_op, size_t *); status build(const xla_builder, const xla_op, xla_computation *); status compile(const pjrt_client, const xla_computation, pjrt_loaded_executable *); status execute(const pjrt_loaded_executable, const literal *, int, pjrt_buffer ***); status execute_b(const pjrt_loaded_executable, const pjrt_buffer *, int, pjrt_buffer ***); status first_error(const xla_builder); status get_current_status(const xla_builder); literal literal_create_from_shape(int, const int64_t *, size_t); literal literal_create_from_shape_and_data(int, const int64_t *, size_t, const void *, size_t); literal literal_clone(const literal); status literal_reshape(const literal, const int64_t *, size_t, literal *); status literal_convert(const literal, int, literal *); int64_t literal_element_count(const literal); int literal_element_type(const literal); void literal_shape(const literal, shape *); void literal_decompose_tuple(literal, literal *, size_t); int64_t literal_size_bytes(const literal); void literal_copy_to(const literal, void *, size_t); void literal_copy_from(literal, const void *, size_t); literal literal_make_tuple(const literal *, size_t); literal literal_make_tuple_owned(const literal *, size_t); void literal_free(literal); status hlo_module_proto_parse_and_return_unverified_module(const char *, size_t, hlo_module_proto *); status hlo_module_proto_parse_proto(const char *, size_t, bool, hlo_module_proto *); status hlo_module_from_proto(const hlo_module_proto, hlo_module *); hlo_computation hlo_module_entry_computation(const hlo_module); int64_t hlo_module_computation_count(const hlo_module); int64_t hlo_module_instruction_count(const hlo_module); char *hlo_module_to_string(const hlo_module); xla_computation xla_computation_from_hlo_module_proto(const hlo_module_proto); void hlo_module_proto_free(hlo_module_proto); char *xla_computation_name(xla_computation); hlo_module_proto xla_computation_proto(const xla_computation); void xla_computation_free(xla_computation); void status_free(status); char *status_error_message(status); #define FOR_EACH_NATIVE_TYPE(_) \ _(bool, PRED) \ _(int8_t, S8) \ _(int16_t, S16) \ _(int32_t, S32) \ _(int64_t, S64) \ _(uint8_t, U8) \ _(uint16_t, U16) \ _(uint32_t, U32) \ _(uint64_t, U64) \ _(float, F32) \ _(double, F64) #define CONST_OP_R01(native_type, primitive_type) \ xla_op constant_r0_##native_type(const xla_builder, native_type); \ xla_op constant_r1c_##native_type(const xla_builder, native_type, size_t); \ xla_op constant_r1_##native_type(const xla_builder, const native_type *, \ size_t); \ literal create_r0_##native_type(native_type); \ literal create_r1_##native_type(const native_type *, size_t); \ native_type literal_get_first_element_##native_type(const literal); FOR_EACH_NATIVE_TYPE(CONST_OP_R01) #undef CONST_OP_R01 #ifdef __cplusplus } #endif
ivy/ivy/engines/XLA/rust_api/xla_rs/xla_rs.h/0
{ "file_path": "ivy/ivy/engines/XLA/rust_api/xla_rs/xla_rs.h", "repo_id": "ivy", "token_count": 7623 }
14
# global from typing import Optional, Tuple import math import jax import jax.numpy as jnp import jaxlib.xla_extension # local from ivy.functional.backends.jax import JaxArray import ivy # Array API Standard # # ------------------ # def vorbis_window( window_length: JaxArray, *, dtype: jnp.dtype = jnp.float32, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.array( [ round( math.sin( (ivy.pi / 2) * (math.sin(ivy.pi * (i) / (window_length * 2)) ** 2) ), 8, ) for i in range(1, window_length * 2)[0::2] ], dtype=dtype, ) def hann_window( size: int, /, *, periodic: bool = True, dtype: Optional[jnp.dtype] = None, out: Optional[JaxArray] = None, ) -> JaxArray: if size < 2: return jnp.ones([size], dtype=dtype) if periodic: count = jnp.arange(size) / size else: count = jnp.linspace(start=0, stop=size, num=size) return (0.5 - 0.5 * jnp.cos(2 * jnp.pi * count)).astype(dtype) def kaiser_window( window_length: int, periodic: bool = True, beta: float = 12.0, *, dtype: Optional[jnp.dtype] = None, out: Optional[JaxArray] = None, ) -> JaxArray: if window_length < 2: return jnp.ones([window_length], dtype=dtype) if periodic is False: return jnp.kaiser(M=window_length, beta=beta).astype(dtype) else: return jnp.kaiser(M=window_length + 1, beta=beta)[:-1].astype(dtype) def tril_indices( n_rows: int, n_cols: Optional[int] = None, k: int = 0, /, *, device: jaxlib.xla_extension.Device = None, ) -> Tuple[JaxArray, ...]: return jnp.tril_indices(n=n_rows, k=k, m=n_cols) def unsorted_segment_min( data: JaxArray, segment_ids: JaxArray, num_segments: int, ) -> JaxArray: # added this check to keep the same behaviour as tensorflow ivy.utils.assertions.check_unsorted_segment_valid_params( data, segment_ids, num_segments ) return jax.ops.segment_min(data, segment_ids, num_segments) def unsorted_segment_sum( data: JaxArray, segment_ids: JaxArray, num_segments: int, ) -> JaxArray: # Used the same check which is used for unsorted_segment_min as # the check should be same # Might require to change the assertion function name to # check_unsorted_segment_valid_params ivy.utils.assertions.check_unsorted_segment_valid_params( data, segment_ids, num_segments ) return jax.ops.segment_sum(data, segment_ids, num_segments) def blackman_window( size: int, /, *, periodic: bool = True, dtype: Optional[jnp.dtype] = None, out: Optional[JaxArray] = None, ) -> JaxArray: if size < 2: return jnp.ones([size], dtype=dtype) if periodic: count = jnp.arange(size) / size else: count = jnp.linspace(start=0, stop=size, num=size) return ( (0.42 - 0.5 * jnp.cos(2 * jnp.pi * count)) + (0.08 * jnp.cos(2 * jnp.pi * 2 * count)) ).astype(dtype) def trilu( x: JaxArray, /, *, k: int = 0, upper: bool = True, out: Optional[JaxArray] = None ) -> JaxArray: if upper: return jnp.triu(x, k) return jnp.tril(x, k) def mel_weight_matrix( num_mel_bins: int, dft_length: int, sample_rate: int, lower_edge_hertz: float = 0.0, upper_edge_hertz: float = 3000.0, ): lower_edge_hertz = jnp.array(lower_edge_hertz) upper_edge_hertz = jnp.array(upper_edge_hertz) zero = jnp.array(0.0) def hz_to_mel(f): return 2595 * jnp.log10(1 + f / 700) nyquist_hz = sample_rate / 2 linear_freqs = jnp.linspace(0, nyquist_hz, dft_length, dtype=jnp.float32)[1:] spec_bin_mels = hz_to_mel(linear_freqs)[..., None] mel_edges = jnp.linspace( hz_to_mel(lower_edge_hertz), hz_to_mel(upper_edge_hertz), num_mel_bins + 2, dtype=jnp.float32, ) mel_edges = jnp.stack([mel_edges[i : i + 3] for i in range(num_mel_bins)]) lower_edge_mel, center_mel, upper_edge_mel = ( t.reshape((1, num_mel_bins)) for t in jnp.split(mel_edges, 3, axis=1) ) lower_slopes = (spec_bin_mels - lower_edge_mel) / (center_mel - lower_edge_mel) upper_slopes = (upper_edge_mel - spec_bin_mels) / (upper_edge_mel - center_mel) mel_weights = jnp.maximum(zero, jnp.minimum(lower_slopes, upper_slopes)) return jnp.pad(mel_weights, [[1, 0], [0, 0]]) def unsorted_segment_mean( data: JaxArray, segment_ids: JaxArray, num_segments: int, ) -> JaxArray: ivy.utils.assertions.check_unsorted_segment_valid_params( data, segment_ids, num_segments ) segment_sum = jax.ops.segment_sum(data, segment_ids, num_segments) segment_count = jax.ops.segment_sum(jnp.ones_like(data), segment_ids, num_segments) segment_mean = segment_sum / segment_count return segment_mean def polyval( coeffs: JaxArray, x: JaxArray, ) -> JaxArray: with ivy.PreciseMode(True): promoted_type = ivy.promote_types(ivy.dtype(coeffs[0]), ivy.dtype(x[0])) coeffs, x = ivy.promote_types_of_inputs(coeffs, x) y = jnp.zeros_like(x) for pv in coeffs: y = y * x + pv y = jnp.array(y, dtype=jnp.dtype(promoted_type)) return y
ivy/ivy/functional/backends/jax/experimental/creation.py/0
{ "file_path": "ivy/ivy/functional/backends/jax/experimental/creation.py", "repo_id": "ivy", "token_count": 2518 }
15
import jax.numpy as jnp from typing import Optional, Union, Tuple, Sequence from ivy.functional.backends.jax import JaxArray import jax.lax as jlax import ivy from ivy.func_wrapper import with_unsupported_dtypes from . import backend_version from ..statistical import _infer_dtype @with_unsupported_dtypes( {"0.4.24 and below": ("bfloat16",)}, backend_version, ) def histogram( a: jnp.ndarray, /, *, bins: Optional[Union[int, jnp.ndarray]] = None, axis: Optional[int] = None, extend_lower_interval: Optional[bool] = False, extend_upper_interval: Optional[bool] = False, dtype: Optional[jnp.dtype] = None, range: Optional[Tuple[float]] = None, weights: Optional[jnp.ndarray] = None, density: Optional[bool] = False, out: Optional[jnp.ndarray] = None, ) -> Tuple[jnp.ndarray]: min_a = jnp.min(a) max_a = jnp.max(a) if isinstance(bins, jnp.ndarray) and range: raise ivy.exceptions.IvyException( "Must choose between specifying bins and range or bin edges directly" ) if range: bins = jnp.linspace(start=range[0], stop=range[1], num=bins + 1, dtype=a.dtype) range = None elif isinstance(bins, int): range = (min_a, max_a) bins = jnp.linspace(start=range[0], stop=range[1], num=bins + 1, dtype=a.dtype) range = None if bins.size < 2: raise ivy.exceptions.IvyException("bins must have at least 1 bin (size > 1)") bins_out = bins.copy() if extend_lower_interval and min_a < bins[0]: bins = bins.at[0].set(min_a) if extend_upper_interval and max_a > bins[-1]: bins = bins.at[-1].set(max_a) if a.ndim > 0 and axis is not None: inverted_shape_dims = list(jnp.flip(jnp.arange(a.ndim))) if isinstance(axis, int): axis = [axis] shape_axes = 1 for dimension in axis: inverted_shape_dims.remove(dimension) inverted_shape_dims.append(dimension) shape_axes *= a.shape[dimension] a_along_axis_1d = ( a.transpose(inverted_shape_dims).flatten().reshape((-1, shape_axes)) ) if weights is None: ret = [] for a_1d in a_along_axis_1d: ret_1D = jnp.histogram( a_1d, bins=bins, range=range, )[0] ret.append(ret_1D) else: weights_along_axis_1d = ( weights.transpose(inverted_shape_dims) .flatten() .reshape((-1, shape_axes)) ) ret = [] for a_1d, weights_1d in zip(a_along_axis_1d, weights_along_axis_1d): ret_1D = jnp.histogram( a_1d, weights=weights_1d, bins=bins, range=range, )[0] ret.append(ret_1D) out_shape = list(a.shape) for dimension in sorted(axis, reverse=True): del out_shape[dimension] out_shape.insert(0, len(bins) - 1) ret = jnp.array(ret) ret = ret.flatten() index = jnp.zeros(len(out_shape), dtype=int) ret_shaped = jnp.zeros(out_shape) dim = 0 i = 0 if list(index) == list(jnp.array(out_shape) - 1): ret_shaped = ret_shaped.at[tuple(index)].set(ret[i]) while list(index) != list(jnp.array(out_shape) - 1): ret_shaped = ret_shaped.at[tuple(index)].set(ret[i]) dim_full_flag = False while index[dim] == out_shape[dim] - 1: index = index.at[dim].set(0) dim += 1 dim_full_flag = True index = index.at[dim].add(1) i += 1 if dim_full_flag: dim = 0 if list(index) == list(jnp.array(out_shape) - 1): ret_shaped = ret_shaped.at[tuple(index)].set(ret[i]) ret = ret_shaped else: ret = jnp.histogram( a=a, bins=bins, range=range, weights=weights, density=density )[0] if dtype: ret = ret.astype(dtype) bins_out = jnp.array(bins_out).astype(dtype) # TODO: weird error when returning bins: return ret, bins_out return ret @with_unsupported_dtypes( {"0.4.24 and below": ("complex64", "complex128")}, backend_version ) def median( input: JaxArray, /, *, axis: Optional[Union[Tuple[int], int]] = None, keepdims: bool = False, out: Optional[JaxArray] = None, ) -> JaxArray: if isinstance(axis, list): axis = tuple(axis) ret = jnp.median( input, axis=axis, keepdims=keepdims, out=out, ) if input.dtype in [jnp.uint64, jnp.int64, jnp.float64]: return ret.astype(jnp.float64) elif input.dtype in [jnp.float16, jnp.bfloat16]: return ret.astype(input.dtype) else: return ret.astype(jnp.float32) # Jax doesn't support overwrite_input=True and out!=None def nanmean( a: JaxArray, /, *, axis: Optional[Union[int, Tuple[int]]] = None, keepdims: bool = False, dtype: Optional[jnp.dtype] = None, out: Optional[JaxArray] = None, ) -> JaxArray: if isinstance(axis, list): axis = tuple(axis) return jnp.nanmean(a, axis=axis, keepdims=keepdims, dtype=dtype, out=out) def nanmin( x: JaxArray, /, *, axis: Optional[Union[int, Tuple[int]]] = None, keepdims: Optional[bool] = False, initial: Optional[Union[int, float, complex]] = None, where: Optional[JaxArray] = None, out: Optional[JaxArray] = None, ) -> JaxArray: if isinstance(axis, list): axis = tuple(axis) return jnp.nanmin( x, axis=axis, keepdims=keepdims, initial=initial, where=where, out=out ) def nanprod( a: JaxArray, /, *, axis: Optional[Union[int, Sequence[int]]] = None, dtype: Optional[jnp.dtype] = None, keepdims: Optional[bool] = False, out: Optional[JaxArray] = None, initial: Optional[Union[int, float, complex]] = None, where: Optional[JaxArray] = None, ) -> JaxArray: dtype = ivy.as_native_dtype(dtype) if dtype is None: dtype = _infer_dtype(a.dtype) axis = tuple(axis) if isinstance(axis, list) else axis return jnp.nanprod( a, axis=axis, keepdims=keepdims, dtype=dtype, out=out, initial=initial ) def quantile( a: JaxArray, q: Union[float, JaxArray], /, *, axis: Optional[Union[int, Sequence[int]]] = None, interpolation: str = "linear", keepdims: bool = False, out: Optional[JaxArray] = None, ) -> JaxArray: axis = tuple(axis) if isinstance(axis, list) else axis interpolation = "nearest" if interpolation == "nearest_jax" else interpolation return jnp.quantile( a, q, axis=axis, method=interpolation, keepdims=keepdims, out=out ) def corrcoef( x: JaxArray, /, *, y: Optional[JaxArray] = None, rowvar: bool = True, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.corrcoef(x, y=y, rowvar=rowvar) def nanmedian( input: JaxArray, /, *, axis: Optional[Union[Tuple[int], int]] = None, keepdims: bool = False, overwrite_input: bool = False, out: Optional[JaxArray] = None, ) -> JaxArray: if isinstance(axis, list): axis = tuple(axis) if overwrite_input: copied_input = input.copy() overwrite_input = False out = None return jnp.nanmedian( copied_input, axis=axis, keepdims=keepdims, overwrite_input=overwrite_input, out=out, ) return jnp.nanmedian( input, axis=axis, keepdims=keepdims, overwrite_input=False, out=None ) def bincount( x: JaxArray, /, *, weights: Optional[JaxArray] = None, minlength: int = 0, out: Optional[JaxArray] = None, ) -> JaxArray: if weights is not None: ret = jnp.bincount(x, weights=weights, minlength=minlength) ret = ret.astype(weights.dtype) else: ret = jnp.bincount(x, minlength=minlength).astype(x.dtype) return ret def cov( x1: JaxArray, x2: JaxArray = None, /, *, rowVar: bool = True, bias: bool = False, ddof: Optional[int] = None, fweights: Optional[JaxArray] = None, aweights: Optional[JaxArray] = None, dtype: Optional[jnp.dtype] = None, ) -> JaxArray: if not dtype: x1 = jnp.asarray(x1, dtype=jnp.float64) if jnp.ndim(x1) > 2: raise ValueError("x1 has more than 2 dimensions") if x2 is not None: if jnp.ndim(x2) > 2: raise ValueError("x2 has more than 2 dimensions") if fweights is not None: fweights = jnp.asarray(fweights, dtype=jnp.int64) return jnp.cov( m=x1, y=x2, rowvar=rowVar, bias=bias, ddof=ddof, fweights=fweights, aweights=aweights, ) @with_unsupported_dtypes({"0.4.14 and below": ("bool",)}, backend_version) def cummax( x: JaxArray, /, *, axis: int = 0, exclusive: bool = False, reverse: bool = False, dtype: Optional[jnp.dtype] = None, out: Optional[JaxArray] = None, ) -> Tuple[JaxArray, JaxArray]: if x.dtype in (jnp.complex128, jnp.complex64): x = x.real if exclusive or (reverse and exclusive): if exclusive and reverse: indices = __find_cummax_indices(jnp.flip(x, axis=axis), axis=axis) x = jlax.cummax(jnp.flip(x, axis=axis), axis=axis) x, indices = jnp.swapaxes(x, axis, -1), jnp.swapaxes(indices, axis, -1) x, indices = jnp.concatenate( (jnp.zeros_like(x[..., -1:]), x[..., :-1]), -1 ), jnp.concatenate( (jnp.zeros_like(indices[..., -1:]), indices[..., :-1]), -1 ) x, indices = jnp.swapaxes(x, axis, -1), jnp.swapaxes(indices, axis, -1) res, indices = jnp.flip(x, axis=axis), jnp.flip(indices, axis=axis) elif exclusive: x = jnp.swapaxes(x, axis, -1) x = jnp.concatenate((jnp.zeros_like(x[..., -1:]), x[..., :-1]), -1) x = jnp.swapaxes(x, axis, -1) indices = __find_cummax_indices(x, axis=axis) res = jlax.cummax(x, axis=axis) return res, indices if reverse: y = jnp.flip(x, axis=axis) indices = __find_cummax_indices(y, axis=axis) indices = jnp.flip(indices, axis=axis) else: indices = __find_cummax_indices(x, axis=axis) return jlax.cummax(x, axis, reverse=reverse), indices def __find_cummax_indices( x: JaxArray, axis: int = 0, ) -> JaxArray: n, indice, indices = 0, [], [] if isinstance(x[0], JaxArray) and len(x[0].shape) >= 1: if axis >= 1: for ret1 in x: indice = __find_cummax_indices(ret1, axis=axis - 1) indices.append(indice) else: z_list = __get_index(x.tolist()) indices, n1 = x.copy(), {} indices = jnp.zeros(jnp.asarray(indices.shape), dtype=x.dtype) z_list = sorted(z_list, key=lambda i: i[1]) for y, y_index in z_list: multi_index = y_index if tuple(multi_index[1:]) not in n1: n1[tuple(multi_index[1:])] = multi_index[0] indices = indices.at[y_index].set(multi_index[0]) elif ( y >= x[tuple([n1[tuple(multi_index[1:])]] + list(multi_index[1:]))] ): n1[tuple(multi_index[1:])] = multi_index[0] indices = indices.at[y_index].set(multi_index[0]) else: indices = indices.at[y_index].set(n1[tuple(multi_index[1:])]) else: n, indices = 0, [] for idx, y in enumerate(x): if idx == 0 or x[n] <= y: n = idx indices.append(n) return jnp.asarray(indices, dtype="int64") def __get_index(lst, indices=None, prefix=None): if indices is None: indices = [] if prefix is None: prefix = [] if isinstance(lst, list): for i, sub_lst in enumerate(lst): sub_indices = prefix + [i] __get_index(sub_lst, indices, sub_indices) else: indices.append((lst, tuple(prefix))) return indices @with_unsupported_dtypes( { "0.4.24 and below": ( "bfloat16", "bool", ) }, backend_version, ) def cummin( x: JaxArray, /, *, axis: int = 0, exclusive: bool = False, reverse: bool = False, dtype: Optional[jnp.dtype] = None, out: Optional[JaxArray] = None, ) -> JaxArray: if axis < 0: axis = axis + len(x.shape) dtype = ivy.as_native_dtype(dtype) if dtype is None: dtype = _infer_dtype(x.dtype) return jlax.cummin(x, axis, reverse=reverse).astype(dtype) def igamma( a: JaxArray, /, *, x: JaxArray, out: Optional[JaxArray] = None, ) -> JaxArray: return jlax.igamma(a=a, x=x)
ivy/ivy/functional/backends/jax/experimental/statistical.py/0
{ "file_path": "ivy/ivy/functional/backends/jax/experimental/statistical.py", "repo_id": "ivy", "token_count": 6665 }
16
"""MXNet activation functions. Collection of MXNet activation functions, wrapped to fit Ivy syntax and signature. """ import mxnet as mx import numpy as np from ivy.utils.exceptions import IvyNotImplementedException from typing import Optional, Union def gelu( x: None, /, *, approximate: bool = False, complex_mode="jax", out: Optional[None] = None, ) -> None: if approximate: return 0.5 * x * (1 + mx.nd.tanh(((2 / np.pi) ** 0.5) * (x + 0.044715 * x**3))) return mx.nd.LeakyReLU(x, act_type="gelu") def leaky_relu( x: None, /, *, alpha: float = 0.2, complex_mode="jax", out: Optional[None] = None ) -> None: return mx.nd.LeakyReLU(x, slope=alpha) def relu(x: None, /, *, complex_mode="jax", out: Optional[None] = None) -> None: return mx.nd.relu(x) def sigmoid(x: None, /, *, out: Optional[None] = None) -> None: return mx.nd.sigmoid(x) def softmax( x: None, /, *, axis: Optional[int] = None, out: Optional[None] = None ) -> None: return mx.nd.softmax(x, axis=axis) def softplus( x: Union[(int, float, mx.nd.NDArray)], /, *, beta: Optional[Union[(int, float)]] = None, threshold: Optional[Union[(int, float)]] = None, complex_mode="jax", out: Optional[None] = None, ) -> None: if beta is not None and beta != 1: x_beta = x * beta res = ( mx.nd.add( mx.nd.log1p(mx.nd.exp(-mx.nd.abs(x_beta))), mx.nd.maximum(x_beta, 0), ) ) / beta else: x_beta = x res = mx.nd.add( mx.nd.log1p(mx.nd.exp(-mx.nd.abs(x_beta))), mx.nd.maximum(x_beta, 0) ) if threshold is not None: return mx.nd.where(x_beta > threshold, x, res).astype(x.dtype) return res.astype(x.dtype) # Softsign def softsign(x: None, /, *, out: Optional[None] = None) -> None: return mx.nd.softsign(x) def log_softmax(x: None, /, *, axis: Optional[int] = -1, out: Optional[None] = None): raise IvyNotImplementedException() def mish(x: None, /, *, out: Optional[None] = None) -> None: raise IvyNotImplementedException()
ivy/ivy/functional/backends/mxnet/activations.py/0
{ "file_path": "ivy/ivy/functional/backends/mxnet/activations.py", "repo_id": "ivy", "token_count": 980 }
17
from typing import Union, Optional, Sequence, Tuple, List from numbers import Number import mxnet as mx from ivy.utils.exceptions import IvyNotImplementedException def moveaxis( a: Union[(None, mx.ndarray.NDArray)], source: Union[(int, Sequence[int])], destination: Union[(int, Sequence[int])], /, *, copy: Optional[bool] = None, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def heaviside( x1: Union[(None, mx.ndarray.NDArray)], x2: Union[(None, mx.ndarray.NDArray)], /, *, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def flipud( m: Union[(None, mx.ndarray.NDArray)], /, *, copy: Optional[bool] = None, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def vstack( arrays: Union[(Sequence[None], Sequence[mx.ndarray.NDArray])], /, *, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def hstack( arrays: Union[(Sequence[None], Sequence[mx.ndarray.NDArray])], /, *, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def rot90( m: Union[(None, mx.ndarray.NDArray)], /, *, copy: Optional[bool] = None, k: int = 1, axes: Tuple[(int, int)] = (0, 1), out: Union[(None, mx.ndarray.NDArray)] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def top_k( x: None, k: int, /, *, axis: int = -1, largest: bool = True, sorted: bool = True, out: Optional[Tuple[(None, None)]] = None, ) -> Tuple[(None, None)]: raise IvyNotImplementedException() def fliplr( m: Union[(None, mx.ndarray.NDArray)], /, *, copy: Optional[bool] = None, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def i0( x: Union[(None, mx.ndarray.NDArray)], /, *, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def vsplit( ary: Union[(None, mx.ndarray.NDArray)], indices_or_sections: Union[(int, Tuple[(int, ...)])], /, *, copy: Optional[bool] = None, ) -> List[Union[(None, mx.ndarray.NDArray)]]: raise IvyNotImplementedException() def dsplit( ary: Union[(None, mx.ndarray.NDArray)], indices_or_sections: Union[(int, Tuple[(int, ...)])], /, *, copy: Optional[bool] = None, ) -> List[Union[(None, mx.ndarray.NDArray)]]: raise IvyNotImplementedException() def atleast_1d( *arys: Union[(None, mx.ndarray.NDArray, bool, Number)], copy: Optional[bool] = None ) -> List[Union[(None, mx.ndarray.NDArray)]]: raise IvyNotImplementedException() def dstack( arrays: Union[(Sequence[None], Sequence[mx.ndarray.NDArray])], /, *, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def atleast_2d( *arys: Union[(None, mx.ndarray.NDArray)], copy: Optional[bool] = None ) -> List[Union[(None, mx.ndarray.NDArray)]]: raise IvyNotImplementedException() def atleast_3d( *arys: Union[(None, mx.ndarray.NDArray, bool, Number)], copy: Optional[bool] = None ) -> List[Union[(None, mx.ndarray.NDArray)]]: raise IvyNotImplementedException() def take( x: Union[int, List, Union[(None, mx.ndarray.NDArray)]], indices: Union[int, List, Union[(None, mx.ndarray.NDArray)]], /, *, axis: Optional[int] = None, mode: str = "clip", fill_value: Optional[Number] = None, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def take_along_axis( arr: Union[(None, mx.ndarray.NDArray)], indices: Union[(None, mx.ndarray.NDArray)], axis: int, /, *, mode: str = "fill", out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def hsplit( ary: Union[(None, mx.ndarray.NDArray)], indices_or_sections: Union[(int, Tuple[(int, ...)])], /, *, copy: Optional[bool] = None, ) -> List[Union[(None, mx.ndarray.NDArray)]]: raise IvyNotImplementedException() def broadcast_shapes(*shapes: Union[(List[int], List[Tuple])]) -> Tuple[(int, ...)]: raise IvyNotImplementedException() def expand( x: Union[(None, mx.ndarray.NDArray)], shape: Union[(List[int], List[Tuple])], /, *, copy: Optional[bool] = None, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def concat_from_sequence( input_sequence: Union[(Tuple[None], List[None])], /, *, new_axis: int = 0, axis: int = 0, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException()
ivy/ivy/functional/backends/mxnet/experimental/manipulation.py/0
{ "file_path": "ivy/ivy/functional/backends/mxnet/experimental/manipulation.py", "repo_id": "ivy", "token_count": 2312 }
18
import mxnet as mx from numbers import Number from typing import Optional, Union, Tuple import numpy as np import ivy from ivy.utils.exceptions import IvyNotImplementedException def argmax( x: Union[(None, mx.ndarray.NDArray)], /, *, axis: Optional[int] = None, keepdims: bool = False, dtype: Optional[Union[(ivy.Dtype, ivy.NativeDtype)]] = None, select_last_index: bool = False, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def argmin( x: Union[(None, mx.ndarray.NDArray)], /, *, axis: Optional[int] = None, keepdims: bool = False, dtype: Optional[Union[np.dtype, str]] = None, select_last_index: bool = False, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def nonzero( x: Union[(None, mx.ndarray.NDArray)], /, *, as_tuple: bool = True, size: Optional[int] = None, fill_value: Number = 0, ) -> Union[(None, mx.ndarray.NDArray, Tuple[Union[(None, mx.ndarray.NDArray)]])]: raise IvyNotImplementedException() def where( condition: Union[(None, mx.ndarray.NDArray)], x1: Union[(None, mx.ndarray.NDArray)], x2: Union[(None, mx.ndarray.NDArray)], /, *, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException() def argwhere( x: Union[(None, mx.ndarray.NDArray)], /, *, out: Optional[Union[(None, mx.ndarray.NDArray)]] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException()
ivy/ivy/functional/backends/mxnet/searching.py/0
{ "file_path": "ivy/ivy/functional/backends/mxnet/searching.py", "repo_id": "ivy", "token_count": 727 }
19
from typing import Optional, Union, Tuple, Sequence import numpy as np import math import ivy # noqa from ivy.func_wrapper import with_unsupported_dtypes from . import backend_version from ..statistical import _infer_dtype from copy import deepcopy @with_unsupported_dtypes( {"1.26.3 and below": ("bfloat16",)}, backend_version, ) def histogram( a: np.ndarray, /, *, bins: Optional[Union[int, np.ndarray]] = None, axis: Optional[int] = None, extend_lower_interval: Optional[bool] = False, extend_upper_interval: Optional[bool] = False, dtype: Optional[np.dtype] = None, range: Optional[Tuple[float]] = None, weights: Optional[np.ndarray] = None, density: Optional[bool] = False, out: Optional[np.ndarray] = None, ) -> Tuple[np.ndarray]: min_a = np.min(a) max_a = np.max(a) if isinstance(bins, np.ndarray) and range: raise ivy.exceptions.IvyException( "Must choose between specifying bins and range or bin edges directly" ) if range: bins = np.linspace(start=range[0], stop=range[1], num=bins + 1, dtype=a.dtype) range = None elif isinstance(bins, int): range = (min_a, max_a) bins = np.linspace(start=range[0], stop=range[1], num=bins + 1, dtype=a.dtype) range = None if bins.size < 2: raise ivy.exceptions.IvyException("bins must have at least 1 bin (size > 1)") bins_out = bins.copy() if extend_lower_interval and min_a < bins[0]: bins[0] = min_a if extend_upper_interval and max_a > bins[-1]: bins[-1] = max_a if a.ndim > 0 and axis is not None: inverted_shape_dims = list(np.flip(np.arange(a.ndim))) if isinstance(axis, int): axis = [axis] shape_axes = 1 for dimension in axis: inverted_shape_dims.remove(dimension) inverted_shape_dims.append(dimension) shape_axes *= a.shape[dimension] a_along_axis_1d = ( a.transpose(inverted_shape_dims).flatten().reshape((-1, shape_axes)) ) if weights is None: ret = [] for a_1d in a_along_axis_1d: ret_1d = np.histogram( a_1d, bins=bins, range=range, # TODO: waiting tensorflow version support to density # density=density, )[0] ret.append(ret_1d) else: weights_along_axis_1d = ( weights.transpose(inverted_shape_dims) .flatten() .reshape((-1, shape_axes)) ) ret = [] for a_1d, weights_1d in zip(a_along_axis_1d, weights_along_axis_1d): ret_1d = np.histogram( a_1d, weights=weights_1d, bins=bins, range=range, # TODO: waiting tensorflow version support to density # density=density, )[0] ret.append(ret_1d) out_shape = list(a.shape) for dimension in sorted(axis, reverse=True): del out_shape[dimension] out_shape.insert(0, len(bins) - 1) ret = np.array(ret) ret = ret.flatten() index = np.zeros(len(out_shape), dtype=int) ret_shaped = np.zeros(out_shape) dim = 0 i = 0 if list(index) == list(np.array(out_shape) - 1): ret_shaped[tuple(index)] = ret[i] while list(index) != list(np.array(out_shape) - 1): ret_shaped[tuple(index)] = ret[i] dim_full_flag = False while index[dim] == out_shape[dim] - 1: index[dim] = 0 dim += 1 dim_full_flag = True index[dim] += 1 i += 1 if dim_full_flag: dim = 0 if list(index) == list(np.array(out_shape) - 1): ret_shaped[tuple(index)] = ret[i] ret = ret_shaped else: ret = np.histogram( a=a, bins=bins, range=range, weights=weights, density=density )[0] if dtype: ret = ret.astype(dtype) bins_out = np.array(bins_out).astype(dtype) # TODO: weird error when returning bins: return ret, bins_out return ret def median( input: np.ndarray, /, *, axis: Optional[Union[Tuple[int], int]] = None, keepdims: bool = False, out: Optional[np.ndarray] = None, ) -> np.ndarray: if out is not None: out = np.reshape(out, input.shape) ret = np.median( input, axis=axis, keepdims=keepdims, out=out, ) if input.dtype in [np.uint64, np.int64, np.float64]: return ret.astype(np.float64) elif input.dtype in [np.float16]: return ret.astype(input.dtype) else: return ret.astype(np.float32) median.support_native_out = True def nanmean( a: np.ndarray, /, *, axis: Optional[Union[int, Tuple[int]]] = None, keepdims: bool = False, dtype: Optional[np.dtype] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: if isinstance(axis, list): axis = tuple(axis) return np.nanmean(a, axis=axis, keepdims=keepdims, dtype=dtype, out=out) nanmean.support_native_out = True def nanmin( a: np.ndarray, /, *, axis: Optional[Union[int, Tuple[int]]] = None, keepdims: Optional[bool] = False, initial: Optional[Union[int, float, complex]] = None, where: Optional[np.ndarray] = True, out: Optional[np.ndarray] = None, ) -> np.ndarray: axis = tuple(axis) if isinstance(axis, list) else axis if where is None: where = True return np.nanmin( a=a, axis=axis, keepdims=keepdims, out=out, initial=initial, where=where, ) nanmin.support_native_out = True def nanprod( a: np.ndarray, /, *, axis: Optional[Union[int, Sequence[int]]] = None, dtype: Optional[np.dtype] = None, keepdims: Optional[bool] = False, out: Optional[np.ndarray] = None, initial: Optional[Union[int, float, complex]] = None, where: Optional[np.ndarray] = None, ) -> np.ndarray: dtype = ivy.as_native_dtype(dtype) if dtype is None: dtype = _infer_dtype(a.dtype) axis = tuple(axis) if isinstance(axis, list) else axis return np.asarray( np.nanprod( a=a, axis=axis, dtype=dtype, keepdims=keepdims, out=out, initial=initial ) ) nanprod.support_native_out = True def _validate_quantile(q): if isinstance(q, float): q = np.asarray(q) if q.ndim == 1 and q.size < 10: for i in range(q.size): if not (0.0 <= q[i] <= 1.0): return False else: if not (np.all(q >= 0) and np.all(q <= 1)): return False return True def _to_positive_axis(axis, ndim): if not isinstance(axis, (list, tuple)): axis = [axis] if len(axis) == 0: raise ValueError("Axis can't be empty!") if len(set(axis)) != len(axis): raise ValueError("Duplicated axis!") for i in range(len(axis)): if not (isinstance(axis[i], int) and (ndim > axis[i] >= -ndim)): raise ValueError("Axis must be int in range [-rank(x), rank(x))") if axis[i] < 0: axis[i] += ndim return axis def _handle_axis(a, q, fn, keepdims=False, axis=None): nd = a.ndim axis_arg = deepcopy(axis) if axis is not None: axis = _to_positive_axis(axis, nd) if len(axis) == 1: axis_arg = axis[0] else: keep = set(range(nd)) - set(axis) nkeep = len(keep) for i, s in enumerate(sorted(keep)): a = np.moveaxis(a, s, i) a = a.reshape(a.shape[:nkeep] + (-1,)) axis_arg = -1 ret = fn(a, q, axis=axis_arg) if keepdims: if axis is None: index_ret = (None,) * nd else: index_ret = tuple(None if i in axis else slice(None) for i in range(nd)) ret = ret[(Ellipsis,) + index_ret] return ret def _quantile(a, q, axis=None): if isinstance(q, float): q = np.asarray(q) ret_dtype = a.dtype if q.ndim > 1: raise ValueError("q argument must be a scalar or 1-dimensional!") if axis is None: axis = 0 a = a.flatten() elif axis != 0: a = np.moveaxis(a, axis, 0) axis = 0 n = a.shape[axis] indices = q * (n - 1) a.sort(axis) indices_below = np.floor(indices).astype(np.int32) indices_upper = np.ceil(indices).astype(np.int32) weights = indices - indices_below.astype("float64") indices_below = np.clip(indices_below, 0, n - 1) indices_upper = np.clip(indices_upper, 0, n - 1) tensor_upper = np.take(a, indices_upper, axis=axis) # , mode="clip") tensor_below = np.take(a, indices_below, axis=axis) # , mode="clip") pred = weights <= 0.5 out = np.where(pred, tensor_below, tensor_upper) return out.astype(ret_dtype) def _compute_quantile_wrapper( x, q, axis=None, keepdims=False, interpolation="linear", out=None ): if not _validate_quantile(q): raise ValueError("Quantiles must be in the range [0, 1]") if interpolation in [ "linear", "lower", "higher", "midpoint", "nearest", "nearest_jax", ]: if interpolation == "nearest_jax": return _handle_axis(x, q, _quantile, keepdims=keepdims, axis=axis) else: axis = tuple(axis) if isinstance(axis, list) else axis return np.quantile( x, q, axis=axis, method=interpolation, keepdims=keepdims, out=out ).astype(x.dtype) else: raise ValueError( "Interpolation must be 'linear', 'lower', 'higher', 'midpoint' or 'nearest'" ) def quantile( a: np.ndarray, q: Union[float, np.ndarray], /, *, axis: Optional[Union[int, Sequence[int]]] = None, keepdims: bool = False, interpolation: str = "linear", out: Optional[np.ndarray] = None, ) -> np.ndarray: # quantile method in numpy backend, always return an array with dtype=float64. # in other backends, the output is the same dtype as the input. # added the nearest_jax mode to enable jax-like calculations for method="nearest" return _compute_quantile_wrapper( a, q, axis=axis, keepdims=keepdims, interpolation=interpolation, out=out, ) def corrcoef( x: np.ndarray, /, *, y: Optional[np.ndarray] = None, rowvar: bool = True, dtype: np.dtype = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: dtype = dtype if dtype is not None else np.float64 return np.corrcoef(x, y=y, rowvar=rowvar, dtype=dtype) @with_unsupported_dtypes( {"1.25.0 and below": ("bfloat16",)}, backend_version, ) def nanmedian( input: np.ndarray, /, *, axis: Optional[Union[Tuple[int], int]] = None, keepdims: bool = False, overwrite_input: bool = False, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.nanmedian( input, axis=axis, keepdims=keepdims, overwrite_input=overwrite_input, out=out ) nanmedian.support_native_out = True def bincount( x: np.ndarray, /, *, weights: Optional[np.ndarray] = None, minlength: int = 0, out: Optional[np.ndarray] = None, ) -> np.ndarray: if weights is not None: ret = np.bincount(x, weights=weights, minlength=minlength) ret = ret.astype(weights.dtype) else: ret = np.bincount(x, minlength=minlength) ret = ret.astype(x.dtype) return ret bincount.support_native_out = False def cov( x1: np.ndarray, x2: np.ndarray = None, /, *, rowVar: bool = True, bias: bool = False, ddof: Optional[int] = None, fweights: Optional[np.ndarray] = None, aweights: Optional[np.ndarray] = None, dtype: Optional[np.dtype] = None, ) -> np.ndarray: return np.cov( m=x1, y=x2, rowvar=rowVar, bias=bias, ddof=ddof, fweights=fweights, aweights=aweights, dtype=dtype, ) cov.support_native_out = False def cummax( x: np.ndarray, /, *, axis: int = 0, exclusive: bool = False, reverse: bool = False, dtype: Optional[np.dtype] = None, out: Optional[np.ndarray] = None, ) -> Tuple[np.ndarray, np.ndarray]: if exclusive or reverse: if exclusive and reverse: indices = __find_cummax_indices(np.flip(x, axis=axis), axis=axis) x = np.maximum.accumulate(np.flip(x, axis=axis), axis=axis, dtype=x.dtype) x = np.swapaxes(x, axis, -1) indices = np.swapaxes(indices, axis, -1) x, indices = np.concatenate( (np.zeros_like(x[..., -1:]), x[..., :-1]), -1 ), np.concatenate((np.zeros_like(indices[..., -1:]), indices[..., :-1]), -1) x, indices = np.swapaxes(x, axis, -1), np.swapaxes(indices, axis, -1) res, indices = np.flip(x, axis=axis), np.flip(indices, axis=axis) elif exclusive: x = np.swapaxes(x, axis, -1) x = np.concatenate((np.zeros_like(x[..., -1:]), x[..., :-1]), -1) x = np.swapaxes(x, axis, -1) indices = __find_cummax_indices(x, axis=axis) res = np.maximum.accumulate(x, axis=axis, dtype=x.dtype) elif reverse: x = np.flip(x, axis=axis) indices = __find_cummax_indices(x, axis=axis) x = np.maximum.accumulate(x, axis=axis) res, indices = np.flip(x, axis=axis), np.flip(indices, axis=axis) return res, indices indices = __find_cummax_indices(x, axis=axis) return np.maximum.accumulate(x, axis=axis, dtype=x.dtype), indices def __find_cummax_indices( x: np.ndarray, axis: int = 0, ) -> np.ndarray: indices = [] if x[0] is np.ndarray: if axis >= 1: for ret1 in x: indice = __find_cummax_indices(ret1, axis=axis - 1) indices.append(indice) else: indice_list = __get_index(x.tolist()) indices, n1 = x.copy(), {} indices.fill(0) indice_list = sorted(indice_list, key=lambda i: i[1]) for y, y_index in indice_list: multi_index = y_index if tuple(multi_index[1:]) not in n1: n1[tuple(multi_index[1:])] = multi_index[0] indices[y_index] = multi_index[0] elif ( y >= x[tuple([n1[tuple(multi_index[1:])]] + list(multi_index[1:]))] ): n1[tuple(multi_index[1:])] = multi_index[0] indices[y_index] = multi_index[0] else: indices[y_index] = n1[tuple(multi_index[1:])] else: n = 0 for index1, ret1 in enumerate(x): if x[n] <= ret1 or index1 == 0: n = index1 indices.append(n) return np.array(indices, dtype=np.int64) def __get_index(lst, indices=None, prefix=None): if indices is None: indices = [] if prefix is None: prefix = [] if isinstance(lst, list): for i, sub_lst in enumerate(lst): sub_indices = prefix + [i] __get_index(sub_lst, indices, sub_indices) else: indices.append((lst, tuple(prefix))) return indices @with_unsupported_dtypes({"1.26.3 and below": "bfloat16"}, backend_version) def cummin( x: np.ndarray, /, *, axis: int = 0, exclusive: bool = False, reverse: bool = False, dtype: Optional[np.dtype] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: if dtype is None: dtype = _infer_dtype(x.dtype) if not (reverse): return np.minimum.accumulate(x, axis, dtype=dtype, out=out) elif reverse: x = np.minimum.accumulate(np.flip(x, axis=axis), axis=axis, dtype=dtype) return np.flip(x, axis=axis) def igamma( a: np.ndarray, /, *, x: np.ndarray, out: Optional[np.ndarray] = None, ) -> np.ndarray: def igamma_cal(a, x): t = np.linspace(0, x, 10000, dtype=np.float64) y = np.exp(-t) * (t ** (a - 1)) integral = np.trapz(y, t) return integral / math.gamma(a) igamma_vec = np.vectorize(igamma_cal) return igamma_vec(a, x).astype(a.dtype)
ivy/ivy/functional/backends/numpy/experimental/statistical.py/0
{ "file_path": "ivy/ivy/functional/backends/numpy/experimental/statistical.py", "repo_id": "ivy", "token_count": 8322 }
20
# global import sys import paddle as paddle # local import ivy from ivy.func_wrapper import _dtype_from_version backend_version = {"version": paddle.version.full_version} # noinspection PyUnresolvedReferences if not ivy.is_local(): _module_in_memory = sys.modules[__name__] else: _module_in_memory = sys.modules[ivy.import_module_path].import_cache[__name__] use = ivy.utils.backend.ContextManager(_module_in_memory) # wrap dunder methods of native tensors to return NotImplemented to prioritize Ivy array methods. def dunder_wrapper(func): def rep_method(*args, **kwargs): for arg in args: if ivy.is_ivy_array(arg): return NotImplemented return func(*args, **kwargs) return rep_method # check for previously imported paddle modules modules_to_patch = [] tensors_to_patch = [] tmp_globals = dict(globals()) for name, value in tmp_globals.items(): if value == "paddle.Tensor": tensors_to_patch.append(name) try: if value.__name__ == "paddle": modules_to_patch.append(name) except AttributeError: pass methods_to_patch = [ "__add__", "__sub__", "__mul__", "__div__", "__truediv__", "__floordiv__", "__mod__", "__lt__", "__le__", "__gt__", "__ge__", "__ne__", "__eq__", "__and__", "__or__", "__xor__", "__pow__", "__matmul__", ] for module in modules_to_patch: for method in methods_to_patch: exec( module + ".Tensor." + method + " = dunder_wrapper(" + module + ".Tensor." + method + ")" ) for tensor in tensors_to_patch: for method in methods_to_patch: exec(tensor + "." + method + " = dunder_wrapper(" + tensor + "." + method + ")") NativeArray = paddle.Tensor NativeVariable = paddle.Tensor # paddle.fluid.framework.Variable NativeDevice = paddle.device.core.Place NativeDtype = paddle.dtype NativeShape = list NativeSparseArray = paddle.Tensor # devices valid_devices = ( "cpu", "gpu", ) invalid_devices = "tpu" # native data types native_int8 = paddle.int8 native_int16 = paddle.int16 native_int32 = paddle.int32 native_int64 = paddle.int64 native_uint8 = paddle.uint8 native_bfloat16 = paddle.bfloat16 native_float16 = paddle.float16 native_float32 = paddle.float32 native_float64 = paddle.float64 native_complex64 = paddle.complex64 native_complex128 = paddle.complex128 native_double = native_float64 native_bool = paddle.bool # valid data types # ToDo: Add complex dtypes to valid_dtypes and fix all resulting failures. # update these to add new dtypes valid_dtypes = { "2.4.2 and below": ( ivy.int8, ivy.int16, ivy.int32, ivy.int64, ivy.uint8, ivy.float16, ivy.float32, ivy.float64, ivy.complex64, ivy.complex128, ivy.bool, ), "2.5.0 and above": ( ivy.int8, ivy.int16, ivy.int32, ivy.int64, ivy.uint8, ivy.bfloat16, ivy.float16, ivy.float32, ivy.float64, ivy.complex64, ivy.complex128, ivy.bool, ), } valid_numeric_dtypes = { "2.4.2 and below": ( ivy.int8, ivy.int16, ivy.int32, ivy.int64, ivy.uint8, ivy.float16, ivy.float32, ivy.float64, ivy.complex64, ivy.complex128, ivy.bool, ), "2.5.0 and above": ( ivy.int8, ivy.int16, ivy.int32, ivy.int64, ivy.uint8, ivy.bfloat16, ivy.float16, ivy.float32, ivy.float64, ivy.complex64, ivy.complex128, ivy.bool, ), } valid_int_dtypes = { "2.6.0 and below": ( ivy.int8, ivy.int16, ivy.int32, ivy.int64, ivy.uint8, ), } valid_float_dtypes = { "2.4.2 and below": (ivy.float16, ivy.float32, ivy.float64), "2.5.0 and above": (ivy.bfloat16, ivy.float16, ivy.float32, ivy.float64), } valid_uint_dtypes = {"2.6.0 and below": (ivy.uint8,)} valid_complex_dtypes = {"2.6.0 and below": (ivy.complex64, ivy.complex128)} # leave these untouched valid_dtypes = _dtype_from_version(valid_dtypes, backend_version) valid_numeric_dtypes = _dtype_from_version(valid_numeric_dtypes, backend_version) valid_int_dtypes = _dtype_from_version(valid_int_dtypes, backend_version) valid_float_dtypes = _dtype_from_version(valid_float_dtypes, backend_version) valid_uint_dtypes = _dtype_from_version(valid_uint_dtypes, backend_version) valid_complex_dtypes = _dtype_from_version(valid_complex_dtypes, backend_version) # update these to add new dtypes invalid_dtypes = { "2.4.2 and below": ( ivy.uint16, ivy.uint32, ivy.uint64, ivy.bfloat16, ), "2.5.0 and above": ( ivy.uint16, ivy.uint32, ivy.uint64, ), } invalid_numeric_dtypes = { "2.4.2 and below": ( ivy.uint16, ivy.uint32, ivy.uint64, ivy.bfloat16, ), "2.5.0 and above": ( ivy.uint16, ivy.uint32, ivy.uint64, ), } invalid_int_dtypes = {"2.6.0 and below": (ivy.uint16, ivy.uint32, ivy.uint64)} invalid_float_dtypes = {"2.4.2 and below": (ivy.bfloat16,), "2.5.0 and above": ()} invalid_uint_dtypes = {"2.6.0 and below": (ivy.uint16, ivy.uint32, ivy.uint64)} invalid_complex_dtypes = {"2.6.0 and below": ()} # leave these untouched invalid_dtypes = _dtype_from_version(invalid_dtypes, backend_version) invalid_numeric_dtypes = _dtype_from_version(invalid_numeric_dtypes, backend_version) invalid_float_dtypes = _dtype_from_version(invalid_float_dtypes, backend_version) invalid_uint_dtypes = _dtype_from_version(invalid_uint_dtypes, backend_version) invalid_complex_dtypes = _dtype_from_version(invalid_complex_dtypes, backend_version) native_inplace_support = False supports_gradients = True def closest_valid_dtype(type=None, /, as_native=False): if type is None: return ivy.default_dtype() if isinstance(type, str) and type in invalid_dtypes: type = { "uint16": native_uint8, "uint32": native_uint8, "uint64": native_uint8, "bfloat16": native_float16, }[type] return ivy.as_ivy_dtype(type) if not as_native else ivy.as_native_dtype(type) backend = "paddle" # local sub-modules from . import activations from .activations import * from . import creation from .creation import * from . import data_type from .data_type import * from . import device from .device import * from . import elementwise from .elementwise import * from . import general from .general import * from . import gradients from .gradients import * from . import layers from .layers import * from . import linear_algebra as linalg from .linear_algebra import * from . import manipulation from .manipulation import * from . import random from .random import * from . import searching from .searching import * from . import set from .set import * from . import sorting from .sorting import * from . import statistical from .statistical import * from . import utility from .utility import * from . import experimental from .experimental import * from . import control_flow_ops from .control_flow_ops import * from . import module from .module import * # sub-backends from . import sub_backends from .sub_backends import * NativeModule = paddle.nn.Layer
ivy/ivy/functional/backends/paddle/__init__.py/0
{ "file_path": "ivy/ivy/functional/backends/paddle/__init__.py", "repo_id": "ivy", "token_count": 3374 }
21
# global from typing import Callable import paddle # local import ivy from ivy.func_wrapper import inputs_to_native_arrays from ivy.functional.ivy.gradients import ( _flatten_containers, _rebuild_flattened_containers, ) from ivy.utils.exceptions import IvyNotImplementedException def bind_custom_gradient_function(func, custom_grad_fn): class _CustomModule(paddle.autograd.PyLayer): @staticmethod def forward(ctx, x): ret = ivy.to_native(func(x), nested=True, include_derived=True) ctx.save_for_backward(x, ret) return ret @staticmethod def backward(ctx, upstream): grads = custom_grad_fn( *ivy.to_ivy( (ctx.saved_tensor(), upstream), nested=True, include_derived=True ) ) return ivy.to_native(grads, nested=True, include_derived=True) custom_module = _CustomModule.apply return inputs_to_native_arrays(custom_module) def vjp(func: Callable, *primals): flattened_primals, ret_idxs = _flatten_containers(primals) def grad_fn(*x_in): return _flatten_containers( ivy.to_native( func( *ivy.to_ivy( _rebuild_flattened_containers(x_in, ret_idxs), nested=True ) ), nested=True, include_derived=True, ) )[0] # primals_out = _rebuild_flattened_containers( # grad_fn(*ivy.to_ivy(flattened_primals, nested=True)), ret_idxs # ) primals_out = func(*ivy.to_ivy(primals, nested=True)) def vjpfun(x_in): _, vjp_result = ivy.to_ivy( paddle.incubate.autograd.vjp( grad_fn, ivy.to_native(flattened_primals, nested=True), ivy.to_native(_flatten_containers(x_in)[0], nested=True), ) ) return ivy.to_ivy( _rebuild_flattened_containers(vjp_result, ret_idxs), nested=True, include_derived=True, ) return (ivy.to_ivy(primals_out, nested=True, include_derived=True), vjpfun) def jvp(func: Callable, primals, tangents): raise IvyNotImplementedException()
ivy/ivy/functional/backends/paddle/experimental/gradients.py/0
{ "file_path": "ivy/ivy/functional/backends/paddle/experimental/gradients.py", "repo_id": "ivy", "token_count": 1146 }
22
# global import paddle from typing import Union, Optional, Tuple, Literal, List, NamedTuple, Sequence from collections import namedtuple # local import ivy from ivy import inf from ivy.utils.exceptions import IvyNotImplementedException import ivy.functional.backends.paddle as paddle_backend from . import backend_version from ivy.func_wrapper import ( with_unsupported_device_and_dtypes, with_unsupported_dtypes, with_supported_dtypes, with_supported_device_and_dtypes, ) from .elementwise import _elementwise_helper # Array API Standard # # -------------------# @with_unsupported_device_and_dtypes( { "2.6.0 and below": { "cpu": ( "int8", "int16", "int32", "int64", "uint8", "float16", "complex", "bool", ) } }, backend_version, ) def cholesky( x: paddle.Tensor, /, *, upper: bool = False, out: Optional[paddle.Tensor] = None ) -> paddle.Tensor: return paddle.linalg.cholesky(x, upper=upper) def cross( x1: paddle.Tensor, x2: paddle.Tensor, /, *, axisa: int = -1, axisb: int = -1, axisc: int = -1, axis: Optional[int] = None, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: def _cross(x1, x2, axisa, axisb, axisc, axis): if axis is not None: return paddle.cross(x1, x2, axis=axis) x1 = paddle.moveaxis(x1, axisa, 1) x2 = paddle.moveaxis(x2, axisb, 1) ret = paddle.cross(x1, x2) return paddle.moveaxis(ret, 1, axisc) x1, x2, ret_dtype = _elementwise_helper(x1, x2) if x1.dtype in [ paddle.int8, paddle.int16, paddle.uint8, paddle.float16, paddle.complex64, paddle.complex128, paddle.bool, ]: if paddle.is_complex(x1): return paddle.complex( _cross(x1.real(), x2.real(), axisa, axisb, axisc, axis), _cross(x1.real(), x2.real(), axisa, axisb, axisc, axis), ) return _cross( x1.cast("float32"), x2.cast("float32"), axisa, axisb, axisc, axis, ).cast(ret_dtype) return _cross(x1, x2, axisa, axisb, axisc, axis) @with_unsupported_device_and_dtypes( {"2.6.0 and below": {"cpu": ("complex64", "complex128")}}, backend_version, ) def det(x: paddle.Tensor, /, *, out: Optional[paddle.Tensor] = None) -> paddle.Tensor: if x.dtype in [ paddle.int8, paddle.int16, paddle.int32, paddle.int64, paddle.uint8, paddle.float16, paddle.bool, ]: ret = paddle.linalg.det(x.cast("float32")).cast(x.dtype) else: ret = paddle.linalg.det(x) if x.ndim == 2: ret = paddle_backend.squeeze(ret, axis=0) return ret def diagonal( x: paddle.Tensor, /, *, offset: int = 0, axis1: int = -2, axis2: int = -1, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: if x.dtype in [ paddle.int8, paddle.int16, paddle.uint8, paddle.float16, paddle.complex64, paddle.complex128, ]: if paddle.is_complex(x): return paddle.complex( paddle.diagonal(x.real(), offset=offset, axis1=axis1, axis2=axis2), paddle.diagonal(x.imag(), offset=offset, axis1=axis1, axis2=axis2), ) return paddle.diagonal( x.cast("float32"), offset=offset, axis1=axis1, axis2=axis2 ).cast(x.dtype) return paddle.diagonal(x, offset=offset, axis1=axis1, axis2=axis2) def eigh( x: paddle.Tensor, /, *, UPLO: str = "L", out: Optional[paddle.Tensor] = None, ) -> Tuple[paddle.Tensor]: result_tuple = NamedTuple( "eigh", [("eigenvalues", paddle.Tensor), ("eigenvectors", paddle.Tensor)] ) eigenvalues, eigenvectors = paddle.linalg.eigh(x, UPLO=UPLO) return result_tuple(eigenvalues, eigenvectors) def eigvalsh( x: paddle.Tensor, /, *, UPLO: str = "L", out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: return paddle.linalg.eigvalsh(x, UPLO=UPLO) def inner( x1: paddle.Tensor, x2: paddle.Tensor, /, *, out: Optional[paddle.Tensor] = None ) -> paddle.Tensor: x1, x2 = ivy.promote_types_of_inputs(x1, x2) ret_dtype = x1.dtype if x1.dtype in [ paddle.int8, paddle.int16, paddle.int32, paddle.int64, paddle.uint8, paddle.float16, paddle.bool, ]: x1, x2 = x1.cast("float32"), x2.cast("float32") return paddle.inner(x1, x2).squeeze().cast(ret_dtype) @with_unsupported_device_and_dtypes( {"2.6.0 and below": {"cpu": ("complex64", "complex128")}}, backend_version, ) def inv( x: paddle.Tensor, /, *, adjoint: bool = False, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: ret_dtype = x.dtype if x.dtype in [ paddle.int8, paddle.int16, paddle.int32, paddle.int64, paddle.uint8, paddle.float16, paddle.bool, ]: x = x.cast("float32") if adjoint: x = paddle.moveaxis(x, -2, -1).conj() return paddle.inverse(x).cast(ret_dtype) def matmul( x1: paddle.Tensor, x2: paddle.Tensor, /, *, transpose_a: bool = False, transpose_b: bool = False, adjoint_a: bool = False, adjoint_b: bool = False, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: x1, x2 = ivy.promote_types_of_inputs(x1, x2) ret_dtype = x1.dtype if x1.dtype in [ paddle.int8, paddle.int16, paddle.int32, paddle.int64, paddle.uint8, paddle.float16, paddle.bool, paddle.bfloat16, ]: x1, x2 = x1.cast("float32"), x2.cast("float32") if adjoint_a: x1 = paddle.moveaxis(x1, -2, -1).conj() if adjoint_b: x2 = paddle.moveaxis(x2, -2, -1).conj() ret = paddle.matmul(x1, x2, transpose_x=transpose_a, transpose_y=transpose_b).cast( ret_dtype ) # handle case where ret should be 0d. if x1.ndim == 1 and x2.ndim == 1: ret_dtype = ret.dtype if ret_dtype in [paddle.int16]: ret = ret.cast(paddle.int32) return ret.squeeze().astype(ret_dtype) return ret @with_unsupported_device_and_dtypes( {"2.6.0 and below": {"cpu": ("complex64", "complex128")}}, backend_version, ) def matrix_norm( x: paddle.Tensor, /, *, ord: Union[int, float, Literal[inf, -inf, "fro", "nuc"]] = "fro", axis: Tuple[int, int] = (-2, -1), keepdims: bool = False, dtype: Optional[paddle.dtype] = None, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: if dtype is not None: x = ivy.astype(x, dtype=dtype) axis_ = list(axis) # paddle.moveaxis doesn't support tuple axes if ord == "nuc": x = paddle.moveaxis(x, axis_, [-2, -1]) # backend implementation is used here instead of native implementation # because native implementation causes issues when the return should be # a scalar which is solved in the backend implementation ret = paddle_backend.sum( paddle_backend.svd(x)[1], axis=-1, ) elif ord == 1: ret = paddle_backend.max( paddle.sum(paddle_backend.abs(x), axis=axis[0], keepdim=True), axis=axis, keepdims=keepdims, ) elif ord == -1: ret = paddle_backend.min( paddle.sum(paddle_backend.abs(x), axis=axis[0], keepdim=True), axis=axis, keepdims=keepdims, ) elif ord == 2: x = paddle.moveaxis(x, axis_, [-2, -1]) ret = paddle_backend.max( paddle_backend.svd(x)[1], axis=-1, ) elif ord == -2: x = paddle.moveaxis(x, axis_, [-2, -1]) ret = paddle_backend.min( paddle_backend.svd(x)[1], axis=-1, ) elif ord == float("inf"): ret = paddle_backend.max( paddle.sum(paddle.abs(x), axis=axis[1], keepdim=True), axis=axis, keepdims=keepdims, ) elif ord == float("-inf"): ret = paddle_backend.min( paddle.sum(paddle.abs(x), axis=axis[1], keepdim=True), axis=axis, keepdims=keepdims, ) else: ret = paddle.linalg.norm(x, p=ord, axis=axis, keepdim=keepdims) if x.ndim == 2 and not keepdims: ret = paddle.squeeze(ret) elif keepdims and ord in ["nuc", -2, 2]: # only these norms because the use of SVD for dim in axis: # although expand_dims support tuple axes, we have to loop # over the axes because it faces problems when the input is a scalar ret = paddle_backend.expand_dims(ret, axis=dim % x.ndim) return ret def eig( x: paddle.Tensor, /, *, out: Optional[paddle.Tensor] = None ) -> Tuple[paddle.Tensor]: result_tuple = NamedTuple( "eig", [("eigenvalues", paddle.Tensor), ("eigenvectors", paddle.Tensor)] ) eigenvalues, eigenvectors = paddle.linalg.eig(x) return result_tuple(eigenvalues, eigenvectors) @with_unsupported_device_and_dtypes( {"2.6.0 and below": {"cpu": ("complex64", "complex128")}}, backend_version, ) def matrix_power( x: paddle.Tensor, n: int, /, *, out: Optional[paddle.Tensor] = None ) -> paddle.Tensor: return paddle.linalg.matrix_power(x, n) @with_unsupported_device_and_dtypes( {"2.6.0 and below": {"cpu": ("complex64", "complex128")}}, backend_version, ) def matrix_rank( x: paddle.Tensor, /, *, atol: Optional[Union[float, Tuple[float]]] = None, rtol: Optional[Union[float, Tuple[float]]] = None, hermitian: bool = False, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: if (x.ndim < 2) or (0 in x.shape): return paddle.to_tensor(0).squeeze().astype(x.dtype) # we don't use the native matrix_rank function because the behaviour of the # tolerance argument is difficult to unify if hermitian: svd_values = paddle_backend.abs(paddle_backend.eigvalsh(x)) else: svd_values = paddle_backend.svd(x)[1] sigma = paddle_backend.max(svd_values, axis=-1, keepdims=False) atol = ( atol if atol is not None else ivy.finfo(x.dtype).eps * max(x.shape[-2:]) * sigma ) rtol = rtol if rtol is not None else 0.0 tol = paddle_backend.maximum(atol, paddle_backend.multiply(rtol, sigma)) # make sure it's broadcastable again with svd_values tol = paddle_backend.expand_dims(tol, axis=-1) ret = paddle.count_nonzero(paddle_backend.greater(svd_values, tol), axis=-1) if x.ndim == 2 and tol.ndim < 2: # to fix the output shape when input is unbatched # and tol is batched ret = paddle_backend.squeeze(ret, axis=None) return ret def matrix_transpose( x: paddle.Tensor, /, *, perm: Optional[Union[Tuple[int], List[int]]] = None, conjugate: bool = False, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: if conjugate: x = paddle.conj(x) perm = list(range(x.ndim)) perm[-1], perm[-2] = perm[-2], perm[-1] if x.dtype in [paddle.int8, paddle.int16, paddle.uint8]: return paddle.transpose(x.cast("float32"), perm=perm).cast(x.dtype) return paddle.transpose(x, perm=perm) @with_supported_device_and_dtypes( { "2.6.0 and below": { "cpu": ("int32", "int64", "float64", "complex128" "float32", "complex64") } }, backend_version, ) def outer( x1: paddle.Tensor, x2: paddle.Tensor, /, *, out: Optional[paddle.Tensor] = None ) -> paddle.Tensor: x1, x2 = ivy.promote_types_of_inputs(x1, x2) ret_dtype = x1.dtype if x1.dtype in [ paddle.int8, paddle.int16, paddle.int32, paddle.int64, paddle.uint8, paddle.float16, paddle.bool, ]: x1, x2 = x1.cast("float32"), x2.cast("float32") return paddle.outer(x1, x2).cast(ret_dtype) def pinv( x: paddle.Tensor, /, *, rtol: Optional[Union[float, Tuple[float]]] = None, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: if rtol is None: return paddle.linalg.pinv(x) return paddle.linalg.pinv(x, rcond=rtol) def tensorsolve( x1: paddle.Tensor, x2: paddle.Tensor, /, *, axes: Optional[Union[int, Tuple[List[int], List[int]]]] = None, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: # Implemented as a composite function in ivy.functional.ivy.linear_algebra raise IvyNotImplementedException() @with_unsupported_device_and_dtypes( {"2.6.0 and below": {"cpu": ("complex64", "complex128")}}, backend_version, ) def qr( x: paddle.Tensor, /, *, mode: str = "reduced", out: Optional[Tuple[paddle.Tensor, paddle.Tensor]] = None, ) -> Tuple[paddle.Tensor, paddle.Tensor]: res = namedtuple("qr", ["Q", "R"]) q, r = paddle.linalg.qr(x, mode=mode) return res(q, r) @with_unsupported_device_and_dtypes( {"2.6.0 and below": {"cpu": ("complex64", "complex128")}}, backend_version, ) def slogdet( x: paddle.Tensor, /, ) -> Tuple[paddle.Tensor, paddle.Tensor]: results = NamedTuple( "slogdet", [("sign", paddle.Tensor), ("logabsdet", paddle.Tensor)] ) sign, logabsdet = paddle.linalg.slogdet(x) if x.ndim == 2: sign, logabsdet = paddle_backend.squeeze(sign, axis=0), paddle_backend.squeeze( logabsdet, axis=0 ) return results(sign, logabsdet) @with_unsupported_device_and_dtypes( {"2.6.0 and below": {"cpu": ("complex64", "complex128")}}, backend_version, ) def solve( x1: paddle.Tensor, x2: paddle.Tensor, /, *, adjoint: bool = False, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: if adjoint: x1 = paddle.moveaxis(x1, -2, -1).conj() expanded_last = False x1, x2 = ivy.promote_types_of_inputs(x1, x2) if len(x2.shape) <= 1: if x2.shape[-1] == x1.shape[-1]: expanded_last = True x2 = paddle.unsqueeze(x2, axis=1) for i in range(len(x1.shape) - len(x2.shape)): x2 = paddle.unsqueeze(x2, axis=0) ret = paddle.linalg.solve(x1, x2) if expanded_last: ret = paddle.squeeze(ret, axis=-1) return ret @with_supported_dtypes({"2.6.0 and below": ("float32", "float64")}, backend_version) def svd( x: paddle.Tensor, /, *, full_matrices: bool = True, compute_uv: bool = True ) -> Union[paddle.Tensor, Tuple[paddle.Tensor, ...]]: ret = paddle.linalg.svd(x, full_matrices=full_matrices) if compute_uv: results = namedtuple("svd", "U S Vh") return results(*ret) else: results = namedtuple("svd", "S") return results(ret[1]) @with_unsupported_device_and_dtypes( {"2.6.0 and below": {"cpu": ("complex64", "complex128")}}, backend_version, ) def svdvals( x: paddle.Tensor, /, *, driver: Optional[str] = None, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: # TODO:handling the driver argument return paddle_backend.svd(x)[1] @with_supported_dtypes( {"2.6.0 and below": ("complex", "float32", "float64")}, backend_version ) def tensordot( x1: paddle.Tensor, x2: paddle.Tensor, /, *, axes: Union[int, Tuple[List[int], List[int]]] = 2, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: ret = paddle.tensordot(x1, x2, axes=axes) return ret.squeeze() if x1.ndim == axes else ret @with_unsupported_device_and_dtypes( { "2.6.0 and below": { "cpu": ( "int8", "int16", "unsigned", "float16", "complex", "bool", ) } }, backend_version, ) def trace( x: paddle.Tensor, /, *, offset: int = 0, axis1: int = 0, axis2: int = 1, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: ret = paddle.trace(x, offset=offset, axis1=axis1, axis2=axis2) return ret.squeeze() if x.ndim <= 2 else ret def vecdot( x1: paddle.Tensor, x2: paddle.Tensor, /, *, axis: int = -1, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: axes = [axis % x1.ndim] return paddle_backend.tensordot(x1, x2, axes=axes) def vector_norm( x: paddle.Tensor, /, *, axis: Optional[Union[int, Sequence[int]]] = None, keepdims: bool = False, ord: Union[int, float, Literal[inf, -inf]] = 2, dtype: Optional[paddle.dtype] = None, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: if dtype and x.dtype != dtype: x = x.astype(dtype) abs_x = paddle_backend.abs(x) if ord == 0: return paddle_backend.sum( (abs_x != 0).astype(abs_x.dtype), axis=axis, keepdims=keepdims ) elif ord == inf: return paddle_backend.max(abs_x, axis=axis, keepdims=keepdims) elif ord == -inf: return paddle_backend.min(abs_x, axis=axis, keepdims=keepdims) else: return paddle_backend.pow( paddle_backend.sum( paddle_backend.pow(abs_x, ord), axis=axis, keepdims=keepdims, ), (1.0 / ord), ) # Extra # # ----- # @with_supported_dtypes( {"2.6.0 and below": ("float16", "float32", "float64", "int32", "int64")}, backend_version, ) def diag( x: paddle.Tensor, /, *, k: int = 0, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: return paddle.diag(x, offset=k) @with_unsupported_device_and_dtypes( {"2.6.0 and below": {"cpu": ("uint8", "int8", "int16", "complex64", "complex128")}}, backend_version, ) def vander( x: paddle.Tensor, /, *, N: Optional[int] = None, increasing: bool = False, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: N = ivy.default(N, x.shape[-1]) start, stop, step = N - 1, -1, -1 if increasing: start, stop, step = 0, N, 1 return paddle.pow( paddle.moveaxis(paddle.unsqueeze(x, 0), 0, 1), paddle.arange(start, stop, step, dtype=x.dtype), ) @with_unsupported_dtypes( {"2.6.0 and below": ("unsigned", "int8", "int16", "float16")}, backend_version, ) def vector_to_skew_symmetric_matrix( vector: paddle.Tensor, /, *, out: Optional[paddle.Tensor] = None ) -> paddle.Tensor: batch_shape = vector.shape[:-1] # BS x 3 x 1 vector_expanded = paddle.unsqueeze(vector, -1) # BS x 1 x 1 a1s = vector_expanded[..., 0:1, :] a2s = vector_expanded[..., 1:2, :] a3s = vector_expanded[..., 2:3, :] # BS x 1 x 1 zs = paddle.zeros(batch_shape + [1, 1], dtype=vector.dtype) # BS x 1 x 3 row1 = paddle.concat((zs, -a3s, a2s), -1) row2 = paddle.concat((a3s, zs, -a1s), -1) row3 = paddle.concat((-a2s, a1s, zs), -1) # BS x 3 x 3 return paddle.concat((row1, row2, row3), -2)
ivy/ivy/functional/backends/paddle/linear_algebra.py/0
{ "file_path": "ivy/ivy/functional/backends/paddle/linear_algebra.py", "repo_id": "ivy", "token_count": 9390 }
23
# global from typing import Union, Optional import tensorflow as tf # local import ivy from ivy.func_wrapper import with_unsupported_dtypes, with_supported_dtypes from ivy import promote_types_of_inputs from . import backend_version def abs( x: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if not tf.is_tensor(x): x = tf.convert_to_tensor(x) if any(("uint" in x.dtype.name, "bool" in x.dtype.name)): return x return tf.abs(x) @with_unsupported_dtypes({"2.15.0 and below": ("unsigned", "bool")}, backend_version) def acos( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.acos(x) def acosh( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.acosh(x) def add( x1: Union[float, tf.Tensor, tf.Variable], x2: Union[float, tf.Tensor, tf.Variable], /, *, alpha: Optional[Union[int, float]] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) if x1.dtype.is_bool and x2.dtype.is_bool: return tf.math.logical_or(x1, x2) if alpha not in (1, None): with ivy.ArrayMode(False): x2 = multiply(x2, alpha) return tf.add(x1, x2) def asin( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.asin(x) def asinh( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.asinh(x) def atan( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.atan(x) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def atan2( x1: Union[tf.Tensor, tf.Variable], x2: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return tf.math.atan2(x1, x2) def atanh( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.atanh(x) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def bitwise_and( x1: Union[int, tf.Tensor, tf.Variable], x2: Union[int, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2, array_api_promotion=True) if ("int" not in str(x1.dtype)) & ("int" not in str(x2.dtype)): return tf.math.logical_and(x1, x2) else: return tf.bitwise.bitwise_and(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def bitwise_invert( x: Union[int, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if "int" not in str(x.dtype): return tf.logical_not(x) else: return tf.bitwise.invert(x) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def bitwise_left_shift( x1: Union[int, tf.Tensor, tf.Variable], x2: Union[int, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2, array_api_promotion=True) return tf.bitwise.left_shift(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def bitwise_or( x1: Union[int, tf.Tensor, tf.Variable], x2: Union[int, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2, array_api_promotion=True) if ("int" not in str(x1.dtype)) & ("int" not in str(x2.dtype)): return tf.math.logical_or(x1, x2) else: return tf.bitwise.bitwise_or(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def bitwise_right_shift( x1: Union[int, tf.Tensor, tf.Variable], x2: Union[int, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2, array_api_promotion=True) return tf.bitwise.right_shift(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def bitwise_xor( x1: Union[int, tf.Tensor, tf.Variable], x2: Union[int, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2, array_api_promotion=True) if ("int" not in str(x1.dtype)) & ("int" not in str(x2.dtype)): return tf.math.logical_xor(x1, x2) else: return tf.bitwise.bitwise_xor(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def ceil( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if "int" in str(x.dtype): return x else: return tf.math.ceil(x) @with_unsupported_dtypes({"2.15.0 and below": ("integer",)}, backend_version) def cos( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.cos(x) @with_unsupported_dtypes({"2.15.0 and below": ("float16",)}, backend_version) def cosh( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.cosh(x) def divide( x1: Union[float, tf.Tensor, tf.Variable], x2: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) ret = tf.experimental.numpy.divide(x1, x2) if ivy.is_float_dtype(x1.dtype) or ivy.is_complex_dtype(x1.dtype): ret = tf.cast(ret, dtype=x1.dtype) else: ret = tf.cast(ret, dtype=ivy.default_float_dtype(as_native=True)) return ret def equal( x1: Union[float, tf.Tensor, tf.Variable], x2: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return tf.math.equal(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("integer",)}, backend_version) def exp( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.exp(x) def exp2( x: Union[tf.Tensor, tf.Variable, float, list, tuple], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.pow(2, x, name=None) @with_supported_dtypes({"2.15.0 and below": ("float", "complex")}, backend_version) def expm1( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.expm1(x) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def floor( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if "int" in str(x.dtype): return x else: return tf.math.floor(x) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def floor_divide( x1: Union[float, tf.Tensor, tf.Variable], x2: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return tf.experimental.numpy.floor_divide(x1, x2) @with_supported_dtypes({"2.15.0 and below": ("float",)}, backend_version) def fmin( x1: Union[tf.Tensor, tf.Variable], x2: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = promote_types_of_inputs(x1, x2) x1 = tf.where(tf.math.is_nan(x1), x2, x1) x2 = tf.where(tf.math.is_nan(x2), x1, x2) ret = tf.experimental.numpy.minimum(x1, x2) return ret @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def greater( x1: Union[float, tf.Tensor, tf.Variable], x2: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return tf.experimental.numpy.greater(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def greater_equal( x1: Union[float, tf.Tensor, tf.Variable], x2: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return tf.math.greater_equal(x1, x2) def isfinite( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if ivy.is_int_dtype(x): return tf.ones_like(x, tf.bool) elif ivy.is_complex_dtype(x): return tf.math.logical_and( tf.math.is_finite(tf.math.real(x)), tf.math.is_finite(tf.math.imag(x)) ) else: return tf.math.is_finite(x) def isinf( x: Union[tf.Tensor, tf.Variable], /, *, detect_positive: bool = True, detect_negative: bool = True, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if not ivy.is_complex_dtype(x): if ivy.is_int_dtype(x): return tf.zeros_like(x, tf.bool) else: if detect_negative and detect_positive: return tf.math.is_inf(x) elif detect_negative: return tf.experimental.numpy.isneginf(x) elif detect_positive: return tf.experimental.numpy.isposinf(x) return tf.zeros_like(x, tf.bool) @with_unsupported_dtypes({"2.15.0 and below": ("complex", "bool")}, backend_version) def isnan( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if ivy.is_int_dtype(x): return tf.zeros_like(x, tf.bool) else: return tf.math.is_nan(x) @with_unsupported_dtypes({"2.15.0 and below": ("unsigned",)}, backend_version) def lcm( x1: Union[tf.Tensor, tf.Variable], x2: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = promote_types_of_inputs(x1, x2) return tf.experimental.numpy.lcm(x1, x2) @with_unsupported_dtypes( { "2.15.0 and below": ( "bool", "complex", ) }, backend_version, ) def less( x1: Union[float, tf.Tensor, tf.Variable], x2: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return tf.math.less(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def less_equal( x1: Union[float, tf.Tensor, tf.Variable], x2: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return tf.math.less_equal(x1, x2) @with_unsupported_dtypes( {"2.15.0 and below": ("float16", "bfloat16", "integer")}, backend_version ) def log( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.log(x) def log10( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.log(x) / tf.math.log(tf.constant(10.0, x.dtype)) def log1p( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.log1p(x) def log2( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.log(x) / tf.math.log(tf.constant(2.0, x.dtype)) @with_unsupported_dtypes({"2.15.0 and below": ("float16", "bfloat16")}, backend_version) def logaddexp( x1: Union[tf.Tensor, tf.Variable], x2: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return tf.experimental.numpy.logaddexp(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("float16",)}, backend_version) def real( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.real(x) @with_unsupported_dtypes( { "2.15.0 and below": ( "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ) }, backend_version, ) def logaddexp2( x1: Union[tf.Tensor, tf.Variable, float, list, tuple], x2: Union[tf.Tensor, tf.Variable, float, list, tuple], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = promote_types_of_inputs(x1, x2) if not ivy.is_float_dtype(x1): x1 = tf.cast(x1, ivy.default_float_dtype(as_native=True)) x2 = tf.cast(x2, ivy.default_float_dtype(as_native=True)) amax = ivy.maximum(x1, x2) delta = x1 - x2 return ivy.where( ivy.isnan(delta), x1 + x2, amax + ivy.log1p(ivy.exp2(-ivy.abs(delta))) / ivy.log(2.0).astype(amax.dtype), ) def logical_and( x1: Union[tf.Tensor, tf.Variable], x2: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.logical_and(tf.cast(x1, tf.bool), tf.cast(x2, tf.bool)) def logical_not( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.logical_not(tf.cast(x, tf.bool)) def logical_or( x1: Union[tf.Tensor, tf.Variable], x2: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.logical_or(tf.cast(x1, tf.bool), tf.cast(x2, tf.bool)) def logical_xor( x1: Union[tf.Tensor, tf.Variable], x2: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.logical_xor(tf.cast(x1, tf.bool), tf.cast(x2, tf.bool)) @with_unsupported_dtypes({"2.15.0 and below": ("bool",)}, backend_version) def multiply( x1: Union[float, tf.Tensor, tf.Variable], x2: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return tf.math.multiply(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("bool", "unsigned")}, backend_version) def negative( x: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.negative(x) def not_equal( x1: Union[float, tf.Tensor, tf.Variable], x2: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return tf.math.not_equal(x1, x2) def positive( x: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.experimental.numpy.positive(x) @with_unsupported_dtypes({"2.15.0 and below": ("bool", "unsigned")}, backend_version) def pow( x1: Union[tf.Tensor, tf.Variable], x2: Union[int, float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if ivy.is_complex_dtype(x1) and ivy.any(ivy.isinf(x2)): ret = tf.experimental.numpy.power(x1, x2) return tf.where( ivy.isinf(x2), ivy.nan + ivy.nan * 1j if x2 < 0 else -0 * 1j, ret ) if ivy.is_complex_dtype(x2) and ivy.any(x1 == 0): ret = tf.experimental.numpy.power(x1, x2) return tf.where(x1 == 0, ivy.nan + ivy.nan * 1j, ret) x1, x2 = ivy.promote_types_of_inputs(x1, x2) if ivy.is_int_dtype(x1) and ivy.any(x2 < 0): return tf.cast( tf.experimental.numpy.power(tf.cast(x1, tf.float32), x2), x1.dtype, ) return tf.experimental.numpy.power(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("bfloat16", "complex")}, backend_version) def remainder( x1: Union[float, tf.Tensor, tf.Variable], x2: Union[float, tf.Tensor, tf.Variable], /, *, modulus: bool = True, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) if not modulus: res = x1 / x2 res_floored = tf.where(res >= 0, tf.math.floor(res), tf.math.ceil(res)) diff = res - res_floored diff, x2 = ivy.promote_types_of_inputs(diff, x2) return tf.cast(tf.round(diff * x2), x1.dtype) return tf.experimental.numpy.remainder(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("bfloat16", "complex")}, backend_version) def round( x: Union[tf.Tensor, tf.Variable], /, *, decimals: int = 0, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if "int" in str(x.dtype): return x else: if decimals == 0: return tf.cast(tf.round(x), x.dtype) ret_dtype = x.dtype factor = tf.constant(10**decimals, dtype=ret_dtype) factor_deno = tf.where( tf.math.is_finite(factor), factor, tf.constant(1, dtype=ret_dtype) ) return tf.cast(tf.round(x * factor) / factor_deno, ret_dtype) @with_unsupported_dtypes({"2.15.0 and below": ("bool", "unsigned")}, backend_version) def sign( x: Union[tf.Tensor, tf.Variable], /, *, np_variant: Optional[bool] = True, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.sign(x) def sin( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.sin(x) def sinh( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.sinh(x) def sqrt( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.sqrt(x) def square( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.square(x) def subtract( x1: Union[float, tf.Tensor, tf.Variable], x2: Union[float, tf.Tensor, tf.Variable], /, *, alpha: Optional[Union[int, float]] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) if alpha not in (1, None): ivy.set_array_mode(False) x2 = multiply(x2, alpha) ivy.unset_array_mode() return tf.subtract(x1, x2) def tan( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.tan(x) def tanh( x: Union[tf.Tensor, tf.Variable], /, *, complex_mode="jax", out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.tanh(x) def trapz( y: Union[tf.Tensor, tf.Variable], /, *, x: Optional[Union[tf.Tensor, tf.Variable]] = None, dx: float = 1.0, axis: int = -1, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: pass # TODO: Implement purely in tensorflow @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def trunc( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: ret = x if not ivy.is_array(x): raise ivy.utils.exceptions.IvyException("Input must be array") elif "int" not in str(x.dtype): if ret.get_shape().ndims != 0: ret = tf.tensor_scatter_nd_update( x, tf.where(tf.greater_equal(x, 0)), tf.math.floor(x[x >= 0]) ) ret = tf.tensor_scatter_nd_update( ret, tf.where(tf.less(x, 0)), tf.math.ceil(x[x < 0]) ) else: ret = (tf.math.floor if ret >= 0 else tf.math.ceil)(ret) return ret # Extra # # ------# @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def erf( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.erf(x) @with_unsupported_dtypes({"2.15.0 and below": ("complex", "bool")}, backend_version) def maximum( x1: Union[tf.Tensor, tf.Variable], x2: Union[tf.Tensor, tf.Variable], /, *, use_where: bool = True, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return tf.math.maximum(x1, x2) @with_unsupported_dtypes({"2.15.0 and below": ("complex", "bool")}, backend_version) def minimum( x1: Union[tf.Tensor, tf.Variable], x2: Union[tf.Tensor, tf.Variable], /, *, use_where: bool = True, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return tf.math.minimum(x1, x2) @with_unsupported_dtypes( { "2.15.0 and below": ( "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ) }, backend_version, ) def reciprocal( x: Union[float, tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if x.dtype.is_integer: x = tf.cast(x, tf.float32) return tf.math.reciprocal(x) @with_supported_dtypes({"2.15.0 and below": ("float",)}, backend_version) def deg2rad( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: radians = x * ivy.pi / 180.0 return radians @with_supported_dtypes({"2.15.0 and below": ("float",)}, backend_version) def rad2deg( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.experimental.numpy.rad2deg(x) def isreal( x: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.experimental.numpy.isreal(x) @with_unsupported_dtypes( {"2.15.0 and below": ("uint8", "uint16", "uint32", "uint64", "complex", "bool")}, backend_version, ) def fmod( x1: Union[tf.Tensor, tf.Variable], x2: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = promote_types_of_inputs(x1, x2) # tf.math.floormod returns wrong results res = tf.experimental.numpy.remainder(tf.math.abs(x1), tf.math.abs(x2)) return tf.where(x1 < 0, -res, res) @with_unsupported_dtypes( {"2.15.0 and below": ("uint8", "uint16", "uint32", "uint64")}, backend_version ) def gcd( x1: Union[tf.Tensor, tf.Variable, int, list, tuple], x2: Union[tf.Tensor, tf.Variable, float, list, tuple], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x1, x2 = promote_types_of_inputs(x1, x2) return tf.experimental.numpy.gcd(x1, x2) gcd.support_native_out = False @with_unsupported_dtypes( { "2.15.0 and below": ( "uint8", "uint16", "uint32", "uint64", "bfloat16", "int32", ) }, backend_version, ) def angle( input: Union[tf.Tensor, tf.Variable], /, *, deg: Optional[bool] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if deg: return tf.math.angle(input, name=None) * (180 / tf.experimental.numpy.pi) else: return tf.math.angle(input, name=None) @with_unsupported_dtypes( { "2.15.0 and below": ( "uint8", "uint16", "uint32", "uint64", "bfloat16", "int32", ) }, backend_version, ) def imag( val: Union[tf.Tensor, tf.Variable], /, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.math.imag(val, name=None) def nan_to_num( x: Union[tf.Tensor, tf.Variable], /, *, copy: bool = True, nan: Union[float, int] = 0.0, posinf: Optional[Union[float, int]] = None, neginf: Optional[Union[float, int]] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: posinf = posinf if posinf is not None else x.dtype.max neginf = neginf if neginf is not None else x.dtype.min posinf = tf.constant(posinf, x.dtype) neginf = tf.constant(neginf, x.dtype) nan = tf.constant(nan, x.dtype) ret = tf.where(tf.math.is_nan(x), nan, x) ret = tf.where(tf.math.logical_and(tf.math.is_inf(ret), ret > 0), posinf, ret) ret = tf.where(tf.math.logical_and(tf.math.is_inf(ret), ret < 0), neginf, ret) if copy: return ret else: x = ret return x
ivy/ivy/functional/backends/tensorflow/elementwise.py/0
{ "file_path": "ivy/ivy/functional/backends/tensorflow/elementwise.py", "repo_id": "ivy", "token_count": 13007 }
24
# global from typing import Optional, Tuple, Union import math import torch # local import ivy from ivy.func_wrapper import ( with_unsupported_dtypes, with_unsupported_device_and_dtypes, ) from .. import backend_version # noinspection PyProtectedMember # Array API Standard # # -------------------# @with_unsupported_device_and_dtypes( {"2.2 and below": {"cpu": ("float16",)}}, backend_version, ) def kaiser_window( window_length: int, periodic: bool = True, beta: float = 12.0, *, dtype: Optional[torch.dtype] = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.kaiser_window( window_length, periodic, beta, dtype=dtype, layout=torch.strided, device=None, requires_grad=False, ) def hamming_window( window_length: int, /, *, periodic: bool = True, alpha: float = 0.54, beta: float = 0.46, dtype: Optional[torch.dtype] = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.hamming_window( window_length, periodic=periodic, alpha=alpha, beta=beta, dtype=dtype, layout=torch.strided, device=None, requires_grad=False, ) def vorbis_window( window_length: torch.tensor, *, dtype: torch.dtype = torch.float32, out: Optional[torch.tensor] = None, ) -> torch.tensor: return torch.tensor( [ round( math.sin( (ivy.pi / 2) * (math.sin(ivy.pi * (i) / (window_length * 2)) ** 2) ), 8, ) for i in range(1, window_length * 2)[0::2] ], dtype=dtype, ) vorbis_window.support_native_out = False @with_unsupported_dtypes({"2.2 and below": ("float16",)}, backend_version) def hann_window( size: int, /, *, periodic: bool = True, dtype: Optional[torch.dtype] = None, out: Optional[torch.tensor] = None, ) -> torch.tensor: return torch.hann_window( size, periodic=periodic, dtype=dtype, ) hann_window.support_native_out = False def tril_indices( n_rows: int, n_cols: Optional[int] = None, k: int = 0, /, *, device: torch.device = None, ) -> Tuple[torch.Tensor, ...]: n_cols = n_rows if n_cols is None else n_cols if n_rows <= 0 or n_cols <= 0: n_rows, n_cols = 0, 0 return tuple( torch.tril_indices( row=n_rows, col=n_cols, offset=k, dtype=torch.int64, device=device ) ) def unsorted_segment_min( data: torch.Tensor, segment_ids: torch.Tensor, num_segments: Union[int, torch.Tensor], ) -> torch.Tensor: ivy.utils.assertions.check_unsorted_segment_valid_params( data, segment_ids, num_segments ) if data.dtype in [torch.float32, torch.float64, torch.float16, torch.bfloat16]: init_val = torch.finfo(data.dtype).max elif data.dtype in [torch.int32, torch.int64, torch.int8, torch.int16, torch.uint8]: init_val = torch.iinfo(data.dtype).max else: raise TypeError("Unsupported data type") res = torch.full( (num_segments,) + data.shape[1:], init_val, dtype=data.dtype, device=data.device ) for i in range(num_segments): mask_index = segment_ids == i if torch.any(mask_index): res[i] = torch.min(data[mask_index], 0)[0] return res @with_unsupported_dtypes({"2.2 and below": ("float16",)}, backend_version) def blackman_window( size: int, /, *, periodic: bool = True, dtype: Optional[torch.dtype] = None, out: Optional[torch.tensor] = None, ) -> torch.tensor: return torch.blackman_window( size, periodic=periodic, dtype=dtype, ) blackman_window.support_native_out = False def unsorted_segment_sum( data: torch.Tensor, segment_ids: torch.Tensor, num_segments: Union[int, torch.Tensor], ) -> torch.Tensor: # Used the same check which is used for unsorted_segment_min as the # check should be same # Might require to change the assertion function name to # check_unsorted_segment_valid_params ivy.utils.assertions.check_unsorted_segment_valid_params( data, segment_ids, num_segments ) res = torch.zeros( (num_segments,) + data.shape[1:], dtype=data.dtype, device=data.device ) for i in range(num_segments): mask_index = segment_ids == i if torch.any(mask_index): res[i] = torch.sum(data[mask_index], dim=0) return res def trilu( x: torch.Tensor, /, *, k: int = 0, upper: bool = True, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if upper: return torch.triu(x, diagonal=k, out=out) return torch.tril(x, diagonal=k, out=out) trilu.support_native_out = True def mel_weight_matrix( num_mel_bins: int, dft_length: int, sample_rate: int, lower_edge_hertz: float = 125.0, upper_edge_hertz: float = 3000.0, ): # transform the inputs to tensors lower_edge_hertz = torch.tensor(lower_edge_hertz) upper_edge_hertz = torch.tensor(upper_edge_hertz) zero = torch.tensor(0.0) # mel transform lambda function def hz_to_mel(f): return 2595 * torch.log10(1 + f / 700) nyquist_hz = sample_rate / 2 # define a range of frequencies in HZ linear_freqs = torch.linspace(0, nyquist_hz, dft_length)[1:] # transform the frequencies from HZ to mels spec_bin_mels = hz_to_mel(linear_freqs).unsqueeze(1) mel_edges = torch.linspace( hz_to_mel(lower_edge_hertz), hz_to_mel(upper_edge_hertz), num_mel_bins + 2 ) # create overlapping frames of size 3 mel_edges = mel_edges.unfold(0, size=3, step=1) lower_edge_mel, center_mel, upper_edge_mel = ( t.reshape((1, num_mel_bins)) for t in mel_edges.split(1, dim=1) ) lower_slopes = (spec_bin_mels - lower_edge_mel) / (center_mel - lower_edge_mel) upper_slopes = (upper_edge_mel - spec_bin_mels) / (upper_edge_mel - center_mel) mel_weights = torch.maximum(zero, torch.minimum(lower_slopes, upper_slopes)) return torch.nn.functional.pad(mel_weights, (0, 0, 1, 0)) def unsorted_segment_mean( data: torch.Tensor, segment_ids: torch.Tensor, num_segments: Union[int, torch.Tensor], ) -> torch.Tensor: ivy.utils.assertions.check_unsorted_segment_valid_params( data, segment_ids, num_segments ) # Initialize an array to store the sum of elements for each segment segment_sum = torch.zeros( (num_segments,) + data.shape[1:], dtype=data.dtype, device=data.device ) # Initialize an array to keep track of the number of elements in each segment counts = torch.zeros(num_segments, dtype=torch.int64, device=data.device) for i in range(len(segment_ids)): seg_id = segment_ids[i] segment_sum[seg_id] += data[i] counts[seg_id] += 1 return segment_sum / counts[:, None] @with_unsupported_dtypes({"2.0.1 and below": "float16"}, backend_version) def polyval( coeffs: torch.Tensor, x: torch.Tensor, ) -> torch.Tensor: with ivy.PreciseMode(True): promoted_type = ivy.promote_types(ivy.dtype(coeffs[0]), ivy.dtype(x[0])) coeffs, x = ivy.promote_types_of_inputs(coeffs, x) y = torch.zeros_like(x) for coeff in coeffs: y = y * x + coeff if y.shape == (1,): y = torch.unsqueeze(y, 0) promoted_type = getattr(torch, promoted_type) y = torch.tensor(y).to(dtype=promoted_type) return y
ivy/ivy/functional/backends/torch/experimental/creation.py/0
{ "file_path": "ivy/ivy/functional/backends/torch/experimental/creation.py", "repo_id": "ivy", "token_count": 3446 }
25
# global from typing import Optional, Union, Tuple, Sequence import torch # local from ivy.func_wrapper import with_unsupported_dtypes, with_supported_dtypes from . import backend_version import ivy from ..statistical import _infer_dtype from copy import deepcopy @with_unsupported_dtypes( { "2.2 and below": ( "uint8", "int8", "int16", "int32", "int64", "float16", "bfloat16", ) }, backend_version, ) def histogram( a: torch.Tensor, /, *, bins: Optional[Union[int, torch.Tensor]] = None, axis: Optional[int] = None, extend_lower_interval: Optional[bool] = False, extend_upper_interval: Optional[bool] = False, dtype: Optional[torch.dtype] = None, range: Optional[Tuple[float]] = None, weights: Optional[torch.Tensor] = None, density: Optional[bool] = False, out: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor]: min_a = torch.min(a) max_a = torch.max(a) if isinstance(bins, torch.Tensor) and range: raise ivy.exceptions.IvyException( "Must choose between specifying bins and range or bin edges directly" ) if range: bins = torch.linspace( start=range[0], end=range[1], steps=bins + 1, dtype=a.dtype ) range = None elif isinstance(bins, int): range = (min_a, max_a) bins = torch.linspace( start=range[0], end=range[1], steps=bins + 1, dtype=a.dtype ) range = None if bins.size()[0] < 2: raise ivy.exceptions.IvyException("bins must have at least 1 bin (size > 1)") bins_out = bins.clone() if extend_lower_interval and min_a < bins[0]: bins.data[0] = min_a if extend_upper_interval and max_a > bins[-1]: bins.data[-1] = max_a if a.ndim > 0 and axis is not None: inverted_shape_dims = list(torch.flip(torch.arange(a.ndim), dims=[0])) if isinstance(axis, int): axis = [axis] shape_axes = 1 for dimension in axis: inverted_shape_dims.remove(dimension) inverted_shape_dims.append(dimension) shape_axes *= a.shape[dimension] a_along_axis_1d = ( a.permute(inverted_shape_dims).flatten().reshape((-1, shape_axes)) ) if weights is None: ret = [] for a_1d in a_along_axis_1d: ret_1d = torch.histogram( a_1d, bins=bins, # TODO: waiting tensorflow version support to density # density=density, )[0] ret.append(ret_1d.tolist()) else: weights_along_axis_1d = ( weights.permute(inverted_shape_dims).flatten().reshape((-1, shape_axes)) ) ret = [] for a_1d, weights_1d in zip(a_along_axis_1d, weights_along_axis_1d): ret_1d = torch.histogram( a_1d, bins=bins, weight=weights_1d, # TODO: waiting tensorflow version support to density # density=density, )[0] ret.append(ret_1d.tolist()) out_shape = list(a.shape) for dimension in sorted(axis, reverse=True): del out_shape[dimension] out_shape.insert(0, len(bins) - 1) ret = torch.tensor(ret) ret = ret.flatten() index = torch.zeros(len(out_shape), dtype=int) ret_shaped = torch.zeros(out_shape) dim = 0 i = 0 if index.tolist() == (torch.tensor(out_shape) - 1).tolist(): ret_shaped.data[tuple(index)] = ret[i] while index.tolist() != (torch.tensor(out_shape) - 1).tolist(): ret_shaped.data[tuple(index)] = ret[i] dim_full_flag = False while index[dim] == out_shape[dim] - 1: index[dim] = 0 dim += 1 dim_full_flag = True index[dim] += 1 i += 1 if dim_full_flag: dim = 0 if index.tolist() == (torch.tensor(out_shape) - 1).tolist(): ret_shaped.data[tuple(index)] = ret[i] ret = ret_shaped else: ret = torch.histogram( a, bins=bins, range=range, weight=weights, density=density )[0] dtype = ivy.as_native_dtype(dtype) if dtype: ret = ret.type(dtype) bins_out = bins_out.type(dtype) # TODO: weird error when returning bins: return ret, bins_out return ret histogram.support_native_out = True @with_unsupported_dtypes({"2.2 and below": ("float16", "bool")}, backend_version) def median( input: torch.Tensor, /, *, axis: Optional[Union[Tuple[int], int]] = None, keepdims: bool = False, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if isinstance(axis, tuple): if len(axis) == 1: axis = axis[0] ret = quantile( input, 0.5, axis=axis, keepdims=keepdims, interpolation="midpoint", ) if input.dtype in [torch.int64, torch.float64]: ret = ret.to(torch.float64) elif input.dtype in [torch.float16, torch.bfloat16]: ret = ret.to(input.dtype) else: ret = ret.to(torch.float32) return ret median.support_native_out = False @with_supported_dtypes({"2.2 and below": ("float",)}, backend_version) def nanmean( a: torch.Tensor, /, *, axis: Optional[Union[int, Tuple[int]]] = None, keepdims: bool = False, dtype: Optional[torch.dtype] = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.nanmean(a, dim=axis, keepdim=keepdims, dtype=dtype, out=out) nanmean.support_native_out = True def nanmin( a: torch.Tensor, /, *, axis: Optional[Union[int, Tuple[int]]] = None, keepdims: Optional[bool] = False, initial: Optional[Union[int, float, complex, ivy.Container]] = None, where: Optional[torch.Tensor] = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: nan_mask = torch.isnan(a) if where is not None: nan_mask = torch.logical_or(nan_mask, torch.logical_not(where)) a_copy = a.clone() a_copy[nan_mask] = float("inf") if axis is None: result, _ = a_copy.min(), None else: result, _ = a_copy.min(dim=axis, keepdim=keepdims) if initial is not None: initial = torch.tensor(initial) result = torch.minimum(result, initial) return result def nanprod( a: torch.Tensor, /, *, axis: Optional[Union[int, Sequence[int]]] = None, dtype: Optional[torch.dtype] = None, keepdims: Optional[bool] = False, out: Optional[torch.Tensor] = None, initial: Optional[Union[int, float, complex, ivy.Container]] = None, where: Optional[torch.Tensor] = None, ) -> torch.Tensor: dtype = ivy.as_native_dtype(dtype) if dtype is None: dtype = _infer_dtype(a.dtype) if initial is None: initial = 1 a = a.type(dtype) a = torch.nan_to_num(a, nan=1.0) if a.dtype == torch.float16: a = a.type(torch.float32) if axis == (): return a.type(dtype) if axis is None: return torch.prod(input=a, out=out).type(dtype) * initial if isinstance(axis, (tuple, list)): for i in axis: a = torch.prod(a, dim=i, keepdim=keepdims, out=out).type(dtype) if a.dtype == torch.float16: a = a.type(torch.float32) return a.type(dtype) * initial return torch.prod(a, dim=axis, keepdim=keepdims, out=out).type(dtype) * initial nanprod.support_native_out = True def _validate_quantile(q): if isinstance(q, float): q = torch.as_tensor(q) if q.ndim == 1 and torch.numel(q) < 10: for i in range(torch.numel(q)): if not (0.0 <= q[i] <= 1.0): return False else: if not (torch.all(q >= 0) and torch.all(q <= 1)): return False return True def _to_positive_axis(axis, ndim): if not isinstance(axis, (list, tuple)): axis = [axis] if len(axis) == 0: raise ValueError("Axis can't be empty!") if len(set(axis)) != len(axis): raise ValueError("Duplicated axis!") for i in range(len(axis)): if not (isinstance(axis[i], int) and (ndim > axis[i] >= -ndim)): raise ValueError("Axis must be int in range [-rank(x), rank(x))") if axis[i] < 0: axis[i] += ndim return axis def _handle_axis(a, q, fn, keepdims=False, axis=None): nd = a.ndim axis_arg = deepcopy(axis) if axis is not None: axis = _to_positive_axis(axis, nd) if len(axis) == 1: axis_arg = axis[0] else: keep = set(range(nd)) - set(axis) nkeep = len(keep) for i, s in enumerate(sorted(keep)): a = torch.moveaxis(a, s, i) a = a.view( [ *a.shape[:nkeep], -1, ] ) axis_arg = -1 ret = fn(a, q, axis=axis_arg) if keepdims: if axis is None: index_ret = (None,) * nd else: index_ret = tuple(None if i in axis else slice(None) for i in range(nd)) ret = ret[(Ellipsis,) + index_ret] return ret def _quantile(a, q, axis=None): ret_dtype = a.dtype if isinstance(q, float): q = torch.as_tensor(q) if isinstance(q, torch.Tensor) and q.ndim > 1: raise ValueError("q argument must be a scalar or 1-dimensional!") if axis is None: axis = 0 a = a.flatten() n = a.shape[axis] indices = q * (n - 1) a = torch.sort(a, axis)[axis] indices_below = torch.floor(indices).to(torch.int64) indices_upper = torch.ceil(indices).to(torch.int64) weights = indices - indices_below.to(torch.float64) indices_below = torch.clip(indices_below, 0, n - 1) indices_upper = torch.clip(indices_upper, 0, n - 1) tensor_upper = torch.index_select(a, 0, indices_upper) tensor_below = torch.index_select(a, 0, indices_below) pred = weights <= 0.5 out = torch.where(pred, tensor_below, tensor_upper) return out.to(ret_dtype) def _compute_quantile_wrapper( x, q, axis=None, keepdims=False, interpolation="linear", out=None ): if not _validate_quantile(q): raise ValueError("Quantiles must be in the range [0, 1]") if interpolation in [ "linear", "lower", "higher", "midpoint", "nearest", "nearest_jax", ]: if interpolation == "nearest_jax": return _handle_axis(x, q, _quantile, keepdims=keepdims, axis=axis) else: return torch.quantile( x, q, dim=axis, keepdim=keepdims, interpolation=interpolation, out=out ) else: raise ValueError( "Interpolation must be 'linear', 'lower', 'higher', 'midpoint' or 'nearest'" ) @with_unsupported_dtypes({"2.2 and below": ("bfloat16", "float16")}, backend_version) def quantile( a: torch.Tensor, q: Union[torch.Tensor, float], /, *, axis: Optional[Union[Sequence[int], int]] = None, keepdims: bool = False, interpolation: str = "linear", out: Optional[torch.Tensor] = None, ) -> torch.Tensor: # added the nearest_jax mode to enable jax-like calculations for method="nearest" return _compute_quantile_wrapper( a, q, axis=axis, keepdims=keepdims, interpolation=interpolation, out=out, ) quantile.support_native_out = True def corrcoef( x: torch.Tensor, /, *, y: Optional[torch.Tensor] = None, rowvar: bool = True, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if y is None: xarr = x else: axis = 0 if rowvar else 1 xarr = torch.concat([x, y], dim=axis) xarr = xarr.T if not rowvar else xarr return torch.corrcoef(xarr) def _nanmedian(input, axis, keepdims): dtype = input.dtype temp = input.to(torch.float64) num_dim = len(temp.size()) keepdim_shape = list(temp.size()) q = 0.5 axis = [axis] if isinstance(axis, int) else list(axis) for i in axis: keepdim_shape[i] = 1 axis = [num_dim + x if x < 0 else x for x in axis] axis.sort() dimension = len(temp.size()) while len(axis) > 0: axis1 = axis[0] for axis2 in range(axis1 + 1, dimension): temp = torch.transpose(temp, axis1, axis2) axis1 = axis2 axis = [x - 1 for x in axis] axis.pop(0) dimension = dimension - 1 temp = torch.flatten(temp, start_dim=dimension - len(axis)) ret = torch.nanquantile(temp, q, dim=-1, keepdim=keepdims, interpolation="midpoint") if keepdims: keepdim_shape = tuple(keepdim_shape) ret = ret.reshape(keepdim_shape) if dtype in [torch.int32, torch.int64, torch.float64]: ret = torch.asarray(ret, dtype=torch.float64) elif dtype in [torch.float16, torch.bfloat16]: ret = torch.asarray(ret, dtype=torch.float16) else: ret = torch.asarray(ret, dtype=torch.float32) return ret @with_unsupported_dtypes({"2.2 and below": ("bfloat16", "float16")}, backend_version) def nanmedian( input: torch.Tensor, /, *, axis: Optional[Union[Tuple[int], int]] = None, keepdims: bool = False, overwrite_input: bool = False, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if overwrite_input: copied_input = input.clone() if axis is None: copied_input = copied_input.flatten() ret = torch.nanquantile( copied_input.double(), 0.5, dim=-1, keepdim=keepdims, interpolation="midpoint", ) if input.dtype in [torch.int32, torch.int64, torch.float64]: ret = ret.to(torch.float64) elif input.dtype in [torch.float16, torch.bfloat16]: ret = ret.to(torch.float16) else: ret = ret.to(torch.float32) return ret return _nanmedian(copied_input, axis, keepdims) else: if axis is None: input = input.flatten() ret = torch.nanquantile( input.double(), 0.5, dim=-1, keepdim=keepdims, interpolation="midpoint" ) if input.dtype in [torch.int32, torch.int64, torch.float64]: ret = ret.to(torch.float64) elif input.dtype in [torch.float16, torch.bfloat16]: ret = ret.to(torch.float16) else: ret = ret.to(torch.float32) return ret return _nanmedian(input, axis, keepdims) nanmedian.support_native_out = True def bincount( x: torch.Tensor, /, *, weights: Optional[torch.Tensor] = None, minlength: int = 0, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if weights is None: ret = torch.bincount(x, minlength=minlength) ret = ret.to(x.dtype) else: ret = torch.bincount(x, weights=weights, minlength=minlength) ret = ret.to(weights.dtype) return ret bincount.support_native_out = False def igamma( a: torch.Tensor, /, *, x: torch.Tensor, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.special.gammainc(a, x, out=out) igamma.support_native_out = True @with_unsupported_dtypes({"2.2 and below": ("float16", "bfloat16")}, backend_version) def cov( x1: torch.Tensor, x2: torch.Tensor = None, /, *, rowVar: bool = True, bias: bool = False, ddof: Optional[int] = None, fweights: Optional[torch.Tensor] = None, aweights: Optional[torch.Tensor] = None, dtype: Optional[torch.dtype] = None, ) -> torch.Tensor: # dtype casts separately if fweights is not None: fweights = fweights.type(torch.int64) if aweights is not None: aweights = aweights.type(torch.float64) if x1.dim() > 2: raise ValueError("x1 has more than 2 dimensions") if x2 is not None: if x2.dim() > 2: raise ValueError("x2 has more than 2 dimensions") if ddof is None: if bias == 0: ddof = 1 else: ddof = 0 if dtype is None: x1 = x1.type(torch.float64) if x2 is not None: x2 = x2.type(torch.float64) else: x1 = x1.type(dtype) if x2 is not None: x2 = x2.type(dtype) X = x1 if not rowVar and len(x1.shape) != 1: X = torch.t(x1) if x2 is not None: if not rowVar and len(x2.shape) != 1: x2 = torch.t(x2) X = torch.vstack((X, x2)) return torch.cov(X, correction=ddof, fweights=fweights, aweights=aweights) cov.support_native_out = False @with_unsupported_dtypes( {"2.2 and below": ("float16", "complex")}, backend_version, ) def cummax( x: torch.Tensor, /, *, axis: int = 0, exclusive: bool = False, reverse: bool = False, dtype: Optional[torch.dtype] = None, out: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: if exclusive or reverse: if exclusive and reverse: x1, x2 = torch.cummax(torch.flip(x, dims=(axis,)), axis) x1, x2 = torch.transpose(x1, axis, -1), torch.transpose(x2, axis, -1) x1, x2 = torch.concat( (torch.zeros_like(x1[..., -1:]), x1[..., :-1]), -1 ), torch.concat((torch.zeros_like(x2[..., -1:]), x2[..., :-1]), -1) x1, x2 = torch.transpose(x1, axis, -1), torch.transpose(x2, axis, -1) res1, res2 = torch.flip(x1, dims=(axis,)), torch.flip(x2, dims=(axis,)) elif exclusive: x = torch.transpose(x, axis, -1) x = torch.cat((torch.zeros_like(x[..., -1:]), x[..., :-1]), -1) x1, x2 = torch.cummax(x, -1) res1, res2 = torch.transpose(x1, axis, -1), torch.transpose(x2, axis, -1) else: x1, x2 = torch.cummax(torch.flip(x, dims=(axis,)), axis) res1, res2 = torch.flip(x1, dims=(axis,)), torch.flip(x2, dims=(axis,)) return res1, res2 return torch.cummax(x, axis, out=out) @with_unsupported_dtypes( { "2.2 and below": ("uint8", "float16", "bfloat16"), "1.12.1 and above": ("uint8", "float16"), }, backend_version, ) def cummin( x: torch.Tensor, /, *, axis: int = 0, exclusive: bool = False, reverse: bool = False, dtype: Optional[torch.dtype] = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: dtype = ivy.as_native_dtype(dtype) if dtype is None: dtype = _infer_dtype(x.dtype) if not reverse: ret = torch.cummin(x, axis)[0] else: ret = torch.cummin(torch.flip(x, dims=(axis,)), axis)[0] ret = torch.flip(ret, (axis,)) if ivy.exists(out): return ivy.inplace_update(out, ret.to(dtype)) return ret.to(dtype)
ivy/ivy/functional/backends/torch/experimental/statistical.py/0
{ "file_path": "ivy/ivy/functional/backends/torch/experimental/statistical.py", "repo_id": "ivy", "token_count": 9520 }
26
import torch import torchvision from ivy.func_wrapper import to_native_arrays_and_back @to_native_arrays_and_back def roi_align( input, boxes, output_size, spatial_scale=1.0, sampling_ratio=-1, aligned=False ): ret = torchvision.ops.roi_align( input, boxes, output_size, spatial_scale, sampling_ratio, aligned ) return ret def nms( boxes, scores=None, iou_threshold=0.5, max_output_size=None, score_threshold=float("-inf"), ): # boxes (Tensor[N, 4])) – boxes to perform NMS on. # They are expected to be in (x1, y1, x2, y2) format # with 0 <= x1 < x2 and 0 <= y1 < y2. change_id = False if score_threshold is not float("-inf") and scores is not None: keep_idx = scores > score_threshold boxes = boxes[keep_idx] scores = scores[keep_idx] change_id = True nonzero = torch.nonzero(keep_idx).flatten() if scores is None: scores = torch.ones((boxes.shape[0],), dtype=boxes.dtype) if len(boxes) < 2: if len(boxes) == 1: ret = torch.tensor([0], dtype=torch.int64) else: ret = torch.tensor([], dtype=torch.int64) else: ret = torchvision.ops.nms(boxes, scores, iou_threshold) if change_id and len(ret) > 0: ret = torch.tensor(nonzero[ret], dtype=torch.int64).flatten() return ret.flatten()[:max_output_size]
ivy/ivy/functional/backends/torch/sub_backends/torchvision/layers.py/0
{ "file_path": "ivy/ivy/functional/backends/torch/sub_backends/torchvision/layers.py", "repo_id": "ivy", "token_count": 619 }
27
from . import control_flow_operators from .control_flow_operators import * from . import custom_gradient_operators from .custom_gradient_operators import * from . import linalg from . import operators from .operators import * from . import parallel_operators from .parallel_operators import *
ivy/ivy/functional/frontends/jax/lax/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/jax/lax/__init__.py", "repo_id": "ivy", "token_count": 79 }
28
# local import ivy from ivy.functional.frontends.jax.func_wrapper import ( to_ivy_arrays_and_back, ) from ivy.func_wrapper import with_unsupported_dtypes from ivy.functional.frontends.jax.numpy import promote_types_of_jax_inputs from ivy.functional.frontends.numpy.manipulation_routines import trim_zeros from ivy.utils.einsum_path_helpers import ( parse_einsum_input, compute_size_by_dict, flop_count, greedy_path, optimal_path, find_contraction, can_dot, ) @to_ivy_arrays_and_back def absolute(x, /): return ivy.abs(x) @to_ivy_arrays_and_back def add(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.add(x1, x2) @to_ivy_arrays_and_back def angle(z, deg=False): return ivy.angle(z, deg=deg) @to_ivy_arrays_and_back def arccos(x, /): return ivy.acos(x) @to_ivy_arrays_and_back def arccosh(x, /): return ivy.acosh(x) @to_ivy_arrays_and_back def arcsin(x, /): return ivy.asin(x) @to_ivy_arrays_and_back def arcsinh(x, /): return ivy.asinh(x) @to_ivy_arrays_and_back def arctan(x, /): return ivy.atan(x) @to_ivy_arrays_and_back def arctan2(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.atan2(x1, x2) @to_ivy_arrays_and_back def arctanh(x, /): return ivy.atanh(x) @to_ivy_arrays_and_back def around(a, decimals=0, out=None): ret_dtype = a.dtype return ivy.round(a, decimals=decimals, out=out).astype(ret_dtype, copy=False) @with_unsupported_dtypes( {"0.4.24 and below": ("bfloat16",)}, "jax", ) @to_ivy_arrays_and_back def cbrt(x, /): all_positive = ivy.pow(ivy.abs(x), 1.0 / 3.0) return ivy.where(ivy.less(x, 0.0), ivy.negative(all_positive), all_positive) @to_ivy_arrays_and_back def ceil(x, /): return ivy.ceil(x) @with_unsupported_dtypes({"2.6.0 and below": ("float16", "bfloat16")}, "paddle") @to_ivy_arrays_and_back def clip(a, a_min=None, a_max=None, out=None): return ivy.array(ivy.clip(a, a_min, a_max), dtype=a.dtype) @to_ivy_arrays_and_back def conj(x, /): return ivy.conj(x) @to_ivy_arrays_and_back def conjugate(x, /): return ivy.conj(x) @to_ivy_arrays_and_back def convolve(a, v, mode="full", *, precision=None): a, v = promote_types_of_jax_inputs(a, v) if len(a) < len(v): a, v = v, a v = ivy.flip(v) out_order = slice(None) if mode == "valid": padding = [(0, 0)] elif mode == "same": padding = [(v.shape[0] // 2, v.shape[0] - v.shape[0] // 2 - 1)] elif mode == "full": padding = [(v.shape[0] - 1, v.shape[0] - 1)] a = a.reshape([1, 1, a.shape[0]]) v = v.reshape([v.shape[0], 1, 1]) result = ivy.conv_general_dilated( a, v, (1,), padding, dims=1, data_format="channel_first", ) return result[0, 0, out_order] @to_ivy_arrays_and_back def copysign(x1, x2, /): return ivy.copysign(x1, x2) @to_ivy_arrays_and_back def cos(x, /): return ivy.cos(x) @to_ivy_arrays_and_back def cosh(x, /): return ivy.cosh(x) @to_ivy_arrays_and_back def deg2rad(x, /): return ivy.deg2rad(x) @to_ivy_arrays_and_back def degrees(x, /): return ivy.rad2deg(x) @to_ivy_arrays_and_back def diff(a, n=1, axis=-1, prepend=None, append=None): return ivy.diff(a, n=n, axis=axis, prepend=prepend, append=append, out=None) @to_ivy_arrays_and_back def divide(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) if ivy.dtype(x1) in ["int64", "uint64"]: x1 = ivy.astype(x1, ivy.float64) elif ivy.is_int_dtype(x1): x1 = ivy.astype(x1, ivy.float32) return ivy.divide(x1, x2).astype(x1.dtype) @to_ivy_arrays_and_back def divmod(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return (ivy.floor_divide(x1, x2), ivy.remainder(x1, x2)) @to_ivy_arrays_and_back def dot(a, b, *, precision=None): a, b = promote_types_of_jax_inputs(a, b) return ivy.matmul(a, b) @to_ivy_arrays_and_back def ediff1d(ary, to_end=None, to_begin=None): diffs = ivy.diff(ary) diffs_dtype = diffs.dtype if to_begin is not None: if not isinstance(to_begin, (list, tuple)): to_begin = [to_begin] to_begin = ivy.array(to_begin, dtype=diffs_dtype) diffs = ivy.concat((to_begin, diffs)) if to_end is not None: if not isinstance(to_end, (list, tuple)): to_end = [to_end] to_end = ivy.array(to_end, dtype=diffs_dtype) diffs = ivy.concat((diffs, to_end)) return diffs @to_ivy_arrays_and_back def einsum_path(subscripts, *operands, optimize="greedy"): # Figure out what the path really is path_type = optimize if path_type is True: path_type = "greedy" if path_type is None: path_type = False explicit_einsum_path = False memory_limit = None # No optimization or a named path algorithm if (path_type is False) or isinstance(path_type, str): pass # Given an explicit path elif len(path_type) and (path_type[0] == "einsum_path"): explicit_einsum_path = True # Path tuple with memory limit elif ( (len(path_type) == 2) and isinstance(path_type[0], str) and isinstance(path_type[1], (int, float)) ): memory_limit = int(path_type[1]) path_type = path_type[0] else: raise TypeError(f"Did not understand the path: {str(path_type)}") # Python side parsing if subscripts: input_subscripts, output_subscript, operands = parse_einsum_input( operands, subscripts=subscripts ) else: input_subscripts, output_subscript, operands = parse_einsum_input(operands) # Build a few useful list and sets input_list = input_subscripts.split(",") input_sets = [set(x) for x in input_list] output_set = set(output_subscript) indices = set(input_subscripts.replace(",", "")) # Get length of each unique dimension and ensure all dimensions are correct dimension_dict = {} broadcast_indices = [[] for x in range(len(input_list))] for tnum, term in enumerate(input_list): sh = operands[tnum].shape if len(sh) != len(term): raise ValueError( "Einstein sum subscript %s does not contain the " "correct number of indices for operand %d." % (input_subscripts[tnum], tnum) ) for cnum, char in enumerate(term): dim = sh[cnum] # Build out broadcast indices if dim == 1: broadcast_indices[tnum].append(char) if char in dimension_dict.keys(): # For broadcasting cases we always want the largest dim size if dimension_dict[char] == 1: dimension_dict[char] = dim elif dim not in (1, dimension_dict[char]): raise ValueError( "Size of label '%s' for operand %d (%d) " "does not match previous terms (%d)." % (char, tnum, dimension_dict[char], dim) ) else: dimension_dict[char] = dim # Convert broadcast inds to sets broadcast_indices = [set(x) for x in broadcast_indices] # Compute size of each input array plus the output array size_list = [ compute_size_by_dict(term, dimension_dict) for term in input_list + [output_subscript] ] max_size = max(size_list) if memory_limit is None: memory_arg = max_size else: memory_arg = memory_limit # Compute naive cost # This isn't quite right, need to look into exactly how einsum does this inner_product = (sum(len(x) for x in input_sets) - len(indices)) > 0 naive_cost = flop_count(indices, inner_product, len(input_list), dimension_dict) # Compute the path if explicit_einsum_path: path = path_type[1:] elif (path_type is False) or (len(input_list) in [1, 2]) or (indices == output_set): # Nothing to be optimized, leave it to einsum path = [tuple(range(len(input_list)))] elif path_type == "greedy": path = greedy_path(input_sets, output_set, dimension_dict, memory_arg) elif path_type == "optimal": path = optimal_path(input_sets, output_set, dimension_dict, memory_arg) else: raise KeyError(f"Path name {path_type} not found") cost_list, scale_list, size_list, contraction_list = [], [], [], [] # Build contraction tuple (positions, gemm, einsum_str, remaining) for cnum, contract_inds in enumerate(path): # Make sure we remove inds from right to left contract_inds = tuple(sorted(contract_inds, reverse=True)) contract = find_contraction(contract_inds, input_sets, output_set) out_inds, input_sets, idx_removed, idx_contract = contract cost = flop_count(idx_contract, idx_removed, len(contract_inds), dimension_dict) cost_list.append(cost) scale_list.append(len(idx_contract)) size_list.append(compute_size_by_dict(out_inds, dimension_dict)) bcast = set() tmp_inputs = [] for x in contract_inds: tmp_inputs.append(input_list.pop(x)) bcast |= broadcast_indices.pop(x) new_bcast_inds = bcast - idx_removed # If we're broadcasting, nix blas if not len(idx_removed & bcast): do_blas = can_dot(tmp_inputs, out_inds, idx_removed) else: do_blas = False # Last contraction if (cnum - len(path)) == -1: idx_result = output_subscript else: sort_result = [(dimension_dict[ind], ind) for ind in out_inds] idx_result = "".join([x[1] for x in sorted(sort_result)]) input_list.append(idx_result) broadcast_indices.append(new_bcast_inds) einsum_str = ",".join(tmp_inputs) + "->" + idx_result contraction = (contract_inds, idx_removed, einsum_str, input_list[:], do_blas) contraction_list.append(contraction) opt_cost = sum(cost_list) + 1 if len(input_list) != 1: # Explicit "einsum_path" is usually trusted, but we detect this kind of # mistake in order to prevent from returning an intermediate value. raise RuntimeError( f"Invalid einsum_path is specified: {len(input_list) - 1} " "more operands has to be contracted." ) # Return the path along with a nice string representation overall_contraction = input_subscripts + "->" + output_subscript header = ("scaling", "current", "remaining") speedup = naive_cost / opt_cost max_i = max(size_list) path_print = f" Complete contraction: {overall_contraction}\n" path_print += f" Naive scaling: {len(indices)}\n" path_print += f" Optimized scaling: {max(scale_list)}\n" path_print += f" Naive FLOP count: {naive_cost:.3e}\n" path_print += f" Optimized FLOP count: {opt_cost:.3e}\n" path_print += f" Theoretical speedup: {speedup:3.3f}\n" path_print += f" Largest intermediate: {max_i:.3e} elements\n" path_print += "-" * 74 + "\n" path_print += "%6s %24s %40s\n" % header path_print += "-" * 74 for n, contraction in enumerate(contraction_list): inds, idx_rm, einsum_str, remaining, blas = contraction remaining_str = ",".join(remaining) + "->" + output_subscript path_run = (scale_list[n], einsum_str, remaining_str) path_print += "\n%4d %24s %40s" % path_run ret = (path, path_print) return ret @to_ivy_arrays_and_back def exp( x, /, ): return ivy.exp(x) @to_ivy_arrays_and_back def exp2(x, /): return ivy.exp2(x) @to_ivy_arrays_and_back def expm1( x, /, ): return ivy.expm1(x) @with_unsupported_dtypes( {"0.4.24 and below": ("uint16",)}, "jax", ) @to_ivy_arrays_and_back def fabs(x, /): return ivy.abs(x) @to_ivy_arrays_and_back def fix(x, out=None): return ivy.fix(x, out=out) @to_ivy_arrays_and_back def float_power(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.float_power(x1, x2).astype(x1.dtype, copy=False) @to_ivy_arrays_and_back def floor(x, /): return ivy.floor(x) @to_ivy_arrays_and_back def floor_divide(x1, x2, /, out=None): return ivy.floor_divide(x1, x2, out=out) @to_ivy_arrays_and_back def fmax(x1, x2): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.fmax(x1, x2) @to_ivy_arrays_and_back def fmin(x1, x2): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.fmin(x1, x2) @to_ivy_arrays_and_back def fmod(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.fmod(x1, x2) @to_ivy_arrays_and_back def frexp(x, /): return ivy.frexp(x) @to_ivy_arrays_and_back def gcd(x1, x2): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.gcd(x1, x2) @to_ivy_arrays_and_back def gradient(f, *varargs, axis=None, edge_order=None): edge_order = edge_order if edge_order is not None else 1 return ivy.gradient(f, spacing=varargs, axis=axis, edge_order=edge_order) @to_ivy_arrays_and_back def heaviside(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.heaviside(x1, x2) @to_ivy_arrays_and_back def hypot(x1, x2, /): return ivy.hypot(x1, x2) @to_ivy_arrays_and_back def i0(x): return ivy.i0(x) @to_ivy_arrays_and_back def imag(val, /): return ivy.imag(val) @to_ivy_arrays_and_back def inner(a, b): a, b = promote_types_of_jax_inputs(a, b) return ivy.inner(a, b) @to_ivy_arrays_and_back def interp(x, xp, fp, left=None, right=None, period=None): return ivy.interp(x, xp, fp, left=left, right=right, period=period) @to_ivy_arrays_and_back def kron(a, b): a, b = promote_types_of_jax_inputs(a, b) return ivy.kron(a, b) @to_ivy_arrays_and_back def lcm(x1, x2): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.lcm(x1, x2) @to_ivy_arrays_and_back def ldexp(x1, x2, /): return ivy.ldexp(x1, x2) @to_ivy_arrays_and_back def log(x, /): return ivy.log(x) @to_ivy_arrays_and_back def log10(x, /): return ivy.log10(x) @to_ivy_arrays_and_back def log1p(x, /): return ivy.log1p(x) @to_ivy_arrays_and_back def log2(x, /): return ivy.log2(x) @to_ivy_arrays_and_back def logaddexp(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.logaddexp(x1, x2) @to_ivy_arrays_and_back def logaddexp2(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.logaddexp2(x1, x2) @to_ivy_arrays_and_back def matmul(a, b, *, precision=None): a, b = promote_types_of_jax_inputs(a, b) return ivy.matmul(a, b) @to_ivy_arrays_and_back def maximum(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.maximum(x1, x2) @to_ivy_arrays_and_back def minimum(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.minimum(x1, x2) @to_ivy_arrays_and_back @with_unsupported_dtypes({"0.4.24 and below": ("complex",)}, "jax") def mod(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.remainder(x1, x2) @to_ivy_arrays_and_back def modf(x, /, out=None): y1 = ivy.where(x >= 0, ivy.floor(x), ivy.ceil(x)) # integral part y2 = x - y1 # fractional part dtype_str = str(x.dtype) if "float" in dtype_str: return y2, y1 # floats return as they were. u/ints (8, 16, 32) return as float32, 64 as float64. dtype_size = x.itemsize * 8 if "int8" in dtype_str or "int16" in dtype_str: dtype_size = 32 ret_type = f"float{dtype_size}" return y2.astype(ret_type), y1.astype(ret_type) @to_ivy_arrays_and_back def multiply(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.multiply(x1, x2) @to_ivy_arrays_and_back def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None): return ivy.nan_to_num(x, copy=copy, nan=nan, posinf=posinf, neginf=neginf) @to_ivy_arrays_and_back def negative( x, /, ): return ivy.negative(x) @with_unsupported_dtypes( { "0.4.24 and below": ( "bfloat16", "float16", ) }, "jax", ) @to_ivy_arrays_and_back def nextafter(x1, x2, /): return ivy.nextafter(x1, x2) @to_ivy_arrays_and_back def outer(a, b, out=None): return ivy.outer(a, b, out=out) @to_ivy_arrays_and_back def poly(seq_of_zeros): seq_of_zeros = ivy.atleast_1d(seq_of_zeros) sh = seq_of_zeros.shape if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0: seq_of_zeros = ivy.eigvals(seq_of_zeros) if seq_of_zeros.ndim != 1: raise ValueError("input must be 1d or non-empty square 2d array.") dt = seq_of_zeros.dtype if len(seq_of_zeros) == 0: return ivy.ones((), dtype=dt) a = ivy.ones((1,), dtype=dt) for k in range(len(seq_of_zeros)): a = convolve( a, ivy.asarray([ivy.array(1), -seq_of_zeros[k]], dtype=dt), mode="full" ) return a @to_ivy_arrays_and_back def polyadd(a1, a2): d = max(a1.size, a2.size) a1 = ivy.pad(a1, (d - a1.size, 0), mode="constant") a2 = ivy.pad(a2, (d - a2.size, 0), mode="constant") return a1 + a2 @with_unsupported_dtypes( {"0.4.24 and below": ("float16",)}, "jax", ) @to_ivy_arrays_and_back def polyder(p, m=1): if m < 0: raise ValueError("Order of derivative must be positive.") if m == 0: return p p_dtype = p.dtype coeff = ivy.prod( ivy.expand_dims(ivy.arange(m, len(p), dtype=p_dtype)) - ivy.expand_dims(ivy.arange(m, dtype=p_dtype), axis=1), axis=0, ) return (p[:-m] * coeff[::-1]).astype(p_dtype) @with_unsupported_dtypes( {"0.3.14 and below": ("float16",)}, "jax", ) @to_ivy_arrays_and_back def polydiv(u, v, *, trim_leading_zeros=False): u, v_arr = ivy.promote_types_of_inputs(u, v) n = v_arr.shape[0] - 1 m = u.shape[0] - 1 scale = 1.0 / v_arr[0] q = ivy.zeros((max(m - n + 1, 1),), dtype=u.dtype) r = ivy.copy_array(u) for k in range(0, m - n + 1): d = scale * r[k] q[k] = d r[k : k + n + 1] = r[k : k + n + 1] - (d * v_arr) # if trim_leading_zeros: # r = trim_zeros_tol(r, trim='f') # TODO: need to control tolerance of this function to handle the argument return q, r @with_unsupported_dtypes( {"0.4.24 and below": ("float16",)}, "jax", ) @to_ivy_arrays_and_back def polyint(p, m=1, k=None): p = ivy.asarray(p) m = int(m) if m == 0: return p if k is None: k_arr = ivy.zeros((m,), dtype=p.dtype) elif isinstance(k, (int, float)): k_arr = ivy.full((m,), k, dtype=p.dtype) elif ivy.asarray(k).shape == (1,): k_arr = ivy.full((m,), ivy.asarray(k)[0], dtype=p.dtype) elif ivy.asarray(k).shape == (m,): k_arr = ivy.asarray(k, dtype=p.dtype) else: raise ValueError("k must be a scalar or a rank-1 array of length 1 or m.") grid = ( ivy.arange(p.size + m, dtype=p.dtype)[ivy.newaxis] - ivy.arange(m, dtype=p.dtype)[:, ivy.newaxis] ) coeff = ivy.maximum(1, grid).prod(axis=0)[::-1] return ivy.divide(ivy.concat((p, k_arr)), coeff).astype(p.dtype) @to_ivy_arrays_and_back def polymul(a1, a2, *, trim_leading_zeros=False): a1, a2 = ivy.atleast_1d(a1), ivy.atleast_1d(a2) if trim_leading_zeros and (len(a1) > 1 or len(a2) > 1): a1, a2 = trim_zeros(a1, trim="f"), trim_zeros(a2, trim="f") if len(a1) == 0: a1 = ivy.asarray([0], dtype=a1.dtype) if len(a2) == 0: a2 = ivy.asarray([0], dtype=a2.dtype) return convolve(a1, a2, mode="full") @to_ivy_arrays_and_back def polysub(a1, a2): n = max(a1.size, a2.size) - 1 a1 = ivy.pad(a1, (0, n - a1.size + 1), mode="constant") a2 = ivy.pad(a2, (0, n - a2.size + 1), mode="constant") return a1 - a2 @to_ivy_arrays_and_back def positive( x, /, ): return ivy.positive(x) @to_ivy_arrays_and_back def power(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.pow(x1, x2) @to_ivy_arrays_and_back def product( a, *, axis=None, dtype=None, keepdims=False, initial=None, where=None, promote_integers=True, out=None, ): if ivy.is_array(where): a = ivy.where(where, a, ivy.default(out, ivy.ones_like(a)), out=out) if promote_integers: if ivy.is_uint_dtype(a.dtype): dtype = "uint64" elif ivy.is_int_dtype(a.dtype): dtype = "int64" if initial is not None: if axis is not None: s = ivy.to_list(ivy.shape(a, as_array=True)) s[axis] = 1 header = ivy.full(ivy.Shape(tuple(s)), initial) a = ivy.concat([header, a], axis=axis) else: a[0] *= initial return ivy.prod(a, axis=axis, dtype=dtype, keepdims=keepdims, out=out) @to_ivy_arrays_and_back def rad2deg( x, /, ): return ivy.rad2deg(x) @to_ivy_arrays_and_back def radians(x, /): return ivy.deg2rad(x) @to_ivy_arrays_and_back def real(val, /): return ivy.real(val) @to_ivy_arrays_and_back def reciprocal(x, /): return ivy.reciprocal(x) @to_ivy_arrays_and_back def remainder(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.remainder(x1, x2) @to_ivy_arrays_and_back def round(a, decimals=0, out=None): return ivy.round(a, decimals=decimals, out=out) # sign @to_ivy_arrays_and_back def sign(x, /): return ivy.sign(x, out=None) @to_ivy_arrays_and_back def signbit(x, /): x = ivy.array(x) return ivy.signbit(x) @to_ivy_arrays_and_back def sin(x, /): return ivy.sin(x) @to_ivy_arrays_and_back def sinc(x, /): return ivy.sinc(x) @to_ivy_arrays_and_back def sinh(x, /): return ivy.sinh(x) @to_ivy_arrays_and_back def sqrt(x, /): return ivy.sqrt(x) @to_ivy_arrays_and_back def square(x, /): return ivy.square(x) @to_ivy_arrays_and_back def subtract(x1, x2, /): x1, x2 = promote_types_of_jax_inputs(x1, x2) return ivy.subtract(x1, x2) @to_ivy_arrays_and_back def tan(x, /): return ivy.tan(x) @to_ivy_arrays_and_back def tanh(x, /): return ivy.tanh(x) @to_ivy_arrays_and_back def tensordot(a, b, axes=2): a, b = promote_types_of_jax_inputs(a, b) return ivy.tensordot(a, b, axes=axes) @to_ivy_arrays_and_back def trace(a, offset=0, axis1=0, axis2=1, out=None): return ivy.trace(a, offset=offset, axis1=axis1, axis2=axis2, out=out) @to_ivy_arrays_and_back def trapz(y, x=None, dx=1.0, axis=-1, out=None): return ivy.trapz(y, x=x, dx=dx, axis=axis, out=out) @to_ivy_arrays_and_back def trunc(x): return ivy.trunc(x) @to_ivy_arrays_and_back def vdot(a, b): a, b = promote_types_of_jax_inputs(a, b) return ivy.multiply(a, b).sum() abs = absolute true_divide = divide
ivy/ivy/functional/frontends/jax/numpy/mathematical_functions.py/0
{ "file_path": "ivy/ivy/functional/frontends/jax/numpy/mathematical_functions.py", "repo_id": "ivy", "token_count": 11417 }
29
import ivy from ivy.utils.exceptions import handle_exceptions from numbers import Number from typing import Union, Tuple, Iterable # Constructing dtypes are required as ivy.<dtype> # will change dynamically on the backend and may not be available _int8 = ivy.IntDtype("int8") _int16 = ivy.IntDtype("int16") _int32 = ivy.IntDtype("int32") _int64 = ivy.IntDtype("int64") _uint8 = ivy.UintDtype("uint8") _uint16 = ivy.UintDtype("uint16") _uint32 = ivy.UintDtype("uint32") _uint64 = ivy.UintDtype("uint64") _bfloat16 = ivy.FloatDtype("bfloat16") _float16 = ivy.FloatDtype("float16") _float32 = ivy.FloatDtype("float32") _float64 = ivy.FloatDtype("float64") _complex64 = ivy.ComplexDtype("complex64") _complex128 = ivy.ComplexDtype("complex128") _bool = ivy.Dtype("bool") mxnet_promotion_table = { (_bool, _bool): _bool, (_bool, _int8): _int8, (_bool, _int32): _int32, (_bool, _int64): _int64, (_bool, _uint8): _uint8, (_bool, _bfloat16): _bfloat16, (_bool, _float16): _float16, (_bool, _float32): _float32, (_bool, _float64): _float64, (_int8, _bool): _int8, (_int8, _int8): _int8, (_int8, _int32): _int32, (_int8, _int64): _int64, (_int32, _bool): _int32, (_int32, _int8): _int32, (_int32, _int32): _int32, (_int32, _int64): _int64, (_int64, _bool): _int64, (_int64, _int8): _int64, (_int64, _int32): _int64, (_int64, _int64): _int64, (_uint8, _bool): _uint8, (_uint8, _uint8): _uint8, (_int32, _uint8): _int32, (_int64, _uint8): _int64, (_uint8, _int32): _int32, (_uint8, _int64): _int64, (_float16, _bool): _float16, (_float16, _float16): _float16, (_float16, _float32): _float32, (_float16, _float64): _float64, (_float32, _bool): _float32, (_float32, _float16): _float32, (_float32, _float32): _float32, (_float32, _float64): _float64, (_float64, _bool): _float64, (_float64, _float16): _float64, (_float64, _float32): _float64, (_float64, _float64): _float64, (_int8, _float16): _float16, (_float16, _int8): _float16, (_int8, _float32): _float32, (_float32, _int8): _float32, (_int8, _float64): _float64, (_float64, _int8): _float64, (_int32, _float16): _float64, (_float16, _int32): _float64, (_int32, _float32): _float64, (_float32, _int32): _float64, (_int32, _float64): _float64, (_float64, _int32): _float64, (_int64, _float16): _float64, (_float16, _int64): _float64, (_int64, _float32): _float64, (_float32, _int64): _float64, (_int64, _float64): _float64, (_float64, _int64): _float64, (_uint8, _float16): _float16, (_float16, _uint8): _float16, (_uint8, _float32): _float32, (_float32, _uint8): _float32, (_uint8, _float64): _float64, (_float64, _uint8): _float64, (_bfloat16, _bfloat16): _bfloat16, (_bfloat16, _uint8): _bfloat16, (_uint8, _bfloat16): _bfloat16, (_bfloat16, _int8): _bfloat16, (_int8, _bfloat16): _bfloat16, (_bfloat16, _float32): _float32, (_float32, _bfloat16): _float32, (_bfloat16, _float64): _float64, (_float64, _bfloat16): _float64, } @handle_exceptions def promote_types_mxnet( type1: Union[ivy.Dtype, ivy.NativeDtype], type2: Union[ivy.Dtype, ivy.NativeDtype], /, ) -> ivy.Dtype: """Promote the datatypes type1 and type2, returning the data type they promote to. Parameters ---------- type1 the first of the two types to promote type2 the second of the two types to promote Returns ------- ret The type that both input types promote to """ try: ret = mxnet_promotion_table[(ivy.as_ivy_dtype(type1), ivy.as_ivy_dtype(type2))] except KeyError as e: raise ivy.utils.exceptions.IvyException( "these dtypes are not type promotable" ) from e return ret @handle_exceptions def promote_types_of_mxnet_inputs( x1: Union[ivy.Array, Number, Iterable[Number]], x2: Union[ivy.Array, Number, Iterable[Number]], /, ) -> Tuple[ivy.Array, ivy.Array]: """Promote the dtype of the given native array inputs to a common dtype based on type promotion rules. While passing float or integer values or any other non-array input to this function, it should be noted that the return will be an array-like object. Therefore, outputs from this function should be used as inputs only for those functions that expect an array-like or tensor-like objects, otherwise it might give unexpected results. """ type1 = ivy.default_dtype(item=x1).strip("u123456789") type2 = ivy.default_dtype(item=x2).strip("u123456789") if hasattr(x1, "dtype") and not hasattr(x2, "dtype") and type1 == type2: x1 = ivy.asarray(x1) x2 = ivy.asarray( x2, dtype=x1.dtype, device=ivy.default_device(item=x1, as_native=False) ) elif not hasattr(x1, "dtype") and hasattr(x2, "dtype") and type1 == type2: x1 = ivy.asarray( x1, dtype=x2.dtype, device=ivy.default_device(item=x2, as_native=False) ) x2 = ivy.asarray(x2) else: x1 = ivy.asarray(x1) x2 = ivy.asarray(x2) promoted = promote_types_mxnet(x1.dtype, x2.dtype) x1 = ivy.asarray(x1, dtype=promoted) x2 = ivy.asarray(x2, dtype=promoted) return x1, x2 from . import random from . import ndarray from . import linalg from .linalg import * from . import mathematical_functions from .mathematical_functions import * from . import creation from .creation import * from . import symbol from .symbol import *
ivy/ivy/functional/frontends/mxnet/numpy/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/mxnet/numpy/__init__.py", "repo_id": "ivy", "token_count": 2499 }
30
from . import indexing_like_operations from .indexing_like_operations import *
ivy/ivy/functional/frontends/numpy/indexing_routines/lib/stride_tricks/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/indexing_routines/lib/stride_tricks/__init__.py", "repo_id": "ivy", "token_count": 23 }
31
# local import ivy from ivy.functional.frontends.numpy.func_wrapper import to_ivy_arrays_and_back @to_ivy_arrays_and_back def rollaxis(a, axis, start=0): n = len(ivy.shape(a)) if axis < -n or axis >= n: raise ValueError(f"axis {axis} is out of bounds for array of {n} dimensions") if axis < 0: axis += n if start < 0: start += n msg = "'%s' arg requires %d <= %s < %d, but %d was passed in" if not (0 <= start < n + 1): raise ValueError(msg % ("start", -n, "start", n + 1, start)) if axis < start: start -= 1 end = start + axis axes = tuple(i for i in range(n) if i != axis) axes = axes[:start] + (axis,) + axes[start:end] + axes[end:] return ivy.permute_dims(a, axes, out=None) @to_ivy_arrays_and_back def swapaxes(a, axis1, axis2): return ivy.swapaxes(a, axis1, axis2) @to_ivy_arrays_and_back def transpose(array, /, *, axes=None): if not axes: axes = list(range(len(array.shape)))[::-1] if isinstance(axes, int): axes = [axes] if (len(array.shape) == 0 and not axes) or (len(array.shape) == 1 and axes[0] == 0): return array return ivy.permute_dims(array, axes, out=None)
ivy/ivy/functional/frontends/numpy/manipulation_routines/transpose_like_operations.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/manipulation_routines/transpose_like_operations.py", "repo_id": "ivy", "token_count": 538 }
32
from . import ndarray from .ndarray import ndarray
ivy/ivy/functional/frontends/numpy/ndarray/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/ndarray/__init__.py", "repo_id": "ivy", "token_count": 16 }
33
# global import ivy from ivy.functional.frontends.numpy.func_wrapper import ( to_ivy_arrays_and_back, handle_numpy_dtype, ) @handle_numpy_dtype @to_ivy_arrays_and_back def corrcoef(x, y=None, /, *, rowvar=True, bias=None, ddof=None, dtype="float64"): if (bias is not None) or (ddof is not None): ivy.warn("bias and ddof are deprecated and have no effect") x = x.astype("float64") if y is not None: y = y.astype("float64") return ivy.corrcoef(x, y=y, rowvar=rowvar).astype(dtype) @to_ivy_arrays_and_back def correlate(a, v, mode=None, *, old_behavior=False): dtypes = [x.dtype for x in [a, v]] mode = mode if mode is not None else "valid" ivy.utils.assertions.check_equal(a.ndim, 1, as_array=False) ivy.utils.assertions.check_equal(v.ndim, 1, as_array=False) n = min(a.shape[0], v.shape[0]) m = max(a.shape[0], v.shape[0]) if a.shape[0] >= v.shape[0]: if mode == "full": r = n + m - 1 for j in range(0, n - 1): a = ivy.concat((ivy.array([0]), a), axis=0) elif mode == "same": r = m right_pad = (n - 1) // 2 left_pad = (n - 1) - (n - 1) // 2 for _ in range(0, left_pad): a = ivy.concat((ivy.array([0]), a), axis=0) for _ in range(0, right_pad): a = ivy.concat((a, ivy.array([0])), axis=0) elif mode == "valid": r = m - n + 1 else: raise ivy.utils.exceptions.IvyException("invalid mode") ret = ivy.array( [ivy.to_list((v[:n] * ivy.roll(a, -t)[:n]).sum()) for t in range(0, r)], dtype=max(dtypes), ) else: if mode == "full": r = n + m - 1 for j in range(0, n - 1): v = ivy.concat((ivy.array([0]), v), axis=0) elif mode == "same": r = m right_pad = (n - 1) // 2 left_pad = (n - 1) - (n - 1) // 2 for _ in range(0, left_pad): v = ivy.concat((ivy.array([0]), v), axis=0) for _ in range(0, right_pad): v = ivy.concat((v, ivy.array([0])), axis=0) elif mode == "valid": r = m - n + 1 else: raise ivy.utils.exceptions.IvyException("invalid mode") ret = ivy.flip( ivy.array( [ivy.to_list((a[:n] * ivy.roll(v, -t)[:n]).sum()) for t in range(0, r)], dtype=max(dtypes), ) ) return ret
ivy/ivy/functional/frontends/numpy/statistics/correlating.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/statistics/correlating.py", "repo_id": "ivy", "token_count": 1399 }
34
from typing import Callable import functools import ivy import ivy.functional.frontends.paddle as paddle_frontend # --- Helpers --- # # --------------- # def _from_ivy_array_to_paddle_frontend_tensor(x, nested=False, include_derived=None): if nested: return ivy.nested_map( _from_ivy_array_to_paddle_frontend_tensor, x, include_derived, shallow=False ) elif isinstance(x, ivy.Array) or ivy.is_native_array(x): a = paddle_frontend.Tensor(x) return a return x def _to_ivy_array(x): # if x is a native array return it as an ivy array if isinstance(x, ivy.NativeArray): return ivy.array(x) # else if x is a frontend torch Tensor (or any frontend "Tensor" actually) return the wrapped ivy array # noqa: E501 elif hasattr(x, "ivy_array"): return x.ivy_array # else just return x return x # --- Main --- # # ------------ # def inputs_to_ivy_arrays(fn: Callable) -> Callable: @functools.wraps(fn) def new_fn(*args, **kwargs): """Convert `Tensor` into `ivy.Array` instances. Convert all `Tensor` instances in both the positional and keyword arguments into `ivy.Array` instances, and then call the function with the updated arguments. """ # convert all input arrays to ivy.Array instances new_args = ivy.nested_map( _to_ivy_array, args, include_derived={"tuple": True}, shallow=False ) new_kwargs = ivy.nested_map( _to_ivy_array, kwargs, include_derived={"tuple": True}, shallow=False ) return fn(*new_args, **new_kwargs) return new_fn def outputs_to_frontend_arrays(fn: Callable) -> Callable: @functools.wraps(fn) def new_fn(*args, **kwargs): """Convert `ivy.Array` into `Tensor` instances. Call the function, and then convert all `ivy.Array` instances returned by the function into `Tensor` instances. """ # call unmodified function # ToDo: Remove this default dtype setting # once frontend specific backend setting is added # ivy.set_default_int_dtype("int64") # ivy.set_default_float_dtype(paddle_frontend.get_default_dtype()) try: ret = fn(*args, **kwargs) finally: ivy.unset_default_int_dtype() ivy.unset_default_float_dtype() # convert all arrays in the return to `paddle_frontend.Tensor` instances return _from_ivy_array_to_paddle_frontend_tensor( ret, nested=True, include_derived={"tuple": True} ) return new_fn def to_ivy_arrays_and_back(fn: Callable) -> Callable: """Wrap `fn` so it receives and returns `ivy.Array` instances. Wrap `fn` so that input arrays are all converted to `ivy.Array` instances and return arrays are all converted to `Tensor` instances. """ return outputs_to_frontend_arrays(inputs_to_ivy_arrays(fn))
ivy/ivy/functional/frontends/paddle/func_wrapper.py/0
{ "file_path": "ivy/ivy/functional/frontends/paddle/func_wrapper.py", "repo_id": "ivy", "token_count": 1243 }
35
# local import ivy from ivy.func_wrapper import with_unsupported_dtypes, with_supported_dtypes from ivy.functional.frontends.paddle.func_wrapper import ( to_ivy_arrays_and_back, ) from ivy.utils.assertions import check_equal @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.6.0 and below": ("float16", "bfloat16")}, "paddle") def affine_grid(theta, out_shape, align_corners=True): if len(out_shape) == 4: N, C, H, W = out_shape base_grid = ivy.empty((N, H, W, 3)) if align_corners: base_grid[:, :, :, 0] = ivy.linspace(-1, 1, W) base_grid[:, :, :, 1] = ivy.expand_dims(ivy.linspace(-1, 1, H), axis=-1) height_values = ivy.expand_dims(ivy.linspace(-1, 1, H), axis=-1) base_grid[:, :, :, 1] = ivy.array( [[[height_values[i]] * W for i in range(H)]] )[:, :, :, 0] base_grid[:, :, :, 2] = ivy.full((H, W), 1) grid = ivy.matmul(base_grid.view((N, H * W, 3)), theta.swapaxes(1, 2)) return grid.view((N, H, W, 2)) else: base_grid[:, :, :, 0] = ivy.linspace(-1, 1, W) * (W - 1) / W base_grid[:, :, :, 1] = ivy.expand_dims( ivy.linspace(-1, 1, H) * (H - 1) / H, axis=-1 ) height_values = ivy.expand_dims( ivy.linspace(-1, 1, H) * (H - 1) / H, axis=-1 ) base_grid[:, :, :, 1] = ivy.array( [[[height_values[i]] * W for i in range(H)]] )[:, :, :, 0] base_grid[:, :, :, 2] = ivy.full((H, W), 1) grid = ivy.matmul(base_grid.view((N, H * W, 3)), ivy.swapaxes(theta, 1, 2)) return grid.view((N, H, W, 2)) else: N, C, D, H, W = out_shape base_grid = ivy.empty((N, D, H, W, 4)) if align_corners: base_grid[:, :, :, :, 0] = ivy.linspace(-1, 1, W) base_grid[:, :, :, :, 1] = ivy.expand_dims(ivy.linspace(-1, 1, H), axis=-1) height_values = ivy.linspace(-1, 1, H) base_grid[:, :, :, :, 1] = ivy.array( [[[[height_values[i]] * W for i in range(H)]] * D] ) base_grid[:, :, :, :, 2] = ivy.expand_dims( ivy.expand_dims(ivy.linspace(-1, 1, D), axis=-1), axis=-1 ) width_values = ivy.linspace(-1, 1, D) else: base_grid[:, :, :, :, 0] = ivy.linspace(-1, 1, W) * (W - 1) / W base_grid[:, :, :, :, 1] = ivy.expand_dims( ivy.linspace(-1, 1, H) * (H - 1) / H, axis=-1 ) height_values = ivy.linspace(-1, 1, H) * (H - 1) / H base_grid[:, :, :, :, 1] = ivy.array( [[[[height_values[i]] * W for i in range(H)]] * D] ) base_grid[:, :, :, :, 2] = ivy.expand_dims( ivy.expand_dims(ivy.linspace(-1, 1, D) * (D - 1) / D, axis=-1), axis=-1 ) width_values = ivy.linspace(-1, 1, D) * (D - 1) / D base_grid[:, :, :, :, 2] = ivy.array( [[ivy.array([[width_values[i]] * W] * H) for i in range(D)]] ) base_grid[:, :, :, :, 3] = ivy.full((D, H, W), 1) grid = ivy.matmul(base_grid.view((N, D * H * W, 4)), theta.swapaxes(1, 2)) return grid.view((N, D, H, W, 3)) @to_ivy_arrays_and_back @with_supported_dtypes({"2.6.0 and below": ("float32", "float64")}, "paddle") def channel_shuffle(x, groups, data_format="NCHW", name=None): if len(ivy.shape(x)) != 4: raise ValueError( "Input x should be 4D tensor, but received x with the shape of" f" {ivy.shape(x)}" ) if not isinstance(groups, int): raise TypeError("groups must be int type") if groups <= 0: raise ValueError("groups must be positive") if data_format not in ["NCHW", "NHWC"]: raise ValueError( "Attr(data_format) should be 'NCHW' or 'NHWC'.But receive" f" Attr(data_format): {data_format} " ) if data_format == "NCHW": b, c, h, w = ivy.shape(x) x = ivy.reshape(x, (b, groups, c // groups, h, w)) x = ivy.permute_dims(x, (0, 2, 1, 3, 4)) x = ivy.reshape(x, (b, c, h, w)) else: b, h, w, c = ivy.shape(x) x = ivy.reshape(x, (b, h, w, groups, c // groups)) x = ivy.permute_dims(x, (0, 1, 2, 4, 3)) x = ivy.reshape(x, (b, h, w, c)) return x @to_ivy_arrays_and_back def pixel_shuffle(x, upscale_factor, data_format="NCHW"): input_shape = ivy.shape(x) check_equal( len(input_shape), 4, message=f"pixel shuffle requires a 4D input, but got input size {input_shape}", ) if not isinstance(upscale_factor, int): raise TypeError("upscale factor must be int type") if data_format not in ["NCHW", "NHWC"]: raise ValueError( "Attr(data_format) should be 'NCHW' or 'NHWC'.But receive" f" Attr(data_format): {data_format} " ) b = input_shape[0] c = input_shape[1] if data_format == "NCHW" else input_shape[3] h = input_shape[2] if data_format == "NCHW" else input_shape[1] w = input_shape[3] if data_format == "NCHW" else input_shape[2] upscale_factor_squared = upscale_factor**2 check_equal( c % upscale_factor_squared, 0, message=( "pixel shuffle expects input channel to be divisible by square of upscale" f" factor, but got input with sizes {input_shape}, upscale" f" factor={upscale_factor}, and self.size(1)={c}, is not divisible by" f" {upscale_factor_squared}" ), as_array=False, ) oc = int(c / upscale_factor_squared) oh = h * upscale_factor ow = w * upscale_factor if data_format == "NCHW": input_reshaped = ivy.reshape(x, (b, oc, upscale_factor, upscale_factor, h, w)) else: input_reshaped = ivy.reshape(x, (b, h, w, upscale_factor, upscale_factor, oc)) if data_format == "NCHW": return ivy.reshape( ivy.permute_dims(input_reshaped, (0, 1, 4, 2, 5, 3)), (b, oc, oh, ow) ) return ivy.reshape( ivy.permute_dims(input_reshaped, (0, 1, 4, 2, 5, 3)), (b, oh, ow, oc) ) @to_ivy_arrays_and_back def pixel_unshuffle(x, downscale_factor, data_format="NCHW"): if len(ivy.shape(x)) != 4: raise ValueError( "Input x should be 4D tensor, but received x with the shape of" f" {ivy.shape(x)}" ) if not isinstance(downscale_factor, int): raise TypeError("Downscale factor must be int type") if downscale_factor <= 0: raise ValueError("Downscale factor must be positive") if data_format not in ["NCHW", "NHWC"]: raise ValueError( "Attr(data_format) should be 'NCHW' or 'NHWC'.But receive" f" Attr(data_format): {data_format} " ) if data_format == "NCHW": b, c, h, w = ivy.shape(x) oc = c * downscale_factor**2 oh = h // downscale_factor ow = w // downscale_factor x = ivy.reshape(x, (b, c, oh, downscale_factor, ow, downscale_factor)) x = ivy.permute_dims(x, (0, 1, 3, 5, 2, 4)) x = ivy.reshape(x, (b, oc, oh, ow)) else: b, h, w, c = ivy.shape(x) oc = c * downscale_factor**2 oh = h // downscale_factor ow = w // downscale_factor x = ivy.reshape(x, (b, downscale_factor, oh, downscale_factor, ow, c)) x = ivy.permute_dims(x, (0, 1, 3, 5, 2, 4)) x = ivy.reshape(x, (b, oh, ow, oc)) return x
ivy/ivy/functional/frontends/paddle/nn/functional/vision.py/0
{ "file_path": "ivy/ivy/functional/frontends/paddle/nn/functional/vision.py", "repo_id": "ivy", "token_count": 3991 }
36
import ivy from ivy.func_wrapper import ( with_supported_dtypes, with_unsupported_device_and_dtypes, ) from ..tensor.tensor import Tensor from ivy.functional.frontends.paddle.func_wrapper import ( to_ivy_arrays_and_back, ) # --- Helpers --- # # --------------- # def _blend_images(img1, img2, ratio): # TODO: ivy.check_float(img1) returns False for ivy array # TODO: when lerp supports int type and when the above issue is fixed, # replace this with ivy.check_float(img1) max_value = ( 1.0 if ivy.dtype(img1) == "float32" or ivy.dtype(img1) == "float64" else 255.0 ) return ivy.astype( ivy.lerp(img2, img1, float(ratio)).clip(0, max_value), ivy.dtype(img1) ) # helpers def _get_image_c_axis(data_format): if data_format.lower() == "chw": return -3 elif data_format.lower() == "hwc": return -1 def _get_image_num_channels(img, data_format): return ivy.shape(img)[_get_image_c_axis(data_format)] def _hsv_to_rgb(img): h, s, v = img[0], img[1], img[2] f = h * 6.0 i = ivy.floor(f) f = f - i i = ivy.astype(i, ivy.int32) % 6 p = ivy.clip(v * (1.0 - s), 0.0, 1.0) q = ivy.clip(v * (1.0 - s * f), 0.0, 1.0) t = ivy.clip(v * (1.0 - s * (1.0 - f)), 0.0, 1.0) mask = ivy.astype( ivy.equal( ivy.expand_dims(i, axis=-3), ivy.reshape(ivy.arange(6, dtype=ivy.dtype(i)), (-1, 1, 1)), ), ivy.dtype(img), ) matrix = ivy.stack( [ ivy.stack([v, q, p, p, t, v], axis=-3), ivy.stack([t, v, v, q, p, p], axis=-3), ivy.stack([p, p, t, v, v, q], axis=-3), ], axis=-4, ) return ivy.einsum("...ijk, ...xijk -> ...xjk", mask, matrix) def _rgb_to_hsv(img): maxc = ivy.max(img, axis=-3) minc = ivy.min(img, axis=-3) is_equal = ivy.equal(maxc, minc) one_divisor = ivy.ones_like(maxc) c_delta = maxc - minc s = c_delta / ivy.where(is_equal, one_divisor, maxc) r, g, b = img[0], img[1], img[2] c_delta_divisor = ivy.where(is_equal, one_divisor, c_delta) rc = (maxc - r) / c_delta_divisor gc = (maxc - g) / c_delta_divisor bc = (maxc - b) / c_delta_divisor hr = ivy.where((maxc == r), bc - gc, ivy.zeros_like(maxc)) hg = ivy.where( ((maxc == g) & (maxc != r)), rc - bc + 2.0, ivy.zeros_like(maxc), ) hb = ivy.where( ((maxc != r) & (maxc != g)), gc - rc + 4.0, ivy.zeros_like(maxc), ) h = (hr + hg + hb) / 6.0 + 1.0 h = h - ivy.trunc(h) return ivy.stack([h, s, maxc], axis=-3) # --- Main --- # # ------------ # @with_supported_dtypes({"2.6.0 and below": ("float32", "float64")}, "paddle") @to_ivy_arrays_and_back def adjust_brightness(img, brightness_factor): assert brightness_factor >= 0, "brightness_factor should be non-negative." assert _get_image_num_channels(img, "CHW") in [ 1, 3, ], "channels of input should be either 1 or 3." extreme_target = ivy.zeros_like(img) return _blend_images(img, extreme_target, brightness_factor) @with_supported_dtypes({"2.6.0 and below": ("float32", "float64", "uint8")}, "paddle") @to_ivy_arrays_and_back def adjust_hue(img, hue_factor): assert -0.5 <= hue_factor <= 0.5, "hue_factor should be in range [-0.5, 0.5]" channels = _get_image_num_channels(img, "CHW") if channels == 1: return img elif channels == 3: if ivy.dtype(img) == "uint8": img = ivy.astype(img, "float32") / 255.0 img_hsv = _rgb_to_hsv(img) h, s, v = img_hsv[0], img_hsv[1], img_hsv[2] h = h + hue_factor h = h - ivy.floor(h) img_adjusted = _hsv_to_rgb(ivy.stack([h, s, v], axis=-3)) else: raise ValueError("channels of input should be either 1 or 3.") return img_adjusted @with_supported_dtypes( {"2.6.0 and below": ("float32", "float64", "int32", "int64")}, "paddle" ) @to_ivy_arrays_and_back def hflip(img): img = ivy.array(img) return ivy.flip(img, axis=-1) @with_supported_dtypes( {"2.6.0 and below": ("float32", "float64", "int32", "int64")}, "paddle" ) def normalize(img, mean, std, data_format="CHW", to_rgb=False): if ivy.is_array(img): if data_format == "HWC": permuted_axes = [2, 0, 1] else: permuted_axes = [0, 1, 2] img_np = ivy.permute(img, permuted_axes) normalized_img = ivy.divide(ivy.subtract(img_np, mean), std) return normalized_img else: raise ValueError("Unsupported input format") @with_supported_dtypes( {"2.6.0 and below": ("float32", "float64", "int32", "int64")}, "paddle" ) @to_ivy_arrays_and_back def pad(img, padding, fill=0, padding_mode="constant"): dim_size = img.ndim if not hasattr(padding, "__len__"): if dim_size == 2: trans_padding = ((padding, padding), (padding, padding)) elif dim_size == 3: trans_padding = ((0, 0), (padding, padding), (padding, padding)) elif len(padding) == 2: if dim_size == 2: trans_padding = ((padding[1], padding[1]), (padding[0], padding[0])) elif dim_size == 3: trans_padding = ((0, 0), (padding[1], padding[1]), (padding[0], padding[0])) elif len(padding) == 4: if dim_size == 2: trans_padding = ((padding[1], padding[3]), (padding[0], padding[2])) elif dim_size == 3: trans_padding = ((0, 0), (padding[1], padding[3]), (padding[0], padding[2])) else: raise ValueError("padding can only be 1D with size 1, 2, 4 only") if padding_mode in ["constant", "edge", "reflect", "symmetric"]: return ivy.pad(img, trans_padding, mode=padding_mode, constant_values=fill) else: raise ValueError("Unsupported padding_mode") @with_supported_dtypes( {"2.6.0 and below": ("float32", "float64", "int32", "int64")}, "paddle" ) @to_ivy_arrays_and_back def to_tensor(pic, data_format="CHW"): array = ivy.array(pic) return Tensor(array) @with_unsupported_device_and_dtypes( { "2.6.0 and below": { "cpu": ("int8", "uint8", "int16", "float16", "bfloat16", "bool") } }, "paddle", ) @to_ivy_arrays_and_back def vflip(img, data_format="CHW"): if data_format.lower() == "chw": axis = -2 elif data_format.lower() == "hwc": axis = -3 return ivy.flip(img, axis=axis)
ivy/ivy/functional/frontends/paddle/vision/transforms.py/0
{ "file_path": "ivy/ivy/functional/frontends/paddle/vision/transforms.py", "repo_id": "ivy", "token_count": 3155 }
37
import ivy FEATURE_THRESHOLD = 1e-7 class Splitter: def __init__( self, criterion, max_features, min_samples_leaf, min_weight_leaf, random_state, *args, ): self.criterion = criterion self.n_samples = 0 self.n_features = 0 self.max_features = max_features self.min_samples_leaf = min_samples_leaf self.min_weight_leaf = min_weight_leaf self.random_state = random_state def init( self, X, y, sample_weight, missing_values_in_feature_mask, *args, ): n_samples = X.shape[0] self.samples = ivy.empty(n_samples, dtype=ivy.int32) samples = self.samples j = 0 weighted_n_samples = 0.0 for i in range(n_samples): if sample_weight is None or sample_weight[i] != 0.0: samples[j] = i j += 1 if sample_weight is not None: weighted_n_samples += sample_weight[i] else: weighted_n_samples += 1.0 self.n_samples = j self.weighted_n_samples = weighted_n_samples n_features = X.shape[1] self.features = ivy.arange(n_features, dtype=ivy.int32) self.n_features = n_features self.feature_values = ivy.empty(n_samples, dtype=ivy.float32) self.constant_features = ivy.empty(n_features, dtype=ivy.int32) self.y = y self.sample_weight = sample_weight if missing_values_in_feature_mask is not None: self.criterion.init_sum_missing() return 0 def node_reset(self, start, end, weighted_n_node_samples): self.start = start self.end = end self.criterion.init( self.y, self.sample_weight, self.weighted_n_samples, self.samples, start, end, ) weighted_n_node_samples = self.criterion.weighted_n_node_samples return 0, weighted_n_node_samples def node_split(self, impurity, split, n_constant_features): pass def node_value(self, dest, node_id): return self.criterion.node_value(dest, node_id) def node_impurity(self): return self.criterion.node_impurity() class DensePartitioner: X = [] samples = [] feature_values = [] start = 0 end = 0 n_missing = 0 missing_values_in_feature_mask = [] def __init__( self, X, samples, feature_values, missing_values_in_feature_mask, ): self.X = X self.samples = samples self.feature_values = feature_values self.missing_values_in_feature_mask = missing_values_in_feature_mask def init_node_split(self, start, end): self.start = start self.end = end self.n_missing = 0 def sort_samples_and_feature_values(self, current_feature): feature_values = self.feature_values X = self.X samples = self.samples n_missing = 0 missing_values_in_feature_mask = self.missing_values_in_feature_mask if ( missing_values_in_feature_mask is not None and missing_values_in_feature_mask[current_feature] ): i, current_end = self.start, self.end - 1 while i <= current_end: if ivy.isnan(X[samples[current_end], current_feature]): n_missing += 1 current_end -= 1 continue if ivy.isnan(X[samples[i], current_feature]): samples[i], samples[current_end] = samples[current_end], samples[i] n_missing += 1 current_end -= 1 feature_values[i] = X[samples[i], current_feature] i += 1 else: for i in range(self.start, self.end): feature_values[i] = X[int(samples[i]), int(current_feature)] ( self.feature_values[self.start : self.end], self.samples[self.start : self.end], ) = sort( feature_values[self.start : self.end], samples[self.start : self.end], self.end - self.start - n_missing, ) self.n_missing = n_missing def find_min_max( self, current_feature: int, min_feature_value_out: float, max_feature_value_out: float, ): current_feature = 0 X = self.X samples = self.samples min_feature_value = X[samples[self.start], current_feature] max_feature_value = min_feature_value feature_values = self.feature_values feature_values[self.start] = min_feature_value for p in range(self.start + 1, self.end): current_feature_value = X[samples[p], current_feature] feature_values[p] = current_feature_value if current_feature_value < min_feature_value: min_feature_value = current_feature_value elif current_feature_value > max_feature_value: max_feature_value = current_feature_value return min_feature_value, max_feature_value def next_p(self, p_prev: int, p: int): feature_values = self.feature_values end_non_missing = self.end - self.n_missing while ( p + 1 < end_non_missing and feature_values[p + 1] <= feature_values[p] + FEATURE_THRESHOLD ): p += 1 p_prev = p p += 1 return p_prev, p def partition_samples(self, current_thershold: float): p = self.start partition_end = self.end samples = self.samples feature_values = self.feature_values while p < partition_end: if feature_values[p] <= current_thershold: p += 1 else: partition_end -= 1 feature_values[p], feature_values[partition_end] = ( feature_values[partition_end], feature_values[p], ) samples[p], samples[partition_end] = ( samples[partition_end], samples[p], ) return partition_end def partition_samples_final( self, best_pos, best_threshold, best_feature, best_n_missing, ): start = self.start p = start end = self.end - 1 partition_end = end - best_n_missing samples = self.samples X = self.X if best_n_missing != 0: while p < partition_end: if ivy.isnan(X[samples[end], best_feature]): end -= 1 continue current_value = X[samples[p], best_feature] if ivy.isnan(current_value): samples[p], samples[end] = samples[end], samples[p] end -= 1 current_value = X[samples[p], best_feature] if current_value <= best_threshold: p += 1 else: samples[p], samples[partition_end] = ( samples[partition_end], samples[p], ) partition_end -= 1 else: while p < partition_end: if X[samples[p], best_feature] <= best_threshold: p += 1 else: samples[p], samples[partition_end] = ( samples[partition_end], samples[p], ) partition_end -= 1 self.samples = samples class SplitRecord: def __init__( self, feature=0, pos=0, threshold=0.0, improvement=-ivy.inf, impurity_left=0.0, impurity_right=0.0, missing_go_to_left=False, n_missing=0, ): self.feature = feature self.pos = pos self.threshold = threshold self.improvement = improvement self.impurity_left = impurity_left self.impurity_right = impurity_right self.missing_go_to_left = missing_go_to_left self.n_missing = n_missing class BestSplitter(Splitter): def init( self, X, y, sample_weight, missing_values_in_feature_mask, *args, ): Splitter.init(self, X, y, sample_weight, missing_values_in_feature_mask, *args) self.partitioner = DensePartitioner( X, self.samples, self.feature_values, missing_values_in_feature_mask ) def node_split(self, impurity, split, n_constant_features): return node_split_best( self, self.partitioner, self.criterion, impurity, split, n_constant_features, ) # --- Helpers --- # # --------------- # def _init_split(split_record, start_pos): split_record.impurity_left = ivy.inf split_record.impurity_right = ivy.inf split_record.pos = start_pos split_record.feature = 0 split_record.threshold = 0.0 split_record.improvement = -ivy.inf split_record.missing_go_to_left = False split_record.n_missing = 0 return split_record # --- Main --- # # ------------ # def node_split_best( splitter, partitioner, criterion, impurity, split, n_constant_features ): start = splitter.start end = splitter.end features = splitter.features constant_features = splitter.constant_features n_features = splitter.n_features feature_values = splitter.feature_values max_features = splitter.max_features min_samples_leaf = splitter.min_samples_leaf min_weight_leaf = splitter.min_weight_leaf best_split = SplitRecord() current_split = SplitRecord() best_proxy_improvement = -ivy.inf f_i = n_features p_prev = 0 n_visited_features = 0 # Number of features discovered to be constant during the split search n_found_constants = 0 # Number of features known to be constant and drawn without replacement n_drawn_constants = 0 n_known_constants = n_constant_features # n_total_constants = n_known_constants + n_found_constants n_total_constants = n_known_constants best_split = _init_split(best_split, end) partitioner.init_node_split(start, end) while f_i > n_total_constants and ( n_visited_features < max_features or n_visited_features <= n_found_constants + n_drawn_constants ): n_visited_features += 1 f_j = ivy.randint(n_drawn_constants, f_i - n_found_constants) if f_j < n_known_constants: features[n_drawn_constants], features[f_j] = ( features[f_j], features[n_drawn_constants], ) n_drawn_constants += 1 continue # f_j in the interval [n_known_constants, f_i - n_found_constants[ f_j += n_found_constants # f_j in the interval [n_total_constants, f_i[ current_split.feature = features[f_j] partitioner.sort_samples_and_feature_values(current_split.feature) n_missing = partitioner.n_missing end_non_missing = end - n_missing if ( end_non_missing == start or feature_values[end_non_missing - 1] <= feature_values[start] + FEATURE_THRESHOLD ): features[f_j], features[n_total_constants] = ( features[n_total_constants], features[f_j], ) n_found_constants += 1 n_total_constants += 1 continue f_i -= 1 features[f_i], features[f_j] = features[f_j], features[f_i] has_missing = n_missing != 0 criterion.init_missing(n_missing) n_searches = 2 if has_missing else 1 for i in range(n_searches): missing_go_to_left = i == 1 criterion.missing_go_to_left = missing_go_to_left criterion.reset() p = start while p < end_non_missing: p_prev, p = partitioner.next_p(p_prev, p) if p >= end_non_missing: continue if missing_go_to_left: n_left = p - start + n_missing n_right = end_non_missing - p else: n_left = p - start n_right = end_non_missing - p + n_missing if n_left < min_samples_leaf or n_right < min_samples_leaf: continue current_split.pos = p criterion.update(current_split.pos) if ( criterion.weighted_n_left < min_weight_leaf or criterion.weighted_n_right < min_weight_leaf ): continue current_proxy_improvement = criterion.proxy_impurity_improvement() if current_proxy_improvement > best_proxy_improvement: best_proxy_improvement = current_proxy_improvement current_split.threshold = ( feature_values[p_prev] / 2.0 + feature_values[p] / 2.0 ) if current_split.threshold in ( feature_values[p], ivy.inf, -ivy.inf, ): current_split.threshold = feature_values[p_prev] current_split.n_missing = n_missing if n_missing == 0: current_split.missing_go_to_left = n_left > n_right else: current_split.missing_go_to_left = missing_go_to_left best_split = SplitRecord(**current_split.__dict__) if has_missing: n_left, n_right = end - start - n_missing, n_missing p = end - n_missing missing_go_to_left = 0 if not ((n_left < min_samples_leaf) or (n_right < min_samples_leaf)): criterion.missing_go_to_left = missing_go_to_left criterion.update(p) if not ( criterion.weighted_n_left < min_weight_leaf or criterion.weighted_n_right < min_weight_leaf ): current_proxy_improvement = criterion.proxy_impurity_improvement() if current_proxy_improvement > best_proxy_improvement: best_proxy_improvement = current_proxy_improvement current_split.threshold = ivy.inf current_split.missing_go_to_left = missing_go_to_left current_split.n_missing = n_missing current_split.pos = p best_split = current_split # Reorganize into samples[start:best_split.pos] + samples[best_split.pos:end] if best_split.pos < end: partitioner.partition_samples_final( best_split.pos, best_split.threshold, best_split.feature, best_split.n_missing, ) if best_split.n_missing != 0: criterion.init_missing(best_split.n_missing) criterion.missing_go_to_left = best_split.missing_go_to_left criterion.reset() criterion.update(best_split.pos) ( best_split.impurity_left, best_split.impurity_right, ) = criterion.children_impurity( best_split.impurity_left, best_split.impurity_right ) best_split.improvement = criterion.impurity_improvement( impurity, best_split.impurity_left, best_split.impurity_right ) # best_split, samples = shift_missing_values_to_left_if_required( # best_split, samples, end) # todo : implement shift_missing_values_to_left_if_required features[0:n_known_constants] = constant_features[0:n_known_constants] constant_features[n_known_constants:n_found_constants] = features[ n_known_constants:n_found_constants ] split = best_split n_constant_features = n_total_constants return 0, n_constant_features, split def sort(feature_values, samples, n): if n == 0: return idx = ivy.argsort(feature_values) return feature_values[idx], samples[idx]
ivy/ivy/functional/frontends/sklearn/tree/_splitter.py/0
{ "file_path": "ivy/ivy/functional/frontends/sklearn/tree/_splitter.py", "repo_id": "ivy", "token_count": 8436 }
38
from . import activations from . import backend from . import layers from . import metrics from . import regularizers
ivy/ivy/functional/frontends/tensorflow/keras/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/tensorflow/keras/__init__.py", "repo_id": "ivy", "token_count": 27 }
39
import ivy from ivy.func_wrapper import with_unsupported_dtypes, with_supported_dtypes from ivy.functional.frontends.torch.func_wrapper import to_ivy_arrays_and_back from ivy.functional.frontends.torch import promote_types_of_torch_inputs import ivy.functional.frontends.torch as torch_frontend erfinv = torch_frontend.special.erfinv @to_ivy_arrays_and_back def atleast_1d(*tensors): return ivy.atleast_1d(*tensors) @to_ivy_arrays_and_back def atleast_2d(*tensors): return ivy.atleast_2d(*tensors) @to_ivy_arrays_and_back def atleast_3d(*tensors): return ivy.atleast_3d(*tensors) # TODO: Add Ivy function for block_diag but only scipy.linalg and \ # and torch supports block_diag currently @to_ivy_arrays_and_back def block_diag(*tensors): shapes_list = [ivy.shape(t) for t in tensors] # TODO: Add ivy function to return promoted dtype for multiple tensors at once promoted_dtype = ivy.as_ivy_dtype(tensors[0].dtype) for idx in range(1, len(tensors)): promoted_dtype = torch_frontend.promote_types_torch( tensors[idx - 1].dtype, tensors[idx].dtype ) inp_tensors = [ivy.asarray(t, dtype=promoted_dtype) for t in tensors] tensors_2d = [] result_dim_0, result_dim_1 = 0, 0 for idx, t_shape in enumerate(shapes_list): dim_0, dim_1 = 1, 1 if len(t_shape) > 2: raise ivy.exceptions.IvyError( "Input tensors must have 2 or fewer dimensions." f"Input {idx} has {len(t_shape)} dimensions" ) elif len(t_shape) == 2: dim_0, dim_1 = t_shape tensors_2d.append(inp_tensors[idx]) elif len(t_shape) == 1: dim_1 = t_shape[0] tensors_2d.append(ivy.reshape(inp_tensors[idx], shape=(dim_0, dim_1))) else: tensors_2d.append(ivy.reshape(inp_tensors[idx], shape=(dim_0, dim_1))) result_dim_0 += dim_0 result_dim_1 += dim_1 shapes_list[idx] = (dim_0, dim_1) ret = ivy.zeros((result_dim_0, result_dim_1), dtype=promoted_dtype) ret_dim_0 = 0 ret_dim_1 = 0 for idx, t_shape in enumerate(shapes_list): dim_0, dim_1 = t_shape ret[ ret_dim_0 : ret_dim_0 + dim_0, ret_dim_1 : ret_dim_1 + dim_1 ] = ivy.copy_array(tensors_2d[idx]) ret_dim_0 += dim_0 ret_dim_1 += dim_1 return ret @to_ivy_arrays_and_back def broadcast_shapes(*shapes): return ivy.broadcast_shapes(*shapes) @with_unsupported_dtypes({"2.2 and below": ("bfloat16",)}, "torch") @to_ivy_arrays_and_back def broadcast_to(tensor, shape): return ivy.broadcast_to(tensor, shape) @to_ivy_arrays_and_back def cartesian_prod(*tensors): if len(tensors) == 1: return tensors ret = ivy.meshgrid(*tensors, indexing="ij") ret = ivy.stack(ret, axis=-1) ret = ivy.reshape(ret, shape=(-1, len(tensors))) return ret @with_unsupported_dtypes({"2.2 and below": "float16"}, "torch") @to_ivy_arrays_and_back def cdist(x1, x2, p=2.0, compute_mode="use_mm_for_euclid_dist_if_necessary"): if len(x1.shape) == 2 and len(x2.shape) == 2: x1_first_dim, x2_first_dim = x1.shape[0], x2.shape[0] if ( compute_mode == "use_mm_for_euclid_dist_if_necessary" and (x1_first_dim > 25 or x2_first_dim > 25) or compute_mode == "use_mm_for_euclid_dist" ): return ivy.vector_norm(x1[:, None, :] - x2[None, :, :], axis=-1, ord=p) else: distances = ivy.zeros((x1_first_dim, x2_first_dim), dtype=x1.dtype) for i in range(x1_first_dim): for j in range(x2_first_dim): distances[i, j] = ivy.vector_norm(x1[i, :] - x2[j, :], ord=p) return distances if p == 2: B, P, M = x1.shape _, R, _ = x2.shape if ( compute_mode == "use_mm_for_euclid_dist_if_necessary" and (P > 25 or R > 25) or compute_mode == "use_mm_for_euclid_dist" ): return ivy.vector_norm( x1[:, :, None, :] - x2[:, None, :, :], axis=-1, ord=p ) else: distances = ivy.zeros((B, P, R), dtype=x1.dtype) for b in range(B): for i in range(P): for j in range(R): distances[b, i, j] = ivy.vector_norm( x1[b, i, :] - x2[b, j, :], ord=p ) return distances else: return ivy.vector_norm(x1[:, :, None, :] - x2[:, None, :, :], axis=-1, ord=p) @to_ivy_arrays_and_back def clone(input, *, memory_format=None): return ivy.copy_array(input) @with_unsupported_dtypes({"2.2 and below": ("float16", "bool")}, "torch") @to_ivy_arrays_and_back def corrcoef(input): if len(ivy.shape(input)) > 2: raise ivy.exceptions.IvyError( "corrcoef(): expected input to have two or fewer dimensions but got an" f" input with {ivy.shape(input)} dimensions" ) return ivy.corrcoef(input, y=None, rowvar=True) @to_ivy_arrays_and_back def cov(input, /, *, correction=1, fweights=None, aweights=None): return ivy.cov(input, ddof=correction, fweights=fweights, aweights=aweights) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def cross(input, other, dim=None, *, out=None): if dim is None: dim = -1 input, other = promote_types_of_torch_inputs(input, other) return ivy.cross(input, other, axisa=-1, axisb=-1, axisc=-1, axis=dim, out=out) @to_ivy_arrays_and_back @with_unsupported_dtypes( { "2.2 and below": ( "uint16", "uint32", "uint64", "bfloat16", "float16", "complex64", "complex128", ) }, "torch", ) def cummax(input, dim, *, out=None): input_dtype = input.dtype result_values, result_indices = ivy.cummax(input, axis=dim, out=out) result_values = result_values.astype(input_dtype) return result_values, result_indices @to_ivy_arrays_and_back def cumprod(input, dim, *, dtype=None, out=None): if not dtype and "int" in input.dtype: dtype = ivy.int64 return ivy.cumprod(input, axis=dim, dtype=dtype, out=out) @to_ivy_arrays_and_back @with_unsupported_dtypes( {"2.2 and below": ("uint8", "bfloat16", "float16"), "1.12.1": ()}, "torch", ) def cumsum(input, dim, *, dtype=None, out=None): if not dtype and "int" in input.dtype: dtype = ivy.int64 return ivy.cumsum(input, axis=dim, dtype=dtype, out=out) @to_ivy_arrays_and_back def diag(input, diagonal=0, *, out=None): return ivy.diag(input, k=diagonal) @to_ivy_arrays_and_back def diag_embed( input, offset=0, dim1=-2, dim2=-1, ): def _handle_dim(rank, idx): if idx >= 0 and idx < rank: return idx if idx < 0: idx = idx + rank if idx < 0 or idx >= rank: raise IndexError return idx input_type = ivy.dtype(input) rank = input.ndim + 1 dim1 = _handle_dim(rank, dim1) dim2 = _handle_dim(rank, dim2) if dim1 > dim2: dim1, dim2 = dim2, dim1 offset = -offset last_dim = list(input.shape)[-1] if offset != 0: # add padding to match the new size t_shape = list(input.shape) t_shape[-1] = abs(offset) z = ivy.zeros(t_shape, dtype=input.dtype, device=input.device) pair = (z, input) if offset > 0 else (input, z) input = ivy.concat(pair, axis=-1) last_dim += abs(offset) input = input.expand_dims(axis=dim1).moveaxis(-1, dim2) # generate ranges shifting indices based on offset a_range = ivy.arange(last_dim, device=input.device, dtype=ivy.int64) b_range = ivy.arange( offset, last_dim + offset, device=input.device, dtype=ivy.int64 ) # broadcast cond = a_range == b_range.expand_dims(axis=-1) cond_shape = [last_dim if i in (dim1, dim2) else 1 for i in range(len(input.shape))] cond = cond.reshape(cond_shape) if input.dtype == ivy.bool: ret = cond.logical_and(input) else: ret = ivy.where(cond, input, 0) return ret.astype(input_type) @with_supported_dtypes( {"2.2 and below": ("float32", "float64", "int32", "int64")}, "torch" ) @to_ivy_arrays_and_back def diagflat(x, offset=0, name=None): arr = ivy.diagflat(x, offset=offset) return arr @with_unsupported_dtypes({"2.2 and below": ("float16", "bfloat16")}, "torch") @to_ivy_arrays_and_back def diagonal(input, offset=0, dim1=0, dim2=1): return ivy.diagonal(input, offset=offset, axis1=dim1, axis2=dim2) @to_ivy_arrays_and_back @with_unsupported_dtypes( {"2.2 and below": ("int8", "float16", "bfloat16", "bool")}, "torch" ) def diff(input, n=1, dim=-1, prepend=None, append=None): return ivy.diff(input, n=n, axis=dim, prepend=prepend, append=append, out=None) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def einsum(equation, *operands): if len(operands) == 1 and isinstance(operands[0], (list, tuple)): operands = operands[0] return ivy.einsum(equation, *operands) @to_ivy_arrays_and_back def finfo(dtype): return ivy.finfo(dtype) @to_ivy_arrays_and_back def flatten(input, start_dim=0, end_dim=-1): return ivy.flatten(input, start_dim=start_dim, end_dim=end_dim) @to_ivy_arrays_and_back def flip(input, dims): return ivy.flip(input, axis=dims, copy=True) @to_ivy_arrays_and_back def fliplr(input): ivy.utils.assertions.check_greater( len(input.shape), 2, allow_equal=True, message="requires tensor to be at least 2D", as_array=False, ) return ivy.fliplr(input, copy=True) @to_ivy_arrays_and_back def flipud(input): ivy.utils.assertions.check_greater( len(input.shape), 1, allow_equal=True, message="requires tensor to be at least 1D", as_array=False, ) return ivy.flipud(input, copy=True) @to_ivy_arrays_and_back def gcd(input, other, *, out=None): return ivy.gcd(input, other, out=out) @to_ivy_arrays_and_back def kron(input, other, *, out=None): return ivy.kron(input, other, out=out) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("int8",)}, "torch") def lcm(input, other, *, out=None): return ivy.lcm(input, other, out=out) @with_unsupported_dtypes( { "2.2 and below": ( "float16", "bfloat16", "integer", ) }, "torch", ) @to_ivy_arrays_and_back def logcumsumexp(input, dim, *, out=None): if len(input.shape) == 0: ret = input else: # For numerical stability, cast to float64 # We cast back to the original type at the end. original_dtype = input.dtype exp_input = ivy.exp(input.astype("float64")) summed_exp_input = ivy.cumsum(exp_input, axis=dim) ret = ivy.log(summed_exp_input).astype(original_dtype) if ivy.exists(out): ivy.inplace_update(out, ret) return ret @to_ivy_arrays_and_back def lu_solve(b, LU_data, LU_pivots, *, out=None): return torch_frontend.linalg.lu_solve(LU_data, LU_pivots, b, out=out) @to_ivy_arrays_and_back def meshgrid(*tensors, indexing=None): if indexing is None: indexing = "ij" if len(tensors) == 1 and isinstance(tensors[0], (list, tuple)): tensors = tensors[0] return tuple(ivy.meshgrid(*tensors, indexing=indexing)) @to_ivy_arrays_and_back def ravel(input): return ivy.reshape(input, (-1,)) @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") @to_ivy_arrays_and_back def renorm(input, p, dim, maxnorm, *, out=None): # Torch hardcodes this magic number epsilon = 1e-07 # To iterate through the n-th dimension of `input`, it is easiest to swap # the dimension that we wish to iterate through to be first, then iterate # through the re-ordered data. This re-ordering is fine for our purposes # as we calculate the p-norms and they are all order agnostic. That is, # we may re-order the elements of any vector, and as long as none are # added, edited, or removed, the p-norm will be the same. input_swapped = ivy.swapaxes(input, 0, dim) individual_tensors = [input_swapped[i, ...] for i in range(input_swapped.shape[0])] ret = [] for individual_tensor in individual_tensors: # These tensors may be multidimensional, but must be treated as a single vector. original_shape = individual_tensor.shape tensor_flattened = ivy.flatten(individual_tensor) # Don't scale up to the maximum norm, only scale down to it. norm = ivy.vector_norm(tensor_flattened, axis=0, ord=p) multiplier = ivy.minimum(maxnorm / (norm + epsilon), ivy.ones_like(norm)) # Store the result in its original shape ret.append( ivy.reshape(ivy.multiply(tensor_flattened, multiplier), original_shape) ) # We must undo our axis swap from the start. ret = ivy.asarray(ret, dtype=ret[0].dtype) ret = ivy.swapaxes(ret, 0, dim) ret = ivy.reshape(ret, input.shape) if ivy.exists(out): ivy.inplace_update(out, ret) return ret @with_supported_dtypes( { "2.2 and below": ( "int32", "int64", ) }, "torch", ) @to_ivy_arrays_and_back def repeat_interleave(input, repeats, dim=None, *, output_size=None): return ivy.repeat(input, repeats, axis=dim) @to_ivy_arrays_and_back def roll(input, shifts, dims=None): return ivy.roll(input, shifts, axis=dims) @to_ivy_arrays_and_back def rot90(input, k, dims): total_dims = ivy.get_num_dims(input) total_rot_dims = len(dims) ivy.utils.assertions.check_greater( total_dims, 2, allow_equal=True, message="expected total dims >= 2, but got total dims = " + str(total_dims), as_array=False, ) ivy.utils.assertions.check_equal( total_rot_dims, 2, message="expected total rotation dims == 2, but got dims = " + str(total_rot_dims), as_array=False, ) ivy.utils.assertions.check_equal( dims[0], dims[1], inverse=True, message="expected rotation dims to be different, but got dim0 = " + str(dims[0]) + " and dim1 = " + str(dims[1]), as_array=False, ) ivy.utils.assertions.check_equal( ivy.abs(dims[0] - dims[1]), total_dims, inverse=True, message="expected rotation dims to be different, but got dim0 = " + str(dims[0]) + " and dim1 = " + str(dims[1]), ) # range of dims ivy.utils.assertions.check_less( dims[0], total_dims, message="Rotation dim0 out of range, dim0 = " + str(dims[0]), as_array=False, ) ivy.utils.assertions.check_greater( dims[0], -total_dims, allow_equal=True, message="Rotation dim0 out of range, dim0 = " + str(dims[0]), as_array=False, ) ivy.utils.assertions.check_less( dims[1], total_dims, message="Rotation dim1 out of range, dim1 = " + str(dims[1]), as_array=False, ) ivy.utils.assertions.check_greater( dims[1], -total_dims, allow_equal=True, message="Rotation dim1 out of range, dim1 = " + str(dims[1]), as_array=False, ) k = (4 + (k % 4)) % 4 new_axes = list(range(total_dims)) new_axes[min(dims)], new_axes[max(dims)] = max(dims), min(dims) if k == 1: flipped = ivy.flip(input, axis=dims[1]) return ivy.permute_dims(flipped, axes=new_axes, copy=True) elif k == 2: return ivy.flip(input, axis=dims, copy=True) elif k == 3: flipped = ivy.flip(input, axis=dims[0]) return ivy.permute_dims(flipped, axes=new_axes, copy=True) else: return input @to_ivy_arrays_and_back def searchsorted( sorted_sequence, values, /, *, out_int32=False, right=False, side=None, out=None, sorter=None, ): if side == "left": if right: raise ivy.exceptions.IvyError( "side and right can't be set to opposites, got side of left" " while right was True" ) elif side is None: side = "right" if right else "left" ret = ivy.searchsorted(sorted_sequence, values, side=side, out=out, sorter=sorter) if out_int32: ret = ivy.astype(ret, "int32") return ret @with_unsupported_dtypes({"2.2 and below": ("float16", "bfloat16")}, "torch") @to_ivy_arrays_and_back def tensordot(a, b, dims=2, out=None): a, b = promote_types_of_torch_inputs(a, b) return ivy.tensordot(a, b, axes=dims, out=out) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16", "bfloat16")}, "torch") def trace(input): if "int" in input.dtype: input = input.astype("int64") target_type = "int64" if "int" in input.dtype else input.dtype return ivy.astype(ivy.trace(input), target_type) @with_supported_dtypes({"2.5.0 and below": ("int8", "int16", "bfloat16")}, "paddle") @to_ivy_arrays_and_back def tril(input, diagonal=0, *, out=None): return ivy.tril(input, k=diagonal, out=out) @with_unsupported_dtypes({"2.2 and below": ("int8", "uint8", "int16")}, "torch") @to_ivy_arrays_and_back def tril_indices(row, col, offset=0, *, dtype=ivy.int64, device="cpu", layout=None): sample_matrix = ivy.tril(ivy.ones((row, col), device=device), k=offset) return ivy.stack(ivy.nonzero(sample_matrix)).astype(dtype) @with_supported_dtypes( {"2.5.0 and below": ("float64", "float32", "int32", "int64")}, "paddle" ) @to_ivy_arrays_and_back def triu(input, diagonal=0, *, out=None): return ivy.triu(input, k=diagonal, out=out) @to_ivy_arrays_and_back def triu_indices(row, col, offset=0, dtype="int64", device="cpu", layout=None): # TODO: Handle layout flag when possible. sample_matrix = ivy.triu(ivy.ones((row, col), device=device), k=offset) return ivy.stack(ivy.nonzero(sample_matrix)).astype(dtype) @to_ivy_arrays_and_back def unflatten(input, dim, sizes): return ivy.unflatten(input, dim=dim, shape=sizes, out=None) @to_ivy_arrays_and_back def vander(x, N=None, increasing=False): # if N == 0: # return ivy.array([], dtype=x.dtype) # else: return ivy.vander(x, N=N, increasing=increasing, out=None) @to_ivy_arrays_and_back @with_supported_dtypes({"2.2 and below": ("float32", "float64")}, "torch") def view_as_complex(input): if ivy.shape(input)[-1] != 2: raise ivy.exceptions.IvyError("The last dimension must have a size of 2") real, imaginary = ivy.split( ivy.stop_gradient(input, preserve_type=False), num_or_size_splits=2, axis=ivy.get_num_dims(input) - 1, ) dtype = ivy.complex64 if input.dtype == ivy.float32 else ivy.complex128 real = ivy.squeeze(real, axis=ivy.get_num_dims(real) - 1).astype(dtype) imag = ivy.squeeze(imaginary, axis=ivy.get_num_dims(imaginary) - 1).astype(dtype) complex_ = real + imag * 1j return ivy.array(complex_, dtype=dtype) @with_supported_dtypes( {"2.2 and below": ("complex64", "complex128")}, "torch", ) @to_ivy_arrays_and_back def view_as_real(input): if not ivy.is_complex_dtype(input): raise ivy.exceptions.IvyError( "view_as_real is only supported for complex tensors" ) re_part = ivy.real(input) im_part = ivy.imag(input) return ivy.stack((re_part, im_part), axis=-1)
ivy/ivy/functional/frontends/torch/miscellaneous_ops.py/0
{ "file_path": "ivy/ivy/functional/frontends/torch/miscellaneous_ops.py", "repo_id": "ivy", "token_count": 9421 }
40
import ivy from ivy.functional.frontends.torch.tensor import Tensor import ivy.functional.frontends.torch as torch_frontend from ivy.functional.ivy.gradients import _variable, _is_variable, _variable_data class Parameter(Tensor): def __init__(self, data=None, device=None, requires_grad=True): if data is None: data = torch_frontend.empty(0) ivy_array = ( ivy.array(data) if not hasattr(data, "_ivy_array") else data.ivy_array ) ivy_array = _variable(ivy_array) if not _is_variable(data) else ivy_array self._ivy_array = ivy.to_device(ivy_array, device) if device else ivy_array self._data = Tensor(_variable_data(self._ivy_array), _init_overload=True) self._requires_grad = requires_grad self._is_leaf = True self._grads = None self.grad_fn = None def __deepcopy__(self, memo): if id(self) in memo: return memo[id(self)] else: result = type(self)(self.data.clone(), self.requires_grad) memo[id(self)] = result return result def __repr__(self): return "Parameter containing:\n" + super().__repr__()
ivy/ivy/functional/frontends/torch/nn/parameter.py/0
{ "file_path": "ivy/ivy/functional/frontends/torch/nn/parameter.py", "repo_id": "ivy", "token_count": 520 }
41
from . import coordinate_common from .coordinate_common import * from . import updater_coordinate from .updater_coordinate import *
ivy/ivy/functional/frontends/xgboost/linear/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/xgboost/linear/__init__.py", "repo_id": "ivy", "token_count": 36 }
42
# global from typing import Union, Optional, Callable, Literal # local import ivy from ivy.utils.backend import current_backend from ivy.utils.exceptions import handle_exceptions from ivy.func_wrapper import ( handle_array_function, handle_nestable, to_native_arrays_and_back, handle_array_like_without_promotion, handle_out_argument, inputs_to_ivy_arrays, handle_device, handle_backend_invalid, handle_complex_input, ) def _logit_jax_like( x: Union[float, int, ivy.Array], /, *, fn_original: Optional[Callable] = None, eps: Optional[float] = None, out: Optional[ivy.Array] = None, ): real = ivy.real(x) imag = ivy.imag(x) if eps is None: real = ivy.where(ivy.logical_or(real > 1, real < 0), ivy.nan, real) else: real = ivy.clip(real, eps, 1 - eps) z = ivy.add(real, ivy.multiply(ivy.array(1j, dtype=x.dtype), imag)) z = ivy.log(z / (1 - z)) return z @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device @handle_complex_input def logit( x: Union[float, int, ivy.Array], /, *, eps: Optional[float] = None, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the logit of x. logit(x) = log(x / (1 - x)). Parameters ---------- x Input data. eps When eps is None the function outputs NaN where x < 0 or x > 1. and inf or -inf where x = 1 or x = 0, respectively. Otherwise if eps is defined, x is clamped to [eps, 1 - eps] complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out Optional output array. Returns ------- ret Array containing elementwise logits of x. Examples -------- >>> x = ivy.array([1, 0, 0.9]) >>> z = ivy.logit(x) >>> print(z) ivy.array([ inf, -inf, 2.19722438]) >>> x = ivy.array([1, 2, -0.9]) >>> z = ivy.logit(x, eps=0.2) >>> print(z) ivy.array([ 1.38629448, 1.38629448, -1.38629436]) """ return current_backend(x).logit(x, eps=eps, out=out) logit.jax_like = _logit_jax_like @handle_exceptions @handle_nestable @handle_array_like_without_promotion @handle_out_argument @inputs_to_ivy_arrays def prelu( x: Union[ivy.NativeArray, ivy.Array], slope: Union[float, ivy.NativeArray, ivy.Array], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Prelu takes input data (Array) and slope array as input, and produces one output data (array) where the function f(x) = slope * x for x < 0, f(x) = x for x >= 0., is applied to the data array elementwise. This operator supports unidirectional broadcasting (array slope should be unidirectional broadcastable to input tensor X); Parameters ---------- x Input Array. slope Slope Array. The shape of slope can be smaller then first input X; if so, its shape must be unidirectional broadcastable to X. out Optional output array. Returns ------- ret Array containing Parametrized relu values. """ try: return ivy.where(x > 0, x, x * slope, out=out) except ivy.utils.exceptions.IvyError( f"The shape {slope.shape} is not Unidirectional Broadcastable\n" "as per ONNX standards" ) as IvyException: if len(slope.shape) == 1: dim = slope.shape[0] new_shape = [] n = 0 for d in x.shape: if d == dim: n += 1 new_shape.append(d) if n == 1: xs = x * slope.reshape(tuple(new_shape), out=out) return ivy.where(x > 0, x, xs, out=out) raise IvyException @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device def thresholded_relu( x: Union[ivy.Array, ivy.NativeArray], /, *, threshold: Union[int, float] = 0, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Apply the rectified linear unit function with custom threshold. Parameters ---------- x input array threshold threshold value above which the activation is linear. Default: ``0``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the rectified linear unit activation of each element in ``x``. with custom ``threshold``. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([-1., 0., 1.]) >>> y = ivy.thresholded_relu(x, threshold=0.5) >>> print(y) ivy.array([0., 0. , 1.]) >>> x = ivy.array([1.5, 0.7, -2.4]) >>> y = ivy.zeros(3) >>> ivy.thresholded_relu(x, threshold=1, out = y) >>> print(y) ivy.array([ 1.5, 0., 0.]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([1.0, -1.2]), b=ivy.array([0.2, 0.6])) >>> x = ivy.thresholded_relu(x, threshold=0.5) >>> print(x) { a: ivy.array([1., 0.]), b: ivy.array([0., 0.6]) } """ return current_backend(x).thresholded_relu(x, threshold=threshold, out=out) def _relu6_jax_like( x: Union[ivy.Array, ivy.NativeArray], /, *, fn_original=None, out: Optional[ivy.Array] = None, ) -> ivy.Array: return ivy.where( ivy.logical_or( ivy.real(x) < 0, ivy.logical_and(ivy.real(x) == 0, ivy.imag(x) < 0) ), ivy.array(0, dtype=x.dtype), ivy.where( ivy.logical_or( ivy.real(x) > 6, ivy.logical_and(ivy.real(x) == 6, ivy.imag(x) > 0) ), ivy.array(6, dtype=x.dtype), x, ), ) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device @handle_complex_input def relu6( x: Union[ivy.Array, ivy.NativeArray], /, *, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Array] = None, ) -> ivy.Array: """Apply the rectified linear unit 6 function element-wise. Parameters ---------- x input array complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the rectified linear unit 6 activation of each element in ``x``. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([-1., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> y = ivy.relu6(x) >>> print(y) ivy.array([0., 0., 1., 2., 3., 4., 5., 6., 6.]) >>> x = ivy.array([-1., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> y = ivy.zeros(9) >>> ivy.relu6(x, out = y) >>> print(y) ivy.array([0., 0., 1., 2., 3., 4., 5., 6., 6.]) """ return current_backend(x).relu6(x, out=out) relu6.jax_like = _relu6_jax_like @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device @handle_complex_input def logsigmoid( input: Union[ivy.NativeArray, ivy.Array], /, *, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Array] = None, ) -> ivy.Array: """Apply element-wise Log-sigmoid of x. logsigmoid(x) = log(1 / (1 + exp(-x)). Parameters ---------- input Input array. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. Returns ------- Array with same shape as input with Log-sigmoid applied to every element. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([-1., 0., 1.]) >>> z = x.logsigmoid() >>> print(z) ivy.array([-1.31326175, -0.69314718, -0.31326169]) >>> x = ivy.array([1.5, 0.7, -2.4]) >>> z = x.logsigmoid() >>> print(z) ivy.array([-0.20141329, -0.40318608, -2.48683619]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([1.0, -1.2]), b=ivy.array([0.2, 0.6])) >>> x = ivy.logsigmoid(x) >>> print(x) { a: ivy.array([-0.31326169, -1.46328247]), b: ivy.array([-0.59813893, -0.43748799]) } """ return ivy.current_backend(input).logsigmoid(input, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def selu( x: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None ) -> ivy.Array: """Apply the scaled exponential linear unit function element-wise. Parameters ---------- x input array out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the scaled exponential linear unit activation of each element in ``x``. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([-1., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> y = ivy.selu(x) >>> print(y) ivy.array([-1.11133075, 0. , 1.05070102, 2.10140204, 3.15210295, 4.20280409, 5.25350523, 6.30420589, 7.35490704]) >>> x = ivy.array([-1., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> y = ivy.zeros(9) >>> ivy.selu(x, out = y) >>> print(y) ivy.array([-1.11133075, 0. , 1.05070102, 2.10140204, 3.15210295, 4.20280409, 5.25350523, 6.30420589, 7.35490704]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([-3., -2., -1., 0., 1., 2., 3., 4., 5.]), ... b=ivy.array([1., 2., 3., 4., 5., 6., 7., 8., 9.]) ... ) >>> x = ivy.selu(x, out=x) >>> print(x) { a: ivy.array([-1.6705687, -1.52016652, -1.11133075, 0., 1.05070102, 2.10140204, 3.15210295, 4.20280409, 5.25350523]), b: ivy.array([1.05070102, 2.10140204, 3.15210295, 4.20280409, 5.25350523, 6.30420589, 7.35490704, 8.40560818, 9.45630932]) } """ return current_backend(x).selu(x, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def silu( x: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None ) -> ivy.Array: """Apply the silu function element-wise. Parameters ---------- x input array. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the silu activation of each element in ``x``. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = ivy.silu(x) >>> print(y) ivy.array([-0.2689, 0.7310, 1.7615]) >>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = x.silu() >>> print(y) ivy.array([-0.2689, 0.7310, 1.7615]) >>> x = ivy.array([[-1.3, 3.8, 2.1], [1.7, 4.2, -6.6]]) >>> y = ivy.silu(x) >>> print(y) ivy.array([[-0.2784, 3.7168, 1.8708], [ 1.4374, 4.1379, -0.0089]]) """ return current_backend(x).silu(x, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function def elu( x: Union[ivy.Array, ivy.NativeArray], /, *, alpha: float = 1.0, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Apply the elu unit function element-wise. Parameters ---------- x Input array. alpha scaler for controlling the slope of the function for x <= 0 Default: 1.0 out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The input array with elu applied element-wise. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([0.39, -0.85]) >>> y = ivy.elu(x) >>> print(y) ivy.array([ 0.38999999, -0.57258511]) >>> x = ivy.array([1.5, 0.7, -2.4]) >>> y = ivy.zeros(3) >>> ivy.elu(x, out=y) >>> print(y) ivy.array([ 1.5, 0.69999999, -0.90928203]) >>> x = ivy.array([[1.1, 2.2, 3.3], ... [-4.4, -5.5, -6.6]]) >>> ivy.elu(x, out=x) >>> print(x) ivy.array([[ 1.10000002, 2.20000005, 3.29999995], [-0.98772264, -0.99591321, -0.99863964]]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([0.0, -1.2]), b=ivy.array([0.4, -0.2])) >>> x = ivy.elu(x, out=x) >>> print(x) { a: ivy.array([0., -0.69880581]), b: ivy.array([0.40000001, -0.18126924]) } """ return current_backend(x).elu(x, alpha=alpha, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function def hardtanh( x: Union[ivy.Array, ivy.NativeArray], /, *, max_val: float = 1, min_val: float = -1, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Apply the hardtanh unit function element-wise. Parameters ---------- x Input array. min_val minimum value of the linear region range. Default: -1. max_val maximum value of the linear region range. Default: 1. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The input array with elu applied element-wise. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([0.39, -0.85]) >>> y = ivy.hardtanh(x) >>> print(y) ivy.array([ 0.39, -0.85]) >>> x = ivy.array([1.5, 0.7, -2.4]) >>> y = ivy.zeros(3) >>> ivy.hardtanh(x, out=y) >>> print(y) ivy.array([ 1., 0.7, -1.]) >>> x = ivy.array([[1.1, 2.2, 3.3],[-0.4, 0.5, -6.6]]) >>> ivy.hardtanh(x, out=x) >>> print(x) ivy.array([[ 1., 1., 1.],[-0.4, 0.5, -1.]]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([0.0, -1.2]), b=ivy.array([0.4, -0.2])) >>> x = ivy.hardtanh(x, out=x) >>> print(x) { a: ivy.array([0., -1.]), b: ivy.array([0.4, -0.2]) } """ return current_backend(x).hardtanh(x, max_val=max_val, min_val=min_val, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function def tanhshrink( x: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None ) -> ivy.Array: """Apply the tanhshrink function element-wise. Parameters ---------- x input array. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the tanhshrink activation of each element in ``x``. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = ivy.tanhshrink(x) >>> print(y) ivy.array([-0.23840582, 0.23840582, 1.03597236]) >>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = x.tanhshrink() >>> print(y) ivy.array([-0.23840582, 0.23840582, 1.03597236]) >>> x = ivy.array([[-1.3, 3.8, 2.1], [1.7, 4.2, -6.6]]) >>> y = ivy.tanhshrink(x) >>> print(y) ivy.array([[-0.43827677, 2.80100036, 1.12954807], [ 0.76459098, 3.20044947, -5.60000372]]) """ return current_backend(x).tanhshrink(x, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function def softshrink( x: Union[ivy.Array, ivy.NativeArray], /, *, lambd: float = 0.5, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Apply the softshrink function element-wise. Parameters ---------- x input array. lambd the value of the lower bound of the linear region range. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the softshrink activation of each element in ``x``. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = ivy.softshrink(x) >>> print(y) ivy.array([-0.5, 0.5, 1.5]) >>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = x.softshrink() >>> print(y) ivy.array([-0.5, 0.5, 1.5]) >>> x = ivy.array([[-1.3, 3.8, 2.1], [1.7, 4.2, -6.6]]) >>> y = ivy.softshrink(x) >>> print(y) ivy.array([[-0.79999995, 3.29999995, 1.59999991], [ 1.20000005, 3.69999981, -6.0999999 ]]) """ return current_backend(x).softshrink(x, lambd=lambd, out=out) def _celu_jax_like( x: Union[ivy.Array, ivy.NativeArray], /, *, fn_original: Optional[Callable] = None, alpha: float = 1.0, out: Optional[ivy.Array] = None, ) -> ivy.Array: # implementation of max(0, x) for complex numbers complex_max = ivy.where( ( ivy.logical_or( ivy.real(x) < 0, ivy.logical_and(ivy.real(x) == 0, ivy.imag(x) < 0) ) ), ivy.astype(0.0, x.dtype), x, ) # implementation of min(0, x) for complex numbers complex_min = ivy.where( ( ivy.logical_or( ivy.real(x) < 0, ivy.logical_and(ivy.real(x) == 0, ivy.imag(x) < 0) ) ), x, ivy.astype(0.0, x.dtype), ) return complex_max + alpha * ivy.expm1(complex_min / alpha) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device def threshold( x: Union[ivy.Array, ivy.NativeArray], /, *, threshold: float, value: float, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Apply the threshold function element-wise. Parameters ---------- x input array. threshold The value to threshold at. value The value to replace with. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the threshold activation of each element in ``x``. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = ivy.threshold(x,value=0.0, threshold=1.5) >>> print(y) ivy.array([0., 0., 2.]) >>> x = ivy.array([-1.0, 1.0, 2.0]) >>> x.threshold(value=0.0, threshold=1.5) >>> print(y) ivy.array([0., 0., 2.]) >>> x = ivy.array([[-1.3, 3.8, 2.1], [1.7, 4.2, -6.6]]) >>> y = ivy.threshold(x, value=0.0, threshold=1.5) >>> print(y) ivy.array([[0. , 3.79999995, 2.0999999 ], [1.70000005, 4.19999981, 0. ]]) """ return current_backend(x).threshold(x, threshold=threshold, value=value, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device @handle_complex_input def celu( x: Union[ivy.Array, ivy.NativeArray], /, *, alpha: float = 1.0, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Array] = None, ) -> ivy.Array: """Apply the Continuously Differentiable Exponential Linear Unit (CELU) activation function to each element of the input. Parameters ---------- x Input array. alpha The alpha value (negative slope) for the CELU formulation. Default is ``1.0`` complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The input array with celu applied element-wise. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([0.39, -0.85]) >>> y = ivy.celu(x) >>> y ivy.array([ 0.39, -0.57]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([0.39, -0.85]), b=ivy.array([1., -0.2])) >>> y = ivy.celu(x) >>> y { a: ivy.array([0.38999999, -0.57]), b: ivy.array([1., -0.18]) } """ return current_backend(x).celu(x, alpha=alpha, out=out) celu.jax_like = _celu_jax_like @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function def scaled_tanh( x: Union[ivy.Array, ivy.NativeArray], /, *, alpha: float = 1.7159, beta: float = 0.67, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the scaled hyperbolic tangent (tanh) activation. The scaled tanh activation function is defined as: out = alpha * tanh(beta * x) Parameters ---------- x input array. alpha The scaling parameter for the output. Determines the amplitude of the tanh function. Default: 1.7159 beta The scaling parameter for the input. Determines the slope of the tanh function. Default: 0.67 out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The input array after applying the scaled tanh activation. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([22.]) >>> y = ivy.scaled_tanh(x) >>> y ivy.array([1.71589994])) >>> x = ivy.array([4.0, 7.0]) >>> y = ivy.scaled_tanh(x, alpha=1.2, beta=5) >>> y ivy.array([1.20000005, 1.20000005]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([1.2, -1.2]), b=ivy.array([4.4, -2.2])) >>> y = ivy.scaled_tanh(x) >>> y { a: ivy.array([1.14324772, -1.14324772]), b: ivy.array([1.70648694, -1.54488957]) } >>> x = ivy.Container(a=ivy.array([1.2]), b=ivy.array([4.4])) >>> y = ivy.scaled_tanh(x, alpha=0.2, beta=0.5) >>> y { a: ivy.array([0.10740992]), b: ivy.array([0.19514863]) } """ return current_backend(x).scaled_tanh(x, alpha=alpha, beta=beta, out=out) stanh = scaled_tanh @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function def hardshrink( x: Union[ivy.Array, ivy.NativeArray], /, *, lambd: float = 0.5, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Apply the hardshrink function element-wise. Parameters ---------- x input array. lambd the value for the Hardshrink formulation. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the hardshrink activation of each element in ``x``. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = ivy.hardshrink(x) >>> print(y) ivy.array([-1., 1., 2.]) >>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = x.hardshrink() >>> print(y) ivy.array([-1., 1., 2.]) >>> x = ivy.array([[-1.3, 3.8, 2.1], [1.7, 4.2, -6.6]]) >>> y = ivy.hardshrink(x) >>> print(y) ivy.array([[-1.29999995, 3.79999995, 2.0999999 ], [ 1.70000005, 4.19999981, -6.5999999 ]]) """ return current_backend(x).hardshrink(x, lambd=lambd, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device def hardsilu( x: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None ) -> ivy.Array: """Apply the hardsilu/hardswish function element-wise. Parameters ---------- x input array out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- an array containing the output of the hardsilu/hardswish function applied to each element in ``x``. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([1., 2., 3.]) >>> y = ivy.hardsilu(x) >>> print(y) ivy.array([0.66666669, 1.66666663, 3. ]) >>> x = ivy.array([-2.1241, 1.4897, 4.4090]) >>> y = ivy.zeros(3) >>> ivy.hardsilu(x, out=y) >>> print(y) ivy.array([-0.31008321, 1.1147176 , 4.40899992]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([-0.5, -1, 0]), b=ivy.array([0.5, 1., 2])) >>> y = ivy.hardsilu(x) >>> print(y) { a: ivy.array([-0.20833333, -0.33333334, 0.]), b: ivy.array([0.29166666, 0.66666669, 1.66666663]) } """ return current_backend(x).hardsilu(x, out=out)
ivy/ivy/functional/ivy/experimental/activations.py/0
{ "file_path": "ivy/ivy/functional/ivy/experimental/activations.py", "repo_id": "ivy", "token_count": 12306 }
43
from typing import Optional, Union, Tuple import ivy from ivy.func_wrapper import ( handle_out_argument, to_native_arrays_and_back, handle_nestable, handle_device, handle_backend_invalid, ) from ivy.utils.exceptions import handle_exceptions @handle_exceptions @handle_backend_invalid @handle_nestable @handle_out_argument @to_native_arrays_and_back @handle_device def unravel_index( indices: Union[ivy.Array, ivy.NativeArray], shape: Tuple[int], /, *, out: Optional[ivy.Array] = None, ) -> Tuple[ivy.Array]: """Convert a flat index or array of flat indices into a tuple of coordinate arrays. Parameters ---------- indices Input array. shape The shape of the array to use for unraveling indices. out optional output array, for writing the result to. Returns ------- ret Tuple with arrays of type int32 that have the same shape as the indices array. Examples -------- >>> indices = ivy.array([22, 41, 37]) >>> ivy.unravel_index(indices, (7,6)) (ivy.array([3, 6, 6]), ivy.array([4, 5, 1])) """ return ivy.current_backend(indices).unravel_index(indices, shape, out=out)
ivy/ivy/functional/ivy/experimental/searching.py/0
{ "file_path": "ivy/ivy/functional/ivy/experimental/searching.py", "repo_id": "ivy", "token_count": 471 }
44
# global from numbers import Number from typing import Union, Optional, Tuple # local import ivy from ivy.utils.backend import current_backend from ivy.utils.exceptions import handle_exceptions from ivy.func_wrapper import ( handle_array_function, to_native_arrays_and_back, handle_out_argument, handle_nestable, handle_array_like_without_promotion, handle_device, handle_backend_invalid, ) # Array API Standard # # -------------------# @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def argmax( x: Union[ivy.Array, ivy.NativeArray], /, *, axis: Optional[int] = None, keepdims: bool = False, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, select_last_index: bool = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the indices of the maximum values along a specified axis. When the maximum value occurs multiple times, only the indices corresponding to the first occurrence are returned. Parameters ---------- x input array. Should have a numeric data type. axis axis along which to search. If None, the function must return the index of the maximum value of the flattened array. Default = None. keepdims If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the array. dtype Optional data type of the output array. select_last_index If this is set to True, the index corresponding to the last occurrence of the maximum value will be returned out If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype. Returns ------- ret if axis is None, a zero-dimensional array containing the index of the first occurrence of the maximum value; otherwise, a non-zero-dimensional array containing the indices of the maximum values. The returned array must have be the default array index data type. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ API_specification/generated/array_api.argmax.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([-0., 1., -1.]) >>> y = ivy.argmax(x) >>> print(y) ivy.array([1]) >>> x = ivy.array([-0., 1., -1.]) >>> z = ivy.zeros((1,3), dtype=ivy.int64) >>> ivy.argmax(x, out=z) >>> print(z) ivy.array(1) >>> x = ivy.array([[1., -0., -1.], [-2., 3., 2.]]) >>> y = ivy.argmax(x, axis=1) >>> print(y) ivy.array([0, 1]) >>> x = ivy.array([[4., 0., -1.], [2., -3., 6]]) >>> y = ivy.argmax(x, axis=1, keepdims=True) >>> print(y) ivy.array([[0], [2]]) >>> x = ivy.array([[4., 0., -1.], [2., -3., 6]]) >>> y = ivy.argmax(x, axis=1, dtype=ivy.int64) >>> print(y, y.dtype) ivy.array([0, 2]) int64 >>> x = ivy.array([[4., 0., -1.],[2., -3., 6], [2., -3., 6]]) >>> z = ivy.zeros((3,1), dtype=ivy.int64) >>> y = ivy.argmax(x, axis=1, keepdims=True, out=z) >>> print(z) ivy.array([[0],[2],[2]]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([0., -1., 2.]), b=ivy.array([3., 4., 5.])) >>> y = ivy.argmax(x) >>> print(y) { a: ivy.array(2), b: ivy.array(2) } """ return current_backend(x).argmax( x, axis=axis, keepdims=keepdims, dtype=dtype, select_last_index=select_last_index, out=out, ) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def argmin( x: Union[ivy.Array, ivy.NativeArray], /, *, axis: Optional[int] = None, keepdims: bool = False, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, select_last_index: bool = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the indices of the minimum values along a specified axis. When the minimum value occurs multiple times, only the indices corresponding to the first occurrence are returned. Parameters ---------- x input array. Should have a numeric data type. axis axis along which to search. If None, the function must return the index of the minimum value of the flattened array. Default = None. keepdims if True, the reduced axes (dimensions) must be included in the result as singleton dimensions, and, accordingly, the result must be compatible with the input array (see Broadcasting). Otherwise, if False, the reduced axes (dimensions) must not be included in the result. Default = False. dtype An optional output_dtype from: int32, int64. Defaults to int64. select_last_index If this is set to True, the index corresponding to the last occurrence of the maximum value will be returned. out if axis is None, a zero-dimensional array containing the index of the first occurrence of the minimum value; otherwise, a non-zero-dimensional array containing the indices of the minimum values. The returned array must have the default array index data type. Returns ------- ret Array containing the indices of the minimum values across the specified axis. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ API_specification/generated/array_api.argmin.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([0., 1., -1.]) >>> y = ivy.argmin(x) >>> print(y) ivy.array(2) >>> x = ivy.array([[0., 1., -1.],[-2., 1., 2.]]) >>> y = ivy.argmin(x, axis=1) >>> print(y) ivy.array([2, 0]) >>> x = ivy.array([[0., 1., -1.],[-2., 1., 2.]]) >>> y = ivy.argmin(x, axis=1, keepdims=True) >>> print(y) ivy.array([[2], [0]]) >>> x = ivy.array([[0., 1., -1.],[-2., 1., 2.],[1., -2., 0.]]) >>> y= ivy.zeros((3,1), dtype=ivy.int64) >>> ivy.argmin(x, axis=1, keepdims=True, out=y) >>> print(y) ivy.array([[2], [0], [1]]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([0., -1., 2.]), b=ivy.array([3., 4., 5.])) >>> y = ivy.argmin(x) >>> print(y) { a: ivy.array(1), b: ivy.array(0) } """ return current_backend(x).argmin( x, axis=axis, keepdims=keepdims, dtype=dtype, select_last_index=select_last_index, out=out, ) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @to_native_arrays_and_back @handle_array_function @handle_device def nonzero( x: Union[ivy.Array, ivy.NativeArray], /, *, as_tuple: bool = True, size: Optional[int] = None, fill_value: Number = 0, ) -> Union[Tuple[ivy.Array], ivy.Array]: """Return the indices of the array elements which are non-zero. .. note:: If ``x`` has a complex floating-point data type, non-zero elements are those elements having at least one component (real or imaginary) which is non-zero. .. note:: If ``x`` has a boolean data type, non-zeroelements are those elements which are equal to ``True``. Parameters ---------- x input array. Must have a positive rank. If `x` is zero-dimensional, the function must raise an exception. as_tuple if True, the output is returned as a tuple of indices, one for each dimension of the input, containing the indices of the true elements in that dimension. If False, the coordinates are returned in a (N, ndim) array, where N is the number of true elements. Default = True. size if specified, the function will return an array of shape (size, ndim). If the number of non-zero elements is fewer than size, the remaining elements will be filled with fill_value. Default = None. fill_value when size is specified and there are fewer than size number of elements, the remaining elements in the output array will be filled with fill_value. Default = 0. Returns ------- ret a tuple of `k` arrays, one for each dimension of `x` and each of size `n` (where `n` is the total number of non-zero elements), containing the indices of the non-zero elements in that dimension. The indices must be returned in row-major, C-style order. The returned array must have the default array index data type. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ API_specification/generated/array_api.nonzero.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([0, 10, 15, 20, -50, 0]) >>> y = ivy.nonzero(x) >>> print(y) (ivy.array([1, 2, 3, 4]),) >>> x = ivy.array([[1, 2], [-1, -2]]) >>> y = ivy.nonzero(x) >>> print(y) (ivy.array([0, 0, 1, 1]), ivy.array([0, 1, 0, 1])) >>> x = ivy.array([[0, 2], [-1, -2]]) >>> y = ivy.nonzero(x, as_tuple=False) >>> print(y) ivy.array([[0, 1], [1, 0], [1, 1]]) >>> x = ivy.array([0, 1]) >>> y = ivy.nonzero(x, size=2, fill_value=4) >>> print(y) (ivy.array([1, 4]),) With :class:`ivy.NativeArray` input: >>> x = ivy.native_array([[10, 20], [10, 0], [0, 0]]) >>> y = ivy.nonzero(x) >>> print(y) (ivy.array([0, 0, 1]), ivy.array([0, 1, 0])) >>> x = ivy.native_array([[0], [1], [1], [0], [1]]) >>> y = ivy.nonzero(x) >>> print(y) (ivy.array([1, 2, 4]), ivy.array([0, 0, 0])) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([0,1,2,3,0]), b=ivy.array([1,1, 0,0])) >>> y = ivy.nonzero(x) >>> print(y) [{ a: ivy.array([1, 2, 3]), b: ivy.array([0, 1]) }] Instance Method Examples ~~~~~~~~~~~~~~~~~~~~~~~~ With :class:`ivy.Array` instance method: >>> x = ivy.array([0,0,0,1,1,1]) >>> y = x.nonzero() >>> print(y) (ivy.array([3, 4, 5]),) With :class:`ivy.Container` instance method: >>> x = ivy.Container(a=ivy.array([1,1,1]), b=ivy.native_array([0])) >>> y = x.nonzero() >>> print(y) [{ a: ivy.array([0, 1, 2]), b: ivy.array([]) }] """ return current_backend(x).nonzero( x, as_tuple=as_tuple, size=size, fill_value=fill_value ) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def where( condition: Union[ivy.Array, ivy.NativeArray], x1: Union[ivy.Array, ivy.NativeArray], x2: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return elements chosen from x or y depending on condition. Parameters ---------- condition Where True, yield x1, otherwise yield x2. x1 values from which to choose when condition is True. x2 values from which to choose when condition is False. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret An array with elements from x1 where condition is True, and elements from x2 elsewhere. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ API_specification/generated/array_api.where.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> condition = ivy.array([[True, False], [True, True]]) >>> x1 = ivy.array([[1, 2], [3, 4]]) >>> x2 = ivy.array([[5, 6], [7, 8]]) >>> res = ivy.where(condition, x1, x2) >>> print(res) ivy.array([[1, 6], [3, 4]]) >>> x1 = ivy.array([[6, 13, 22, 7, 12], [7, 11, 16, 32, 9]]) >>> x2 = ivy.array([[44, 20, 8, 35, 9], [98, 23, 43, 6, 13]]) >>> res = ivy.where(((x1 % 2 == 0) & (x2 % 2 == 1)), x1, x2) >>> print(res) ivy.array([[44, 20, 8, 35, 12], [98, 23, 16, 6, 13]]) With :class:`ivy.Container` input: >>> x1 = ivy.Container(a=ivy.array([3, 1, 5]), b=ivy.array([2, 4, 6])) >>> x2 = ivy.Container(a=ivy.array([0, 7, 2]), b=ivy.array([3, 8, 5])) >>> condition = x1.a > x2.a >>> res = x1.where(condition, x2) >>> print(res) { a: ivy.array([1, 0, 1]), b: ivy.array([1, 0, 1]) } """ return current_backend(x1).where(condition, x1, x2, out=out) # Extra # # ------# @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def argwhere( x: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the indices of all non-zero elements of the input array. Parameters ---------- x input array, for which indices are desired. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Indices of non-zero elements. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([[1, 2], [3, 4]]) >>> res = ivy.argwhere(x) >>> print(res) ivy.array([[0, 0], [0, 1], [1, 0], [1, 1]]) >>> x = ivy.array([[0, 2], [3, 4]]) >>> res = ivy.argwhere(x) >>> print(res) ivy.array([[0, 1], [1, 0], [1, 1]]) >>> x = ivy.array([[0, 2], [3, 4]]) >>> y = ivy.zeros((3, 2), dtype=ivy.int64) >>> res = ivy.argwhere(x, out=y) >>> print(res) ivy.array([[0, 1], [1, 0], [1, 1]]) With a :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([1, 2]), b=ivy.array([3, 4])) >>> res = ivy.argwhere(x) >>> print(res) { a: ivy.array([[0], [1]]), b: ivy.array([[0], [1]]) } >>> x = ivy.Container(a=ivy.array([1, 0]), b=ivy.array([3, 4])) >>> res = ivy.argwhere(x) >>> print(res) { a: ivy.array([[0]]), b: ivy.array([[0], [1]]) } """ return current_backend(x).argwhere(x, out=out)
ivy/ivy/functional/ivy/searching.py/0
{ "file_path": "ivy/ivy/functional/ivy/searching.py", "repo_id": "ivy", "token_count": 6701 }
45
from . import backend from . import dynamic_import from .dynamic_import import * from .binaries import *
ivy/ivy/utils/__init__.py/0
{ "file_path": "ivy/ivy/utils/__init__.py", "repo_id": "ivy", "token_count": 28 }
46
# TODO should this still be here? import termcolor level = 0 def cprint(message, color="green"): print(termcolor.colored(message, color))
ivy/ivy/utils/verbosity.py/0
{ "file_path": "ivy/ivy/utils/verbosity.py", "repo_id": "ivy", "token_count": 47 }
47
"""A state holder for testing, this is only intended to hold and store testing data to be used by the test helpers to prune unsupported data. Should not be used inside any of the test functions. """ from dataclasses import dataclass from .pipeline_helper import get_frontend_config # needed for multiversion available_frameworks = [ "numpy", "jax", "tensorflow", "torch", "paddle", "mxnet", "scipy", ] mod_frontend = { "tensorflow": None, "numpy": None, "jax": None, "torch": None, "mindspore": None, "scipy": None, "paddle": None, } # multiversion mod_backend = { "numpy": None, "jax": None, "tensorflow": None, "torch": None, "paddle": None, "mxnet": None, } # multiversion # This is used to make sure the variable is not being overridden _Notsetval = object() CURRENT_GROUND_TRUTH_BACKEND: callable = _Notsetval CURRENT_BACKEND: callable = _Notsetval CURRENT_FRONTEND: callable = _Notsetval CURRENT_FRONTEND_CONFIG: _Notsetval CURRENT_RUNNING_TEST = _Notsetval CURRENT_DEVICE = _Notsetval CURRENT_DEVICE_STRIPPED = _Notsetval CURRENT_FRONTEND_STR = None CURRENT_TRACED_DATA = {} @dataclass(frozen=True) # ToDo use kw_only=True when version is updated class TestData: test_fn: callable fn_tree: str fn_name: str supported_device_dtypes: dict = None is_method: bool = False class InterruptedTest(BaseException): """Indicate that a test tried to write global attributes while a test is running.""" def __init__(self, test_interrupted): super().__init__(f"{test_interrupted} was interrupted during execution.") # Setup def setup_api_test( backend: str, ground_truth_backend: str, device: str, test_data: TestData = None, ): if test_data is not None: _set_test_data(test_data) if ground_truth_backend is not None: _set_ground_truth_backend(ground_truth_backend) _set_backend(backend) _set_device(device) def teardown_api_test(): _unset_test_data() _unset_ground_truth_backend() _unset_backend() _unset_device() def setup_frontend_test(frontend: str, backend: str, device: str, test_data: TestData): if test_data is not None: _set_test_data(test_data) _set_frontend(frontend) _set_backend(backend) _set_device(device) def teardown_frontend_test(): _unset_test_data() _unset_frontend() _unset_backend() _unset_device() def _set_test_data(test_data: TestData): global CURRENT_RUNNING_TEST if CURRENT_RUNNING_TEST is not _Notsetval: raise InterruptedTest(CURRENT_RUNNING_TEST) CURRENT_RUNNING_TEST = test_data def _set_frontend(framework: str): global CURRENT_FRONTEND global CURRENT_FRONTEND_CONFIG if CURRENT_FRONTEND is not _Notsetval: raise InterruptedTest(CURRENT_RUNNING_TEST) CURRENT_FRONTEND_CONFIG = get_frontend_config(framework) CURRENT_FRONTEND = framework def _set_backend(framework: str): global CURRENT_BACKEND if CURRENT_BACKEND is not _Notsetval: raise InterruptedTest(CURRENT_RUNNING_TEST) CURRENT_BACKEND = framework def _set_ground_truth_backend(framework: str): global CURRENT_GROUND_TRUTH_BACKEND if CURRENT_GROUND_TRUTH_BACKEND is not _Notsetval: raise InterruptedTest(CURRENT_RUNNING_TEST) CURRENT_GROUND_TRUTH_BACKEND = framework def _set_device(device: str): global CURRENT_DEVICE, CURRENT_DEVICE_STRIPPED if CURRENT_DEVICE is not _Notsetval or CURRENT_DEVICE_STRIPPED is not _Notsetval: raise InterruptedTest(CURRENT_RUNNING_TEST) CURRENT_DEVICE = device CURRENT_DEVICE_STRIPPED = device.partition(":")[0] # Teardown def _unset_test_data(): global CURRENT_RUNNING_TEST CURRENT_RUNNING_TEST = _Notsetval def _unset_frontend(): global CURRENT_FRONTEND, CURRENT_FRONTEND_CONFIG CURRENT_FRONTEND = _Notsetval CURRENT_FRONTEND_CONFIG = _Notsetval def _unset_backend(): global CURRENT_BACKEND CURRENT_BACKEND = _Notsetval def _unset_ground_truth_backend(): global CURRENT_GROUND_TRUTH_BACKEND CURRENT_GROUND_TRUTH_BACKEND = _Notsetval def _unset_device(): global CURRENT_DEVICE, CURRENT_DEVICE_STRIPPED CURRENT_DEVICE = _Notsetval CURRENT_DEVICE_STRIPPED = _Notsetval
ivy/ivy_tests/test_ivy/helpers/globals.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/helpers/globals.py", "repo_id": "ivy", "token_count": 1760 }
48
# local import ivy import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test, BackendHandler from ivy.functional.frontends.jax import vmap from hypothesis import strategies as st import jax # --- Helpers --- # # --------------- # def _fn1(x, y): return ivy.matmul(x, y) def _fn2(x, y): return ivy.vecdot(x, y) def _fn3(x, y): return ivy.add(x, y) # --- Main --- # # ------------ # # device_get @handle_frontend_test( fn_tree="jax.general_functions.device_get", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), ) def test_jax_device_get( *, dtype_and_x, test_flags, fn_tree, frontend, backend_fw, on_device, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: dtype, x = dtype_and_x dtype = dtype[0] x = x[0] x = ivy_backend.asarray(x) if test_flags.as_variable and ivy_backend.is_float_dtype(dtype): x = ivy_backend.functional.ivy.gradients._variable(x) x_on_dev = ivy_backend.functional.frontends.jax.device_get(x).ivy_array dev_from_new_x = ivy_backend.dev(x_on_dev) # value test assert dev_from_new_x == "cpu" # device_put @handle_frontend_test( fn_tree="jax.general_functions.device_put", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), ) def test_jax_device_put( *, dtype_and_x, test_flags, fn_tree, frontend, backend_fw, on_device, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: dtype, x = dtype_and_x dtype = dtype[0] x = x[0] x = ivy_backend.asarray(x) if test_flags.as_variable and ivy_backend.is_float_dtype(dtype): x = ivy_backend.functional.ivy.gradients._variable(x) device = ivy_backend.dev(x) x_on_dev = ivy_backend.functional.frontends.jax.device_put( x, on_device ).ivy_array dev_from_new_x = ivy_backend.dev(x_on_dev) # value test assert dev_from_new_x == device # vmap @handle_frontend_test( fn_tree="jax.general_functions.vmap", func=st.sampled_from([_fn1, _fn2, _fn3]), dtype_and_arrays_and_axes=helpers.arrays_and_axes( allow_none=False, min_num_dims=2, max_num_dims=5, min_dim_size=2, max_dim_size=10, num=2, return_dtype=True, ), in_axes_as_cont=st.booleans(), ) def test_jax_vmap( func, dtype_and_arrays_and_axes, in_axes_as_cont, backend_fw, ): dtype, generated_arrays, in_axes = dtype_and_arrays_and_axes ivy.set_backend(backend_fw) arrays = [ivy.native_array(array) for array in generated_arrays] if in_axes_as_cont: vmapped_func = vmap(func, in_axes=in_axes, out_axes=0) else: vmapped_func = vmap(func, in_axes=0, out_axes=0) assert callable(vmapped_func) try: fw_res = helpers.flatten_and_to_np( ret=vmapped_func(*arrays), backend=backend_fw ) fw_res = fw_res if len(fw_res) else None except Exception: fw_res = None ivy.previous_backend() ivy.set_backend("jax") arrays = [ivy.native_array(array) for array in generated_arrays] if in_axes_as_cont: jax_vmapped_func = jax.vmap(func, in_axes=in_axes, out_axes=0) else: jax_vmapped_func = jax.vmap(func, in_axes=0, out_axes=0) assert callable(jax_vmapped_func) try: jax_res = helpers.flatten_and_to_np( ret=jax_vmapped_func(*arrays), backend="jax" ) jax_res = jax_res if len(jax_res) else None except Exception: jax_res = None ivy.previous_backend() if fw_res is not None and jax_res is not None: helpers.value_test( ret_np_flat=fw_res, ret_np_from_gt_flat=jax_res, rtol=1e-1, atol=1e-1, backend=backend_fw, ground_truth_backend="jax", ) elif fw_res is None and jax_res is None: pass else: assert False, "One of the results is None while other isn't"
ivy/ivy_tests/test_ivy/test_frontends/test_jax/test_general_functions.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_jax/test_general_functions.py", "repo_id": "ivy", "token_count": 2139 }
49
# global from hypothesis import strategies as st, assume import numpy as np import hypothesis.extra.numpy as nph # local import ivy import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test import ivy_tests.test_ivy.test_frontends.test_numpy.helpers as np_frontend_helpers from ivy_tests.test_ivy.test_functional.test_core.test_manipulation import ( _repeat_helper, ) from ivy_tests.test_ivy.test_functional.test_experimental.test_core.test_manipulation import ( # noqa _get_dtype_values_k_axes_for_rot90, _get_splits, _st_tuples_or_int, ) # --- Helpers --- # # --------------- # # concatenate @st.composite def _arrays_idx_n_dtypes(draw): num_dims = draw(st.shared(helpers.ints(min_value=1, max_value=4), key="num_dims")) num_arrays = draw( st.shared(helpers.ints(min_value=2, max_value=4), key="num_arrays") ) common_shape = draw( helpers.list_of_size( x=helpers.ints(min_value=2, max_value=3), size=num_dims - 1, ) ) unique_idx = draw(helpers.ints(min_value=0, max_value=num_dims - 1)) unique_dims = draw( helpers.list_of_size( x=helpers.ints(min_value=2, max_value=3), size=num_arrays, ) ) xs = [] input_dtypes = draw( helpers.array_dtypes(available_dtypes=draw(helpers.get_dtypes("valid"))) ) for ud, dt in zip(unique_dims, input_dtypes): x = draw( helpers.array_values( shape=common_shape[:unique_idx] + [ud] + common_shape[unique_idx:], dtype=dt, ) ) xs.append(x) return xs, input_dtypes, unique_idx @st.composite def _get_clip_inputs(draw): shape = draw( helpers.get_shape( min_num_dims=1, max_num_dims=5, min_dim_size=2, max_dim_size=10 ) ) x_dtype, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), shape=shape, min_value=-1e10, max_value=1e10, ) ) min = draw(st.booleans()) if min: max = draw(st.booleans()) min = draw( helpers.array_values( dtype=x_dtype[0], shape=shape, min_value=-50, max_value=5 ) ) max = ( draw( helpers.array_values( dtype=x_dtype[0], shape=shape, min_value=6, max_value=50 ) ) if max else None ) else: min = None max = draw( helpers.array_values( dtype=x_dtype[0], shape=shape, min_value=6, max_value=50 ) ) return x_dtype, x, min, max # block @st.composite def _get_input_and_block(draw): shapes = draw( st.lists( helpers.get_shape( min_num_dims=1, max_num_dims=5, min_dim_size=2, max_dim_size=10 ), min_size=2, max_size=10, ) ) x_dtypes, xs = zip( *[ draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=5, min_dim_size=2, max_dim_size=10, shape=shape, ) ) for shape in shapes ] ) return x_dtypes, xs # broadcast_to @st.composite def _get_input_and_broadcast_shape(draw): dim1 = draw(helpers.ints(min_value=2, max_value=5)) x_dtype, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=5, min_dim_size=2, max_dim_size=10, shape=(dim1,), ) ) broadcast_dim = draw(helpers.ints(min_value=1, max_value=3)) shape = () for _ in range(broadcast_dim): shape += (draw(helpers.ints(min_value=1, max_value=dim1)),) shape += (dim1,) return x_dtype, x, shape # resize @st.composite def _get_input_and_new_shape(draw): shape = draw( helpers.get_shape( min_num_dims=2, max_num_dims=5, min_dim_size=2, max_dim_size=10 ) ) new_shape = draw( helpers.get_shape( min_num_dims=2, max_num_dims=5, min_dim_size=2, max_dim_size=10 ).filter(lambda x: np.prod(x) == np.prod(shape)) ) x_dtype, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=2, max_num_dims=5, min_dim_size=2, max_dim_size=10, shape=shape, ) ) return x_dtype, x, new_shape # reshape @st.composite def _get_input_and_reshape(draw): shape = draw( helpers.get_shape( min_num_dims=2, max_num_dims=5, min_dim_size=2, max_dim_size=10 ) ) x_dtype, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=5, min_dim_size=2, max_dim_size=10, shape=shape, ) ) new_shape = shape[1:] + (shape[0],) return x_dtype, x, new_shape # swapaxes @st.composite def _get_input_and_two_swapabble_axes(draw): x_dtype, x, x_shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ret_shape=True, min_num_dims=1, max_num_dims=10, ) ) axis1 = draw( helpers.ints( min_value=-1 * len(x_shape), max_value=len(x_shape) - 1, ) ) axis2 = draw( helpers.ints( min_value=-1 * len(x_shape), max_value=len(x_shape) - 1, ) ) return x_dtype, x, axis1, axis2 # pad @st.composite def _pad_helper(draw): mode = draw( st.sampled_from( [ "constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", ] ) ) if mode == "median": dtypes = "float" else: dtypes = "numeric" dtype, input, shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes(dtypes), ret_shape=True, min_num_dims=1, min_value=-100, max_value=100, ).filter( lambda x: x[0][0] not in ["float16", "bfloat16", "complex64", "complex128"] ), ) ndim = len(shape) pad_width = draw(_st_tuples_or_int(ndim, min_val=0)) kwargs = {} if mode in ["reflect", "symmetric"]: kwargs["reflect_type"] = draw(st.sampled_from(["even", "odd"])) if mode in ["maximum", "mean", "median", "minimum"]: kwargs["stat_length"] = draw(_st_tuples_or_int(ndim, min_val=2)) if mode in ["linear_ramp"]: kwargs["end_values"] = draw(_st_tuples_or_int(ndim)) if mode == "constant": kwargs["constant_values"] = draw(_st_tuples_or_int(ndim)) return dtype, input[0], pad_width, kwargs, mode # TODO: uncomment when block is reimplemented # @handle_frontend_test( # fn_tree="jax.numpy.block", # input_x_shape=_get_input_and_block(), # test_with_out=st.just(False), # ) # def test_jax_block( # *, # input_x_shape, # on_device, # fn_tree, # frontend, # test_flags, # ): # x_dtypes, xs = input_x_shape # helpers.test_frontend_function( # input_dtypes=x_dtypes, # frontend=frontend, # test_flags=test_flags, # fn_tree=fn_tree, # on_device=on_device, # arrays=xs, # ) @st.composite def _squeeze_helper(draw): shape = draw(st.shared(helpers.get_shape(), key="shape")) valid_axes = [idx for idx in range(len(shape)) if shape[idx] == 1] + [None] return draw(st.sampled_from(valid_axes)) # --- Main --- # # ------------ # # append @handle_frontend_test( fn_tree="jax.numpy.append", dtype_values_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2, shape=helpers.get_shape( min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), shared_dtype=True, valid_axis=True, allow_neg_axes=True, force_int_axis=True, ), test_with_out=st.just(False), ) def test_jax_append( dtype_values_axis, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, values, axis = dtype_values_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, arr=values[0], values=values[1], axis=axis, ) # array_split @handle_frontend_test( fn_tree="jax.numpy.array_split", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), ), indices_or_sections=_get_splits( min_num_dims=1, allow_none=False, is_mod_split=True ), axis=st.shared( helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), force_int=True, ), key="target_axis", ), test_with_out=st.just(False), ) def test_jax_array_split( *, dtype_value, indices_or_sections, axis, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, value = dtype_value assume(isinstance(indices_or_sections, int)) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, ary=value[0], indices_or_sections=indices_or_sections, axis=axis, ) # atleast_1d @handle_frontend_test( fn_tree="jax.numpy.atleast_1d", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=helpers.ints(min_value=1, max_value=10), ), test_with_out=st.just(False), ) def test_jax_atleast_1d( *, dtype_and_x, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, arrays = dtype_and_x arys = {} for i, (array, idtype) in enumerate(zip(arrays, input_dtype)): arys[f"arrs{i}"] = np.asarray(array, dtype=idtype) test_flags.num_positional_args = len(arys) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **arys, ) # atleast_2d @handle_frontend_test( fn_tree="jax.numpy.atleast_2d", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=helpers.ints(min_value=1, max_value=10), ), test_with_out=st.just(False), ) def test_jax_atleast_2d( *, dtype_and_x, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, arrays = dtype_and_x arys = {} for i, (array, idtype) in enumerate(zip(arrays, input_dtype)): arys[f"arrs{i}"] = np.asarray(array, dtype=idtype) test_flags.num_positional_args = len(arys) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **arys, ) # atleast_3d @handle_frontend_test( fn_tree="jax.numpy.atleast_3d", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=helpers.ints(min_value=1, max_value=10), ), test_with_out=st.just(False), ) def test_jax_atleast_3d( *, dtype_and_x, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, arrays = dtype_and_x arys = {} for i, (array, idtype) in enumerate(zip(arrays, input_dtype)): arys[f"arrs{i}"] = np.asarray(array, dtype=idtype) test_flags.num_positional_args = len(arys) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **arys, ) # bartlett @handle_frontend_test( fn_tree="jax.numpy.bartlett", m=helpers.ints(min_value=0, max_value=20), ) def test_jax_bartlett( m, frontend, backend_fw, test_flags, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=["int64"], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, M=m, ) # blackman @handle_frontend_test( fn_tree="jax.numpy.blackman", m=helpers.ints(min_value=0, max_value=20), ) def test_jax_blackman( m, frontend, backend_fw, test_flags, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=["int64"], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, M=m, ) # broadcast_arrays @handle_frontend_test( fn_tree="jax.numpy.broadcast_arrays", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=helpers.ints(min_value=1, max_value=10), shared_dtype=True, ), test_with_out=st.just(False), ) def test_jax_broadcast_arrays( *, dtype_value, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, value = dtype_value arrys = {} for i, v in enumerate(value): arrys[f"array{i}"] = v test_flags.num_positional_args = len(arrys) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **arrys, ) # broadcast_shapes @handle_frontend_test( fn_tree="jax.numpy.broadcast_shapes", shapes=nph.mutually_broadcastable_shapes( num_shapes=4, min_dims=1, max_dims=5, min_side=1, max_side=5 ), test_with_out=st.just(False), ) def test_jax_broadcast_shapes( *, shapes, on_device, fn_tree, frontend, backend_fw, test_flags, ): shape, _ = shapes shapes = {f"shape{i}": shape[i] for i in range(len(shape))} test_flags.num_positional_args = len(shapes) ret, frontend_ret = helpers.test_frontend_function( input_dtypes=["int64"], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **shapes, test_values=False, ) assert ret == frontend_ret @handle_frontend_test( fn_tree="jax.numpy.broadcast_to", input_x_broadcast=_get_input_and_broadcast_shape(), test_with_out=st.just(False), ) def test_jax_broadcast_to( *, input_x_broadcast, on_device, fn_tree, frontend, backend_fw, test_flags, ): x_dtype, x, shape = input_x_broadcast helpers.test_frontend_function( input_dtypes=x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, array=x[0], shape=shape, ) # clip @handle_frontend_test( fn_tree="jax.numpy.clip", input_and_ranges=_get_clip_inputs(), ) def test_jax_clip( *, input_and_ranges, on_device, fn_tree, frontend, backend_fw, test_flags, ): x_dtype, x, min, max = input_and_ranges helpers.test_frontend_function( input_dtypes=x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], a_min=min, a_max=max, ) # column_stack @handle_frontend_test( fn_tree="jax.numpy.column_stack", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=1, ), factor=helpers.ints(min_value=2, max_value=6), ) def test_jax_column_stack( dtype_and_x, factor, frontend, backend_fw, test_flags, fn_tree, on_device, ): dtype, x = dtype_and_x ys = [x[0]] for i in range(factor): ys += [x[0]] helpers.test_frontend_function( input_dtypes=[dtype[0]] * (factor + 1), frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, tup=ys, ) @handle_frontend_test( fn_tree="jax.numpy.concatenate", xs_n_input_dtypes_n_unique_idx=_arrays_idx_n_dtypes(), test_with_out=st.just(False), ) def test_jax_concat( *, xs_n_input_dtypes_n_unique_idx, on_device, fn_tree, frontend, backend_fw, test_flags, ): xs, input_dtypes, unique_idx = xs_n_input_dtypes_n_unique_idx helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, arrays=xs, axis=unique_idx, ) @handle_frontend_test( fn_tree="jax.numpy.diagflat", dtype_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=helpers.get_shape( min_num_dims=1, max_num_dims=2, min_dim_size=1, max_dim_size=10 ), small_abs_safety_factor=2.5, large_abs_safety_factor=2.5, safety_factor_scale="log", ), k=st.integers(min_value=-5, max_value=5), ) def test_jax_diagflat( dtype_x, k, frontend, test_flags, fn_tree, backend_fw, on_device, ): dtype, x = dtype_x helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, v=x[0], k=k, ) # dsplit @handle_frontend_test( fn_tree="jax.numpy.dsplit", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared(helpers.get_shape(min_num_dims=3), key="value_shape"), ), indices_or_sections=_get_splits( min_num_dims=3, axis=2, allow_none=False, is_mod_split=True ), test_with_out=st.just(False), ) def test_jax_dsplit( *, dtype_value, indices_or_sections, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, value = dtype_value helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, ary=value[0], indices_or_sections=indices_or_sections, ) # dstack @handle_frontend_test( fn_tree="jax.numpy.dstack", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shared_dtype=True, num_arrays=helpers.ints(min_value=1, max_value=10), shape=helpers.get_shape( min_num_dims=1, ), ), test_with_out=st.just(False), ) def test_jax_dstack( *, dtype_and_x, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, tup=x, ) # expand_dims @handle_frontend_test( fn_tree="jax.numpy.expand_dims", dtype_x_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=5, min_dim_size=2, max_dim_size=10, force_int_axis=True, valid_axis=True, ), ) def test_jax_expand_dims( *, dtype_x_axis, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, x, axis = dtype_x_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], axis=axis, ) # flip @handle_frontend_test( fn_tree="jax.numpy.flip", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), ), axis=helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), min_size=1, max_size=1, force_int=True, ), test_with_out=st.just(False), ) def test_jax_flip( *, dtype_value, axis, on_device, fn_tree, frontend, backend_fw, test_flags, ): dtype, value = dtype_value helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, m=value[0], axis=axis, ) # fliplr @handle_frontend_test( fn_tree="jax.numpy.fliplr", dtype_and_m=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=2, ), test_with_out=st.just(False), ) def test_jax_fliplr( *, dtype_and_m, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, m = dtype_and_m helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, m=m[0], ) # flipud @handle_frontend_test( fn_tree="jax.numpy.flipud", dtype_and_m=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_value=-100, max_value=100, min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ), test_with_out=st.just(False), ) def test_jax_flipud( *, dtype_and_m, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, m = dtype_and_m helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, m=m[0], ) # hamming @handle_frontend_test( fn_tree="jax.numpy.hamming", m=helpers.ints(min_value=0, max_value=20), ) def test_jax_hamming( m, frontend, backend_fw, test_flags, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=["int64"], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, M=m, ) # hanning @handle_frontend_test( fn_tree="jax.numpy.hanning", m=helpers.ints(min_value=0, max_value=20), ) def test_jax_hanning( m, frontend, backend_fw, test_flags, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=["int64"], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, M=m, ) # hsplit @handle_frontend_test( fn_tree="jax.numpy.hsplit", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared(helpers.get_shape(min_num_dims=2), key="value_shape"), ), indices_or_sections=_get_splits( min_num_dims=2, axis=1, allow_none=False, is_mod_split=True ), test_with_out=st.just(False), ) def test_jax_hsplit( *, dtype_value, indices_or_sections, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, value = dtype_value helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, ary=value[0], indices_or_sections=indices_or_sections, ) # kaiser @handle_frontend_test( fn_tree="jax.numpy.kaiser", m=helpers.ints(min_value=0, max_value=100), beta=helpers.floats(min_value=-10, max_value=10), ) def test_jax_kaiser( m, beta, frontend, backend_fw, test_flags, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=["int64", "float64"], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, M=m, beta=beta, ) # moveaxis @handle_frontend_test( fn_tree="jax.numpy.moveaxis", dtype_and_a=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_value=-100, max_value=100, shape=st.shared( helpers.get_shape( min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ), key="a_s_d", ), ), source=helpers.get_axis( allow_none=False, unique=True, shape=st.shared( helpers.get_shape( min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ), key="a_s_d", ), min_size=1, force_int=True, ), destination=helpers.get_axis( allow_none=False, unique=True, shape=st.shared( helpers.get_shape( min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ), key="a_s_d", ), min_size=1, force_int=True, ), test_with_out=st.just(False), ) def test_jax_moveaxis( *, dtype_and_a, source, destination, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, a = dtype_and_a helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=a[0], source=source, destination=destination, ) # trim_zeros @handle_frontend_test( fn_tree="jax.numpy.trim_zeros", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, max_num_dims=1 ), trim=st.sampled_from(["f", "b", "fb"]), ) def test_jax_numpy_trim_zeros( frontend, on_device, *, dtype_and_x, backend_fw, trim, fn_tree, test_flags, ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, backend_to_test=backend_fw, filt=x[0], trim=trim, ) @handle_frontend_test( fn_tree="jax.numpy.pad", dtype_and_input_and_other=_pad_helper(), test_with_out=st.just(False), ) def test_jax_pad( *, dtype_and_input_and_other, frontend, backend_fw, test_flags, fn_tree, on_device, ): ( dtype, input, pad_width, kwargs, mode, ) = dtype_and_input_and_other if isinstance(pad_width, int): pad_width = ((pad_width, pad_width),) * input.ndim else: pad_width = tuple( tuple(pair) if isinstance(pair, list) else pair for pair in pad_width ) helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, array=input, pad_width=pad_width, mode=mode, **kwargs, ) # ravel @handle_frontend_test( fn_tree="jax.numpy.ravel", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=5, min_dim_size=2, max_dim_size=10, shape=helpers.get_shape( min_num_dims=2, max_num_dims=5, min_dim_size=2, max_dim_size=10 ), ), order=st.sampled_from(["C", "F"]), test_with_out=st.just(False), ) def test_jax_ravel( *, dtype_and_values, order, on_device, backend_fw, fn_tree, frontend, test_flags, ): input_dtypes, x = dtype_and_values helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], order=order, ) # repeat @handle_frontend_test( fn_tree="jax.numpy.repeat", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), ), axis=st.shared( st.one_of( st.none(), helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), max_size=1, ), ), key="axis", ), repeat=st.one_of(st.integers(1, 10), _repeat_helper()), test_with_out=st.just(False), ) def test_jax_repeat( *, dtype_value, axis, repeat, on_device, fn_tree, frontend, backend_fw, test_flags, ): value_dtype, value = dtype_value if not isinstance(repeat, int): repeat_dtype, repeat_list = repeat repeat = repeat_list[0] value_dtype += repeat_dtype if not isinstance(axis, int) and axis is not None: axis = axis[0] helpers.test_frontend_function( input_dtypes=value_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=value[0], repeats=repeat, axis=axis, ) @handle_frontend_test( fn_tree="jax.numpy.reshape", input_x_shape=_get_input_and_reshape(), order=st.sampled_from(["C", "F"]), test_with_out=st.just(False), ) def test_jax_reshape( *, input_x_shape, order, on_device, fn_tree, frontend, backend_fw, test_flags, ): x_dtype, x, shape = input_x_shape helpers.test_frontend_function( input_dtypes=x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], newshape=shape, order=order, ) @handle_frontend_test( fn_tree="jax.numpy.resize", input_x_shape=_get_input_and_new_shape(), test_with_out=st.just(True), ) def test_jax_resize( *, input_x_shape, on_device, fn_tree, frontend, backend_fw, test_flags, ): x_dtype, x, new_shape = input_x_shape helpers.test_frontend_function( input_dtypes=x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], new_shape=new_shape, ) # roll @handle_frontend_test( fn_tree="jax.numpy.roll", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), large_abs_safety_factor=8, small_abs_safety_factor=8, safety_factor_scale="log", ), shift=helpers.dtype_and_values( available_dtypes=[ivy.int32], max_num_dims=1, min_dim_size=st.shared( helpers.ints(min_value=1, max_value=10), key="shift_len", ), max_dim_size=st.shared( helpers.ints(min_value=1, max_value=10), key="shift_len", ), ), axis=helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), force_tuple=True, unique=False, min_size=st.shared( helpers.ints(min_value=1, max_value=10), key="shift_len", ), max_size=st.shared( helpers.ints(min_value=1, max_value=10), key="shift_len", ), ), test_with_out=st.just(False), ) def test_jax_roll( *, dtype_value, shift, axis, on_device, fn_tree, frontend, backend_fw, test_flags, ): value_dtype, value = dtype_value shift_dtype, shift_val = shift if shift_val[0].ndim == 0: # If shift is an int shift_val = shift_val[0] # Drop shift's dtype (always int32) axis = axis[0] # Extract an axis value from the tuple else: # Drop shift's dtype (always int32) and convert list to tuple shift_val = tuple(shift_val[0].tolist()) helpers.test_frontend_function( input_dtypes=value_dtype + shift_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=value[0], shift=shift_val, axis=axis, ) # rot90 @handle_frontend_test( fn_tree="jax.numpy.rot90", dtype_m_k_axes=_get_dtype_values_k_axes_for_rot90( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), test_with_out=st.just(False), ) def test_jax_rot90( *, dtype_m_k_axes, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, m, k, axes = dtype_m_k_axes helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, m=m, k=k, axes=tuple(axes), ) # row_stack @handle_frontend_test( fn_tree="jax.numpy.row_stack", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=1, ), factor=helpers.ints(min_value=2, max_value=6), ) def test_jax_row_stack( dtype_and_x, factor, frontend, backend_fw, test_flags, fn_tree, on_device, ): dtype, x = dtype_and_x xs = [x[0]] for i in range(factor): xs += [x[0]] helpers.test_frontend_function( input_dtypes=[dtype[0]] * (factor + 1), backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, tup=xs, ) # split @handle_frontend_test( fn_tree="jax.numpy.split", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), ), indices_or_sections=_get_splits( min_num_dims=1, allow_none=False, is_mod_split=True ), axis=st.shared( helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), force_int=True, ), key="target_axis", ), test_with_out=st.just(False), ) def test_jax_split( *, dtype_value, indices_or_sections, axis, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, value = dtype_value helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, ary=value[0], indices_or_sections=indices_or_sections, axis=axis, ) # squeeze @handle_frontend_test( fn_tree="jax.numpy.squeeze", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared(helpers.get_shape(), key="shape"), ), axis=_squeeze_helper(), test_with_out=st.just(False), ) def test_jax_squeeze( *, dtype_and_values, axis, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, values = dtype_and_values helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=values[0], axis=axis, ) # stack @handle_frontend_test( fn_tree="jax.numpy.stack", dtype_values_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("float"), num_arrays=st.shared(helpers.ints(min_value=2, max_value=4), key="num_arrays"), shape=helpers.get_shape(min_num_dims=1), shared_dtype=True, valid_axis=True, allow_neg_axes=True, force_int_axis=True, ), dtype=helpers.get_dtypes("valid", full=False), ) def test_jax_stack( dtype_values_axis, dtype, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, values, axis = dtype_values_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, arrays=values, axis=axis, ) @handle_frontend_test( fn_tree="jax.numpy.swapaxes", input_x_axis1_axis2=_get_input_and_two_swapabble_axes(), test_with_out=st.just(False), ) def test_jax_swapaxes( *, input_x_axis1_axis2, test_flags, on_device, fn_tree, frontend, backend_fw, ): x_dtype, x, axis1, axis2 = input_x_axis1_axis2 helpers.test_frontend_function( input_dtypes=x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], axis1=axis1, axis2=axis2, ) # take @handle_frontend_test( fn_tree="jax.numpy.take", dtype_indices_axis=helpers.array_indices_axis( array_dtypes=helpers.get_dtypes("numeric"), indices_dtypes=["int32", "int64"], min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, indices_same_dims=True, ), ) def test_jax_take( *, dtype_indices_axis, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtypes, value, indices, axis, _ = dtype_indices_axis helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=value, indices=indices, axis=axis, ) # tile @handle_frontend_test( fn_tree="jax.numpy.tile", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), ), repeat=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("signed_integer"), shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape").map( lambda rep: (len(rep),) ), min_value=0, max_value=10, ), test_with_out=st.just(False), ) def test_jax_tile( *, dtype_value, repeat, on_device, fn_tree, frontend, backend_fw, test_flags, ): dtype, value = dtype_value repeat_dtype, repeat_list = repeat helpers.test_frontend_function( input_dtypes=dtype + repeat_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, A=value[0], reps=repeat_list[0], ) # transpose @handle_frontend_test( fn_tree="jax.numpy.transpose", array_and_axes=np_frontend_helpers._array_and_axes_permute_helper( min_num_dims=0, max_num_dims=5, min_dim_size=0, max_dim_size=10, ), test_with_out=st.just(False), ) def test_jax_transpose( *, array_and_axes, on_device, fn_tree, frontend, test_flags, backend_fw, ): array, dtype, axes = array_and_axes helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=array, axes=axes, ) # tri @handle_frontend_test( fn_tree="jax.numpy.tri", rows=helpers.ints(min_value=3, max_value=10), cols=helpers.ints(min_value=3, max_value=10), k=helpers.ints(min_value=-10, max_value=10), dtype=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), ) def test_jax_tri( rows, cols, k, dtype, frontend, backend_fw, test_flags, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, N=rows, M=cols, k=k, dtype=dtype[0], ) # tril @handle_frontend_test( fn_tree="jax.numpy.tril", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=2, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), k=helpers.ints(min_value=-10, max_value=10), test_with_out=st.just(False), ) def test_jax_tril( *, dtype_and_x, k, on_device, fn_tree, frontend, backend_fw, test_flags, ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, m=x[0], k=k, ) # vsplit @handle_frontend_test( fn_tree="jax.numpy.vsplit", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared(helpers.get_shape(min_num_dims=2), key="value_shape"), ), indices_or_sections=_get_splits( min_num_dims=2, axis=0, allow_none=False, is_mod_split=True ), test_with_out=st.just(False), ) def test_jax_vsplit( *, dtype_value, indices_or_sections, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, value = dtype_value helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, ary=value[0], indices_or_sections=indices_or_sections, )
ivy/ivy_tests/test_ivy/test_frontends/test_jax/test_numpy/test_manipulations.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_jax/test_numpy/test_manipulations.py", "repo_id": "ivy", "token_count": 23436 }
50
# global from hypothesis import strategies as st import numpy as np # local import ivy from ivy.functional.frontends.numpy import broadcast import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # --- Helpers --- # # --------------- # @st.composite def _broadcastable_arrays(draw): num_of_array = draw(st.integers(1, 3)) shapes = draw(helpers.mutually_broadcastable_shapes(num_shapes=num_of_array)) xs = [] for i in range(num_of_array): xs.append( draw( helpers.array_values(dtype=helpers.get_dtypes("valid"), shape=shapes[i]) ) ) return xs # --- Main --- # # ------------ # @handle_frontend_test( fn_tree="numpy.add", # dummy fn_tree args=_broadcastable_arrays(), ) def test_numpy_broadcast_method_reset(args): ret = broadcast(*args) ret_gt = np.broadcast(*args) for _ in zip(ret, ret_gt): pass ret.reset() ret_gt.reset() assert ret.index == ret_gt.index @handle_frontend_test( fn_tree="numpy.add", # dummy fn_tree args=_broadcastable_arrays(), ) def test_numpy_broadcast_property_index(args): ret = broadcast(*args) ret_gt = np.broadcast(*args) assert ret.index == ret_gt.index for _ in zip(ret, ret_gt): assert ret.index == ret_gt.index @handle_frontend_test( fn_tree="numpy.add", # dummy fn_tree args=_broadcastable_arrays(), ) def test_numpy_broadcast_property_iters(args): ret = list(map(list, broadcast(*args).iters)) ret_gt = np.array(list(map(list, np.broadcast(*args).iters))) assert ivy.all(ret == ret_gt) @handle_frontend_test( fn_tree="numpy.add", # dummy fn_tree args=_broadcastable_arrays(), ) def test_numpy_broadcast_property_nd(args): ret = broadcast(*args) ret_gt = np.broadcast(*args) assert ret.nd == ret_gt.nd @handle_frontend_test( fn_tree="numpy.add", # dummy fn_tree args=_broadcastable_arrays(), ) def test_numpy_broadcast_property_ndim(args): ret = broadcast(*args) ret_gt = np.broadcast(*args) assert ret.ndim == ret_gt.ndim @handle_frontend_test( fn_tree="numpy.add", # dummy fn_tree args=_broadcastable_arrays(), ) def test_numpy_broadcast_property_numiter(args): ret = broadcast(*args) ret_gt = np.broadcast(*args) assert ret.numiter == ret_gt.numiter @handle_frontend_test( fn_tree="numpy.add", # dummy fn_tree args=_broadcastable_arrays(), ) def test_numpy_broadcast_property_shape(args): ret = broadcast(*args) ret_gt = np.broadcast(*args) assert ret.shape == ret_gt.shape @handle_frontend_test( fn_tree="numpy.add", # dummy fn_tree args=_broadcastable_arrays(), ) def test_numpy_broadcast_property_size(args): ret = broadcast(*args) ret_gt = np.broadcast(*args) assert ret.size == ret_gt.size
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_broadcast/test_methods.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_broadcast/test_methods.py", "repo_id": "ivy", "token_count": 1200 }
51
# global import numpy as np from hypothesis import strategies as st from numpy import triu, tril # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # --- Helpers --- # # --------------- # # unravel_index @st.composite def max_value_as_shape_prod(draw): shape = draw( helpers.get_shape( min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, ) ) dtype_and_x = draw( helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_value=0, max_value=np.prod(shape) - 1, ) ) return dtype_and_x, shape @handle_frontend_test( fn_tree="numpy.diag_indices", n=helpers.ints(min_value=1, max_value=10), ndim=helpers.ints(min_value=2, max_value=10), dtype=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), ) def test_numpy_diag_indices( n, ndim, dtype, test_flags, frontend, backend_fw, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, n=n, ndim=ndim, ) @handle_frontend_test( fn_tree="numpy.indices", dimensions=helpers.get_shape(min_num_dims=1), dtype=helpers.get_dtypes(kind="float", full=False), sparse=st.booleans(), test_with_out=st.just(False), ) def test_numpy_indices( *, dimensions, dtype, sparse, test_flags, frontend, backend_fw, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, dimensions=dimensions, dtype=dtype[0], sparse=sparse, ) @handle_frontend_test( fn_tree="numpy.mask_indices", n=helpers.ints(min_value=3, max_value=10), mask_func=st.sampled_from([triu, tril]), k=helpers.ints(min_value=-5, max_value=5), input_dtype=helpers.get_dtypes("numeric"), test_with_out=st.just(False), number_positional_args=st.just(2), ) def test_numpy_mask_indices( n, mask_func, k, input_dtype, test_flags, frontend, backend_fw, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, n=n, mask_func=mask_func, k=k, ) @handle_frontend_test( fn_tree="numpy.tril_indices", n=helpers.ints(min_value=1, max_value=10), m=helpers.ints(min_value=1, max_value=10), k=st.integers(min_value=-10, max_value=10), test_with_out=st.just(False), ) def test_numpy_tril_indices( *, n, m, k, test_flags, frontend, backend_fw, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=["int32"], test_flags=test_flags, backend_to_test=backend_fw, frontend=frontend, fn_tree=fn_tree, on_device=on_device, n=n, k=k, m=m, ) @handle_frontend_test( fn_tree="numpy.tril_indices_from", dtype_and_values=helpers.dtype_and_values( dtype=["float32"], min_dim_size=3, max_dim_size=3, min_num_dims=2, max_num_dims=2, array_api_dtypes=True, ), k=st.integers(min_value=-10, max_value=10), dtype=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), ) def test_numpy_tril_indices_from( *, dtype_and_values, k, dtype, test_flags, frontend, backend_fw, fn_tree, on_device, ): dtype, values = dtype_and_values helpers.test_frontend_function( input_dtypes=dtype, test_flags=test_flags, backend_to_test=backend_fw, frontend=frontend, fn_tree=fn_tree, on_device=on_device, arr=values[0], k=k, ) @handle_frontend_test( fn_tree="numpy.unravel_index", dtype_x_shape=max_value_as_shape_prod(), test_with_out=st.just(False), ) def test_numpy_unravel_index( *, dtype_x_shape, test_flags, frontend, backend_fw, fn_tree, on_device, ): dtype_and_x, shape = dtype_x_shape input_dtype, x = dtype_and_x[0], dtype_and_x[1] helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, indices=x[0], shape=shape, )
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_indexing_routines/test_generating_index_arrays.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_indexing_routines/test_generating_index_arrays.py", "repo_id": "ivy", "token_count": 2529 }
52
# local import ivy_tests.test_ivy.test_frontends.test_numpy.helpers as np_frontend_helpers import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # logical_and @handle_frontend_test( fn_tree="numpy.logical_and", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=("bool",), num_arrays=2, ) ], special=True, ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="logical_and" ), ) def test_numpy_logical_and( dtypes_values_casting, where, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtypes, x, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x1=x[0], x2=x[1], out=None, where=where, casting=casting, order="K", dtype="bool", subok=True, ) # logical_not @handle_frontend_test( fn_tree="numpy.logical_not", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=("bool",), ) ], special=True, ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="logical_not" ), ) def test_numpy_logical_not( dtypes_values_casting, where, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtypes, x, casting, _ = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], out=None, where=where, casting=casting, order="K", dtype="bool", subok=True, ) # logical_or @handle_frontend_test( fn_tree="numpy.logical_or", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=("bool",), num_arrays=2, ) ], special=True, ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="logical_or" ), ) def test_numpy_logical_or( dtypes_values_casting, where, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtypes, x, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x1=x[0], x2=x[1], out=None, where=where, casting=casting, order="K", dtype="bool", subok=True, ) # logical_xor @handle_frontend_test( fn_tree="numpy.logical_xor", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=("bool",), num_arrays=2, ) ], special=True, ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="logical_xor" ), ) def test_numpy_logical_xor( dtypes_values_casting, where, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtypes, x, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x1=x[0], x2=x[1], out=None, where=where, casting=casting, order="K", dtype="bool", subok=True, )
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_logic/test_logical_operations.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_logic/test_logical_operations.py", "repo_id": "ivy", "token_count": 2664 }
53
# global from hypothesis import strategies as st # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # --- Helpers --- # # --------------- # @st.composite def _pad_helper(draw): mode = draw( st.sampled_from( [ "constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", ] ) ) if mode in ["median", "mean"]: dtypes = "float" else: dtypes = "numeric" dtype, input, shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes(dtypes), ret_shape=True, min_num_dims=1, min_value=-100, max_value=100, ).filter( lambda x: x[0][0] not in ["float16", "bfloat16", "complex64", "complex128"] ), ) ndim = len(shape) pad_width = draw(_st_tuples_or_int(ndim, min_val=0)) kwargs = {} if mode in ["reflect", "symmetric"]: kwargs["reflect_type"] = draw(st.sampled_from(["even", "odd"])) if mode in ["maximum", "mean", "median", "minimum"]: kwargs["stat_length"] = draw(_st_tuples_or_int(ndim, min_val=2)) if mode in ["linear_ramp"]: kwargs["end_values"] = draw(_st_tuples_or_int(ndim)) if mode == "constant": kwargs["constant_values"] = draw(_st_tuples_or_int(ndim)) return dtype, input[0], pad_width, kwargs, mode def _st_tuples_or_int(n_pairs, min_val=0): return st.one_of( st_tuples( st.tuples( st.integers(min_value=min_val, max_value=4), st.integers(min_value=min_val, max_value=4), ), min_size=n_pairs, max_size=n_pairs, ), helpers.ints(min_value=min_val, max_value=4), ) # --- Main --- # # ------------ # def st_tuples(elements, *, min_size=0, max_size=None, unique_by=None, unique=False): return st.lists( elements, min_size=min_size, max_size=max_size, unique_by=unique_by, unique=unique, ).map(tuple) # pad @handle_frontend_test( fn_tree="numpy.pad", args=_pad_helper(), test_with_out=st.just(False), ) def test_numpy_pad( *, args, fn_tree, backend_fw, on_device, test_flags, frontend, ): dtype, x, pad_width, kwargs, mode = args helpers.test_frontend_function( input_dtypes=dtype, backend_to_test="numpy", frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, array=x, pad_width=pad_width, mode=mode, **kwargs, )
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_manipulation_routines/test_padding_arrays.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_manipulation_routines/test_padding_arrays.py", "repo_id": "ivy", "token_count": 1523 }
54
# global import numpy as np from hypothesis import strategies as st, assume # local import ivy_tests.test_ivy.helpers as helpers import ivy_tests.test_ivy.test_frontends.test_numpy.helpers as np_frontend_helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # --- Helpers --- # # --------------- # # trapz @st.composite def _either_x_dx(draw): rand = (draw(st.integers(min_value=0, max_value=1)),) if rand == 0: either_x_dx = draw( helpers.dtype_and_values( available_dtypes=st.shared( helpers.get_dtypes("float"), key="trapz_dtype" ), min_value=-100, max_value=100, min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ) ) return rand, either_x_dx else: either_x_dx = draw( st.floats(min_value=-10, max_value=10), ) return rand, either_x_dx # helpers @st.composite def _get_castable_dtypes_values(draw, *, allow_nan=False, use_where=False): available_dtypes = helpers.get_dtypes("numeric") shape = draw(helpers.get_shape(min_num_dims=1, max_num_dims=4, max_dim_size=6)) dtype, values = draw( helpers.dtype_and_values( available_dtypes=available_dtypes, num_arrays=1, large_abs_safety_factor=24, small_abs_safety_factor=24, safety_factor_scale="log", shape=shape, allow_nan=allow_nan, ) ) axis = draw(helpers.get_axis(shape=shape, force_int=True)) dtype1, values, dtype2 = draw( helpers.get_castable_dtype(draw(available_dtypes), dtype[0], values[0]) ) if use_where: where = draw(np_frontend_helpers.where(shape=shape)) return [dtype1], [values], axis, dtype2, where return [dtype1], [values], axis, dtype2 # --- Main --- # # ------------ # # cumprod @handle_frontend_test( fn_tree="numpy.cumprod", dtype_x_axis_dtypes=_get_castable_dtypes_values(), ) def test_numpy_cumprod( dtype_x_axis_dtypes, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, axis, dtype = dtype_x_axis_dtypes # ToDo: set as_variable_flags as the parameter generated by test_cumprod once # this issue is marked as completed https://github.com/pytorch/pytorch/issues/75733 if backend_fw == "torch": assume(not test_flags.as_variable[0]) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], axis=axis, dtype=dtype, ) # cumsum @handle_frontend_test( fn_tree="numpy.cumsum", dtype_and_x_axis_dtype=_get_castable_dtypes_values(), ) def test_numpy_cumsum( dtype_and_x_axis_dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, axis, dtype = dtype_and_x_axis_dtype # ToDo: set as_variable_flags as the parameter generated by test_cumprod once # this issue is marked as completed https://github.com/pytorch/pytorch/issues/75733 if backend_fw == "torch": assume(not test_flags.as_variable[0]) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], axis=axis, dtype=dtype, ) # diff @handle_frontend_test( fn_tree="numpy.diff", dtype_x_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, valid_axis=True, force_int_axis=True, ), ) def test_numpy_diff( dtype_x_axis, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x, axis = dtype_x_axis np_frontend_helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, test_flags=test_flags, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, x=x[0], axis=axis, ) # ediff1d @handle_frontend_test( fn_tree="numpy.ediff1d", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=1, max_num_dims=1 ), to_end=st.one_of( st.integers(-1, 10), st.lists(st.integers(-1, 10), min_size=1, max_size=10) ), to_begin=st.one_of( st.integers(-1, 10), st.lists(st.integers(-1, 10), min_size=1, max_size=10) ), ) def test_numpy_ediff1d( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, to_end, to_begin, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_flags=test_flags, ary=x[0], to_end=to_end, to_begin=to_begin, ) # nancumprod @handle_frontend_test( fn_tree="numpy.nancumprod", dtype_and_x_axis_dtype=_get_castable_dtypes_values(allow_nan=True), ) def test_numpy_nancumprod( dtype_and_x_axis_dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, axis, dtype = dtype_and_x_axis_dtype if backend_fw == "torch": assume(not test_flags.as_variable[0]) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], axis=axis, dtype=dtype, ) # nancumsum @handle_frontend_test( fn_tree="numpy.nancumsum", dtype_and_x_axis_dtype=_get_castable_dtypes_values(allow_nan=True), ) def test_numpy_nancumsum( dtype_and_x_axis_dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, axis, dtype = dtype_and_x_axis_dtype if backend_fw == "torch": assume(not test_flags.as_variable[0]) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], axis=axis, dtype=dtype, ) # nanprod @handle_frontend_test( fn_tree="numpy.nanprod", dtype_and_x_dtype=_get_castable_dtypes_values(allow_nan=True, use_where=True), keepdims=st.booleans(), initial=st.one_of(st.floats(min_value=-100, max_value=100)), ) def test_numpy_nanprod( dtype_and_x_dtype, initial, frontend, test_flags, fn_tree, backend_fw, on_device, keepdims, ): input_dtypes, x, axis, dtype, where = dtype_and_x_dtype if backend_fw == "torch": assume(not test_flags.as_variable[0]) where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], axis=axis, dtype=dtype, initial=initial, where=where, keepdims=keepdims, ) # nansum @handle_frontend_test( fn_tree="numpy.nansum", dtype_and_x_dtype=_get_castable_dtypes_values(allow_nan=True, use_where=True), keepdims=st.booleans(), initial=st.one_of(st.floats(min_value=-100, max_value=100)), ) def test_numpy_nansum( dtype_and_x_dtype, initial, frontend, test_flags, fn_tree, backend_fw, on_device, keepdims, ): input_dtypes, x, axis, dtype, where = dtype_and_x_dtype if backend_fw == "torch": assume(not test_flags.as_variable[0]) where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], axis=axis, dtype=dtype, initial=initial, where=where, keepdims=keepdims, ) # prod @handle_frontend_test( fn_tree="numpy.prod", dtype_x_axis_dtype=_get_castable_dtypes_values(use_where=True), keep_dims=st.booleans(), initial=st.one_of(st.floats(min_value=-100, max_value=100)), ) def test_numpy_prod( dtype_x_axis_dtype, keep_dims, initial, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, axis, dtype, where = dtype_x_axis_dtype if backend_fw == "torch": assume(not test_flags.as_variable[0]) where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], axis=axis, dtype=dtype, keepdims=keep_dims, initial=initial, where=where, ) # sum @handle_frontend_test( fn_tree="numpy.sum", dtype_x_axis_dtype=_get_castable_dtypes_values(use_where=True), keep_dims=st.booleans(), initial=st.one_of(st.floats(min_value=-100, max_value=100)), ) def test_numpy_sum( dtype_x_axis_dtype, keep_dims, initial, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, x, axis, dtype, where = dtype_x_axis_dtype if backend_fw == "torch": assume(not test_flags.as_variable[0]) where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], axis=axis, dtype=dtype, keepdims=keep_dims, initial=initial, where=where, ) @handle_frontend_test( fn_tree="numpy.trapz", dtype_values_axis=helpers.dtype_values_axis( available_dtypes=st.shared(helpers.get_dtypes("float"), key="trapz_dtype"), min_value=-100, max_value=100, min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, allow_neg_axes=True, valid_axis=True, force_int_axis=True, ), rand_either=_either_x_dx(), ) def test_numpy_trapz( dtype_values_axis, rand_either, fn_tree, frontend, test_flags, on_device, backend_fw, ): input_dtype, y, axis = dtype_values_axis rand, either_x_dx = rand_either if rand == 0: dtype_x, x = either_x_dx x = np.asarray(x, dtype=dtype_x) dx = None else: x = None dx = either_x_dx helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, fn_tree=fn_tree, test_flags=test_flags, on_device=on_device, y=np.asarray(y[0], dtype=input_dtype[0]), x=x, dx=dx, axis=axis, )
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_mathematical_functions/test_sums_products_differences.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_mathematical_functions/test_sums_products_differences.py", "repo_id": "ivy", "token_count": 6115 }
55
# global from hypothesis import strategies as st # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test import ivy_tests.test_ivy.test_frontends.test_numpy.helpers as np_helpers # corrcoef @handle_frontend_test( fn_tree="numpy.corrcoef", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, abs_smallest_val=1e-5, min_num_dims=2, max_num_dims=2, min_dim_size=3, max_dim_size=3, min_value=-100, max_value=100, ), rowvar=st.booleans(), dtype=helpers.get_dtypes("float", full=False), ) def test_numpy_corrcoef( dtype_and_x, rowvar, frontend, test_flags, fn_tree, on_device, dtype, backend_fw, ): input_dtypes, x = dtype_and_x np_helpers.test_frontend_function( input_dtypes=input_dtypes, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], y=x[1], rowvar=rowvar, dtype=dtype[0], backend_to_test=backend_fw, ) # correlate @handle_frontend_test( fn_tree="numpy.correlate", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=1, max_num_dims=1, num_arrays=2, shared_dtype=True, large_abs_safety_factor=24, small_abs_safety_factor=24, safety_factor_scale="log", ), mode=st.sampled_from(["valid", "same", "full"]), test_with_out=st.just(False), ) def test_numpy_correlate( dtype_and_x, mode, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, xs = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-3, atol=1e-3, a=xs[0], v=xs[1], mode=mode, )
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_statistics/test_correlating.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_statistics/test_correlating.py", "repo_id": "ivy", "token_count": 1125 }
56
# global from hypothesis import strategies as st import math # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test from ivy_tests.test_ivy.test_functional.test_experimental.test_core.test_manipulation import ( # noqa _get_dtype_values_k_axes_for_rot90, ) from ivy_tests.test_ivy.test_frontends.test_torch.test_miscellaneous_ops import ( _get_repeat_interleaves_args, ) # --- Helpers --- # # --------------- # # stack @st.composite def _arrays_axis_n_dtypes(draw): num_dims = draw(st.shared(helpers.ints(min_value=2, max_value=5), key="num_dims")) num_arrays = draw( st.shared(helpers.ints(min_value=2, max_value=4), key="num_arrays") ) common_shape = draw( helpers.list_of_size( x=helpers.ints(min_value=2, max_value=3), size=num_dims - 1, ) ) axis = draw(st.sampled_from(list(range(num_dims)))) xs = [] input_dtypes = draw( helpers.array_dtypes(available_dtypes=draw(helpers.get_dtypes("numeric"))) ) dtype = draw(st.sampled_from(input_dtypes)) for _ in range(num_arrays): x = draw( helpers.array_values( shape=common_shape, dtype=dtype, ) ) xs.append(x) input_dtypes = [dtype] * len(input_dtypes) return xs, input_dtypes, axis @st.composite def _arrays_dim_idx_n_dtypes(draw): num_dims = draw(st.shared(helpers.ints(min_value=1, max_value=4), key="num_dims")) num_arrays = 2 common_shape = draw( helpers.lists( x=helpers.ints(min_value=2, max_value=3), min_size=num_dims - 1, max_size=num_dims - 1, ) ) _dim = draw(helpers.ints(min_value=0, max_value=num_dims - 1)) unique_dims = draw( helpers.lists( x=helpers.ints(min_value=2, max_value=3), min_size=num_arrays, max_size=num_arrays, ) ) min_dim = min(unique_dims) max_dim = max(unique_dims) _idx = draw( helpers.array_values( shape=min_dim, dtype="int64", min_value=0, max_value=max_dim, exclude_min=False, ) ) xs = [] # available_input_types = draw(helpers.get_dtypes("integer")) available_input_types = ["int32", "int64", "float16", "float32", "float64"] input_dtypes = draw( helpers.array_dtypes( available_dtypes=available_input_types, num_arrays=num_arrays, shared_dtype=True, ) ) for ud, dt in zip(unique_dims, input_dtypes): x = draw( helpers.array_values( shape=common_shape[:_dim] + [ud] + common_shape[_dim:], dtype=dt, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ) ) xs.append(x) return xs, input_dtypes, _dim, _idx # concat @st.composite def _arrays_idx_n_dtypes(draw): num_dims = draw(st.shared(helpers.ints(min_value=1, max_value=4), key="num_dims")) num_arrays = draw( st.shared(helpers.ints(min_value=2, max_value=4), key="num_arrays") ) common_shape = draw( helpers.list_of_size( x=helpers.ints(min_value=2, max_value=3), size=num_dims - 1, ) ) unique_idx = draw(helpers.ints(min_value=0, max_value=num_dims - 1)) unique_dims = draw( helpers.list_of_size( x=helpers.ints(min_value=2, max_value=3), size=num_arrays, ) ) xs = [] input_dtypes = draw( helpers.array_dtypes(available_dtypes=draw(helpers.get_dtypes("valid"))) ) dtype = draw(st.sampled_from(input_dtypes)) for ud in unique_dims: x = draw( helpers.array_values( shape=common_shape[:unique_idx] + [ud] + common_shape[unique_idx:], dtype=dtype, ) ) xs.append(x) input_dtypes = [dtype] * len(input_dtypes) return xs, input_dtypes, unique_idx @st.composite def _broadcast_to_helper(draw): dtype_and_x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=6, ) ) dtype, x = dtype_and_x input_shape = x[0].shape max_num_dims = 6 - len(input_shape) shape = draw(helpers.get_shape(max_num_dims=max_num_dims)) + input_shape return dtype, x, shape # flip @st.composite def _dtype_x_axis(draw, **kwargs): dtype, x, shape = draw(helpers.dtype_and_values(**kwargs, ret_shape=True)) axis = draw( st.lists( helpers.ints(min_value=0, max_value=len(shape) - 1), min_size=len(shape), max_size=len(shape), unique=True, ) ) return dtype, x, axis # expand @st.composite def _expand_helper(draw): dtype_and_x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=6, ) ) dtype, x = dtype_and_x input_shape = x[0].shape max_num_dims = 6 - len(input_shape) shape = draw(helpers.get_shape(max_num_dims=max_num_dims)) + input_shape return dtype, x, shape @st.composite def _gather_helper(draw): dtype_and_param = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=6, ) ) dtype_and_indices = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=6, ) ) dtype, param = dtype_and_param dtype, indices = dtype_and_indices return dtype, param, indices # split @st.composite def _split_helper(draw): dtypes, values, shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=2, max_num_dims=4, min_dim_size=2, max_dim_size=4, ret_shape=True, ) ) axis = draw(st.sampled_from(range(len(shape)))) num_eles = shape[axis] splits = [i for i in range(1, num_eles + 1) if num_eles % i == 0] num_splits = draw(st.sampled_from(splits)) return dtypes, values, num_splits, axis # squeeze @st.composite def _squeeze_helper(draw): shape = draw(st.shared(helpers.get_shape(), key="value_shape")) valid_axes = [] for index, axis in enumerate(shape): if axis == 1: valid_axes.append(index) valid_axes.insert(0, None) return draw(st.sampled_from(valid_axes)) # tile @st.composite def _tile_helper(draw): dtype, x, shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=4, min_dim_size=2, max_dim_size=3, ret_shape=True, ) ) repeats = draw( helpers.list_of_size( x=helpers.ints(min_value=1, max_value=3), size=len(shape), ) ) return dtype, x, repeats # Helpers # # ------ # @st.composite def dtypes_x_reshape(draw): shape = draw(helpers.get_shape(min_num_dims=1)) dtypes, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), shape=shape, ) ) shape = draw( helpers.get_shape(min_num_dims=1).filter( lambda s: math.prod(s) == math.prod(shape) ) ) return dtypes, x, shape # --- Main --- # # ------------ # # abs @handle_frontend_test( fn_tree="paddle.abs", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_paddle_abs( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], ) @handle_frontend_test( fn_tree="paddle.broadcast_to", dtype_x_and_shape=_broadcast_to_helper(), ) def test_paddle_broadcast_to( *, dtype_x_and_shape, on_device, fn_tree, backend_fw, frontend, test_flags, ): input_dtype, x, shape = dtype_x_and_shape helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], shape=shape, ) # cast @handle_frontend_test( fn_tree="paddle.cast", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), dtype=helpers.get_dtypes("valid", full=False), ) def test_paddle_cast( *, dtype_and_x, dtype, on_device, backend_fw, fn_tree, frontend, test_flags, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], dtype=dtype[0], ) @handle_frontend_test( fn_tree="paddle.concat", xs_n_input_dtypes_n_unique_idx=_arrays_idx_n_dtypes(), test_with_out=st.just(False), ) def test_paddle_concat( *, xs_n_input_dtypes_n_unique_idx, on_device, fn_tree, frontend, backend_fw, test_flags, ): xs, input_dtypes, unique_idx = xs_n_input_dtypes_n_unique_idx helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=xs, axis=unique_idx, ) @handle_frontend_test( fn_tree="paddle.expand", dtype_x_and_shape=_expand_helper(), ) def test_paddle_expand( *, dtype_x_and_shape, on_device, fn_tree, backend_fw, frontend, test_flags, ): input_dtype, x, shape = dtype_x_and_shape helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], shape=shape, ) @handle_frontend_test( fn_tree="paddle.flip", dtype_x_axis=_dtype_x_axis( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, min_dim_size=1, ), test_with_out=st.just(False), ) def test_paddle_flip( *, dtype_x_axis, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_x_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], axis=axis, ) @handle_frontend_test( fn_tree="paddle.gather", dtype_param_and_indices=_gather_helper(), ) def test_paddle_gather( *, dtype_param_and_indices, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, param, indices = dtype_param_and_indices helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, param=param[0], indices=indices[0], ) # gather_nd @handle_frontend_test( fn_tree="paddle.gather_nd", dtype_x_index=helpers.array_indices_axis( array_dtypes=helpers.get_dtypes("valid"), indices_dtypes=["int64"], min_num_dims=5, max_num_dims=10, min_dim_size=1, max_dim_size=5, indices_same_dims=False, ), ) def test_paddle_gather_nd( *, dtype_x_index, on_device, backend_fw, fn_tree, frontend, test_flags, ): input_dtypes, x, index, _, _ = dtype_x_index helpers.test_frontend_function( input_dtypes=input_dtypes, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x, index=index, ) @handle_frontend_test( fn_tree="paddle.index_add", xs_dtypes_dim_idx=_arrays_dim_idx_n_dtypes(), ) def test_paddle_index_add( *, xs_dtypes_dim_idx, on_device, fn_tree, frontend, test_flags, backend_fw, ): xs, input_dtypes, axis, indices = xs_dtypes_dim_idx if xs[0].shape[axis] < xs[1].shape[axis]: source, input = xs else: input, source = xs helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, frontend=frontend, on_device=on_device, x=input, index=indices, axis=axis, value=source, ) # repeat_interleave @handle_frontend_test( fn_tree="paddle.repeat_interleave", dtype_values_repeats_axis_output_size=_get_repeat_interleaves_args( available_dtypes=helpers.get_dtypes("numeric"), valid_axis=True, max_num_dims=4, max_dim_size=4, ), ) def test_paddle_repeat_interleave( *, dtype_values_repeats_axis_output_size, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, values, repeats, axis, _ = dtype_values_repeats_axis_output_size helpers.test_frontend_function( input_dtypes=[dtype[0][0], dtype[1][0]], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=values[0], repeats=repeats[0], axis=axis, ) # Tests # # ----- # # reshape @handle_frontend_test( fn_tree="paddle.reshape", dtypes_x_reshape=dtypes_x_reshape(), ) def test_paddle_reshape( *, dtypes_x_reshape, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, shape = dtypes_x_reshape helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], shape=shape, ) # roll @handle_frontend_test( fn_tree="paddle.roll", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=2, min_dim_size=2, ), shift=helpers.ints(min_value=1, max_value=10), axis=helpers.ints(min_value=-1, max_value=1), test_with_out=st.just(False), ) def test_paddle_roll( *, dtype_and_x, shift, axis, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], shifts=shift, axis=axis, ) # rot90 @handle_frontend_test( fn_tree="paddle.rot90", dtype_m_k_axes=_get_dtype_values_k_axes_for_rot90( available_dtypes=helpers.get_dtypes(kind="valid"), min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), ) def test_paddle_rot90( *, dtype_m_k_axes, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, m, k, axes = dtype_m_k_axes helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=m, k=k, axes=tuple(axes), ) @handle_frontend_test( fn_tree="paddle.split", dt_x_num_splits_axis=_split_helper(), test_with_out=st.just(False), ) def test_paddle_split( *, dt_x_num_splits_axis, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtypes, x, num_splits, axis = dt_x_num_splits_axis helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], num_or_sections=num_splits, axis=axis, ) @handle_frontend_test( fn_tree="paddle.squeeze", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared(helpers.get_shape(), key="value_shape"), ), axis=_squeeze_helper(), ) def test_paddle_squeeze( *, dtype_and_x, axis, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], axis=axis, ) @handle_frontend_test( fn_tree="paddle.stack", _arrays_n_dtypes_axis=_arrays_axis_n_dtypes(), test_with_out=st.just(False), ) def test_paddle_stack( *, _arrays_n_dtypes_axis, on_device, fn_tree, frontend, test_flags, backend_fw, ): xs, input_dtypes, axis = _arrays_n_dtypes_axis helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=xs, axis=axis, ) # take_along_axis @handle_frontend_test( fn_tree="paddle.take_along_axis", dtype_indices_axis=helpers.array_indices_axis( array_dtypes=helpers.get_dtypes(kind="valid"), indices_dtypes=["int64"], min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, indices_same_dims=True, ), ) def test_paddle_take_along_axis( *, dtype_indices_axis, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtypes, value, indices, axis, _ = dtype_indices_axis helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, arr=value, indices=indices, axis=axis, ) @handle_frontend_test( fn_tree="paddle.tile", dt_x_repeats=_tile_helper(), test_with_out=st.just(False), ) def test_paddle_tile( *, dt_x_repeats, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtypes, x, repeats = dt_x_repeats helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], repeat_times=repeats, ) @handle_frontend_test( fn_tree="paddle.tolist", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), test_with_out=st.just(False), ) def test_paddle_tolist( *, dtype_and_x, on_device, fn_tree, backend_fw, frontend, test_flags, ): x_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], ) # unbind @handle_frontend_test( fn_tree="paddle.unbind", dtypes_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=2, max_num_dims=2, max_dim_size=1, ), number_positional_args=st.just(1), axis=st.integers(-1, 0), test_with_out=st.just(False), ) def test_paddle_unbind( *, dtypes_values, axis, on_device, fn_tree, backend_fw, frontend, test_flags, ): x_dtype, x = dtypes_values axis = axis helpers.test_frontend_function( input_dtypes=x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], axis=axis, ) # unstack @handle_frontend_test( fn_tree="paddle.unstack", dtypes_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=2, max_num_dims=2, max_dim_size=1, ), number_positional_args=st.just(1), axis=st.integers(-1, 0), test_with_out=st.just(False), ) def test_paddle_unstack( *, dtypes_values, axis, on_device, fn_tree, backend_fw, frontend, test_flags, ): x_dtype, x = dtypes_values axis = axis helpers.test_frontend_function( input_dtypes=x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], axis=axis, )
ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_manipulation.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_manipulation.py", "repo_id": "ivy", "token_count": 11371 }
57
# global from hypothesis import strategies as st # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test from ivy_tests.test_ivy.test_functional.test_core.test_statistical import ( _statistical_dtype_values, ) # mean @handle_frontend_test( fn_tree="paddle.mean", dtype_and_x=_statistical_dtype_values(function="mean"), keepdim=st.booleans(), test_with_out=st.just(True), ) def test_paddle_mean( *, dtype_and_x, keepdim, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, x, axis = dtype_and_x[:3] test_flags.num_positional_args = len(dtype_and_x) - 2 helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-2, atol=1e-2, input=x[0], axis=axis, keepdim=keepdim, ) # median @handle_frontend_test( fn_tree="paddle.median", dtype_x_and_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, min_value=-1e10, max_value=1e10, valid_axis=True, force_int_axis=True, ), keepdim=st.booleans(), ) def test_paddle_median( dtype_x_and_axis, keepdim, backend_fw, frontend, test_flags, fn_tree ): input_dtypes, x, axis = dtype_x_and_axis helpers.test_frontend_function( input_dtypes=input_dtypes, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, x=x[0], axis=axis, keepdim=keepdim, ) @handle_frontend_test( fn_tree="paddle.nanmedian", dtype_x_and_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, min_value=-1e10, max_value=1e10, valid_axis=True, force_int_axis=True, ), keepdim=st.booleans(), ) def test_paddle_nanmedian( dtype_x_and_axis, keepdim, frontend, backend_fw, test_flags, fn_tree, ): input_dtypes, x, axis = dtype_x_and_axis helpers.test_frontend_function( input_dtypes=input_dtypes, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, x=x[0], axis=axis, keepdim=keepdim, ) # numel @handle_frontend_test( fn_tree="paddle.numel", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), ) def test_paddle_numel( *, dtype_and_x, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], ) # std @handle_frontend_test( fn_tree="paddle.std", dtype_and_x=_statistical_dtype_values(function="std"), unbiased=st.booleans(), keepdim=st.booleans(), ) def test_paddle_std( *, unbiased, dtype_and_x, keepdim, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, x, axis, _ = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, x=x[0], axis=axis, unbiased=unbiased, keepdim=keepdim, ) # var @handle_frontend_test( fn_tree="paddle.var", dtype_and_x=_statistical_dtype_values(function="var"), unbiased=st.booleans(), keepdim=st.booleans(), ) def test_paddle_var( *, unbiased, dtype_and_x, keepdim, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, x, axis, _ = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, x=x[0], axis=axis, unbiased=unbiased, keepdim=keepdim, )
ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_stat.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_stat.py", "repo_id": "ivy", "token_count": 2201 }
58