text
stringlengths
17
362k
id
stringlengths
13
115
metadata
dict
__index_level_0__
int64
0
75
# global # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test @handle_frontend_test( fn_tree="paddle.imag", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), ) def test_paddle_imag( *, dtype_and_x, on_device, fn_tree, backend_fw, frontend, test_flags, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=input[0], ) @handle_frontend_test( fn_tree="paddle.is_complex", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), ) def test_paddle_is_complex( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=input[0], ) @handle_frontend_test( fn_tree="paddle.is_floating_point", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), ) def test_paddle_is_floating_point( *, dtype_and_x, on_device, backend_fw, fn_tree, frontend, test_flags, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=input[0], ) @handle_frontend_test( fn_tree="paddle.is_integer", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), ) def test_paddle_is_integer( *, dtype_and_x, on_device, fn_tree, backend_fw, frontend, test_flags, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=input[0], ) @handle_frontend_test( fn_tree="paddle.rank", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), ) def test_paddle_rank( *, dtype_and_x, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], ) @handle_frontend_test( fn_tree="paddle.real", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), ) def test_paddle_real( *, dtype_and_x, on_device, fn_tree, backend_fw, frontend, test_flags, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=input[0], )
ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_attribute.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_attribute.py", "repo_id": "ivy", "token_count": 1796 }
64
# global from hypothesis import strategies as st # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test from ivy_tests.test_ivy.test_frontends.test_torch.test_nn.test_functional import ( test_pooling_functions, ) # adaptive_avg_pool1d @handle_frontend_test( fn_tree="paddle.nn.functional.adaptive_avg_pool1d", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=3, max_num_dims=3, min_dim_size=1, max_value=100, min_value=-100, ), output_size=helpers.ints(min_value=1, max_value=5), ) def test_paddle_adaptive_avg_pool1d( *, dtype_and_x, output_size, test_flags, frontend, on_device, backend_fw, fn_tree, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, on_device=on_device, fn_tree=fn_tree, x=x[0], output_size=output_size, ) # adaptive_avg_pool2d @handle_frontend_test( fn_tree="paddle.nn.functional.adaptive_avg_pool2d", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=4, max_num_dims=4, min_dim_size=1, max_value=100, min_value=-100, ), output_size=st.one_of( st.tuples( helpers.ints(min_value=1, max_value=5), helpers.ints(min_value=1, max_value=5), ), helpers.ints(min_value=1, max_value=5), ), ) def test_paddle_adaptive_avg_pool2d( *, dtype_and_x, output_size, test_flags, frontend, on_device, backend_fw, fn_tree, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, on_device=on_device, fn_tree=fn_tree, x=x[0], output_size=output_size, ) # adaptive_avg_pool3d @handle_frontend_test( fn_tree="paddle.nn.functional.adaptive_avg_pool3d", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=5, max_num_dims=5, min_dim_size=1, max_value=100, min_value=-100, ), output_size=st.one_of( st.tuples( helpers.ints(min_value=1, max_value=5), helpers.ints(min_value=1, max_value=5), ), helpers.ints(min_value=1, max_value=5), ), ) def test_paddle_adaptive_avg_pool3d( *, dtype_and_x, output_size, test_flags, frontend, on_device, fn_tree, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, test_flags=test_flags, on_device=on_device, fn_tree=fn_tree, x=x[0], output_size=output_size, ) # adaptive_max_pool2d @handle_frontend_test( fn_tree="paddle.nn.functional.adaptive_max_pool2d", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=4, max_num_dims=4, min_dim_size=1, # Setting max and min value because this operation in paddle is not # numerically stable max_value=100, min_value=-100, ), output_size=st.one_of( st.tuples( helpers.ints(min_value=1, max_value=5), helpers.ints(min_value=1, max_value=5), ), helpers.ints(min_value=1, max_value=5), ), ) def test_paddle_adaptive_max_pool2d( *, dtype_and_x, output_size, test_flags, frontend, on_device, backend_fw, fn_tree, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, on_device=on_device, fn_tree=fn_tree, x=x[0], output_size=output_size, ) # avg_pool1d @handle_frontend_test( fn_tree="paddle.nn.functional.avg_pool1d", x_k_s_p_df=helpers.arrays_for_pooling( min_dims=3, max_dims=3, min_side=2, max_side=4, data_format="channel_first", ), exclusive=st.booleans(), ceil_mode=st.just(False), test_with_out=st.just(False), ) def test_paddle_avg_pool1d( *, x_k_s_p_df, frontend, test_flags, backend_fw, on_device, fn_tree, exclusive, ceil_mode, ): input_dtype, x, kernel_size, stride, padding = x_k_s_p_df if padding == "SAME": padding = test_pooling_functions.calculate_same_padding( kernel_size, stride, [x[0].shape[2]] ) else: padding = (0,) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, on_device=on_device, fn_tree=fn_tree, x=x[0], kernel_size=kernel_size, stride=stride, padding=padding, exclusive=exclusive, ceil_mode=ceil_mode, ) # avg_pool2d @handle_frontend_test( fn_tree="paddle.nn.functional.pooling.avg_pool2d", dtype_x_k_s=helpers.arrays_for_pooling( min_dims=4, max_dims=4, min_side=2, max_side=4, ), ceil_mode=st.booleans(), exclusive=st.booleans(), data_format=st.sampled_from(["NCHW", "NHWC"]), ) def test_paddle_avg_pool2d( dtype_x_k_s, exclusive, ceil_mode, data_format, *, test_flags, backend_fw, frontend, fn_tree, on_device, ): input_dtype, x, kernel, stride, padding = dtype_x_k_s if data_format == "NCHW": x[0] = x[0].reshape( (x[0].shape[0], x[0].shape[3], x[0].shape[1], x[0].shape[2]) ) if len(stride) == 1: stride = (stride[0], stride[0]) if padding == "SAME": padding = test_pooling_functions.calculate_same_padding( kernel, stride, x[0].shape[2:] ) else: padding = (0, 0) helpers.test_frontend_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, frontend=frontend, fn_tree=fn_tree, on_device=on_device, x=x[0], kernel_size=kernel, stride=stride, padding=padding, ceil_mode=ceil_mode, exclusive=exclusive, divisor_override=None, data_format=data_format, ) # max_pool2d @handle_frontend_test( fn_tree="paddle.nn.functional.pooling.max_pool2d", dtype_x_k_s=helpers.arrays_for_pooling( min_dims=4, max_dims=4, min_side=2, max_side=4 ), ceil_mode=st.sampled_from([True]), data_format=st.sampled_from(["NCHW", "NHWC"]), ) def test_paddle_max_pool2d( dtype_x_k_s, ceil_mode, data_format, *, test_flags, backend_fw, frontend, fn_tree, on_device, ): input_dtype, x, kernel, stride, padding = dtype_x_k_s if data_format == "NCHW": x[0] = x[0].reshape( (x[0].shape[0], x[0].shape[3], x[0].shape[1], x[0].shape[2]) ) if len(stride) == 1: stride = (stride[0], stride[0]) if padding == "SAME": padding = test_pooling_functions.calculate_same_padding( kernel, stride, x[0].shape[2:] ) else: padding = (0, 0) if padding == "VALID" and ceil_mode: ceil_mode = False helpers.test_frontend_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, frontend=frontend, fn_tree=fn_tree, on_device=on_device, x=x[0], kernel_size=kernel, stride=stride, padding=padding, ceil_mode=ceil_mode, data_format=data_format, ) # max_unpool1d @handle_frontend_test( fn_tree="paddle.nn.functional.max_unpool1d", x_k_s_p=helpers.arrays_for_pooling(min_dims=3, max_dims=3, min_side=1, max_side=4), indices=st.lists(st.integers(0, 1), min_size=1, max_size=4), ) def test_paddle_max_unpool1d( *, x_k_s_p, indices, test_flags, frontend, on_device, backend_fw, fn_tree, ): (input_dtype, x, kernel_size, stride, padding) = x_k_s_p helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, on_device=on_device, fn_tree=fn_tree, x=x[0], indices=indices, kernel_size=kernel_size, stride=stride, padding=padding, )
ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_nn/test_functional/test_pooling.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_nn/test_functional/test_pooling.py", "repo_id": "ivy", "token_count": 4645 }
65
# global from hypothesis import strategies as st import numpy as np import pytest # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_method CLASS_TREE = "ivy.functional.frontends.pandas.Series" @pytest.mark.skip("Testing pipeline not yet implemented") @handle_frontend_method( class_tree=CLASS_TREE, init_tree="pandas.Series", method_name="abs", dtype_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), ) def test_pandas_series_abs( dtype_x, frontend, backend_fw, frontend_method_data, init_flags, method_flags, on_device, ): input_dtype, x = dtype_x helpers.test_frontend_method( init_input_dtypes=input_dtype, init_all_as_kwargs_np={ "data": x[0], }, method_input_dtypes=input_dtype, method_all_as_kwargs_np={}, frontend_method_data=frontend_method_data, init_flags=init_flags, method_flags=method_flags, frontend=frontend, backend_to_test=backend_fw, on_device=on_device, ) @pytest.mark.xfail(reason="testing pipeline fixes") @handle_frontend_method( class_tree=CLASS_TREE, init_tree="pandas.Series", method_name="add", dtype_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2, shared_dtype=True ), axis=st.sampled_from(["index", 0]), ) def test_pandas_series_add( dtype_x, frontend, frontend_method_data, init_flags, method_flags, on_device, backend_fw, axis, ): input_dtype, x = dtype_x helpers.test_frontend_method( init_input_dtypes=input_dtype, init_all_as_kwargs_np={ "data": x[0], }, method_input_dtypes=input_dtype, method_all_as_kwargs_np={ "other": x[1], "level": None, "axis": axis, "fill_value": None, }, frontend_method_data=frontend_method_data, init_flags=init_flags, method_flags=method_flags, frontend=frontend, on_device=on_device, backend_to_test=backend_fw, ) @pytest.mark.xfail(reason="testing pipeline fixes") @handle_frontend_method( class_tree=CLASS_TREE, init_tree="pandas.Series", method_name="mean", dtype_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), skipna=st.booleans(), axis=st.sampled_from([None, 0]), ) def test_pandas_series_mean( dtype_x, frontend, frontend_method_data, init_flags, method_flags, on_device, backend_fw, skipna, axis, ): input_dtype, x = dtype_x helpers.test_frontend_method( init_input_dtypes=input_dtype, init_all_as_kwargs_np={ "data": x[0], }, method_input_dtypes=input_dtype, method_all_as_kwargs_np={"skipna": skipna, "axis": axis}, frontend_method_data=frontend_method_data, init_flags=init_flags, method_flags=method_flags, frontend=frontend, on_device=on_device, backend_to_test=backend_fw, ) @pytest.mark.xfail(reason="testing pipeline fixes") @handle_frontend_method( class_tree=CLASS_TREE, init_tree="pandas.Series", method_name="sum", dtype_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), skipna=st.booleans(), axis=st.sampled_from([None, 0]), min_count=st.integers(min_value=0, max_value=5), ) def test_pandas_series_sum( dtype_x, frontend, frontend_method_data, init_flags, method_flags, on_device, backend_fw, skipna, axis, min_count, ): input_dtype, x = dtype_x helpers.test_frontend_method( init_input_dtypes=input_dtype, init_all_as_kwargs_np={ "data": x[0], }, method_input_dtypes=input_dtype, method_all_as_kwargs_np={ "skipna": skipna, "axis": axis, "min_count": min_count, }, frontend_method_data=frontend_method_data, init_flags=init_flags, method_flags=method_flags, frontend=frontend, on_device=on_device, backend_to_test=backend_fw, ) @pytest.mark.xfail(reason="testing pipeline fixes") @handle_frontend_method( class_tree=CLASS_TREE, init_tree="pandas.Series", method_name="to_numpy", dtype_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), na_value=st.sampled_from([None, np.nan, np.inf, -np.inf]), copy=st.booleans(), ) def test_pandas_series_to_numpy( dtype_x, na_value, copy, frontend_method_data, init_flags, method_flags, on_device, frontend, backend_fw, ): # todo add castable dtypes for output input_dtype, x = dtype_x helpers.test_frontend_method( init_input_dtypes=input_dtype, init_all_as_kwargs_np={ "data": x[0], }, method_input_dtypes=input_dtype, method_all_as_kwargs_np={ "na_value": na_value, "copy": copy, }, frontend_method_data=frontend_method_data, init_flags=init_flags, method_flags=method_flags, on_device=on_device, frontend=frontend, backend_to_test=backend_fw, )
ivy/ivy_tests/test_ivy/test_frontends/test_pandas/test_series.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_pandas/test_series.py", "repo_id": "ivy", "token_count": 2608 }
66
from hypothesis import strategies as st import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test, handle_frontend_method CLASS_TREE = "ivy.functional.frontends.sklearn.model_selection" @handle_frontend_method( class_tree=CLASS_TREE + ".KFold", init_tree="sklearn.model_selection.KFold", method_name="get_n_splits", dtype_x=helpers.dtype_and_values(), ) def test_sklearn_kfold_get_n_split( dtype_x, frontend, frontend_method_data, init_flags, method_flags, on_device, backend_fw, ): input_dtype, x = dtype_x helpers.test_frontend_method( init_input_dtypes=input_dtype, init_all_as_kwargs_np={ "n_splits": 2, # todo test for shuffle }, method_input_dtypes=input_dtype, method_all_as_kwargs_np={ "X": x[0], # this arg only for compatibility }, frontend_method_data=frontend_method_data, init_flags=init_flags, method_flags=method_flags, frontend=frontend, on_device=on_device, backend_to_test=backend_fw, ) @handle_frontend_method( class_tree=CLASS_TREE + ".KFold", init_tree="sklearn.model_selection.KFold", method_name="split", dtype_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shared_dtype=True, num_arrays=2, ), ) def test_sklearn_kfold_split( dtype_x, frontend, frontend_method_data, init_flags, method_flags, on_device, backend_fw, ): input_dtype, x = dtype_x helpers.test_frontend_method( init_input_dtypes=input_dtype, init_all_as_kwargs_np={ "n_splits": 2, # todo test for shuffle }, method_input_dtypes=input_dtype, method_all_as_kwargs_np={ "X": x[0], "y": x[1], "groups": None, }, frontend_method_data=frontend_method_data, init_flags=init_flags, method_flags=method_flags, frontend=frontend, on_device=on_device, backend_to_test=backend_fw, ) @handle_frontend_method( class_tree=CLASS_TREE + ".StratifiedKFold", init_tree="sklearn.model_selection.StratifiedKFold", method_name="split", dtype_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_integer"), shared_dtype=True, num_arrays=2, max_num_dims=2, min_num_dims=1, ), ) def test_sklearn_stratfiedkfold_split( dtype_x, frontend, frontend_method_data, init_flags, method_flags, on_device, backend_fw, ): input_dtype, x = dtype_x helpers.test_frontend_method( init_input_dtypes=input_dtype, init_all_as_kwargs_np={ "n_splits": 2, }, method_input_dtypes=input_dtype, method_all_as_kwargs_np={ "X": x[0], "y": x[1], "groups": None, }, frontend_method_data=frontend_method_data, init_flags=init_flags, method_flags=method_flags, frontend=frontend, on_device=on_device, backend_to_test=backend_fw, ) @handle_frontend_method( class_tree=CLASS_TREE + ".StratifiedKFold", init_tree="sklearn.model_selection.StratifiedKFold", method_name="get_n_splits", dtype_x=helpers.dtype_and_values(), ) def test_sklearn_stratifiedkfold_get_n_split( dtype_x, frontend, frontend_method_data, init_flags, method_flags, on_device, backend_fw, ): input_dtype, x = dtype_x helpers.test_frontend_method( init_input_dtypes=input_dtype, init_all_as_kwargs_np={ "n_splits": 2, }, method_input_dtypes=input_dtype, method_all_as_kwargs_np={ "X": x[0], # for compatibility }, frontend_method_data=frontend_method_data, init_flags=init_flags, method_flags=method_flags, frontend=frontend, on_device=on_device, backend_to_test=backend_fw, ) @handle_frontend_test( fn_tree="sklearn.model_selection.train_test_split", arrays_and_dtypes=helpers.dtype_and_values( num_arrays=helpers.ints(min_value=2, max_value=4), shape=helpers.lists( x=helpers.ints(min_value=2, max_value=5), min_size=2, max_size=3, ), ), shuffle=st.booleans(), ) def test_sklearn_test_train_split( arrays_and_dtypes, on_device, fn_tree, frontend, test_flags, backend_fw, shuffle, ): dtypes, values = arrays_and_dtypes kw = {} for i, x_ in enumerate(values): kw[f"x{i}"] = x_ test_flags.num_positional_args = len(values) helpers.test_frontend_function( input_dtypes=dtypes, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, frontend=frontend, on_device=on_device, test_values=False, **kw, shuffle=shuffle, )
ivy/ivy_tests/test_ivy/test_frontends/test_sklearn/test_model_selection/test_split.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_sklearn/test_model_selection/test_split.py", "repo_id": "ivy", "token_count": 2545 }
67
# global from hypothesis import strategies as st, assume import numpy as np from tensorflow import errors as tf_errors # local import ivy_tests.test_ivy.helpers as helpers from ivy.functional.frontends.tensorflow.general_functions import _num_to_bit_list from ivy_tests.test_ivy.test_frontends.test_numpy.test_creation_routines.test_from_shape_or_value import ( # noqa : E501 _input_fill_and_dtype, ) from ivy_tests.test_ivy.test_frontends.test_tensorflow.test_tensor import ( _array_and_shape, ) # noqa : E501 from ivy_tests.test_ivy.helpers import handle_frontend_test from ivy_tests.test_ivy.test_functional.test_core.test_linalg import _matrix_rank_helper from ivy_tests.test_ivy.test_functional.test_core.test_manipulation import ( # noqa _get_splits, ) # --- Helpers --- # # --------------- # @st.composite def _boolean_mask_helper(draw): tensor_shape = draw( helpers.get_shape( allow_none=False, min_num_dims=3, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), ) dtype = draw(st.sampled_from(["float32", "float64"])) # Param: tensor # tensor = draw( # helpers.array_values( # dtype=dtype, shape=tensor_shape, min_value=-5.0, max_value=5.0 # ), # ) dtype, tensor, axis = draw( helpers.dtype_values_axis( available_dtypes=[dtype], shape=tensor_shape, min_value=-5.0, max_value=5.0, force_int_axis=True, valid_axis=True, ) ) mask_dim = draw(helpers.ints(min_value=1, max_value=len(tensor_shape) - axis)) mask_shape = tensor_shape[axis : mask_dim + axis] # Param:stop mask = draw( helpers.array_values( allow_nan=False, dtype="bool", shape=mask_shape, ), ) return [dtype[0], "bool"], tensor, mask, axis @st.composite def _get_clip_inputs(draw): shape = draw( helpers.get_shape( min_num_dims=1, max_num_dims=5, min_dim_size=2, max_dim_size=10 ) ) x_dtype, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), shape=shape, ) ) min = draw( helpers.array_values(dtype=x_dtype[0], shape=shape, min_value=-50, max_value=5) ) max = draw( helpers.array_values(dtype=x_dtype[0], shape=shape, min_value=6, max_value=50) ) return x_dtype, x, min, max @st.composite def _get_global_norm_clip_inputs(draw): t_list_dtype, t_list = draw( helpers.dtype_and_values( num_arrays=2, min_num_dims=1, shared_dtype=True, min_value=-100, max_value=100, dtype=["float32"] * 2, ) ) norm_dtype, norm = draw( helpers.dtype_and_values( shape=(1,), shared_dtype=True, min_value=0, exclude_min=True, max_value=100, dtype=["float32"], ) ) global_norm_dtype, global_norm = draw( helpers.dtype_and_values( shape=(1,), shared_dtype=True, min_value=0, exclude_min=True, max_value=100, dtype=["float32"], ) ) include_global = draw(st.booleans()) if not include_global: global_norm_dtype, global_norm = None, None return t_list_dtype, t_list, norm_dtype, norm, global_norm_dtype, global_norm @st.composite def _get_norm_clip_inputs(draw): dtype = draw(helpers.get_dtypes("numeric", full=False)) x_dtype, x, axis = draw( helpers.dtype_values_axis( available_dtypes=dtype, min_num_dims=1, min_value=-100, max_value=100, force_int_axis=True, valid_axis=True, ) ) norm_dtype, norm = draw( helpers.dtype_and_values(available_dtypes=dtype, shape=(1,)) ) return x_dtype[0], x, axis, norm # transpose @st.composite def _get_perm_helper(draw): shape = draw(st.shared(helpers.get_shape(min_num_dims=1), key="shape")) dimensions = [x for x in range(len(shape))] perm = draw(st.permutations(dimensions)) return perm @st.composite def _linspace_helper(draw): shape = draw( helpers.get_shape( allow_none=False, min_num_dims=0, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), ) dtype = draw(st.sampled_from(["float32", "float64"])) # Param: start start = draw( helpers.array_values( dtype=dtype, shape=shape, min_value=-5.0, max_value=5.0, ), ) # Param:stop stop = draw( helpers.array_values( dtype=dtype, shape=shape, min_value=-4.0, max_value=10.0, ), ) return [dtype] * 2, start, stop # tile @st.composite def _multiple_shape_helper(draw): input_dtype, input_array, input_shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ret_shape=True ) ) input_dims = len(input_shape) dt_n_multiples = draw( helpers.dtype_and_values( available_dtypes=["int32", "int64"], min_value=0, max_value=10, shape=draw( helpers.get_shape( min_num_dims=1, max_num_dims=1, min_dim_size=input_dims, max_dim_size=input_dims, ) ), ) ) return input_dtype, input_array, dt_n_multiples @st.composite def _pad_helper(draw): mode = draw( st.sampled_from( [ "CONSTANT", "REFLECT", "SYMMETRIC", ] ) ) dtype, input, shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), ret_shape=True, min_num_dims=1, min_value=-100, max_value=100, ) ) ndim = len(shape) min_dim = min(shape) paddings = draw( st.lists( st.tuples( st.integers(min_value=0, max_value=min_dim - 1), st.integers(min_value=0, max_value=min_dim - 1), ), min_size=ndim, max_size=ndim, ) ) constant_values = draw(st.integers(min_value=0, max_value=4)) return dtype, input[0], paddings, mode, constant_values @st.composite def _reshape_helper(draw): shape = draw(helpers.get_shape(min_num_dims=1)) reshape_shape = draw(helpers.reshape_shapes(shape=shape)) dtype = draw(helpers.array_dtypes(num_arrays=1)) x = draw(helpers.array_values(dtype=dtype[0], shape=shape)) return x, dtype, reshape_shape # sequence_mask @st.composite def _sequence_mask_helper(draw): max_val = draw(st.integers(min_value=1, max_value=100000)) in_dtype, lens = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=1, min_value=-max_val, max_value=max_val, ) ) max_len = draw(st.integers(min_value=max_val, max_value=max_val)) dtype = draw( st.sampled_from( [ "float16", "uint8", "complex128", "bool", "float64", "int8", "int16", "complex64", "float32", "int32", "int64", ] ) ) return in_dtype, lens, max_len, dtype @st.composite def _slice_helper(draw): dtype, x, shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, ret_shape=True, ), ) begin, size = [], [] for i in shape: begin += [draw(st.integers(min_value=0, max_value=i - 1))] size += [draw(st.integers(min_value=0, max_value=i - begin[-1]))] return dtype, x, np.array(begin), np.array(size) # Squeeze @st.composite def _squeeze_helper(draw): shape = draw(st.shared(helpers.get_shape(), key="value_shape")) valid_axes = [] for index, axis in enumerate(shape): if axis == 1: valid_axes.append(index) valid_axes.insert(0, None) return draw(st.sampled_from(valid_axes)) @st.composite def _strided_slice_helper(draw): dtype, x, shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, ret_shape=True, ), ) ndims = len(shape) masks = draw( st.lists( st.integers(min_value=0, max_value=2**ndims - 1), min_size=5, max_size=5 ).filter(lambda x: bin(x[2])[2:].count("1") <= min(len(shape) - 1, 1)) ) begin, end, strides = [], [], [] for i in shape: begin += [draw(st.integers(min_value=0, max_value=i - 1))] end += [draw(st.integers(min_value=0, max_value=i - 1))] if begin[-1] < end[-1]: strides += [draw(st.integers(min_value=1, max_value=i))] else: strides += [draw(st.integers(max_value=-1, min_value=-i))] ellipsis_mask = _num_to_bit_list(masks[2], ndims) for i, v in enumerate(ellipsis_mask): if v == 1: skip = draw(st.integers(min_value=0, max_value=ndims)) begin, end, strides = map( lambda x: x[:i] + x[i + skip :] if i + skip < ndims else x[:i], [begin, end, strides], ) break return dtype, x, np.array(begin), np.array(end), np.array(strides), masks @st.composite def _x_cast_dtype_shape(draw): x_dtype = draw(helpers.get_dtypes("valid", full=False)) x_dtype, x = draw( helpers.dtype_and_values( dtype=x_dtype, shape=st.shared(helpers.get_shape(), key="value_shape"), large_abs_safety_factor=10, small_abs_safety_factor=10, safety_factor_scale="log", ), ) to_shape = draw( helpers.reshape_shapes(shape=st.shared(helpers.get_shape(), key="value_shape")), ) cast_dtype = x_dtype[0] # known tensorflow bug when trying to cast to a different type # https://github.com/tensorflow/tensorflow/issues/39554 # cast_dtype = draw( # helpers.get_dtypes("valid", full=False) # .map(lambda t: t[0]) # .filter(lambda t: ivy.can_cast(x_dtype[0], t)) # ) return x_dtype, x, cast_dtype, to_shape # reverse @st.composite def reverse_helper(draw): dtype, x, shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, max_num_dims=8, ret_shape=True, ) ) axis_dtype, axis = draw( helpers.dtype_and_values( available_dtypes=["int32", "int64"], min_num_dims=1, max_num_dims=1, min_value=-(len(shape) - 1), max_value=len(shape) - 1, shape=(1,), ) ) return dtype, x, axis_dtype, axis # --- Main --- # # ------------ # # argsort @handle_frontend_test( fn_tree="tensorflow.argsort", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, min_axis=-1, max_axis=0, ), direction=st.sampled_from(["ASCENDING", "DESCENDING"]), ) def test_tensorflow_argsort( *, dtype_input_axis, direction, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, input, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, values=input[0], axis=axis, direction=direction, ) # boolean_mask @handle_frontend_test( fn_tree="tensorflow.boolean_mask", dtype_and_values=_boolean_mask_helper(), ) def test_tensorflow_boolean_mask( *, dtype_and_values, test_flags, frontend, backend_fw, fn_tree, on_device, ): input_dtype, tensor, mask, axis = dtype_and_values helpers.test_frontend_function( input_dtypes=input_dtype, test_flags=test_flags, frontend=frontend, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, tensor=tensor[0], mask=mask, axis=axis, ) # clip_by_global_norm @handle_frontend_test( fn_tree="tensorflow.clip_by_global_norm", input_and_norm=_get_global_norm_clip_inputs(), test_with_out=st.just(False), ) def test_tensorflow_clip_by_global_norm( *, input_and_norm, frontend, backend_fw, test_flags, fn_tree, on_device, ): ( t_list_dtype, t_list, norm_dtype, norm, global_norm_dtype, global_norm, ) = input_and_norm input_dtypes = [t_list_dtype[0], norm_dtype[0]] use_norm = None if global_norm_dtype: input_dtypes.append(global_norm_dtype[0]) use_norm = global_norm[0] helpers.test_frontend_function( input_dtypes=input_dtypes, frontend=frontend, test_flags=test_flags, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, t_list=t_list, clip_norm=norm[0], use_norm=use_norm, ) # clip_by_norm @handle_frontend_test( fn_tree="tensorflow.clip_by_norm", input_and_norm=_get_norm_clip_inputs(), test_with_out=st.just(False), ) def test_tensorflow_clip_by_norm( *, input_and_norm, frontend, backend_fw, test_flags, fn_tree, on_device, ): x_dtype, x, axis, norm = input_and_norm helpers.test_frontend_function( input_dtypes=[x_dtype, x_dtype], frontend=frontend, test_flags=test_flags, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, t=x[0], clip_norm=norm[0], axes=axis, ) # clip_by_value @handle_frontend_test( fn_tree="tensorflow.clip_by_value", input_and_ranges=_get_clip_inputs(), test_with_out=st.just(False), ) def test_tensorflow_clip_by_value( *, input_and_ranges, frontend, test_flags, backend_fw, fn_tree, on_device, ): x_dtype, x, min, max = input_and_ranges helpers.test_frontend_function( input_dtypes=x_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, t=x[0], clip_value_min=min, clip_value_max=max, ) # concat @handle_frontend_test( fn_tree="tensorflow.concat", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=st.integers(min_value=1, max_value=4), min_num_dims=1, valid_axis=True, force_int_axis=True, shared_dtype=True, ), test_with_out=st.just(False), ) def test_tensorflow_concat( *, dtype_input_axis, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, x, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, values=x, axis=axis, ) # cond @handle_frontend_test( fn_tree="tensorflow.cond", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, min_dim_size=1, ), pred_cond=st.booleans(), var=st.integers(min_value=1, max_value=100), test_with_out=st.just(False), ) def test_tensorflow_cond( *, dtype_and_x, pred_cond, var, test_flags, on_device, fn_tree, frontend, backend_fw, ): def _test_true_fn(): return var + var def _test_false_fn(): return var * var input_dtype, _ = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, test_flags=test_flags, frontend=frontend, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, pred=pred_cond, true_fn=_test_true_fn, false_fn=_test_false_fn, ) # constant @handle_frontend_test( fn_tree="tensorflow.constant", all_args=_x_cast_dtype_shape(), test_with_out=st.just(False), ) def test_tensorflow_constant( *, all_args, on_device, backend_fw, fn_tree, frontend, test_flags, ): x_dtype, x, cast_dtype, to_shape = all_args helpers.test_frontend_function( input_dtypes=x_dtype, frontend=frontend, test_flags=test_flags, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, value=x[0].tolist() if x[0].ndim > 0 else x[0].item(), dtype=cast_dtype, shape=to_shape, ) # convert_to_tensor @handle_frontend_test( fn_tree="tensorflow.convert_to_tensor", dtype_x_cast=_x_cast_dtype_shape(), dtype_hint=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), ) def test_tensorflow_convert_to_tensor( *, dtype_x_cast, dtype_hint, backend_fw, on_device, fn_tree, frontend, test_flags, ): x_dtype, x, cast_dtype, _ = dtype_x_cast helpers.test_frontend_function( input_dtypes=x_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, value=x[0], dtype=cast_dtype, dtype_hint=dtype_hint[0], ) # einsum @handle_frontend_test( fn_tree="tensorflow.einsum", eq_n_op_n_shp=st.sampled_from( [ ("ii", (np.arange(25).reshape(5, 5),), ()), ("ii->i", (np.arange(25).reshape(5, 5),), (5,)), ("ij,j", (np.arange(25).reshape(5, 5), np.arange(5)), (5,)), ] ), dtype=helpers.get_dtypes("float", full=False), ) def test_tensorflow_einsum( *, eq_n_op_n_shp, dtype, on_device, fn_tree, frontend, backend_fw, test_flags, ): eq, operands, _ = eq_n_op_n_shp kw = {} i = 0 for x_ in operands: kw[f"x{i}"] = x_ i += 1 # len(operands) + 1 because of the equation test_flags.num_positional_args = len(operands) + 1 helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, equation=eq, **kw, ) @handle_frontend_test( fn_tree="tensorflow.ensure_shape", dtype_and_x=_array_and_shape(min_num_dims=0, max_num_dims=5), ) def test_tensorflow_ensure_shape( *, dtype_and_x, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, test_flags=test_flags, backend_to_test=backend_fw, fn_tree=fn_tree, x=x[0], shape=x[1], ) # expand_dims @handle_frontend_test( fn_tree="tensorflow.expand_dims", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared(helpers.get_shape(), key="shape"), ), axis=helpers.get_axis( shape=st.shared(helpers.get_shape(), key="shape"), allow_neg=True, force_int=True, ), ) def test_tensorflow_expand_dims( *, dtype_value, axis, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, value = dtype_value helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=value[0], axis=axis, ) # eye @handle_frontend_test( fn_tree="tensorflow.linalg.eye", gt_fn_tree="tensorflow.eye", n_rows=helpers.ints(min_value=0, max_value=10), n_cols=st.none() | helpers.ints(min_value=0, max_value=10), batch_shape=st.lists( helpers.ints(min_value=1, max_value=10), min_size=1, max_size=2 ), dtype=helpers.get_dtypes("valid", full=False), ) def test_tensorflow_eye( *, n_rows, n_cols, batch_shape, dtype, frontend, backend_fw, test_flags, fn_tree, gt_fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, test_flags=test_flags, backend_to_test=backend_fw, fn_tree=fn_tree, gt_fn_tree=gt_fn_tree, on_device=on_device, num_rows=n_rows, num_columns=n_cols, batch_shape=batch_shape, dtype=dtype[0], ) # full @handle_frontend_test( fn_tree="tensorflow.fill", shape=helpers.get_shape(), input_fill_dtype=_input_fill_and_dtype(), ) def test_tensorflow_fill( shape, input_fill_dtype, frontend, backend_fw, test_flags, fn_tree, on_device, ): input_dtype, _, fill, dtype_to_cast = input_fill_dtype helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-05, dims=shape, value=fill, ) # foldl @handle_frontend_test( fn_tree="tensorflow.foldl", fn=st.sampled_from( [ lambda a, b: a + b, lambda a, b: a - b, lambda a, b: a * b, ], ), initializer=st.one_of(st.none(), st.floats(min_value=-1000, max_value=1000)), dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float", full=False), min_value=-1000, max_value=1000, max_dim_size=10, max_num_dims=4, min_dim_size=1, min_num_dims=1, ), parallel_iterations=st.just(10), swap_memory=st.booleans(), name=st.none(), ) def test_tensorflow_foldl( *, fn, initializer, dtype_and_values, frontend, backend_fw, fn_tree, test_flags, parallel_iterations, swap_memory, name, ): dtype, elems = dtype_and_values elems = np.atleast_1d(elems) helpers.test_frontend_function( input_dtypes=dtype, fn=fn, elems=elems, initializer=initializer, backend_to_test=backend_fw, parallel_iterations=parallel_iterations, swap_memory=swap_memory, name=name, frontend=frontend, fn_tree=fn_tree, test_flags=test_flags, ) # foldr @handle_frontend_test( fn_tree="tensorflow.foldr", fn=st.sampled_from( [ lambda a, b: a + b, lambda a, b: a - b, lambda a, b: a * b, ], ), initializer=st.one_of(st.none(), st.floats(min_value=-1e3, max_value=1e3)), dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float", full=False), min_value=-1e3, max_value=1e3, max_dim_size=10, max_num_dims=4, min_dim_size=1, min_num_dims=1, ), parallel_iterations=st.just(10), swap_memory=st.booleans(), name=st.none(), ) def test_tensorflow_foldr( *, fn, initializer, dtype_and_values, frontend, backend_fw, fn_tree, test_flags, parallel_iterations, swap_memory, name, ): dtype, elems = dtype_and_values elems = np.atleast_1d(elems) helpers.test_frontend_function( input_dtypes=dtype, fn=fn, elems=elems, initializer=initializer, backend_to_test=backend_fw, parallel_iterations=parallel_iterations, swap_memory=swap_memory, name=name, frontend=frontend, fn_tree=fn_tree, test_flags=test_flags, ) # gather @handle_frontend_test( fn_tree="tensorflow.gather", params_indices_axis_batch_dims=helpers.array_indices_axis( array_dtypes=helpers.get_dtypes("valid"), indices_dtypes=["int64"], min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, indices_same_dims=True, ), ) def test_tensorflow_gather( *, params_indices_axis_batch_dims, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtypes, params, indices, axis, batch_dims = params_indices_axis_batch_dims helpers.test_frontend_function( input_dtypes=input_dtypes, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, params=params, indices=indices, axis=axis, batch_dims=batch_dims, ) # gather_nd @handle_frontend_test( fn_tree="tensorflow.gather_nd", params_indices_axis_batch_dims=helpers.array_indices_axis( array_dtypes=helpers.get_dtypes("valid"), indices_dtypes=["int64"], min_num_dims=5, max_num_dims=10, min_dim_size=1, max_dim_size=5, indices_same_dims=False, ), ) def test_tensorflow_gather_nd( *, params_indices_axis_batch_dims, on_device, backend_fw, fn_tree, frontend, test_flags, ): input_dtypes, params, indices, axis, batch_dims = params_indices_axis_batch_dims helpers.test_frontend_function( input_dtypes=input_dtypes, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, params=params, indices=indices, batch_dims=batch_dims, ) # identity @handle_frontend_test( fn_tree="tensorflow.identity", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), ), test_with_out=st.just(False), test_with_copy=st.just(True), ) def test_tensorflow_identity( dtype_and_x, frontend, backend_fw, test_flags, fn_tree, on_device, ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # identity_n @handle_frontend_test( fn_tree="tensorflow.identity_n", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), max_num_dims=5 ), test_with_out=st.just(False), test_with_copy=st.just(True), ) def test_tensorflow_identity_n( dtype_and_x, frontend, test_flags, backend_fw, fn_tree, on_device, ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, test_flags=test_flags, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, input=x, ) # is_tensor @handle_frontend_test( fn_tree="tensorflow.is_tensor", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), ) def test_tensorflow_is_tensor( *, dtype_and_x, backend_fw, frontend, test_flags, fn_tree, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, x=x[0], ) # linspace @handle_frontend_test( fn_tree="tensorflow.linspace", dtype_and_params=_linspace_helper(), num=helpers.ints(min_value=2, max_value=10), axis=helpers.ints(min_value=-1, max_value=0), ) def test_tensorflow_linspace( *, dtype_and_params, num, axis, on_device, backend_fw, fn_tree, frontend, test_flags, ): dtype, start, stop = dtype_and_params helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, start=start, stop=stop, num=num, axis=axis, on_device=on_device, ) # meshgrid @handle_frontend_test( fn_tree="tensorflow.meshgrid", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), max_num_dims=2, min_num_dims=2, min_dim_size=2, max_dim_size=5, ), indexing=st.sampled_from(["xy", "ij"]), test_with_out=st.just(False), ) def test_tensorflow_meshgrid( *, dtype_and_values, indexing, on_device, fn_tree, frontend, backend_fw, test_flags, ): dtype, arrays = dtype_and_values arrays = arrays[0] kwargs = {} for i, array in enumerate(arrays): kwargs[f"a{i}"] = array kwargs["indexing"] = indexing test_flags.num_positional_args = len(arrays) test_flags.generate_frontend_arrays = False helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **kwargs, ) # no_op @handle_frontend_test( fn_tree="tensorflow.no_op", dtype=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), test_with_out=st.just(False), ) def test_tensorflow_no_op( *, dtype, frontend, backend_fw, test_flags, fn_tree, ): helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, ) @handle_frontend_test( fn_tree="tensorflow.norm", aliases=["tensorflow.norm"], dtype_values_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=3, max_num_dims=5, min_dim_size=1, max_dim_size=4, min_axis=-3, max_axis=2, ), ord=st.sampled_from([1, 2, np.inf]), keepdims=st.booleans(), ) def test_tensorflow_norm( *, dtype_values_axis, ord, keepdims, backend_fw, frontend, test_flags, fn_tree, on_device, ): input_dtype, x, axis = dtype_values_axis helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, tensor=x[0], ord=ord, axis=axis, keepdims=keepdims, ) # one_hot @handle_frontend_test( fn_tree="tensorflow.one_hot", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), num_arrays=1, min_value=0, max_value=10, ), ) def test_tensorflow_one_hot( *, dtype_and_x, frontend, backend_fw, fn_tree, test_flags, on_device, ): input_dtype, x = dtype_and_x depth = 10 helpers.test_frontend_function( input_dtypes=["uint8", "int32", "int64"], test_flags=test_flags, frontend=frontend, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, indices=x[0], depth=depth, ) # ones @handle_frontend_test( fn_tree="tensorflow.ones", shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), dtype=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), ) def test_tensorflow_ones( shape, dtype, frontend, backend_fw, test_flags, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, shape=shape, dtype=dtype[0], ) # ones_like @handle_frontend_test( fn_tree="tensorflow.ones_like", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), dtype=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), ) def test_tensorflow_ones_like( dtype_and_x, dtype, frontend, backend_fw, test_flags, fn_tree, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dtype=dtype[0], ) # pad @handle_frontend_test( fn_tree="tensorflow.pad", aliases=["tensorflow.compat.v1.pad"], dtype_and_values_and_other=_pad_helper(), test_with_out=st.just(False), ) def test_tensorflow_pad( *, dtype_and_values_and_other, frontend, backend_fw, test_flags, fn_tree, on_device, ): input_dtype, tensor, paddings, mode, constant_values = dtype_and_values_and_other helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, tensor=tensor, paddings=paddings, mode=mode, constant_values=constant_values, ) # range @handle_frontend_test( fn_tree="tensorflow.range", start=helpers.ints(min_value=-50, max_value=0), limit=helpers.ints(min_value=1, max_value=50), delta=helpers.ints(min_value=1, max_value=5), dtype=helpers.get_dtypes("float"), test_with_out=st.just(False), ) def test_tensorflow_range( *, start, limit, delta, dtype, on_device, fn_tree, frontend, backend_fw, test_flags, ): helpers.test_frontend_function( input_dtypes=[], on_device=on_device, fn_tree=fn_tree, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, start=start, limit=limit, delta=delta, dtype=dtype[0], ) # rank @handle_frontend_test( fn_tree="tensorflow.rank", dtype_and_x=_matrix_rank_helper(), test_with_out=st.just(False), ) def test_tensorflow_rank( *, dtype_and_x, backend_fw, on_device, fn_tree, frontend, test_flags, ): dtype, x, _ = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # realdiv @handle_frontend_test( fn_tree="tensorflow.realdiv", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), num_arrays=2, min_value=-20, max_value=20, shared_dtype=True, ), test_with_out=st.just(False), ) def test_tensorflow_realdiv( *, dtype_and_x, test_flags, frontend, backend_fw, fn_tree, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, test_flags=test_flags, frontend=frontend, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, x=x[0], y=x[1], ) # repeat @handle_frontend_test( fn_tree="tensorflow.repeat", dtypes_and_value_and_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=5, max_dim_size=10, valid_axis=True, force_int_axis=True, ), repeats=helpers.ints(min_value=1, max_value=5), ) def test_tensorflow_repeat( *, dtypes_and_value_and_axis, repeats, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtypes, x, axis = dtypes_and_value_and_axis repeats = repeats helpers.test_frontend_function( input_dtypes=input_dtypes, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], repeats=repeats, axis=axis, ) # reshape @handle_frontend_test( fn_tree="tensorflow.reshape", input_x_shape=_reshape_helper(), test_with_out=st.just(False), ) def test_tensorflow_reshape( *, input_x_shape, on_device, fn_tree, backend_fw, frontend, test_flags, ): x, x_dtype, shape = input_x_shape helpers.test_frontend_function( input_dtypes=x_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, tensor=x, shape=shape, ) @handle_frontend_test( fn_tree="tensorflow.reverse", dtype_x_axis=reverse_helper(), ) def test_tensorflow_reverse( *, dtype_x_axis, frontend, backend_fw, fn_tree, test_flags, on_device, ): dtype, x, axis_dtype, axis = dtype_x_axis helpers.test_frontend_function( input_dtypes=dtype + axis_dtype, test_flags=test_flags, frontend=frontend, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, tensor=x[0], axis=axis[0], ) # roll @handle_frontend_test( fn_tree="tensorflow.roll", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=st.shared(helpers.get_shape(min_num_dims=1), key="shape"), ), shift=helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=1), key="shape"), force_tuple=True, ), axis=helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=1), key="shape"), force_tuple=True, ), ) def test_tensorflow_roll( *, dtype_and_values, shift, axis, on_device, fn_tree, backend_fw, frontend, test_flags, ): input_dtype, value = dtype_and_values if isinstance(shift, int) and isinstance(axis, tuple): axis = axis[0] if isinstance(shift, tuple) and isinstance(axis, tuple): if len(shift) != len(axis): mn = min(len(shift), len(axis)) shift = shift[:mn] axis = axis[:mn] helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=value[0], shift=shift, axis=axis, ) # scan @handle_frontend_test( fn_tree="tensorflow.scan", dtypes_values=helpers.dtype_and_values( available_dtypes=["float32"], num_arrays=1, min_num_dims=2, max_dim_size=3 ), test_with_out=st.just(False), ) def test_tensorflow_scan( *, dtypes_values, on_device, fn_tree, frontend, backend_fw, test_flags, ): def _test_fn(a, x): return a + x x_dtype, elems = dtypes_values helpers.test_frontend_function( input_dtypes=x_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, fn=_test_fn, elems=elems[0], ) # searchsorted @handle_frontend_test( fn_tree="tensorflow.searchsorted", dtype_x_v=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shared_dtype=True, min_num_dims=1, max_num_dims=1, num_arrays=2, ), side=st.sampled_from(["left", "right"]), out_type=st.sampled_from(["int32", "int64"]), ) def test_tensorflow_searchsorted( dtype_x_v, side, out_type, frontend, backend_fw, test_flags, fn_tree, on_device, ): input_dtypes, xs = dtype_x_v helpers.test_frontend_function( input_dtypes=input_dtypes, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, sorted_sequence=np.sort(xs[0]), values=xs[1], side=side, out_type=out_type, ) @handle_frontend_test( fn_tree="tensorflow.sequence_mask", dtype_lens_maxlen=_sequence_mask_helper(), test_with_out=st.just(False), ) def test_tensorflow_sequence_mask( *, dtype_lens_maxlen, frontend, test_flags, fn_tree, on_device, backend_fw, ): input_dtype, lens, max_len, dtype = dtype_lens_maxlen helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, lengths=lens[0], maxlen=max_len, dtype=dtype, ) # shape @handle_frontend_test( fn_tree="tensorflow.shape", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), output_dtype=st.sampled_from(["int32", "int64"]), ) def test_tensorflow_shape( *, dtype_and_x, output_dtype, on_device, backend_fw, fn_tree, frontend, test_flags, ): ( input_dtype, x, ) = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], out_type=output_dtype, ) @handle_frontend_test( fn_tree="tensorflow.shape_n", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=5 ), output_dtype=st.sampled_from(["int32", "int64"]), ) def test_tensorflow_shape_n( *, dtype_and_x, output_dtype, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input, out_type=output_dtype, ) # size # output_dtype not generated as tf only accepts tf dtypes @handle_frontend_test( fn_tree="tensorflow.size", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), max_num_dims=4 ), # output_dtype=st.sampled_from(["int32", "int64"]), test_with_out=st.just(False), ) def test_tensorflow_size( *, dtype_and_x, frontend, backend_fw, test_flags, fn_tree, on_device, # output_dtype ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], # out_type=output_dtype, ) # slice @handle_frontend_test( fn_tree="tensorflow.slice", dtype_x_params=_slice_helper(), test_with_out=st.just(False), ) def test_tensorflow_slice( *, dtype_x_params, frontend, backend_fw, test_flags, fn_tree, on_device, ): dtype, x, begin, size = dtype_x_params helpers.test_frontend_function( input_dtypes=dtype + 3 * ["int64"], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input_=x[0], begin=begin, size=size, ) # sort @handle_frontend_test( fn_tree="tensorflow.sort", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, min_axis=-1, max_axis=0, ), descending=st.sampled_from(["ASCENDING", "DESCENDING"]), ) def test_tensorflow_sort( *, dtype_input_axis, descending, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, input, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, values=input[0], axis=axis, direction=descending, ) # split @handle_frontend_test( fn_tree="tensorflow.split", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), ), num_or_size_splits=_get_splits(allow_none=False, min_num_dims=1), axis=st.shared( helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=1), key="value_shape"), force_int=True, ), key="target_axis", ), test_with_out=st.just(False), ) def test_tensorflow_split( *, dtype_value, num_or_size_splits, axis, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, value = dtype_value helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, value=value[0], num_or_size_splits=num_or_size_splits, axis=axis, ) @handle_frontend_test( fn_tree="tensorflow.squeeze", dtype_value=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared(helpers.get_shape(), key="value_shape"), ), axis=_squeeze_helper(), ) def test_tensorflow_squeeze_general( *, dtype_value, axis, on_device, backend_fw, fn_tree, frontend, test_flags, ): dtype, xs = dtype_value helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=xs[0], axis=axis, ) # stack @handle_frontend_test( fn_tree="tensorflow.stack", dtype_values_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("float"), num_arrays=st.shared(helpers.ints(min_value=2, max_value=4), key="num_arrays"), shape=helpers.get_shape(min_num_dims=1), shared_dtype=True, valid_axis=True, allow_neg_axes=True, force_int_axis=True, ), ) def test_tensorflow_stack( dtype_values_axis, on_device, fn_tree, frontend, backend_fw, test_flags, ): input_dtype, values, axis = dtype_values_axis helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, values=values, axis=axis, ) # stop_gradient @handle_frontend_test( fn_tree="tensorflow.stop_gradient", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric") ), ) def test_tensorflow_stop_gradient( *, dtype_and_x, test_flags, backend_fw, fn_tree, frontend, on_device ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, test_flags=test_flags, frontend=frontend, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # strided_slice @handle_frontend_test( fn_tree="tensorflow.strided_slice", dtype_x_params=_strided_slice_helper(), test_with_out=st.just(False), ) def test_tensorflow_strided_slice( *, dtype_x_params, frontend, backend_fw, test_flags, fn_tree, on_device, ): dtype, x, begin, end, strides, masks = dtype_x_params try: helpers.test_frontend_function( input_dtypes=dtype + 3 * ["int64"] + 5 * ["int32"], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input_=x[0], begin=begin, end=end, strides=strides, begin_mask=masks[0], end_mask=masks[1], ellipsis_mask=masks[2], new_axis_mask=masks[3], shrink_axis_mask=masks[4], ) except tf_errors.InvalidArgumentError: assume(False) except Exception as e: if ( hasattr(e, "message") and "only stride 1 allowed on non-range indexing" in e.message ): assume(False) raise e # tensor_scatter_nd_add @handle_frontend_test( fn_tree="tensorflow.tensor_scatter_nd_add", all_arguments=_multiple_shape_helper(), tensor=helpers.array_values( dtype=helpers.get_dtypes("numeric"), shape=(8,), min_value=2, max_value=49 ), indices=helpers.array_values( dtype=helpers.get_dtypes("integer"), shape=(4, 1), min_value=0, max_value=7 ), updates=helpers.array_values( dtype=helpers.get_dtypes("integer"), shape=(4,), min_value=9, max_value=12, ), ) def test_tensorflow_tensor_scatter_nd_add( *, all_arguments, tensor, indices, updates, frontend, test_flags, fn_tree, on_device, backend_fw, ): input_dtype, input_matrix, dt_and_multiples = all_arguments dt_mul, multiples = dt_and_multiples helpers.test_frontend_function( input_dtypes=input_dtype + dt_mul, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, tensor=tensor[0], indices=indices[0], updates=updates[0], ) @handle_frontend_test(fn_tree="tensorflow.tile", all_arguments=_multiple_shape_helper()) def test_tensorflow_tile( *, all_arguments, test_flags, frontend, fn_tree, on_device, backend_fw, ): input_dtype, input_matrix, dt_and_multiples = all_arguments dt_mul, multiples = dt_and_multiples helpers.test_frontend_function( input_dtypes=input_dtype + dt_mul, input=input_matrix[0], multiples=multiples[0], test_flags=test_flags, backend_to_test=backend_fw, frontend=frontend, fn_tree=fn_tree, on_device=on_device, ) @handle_frontend_test( fn_tree="tensorflow.transpose", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=st.shared(helpers.get_shape(min_num_dims=1), key="shape"), ), perm=_get_perm_helper(), conjugate=st.booleans(), test_with_out=st.just(False), ) def test_tensorflow_transpose( *, dtype_and_x, perm, conjugate, frontend, backend_fw, test_flags, fn_tree, on_device, ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, a=x[0], perm=perm, conjugate=conjugate, ) # truncatediv @handle_frontend_test( fn_tree="tensorflow.truncatediv", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, min_value=-20, max_value=20, shared_dtype=True, ), test_with_out=st.just(False), ) def test_tensorflow_truncatediv( *, dtype_and_x, test_flags, frontend, backend_fw, fn_tree, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, test_flags=test_flags, frontend=frontend, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, x=x[0], y=x[1], ) # Truncatemod @handle_frontend_test( fn_tree="tensorflow.truncatemod", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, shared_dtype=True, ), test_with_out=st.just(False), ) def test_tensorflow_truncatemod( *, dtype_and_x, frontend, backend_fw, test_flags, fn_tree, on_device, ): input_dtype, x = dtype_and_x assume(not np.any(np.isclose(x[0], 0))) assume(not np.any(np.isclose(x[1], 0))) helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=x[0], y=x[1], ) @handle_frontend_test( fn_tree="tensorflow.unique", dtype_x=helpers.dtype_and_values( available_dtypes=["int64", "int32"], min_value=1, max_value=100, min_dim_size=1, max_dim_size=10, min_num_dims=1, max_num_dims=1, ), test_with_out=st.just([False]), ) def test_tensorflow_unique( *, dtype_x, frontend, backend_fw, fn_tree, test_flags, on_device, ): dtype, x = dtype_x helpers.test_frontend_function( input_dtypes=dtype, x=x[0], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, ) @handle_frontend_test( fn_tree="tensorflow.unique_with_counts", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=st.shared( helpers.get_shape( min_num_dims=1, max_num_dims=1, ) ), dtype=["int32", "int64"], ), output_dtype=st.sampled_from(["int32", "int64"]), ) def test_tensorflow_unique_with_counts( *, dtype_and_x, on_device, fn_tree, frontend, backend_fw, test_flags, output_dtype, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( x=x[0], input_dtypes=input_dtype, out_idx=output_dtype, backend_to_test=backend_fw, fn_tree=fn_tree, frontend=frontend, test_flags=test_flags, on_device=on_device, ) @handle_frontend_test( fn_tree="tensorflow.unravel_index", indices=helpers.array_values( dtype=helpers.get_dtypes("integer"), shape=(1, 2), min_value=0, max_value=49 ), dims=helpers.array_values( dtype=helpers.get_dtypes("integer"), shape=(1, 2), min_value=50 ), ) def test_tensorflow_unravel_index( *, indices, dims, frontend, test_flags, fn_tree, on_device, backend_fw ): helpers.test_frontend_function( input_dtypes=["int32"], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, indices=indices[0], dims=dims[0], ) # unstack @handle_frontend_test( fn_tree="tensorflow.unstack", dtypes_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=2, max_num_dims=2, max_dim_size=1, ), number_positional_args=st.just(1), axis=st.integers(-1, 0), test_with_out=st.just(False), ) def test_tensorflow_unstack( *, dtypes_values, axis, on_device, fn_tree, backend_fw, frontend, test_flags, ): x_dtype, x = dtypes_values axis = axis helpers.test_frontend_function( input_dtypes=x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, value=x[0], axis=axis, ) # where @handle_frontend_test( fn_tree="tensorflow.where", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), num_arrays=1, min_value=0, max_value=10, min_num_dims=1, ), ) def test_tensorflow_where_no_xy( *, dtype_and_input, frontend, backend_fw, fn_tree, test_flags, on_device, ): input_dtype, [condition] = dtype_and_input helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, condition=condition, ) # where @handle_frontend_test( fn_tree="tensorflow.where", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("bool"), num_arrays=3, min_value=0, max_value=10, min_num_dims=1, ), dim_remove_from_x=st.integers(), dim_remove_from_y=st.integers(), ) def test_tensorflow_where_with_xy( *, dtype_and_input, dim_remove_from_x, dim_remove_from_y, frontend, backend_fw, fn_tree, test_flags, on_device, ): input_dtype, [condition, x, y] = dtype_and_input if input_dtype != ["bool", "bool", "bool"]: return for _ in range(min(len(x.shape) - 1, dim_remove_from_x)): x = x[0] for _ in range(min(len(y.shape) - 1, dim_remove_from_y)): y = y[0] helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, condition=condition, x=x, y=y, ) @handle_frontend_test( fn_tree="tensorflow.while_loop", dtype_and_x=helpers.dtype_and_values( num_arrays=1, min_num_dims=1, max_num_dims=3, min_dim_size=2, max_dim_size=10, shared_dtype=True, min_value=-100, max_value=100, available_dtypes=helpers.get_dtypes("numeric"), ), ) def test_tensorflow_while_loop( *, dtype_and_x, test_flags, on_device, backend_fw, fn_tree, frontend, ): def _test_cond_fn(x): def any_negative_real(arr): for elem in arr: if isinstance(elem, (int, float)) and elem < 0: return True elif isinstance(elem, complex): return False elif isinstance(elem, (list, tuple)): if any_negative_real(elem): return True return False return any_negative_real(x) def _test_body_fn(x): return x + 1 input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, frontend=frontend, fn_tree=fn_tree, on_device=on_device, cond=_test_cond_fn, body=_test_body_fn, loop_vars=(x[0],), ) # zeros @handle_frontend_test( fn_tree="tensorflow.zeros", input=helpers.get_shape( allow_none=False, min_num_dims=0, max_num_dims=10, min_dim_size=0, max_dim_size=10, ), dtype=helpers.get_dtypes("valid", full=False), ) def test_tensorflow_zeros( *, input, dtype, frontend, backend_fw, test_flags, fn_tree, on_device, ): helpers.test_frontend_function( shape=input, input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, ) # zeros_like @handle_frontend_test( fn_tree="tensorflow.zeros_like", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric") ), dtype=helpers.get_dtypes("numeric", full=False), test_with_out=st.just(False), ) def test_tensorflow_zeros_like( dtype_and_x, dtype, frontend, backend_fw, test_flags, fn_tree, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dtype=dtype[0], )
ivy/ivy_tests/test_ivy/test_frontends/test_tensorflow/test_general_functions.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_tensorflow/test_general_functions.py", "repo_id": "ivy", "token_count": 31844 }
68
# global import math import numpy as np from hypothesis import assume, strategies as st import hypothesis.extra.numpy as nph # local import ivy import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers import sizes_ from ivy_tests.test_ivy.helpers import handle_frontend_test from ivy_tests.test_ivy.test_functional.test_core.test_linalg import ( _get_dtype_value1_value2_axis_for_tensordot, ) # --- Helpers --- # # --------------- # @st.composite def _get_dtype_value1_value2_cov( draw, available_dtypes, min_num_dims, max_num_dims, min_dim_size, max_dim_size, abs_smallest_val=None, min_value=None, max_value=None, allow_inf=False, exclude_min=False, exclude_max=False, large_abs_safety_factor=4, small_abs_safety_factor=4, safety_factor_scale="log", ): shape = draw( helpers.get_shape( allow_none=False, min_num_dims=min_num_dims, max_num_dims=max_num_dims, min_dim_size=min_dim_size, max_dim_size=max_dim_size, ) ) dtype = draw(st.sampled_from(draw(available_dtypes))) values = [] for i in range(1): values.append( draw( helpers.array_values( dtype=dtype, shape=shape, abs_smallest_val=abs_smallest_val, min_value=min_value, max_value=max_value, allow_inf=allow_inf, exclude_min=exclude_min, exclude_max=exclude_max, large_abs_safety_factor=large_abs_safety_factor, small_abs_safety_factor=small_abs_safety_factor, safety_factor_scale=safety_factor_scale, ) ) ) value1 = values[0] correction = draw(helpers.ints(min_value=0, max_value=1)) fweights = draw( helpers.array_values( dtype="int64", shape=shape[1], abs_smallest_val=1, min_value=1, max_value=10, allow_inf=False, ) ) aweights = draw( helpers.array_values( dtype="float64", shape=shape[1], abs_smallest_val=1, min_value=1, max_value=10, allow_inf=False, small_abs_safety_factor=1, ) ) return [dtype], value1, correction, fweights, aweights @st.composite def _get_input_and_broadcast_shape(draw): # Determine the dimensionality of the tensor, ranging from scalar (0D) to 3D. num_dims = draw(st.integers(min_value=0, max_value=3)) # Generate the dimensions of the tensor. dims = [draw(st.integers(min_value=1, max_value=5)) for _ in range(num_dims)] # Make Tensor. x_dtype, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=dims ) ) # Define the broadcast shape dimension broadcast_num_dims = draw(st.integers(min_value=num_dims, max_value=3)) # Construct the broadcast shape. if broadcast_num_dims == num_dims: shape = tuple(dims) else: shape_components = [ draw(st.integers(min_value=1, max_value=5)) for _ in range(broadcast_num_dims - num_dims) ] shape = tuple(shape_components) + tuple(dims) return x_dtype, x, shape # helpers @st.composite def _get_repeat_interleaves_args( draw, *, available_dtypes, valid_axis, max_num_dims, max_dim_size ): values_dtype, values, axis, shape = draw( helpers.dtype_values_axis( available_dtypes=available_dtypes, valid_axis=valid_axis, force_int_axis=True, shape=draw( helpers.get_shape( allow_none=False, min_num_dims=0, max_num_dims=max_num_dims, min_dim_size=1, max_dim_size=max_dim_size, ) ), ret_shape=True, ) ) if axis is None: generate_repeats_as_integer = draw(st.booleans()) num_repeats = 1 if generate_repeats_as_integer else math.prod(tuple(shape)) else: num_repeats = shape[axis] repeats_dtype, repeats = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), min_value=0, max_value=10, shape=[num_repeats], ) ) # Output size is an optional parameter accepted by Torch for optimisation use_output_size = draw(st.booleans()) output_size = np.sum(repeats) if use_output_size else None return [values_dtype, repeats_dtype], values, repeats, axis, output_size @st.composite def complex_strategy( draw, min_num_dims=0, max_num_dims=5, min_dim_size=1, max_dim_size=10 ): shape = draw( st.lists( helpers.ints(min_value=min_dim_size, max_value=max_dim_size), min_size=min_num_dims, max_size=max_num_dims, ) ) shape = list(shape) shape.append(2) return tuple(shape) # cross @st.composite def dtype_value1_value2_axis( draw, available_dtypes, abs_smallest_val=None, min_value=None, max_value=None, allow_inf=False, exclude_min=False, exclude_max=False, min_num_dims=1, max_num_dims=10, min_dim_size=1, max_dim_size=10, specific_dim_size=3, large_abs_safety_factor=4, small_abs_safety_factor=4, safety_factor_scale="log", ): # For cross product, a dim with size 3 is required shape = draw( helpers.get_shape( allow_none=False, min_num_dims=min_num_dims, max_num_dims=max_num_dims, min_dim_size=min_dim_size, max_dim_size=max_dim_size, ) ) axis = draw(helpers.ints(min_value=0, max_value=len(shape))) # make sure there is a dim with specific dim size shape = list(shape) shape = shape[:axis] + [specific_dim_size] + shape[axis:] shape = tuple(shape) dtype = draw(st.sampled_from(draw(available_dtypes))) values = [] for i in range(2): values.append( draw( helpers.array_values( dtype=dtype, shape=shape, abs_smallest_val=abs_smallest_val, min_value=min_value, max_value=max_value, allow_inf=allow_inf, exclude_min=exclude_min, exclude_max=exclude_max, large_abs_safety_factor=large_abs_safety_factor, small_abs_safety_factor=small_abs_safety_factor, safety_factor_scale=safety_factor_scale, ) ) ) value1, value2 = values[0], values[1] return [dtype], value1, value2, axis # --- Main --- # # ------------ # # atleast_1d @handle_frontend_test( fn_tree="torch.atleast_1d", dtype_and_tensors=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=st.integers(min_value=1, max_value=5), ), test_with_out=st.just(False), ) def test_torch_atleast_1d( *, dtype_and_tensors, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtypes, tensors = dtype_and_tensors if isinstance(dtypes, list): # If more than one value was generated args = { f"x{i}": np.array(tensor, dtype=dtypes[i]) for i, tensor in enumerate(tensors) } else: # If exactly one value was generated args = {"x0": np.array(tensors, dtype=dtypes)} test_flags.num_positional_args = len(tensors) helpers.test_frontend_function( input_dtypes=dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **args, ) # atleast_2d @handle_frontend_test( fn_tree="torch.atleast_2d", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=helpers.ints(min_value=1, max_value=10), ), test_with_out=st.just(False), ) def test_torch_atleast_2d( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, arrays = dtype_and_x arys = {} for i, (array, idtype) in enumerate(zip(arrays, input_dtype)): arys[f"arrs{i}"] = array test_flags.num_positional_args = len(arys) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **arys, ) # atleast_3d @handle_frontend_test( fn_tree="torch.atleast_3d", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=helpers.ints(min_value=1, max_value=10), ), test_with_out=st.just(False), ) def test_torch_atleast_3d( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, arrays = dtype_and_x arys = {} for i, array in enumerate(arrays): arys[f"arrs{i}"] = array test_flags.num_positional_args = len(arys) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **arys, ) @handle_frontend_test( fn_tree="torch.block_diag", dtype_and_tensors=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=st.integers(min_value=1, max_value=10), min_num_dims=0, max_num_dims=2, allow_inf=True, ), test_with_out=st.just(False), ) def test_torch_block_diag( *, dtype_and_tensors, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtypes, tensors = dtype_and_tensors if isinstance(dtypes, list): # If more than one value was generated args = {f"x{i}": np.array(t, dtype=dtypes[i]) for i, t in enumerate(tensors)} else: # If exactly one value was generated args = {"x0": np.array(tensors, dtype=dtypes)} test_flags.num_positional_args = len(tensors) helpers.test_frontend_function( input_dtypes=dtypes, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, backend_to_test=backend_fw, **args, ) @handle_frontend_test( fn_tree="torch.broadcast_shapes", shapes=nph.mutually_broadcastable_shapes( num_shapes=4, min_dims=1, max_dims=5, min_side=1, max_side=5 ), test_with_out=st.just(False), ) def test_torch_broadcast_shapes( *, shapes, on_device, fn_tree, frontend, test_flags, backend_fw, ): shape, _ = shapes shapes = {f"shape{i}": shape[i] for i in range(len(shape))} test_flags.num_positional_args = len(shapes) ret, frontend_ret = helpers.test_frontend_function( input_dtypes=["int64"], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **shapes, test_values=False, ) assert ret == frontend_ret @handle_frontend_test( fn_tree="torch.broadcast_to", array_and_shape=_get_input_and_broadcast_shape(), test_with_out=st.just(False), ) def test_torch_broadcast_to( *, array_and_shape, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, array, shape = array_and_shape test_flags.num_positional_args = 2 helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, array=array[0], shape=shape, ) @handle_frontend_test( fn_tree="torch.cartesian_prod", dtype_and_tensors=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=st.integers(min_value=1, max_value=5), min_num_dims=1, max_num_dims=1, max_dim_size=5, shared_dtype=True, ), ) def test_torch_cartesian_prod( *, dtype_and_tensors, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtypes, tensors = dtype_and_tensors if isinstance(dtypes, list): # If more than one value was generated args = { f"x{i}": np.array(tensor, dtype=dtypes[i]) for i, tensor in enumerate(tensors) } else: # If exactly one value was generated args = {"x0": np.array(tensors, dtype=dtypes)} test_flags.num_positional_args = len(tensors) helpers.test_frontend_function( input_dtypes=dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **args, ) @handle_frontend_test( fn_tree="torch.cdist", dtypes_and_x=helpers.dtype_and_values( shape=st.shared(helpers.get_shape(min_num_dims=2, max_num_dims=3), key="shape"), shared_dtype=True, num_arrays=2, allow_inf=False, available_dtypes=["float32", "float64"], ), p=st.integers(min_value=0, max_value=1000000), compute_mode=st.sampled_from( [ "use_mm_for_euclid_dist_if_necessary", "use_mm_for_euclid_dist", "donot_use_mm_for_euclid_dist", ] ), ) def test_torch_cdist( *, dtypes_and_x, p, compute_mode, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtypes, xs = dtypes_and_x helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x1=xs[0], x2=xs[1], p=p, compute_mode=compute_mode, ) # clone @handle_frontend_test( fn_tree="torch.clone", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), test_with_copy=st.just(True), ) def test_torch_clone( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # corrcoef @handle_frontend_test( fn_tree="torch.corrcoef", dtypes_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=1, min_num_dims=2, max_num_dims=2, min_dim_size=2, max_dim_size=2, min_value=1, ), test_with_out=st.just(False), ) def test_torch_corrcoef( dtypes_and_x, frontend, fn_tree, on_device, test_flags, backend_fw, ): input_dtypes, x = dtypes_and_x helpers.test_frontend_function( input_dtypes=input_dtypes, frontend=frontend, fn_tree=fn_tree, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, input=x[0], ) # cov @handle_frontend_test( fn_tree="torch.cov", dtype_x1_corr_cov=_get_dtype_value1_value2_cov( available_dtypes=helpers.get_dtypes("float"), min_num_dims=2, max_num_dims=2, min_dim_size=2, max_dim_size=5, min_value=1, max_value=1e10, abs_smallest_val=0.01, large_abs_safety_factor=2, safety_factor_scale="log", ), test_with_out=st.just(False), ) def test_torch_cov( dtype_x1_corr_cov, test_flags, frontend, fn_tree, on_device, backend_fw, ): dtype, x1, correction, fweights, aweights = dtype_x1_corr_cov helpers.test_frontend_function( input_dtypes=["float64", "int64", "float64"], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-2, atol=1e-2, input=x1, correction=correction, fweights=fweights, aweights=aweights, ) @handle_frontend_test( fn_tree="torch.cross", dtype_input_other_dim=dtype_value1_value2_axis( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, max_num_dims=10, min_dim_size=3, max_dim_size=3, min_value=-1e5, max_value=1e5, abs_smallest_val=0.01, large_abs_safety_factor=2, safety_factor_scale="log", ), ) def test_torch_cross( dtype_input_other_dim, frontend, test_flags, fn_tree, backend_fw, ): dtype, input, other, dim = dtype_input_other_dim helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, rtol=1e-2, atol=1e-2, input=input, other=other, dim=dim, ) # cummax @handle_frontend_test( fn_tree="torch.cummax", dtype_x_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("float"), min_num_dims=1, max_num_dims=2, min_value=-100, max_value=100, valid_axis=True, allow_neg_axes=False, max_axes_size=1, force_int_axis=True, ), dtype=helpers.get_dtypes("float", none=True, full=False), ) def test_torch_cummax( *, dtype_x_axis, dtype, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_x_axis if ivy.current_backend_str() == "torch": test_flags.as_variable = [False] helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, ) # cumprod @handle_frontend_test( fn_tree="torch.cumprod", dtype_x_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, max_num_dims=5, min_value=-100, max_value=100, valid_axis=True, allow_neg_axes=False, max_axes_size=1, force_int_axis=True, ), dtype=helpers.get_dtypes("numeric", none=True, full=False), ) def test_torch_cumprod( *, dtype_x_axis, dtype, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_x_axis # ToDo: set as_variable_flags as the parameter generated by test_torch_cumsum once # this issue is marked as completed https://github.com/pytorch/pytorch/issues/75733 if ivy.current_backend_str() == "torch": test_flags.as_variable = [False] helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, dtype=dtype[0], ) # cumsum @handle_frontend_test( fn_tree="torch.cumsum", dtype_x_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_value=-100, max_value=100, min_num_dims=1, max_num_dims=5, valid_axis=True, allow_neg_axes=False, max_axes_size=1, force_int_axis=True, ), dtype=helpers.get_dtypes("numeric", none=True, full=False), ) def test_torch_cumsum( *, dtype_x_axis, dtype, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_x_axis # ToDo: set as_variable_flags as the parameter generated by test_torch_cumsum once # this issue is marked as completed https://github.com/pytorch/pytorch/issues/75733 if ivy.current_backend_str() == "torch": test_flags.as_variable = [False] helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, dtype=dtype[0], ) # diag @handle_frontend_test( fn_tree="torch.diag", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=st.shared(helpers.get_shape(min_num_dims=1, max_num_dims=2), key="shape"), ), diagonal=st.integers(min_value=-100, max_value=100), ) def test_torch_diag( *, dtype_and_values, diagonal, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, values = dtype_and_values helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=values[0], diagonal=diagonal, ) # diagflat @handle_frontend_test( fn_tree="torch.diagflat", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), offset=st.integers(min_value=-4, max_value=4), test_with_out=st.just(False), ) def test_torch_diagflat( dtype_and_values, offset, test_flags, backend_fw, frontend, fn_tree, on_device, ): input_dtype, x = dtype_and_values helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, x=x[0], offset=offset, ) @handle_frontend_test( fn_tree="torch.diagonal", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=st.shared(helpers.get_shape(min_num_dims=2), key="shape"), ), dims_and_offset=helpers.dims_and_offset( shape=st.shared(helpers.get_shape(min_num_dims=2), key="shape") ), ) def test_torch_diagonal( *, dtype_and_values, dims_and_offset, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, value = dtype_and_values dim1, dim2, offset = dims_and_offset input = value[0] num_dims = len(np.shape(input)) assume(dim1 != dim2) if dim1 < 0: assume(dim1 + num_dims != dim2) if dim2 < 0: assume(dim1 != dim2 + num_dims) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input, offset=offset, dim1=dim1, dim2=dim2, ) # diff @handle_frontend_test( fn_tree="torch.diff", dtype_n_x_n_axis=helpers.dtype_values_axis( available_dtypes=st.shared(helpers.get_dtypes("valid"), key="dtype"), min_num_dims=1, valid_axis=True, force_int_axis=True, ), n=st.integers(min_value=0, max_value=5), dtype_prepend=helpers.dtype_and_values( available_dtypes=st.shared(helpers.get_dtypes("valid"), key="dtype"), min_num_dims=1, max_num_dims=1, ), dtype_append=helpers.dtype_and_values( available_dtypes=st.shared(helpers.get_dtypes("valid"), key="dtype"), min_num_dims=1, max_num_dims=1, ), ) def test_torch_diff( *, dtype_n_x_n_axis, n, dtype_prepend, dtype_append, test_flags, frontend, backend_fw, fn_tree, ): input_dtype, x, axis = dtype_n_x_n_axis _, prepend = dtype_prepend _, append = dtype_append helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, input=x[0], n=n, dim=axis, prepend=prepend[0], append=append[0], ) # einsum @handle_frontend_test( fn_tree="torch.einsum", eq_n_op_n_shp=helpers.einsum_helper(), ) def test_torch_einsum( *, eq_n_op_n_shp, on_device, fn_tree, frontend, test_flags, backend_fw, ): eq, operands, dtypes = eq_n_op_n_shp kw = {} for i, x_ in enumerate(operands): dtype = dtypes[i] kw[f"x{i}"] = np.array(x_).astype(dtype) test_flags.num_positional_args = len(operands) + 1 helpers.test_frontend_function( input_dtypes=dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, equation=eq, **kw, ) # erfinv @handle_frontend_test( fn_tree="torch.special.erfinv", aliases=["torch.erfinv"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=-1, max_value=1, abs_smallest_val=1e-05, ), ) def test_torch_erfinv( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) @handle_frontend_test( fn_tree="torch.flatten", dtype_input_axes=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), valid_axis=True, min_num_dims=1, min_axes_size=2, max_axes_size=2, ), ) def test_torch_flatten( *, dtype_input_axes, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, input, axes = dtype_input_axes if isinstance(axes, int): start_dim = axes end_dim = -1 else: start_dim = axes[0] end_dim = axes[1] helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], start_dim=start_dim, end_dim=end_dim, ) # flip @handle_frontend_test( fn_tree="torch.flip", dtype_and_values=helpers.dtype_and_values( shape=st.shared(helpers.get_shape(min_num_dims=1), key="shape"), available_dtypes=helpers.get_dtypes("float"), ), axis=helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=1), key="shape"), force_tuple=True, ), test_with_copy=st.just(True), ) def test_torch_flip( *, dtype_and_values, axis, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, value = dtype_and_values helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=value[0], dims=axis, ) # fliplr @handle_frontend_test( fn_tree="torch.fliplr", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=helpers.get_shape(min_num_dims=2), ), test_with_copy=st.just(True), ) def test_torch_fliplr( *, dtype_and_values, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, value = dtype_and_values helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=value[0], ) # flipud @handle_frontend_test( fn_tree="torch.flipud", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=helpers.get_shape(min_num_dims=1), ), test_with_copy=st.just(True), ) def test_torch_flipud( *, dtype_and_values, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, value = dtype_and_values helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=value[0], ) # gcd @handle_frontend_test( fn_tree="torch.gcd", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), min_value=-100, max_value=100, min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, num_arrays=2, shared_dtype=True, ), ) def test_torch_gcd( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) # kron @handle_frontend_test( fn_tree="torch.kron", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2 ), ) def test_torch_kron( dtype_and_x, frontend, fn_tree, test_flags, backend_fw, on_device, ): input_dtypes, x = dtype_and_x input, label = x[0], x[1] helpers.test_frontend_function( input_dtypes=["float32"], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input, other=label, ) # lcm @handle_frontend_test( fn_tree="torch.lcm", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), num_arrays=2, shared_dtype=True, min_num_dims=1, max_num_dims=3, min_value=-100, max_value=100, allow_nan=False, ), ) def test_torch_lcm( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) # logcumsumexp @handle_frontend_test( fn_tree="torch.logcumsumexp", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), shape=st.shared(helpers.get_shape(), key="shape"), max_value=100, min_value=-100, ), dim=helpers.get_axis( shape=st.shared(helpers.get_shape(), key="shape"), force_int=True ), ) def test_torch_logcumsumexp( *, dtype_and_input, dim, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, input = dtype_and_input helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-2, atol=1e-2, input=input[0], dim=dim, ) # meshgrid @handle_frontend_test( fn_tree="torch.meshgrid", dtypes_and_tensors=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=st.integers(min_value=2, max_value=5), min_num_dims=1, max_num_dims=1, min_dim_size=2, max_dim_size=5, shared_dtype=True, ), indexing=st.sampled_from(["ij", "xy"]), ) def test_torch_meshgrid( *, dtypes_and_tensors, indexing, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtypes, tensors = dtypes_and_tensors kwargs = { f"tensor{i}": np.array(tensor, dtype=dtypes[i]) for i, tensor in enumerate(tensors) } kwargs["indexing"] = indexing test_flags.num_positional_args = len(tensors) helpers.test_frontend_function( input_dtypes=dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **kwargs, ) # ravel @handle_frontend_test( fn_tree="torch.ravel", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=1, ), ) def test_torch_ravel( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=np.asarray(x[0], dtype=input_dtype[0]), ) # renorm @handle_frontend_test( fn_tree="torch.renorm", dtype_and_values=helpers.dtype_and_values( shape=st.shared(helpers.get_shape(min_num_dims=2), key="shape"), available_dtypes=helpers.get_dtypes("numeric"), max_value=1e4, min_value=-1e4, ), dim=helpers.get_axis( shape=st.shared(helpers.get_shape(), key="shape"), force_int=True, ), p=st.floats( min_value=0.5, exclude_min=True, max_value=5, ), # Non-positive norms aren't supported in backends. # Small positive norms cause issues due to finite-precision. maxnorm=st.floats(min_value=0), # Norms are positive semi-definite ) def test_torch_renorm( *, dtype_and_values, p, dim, maxnorm, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, values = dtype_and_values helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, atol=1e-02, input=values[0], p=p, dim=dim, maxnorm=maxnorm, ) # repeat_interleave @handle_frontend_test( fn_tree="torch.repeat_interleave", dtype_values_repeats_axis_output_size=_get_repeat_interleaves_args( available_dtypes=helpers.get_dtypes("valid"), valid_axis=True, max_num_dims=4, max_dim_size=4, ), ) def test_torch_repeat_interleave( *, dtype_values_repeats_axis_output_size, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, values, repeats, axis, output_size = dtype_values_repeats_axis_output_size helpers.test_frontend_function( input_dtypes=dtype[0], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=values[0], repeats=repeats[0], dim=axis, output_size=output_size, ) # roll @handle_frontend_test( fn_tree="torch.roll", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=st.shared(helpers.get_shape(min_num_dims=1), key="shape"), ), shift=helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=1), key="shape"), force_tuple=True, ), axis=helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=1), key="shape"), force_tuple=True, ), ) def test_torch_roll( *, dtype_and_values, shift, axis, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, value = dtype_and_values if isinstance(shift, int) and isinstance(axis, tuple): axis = axis[0] if isinstance(shift, tuple) and isinstance(axis, tuple): if len(shift) != len(axis): mn = min(len(shift), len(axis)) shift = shift[:mn] axis = axis[:mn] helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=value[0], shifts=shift, dims=axis, ) # rot90 @handle_frontend_test( fn_tree="torch.rot90", dtype_and_x=helpers.dtype_and_values( shape=st.shared(helpers.get_shape(min_num_dims=2), key="shape"), available_dtypes=helpers.get_dtypes("numeric"), ), dims=helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=2), key="shape"), min_size=2, max_size=2, unique=True, allow_neg=False, force_tuple=True, ), k=st.integers(min_value=-10, max_value=10), ) def test_torch_rot90( *, dtype_and_x, dims, k, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], k=k, dims=dims, ) @handle_frontend_test( fn_tree="torch.searchsorted", dtype_x_v=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shared_dtype=True, min_num_dims=1, max_num_dims=1, num_arrays=2, ), side=st.sampled_from(["left", "right", None]), out_int32=st.booleans(), right=st.sampled_from([True, False, None]), test_with_out=st.booleans(), ) def test_torch_searchsorted( dtype_x_v, side, out_int32, right, frontend, test_flags, fn_tree, backend_fw, on_device, ): potential_kwargs = {} if side == "left" and right: right = None # this combo will cause an exception if side is not None: potential_kwargs["side"] = side if right is not None: potential_kwargs["right"] = right input_dtypes, xs = dtype_x_v use_sorter = st.booleans() if use_sorter: sorter = np.argsort(xs[0]) sorter = np.array(sorter, dtype=np.int64) else: xs[0] = np.sort(xs[0]) sorter = None helpers.test_frontend_function( input_dtypes=input_dtypes + ["int64"], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, sorted_sequence=xs[0], values=xs[1], out_int32=out_int32, sorter=sorter, **potential_kwargs, ) @handle_frontend_test( fn_tree="torch.tensordot", dtype_values_and_axes=_get_dtype_value1_value2_axis_for_tensordot( helpers.get_dtypes(kind="float"), min_value=-10, max_value=10, ), ) def test_torch_tensordot( dtype_values_and_axes, test_flags, frontend, backend_fw, fn_tree, ): dtype, a, b, dims = dtype_values_and_axes if ivy.current_backend_str() == "paddle": # Paddle only supports ndim from 0 to 9 assume(a.shape[0] < 10) assume(b.shape[0] < 10) helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, a=a, b=b, rtol=1e-2, atol=1e-2, dims=dims, ) # trace @handle_frontend_test( fn_tree="torch.trace", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), shape=st.shared(helpers.get_shape(min_num_dims=2, max_num_dims=2), key="shape"), ), ) def test_torch_trace( *, dtype_and_values, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, value = dtype_and_values helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=value[0], ) # tril @handle_frontend_test( fn_tree="torch.tril", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=2, # Torch requires this. ), diagonal=st.integers(min_value=-100, max_value=100), ) def test_torch_tril( *, dtype_and_values, diagonal, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, values = dtype_and_values helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=values[0], diagonal=diagonal, ) # tril_indices @handle_frontend_test( fn_tree="torch.tril_indices", row=st.integers(min_value=1, max_value=10), col=st.integers(min_value=1, max_value=10), offset=st.integers(min_value=-8, max_value=8), dtype=helpers.get_dtypes("integer", full=False), ) def test_torch_tril_indices( *, row, col, offset, dtype, on_device, fn_tree, frontend, test_flags, backend_fw, ): helpers.test_frontend_function( input_dtypes=[ivy.int32], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, row=row, col=col, offset=offset, dtype=dtype[0], ) @handle_frontend_test( fn_tree="torch.triu", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=2, # Torch requires this. ), diagonal=st.integers(min_value=-100, max_value=100), ) def test_torch_triu( *, dtype_and_values, diagonal, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, values = dtype_and_values helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=values[0], diagonal=diagonal, ) @handle_frontend_test( fn_tree="torch.triu_indices", row=st.integers(min_value=1, max_value=100), col=st.integers(min_value=1, max_value=100), offset=st.integers(min_value=-10, max_value=10), ) def test_torch_triu_indices( *, row, col, offset, on_device, fn_tree, frontend, test_flags, backend_fw, ): helpers.test_frontend_function( input_dtypes=["int32"], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, row=row, col=col, offset=offset, ) # unflatten @handle_frontend_test( fn_tree="torch.unflatten", shape=st.shared(helpers.get_shape(min_num_dims=1), key="shape"), dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, shape_key="shape", ), axis=helpers.get_axis( shape=st.shared(helpers.get_shape(min_num_dims=1), key="shape"), force_int=True, ), ) def test_torch_unflatten( *, dtype_and_values, on_device, fn_tree, frontend, test_flags, backend_fw, shape, axis, ): dtype, x = dtype_and_values sizes = sizes_(shape, axis) helpers.test_frontend_function( input_dtypes=dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, input=x[0], dim=axis, sizes=sizes, ) # vander @handle_frontend_test( fn_tree="torch.vander", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=st.tuples( st.integers(min_value=1, max_value=5), ), min_num_dims=0, max_num_dims=5, ), N=st.integers(min_value=1, max_value=10) | st.none(), increasing=st.booleans(), ) def test_torch_vander( *, dtype_and_x, N, increasing, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x=np.asarray(x[0], dtype=input_dtype[0]), N=N, increasing=increasing, ) # view_as_complex @handle_frontend_test( fn_tree="torch.view_as_complex", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=st.shared(complex_strategy()), ), ) def test_torch_view_as_complex( *, dtype_and_values, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, value = dtype_and_values helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=value[0], ) # view_as_real @handle_frontend_test( fn_tree="torch.view_as_real", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=1, ), ) def test_torch_view_as_real( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=np.asarray(x[0], dtype=input_dtype[0]), )
ivy/ivy_tests/test_ivy/test_frontends/test_torch/test_miscellaneous_ops.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_torch/test_miscellaneous_ops.py", "repo_id": "ivy", "token_count": 24282 }
69
# global from hypothesis import strategies as st # local import ivy import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test from ivy_tests.test_ivy.test_functional.test_core.test_statistical import ( _statistical_dtype_values, _get_castable_dtype, ) from ivy_tests.test_ivy.test_functional.test_experimental.test_core.test_statistical import ( # noqa _quantile_helper, ) # --- Helpers --- # # --------------- # @st.composite def _get_axis_and_p(draw, kind="valid"): p = draw(st.sampled_from(["fro", "nuc", 1, 2, -1, -2, float("inf"), -float("inf")])) if p in ["fro", "nuc"]: max_axes_size = 2 min_axes_size = 2 else: min_axes_size = 1 max_axes_size = 5 dtype_x_axis = draw( helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes(kind), min_num_dims=2, valid_axis=True, min_value=-1e04, max_value=1e04, min_axes_size=min_axes_size, max_axes_size=max_axes_size, large_abs_safety_factor=2, safety_factor_scale="log", force_int_axis=True, ) ) input_dtype, x, axis = dtype_x_axis if type(input_dtype[0]) == str: # noqa: E721 if "complex" in input_dtype[0]: kind = "complex" if "float" in input_dtype[0]: kind = "float" else: if input_dtype[0].is_complex_dtype: kind = "complex" if input_dtype[0].is_float_dtype: kind = "float" dtype = draw(helpers.get_dtypes(kind, full=False)) dtype = dtype[0] if ivy.can_cast(input_dtype[0], dtype): dtype = ivy.promote_types(input_dtype[0], dtype) else: dtype = input_dtype[0] return p, input_dtype, x, axis, dtype # --- Main --- # # ------------ # @handle_frontend_test( fn_tree="torch.all", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_axis=-1, max_axis=0, min_num_dims=1, allow_inf=False, ), keepdims=st.booleans(), ) def test_torch_all( *, dtype_input_axis, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, ) @handle_frontend_test( fn_tree="torch.amax", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, min_axis=-1, max_axis=0, ), keepdims=st.booleans(), ) def test_torch_amax( *, dtype_input_axis, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, ) @handle_frontend_test( fn_tree="torch.amin", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, min_axis=-1, max_axis=0, ), keepdims=st.booleans(), ) def test_torch_amin( *, dtype_input_axis, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, ) @handle_frontend_test( fn_tree="torch.aminmax", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, min_axis=-1, max_axis=0, ), keepdims=st.booleans(), ) def test_torch_aminmax( *, dtype_input_axis, keepdims, test_flags, on_device, fn_tree, frontend, backend_fw, ): input_dtype, x, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, ) @handle_frontend_test( fn_tree="torch.any", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), safety_factor_scale="log", small_abs_safety_factor=8, large_abs_safety_factor=8, min_axis=-1, max_axis=0, min_num_dims=1, allow_inf=False, ), keepdims=st.booleans(), ) def test_torch_any( *, dtype_input_axis, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, ) @handle_frontend_test( fn_tree="torch.argmax", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), force_int_axis=True, valid_axis=True, ), keepdims=st.booleans(), ) def test_torch_argmax( *, dtype_input_axis, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, ) @handle_frontend_test( fn_tree="torch.argmin", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), force_int_axis=True, min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, min_value=1, max_value=5, valid_axis=True, allow_neg_axes=True, ), keepdims=st.booleans(), ) def test_torch_argmin( *, dtype_input_axis, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, ) @handle_frontend_test( fn_tree="torch.count_nonzero", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), force_int_axis=True, min_num_dims=1, min_axis=-1, max_axis=0, ), ) def test_torch_count_nonzero( *, dtype_input_axis, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, ) @handle_frontend_test( fn_tree="torch.dist", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, min_value=-1e04, max_value=1e04, allow_inf=False, ), p=helpers.floats(min_value=1.0, max_value=10.0), ) def test_torch_dist( *, dtype_and_input, p, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input = dtype_and_input helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], other=input[1], p=p, ) @handle_frontend_test( fn_tree="torch.logsumexp", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_value=-50, max_value=50, min_num_dims=1, max_num_dims=5, valid_axis=True, force_int_axis=True, ), keepdims=st.booleans(), ) def test_torch_logsumexp( *, dtype_input_axis, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, ) @handle_frontend_test( fn_tree="torch.max", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, valid_axis=True, force_int_axis=True, num_arrays=st.integers(min_value=1, max_value=2), ), keepdim=st.booleans(), ) def test_torch_max( *, dtype_input_axis, keepdim, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input, axis = dtype_input_axis inputs = {f"input{i}": input[i] for i in range(len(input))} kwargs = {"dim": axis, "keepdim": keepdim} if len(inputs) == 1 else {} test_flags.num_positional_args = len(input) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **inputs, **kwargs, ) @handle_frontend_test( fn_tree="torch.mean", dtype_and_x=_statistical_dtype_values( function="mean", min_value=-1e04, max_value=1e04, ), keepdims=st.booleans(), dtypes=helpers.get_dtypes("float_and_complex", none=True, full=False), ) def test_torch_mean( *, dtype_and_x, keepdims, dtypes, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis, *_ = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, dtype=dtypes[0], atol=1e-2, ) @handle_frontend_test( fn_tree="torch.median", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, valid_axis=True, force_int_axis=True, ), keepdim=st.booleans(), ) def test_torch_median( *, dtype_input_axis, keepdim, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input, dim = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], dim=dim, keepdim=keepdim, ) # min @handle_frontend_test( fn_tree="torch.min", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, valid_axis=True, force_int_axis=True, num_arrays=st.integers(min_value=1, max_value=2), ), keepdim=st.booleans(), ) def test_torch_min( *, dtype_input_axis, keepdim, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input, axis = dtype_input_axis inputs = {f"input{i}": input[i] for i in range(len(input))} kwargs = {"dim": axis, "keepdim": keepdim} if len(inputs) == 1 else {} test_flags.num_positional_args = len(input) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, **inputs, **kwargs, ) # moveaxis @handle_frontend_test( fn_tree="torch.moveaxis", dtype_and_a=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=-100, max_value=100, shape=st.shared( helpers.get_shape( min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ), key="a_s_d", ), ), source=helpers.get_axis( allow_none=False, unique=True, shape=st.shared( helpers.get_shape( min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ), key="a_s_d", ), min_size=1, force_int=True, ), destination=helpers.get_axis( allow_none=False, unique=True, shape=st.shared( helpers.get_shape( min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ), key="a_s_d", ), min_size=1, force_int=True, ), ) def test_torch_moveaxis( *, dtype_and_a, source, destination, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, a = dtype_and_a helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=a[0], source=source, destination=destination, ) @handle_frontend_test( fn_tree="torch.nanmean", dtype_and_x=_statistical_dtype_values( function="nanmean", min_value=-1e04, max_value=1e04, ), keepdims=st.booleans(), ) def test_torch_nanmean( *, dtype_and_x, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis, *_ = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, ) @handle_frontend_test( fn_tree="torch.nanmedian", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, valid_axis=True, force_int_axis=True, ), keepdim=st.booleans(), ) def test_torch_nanmedian( *, dtype_input_axis, keepdim, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input, dim = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], dim=dim, keepdim=keepdim, ) @handle_frontend_test( fn_tree="torch.nansum", dtype_and_x=_get_castable_dtype( min_value=-1e04, max_value=1e04, ), keepdims=st.booleans(), ) def test_torch_nansum( *, dtype_and_x, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis, castable_dtype = dtype_and_x if test_flags.as_variable: castable_dtype = input_dtype input_dtype = [input_dtype] helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, dtype=castable_dtype, ) # norm @handle_frontend_test( fn_tree="torch.norm", p_dtype_x_axis=_get_axis_and_p(), keepdim=st.booleans(), ) def test_torch_norm( *, p_dtype_x_axis, keepdim, frontend, test_flags, fn_tree, backend_fw, on_device, ): p, x_dtype, x, axis, dtype = p_dtype_x_axis helpers.test_frontend_function( backend_to_test=backend_fw, input_dtypes=x_dtype, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-01, atol=1e-08, input=x[0], p=p, dim=axis, keepdim=keepdim, out=None, dtype=dtype, ) # prod @handle_frontend_test( fn_tree="torch.prod", dtype_x_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, max_num_dims=5, valid_axis=True, allow_neg_axes=False, max_axes_size=1, force_int_axis=True, large_abs_safety_factor=10, small_abs_safety_factor=10, safety_factor_scale="log", ), dtype=helpers.get_dtypes("numeric", none=True, full=False), keepdims=st.booleans(), ) def test_torch_prod( *, dtype_x_axis, dtype, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis = dtype_x_axis # ToDo: set as_variable_flags as the parameter generated by test_torch_prod once # this issue is marked as completed https://github.com/pytorch/pytorch/issues/75733 if ivy.current_backend_str() == "torch": test_flags.as_variable = [False] helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, dtype=dtype[0], ) @handle_frontend_test( fn_tree="torch.quantile", dtype_and_x=_quantile_helper(), keepdims=st.booleans(), ) def test_torch_quantile( *, dtype_and_x, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis, interpolation, q = dtype_and_x if type(axis) is tuple: axis = axis[0] if interpolation == "nearest_jax": interpolation = "nearest" helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], q=q, dim=axis, keepdim=keepdims, interpolation=interpolation[0], ) @handle_frontend_test( fn_tree="torch.std", dtype_and_x=_statistical_dtype_values(function="std"), keepdims=st.booleans(), ) def test_torch_std( *, dtype_and_x, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis, correction = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, unbiased=bool(correction), keepdim=keepdims, ) @handle_frontend_test( fn_tree="torch.std_mean", dtype_and_x=_statistical_dtype_values( function="std_mean", min_value=-1e04, max_value=1e04, ), keepdims=st.booleans(), ) def test_torch_std_mean( *, dtype_and_x, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis, correction = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, unbiased=bool(correction), keepdim=keepdims, ) @handle_frontend_test( fn_tree="torch.sum", dtype_and_x=_get_castable_dtype( min_value=-1e04, max_value=1e04, ), keepdims=st.booleans(), ) def test_torch_sum( *, dtype_and_x, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis, castable_dtype = dtype_and_x if test_flags.as_variable: castable_dtype = input_dtype input_dtype = [input_dtype] helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, keepdim=keepdims, dtype=castable_dtype, ) @handle_frontend_test( fn_tree="torch.unique", dtype_x_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), force_int_axis=True, valid_axis=True, ), return_inverse=st.booleans(), return_counts=st.booleans(), sorted=st.booleans(), ) def test_torch_unique( *, dtype_x_axis, return_inverse, return_counts, sorted, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtypes, x, axis = dtype_x_axis helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], sorted=sorted, return_inverse=return_inverse, return_counts=return_counts, dim=axis, ) # known bug of returning empty tensors when ret_inv or ret_counts is passed positionally # https://github.com/pytorch/pytorch/issues/68610 # ToDo: activate test_values when this is resolved @handle_frontend_test( fn_tree="torch.unique_consecutive", dtype_x_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1, min_dim_size=2, force_int_axis=True, valid_axis=True, ), ret_inv=st.booleans(), ret_counts=st.booleans(), ) def test_torch_unique_consecutive( *, dtype_x_axis, ret_inv, ret_counts, frontend, test_flags, fn_tree, backend_fw, on_device, ): dtype, x, axis = dtype_x_axis helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], return_inverse=ret_inv, return_counts=ret_counts, dim=axis, test_values=False, ) @handle_frontend_test( fn_tree="torch.var", dtype_and_x=_statistical_dtype_values( function="var", min_value=-1e04, max_value=1e04, ), keepdims=st.booleans(), ) def test_torch_var( *, dtype_and_x, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis, correction = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, unbiased=bool(correction), keepdim=keepdims, ) @handle_frontend_test( fn_tree="torch.var_mean", dtype_and_x=_statistical_dtype_values( function="var_mean", min_value=-1e04, max_value=1e04, ), keepdims=st.booleans(), ) def test_torch_var_mean( *, dtype_and_x, keepdims, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x, axis, correction = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], dim=axis, unbiased=bool(correction), keepdim=keepdims, )
ivy/ivy_tests/test_ivy/test_frontends/test_torch/test_reduction_ops.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_torch/test_reduction_ops.py", "repo_id": "ivy", "token_count": 13297 }
70
"""Collection of tests for unified dtype functions.""" # global import numpy as np from hypothesis import strategies as st import typing # local import ivy import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_test, BackendHandler # for data generation in multiple tests dtype_shared = helpers.get_dtypes("valid", full=False, key="dtype") # --- Helpers --- # # --------------- # @st.composite def _array_or_type(draw, float_or_int): valid_dtypes = { "float": draw(helpers.get_dtypes("float")), "int": draw(helpers.get_dtypes("integer")), }[float_or_int] return draw( st.sampled_from( ( draw( helpers.dtype_and_values( available_dtypes=valid_dtypes, ) ), draw(st.sampled_from(valid_dtypes)), ) ) ) def _composition_1(): return ivy.relu().argmax() def _composition_2(): a = ivy.floor return ivy.ceil() or a # Array API Standard Function Tests # # --------------------------------- # @st.composite def astype_helper(draw): dtype, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=1, small_abs_safety_factor=4, large_abs_safety_factor=4, safety_factor_scale="log", ) ) cast_dtype = draw( helpers.get_castable_dtype(draw(helpers.get_dtypes("valid")), dtype[0], x) ) return dtype, x, cast_dtype # broadcast arrays @st.composite def broadcastable_arrays(draw, dtypes): num_arrays = st.shared(helpers.ints(min_value=2, max_value=5), key="num_arrays") shapes = draw(num_arrays.flatmap(helpers.mutually_broadcastable_shapes)) dtypes = draw(dtypes) arrays = [] for c, (shape, dtype) in enumerate(zip(shapes, dtypes), 1): x = draw(helpers.array_values(dtype=dtype, shape=shape), label=f"x{c}").tolist() arrays.append(x) return arrays @st.composite def dtypes_list(draw): num = draw(st.one_of(helpers.ints(min_value=1, max_value=5))) return draw( st.lists( st.sampled_from(ivy.valid_dtypes), min_size=num, max_size=num, ) ) @st.composite def dtypes_shared(draw, num_dtypes): if isinstance(num_dtypes, str): num_dtypes = draw(st.shared(helpers.ints(), key=num_dtypes)) return draw( st.shared( st.lists( st.sampled_from(draw(helpers.get_dtypes("valid"))), min_size=num_dtypes, max_size=num_dtypes, ), key="dtypes", ) ) # --- Main --- # # ------------ # # as_ivy_dtype @handle_test( fn_tree="functional.ivy.as_ivy_dtype", input_dtype=helpers.get_dtypes("valid", full=False), ) def test_as_ivy_dtype( *, input_dtype, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: input_dtype = input_dtype[0] res = ivy_backend.as_ivy_dtype(input_dtype) if isinstance(input_dtype, str): assert isinstance(res, str) return assert isinstance( input_dtype, (ivy_backend.Dtype, str) ), f"input_dtype={input_dtype!r}, but should be str or ivy.Dtype" assert isinstance(res, str), f"result={res!r}, but should be str" # as_native_dtype @handle_test( fn_tree="functional.ivy.as_native_dtype", input_dtype=helpers.get_dtypes("valid", full=False), ) def test_as_native_dtype( *, input_dtype, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: input_dtype = input_dtype[0] res = ivy_backend.as_native_dtype(input_dtype) if isinstance(input_dtype, ivy_backend.NativeDtype): assert isinstance(res, ivy_backend.NativeDtype) return assert isinstance( input_dtype, (ivy_backend.Dtype, str) ), f"input_dtype={input_dtype!r}, but should be str or ivy.Dtype" assert isinstance( res, ivy_backend.NativeDtype ), f"result={res!r}, but should be ivy.NativeDtype" # astype @handle_test( fn_tree="functional.ivy.astype", dtype_and_x_and_cast_dtype=astype_helper(), test_gradients=st.just(False), test_with_copy=st.just(True), ) def test_astype( *, dtype_and_x_and_cast_dtype, test_flags, backend_fw, fn_name, on_device ): input_dtype, x, cast_dtype = dtype_and_x_and_cast_dtype helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-3, atol_=1e-3, x=x[0], dtype=cast_dtype[0], ) @handle_test( fn_tree="functional.ivy.broadcast_arrays", arrays=broadcastable_arrays(dtypes_shared("num_arrays")), input_dtypes=dtypes_shared("num_arrays"), test_with_out=st.just(False), test_gradients=st.just(False), ) def test_broadcast_arrays( *, arrays, input_dtypes, test_flags, backend_fw, fn_name, on_device ): if backend_fw == "torch": for input_dtype in input_dtypes: if input_dtype == "bfloat16" or ( "uint" in input_dtype and "uint8" not in input_dtype ): # Torch has no inference strategy for bfloat16 # Torch has no support for uint above uint8 return kw = {} for i, (array, dtype) in enumerate(zip(arrays, input_dtypes)): kw[f"x{i}"] = np.asarray(array, dtype=dtype) test_flags.num_positional_args = len(kw) helpers.test_function( input_dtypes=input_dtypes, test_flags=test_flags, backend_to_test=backend_fw, on_device=on_device, fn_name=fn_name, **kw, ) @handle_test( fn_tree="functional.ivy.broadcast_to", array_and_shape=helpers.array_and_broadcastable_shape(dtype_shared), input_dtype=dtype_shared, test_gradients=st.just(False), ) def test_broadcast_to( *, array_and_shape, input_dtype, test_flags, backend_fw, fn_name, on_device ): array, to_shape = array_and_shape helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=array, shape=to_shape, ) # can_cast @handle_test( fn_tree="functional.ivy.can_cast", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=1 ), to_dtype=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), test_gradients=st.just(False), ) def test_can_cast(*, dtype_and_x, to_dtype, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, from_=x[0], to=to_dtype[0], ) # closest_valid_dtypes @handle_test( fn_tree="functional.ivy.closest_valid_dtype", input_dtype=helpers.get_dtypes("valid", full=False), ) def test_closest_valid_dtype( *, input_dtype, test_flags, backend_fw, fn_name, on_device ): with BackendHandler.update_backend(backend_fw) as ivy_backend: input_dtype = input_dtype[0] res = ivy_backend.closest_valid_dtype(input_dtype) assert isinstance(input_dtype, (ivy_backend.Dtype, str)) assert isinstance( res, (ivy_backend.Dtype, str) ), f"result={res!r}, but should be str or ivy.Dtype" # default_complex_dtype @handle_test( fn_tree="functional.ivy.default_complex_dtype", dtype_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("complex")), as_native=st.booleans(), test_gradients=st.just(False), ) def test_default_complex_dtype( *, dtype_x, as_native, backend_fw, ): complex_dtype, x = dtype_x with BackendHandler.update_backend(backend_fw) as ivy_backend: res = ivy_backend.default_complex_dtype( input=input, complex_dtype=complex_dtype[0], as_native=as_native, ) assert isinstance( res, ( ivy_backend.Dtype, typing.get_args(ivy_backend.NativeDtype), ivy_backend.NativeDtype, str, ), ) assert ( ivy_backend.default_complex_dtype( input=None, complex_dtype=None, as_native=False ) == ivy_backend.complex64 ) assert ( ivy_backend.default_complex_dtype(complex_dtype=ivy_backend.complex64) == ivy_backend.complex64 ) assert ivy_backend.default_complex_dtype() == ivy_backend.complex64 # default_dtype @handle_test( fn_tree="functional.ivy.default_dtype", input_dtype=helpers.get_dtypes("valid", full=False), as_native=st.booleans(), ) def test_default_dtype( *, input_dtype, as_native, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: input_dtype = input_dtype[0] res = ivy_backend.default_dtype(dtype=input_dtype, as_native=as_native) assert isinstance( input_dtype, (ivy_backend.Dtype, str, ivy_backend.NativeDtype) ) assert isinstance(res, ivy_backend.Dtype) or isinstance( input_dtype, str ), f"input_dtype={input_dtype!r}, but should be str or ivy.Dtype" # default_float_dtype @handle_test( fn_tree="functional.ivy.default_float_dtype", dtype_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")), as_native=st.booleans(), test_gradients=st.just(False), ) def test_default_float_dtype( *, dtype_x, as_native, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: float_dtype, x = dtype_x res = ivy_backend.default_float_dtype( input=input, float_dtype=float_dtype[0], as_native=as_native, ) assert isinstance( res, ( ivy_backend.Dtype, typing.get_args(ivy_backend.NativeDtype), ivy_backend.NativeDtype, str, ), ) assert ( ivy_backend.default_float_dtype( input=None, float_dtype=None, as_native=False ) == ivy_backend.float32 ) assert ( ivy_backend.default_float_dtype(float_dtype=ivy_backend.float16) == ivy_backend.float16 ) assert ivy_backend.default_float_dtype() == ivy_backend.float32 # default_int_dtype @handle_test( fn_tree="functional.ivy.default_int_dtype", dtype_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("integer")), as_native=st.booleans(), test_gradients=st.just(False), ) def test_default_int_dtype( *, dtype_x, as_native, backend_fw, ): int_dtype, x = dtype_x with BackendHandler.update_backend(backend_fw) as ivy_backend: res = ivy_backend.default_int_dtype( input=input, int_dtype=int_dtype[0], as_native=as_native, ) assert isinstance( res, ( ivy_backend.Dtype, typing.get_args(ivy_backend.NativeDtype), ivy_backend.NativeDtype, str, ), ) assert ( ivy_backend.default_int_dtype(input=None, int_dtype=None, as_native=False) == ivy_backend.int32 ) assert ( ivy_backend.default_int_dtype(int_dtype=ivy_backend.int16) == ivy_backend.int16 ) assert ivy_backend.default_int_dtype() == ivy_backend.int32 # dtype # TODO: fix instance method @handle_test( fn_tree="functional.ivy.dtype", array=helpers.array_values( dtype=dtype_shared, shape=helpers.lists( x=helpers.ints(min_value=1, max_value=5), min_size="num_dims", max_size="num_dims", size_bounds=[1, 5], ), ), input_dtype=dtype_shared, as_native=st.booleans(), test_with_out=st.just(False), test_instance_method=st.just(False), test_gradients=st.just(False), ) def test_dtype( *, array, input_dtype, as_native, test_flags, backend_fw, fn_name, on_device ): if backend_fw == "torch": if input_dtype == "bfloat16" or ( "uint" in input_dtype and "uint8" not in input_dtype ): # Torch has no inference strategy for bfloat16 # Torch has no support for uint above uint8 return helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x=array, as_native=as_native, test_values=False, ) # dtype_bits # TODO: fix instance method @handle_test( fn_tree="functional.ivy.dtype_bits", input_dtype=helpers.get_dtypes("valid", full=False), test_instance_method=st.just(False), container_flags=st.just([False]), test_with_out=st.just(False), test_gradients=st.just(False), ) def test_dtype_bits(*, input_dtype, test_flags, backend_fw, fn_name, on_device): ret = helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, dtype_in=input_dtype[0], test_values=False, ) if not ivy.exists(ret): return num_bits, num_bits_np = ret assert num_bits == num_bits_np # dtype objects @handle_test(fn_tree="functional.ivy.exists") # dummy fn_tree def test_dtype_instances(backend_fw): with BackendHandler.update_backend(backend_fw) as ivy_backend: assert ivy_backend.exists(ivy_backend.int8) assert ivy_backend.exists(ivy_backend.int16) assert ivy_backend.exists(ivy_backend.int32) assert ivy_backend.exists(ivy_backend.int64) assert ivy_backend.exists(ivy_backend.uint8) if backend_fw not in ["torch", "paddle", "mxnet"]: assert ivy_backend.exists(ivy_backend.uint16) assert ivy_backend.exists(ivy_backend.uint32) assert ivy_backend.exists(ivy_backend.uint64) assert ivy_backend.exists(ivy_backend.float32) assert ivy_backend.exists(ivy_backend.float64) assert ivy_backend.exists(ivy_backend.complex64) assert ivy_backend.exists(ivy_backend.complex128) assert ivy_backend.exists(ivy_backend.bool) # finfo @handle_test( fn_tree="functional.ivy.finfo", type=_array_or_type("float"), test_with_out=st.just(False), as_variable_flags=st.just([False]), native_array_flags=st.just([False]), container_flags=st.just([False]), test_instance_method=st.just(False), test_gradients=st.just(False), ) def test_finfo(*, type, test_flags, backend_fw, fn_name, on_device): if isinstance(type, str): input_dtype = [type] else: input_dtype, x = type type = x[0] ret = helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, type=type, test_values=False, ) if not ivy.exists(ret): return mach_lims, mach_lims_np = ret assert np.allclose(mach_lims.min, mach_lims_np.min, rtol=1e-2, atol=1e-2) assert np.allclose(mach_lims.max, mach_lims_np.max, rtol=1e-2, atol=1e-2) assert np.allclose(mach_lims.eps, mach_lims_np.eps, rtol=1e-2, atol=1e-2) assert mach_lims.bits == mach_lims_np.bits # function_dtype_versioning @handle_test( fn_tree="functional.ivy.function_unsupported_dtypes", # dummy fn_tree func_and_version=st.just( [ { "torch": { "cumsum": { "2.0.1": {"bfloat16", "uint8", "float16"}, "1.12.1": set(), } } }, ], ), ) def test_function_dtype_versioning( *, func_and_version, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: for key in func_and_version: if key != backend_fw: continue var = ivy_backend.backend_version # key --> framework for key1 in func_and_version[key]: for key2 in func_and_version[key][key1]: var["version"] = key2 fn = getattr(ivy_backend, key1) expected = func_and_version[key][key1][key2] res = fn.unsupported_dtypes if res is None: res = set() else: res = set(res) if res != expected: raise Exception return True # function_dtype_versioning_frontend @handle_test( fn_tree="functional.ivy.function_unsupported_dtypes", # dummy fn_tree func_and_version=st.just( [ { "torch": { "cumsum": { "2.0.1": {"bfloat16", "uint8", "float16"}, "1.12.1": set(), } } }, ], ), ) def test_function_dtype_versioning_frontend( *, func_and_version, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: _import_mod = ivy_backend.utils.dynamic_import for key in func_and_version: if key != backend_fw: continue frontend = _import_mod.import_module("ivy.functional.frontends") var = frontend.versions for key1 in func_and_version[key]: for key2 in func_and_version[key][key1]: var[backend_fw] = key2 fn = getattr( _import_mod.import_module( f"ivy.functional.frontends.{backend_fw}" ), key1, ) expected = func_and_version[key][key1][key2] res = fn.unsupported_dtypes if res is None: res = set() else: res = set(res) if res != expected: raise Exception return True # function_unsupported_dtypes @handle_test( fn_tree="functional.ivy.function_supported_dtypes", func=st.sampled_from([_composition_1, _composition_2]), ) def test_function_supported_dtypes(*, func, backend_fw): with BackendHandler.update_backend(backend_fw) as ivy_backend: res = ivy_backend.function_supported_dtypes(func) exp = set(ivy_backend.all_dtypes).difference( set(func.test_unsupported_dtypes[backend_fw]) ) assert set(exp) == set(res) # function_unsupported_dtypes @handle_test( fn_tree="functional.ivy.function_unsupported_dtypes", func=st.sampled_from([_composition_2]), ) def test_function_unsupported_dtypes(*, func, backend_fw): with BackendHandler.update_backend(backend_fw) as ivy_backend: res = ivy_backend.function_unsupported_dtypes(func) exp = func.test_unsupported_dtypes[backend_fw] assert set(exp) == set(res) # iinfo @handle_test( fn_tree="functional.ivy.iinfo", type=_array_or_type("int"), test_with_out=st.just(False), as_variable_flags=st.just([False]), native_array_flags=st.just([False]), container_flags=st.just([False]), test_instance_method=st.just(False), test_gradients=st.just(False), ) def test_iinfo(*, type, test_flags, backend_fw, fn_name, on_device): if isinstance(type, str): input_dtype = [type] else: input_dtype, x = type type = x[0] ret = helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, type=type, test_values=False, ) if not ivy.exists(ret): return mach_lims, mach_lims_np = ret assert mach_lims.min == mach_lims_np.min assert mach_lims.max == mach_lims_np.max assert mach_lims.bits == mach_lims_np.bits # invalid_dtype @handle_test( fn_tree="functional.ivy.invalid_dtype", dtype_in=helpers.get_dtypes("valid", full=False), ) def test_invalid_dtype( *, dtype_in, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: dtype_in = dtype_in[0] res = ivy_backend.invalid_dtype(dtype_in) invalid_dtypes = ivy_backend.invalid_dtypes if dtype_in in invalid_dtypes: assert res is True, ( f"fDtype = {dtype_in!r} is a valid dtype for {backend_fw}, butresult =" f" {res}" ) else: assert res is False, ( f"fDtype = {dtype_in!r} is not a valid dtype for {backend_fw}," f" butresult = {res}" ) # is_bool_dtype @handle_test( fn_tree="functional.ivy.is_bool_dtype", dtype_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid", full=False) ), test_with_out=st.just(False), test_gradients=st.just(False), ) def test_is_bool_dtype(*, dtype_x, test_flags, backend_fw, fn_name, on_device): dtype, x = dtype_x helpers.test_function( input_dtypes=dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, dtype_in=x[0], ) # is_complex_dtype @handle_test( fn_tree="functional.ivy.is_complex_dtype", dtype_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid", full=False) ), test_with_out=st.just(False), test_gradients=st.just(False), ) def test_is_complex_dtype(*, dtype_x, test_flags, backend_fw, fn_name, on_device): dtype, x = dtype_x helpers.test_function( input_dtypes=dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, dtype_in=x[0], ) # is_float_dtype @handle_test( fn_tree="functional.ivy.is_float_dtype", dtype_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid", full=False) ), test_with_out=st.just(False), test_gradients=st.just(False), ) def test_is_float_dtype(*, dtype_x, test_flags, backend_fw, fn_name, on_device): dtype, x = dtype_x helpers.test_function( input_dtypes=dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, dtype_in=x[0], ) # Extra Ivy Function Tests # # ------------------------ # # is_hashable_dtype @handle_test( fn_tree="functional.ivy.is_hashable_dtype", input_dtype=helpers.get_dtypes("valid", full=False), ) def test_is_hashable_dtype( *, input_dtype, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: input_dtype = input_dtype[0] res = ivy_backend.is_hashable_dtype(input_dtype) assert res # is_int_dtype @handle_test( fn_tree="functional.ivy.is_int_dtype", dtype_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid", full=False) ), test_with_out=st.just(False), test_gradients=st.just(False), ) def test_is_int_dtype(*, dtype_x, test_flags, backend_fw, fn_name, on_device): dtype, x = dtype_x helpers.test_function( input_dtypes=dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, dtype_in=x[0], ) # is_native_dtype @handle_test( fn_tree="functional.ivy.is_native_dtype", input_dtype=helpers.get_dtypes("valid", full=False), ) def test_is_native_dtype( input_dtype, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: input_dtype = input_dtype[0] if isinstance(input_dtype, str): assert ivy_backend.is_native_dtype(input_dtype) is False assert ( ivy_backend.is_native_dtype(ivy_backend.as_native_dtype(input_dtype)) is True ) # is_uint_dtype @handle_test( fn_tree="functional.ivy.is_uint_dtype", dtype_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid", full=False) ), test_with_out=st.just(False), test_gradients=st.just(False), ) def test_is_uint_dtype(*, dtype_x, test_flags, backend_fw, fn_name, on_device): dtype, x = dtype_x helpers.test_function( input_dtypes=dtype, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, dtype_in=x[0], ) # promote_types # TODO: fix instance method @handle_test( fn_tree="functional.ivy.promote_types", type1=helpers.get_dtypes("valid", full=False), type2=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), test_instance_method=st.just(False), test_gradients=st.just(False), ) def test_promote_types(*, type1, type2, test_flags, backend_fw, fn_name, on_device): helpers.test_function( input_dtypes=[], test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, type1=type1[0], type2=type2[0], test_values=False, ) # result_type @handle_test( fn_tree="functional.ivy.result_type", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=st.shared(helpers.ints(min_value=2, max_value=5), key="num_arrays"), shared_dtype=False, ), test_with_out=st.just(False), test_gradients=st.just(False), ) def test_result_type(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): dtype, x = helpers.as_lists(*dtype_and_x) kw = {} for i, (dtype_, x_) in enumerate(zip(dtype, x)): kw[f"x{i}"] = x_ test_flags.num_positional_args = len(kw) helpers.test_function( input_dtypes=dtype, test_flags=test_flags, backend_to_test=backend_fw, on_device=on_device, fn_name=fn_name, **kw, ) # type_promote_arrays # TODO: fix container method @handle_test( fn_tree="functional.ivy.type_promote_arrays", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2, shared_dtype=False, ), test_with_out=st.just(False), container_flags=st.just([False]), test_gradients=st.just(False), ) def test_type_promote_arrays( *, dtype_and_values, test_flags, backend_fw, fn_name, on_device ): types, arrays = dtype_and_values helpers.test_function( input_dtypes=types, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, x1=arrays[0], x2=arrays[1], test_values=True, ) # unset_default_complex_dtype @handle_test( fn_tree="functional.ivy.unset_default_complex_dtype", dtype=helpers.get_dtypes("complex", full=False), ) def test_unset_default_complex_dtype( *, dtype, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: dtype = dtype[0] stack_size_before = len(ivy_backend.default_complex_dtype_stack) ivy_backend.set_default_complex_dtype(dtype) ivy_backend.unset_default_complex_dtype() stack_size_after = len(ivy_backend.default_complex_dtype_stack) assert ( stack_size_before == stack_size_after ), f"Default float dtype not unset. Stack size= {stack_size_after!r}" # unset_default_dtype @handle_test( fn_tree="functional.ivy.unset_default_dtype", dtype=helpers.get_dtypes("valid", full=False), ) def test_unset_default_dtype( *, dtype, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: dtype = dtype[0] stack_size_before = len(ivy_backend.default_dtype_stack) ivy_backend.set_default_dtype(dtype) ivy_backend.unset_default_dtype() stack_size_after = len(ivy_backend.default_dtype_stack) assert ( stack_size_before == stack_size_after ), f"Default dtype not unset. Stack size= {stack_size_after!r}" # unset_default_float_dtype @handle_test( fn_tree="functional.ivy.unset_default_float_dtype", dtype=helpers.get_dtypes("float", full=False), ) def test_unset_default_float_dtype( *, dtype, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: dtype = dtype[0] stack_size_before = len(ivy_backend.default_float_dtype_stack) ivy_backend.set_default_float_dtype(dtype) ivy_backend.unset_default_float_dtype() stack_size_after = len(ivy_backend.default_float_dtype_stack) assert ( stack_size_before == stack_size_after ), f"Default float dtype not unset. Stack size= {stack_size_after!r}" # unset_default_int_dtype @handle_test( fn_tree="functional.ivy.unset_default_int_dtype", dtype=helpers.get_dtypes("integer", full=False), ) def test_unset_default_int_dtype( *, dtype, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: dtype = dtype[0] stack_size_before = len(ivy_backend.default_int_dtype_stack) ivy_backend.set_default_int_dtype(dtype) ivy_backend.unset_default_int_dtype() stack_size_after = len(ivy_backend.default_int_dtype_stack) assert ( stack_size_before == stack_size_after ), f"Default int dtype not unset. Stack size= {stack_size_after!r}" # valid_dtype @handle_test( fn_tree="functional.ivy.valid_dtype", dtype_in=helpers.get_dtypes("valid", full=False), ) def test_valid_dtype( *, dtype_in, backend_fw, ): with BackendHandler.update_backend(backend_fw) as ivy_backend: dtype_in = dtype_in[0] res = ivy_backend.valid_dtype(dtype_in) valid_dtypes = ivy_backend.valid_dtypes if dtype_in in valid_dtypes: assert res is True, ( f"fDtype = {dtype_in!r} is not a valid dtype for {backend_fw}," f" butresult = {res}" ) else: assert res is False, ( f"fDtype = {dtype_in!r} is a valid dtype for {backend_fw}, butresult =" f" {res}" ) _composition_1.test_unsupported_dtypes = { "numpy": ("bfloat16",), "jax": ("complex64", "complex128"), "tensorflow": ("complex64", "complex128"), "torch": ( "uint16", "uint32", "uint64", "float16", "complex64", "complex128", ), "paddle": ( "uint16", "uint32", "uint64", "bfloat16", "complex64", "complex128", ), "mxnet": ("uint16", "uint32", "uint64", "complex64", "complex128"), } _composition_2.test_unsupported_dtypes = { "numpy": ("bfloat16", "complex64", "complex128"), "jax": ("complex64", "complex128"), "tensorflow": ("complex64", "complex128"), "torch": ("uint16", "uint32", "uint64", "float16", "complex64", "complex128"), "paddle": ( "uint16", "uint32", "uint64", "bfloat16", ), }
ivy/ivy_tests/test_ivy/test_functional/test_core/test_dtype.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_functional/test_core/test_dtype.py", "repo_id": "ivy", "token_count": 15995 }
71
# global from hypothesis import strategies as st # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_test @handle_test( fn_tree="functional.ivy.experimental.optional_get_element", dtype_and_x=helpers.dtype_and_values(), input_tensor=st.booleans(), ) def test_optional_get_element( *, dtype_and_x, input_tensor, test_flags, backend_fw, fn_name, on_device, ): input_dtype, x = dtype_and_x fn_input = x[0] if input_tensor else x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, x=fn_input, )
ivy/ivy_tests/test_ivy/test_functional/test_experimental/test_core/test_utility.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_functional/test_experimental/test_core/test_utility.py", "repo_id": "ivy", "token_count": 335 }
72
# Global import pytest import itertools from hypothesis import strategies as st, given, settings, HealthCheck # Local import ivy import numpy as np from ivy.utils.backend.handler import _backend_dict def test_is_local(backend_fw): local_ivy = ivy.with_backend(backend_fw) assert local_ivy.is_local() @settings( # To be able to share traced_backends between examples suppress_health_check=[HealthCheck(9)] ) @given(name=st.sampled_from(["add", "Array", "Container", "globals_vars"])) def test_memory_id(name, traced_backends): for b in traced_backends: assert id(getattr(ivy, name)) != id( getattr(b, name) ), f"Shared object {name} between global Ivy and backend {b.backend}" for comb in itertools.combinations(traced_backends, 2): assert id(getattr(comb[0], name)) != id(getattr(comb[1], name)), ( f"Shared object {name} between {comb[0].backend} and backend " f"{comb[1].backend}" ) def test_prevent_access(backend_fw): local_ivy = ivy.with_backend(backend_fw) with pytest.raises(RuntimeError): local_ivy.with_backend(backend_fw) with pytest.raises(RuntimeError): local_ivy.set_backend(backend_fw) def test_with_backend_array(backend_fw): local_ivy = ivy.with_backend(backend_fw) local_x = local_ivy.array([1, 2, 3, 4]) ivy.set_backend(backend_fw) x = ivy.array([1, 2, 3, 4]) assert np.allclose(x._data, local_x._data) def test_with_backend_cached(backend_fw): non_cached_local_ivy = ivy.with_backend(backend_fw) cached_local_ivy = ivy.with_backend(backend_fw) assert non_cached_local_ivy == cached_local_ivy @pytest.fixture def traced_backends(): traced_backends = [] for b in _backend_dict: _b = ivy.with_backend(b) traced_backends.append(_b) return traced_backends
ivy/ivy_tests/test_ivy/test_misc/test_backend_utils/test_with_backend.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_misc/test_backend_utils/test_with_backend.py", "repo_id": "ivy", "token_count": 794 }
73
# Run Array API Tests for PRs import os import subprocess import sys BACKENDS = ["numpy", "jax", "tensorflow", "torch"] def main(): failed = False k_flag = {} subprocess.run( ["python3", "ivy_tests/array_api_testing/write_array_api_tests_k_flag.py"], check=True, ) for backend in BACKENDS: k_flag_file = f"ivy_tests/array_api_testing/.array_api_tests_k_flag_{backend}" with open(k_flag_file, "r") as f: array_api_tests_k_flag = f.read().strip() if backend == "torch": array_api_tests_k_flag += " and not (uint16 or uint32 or uint64)" k_flag[backend] = array_api_tests_k_flag with open(sys.argv[1], "w") as f_write: with open("tests_to_run", "r") as f: for line in f: test, backend = line.split(",") backend = backend.strip("\n") command = f'docker run --rm --env IVY_BACKEND={backend} --env ARRAY_API_TESTS_MODULE="ivy" -v "$(pwd)":/ivy -v "$(pwd)"/.hypothesis:/.hypothesis unifyai/ivy:latest timeout 30m python3 -m pytest {test} -k "{k_flag[backend]}" --tb=short -vv' # noqa print(f"\n{'*' * 100}") print(f"{line[:-1]}") print(f"{'*' * 100}\n") sys.stdout.flush() ret = os.system(command) if ret != 0: failed = True f_write.write(line) if failed: sys.exit(1) if __name__ == "__main__": main()
ivy/scripts/run_tests/array_api_run_tests_pr.py/0
{ "file_path": "ivy/scripts/run_tests/array_api_run_tests_pr.py", "repo_id": "ivy", "token_count": 783 }
74
from pymongo import MongoClient from get_all_tests import BACKENDS def main(): # connect to the database cluster = MongoClient( "mongodb+srv://readonly-user:hvpwV5yVeZdgyTTm@cluster0.qdvf8q3.mongodb.net" ) ci_dashboard_db = cluster["ci_dashboard"] ivy_tests_collection = ci_dashboard_db["ivy_tests"] frontend_tests_collection = ci_dashboard_db["frontend_tests"] # iterate over demos and collect ivy and frontend functions used ivy_test_docs = ivy_tests_collection.find() frontend_test_docs = frontend_tests_collection.find() ivy_functions = [ ivy_test_doc["_id"] for ivy_test_doc in ivy_test_docs if ivy_test_doc.get("demos", None) ] frontend_functions = [ frontend_test_doc["_id"] for frontend_test_doc in frontend_test_docs if frontend_test_doc.get("demos", None) ] ivy_functions = sorted(list(set(ivy_functions))) frontend_functions = sorted(list(set(frontend_functions))) # find corresponding test paths for those functions ivy_test_paths = [] frontend_test_paths = [] for function in ivy_functions: result = ivy_tests_collection.find_one({"_id": function}) if result: ivy_test_paths.append(result["test_path"]) for function in frontend_functions: result = frontend_tests_collection.find_one({"_id": function}) if result: frontend_test_paths.append(result["test_path"]) # add those paths to the tests_to_run with open("tests_to_run", "w") as write_file: for test_path in ivy_test_paths + frontend_test_paths: test_path = test_path.strip() for backend in BACKENDS: write_file.write(f"{test_path},{backend}\n") if __name__ == "__main__": main()
ivy/scripts/setup_tests/setup_priority_tests.py/0
{ "file_path": "ivy/scripts/setup_tests/setup_priority_tests.py", "repo_id": "ivy", "token_count": 783 }
75
# installs multiple versions of cuda and cudnn and then installs the # latest frameworks and the requirements FROM debian:buster WORKDIR /ivy # arguments ARG fw ARG pycon=3.10 # environment variables ENV DEBIAN_FRONTEND=noninteractive ENV TZ=Europe/Moscow ENV CONDA_DIR /opt/miniconda/ # install base libraries RUN grep security /etc/apt/sources.list | tee /etc/apt/security.sources.list && \ apt-get update && \ apt-get upgrade -o Dir::Etc::SourceList=/etc/apt/security.sources.list -y &&\ apt-get -y update && \ apt-get install -y gnupg \ curl \ wget \ software-properties-common \ gcc \ nano \ procps # install miniconda RUN apt clean && \ rm -rf /var/lib/apt/lists/* && \ apt-get update && \ apt-get install -y wget && \ apt-get install -y jq && \ apt-get install git -y && \ wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh && \ /bin/bash ~/miniconda.sh -b -p /opt/miniconda # create conda environment ENV PATH=$CONDA_DIR/bin:$PATH RUN conda create --name multienv python==$pycon -y # fix protobuf conflicts ENV PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION python ENV PATH=/opt/miniconda/envs/multienv/bin:$PATH RUN apt-get update && \ apt-get install -y python3-pip python3-tk && \ apt-get install -y libsm6 libxext6 libxrender-dev libgl1-mesa-glx && \ apt-get install -y git && \ apt-get install -y rsync && \ apt-get install -y libusb-1.0-0 && \ apt-get install -y libglib2.0-0 && \ pip3 install --upgrade pip && \ pip3 install setuptools==58.5.3 # install Ivy Upstream RUN git clone --progress --recurse-submodules https://github.com/unifyai/ivy --depth 1 && \ cd ivy && \ cd ivy_tests/array_api_testing/test_array_api && \ pip3 install --no-cache-dir -r requirements.txt # copy library files to workdir COPY docker/gpu_framework_directory.py . COPY requirements/optional_gpu.txt . COPY requirements/requirements.txt . # setting torch path early on because torch-scatter needs it ENV PYTHONPATH "/opt/fw/torch:/opt/miniconda/envs/multienv/bin" # requirement mappings directs which dependency to be installed and where COPY /docker/requirement_mappings_gpu.json . SHELL ["/bin/bash", "-c"] # install all libraries based on the mappings RUN python3 gpu_framework_directory.py $fw &&\ jq -r 'to_entries[] | select(.value != [""]) | .key as $dir | .value[] | @sh "/opt/fw/\($dir) \(.)"' requirement_mappings_gpu.json | xargs -I {} sh -c 'printf "Installing %s\n" $2 && pip install --ignore-installed --target $1 $2 --extra-index-url https://download.pytorch.org/whl/cu118' sh {} RUN sed -i '/numpy/d' requirements.txt &&\ pip install -r requirements.txt &&\ cp ./optional_gpu.txt tmp.txt &&\ jq -r 'to_entries[] | [.key] + .value | select(length > 0 or (. == "")) | .[]' requirement_mappings_gpu.json | sort -u | xargs -I {} sed -i '/{}/d;/jaxlib/d' tmp.txt && pip install -r tmp.txt # add all the directories to environment path so that python knows where to find them ENV PYTHONPATH "/opt/fw/mxnet:/opt/fw/numpy:/opt/fw/tensorflow:/opt/fw/jax:/opt/fw/torch:/opt/fw/paddle:/opt/miniconda/envs/multienv/bin" # test dependencies COPY scripts/test_dependencies.py . RUN python3 test_dependencies.py -fp requirements.txt,optional_gpu.txt && \ rm -rf requirements.txt && \ rm -rf tmp.txt && \ rm -rf optional_gpu.txt && \ rm -rf test_dependencies.py
ivy/docker/DockerfileGPU/0
{ "file_path": "ivy/docker/DockerfileGPU", "repo_id": "ivy", "token_count": 1321 }
0
{% extends "top_level_toc.rst" %} {% block name %}{{"Data classes" | escape | underline}}{% endblock %} {% block template %}top_data_module.rst{% endblock %} {% block options %}{{ super() }} :hide-table: {% endblock %} {# As this toc generates files a little differently, we added this to fix linking issues #} {% block custom_content %} .. autosummary:: {% for submodule in modules %} {{ submodule }}.{{ submodule.split('.')[-1] }} {%- endfor %} {% endblock %}
ivy/docs/_templates/top_data_toc.rst/0
{ "file_path": "ivy/docs/_templates/top_data_toc.rst", "repo_id": "ivy", "token_count": 182 }
1
Array API Tests =============== .. _`Array API Standard`: https://data-apis.org/array-api/latest/ .. _`test suite`: https://github.com/data-apis/array-api-tests .. _`test_array_api`: https://github.com/unifyai/ivy/tree/20d07d7887766bb0d1707afdabe6e88df55f27a5/ivy_tests .. _`for each backend`: https://github.com/unifyai/ivy/tree/20d07d7887766bb0d1707afdabe6e88df55f27a5/.github/workflows .. _`repo`: https://github.com/unifyai/ivy .. _`discord`: https://discord.gg/sXyFF8tDtm .. _`array api tests thread`: https://discord.com/channels/799879767196958751/1189907361494741073 .. _`scripts/shell/test_array_api.sh`: https://github.com/unifyai/ivy/blob/bcddc79978afe447958dfa3ea660716845c85846/scripts/shell/test_array_api.sh .. _`array-api test repository`: https://github.com/data-apis/array-api/tree/main .. _`issue`: https://github.com/numpy/numpy/issues/21213 .. _`ivy_tests/array_api_testing/test_array_api/array_api_tests/test_special_cases.py`: https://github.com/data-apis/array-api-tests/blob/ddd3b7a278cd0c0b68c0e4666b2c9f4e67b7b284/array_api_tests/test_special_cases.py .. _`git website`: https://www.git-scm.com/book/en/v2/Git-Tools-Submodules .. _`hypothesis`: https://hypothesis.readthedocs.io/en/latest/ .. _`ivy tests`: ivy_tests.rst .. _`CI Pipeline`: continuous_integration.html In conjunction with our own ivy unit tests, we import the array-api `test suite`_. These tests check that all ivy backend libraries behave according to the `Array API Standard`_ which was established in May 2020 by a group of maintainers. It was intended to bring some consistency and completeness to the various python libraries that have gained popularity in the last 5-10 years. Since Ivy aims to unify machine learning frameworks, it makes sense that we value consistency in behaviour across each of the backend libraries in our code too. The test suite is included in the ivy repository as a submodule in the folder `test_array_api`_, which we keep updated with the upstream test suite. The array-api tests repository is maintained by a group of developers unconnected to Ivy. We have made the decision to import the test suite directly from this repository rather than having our own fork. This means that the test suite you see in the ivy source code cannot be modified in the usual way of pushing to the ivy main branch. Instead, the change must be made to the array-api repository directly and then our submodule must be updated with the commands: .. code-block:: none # to initialise local config file and fetch + checkout submodule (not needed every time) git submodule update --init --recursive # pulls changes from the upstream remote repo and merges them git submodule update --recursive --remote --merge Sometimes you will face strange behaviour when staging changes from Ivy's main repo which includes submodule updates. And this is being caused by your submodule being out of date because we update the submodule iteratively. You can get around this by running the following command: .. code-block:: none # Updating your submodule to the latest commit git submodule update --remote and only *then* can changes to the submodule be pushed to ivy-main, i.e. only when these changes exist in the source array-api repository. See the `git website`_ for further information on working with submodules. Running the Tests ----------------- The entire test suite is run independently `for each backend`_ on every push to the repo. Therefore, every function which exists in the standard is thoroughly tested for adherence to the standard on a continuous basis. You will need to make sure the Array API tests are passing for each backend framework if/when making any changes to Ivy functions which are part of the standard. If a test fails on the CI, you can see details about the failure under `Details -> Run [backend] Tests` as shown in `CI Pipeline`_. You can also run the tests locally before making a PR. There are two ways to do this: using the terminal or using your IDE. Using Terminal ************** Using the terminal, you can run all array-api tests in a given file for a certain backend using the bash file `scripts/shell/test_array_api.sh`_: .. code-block:: none # /ivy /bin/bash -e ./scripts/shell/scripts/shell/test_array_api.sh jax test_linalg You can change the argument with any of our supported frameworks - tensorflow, numpy, torch, or jax - and the individual test function categories in :code:`ivy/ivy_tests/array_api_testing/test_array_api/array_api_tests`, e.g. *test_set_functions*, *test_signatures* etc. You can also run a specific test, as often running *all* tests in a file is excessive. To make this work, you should set the backend explicitly in the `_array_module.py` file, which you can find in the `array_api_tests` submodule. At the beginning of the file, you will see the following line of code :code:`array_module = None`. You need to comment out that line and add the following: .. code-block:: none import ivy as array_module array_module.set_backend("jax") # or numpy, tensorflow, torch You should now be able to run the following commands via terminal: .. code-block:: none # run all tests in a file pytest -vv ivy_tests/array_api_testing/test_array_api/array_api_tests/test_manipulation_functions.py # run a single test pytest -vv ivy_tests/array_api_testing/test_array_api/array_api_tests/test_manipulation_functions.py -k "test_concat" Using the IDE ************* You can also run a specific test or test file by using your IDE. To make this work, you should set the backend explicitly in the `_array_module.py` file as explained in the previous subsection. After that, you can run the API test files as you typically would with other tests. See :ref:`here <overview/contributing/the_basics:Running Tests Locally>` for instructions on how to run tests in ivy more generally. *NB*: make sure to not add any changes to the array-api files to your commit. Regenerating Test Failures -------------------------- Array-API tests are written using `hypothesis`_ to perform property-based testing, just like the `ivy tests`_. However, unlike the ivy tests, the Array-API tests make liberal use of :code:`data.draw` in the main body of the test function instead of generating the data in the :code:`@given` decorator that wraps it. This means that failed tests cannot be re-run with the :code:`@example` decorator, as explained in the :ref:`final section <overview/deep_dive/ivy_tests:Re-Running Failed Ivy Tests>` of the ivy tests deep dive. Fortunately, it is possible to regenerate test failures using a unique decorator that appears in the final line of the falsifying example in the error stack trace: .. code-block:: none =================================== FAILURES =================================== ______________________ test_remainder[remainder(x1, x2)] _______________________ ivy_tests/array_api_testing/test_array_api/array_api_tests/test_operators_and_elementwise_functions.py:1264: in test_remainder @given(data=st.data()) ivy_tests/array_api_testing/test_array_api/array_api_tests/test_operators_and_elementwise_functions.py:1277: in test_remainder binary_param_assert_against_refimpl(ctx, left, right, res, "%", operator.mod) ivy_tests/array_api_testing/test_array_api/array_api_tests/test_operators_and_elementwise_functions.py:620: in binary_param_assert_against_refimpl binary_assert_against_refimpl( ivy_tests/array_api_testing/test_array_api/array_api_tests/test_operators_and_elementwise_functions.py:324: in binary_assert_against_refimpl assert isclose(scalar_o, expected), ( E AssertionError: out=-2.0, but should be roughly (x1 % x2)=1.0 [remainder()] E x1=17304064.0, x2=3.0 E assert False E + where False = isclose(-2.0, 1.0) E Falsifying example: test_remainder( E data=data(...), ctx=BinaryParamContext(<remainder(x1, x2)>), E ) E Draw 1 (x1): ivy.array(17304064.) E Draw 2 (x2): ivy.array(3.) E E You can reproduce this example by temporarily adding @reproduce_failure('6.55.0', b'AXic42BAAowcnP+RuMwMABAeAR0=') as a decorator on your test case Copy the :code:`@reproduce_failure` decorator and paste it after the usual decorators of `test_remainder`. You may also need to include the hypothesis import of `reproduce_failure` as shown below. .. code-block:: none from hypothesis import reproduce_failure @pytest.mark.parametrize("ctx", make_binary_params("remainder", dh.numeric_dtypes)) @given(data=st.data()) @reproduce_failure('6.55.0', b'AXic42BAAowcnP+RuMwMABAeAR0=') def test_remainder(ctx, data): left = data.draw(ctx.left_strat, label=ctx.left_sym) right = data.draw(ctx.right_strat, label=ctx.right_sym) if ctx.right_is_scalar: assume(right != 0) else: assume(not xp.any(right == 0)) res = ctx.func(left, right) binary_param_assert_dtype(ctx, left, right, res) binary_param_assert_shape(ctx, left, right, res) binary_param_assert_against_refimpl(ctx, left, right, res, "%", operator.mod) The test should then include the inputs which led to the previous failure and recreate it. If you are taking the :code:`@reproduce_failure` decorator from a CI stack trace and trying to reproduce it locally, you may find that sometimes the local test unexpectedly passes. This is usually caused by a discrepancy in your local source code and ivy-main, so try pulling from the main to sync the behaviour. Test Skipping ------------- Certain tests may need to be skipped when running the array-api test suite. This could be due to a variety of reasons: #. the test function has a known issue which the `array-api test repository`_ developers are working on (e.g. :code:`test_asarray_arrays`) #. the function itself deviates from the standard (e.g. :code:`test_floor_divide`) #. there is an issue with the hypothesis test data generation i.e. a failed 'health check' (e.g. :code:`test_iop[__imod__(x1_i < 0 and x2_i is +0) -> NaN]`) #. tolerance issues when asserting output :code:`isequal()` (e.g. :code:`test_matrix_norm`) All the examples in this list except point 3 (which only occurs with tensorflow) refer to numpy functions, and the first two are skipped in the `array-api test repository`_ also. The data generation and tolerance issues are not skipped in the array-api repo and are difficult for Ivy developers to solve as we cannot alter the tests directly. Currently, we import the test suite and run it; we do not have our own fork that we can tweak at will. These issues have been raised in the array-api test repo and will be addressed in due course. There are currently two ways to skip array-api tests: #. in :code:`ivy_tests/array_api_methods_to_test/<submodule>.txt` and #. in :code:`ivy_tests/skips.txt` The first method was implemented before the second. Each :code:`<submodule>.txt` file contains a comprehensive list of functions which belong to that submodule, some of which are commented out. The commented-out functions are being skipped *only* for the backend(s) that is/are causing the failure, not all the backends. This is done by identifying any references to a backend in the commented-out line e.g. :code:`#trace # failing for jax, numpy due to issues with dtypes in output in test: https://github.com/data-apis/array-api/issues/202` will cause :code:`test_trace` to be skipped on the jax and numpy backends. The latter method, on the other hand, skips a test on *all* backends, even if it is just failing on one. The :code:`ivy_tests/skips.txt` scheme was implemented to skip *specific test cases*. The array-api test suite contains a set of special tests which aim to cover edge-case input and particular data type promotion rules (see :code:`ivy_tests/array_api_testing/test_array_api/array_api_tests/test_special_cases.py`). In :code:`ivy_tests/skips.txt`, tests are skipped by writing the filepath + conditions on the input of the test e.g., .. code-block:: bash ivy_tests/array_api_testing/test_array_api/array_api_tests/test_special_cases.py::test_iop[__ipow__(x1_i is -infinity and x2_i > 0 and not (x2_i.is_integer() and x2_i % 2 == 1)) -> +infinity] is skipping the in-place operations test on the :code:`pow` instance method when x1 is -infinity and x2 is a positive, odd float. The result should be +infinity, however there is a known problem with the numpy instance method and an `issue`_ has been raised on the numpy repository. Tests are categorised in :code:`ivy_tests/skips.txt` according to the backend they are failing on and the reason for the failure. The fact that the skip instruction itself contains the exact input conditions that are failing makes it easier to keep track of and revisit failing tests to try and fix them. **Round Up** This should have hopefully given you a good understanding of how the Array API test suite is used for testing Ivy. If you have any questions, please feel free to reach out on `discord`_ in the `array api tests thread`_! **Video** .. raw:: html <iframe width="420" height="315" allow="fullscreen;" src="https://www.youtube.com/embed/R1XuYwzhxWw" class="video"> </iframe>
ivy/docs/overview/deep_dive/array_api_tests.rst/0
{ "file_path": "ivy/docs/overview/deep_dive/array_api_tests.rst", "repo_id": "ivy", "token_count": 4205 }
2
Gradients ========= .. _`discord`: https://discord.gg/sXyFF8tDtm .. _`gradients thread`: https://discord.com/channels/799879767196958751/1190235826806853672 Overview -------- Gradients are a crucial aspect of all modern deep learning workflows. Different frameworks provide different APIs for gradient computation and there were a few considerations to be made while building a unified gradients API in Ivy. There are a number of functions added in ivy to allow gradient computation, but we'll mainly focus on the most commonly used and the most general function :func:`ivy.execute_with_gradients`. This is because the other gradient functions such as :func:`ivy.value_and_grad` and :func:`ivy.grad` can be considered as providing a subset of the functionality that :func:`ivy.execute_with_gradients` provides. Example Usage of the Gradient API --------------------------------- The :func:`ivy.execute_with_gradients` function signature ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Following is the pseudo function signature for the :func:`ivy.execute_with_gradients` function, .. code-block:: python def execute_with_gradients ( func : Callable, xs : Any arbitrary nest, xs_grad_idxs : Input indices, ret_grad_idxs : Output indices, ) : return func_ret, grads The :code:`func` in the input can be any user-defined function that returns a single scalar or any arbitrary nest of scalars. By scalars, we are referring to zero-dimensional arrays. So for example, the following are some valid outputs by the :code:`func`, .. code-block:: python ivy.array(12.) # OR ivy.Container( a=ivy.array(12.), b=ivy.Container( c=ivy.array(15.), d=ivy.array(32.) ) ) # OR [ivy.array(25.), {'x': (ivy.array(21.), ivy.array(11.))}, (ivy.array(9.),)] :code:`xs` can be any arbitrary nest of arrays and refers to the inputs passed to the :code:`func`, so we suggest designing your :code:`func` based on what inputs you pass in :code:`xs`. The arrays in :code:`xs` can contain any arbitrary number of dimensions, the only constraint is on the output of the :code:`func` as explained above. The :code:`xs_grad_idxs` and :code:`ret_grad_idxs` are intended to provide more control over the arrays gradients are computed with. :code:`xs_grad_idxs` accepts the indices of the input arrays to compute gradients for, and :code:`ret_grad_idxs` accepts the indices of the output arrays to compute gradients with respect to. An example using :func:`ivy.execute_with_gradients` ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: python def func(xs) : return ivy.mean(xs[0] + xs[1].b) x = ivy.array([1., 2., 3.]) x = ivy.Container(a=x, b=x) y = ivy.array([4., 5., 6.]) y = ivy.Container(b=y, c=x) xs = [x, y] ret, grads = ivy.execute_with_gradients( func, xs, xs_grad_idxs=[[0]], ret_grad_idxs=[["a"]] ) Custom Gradient Functions ^^^^^^^^^^^^^^^^^^^^^^^^^ There are various scenarios where users may want to define custom gradient computation rules for their functions. Some of these are numerical stability, smoothing, and clipping of the computed gradients. Ivy provides the :func:`ivy.bind_custom_gradient_function` function to allow users to bind custom gradient computation logic to their functions. Following is an example of usage of :func:`ivy.bind_custom_gradient_function`, .. code-block:: python import ivy ivy.set_backend("torch") x = ivy.array(50.0) inter_func = lambda x: ivy.log1p(ivy.exp(x)) # args –> ((xs, ret), upstream) def custom_grad_fn(*args): args1 = (1 - 10 / (1 + args[0][0])) return (args[1] * args) inter_func = ivy.bind_custom_gradient_function( inter_func, custom_grad_fn ) func = lambda x: ivy.sum(inter_func(x) ** 2) ret, grad = ivy.execute_with_gradients(func, x) The :code:`custom_grad_fn` here accepts :code:`*args` which has the structure :code:`((xs, ret), upstream)` where, * :code:`xs` is the input similar to the one accepted in :func:`ivy.execute_with_gradients` * :code:`ret` is the output of the forward pass of the :func:`inter_func` * :code:`upstream` refers to the previously computed gradients while back-propagating Design of the Gradient API -------------------------- Our policy on gradients ^^^^^^^^^^^^^^^^^^^^^^^ * The gradient API is fully-functional in ivy. * There is no explicit variable class or any public-facing function for adding gradient support to an ivy.Array. * The gradient functions in ivy implicitly convert all arrays to support gradient computation before computing gradients and detach all arrays after computing gradients. * We don't retain any previously tracked computations in arrays by frameworks like torch for e.g. * This makes our gradient API disambiguous, flexible, and easy to debug. * Any framework-specific tracking of computations or variable classes should be handled in the corresponding frontends. Gradient APIs of frameworks ^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. list-table:: Frameworks and their gradient functions :widths: 25 25 50 :header-rows: 1 * - Framework - Common ways to Gradient Computation * - JAX - `jax.grad`, `jax.value_and_grad`, `jax.jacfwd`, `jax.jacrev` * - PyTorch - `torch.autograd.grad`, `torch.autograd.backward` * - TensorFlow - `tf.GradientTape`, `tf.gradients` (only in graph-mode) General Structure of Backend-specific implementations ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Here's a high-level description of the steps followed backend-specific implementation of :func:`ivy.execute_with_gradients`: #. Get Duplicate Index Chains : indices of arrays that share the same :code:`id` #. Convert integer arrays to floats : only for ease of use. it's *not* recommended to pass integer arrays to gradient functions #. Get relevant inputs : based on the :code:`xs_grad_idxs`, we collect the relevant inputs for gradient computation #. Enable gradient support : we implicitly make use of framework-specific APIs to enable gradients in arrays. Ivy doesn't need to have an explicit variable class as the gradient API is fully functional #. Compute Results : we do the forward pass by passing the input as it is to the function #. Get relevant outputs : based on the :code:`ret_grad_idxs`, we collect the relevant outputs for gradient computation #. Compute gradients : we make use of the framework-specific APIs to compute the gradients for the relevant outputs with respect to the relevant inputs #. Handle duplicates : we explicitly handle duplicate instances using the index chains captured above as different frameworks treat duplicates differently #. Post process and detach : finally, all computed gradients are updated to deal with :code:`NaN` and :code:`inf` and the input arrays are detached (i.e. gradient propagation is stopped) Framework-specific Considerations ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ * JAX treats duplicate arrays as distinct while computing gradients, so we need additional logic to replicate gradients computed w.r.t one array over all its duplicates. * Gradients computed for functions with undefined results are inconsistent across backends (NaN, Inf, 0). We handle all these inconsistencies by returning 0 for all backends. So if you’re debugging gradients and find a 0, there’s a possibility that it was NaN or an Inf before computing. **Round Up** This should have hopefully given you a good feel for how the gradient API is implemented in Ivy. If you have any questions, please feel free to reach out on `discord`_ in the `gradients thread`_! **Video** .. raw:: html <iframe width="420" height="315" allow="fullscreen;" src="https://www.youtube.com/embed/riNddnTgDdk" class="video"> </iframe>
ivy/docs/overview/deep_dive/gradients.rst/0
{ "file_path": "ivy/docs/overview/deep_dive/gradients.rst", "repo_id": "ivy", "token_count": 2437 }
3
FAQ === .. _`dex`: https://github.com/dexidp/dex .. _`API for distributed training`: https://github.com/unifyai/ivy/blob/a2f37b1bae232b7ba5257e59f8b46a0374cca9f1/ivy/functional/ivy/device.py#L660 .. _`fully support these`: https://pytorch.org/tutorials/prototype/vmap_recipe.html .. _`README`: https://github.com/unifyai/ivy These are some of the most common technical questions that continue to arise when we're discussing Ivy with developers in the community. As Ivy becomes more mature and we continue these discussions, then many more questions and answers will no doubt be added! We are all incredibly grateful to everyone in the community who has put in the time and effort to ask so many important and probing questions! We hope these Q&As are a useful reference! Maintaining Backend Versions ---------------------------- **Q:** Isn't it complex to maintain support for all backend versions, particularly as they undergo constant changes? How are you going to handle this, will you have an option to select any version for any backend? **A:** Ivy **only** wraps the functional APIs of each backend framework. The last 2 years of Ivy development have shown us how remarkably stable the functional APIs are for each backend framework. **Not once** have we needed to change an implementation or a unit test as a result of a version update of a backend framework. This is not entirely surprising, each framework has strong backward compatibility requirements, and the functional API is generally one of the lower level building blocks upon which everything else in the framework depends. Our CI always tests against the latest version available on PyPI, and this has been the case since we started development. We do not lock-in any versions during our continuous testing, and we will continue to always pull the latest version. In the future, we hope to add explicit testing also for previous versions, so we can guarantee backward compatibility for each backend. We will also add an option to select backend versions for the small minority of cases where changes in the backend functional APIs do cause breaking changes for Ivy. Dynamic Sizes ------------- **Q:** Assuming a static computation graph, can tensors have sizes that dynamically change? XLA does not support dynamic sizes, because it JIT-compiles the graph, and pre-allocates all buffers in memory before the graph runs. TensorFlow and PyTorch do allow dynamic sizes, but only on certain backends. Dynamic sizes require a dynamic memory manager, which CPUs/GPUs have, but XLA currently doesn't. How does Ivy deal with all of this? **A:** Ivy assumes dynamic shapes are supported, but an error will be thrown if/when the function is traced with dynamic shapes enabled, but the backend does not support dynamic shapes in the traced graph. For now, fully framework-agnostic traced graphs are only possible for static graphs. Type and Shape Checking ----------------------- **Q:** What kind of type system does Ivy use? Does it do shape-checking of tensors? If so, how does it handle dynamic sizes? The gold standard here is a fully dependent type system, but this is very rare, with the exception of `dex`_. **A:** The checks performed during compiling will remain backend-specific. The function :func:`ivy.compile` wraps the backend tracing functions, for example :func:`jax.jit`, :func:`tf.function`, :func:`torch.jit.script` and :func:`torch.jit.trace`. For some backends, shape-checking will be performed during the tracing phase and for others it will not. GPU handling ------------ **Q:** How does Ivy handle GPU usage? **A:** Ivy handles GPU usage by simply wrapping the backend frameworks, so Ivy will use GPUs in the same manner as the backend framework does. E.g. When using a torch backend, torch will be a dependency of Ivy, and its handling of GPU functionalities will be inherited and extended upon by Ivy. Model Deployment ---------------- **Q:** Does Ivy support model deployment? **A:** Yes, Ivy will support efficient model deployment. However, currently this feature is not yet supported as the tracer module is still under development, and will be released soon with ivy version 1.2.0. Dynamic Control Flow -------------------- **Q:** Tensorflow has dynamic control-flow primitives (loops, branches) even within a static computation graph. Jax also has dynamic control-flow (:code:`lax.scan`, :code:`lax.while`), but support is limited; only :code:`lax.scan` is differentiable in reverse mode. Branching is also tricky, and is backend-dependent. CPUs have branch predictors and can execute tight loops, GPUs don't, but have drivers that can schedule kernels dynamically, and some other architectures do static scheduling, which limits the kinds of algorithms that can run effectively. TensorFlow eager and PyTorch allow you to use full python control flow, (loops, branches, function calls, dynamic dispatch, recursion) but there is no static computation graph. How will Ivy handle dynamic control flow? Will Ivy parse python ASTs? **A:** For now, Ivy will not support dynamic control flow by parsing ASTs. The dynamism of :code:`for` loops and :code:`while` loops will be ignored during tracing, and just the static trace which chains the array operations performed during the forward pass at tracing time will be preserved. However, Ivy will support the tracing of looping and branching methods such as :code:`lax.scan`, :code:`lax.while`, :code:`tf.while`, :code:`tf.cond` etc. In cases where there is not an associated compilable method in other backends, we will strive to implement this as a composition of existing compilable operations. If such a composition is not possible, then we will instead convert these to compositions of pure Python :code:`for`, :code:`while` and :code:`if` statements (when using a PyTorch backend for example). The reverse mode conversions will not be possible without using parsing ASTs though. This does mean that for example TensorFlow (with loops + branches) → PyTorch (with for, while + if statements) but the reverse mode will not preserve the loops and branches PyTorch (with for, while + if statements) → TensorFlow (static, no loops or branches). Auto-Differentiation -------------------- **Q:** How do you handle reverse mode, forward mode, and Jacobians? How about stop gradients, and gradient checkpointing, and custom gradients? What about autodiff for control-flow operators like :code:`lax.scan`? This is where JAX really shines, and unless you are implementing your own autodiff framework, you are at the mercy of whatever the backend supports. **A:** Ivy will implement all of the general methods that JAX supports, and will provide errors if/when the backend does not support this. In general, Ivy will support the superset of functionality, and not just the lowest common denominator. Ivy takes a fully functional approach like JAX, and the API enables arbitrary nested :code:`execute_with_gradient` calls up to an arbitrary gradient order. Again, if a backend does not support this then an error will be thrown. This means Ivy code is not 100% framework-agnostic, and is indeed at the mercy of what the backend autograd package supports in these cases. Replicas, and Data vs Model Parallelism --------------------------------------- **Q:** Big models don't run on just one device, and the major frameworks have *very* different ways of splitting a model up so that it runs on a cluster. There are multiple competing paradigms for parallelisation -- e.g. SPMD vs mixture of experts. JAX and Tensorflow are very sophisticated in this department, and routinely run models on hundreds or thousands of devices. How will Ivy support multi-device training, if at all? **A:** This is not something we’re diving into too deeply at the moment. However, we have written our own `API for distributed training`_, which broadly follows PyTorch’s approach using a CUDA-enabled multiprocessing module. If heavily distributed training is important. Then Ivy can be supplementary for the time being, rather than a total replacement. For example, someone can use TensorFlow’s distributed training tools, and just use Ivy to copy over a PyTorch model into their TF pipeline. We are not trying to encourage anyone to drop any existing tools and just use Ivy instead. Projects can use 1% Ivy code or 100%. We’re very happy in either case! Support for Functions --------------------- **Q:** Is it possible to trace tensor code into a reusable and differentiable function? If you can't, then it will be difficult to apply any fancy kernel fusion algorithms, and you can expect to lose a lot of performance. What about higher-order operations, like :code:`jax.vmap` and :code:`jax.pmap`? **A:** Most functions in Ivy are *primary* functions, which are generally implemented as light wrapping around a near-identical backend-specific function, which itself will likely map to an efficient kernel. *Compositional* functions on the other hand are implemented as a composition of other Ivy functions, meaning there will not be a one-to-one mapping to a single backend kernel. However, our experiments (to be published soon!) show this does not lead to a significant run-time overhead, even when a composition of operations is required. For methods like :code:`jax.vmap` and :code:`jax.pmap`, we will need to implement these as (possibly inefficient) compositions in other frameworks, until they are supported in these frameworks. However, it seems as though other frameworks such as PyTorch are seeing the benefit in these functions, and will eventually `fully support these`_. Alternative Data Structures --------------------------- **Q:** Will Ivy support data structures such as tuples, dictionaries, lists etc.? For example, JAX code is full of them. **A:** We will of course support these structures in pure python code, but we will not support backend-specific alternative compilable data structures. While Ivy will not provide an interface to these data structures directly, Ivy code can easily supplement JAX code which does contain these data structures, and both can be traced together without issue. Ivy can act as a supplementary framework if/when some of the more unique backend-specific data structures are required. Custom Operations ----------------- **Q:** Most frameworks have a backdoor for user-defined ops, implemented in C++/CUDA, or some kind of host callback mechanism. Will Ivy support this ability also? **A:** We will not attempt to provide a unified back-door for all possible backend kernel customizations, but of course users can still use the backend-specific backdoors which already exist when using Ivy. The Pipeline ------------ **Q:** How will Ivy manage the training loop and input pipeline? What about loading and saving models, recording of scalar metrics, visualization, etc.? These are often also somewhat framework-dependent. **A:** We are not advocating to replace all code with Ivy. We would encourage users to continue using whatever data loaders they want to, and perhaps just use an Ivy model, or use Ivy to convert a model, or even just a single function from a library. State ----- **Q:** Tensorflow handles state as part of the static graph. JAX is purely functional and so outsources it to one of several third-party libraries, like Flax. How will Ivy handle state? **A:** Ivy has a fully functional backend. When using a TensorFlow or PyTorch backend, we pass all of the variables and gradients explicitly as function inputs and outputs. This is not actually required for the stateful back-ends, but we still return the values such that JAX is also supported. Ivy will remain fully functional in design, and we therefore assume behavior similar to JAX. Our simple example on the `README`_ trains correctly for all back-ends, which passes everything explicitly in a functional manner.
ivy/docs/overview/faq.rst/0
{ "file_path": "ivy/docs/overview/faq.rst", "repo_id": "ivy", "token_count": 2823 }
4
.. _`RWorks Frameworks`: Frameworks ========== .. _`MATLAB`: https://mathworks.com/products/matlab.html .. _`MathWorks`: https://mathworks.com/ .. _`MuPAD`: https://mathworks.com/discovery/mupad.html .. _`Simulink`: https://mathworks.com/products/simulink.html .. _`SciPy`: https://scipy.org/ .. _`NumPy`: https://numpy.org/ .. _`Torch`: http://torch.ch/ .. _`IDIAP`: https://www.idiap.ch/ .. _`EPFL`: https://www.epfl.ch/ .. _`Numarray`: https://wiki.python.org/moin/NumArray .. _`Numeric`: https://people.csail.mit.edu/jrennie/python/numeric/ .. _`CPython`: https://github.com/python/cpython .. _`Scikit-learn`: https://scikit-learn.org/ .. _`Theano`: https://github.com/Theano/Theano .. _`Aesara`: https://github.com/aesara-devs/aesara .. _`Pandas`: https://pandas.pydata.org/ .. _`Julia`: https://julialang.org/ .. _`NASA`: https://www.nasa.gov/ .. _`CERN`: https://home.cern/ .. _`Climate Modeling Alliance`: https://clima.caltech.edu/ .. _`Apache Spark`: https://spark.apache.org/ .. _`MLlib`: https://spark.apache.org/mllib/ .. _`Caffe`: https://caffe.berkeleyvision.org/ .. _`PyTorch`: https://pytorch.org/ .. _`Chainer`: https://chainer.org/ .. _`CuPy`: https://cupy.dev/ .. _`Preferred Networks`: https://www.preferred.jp/ .. _`TensorFlow 1`: https://www.tensorflow.org/versions/r1.15/api_docs .. _`MXNet`: https://mxnet.apache.org/ .. _`Amazon`: https://www.amazon.com/ .. _`Microsoft Cognitive Toolkit (CNTK)`: https://learn.microsoft.com/en-us/cognitive-toolkit/ .. _`TensorFlow`: https://tensorflow.org/ .. _`PyTorch Ecosystem`: https://pytorch.org/ecosystem/ .. _`Flux`: https://fluxml.ai/ .. _`Zygote.jl`: https://github.com/FluxML/Zygote.jl .. _`DaggerFlux.jl`: https://github.com/FluxML/DaggerFlux.jl .. _`JAX`: https://jax.readthedocs.io/ .. _`XLA`: https://www.tensorflow.org/xla .. _`Haiku`: https://dm-haiku.readthedocs.io/ .. _`Flax`: https://flax.readthedocs.io/ .. _`TensorFlow 2`: https://www.tensorflow.org/api_docs .. _`TensorFlow Lite`: https://www.tensorflow.org/lite .. _`Adam Paszke`: https://github.com/apaszke .. _`Dex language`: https://github.com/google-research/dex-lang .. _`Haskell`: https://www.haskell.org/ .. _`discord`: https://discord.gg/sXyFF8tDtm .. |matlab| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/matlab.png :height: 20pt :class: dark-light .. |scipy| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/scipy.png :height: 20pt :class: dark-light .. |torch| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/torch.png :height: 20pt :class: dark-light .. |numpy| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/numpy.png :height: 20pt :class: dark-light .. |scikit-learn| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/scikit-learn.png :height: 15pt :class: dark-light .. |theano| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/theano.png :height: 10pt :class: dark-light .. |pandas| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/pandas.png :height: 22pt :class: dark-light .. |julia| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/julia.png :height: 20pt :class: dark-light .. |apache-spark-mllib| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/apache-spark-mllib.png :height: 20pt :class: dark-light .. |caffe| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/caffe.png :height: 10pt :class: dark-light .. |chainer| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/chainer.png :height: 20pt :class: dark-light .. |tensorflow-1| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/tensorflow-1.png :height: 20pt :class: dark-light .. |mxnet| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/mxnet.png :height: 20pt :class: dark-light .. |cntk| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/cntk.png :height: 20pt :class: dark-light .. |pytorch| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/pytorch.png :height: 22pt :class: dark-light .. |flux| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/flux.png :height: 22pt :class: dark-light .. |jax| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/jax.png :height: 20pt :class: dark-light .. |tensorflow-2| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/tensorflow-2.png :height: 20pt :class: dark-light .. |dex-language| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/frameworks/dex-language.png :height: 20pt :class: dark-light Here we list some of the most prominent frameworks for array computation. These are the individual frameworks which the wrapper frameworks mentioned above generally wrap around and abstract. .. image:: https://github.com/unifyai/unifyai.github.io/blob/main/img/externally_linked/related_work/frameworks/ml_framework_timeline.png?raw=true :width: 100% MATLAB |matlab| --------------- `MATLAB`_ (an abbreviation of MATrix LABoratory) is a proprietary multi-paradigm programming language and numeric computing environment developed by `MathWorks`_, which was first commercially released in 1984. It allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages. Although MATLAB is intended primarily for numeric computing, an optional toolbox uses the `MuPAD`_ symbolic engine allowing access to symbolic computing abilities. An additional package, `Simulink`_, adds graphical multi-domain simulation and model-based design for dynamic and embedded systems. As of 2020, MATLAB has more than 4 million users worldwide, who come from various backgrounds of engineering, science, and economics. SciPy |scipy| ------------- First released in 2001, `SciPy`_ is a Python framework used for scientific computing and technical computing, with modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering. While the user interface is in Python, the backend involves Fortran, Cython, C++, and C for high runtime efficiency. It is built to work with `NumPy`_ arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Torch |torch| ------------- Initially released in 2002, `Torch`_ is an open-source machine learning library, a scientific computing framework, and a script language based on the Lua programming language. It provides a wide range of algorithms for deep learning, and uses the scripting language LuaJIT, and an underlying C implementation. It was created in `IDIAP`_ at `EPFL`_. NumPy |numpy| ------------- First released in 2005, `NumPy`_ is a Python framework which was created by incorporating features of the competing `Numarray`_ into `Numeric`_, with extensive modifications. NumPy supports large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. NumPy targets the `CPython`_ reference implementation of Python. NumPy addresses the absence of compiler optimization partly by providing multidimensional arrays and functions and operators that operate efficiently on arrays. NumPy arrays are strided views on memory. It has long been the go-to framework for numeric computing in Python. SciKit Learn |scikit-learn| --------------------------- First released in 2007, `Scikit-learn`_ is a Python framework which features various classification, regression, and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means, and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries `NumPy`_ and `SciPy`_. Theano |theano| --------------- Initially released in 2007, `Theano`_ is a Python framework which focuses on manipulating and evaluating mathematical expressions, especially matrix-valued ones, with an inbuilt optimizing compiler. Computations are expressed using a `NumPy`_-esque syntax and are compiled to run efficiently on either CPU or GPU architectures. Notably, it includes an extensible graph framework suitable for the rapid development of custom operators and symbolic optimizations, and it implements an extensible graph transpilation framework. It is now being continued under the name `Aesara`_. Pandas |pandas| --------------- Initially released in 2008, `Pandas`_ is a Python framework which focuses on data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series. Key features include: a DataFrame object for data manipulation with integrated indexing, tools for reading and writing data between in-memory data structures and different file formats, and label-based slicing, fancy indexing, and subsetting of large data sets. It is built upon `NumPy`_, and as such the library is highly optimized for performance, with critical code paths written in Cython or C. Julia |julia| ------------- Initially released in 2012, `Julia`_ is a high-level, dynamic programming language. Its features are well suited for numerical analysis and computational science. Distinctive aspects of Julia's design include a type system with parametric polymorphism in a dynamic programming language; with multiple dispatch as its core programming paradigm. Julia supports concurrent, (composable) parallel and distributed computing (with or without using MPI or the built-in corresponding to "OpenMP-style" threads), and direct calling of C and Fortran libraries without glue code. Julia uses a just-in-time (JIT) compiler that is referred to as "just-ahead-of-time" (JAOT) in the Julia community, as Julia compiles all code (by default) to machine code before running it. Julia is used extensively by researchers at `NASA`_ and `CERN`_, and it was selected by the `Climate Modeling Alliance`_ as the sole implementation language for their next generation global climate model, to name a few influential users. Apache Spark MLlib |apache-spark-mllib| --------------------------------------- Initially released in 2014, `Apache Spark`_ is a unified analytics engine for large-scale data processing, implemented in Scala. It provides an interface for programming clusters with implicit data parallelism and fault tolerance. `MLlib`_ is a distributed machine-learning framework on top of Spark Core that, due in large part to the distributed memory-based Spark architecture, is very runtime efficient. Many common machine learning and statistical algorithms have been implemented and are shipped with MLlib which simplifies large scale machine learning pipelines. MLlib fits into Spark's APIs and it also interoperates with `NumPy`_ in Python. Caffe |caffe| ------------- Initially released in 2014, `Caffe`_ is highly efficient, but is all in C++ which requires frequent re-compiling during development and testing. It was also not very easy to quickly throw prototypes together, with C++ being much less forgiving than Python as a front-facing language. In the last few years, Caffe has been merged into `PyTorch`_. Chainer |chainer| ----------------- Initially released in 2015, `Chainer`_ is written purely in Python on top of `NumPy`_ and `CuPy`_. It is notable for its early adoption of "define-by-run" scheme, as well as its performance on large scale systems. In December 2019, `Preferred Networks`_ announced the transition of its development effort from Chainer to `PyTorch`_ and it will only provide maintenance patches after releasing v7. TensorFlow 1 |tensorflow-1| --------------------------- Initially released in 2015, `TensorFlow 1`_ enabled graphs to be defined as chains of Python functions, but the lack of python classes in the model construction process made the code very non-pythonic. It was hard to create meaningful hierarchical and reusable abstractions. The computation graph was also hard to debug; intermediate values were not accessible in the Python environment, and had to be explicitly extracted from the graph using a tf.session. Overall it was easier to get started on projects and prototype more quickly than in `Caffe`_ (the most popular ML framework at the time, written in C++), but it was not much easier to debug than Caffe due to the compiled graph which could not be stepped through. The graph also needed to be fully static, with limited ability for branching in the graph, removing the possibility for pure python control flow to form part of the graph. MXNet |mxnet| ------------- Initially released in 2016, `MXNet`_ allows users to mix symbolic and imperative programming. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. Despite having big industry users such as `Amazon`_, MXNet has not gained significant traction among researchers. CNTK |cntk| ----------- Originally released in 2016, the `Microsoft Cognitive Toolkit (CNTK)`_ is an open-source toolkit for commercial-grade distributed deep learning, written entirely in C++. It describes neural networks as a series of computational steps via a directed graph. CNTK allows the user to easily realize and combine popular model types such as feed-forward DNNs, convolutional neural networks (CNNs), and recurrent neural networks (RNNs/LSTMs). CNTK implements stochastic gradient descent (SGD, error backpropagation) learning with automatic differentiation and parallelization across multiple GPUs and servers. It is no longer being actively developed, having succumbed to the increasing popularity of the frameworks using Python frontend interfaces. PyTorch |pytorch| ----------------- `PyTorch`_ came onto the scene another year later in 2016, which also operated very differently to `TensorFlow`_. PyTorch operates based on asynchronous scheduling on the target device, without any pre-compilation of the full computation graph on the target device required. This made it possible to combine asynchronous scheduled efficient kernels with pure Python control flow, and also made it easy to query and monitor the intermediate values in the model, with the boundaries of the “computation graph” having been broken down. This quickly made it very popular for researchers. Generally, PyTorch is the choice of the ML researcher, ML practitioner, and the hobbyist. PyTorch is very Pythonic, very simple to use, very forgiving, and has a tremendous ecosystem built around it. No other framework comes close to having anything like the `PyTorch Ecosystem`_, with a vast collection of third-party libraries in various important topics for ML research. Flux |flux| ----------- `Flux`_ is a library for machine learning geared towards high-performance production pipelines, written entirely in the `Julia`_ language. It comes "batteries-included" with many useful tools built in, whilst still enabling the full power of the Julia language to be leveraged. It follows a few key principles. It “does the obvious thing”. Flux has relatively few explicit APIs for features like regularization or embeddings. Instead, writing down the mathematical form will work – and be fast. It is “extensible by default”. Flux is written to be highly extensible and flexible while being performant. Extending Flux is as simple as using custom code as part of the desired model - it is all high-level Julia code. “Performance is key”. Flux integrates with high-performance AD tools such as `Zygote.jl`_ for generating fast code. Flux optimizes both CPU and GPU performance. Scaling workloads easily to multiple GPUs can be done with the help of Julia's GPU tooling and projects like `DaggerFlux.jl`_. It “plays nicely with others”. Flux works well with Julia libraries from data frames and images to differential equation solvers, so it is easy to build complex data processing pipelines that integrate Flux models. Flux and Julia are not used nearly as much as the Python frameworks, but they are growing in popularity. JAX |jax| --------- All of the other Python frameworks work well when the aim was “vanilla” first-order optimization of neural networks against a scalar loss function, but are not as flexible when anything more customized is required, including meta learning (learning to learn), higher order loss functions, gradient monitoring, and other important research frontiers involving more customization for the gradients. These frameworks abstract away most of the gradient computation from the developer, making it hard for them to explicitly track gradients, compute vector gradients such as Jacobians, and/or compute higher order gradients such as Hessians etc. Initially released in 2018, `JAX`_ offers an elegant lightweight fully-functional design, which addresses all of these shortcomings, and uses direct bindings to `XLA`_ for running highly performant code on TPUs. This gives JAX fundamental advantages over `PyTorch`_ and `TensorFlow`_ in terms of user flexibility, ease of debugging, and user control, but has a higher entry barrier for inexperienced ML users, and despite having fundamental advantages over PyTorch and TensorFlow, it still has a very underdeveloped ecosystem. JAX is generally the choice of the deeply technical ML researcher, working on deeply customized gradient and optimization schemes, and also the runtime performance fanatic. JAX is not a framework for beginners, but it offers substantially more control for the people who master it. You can control how your Jacobians are computed, you can design your own vectorized functions using :code:`vmap`, and you can make design decisions which ensure you can squeeze out every ounce of performance from your model when running on the TPU. The ecosystem is evolving but is still in its infancy compared to PyTorch. As mentioned above, The emergence of libraries such as `Haiku`_ and `Flax`_ are lowering the entry barrier somewhat. TensorFlow 2 |tensorflow-2| --------------------------- With `PyTorch`_ showing clear advantages and gaining in popularity in the Python ML community, `TensorFlow 2`_ was released in 2019 which, like PyTorch, also supported eager execution of the computation graph. However, because TensorFlow was not an eager framework by design, the eager-mode was very inefficient compared to compiled mode, and therefore was targeted mainly at ease of debugging, rather than a default mode in which TensorFlow should be run. Without a clear niche, TensorFlow seems to have now focused more on edge and mobile devices, with the introduction of `TensorFlow Lite`_, making it the go-to for industrial enterprise users looking to deploy ML models. Overall, TensorFlow 2 is a mature language which has been around in some form since 2015, has already needed to reinvent itself a couple of times, and one of the main advantages currently is the very strong bindings for edge and mobile devices via TensorFlow Lite. Another advantage is the inertia it has with industrial users who adopted TensorFlow in the past years and haven’t transitioned. DEX Language |dex-language| --------------------------- Since 2020, the creator of `PyTorch`_ (and major `JAX`_ contributor) `Adam Paszke`_ has stopped working much on either PyTorch and JAX, and has been instead spending his time working on the `Dex language`_, which looks to combine the clarity and safety of high-level functional languages with the efficiency and parallelism of low-level numerical languages, avoiding the need to compose primitive bulk-array operations. They propose an explicit nested indexing style that mirrors application of functions to arguments. The goal of the project is to explore: type systems for array programming, mathematical program transformations like differentiation and integration, user-directed compilation to parallel hardware, and interactive and incremental numerical programming and visualization. It is quite early and still in an experimental phase, but this framework would provide hugely significant fundamental improvements over all existing frameworks if it reaches a mature stage of development. The language is built on top of `Haskell`_.
ivy/docs/overview/related_work/frameworks.rst/0
{ "file_path": "ivy/docs/overview/related_work/frameworks.rst", "repo_id": "ivy", "token_count": 5739 }
5
import ast import astunparse import inspect replace_map = {} def replace_with(new_func): """Decorate a function/method/attribute to be replaced by another. Parameters ---------- new_func The function that will replace the original. """ def decorator(original_func): if not callable(original_func) or not callable(new_func): raise TypeError( f"Both '{original_func.__name__}' and '{new_func.__name__}' should be" " callable." ) if inspect.getfullargspec(original_func) != inspect.getfullargspec(new_func): raise ValueError( f"Replacement function '{new_func.__name__}' arguments don't match" f" '{original_func.__name__}' arguments." ) new_func_name = f"{original_func.__name__}_replacement" if new_func_name in globals(): raise NameError( f"Name '{new_func_name}' already exists in global namespace." ) globals()[new_func_name] = new_func replace_map[original_func.__name__] = new_func_name return original_func return decorator class ReplaceFunction(ast.NodeTransformer): """AST Node Transformer to replace function calls, methods, and attributes.""" def visit_Attribute(self, node): if ( isinstance(node.value, ast.Name) and f"{node.value.id}.{node.attr}" in replace_map ): return ast.copy_location( ast.Name(replace_map[f"{node.value.id}.{node.attr}"], node.ctx), node ) return node def visit_Call(self, node): if ( isinstance(node.func, ast.Attribute) and f"{node.func.value.id}.{node.func.attr}" in replace_map ): node.func = ast.Name( replace_map[f"{node.func.value.id}.{node.func.attr}"], node.func.ctx ) elif isinstance(node.func, ast.Name) and node.func.id in replace_map: node.func.id = replace_map[node.func.id] return node def transform_function(func): """Transform the function by replacing its calls based on the replace_map.""" source = inspect.getsource(func) tree = ast.parse(source) transformed_tree = ReplaceFunction().visit(tree) transformed_code = astunparse.unparse(transformed_tree) namespace = {} exec(transformed_code, globals(), namespace) return namespace[func.__name__]
ivy/ivy/compiler/replace_with.py/0
{ "file_path": "ivy/ivy/compiler/replace_with.py", "repo_id": "ivy", "token_count": 1100 }
6
# global import abc from typing import Optional, Union, Tuple, List, Sequence from numbers import Number # local import ivy class _ArrayWithElementWiseExperimental(abc.ABC): def amax( self: ivy.Array, /, *, axis: Optional[Union[int, Sequence[int]]] = None, keepdims: bool = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.amax. This method simply wraps the function, and so the docstring for ivy.amax also applies to this method with minimal changes. Parameters ---------- self input array. Should have a real-valued data type. axis axis or axes along which maximum values must be computed. By default, the maximum value must be computed over the entire array. If a tuple of integers, maximum values must be computed over multiple axes. Default: ``None``. keepdims optional boolean, if ``True``, the reduced axes (dimensions) must be included in the result as singleton dimensions, and, accordingly, the result must be compatible with the input array (see `broadcasting<https://data-apis.org/array-api/latest/ API_specification/broadcasting.html#broadcasting>`_). Otherwise, if ``False``, the reduced axes (dimensions) must not be included in the result. Default: ``False``. out optional output array, for writing the result to. Returns ------- ret if the maximum value was computed over the entire array, a zero-dimensional array containing the maximum value; otherwise, a non-zero-dimensional array containing the maximum values. The returned array must have the same data type as ``x``. Examples -------- >>> x = ivy.array([3., 4., 5.]) >>> y = x.amax() >>> print(y) ivy.array(5.) >>> x = ivy.array([[-1, 0, 1], [2, 3, 4]]) >>> y = x.amax(axis=1) >>> print(y) ivy.array([1, 4]) >>> x = ivy.array([0.1, 1.1, 2.1]) >>> y = ivy.array(0.) >>> x.amax(out=y) >>> print(y) ivy.array(2.1) """ return ivy.amax(self._data, axis=axis, keepdims=keepdims, out=out) def amin( self: ivy.Array, /, *, axis: Optional[Union[int, Sequence[int]]] = None, keepdims: bool = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.amin. This method simply wraps the function, and so the docstring for ivy.amin also applies to this method with minimal changes. Parameters ---------- self input array. Should have a real-valued data type. axis axis or axes along which minimum values must be computed. By default, the minimum value must be computed over the entire array. If a tuple of integers, minimum values must be computed over multiple axes. Default: ``None``. keepdims optional boolean, if ``True``, the reduced axes (dimensions) must be included in the result as singleton dimensions, and, accordingly, the result must be compatible with the input array (see `broadcasting<https://data-apis.org/array-api/latest/ API_specification/broadcasting.html#broadcasting>`_). Otherwise, if ``False``, the reduced axes (dimensions) must not be included in the result. Default: ``False``. out optional output array, for writing the result to. Returns ------- ret if the minimum value was computed over the entire array, a zero-dimensional array containing the minimum value; otherwise, a non-zero-dimensional array containing the minimum values. The returned array must have the same data type as ``x``. Examples -------- >>> x = ivy.array([3., 4., 5.]) >>> y = x.amin() >>> print(y) ivy.array(3.) >>> x = ivy.array([[-1, 0, 1], [2, 3, 4]]) >>> y = x.amin(axis=1) >>> print(y) ivy.array([-1, 2]) >>> x = ivy.array([0.1, 1.1, 2.1]) >>> y = ivy.array(0.) >>> x.amin(out=y) >>> print(y) ivy.array(0.1) """ return ivy.amin(self._data, axis=axis, keepdims=keepdims, out=out) def lgamma(self: ivy.Array, *, out: Optional[ivy.Array] = None) -> ivy.Array: """ivy.Array instance method variant of ivy.lgamma. This method simply wraps the function, and so the docstring for ivy.lgamma also applies to this method with minimal changes. Parameters ---------- self input array. Should have a real-valued floating-point data type. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the evaluated result for each element in ``self``. The returned array must have a real-valued floating-point data type determined by :ref:`type-promotion`. Examples -------- >>> x = ivy.array([1., 2., 3.]) >>> y = x.lgamma() >>> print(y) ivy.array([0., 0., 0.69314718]) >>> x = ivy.array([4.5, -4, -5.6]) >>> x.lgamma(out = x) >>> print(x) ivy.array([2.45373654, inf, -4.6477685 ]) """ return ivy.lgamma(self._data, out=out) def sinc(self: ivy.Array, *, out: Optional[ivy.Array] = None) -> ivy.Array: """ivy.Array instance method variant of ivy.sinc. This method simply wraps the function, and so the docstring for ivy.sinc also applies to this method with minimal changes. Parameters ---------- self input array whose elements are each expressed in radians. Should have a floating-point data type. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the sinc of each element in ``self``. The returned array must have a floating-point data type determined by :ref:`type-promotion`. Examples -------- >>> x = ivy.array([0.5, 1.5, 2.5, 3.5]) >>> y = x.sinc() >>> print(y) ivy.array([0.637,-0.212,0.127,-0.0909]) """ return ivy.sinc(self._data, out=out) def fmod( self: ivy.Array, x2: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.fmod. This method simply wraps the function, and so the docstring for ivy.fmod also applies to this method with minimal changes. Parameters ---------- self First input array. x2 Second input array out optional output array, for writing the result to. Returns ------- ret Array with element-wise remainder of divisions. Examples -------- >>> x1 = ivy.array([2, 3, 4]) >>> x2 = ivy.array([1, 5, 2]) >>> x1.fmod(x2) ivy.array([ 0, 3, 0]) >>> x1 = ivy.array([ivy.nan, 0, ivy.nan]) >>> x2 = ivy.array([0, ivy.nan, ivy.nan]) >>> x1.fmod(x2) ivy.array([ nan, nan, nan]) """ return ivy.fmod(self._data, x2, out=out) def fmax( self: ivy.Array, x2: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.fmax. This method simply wraps the function, and so the docstring for ivy.fmax also applies to this method with minimal changes. Parameters ---------- self First input array. x2 Second input array out optional output array, for writing the result to. Returns ------- ret Array with element-wise maximums. Examples -------- >>> x1 = ivy.array([2, 3, 4]) >>> x2 = ivy.array([1, 5, 2]) >>> ivy.fmax(x1, x2) ivy.array([ 2., 5., 4.]) >>> x1 = ivy.array([ivy.nan, 0, ivy.nan]) >>> x2 = ivy.array([0, ivy.nan, ivy.nan]) >>> x1.fmax(x2) ivy.array([ 0, 0, nan]) """ return ivy.fmax(self._data, x2, out=out) def float_power( self: Union[ivy.Array, float, list, tuple], x2: Union[ivy.Array, float, list, tuple], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.float_power. This method simply wraps the function, and so the docstring for ivy.float_power also applies to this method with minimal changes. Parameters ---------- self Array-like with elements to raise in power. x2 Array-like of exponents. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output). out optional output array, for writing the result to. Returns ------- ret The bases in x1 raised to the exponents in x2. This is a scalar if both x1 and x2 are scalars Examples -------- >>> x1 = ivy.array([1, 2, 3, 4, 5]) >>> x1.float_power(3) ivy.array([1., 8., 27., 64., 125.]) >>> x1 = ivy.array([1, 2, 3, 4, 5]) >>> x2 = ivy.array([2, 3, 3, 2, 1]) >>> x1.float_power(x2) ivy.array([1., 8., 27., 16., 5.]) """ return ivy.float_power(self._data, x2, out=out) def copysign( self: Union[ivy.Array, ivy.NativeArray, Number], x2: Union[ivy.Array, ivy.NativeArray, Number], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.copysign. This method simply wraps the function, and so the docstring for ivy.copysign also applies to this method with minimal changes. Parameters ---------- x1 Array or scalar to change the sign of x2 Array or scalar from which the new signs are applied Unsigned zeroes are considered positive. out optional output array, for writing the result to. Returns ------- ret x1 with the signs of x2. This is a scalar if both x1 and x2 are scalars. Examples -------- >>> x1 = ivy.array([0, 1, 2, 3]) >>> x2 = ivy.array([-1, 1, -2, 2]) >>> x1.copysign(x2) ivy.array([-0., 1., -2., 3.]) >>> x2.copysign(-1) ivy.array([-1., -1., -2., -2.]) """ return ivy.copysign(self._data, x2, out=out) def count_nonzero( self: ivy.Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.count_nonzero. This method simply wraps the function, and so the docstring for ivy.count_nonzero also applies to this method with minimal changes. Parameters ---------- self input array for which to count non-zeros. axis optional axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of the input array. keepdims optional, if this is set to True, the axes that are counted are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. dtype optional output dtype. Default is of type integer. out optional output array, for writing the result to. Returns ------- ret Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. Examples -------- >>> x = ivy.array([1, 2, 3]) >>> x.count_nonzero() ivy.array(3) >>> x = ivy.array([[[0,1],[2,3]],[[4,5],[6,7]]]) >>> x.count_nonzero(axis=0) ivy.array([[1, 2], [2, 2]]) >>> x = ivy.array([[[0,1],[2,3]],[[4,5],[6,7]]]) >>> x.count_nonzero(axis=(0,1), keepdims=True) ivy.array([[[3, 4]]]) """ return ivy.count_nonzero( self._data, axis=axis, keepdims=keepdims, dtype=dtype, out=out ) def nansum( self: ivy.Array, /, *, axis: Optional[Union[tuple, int]] = None, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, keepdims: bool = False, out: Optional[ivy.Container] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.nansum. This method simply wraps the function, and so the docstring for ivy.nansum also applies to this method with minimal changes. Parameters ---------- self Input array. axis Axis or axes along which the sum is computed. The default is to compute the sum of the flattened array. dtype The type of the returned array and of the accumulator in which the elements are summed. By default, the dtype of input is used. keepdims If this is set to True, the axes which are reduced are left in the result as dimensions with size one. out Alternate output array in which to place the result. The default is None. Returns ------- ret A new array holding the result is returned unless out is specified, in which it is returned. Examples -------- >>> a = ivy.array([[ 2.1, 3.4, ivy.nan], [ivy.nan, 2.4, 2.1]]) >>> ivy.nansum(a) 10.0 >>> ivy.nansum(a, axis=0) ivy.array([2.1, 5.8, 2.1]) >>> ivy.nansum(a, axis=1) ivy.array([5.5, 4.5]) """ return ivy.nansum( self._data, axis=axis, dtype=dtype, keepdims=keepdims, out=out ) def isclose( self: ivy.Array, b: ivy.Array, /, *, rtol: float = 1e-05, atol: float = 1e-08, equal_nan: bool = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.isclose. This method simply wraps the function, and so the docstring for ivy.isclose also applies to this method with minimal changes. Parameters ---------- self First input array. b Second input array. rtol The relative tolerance parameter. atol The absolute tolerance parameter. equal_nan Whether to compare NaN's as equal. If True, NaN's in a will be considered equal to NaN's in b in the output array. out Alternate output array in which to place the result. The default is None. Returns ------- ret A new array holding the result is returned unless out is specified, in which it is returned. Examples -------- >>> a = ivy.array([[ 2.1, 3.4, ivy.nan], [ivy.nan, 2.4, 2.1]]) >>> b = ivy.array([[ 2.1, 3.4, ivy.nan], [ivy.nan, 2.4, 2.1]]) >>> a.isclose(b) ivy.array([[True, True, False], [False, True, True]]) >>> a.isclose(b, equal_nan=True) ivy.array([[True, True, True], [True, True, True]]) >>> a=ivy.array([1.0, 2.0]) >>> b=ivy.array([1.0, 2.001]) >>> a.isclose(b, atol=0.0) ivy.array([True, False]) >>> a.isclose(b, rtol=0.01, atol=0.0) ivy.array([True, True]) """ return ivy.isclose( self._data, b, rtol=rtol, atol=atol, equal_nan=equal_nan, out=out ) def signbit( self: Union[ivy.Array, float, int, list, tuple], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.signbit. This method simply wraps the function, and so the docstring for ivy.signbit also applies to this method with minimal changes. Parameters ---------- self Array-like input. out optional output array, for writing the result to. Returns ------- ret Element-wise signbit of x. Examples -------- >>> x = ivy.array([1, -2, 3]) >>> x.signbit() ivy.array([False, True, False]) """ return ivy.signbit(self._data, out=out) def hypot( self: ivy.Array, x2: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.hypot. This method simply wraps the function, and so the docstring for ivy.hypot also applies to this method with minimal changes. Parameters ---------- self First input array x2 Second input array out Optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret An array containing the hypotenuse computed from each element of the input arrays. Examples -------- >>> x = ivy.array([3.0, 4.0, 5.0]) >>> y = ivy.array([4.0, 5.0, 6.0]) >>> x.hypot(y) ivy.array([5.0, 6.4031, 7.8102]) """ return ivy.hypot(self._data, x2, out=out) def allclose( self: ivy.Array, x2: ivy.Array, /, *, rtol: float = 1e-05, atol: float = 1e-08, equal_nan: bool = False, out: Optional[ivy.Container] = None, ) -> bool: """ivy.Array instance method variant of ivy.allclose. This method simply wraps the function, and so the docstring for ivy.allclose also applies to this method with minimal changes. Parameters ---------- self First input array. x2 Second input array. rtol The relative tolerance parameter. atol The absolute tolerance parameter. equal_nan Whether to compare NaN's as equal. If True, NaN's in a will be considered equal to NaN's in b in the output array. out Alternate output array in which to place the result. The default is None. Returns ------- ret Returns True if the two arrays are equal within the given tolerance; False otherwise. Examples -------- >>> x1 = ivy.array([1e10, 1e-7]) >>> x2 = ivy.array([1.00001e10, 1e-8]) >>> y = x1.allclose(x2) >>> print(y) ivy.array(False) >>> x1 = ivy.array([1.0, ivy.nan]) >>> x2 = ivy.array([1.0, ivy.nan]) >>> y = x1.allclose(x2, equal_nan=True) >>> print(y) ivy.array(True) >>> x1 = ivy.array([1e-10, 1e-10]) >>> x2 = ivy.array([1.00001e-10, 1e-10]) >>> y = x1.allclose(x2, rtol=0.005, atol=0.0) >>> print(y) ivy.array(True) """ return ivy.allclose( self._data, x2, rtol=rtol, atol=atol, equal_nan=equal_nan, out=out ) def diff( self: ivy.Array, /, *, n: int = 1, axis: int = -1, prepend: Optional[Union[ivy.Array, ivy.NativeArray, int, list, tuple]] = None, append: Optional[Union[ivy.Array, ivy.NativeArray, int, list, tuple]] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.diff. This method simply wraps the function, and so the docstring for ivy.diff also applies to this method with minimal changes. Parameters ---------- self array-like input. n The number of times values are differenced. If zero, the input is returned as-is. axis The axis along which the difference is taken, default is the last axis. prepend,append Values to prepend/append to x along given axis prior to performing the difference. Scalar values are expanded to arrays with length 1 in the direction of axis and the shape of the input array in along all other axes. Otherwise the dimension and shape must match x except along axis. out optional output array, for writing the result to. Returns ------- ret Returns the n-th discrete difference along the given axis. Examples -------- >>> x = ivy.array([1, 2, 4, 7, 0]) >>> x.diff() ivy.array([ 1, 2, 3, -7]) """ return ivy.diff( self._data, n=n, axis=axis, prepend=prepend, append=append, out=out ) def fix( self: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.fix. This method simply wraps the function, and so the docstring for ivy.fix also applies to this method with minimal changes. Parameters ---------- self Array input. out optional output array, for writing the result to. Returns ------- ret Array of floats with elements corresponding to input elements rounded to nearest integer towards zero, element-wise. Examples -------- >>> x = ivy.array([2.1, 2.9, -2.1]) >>> x.fix() ivy.array([ 2., 2., -2.]) """ return ivy.fix(self._data, out=out) def nextafter( self: ivy.Array, x2: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.nextafter. This method simply wraps the function, and so the docstring for ivy.nextafter also applies to this method with minimal changes. Parameters ---------- self First input array. x2 Second input array. out Alternate output array in which to place the result. The default is None. Returns ------- ret The next representable values of x1 in the direction of x2. Examples -------- >>> x1 = ivy.array([1.0e-50, 2.0e+50]) >>> x2 = ivy.array([2.0, 1.0]) >>> x1.nextafter(x2) ivy.array([1.4013e-45., 3.4028e+38]) """ return ivy.nextafter(self._data, x2, out=out) def zeta( self: ivy.Array, q: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.zeta. This method simply wraps the function, and so the docstring for ivy.zeta also applies to this method with minimal changes. Parameters ---------- self First input array. q Second input array. out Alternate output array in which to place the result. The default is None. Returns ------- ret Array with values computed from zeta function from input arrays' values. Examples -------- >>> x = ivy.array([5.0, 3.0]) >>> q = ivy.array([2.0]) >>> x.zeta(q) ivy.array([0.0369, 0.2021]) """ return ivy.zeta(self._data, q, out=out) def gradient( self: Union[ivy.Array, ivy.NativeArray], /, *, spacing: Union[int, list, tuple] = 1, edge_order: int = 1, axis: Optional[Union[int, list, tuple]] = None, ) -> Union[ivy.Array, List[ivy.Array]]: """Calculate gradient of x with respect to (w.r.t.) spacing. Parameters ---------- self input array representing outcomes of the function spacing if not given, indices of x will be used if scalar indices of x will be scaled with this value if array gradient of x w.r.t. spacing edge_order 1 or 2, for 'first order' and 'second order' estimation of boundary values of gradient respectively. Note: jax supports edge_order=1 case only axis dimension(s) to approximate the gradient over by default partial gradient is computed in every dimension Returns ------- ret Array with values computed from gradient function from inputs Examples -------- >>> spacing = (ivy.array([-2., -1., 1., 4.]),) >>> x = ivy.array([4., 1., 1., 16.], ) >>> ivy.gradient(x, spacing=spacing) ivy.array([-3., -2., 2., 5.]) >>> x = ivy.array([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> ivy.gradient(x) [ivy.array([[ 9., 18., 36., 72.], [ 9., 18., 36., 72.]]), ivy.array([[ 1. , 1.5, 3. , 4. ], [10. , 15. , 30. , 40. ]])] >>> x = ivy.array([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> ivy.gradient(x, spacing=2.0) [ivy.array([[ 4.5, 9. , 18. , 36. ], [ 4.5, 9. , 18. , 36. ]]), ivy.array([[ 0.5 , 0.75, 1.5 , 2. ], [ 5. , 7.5 , 15. , 20. ]])] >>> x = ivy.array([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> ivy.gradient(x, axis=1) ivy.array([[ 1. , 1.5, 3. , 4. ], [10. , 15. , 30. , 40. ]]) >>> x = ivy.array([[1, 2, 4, 8], [10, 20, 40, 80]]) >>> ivy.gradient(x, spacing=[3., 2.]) [ivy.array([[ 3., 6., 12., 24.], [ 3., 6., 12., 24.]]), ivy.array([[ 0.5 , 0.75, 1.5 , 2. ], [ 5. , 7.5 , 15. , 20. ]])] >>> spacing = (ivy.array([0, 2]), ivy.array([0, 3, 6, 9])) >>> ivy.gradient(x, spacing=spacing) [ivy.array([[ 4.5, 9. , 18. , 36. ], [ 4.5, 9. , 18. , 36. ]]), ivy.array([[ 0.33333333, 0.5, 1., 1.33333333], [ 3.33333333, 5. , 10. , 13.33333333]])] """ return ivy.gradient( self._data, spacing=spacing, axis=axis, edge_order=edge_order ) def xlogy( self: ivy.Array, y: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.xlogy. This method simply wraps the function, and so the docstring for ivy.xlogy also applies to this method with minimal changes. Parameters ---------- self First input array. y Second input array. out Alternate output array in which to place the result. The default is None. Returns ------- ret The next representable values of x1 in the direction of x2. Examples -------- >>> x = ivy.zeros(3) >>> y = ivy.array([-1.0, 0.0, 1.0]) >>> x.xlogy(y) ivy.array([0.0, 0.0, 0.0]) >>> x = ivy.array([1.0, 2.0, 3.0]) >>> y = ivy.array([3.0, 2.0, 1.0]) >>> x.xlogy(y) ivy.array([1.0986, 1.3863, 0.0000]) """ return ivy.xlogy(self._data, y, out=out) def binarizer( self: ivy.Array, /, *, threshold: float = 0, out: Optional[ivy.Array] = None ) -> ivy.Array: """Map the values of the input tensor to either 0 or 1, element-wise, based on the outcome of a comparison against a threshold value. Parameters ---------- self Data to be binarized threshold Values greater than this are mapped to 1, others to 0. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Binarized output data """ return ivy.binarizer(self._data, threshold=threshold, out=out) def conj(self: ivy.Array, /, *, out: Optional[ivy.Array] = None) -> ivy.Array: """ivy.Array instance method variant of ivy.conj. This method simply wraps the function, and so the docstring for ivy.conj also applies to this method with minimal changes. Parameters ---------- self input array. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the complex conjugates of values in the input array, with the same dtype as the input array. Examples -------- >>> x = ivy.array([4+3j, 6+2j, 1-6j]) >>> x.conj() ivy.array([4-3j, 6-2j, 1+6j]) """ return ivy.conj(self._data, out=out) def lerp( self: ivy.Array, end: ivy.Array, weight: Union[ivy.Array, float], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.lerp. This method simply wraps the function, and so the docstring for ivy.lerp also applies to this method with minimal changes. Parameters ---------- self Array of starting points end Array of ending points weight Weight for the interpolation formula , array or scalar. out Alternate output array in which to place the result. The default is None. Returns ------- ret The linear interpolation between array self and array end based on scalar or array weight self + ((end - self) * weight) Examples -------- >>> x = ivy.array([1.0, 2.0, 3.0, 4.0]) >>> end = ivy.array([10.0, 10.0, 10.0, 10.0]) >>> weight = 0.5 >>> x.lerp(end, weight) ivy.array([5.5, 6. , 6.5, 7. ]) """ return ivy.lerp(self, end, weight, out=out) def ldexp( self: ivy.Array, x2: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.ldexp. This method simply wraps the function, and so the docstring for ivy.ldexp also applies to this method with minimal changes. Parameters ---------- self Input array. x2 The array of exponents. out Alternate output array in which to place the result. The default is None. Returns ------- ret The next representable values of x1 in the direction of x2. Examples -------- >>> x = ivy.array([1.0, 2.0, 3.0]) >>> y = ivy.array([3.0, 2.0, 1.0]) >>> x.ldexp(y) ivy.array([8.0, 8.0, 6.0]) """ return ivy.ldexp(self._data, x2, out=out) def frexp( self: ivy.Array, /, *, out: Optional[Tuple[ivy.Array, ivy.Array]] = None ) -> ivy.Array: """ivy.Array instance method variant of ivy.frexp. This method simply wraps the function, and so the docstring for ivy.frexp also applies to this method with minimal changes. Parameters ---------- self Input array. out Alternate output array in which to place the result. The default is None. Returns ------- ret The next representable values of x1 in the direction of x2. Examples -------- >>> x = ivy.array([1.0, 2.0, 3.0]) >>> x.frexp() ivy.array([[0.5, 0.5, 0.75], [1, 2, 2]]) """ return ivy.frexp(self._data, out=out) def modf( self: ivy.Array, /, *, out: Optional[Tuple[ivy.Array, ivy.Array]] = None ) -> Tuple[ivy.Array, ivy.Array]: """ivy.Array instance method variant of ivy.modf. This method simply wraps the function, and so the docstring for ivy.modf also applies to this method with minimal changes. Parameters ---------- self Input array. out Alternate output arrays in which to place the result. The default is None. Returns ------- ret The fractional and integral parts of the input array. Examples -------- >>> x = ivy.array([1.5, 2.7, 3.9]) >>> x.modf() (ivy.array([0.5, 0.7, 0.9]), ivy.array([1, 2, 3])) """ return ivy.modf(self._data, out=out) def digamma( self: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.digamma. This method simply wraps the function, and so the docstring for ivy.digamma also applies to this method with minimal changes. Note ---- The Ivy version only accepts real-valued inputs. Parameters ---------- self Input array. out Alternate output array in which to place the result. The default is None. Returns ------- ret Array with values computed from digamma function from input arrays' values, element-wise. Examples -------- >>> x = ivy.array([.9, 3, 3.2]) >>> y = ivy.digamma(x) ivy.array([-0.7549271 0.92278427 0.9988394]) """ return ivy.digamma(self._data, out=out) def sparsify_tensor( self: ivy.Array, card: int, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array class method variant of ivy.sparsify_tensor. This method simply wraps the function, and so the docstring for ivy.sparsify_tensor also applies to this method with minimal changes. Parameters ---------- self : array The tensor to sparsify. card : int The number of values to keep. out : array, optional Optional output array, for writing the result to. Returns ------- ret : array The sparsified tensor. Examples -------- >>> x = ivy.arange(100) >>> x = ivy.reshape(x, (10, 10)) >>> x.sparsify_tensor(10) ivy.array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]]) """ return ivy.sparsify_tensor(self._data, card, out=out) def erfc( self: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.erfc. This method simply wraps the function, and so the docstring for ivy.erfc also applies to this method with minimal changes. Parameters ---------- self Input array with real or complex valued argument. out Alternate output array in which to place the result. The default is None. Returns ------- ret Values of the complementary error function. Examples -------- >>> x = ivy.array([0, -1., 10.]) >>> x.erfc() ivy.array([1.00000000e+00, 1.84270084e+00, 2.80259693e-45]) """ return ivy.erfc(self._data, out=out) def erfinv( self: ivy.Array, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.erfinv. This method simply wraps the function, and so the docstring for ivy.erfinv also applies to this method with minimal changes. Parameters ---------- self Input array with real or complex valued argument. out Alternate output array in which to place the result. The default is None. Returns ------- ret Values of the inverse error function. Examples -------- >>> x = ivy.array([0, -1., 10.]) >>> x.erfinv() ivy.array([1.00000000e+00, 1.84270084e+00, 2.80259693e-45]) """ return ivy.erfinv(self._data, out=out)
ivy/ivy/data_classes/array/experimental/elementwise.py/0
{ "file_path": "ivy/ivy/data_classes/array/experimental/elementwise.py", "repo_id": "ivy", "token_count": 18642 }
7
# global import abc from typing import Union, Optional # local import ivy # ToDo: implement all methods here as public instance methods class _ArrayWithGradients(abc.ABC): def stop_gradient( self: ivy.Array, /, *, preserve_type: bool = True, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.stop_gradient. This method simply wraps the function, and so the docstring for ivy.stop_gradient also applies to this method with minimal changes. Parameters ---------- self Array for which to stop the gradient. preserve_type Whether to preserve gradient computation on ivy.Array instances. Default is True. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The same array x, but with no gradient information. Examples -------- >>> x = ivy.array([1., 2., 3.]) >>> y = x.stop_gradient(preserve_type=True) >>> print(y) ivy.array([1., 2., 3.]) """ return ivy.stop_gradient(self, preserve_type=preserve_type, out=out) def adam_step( self: ivy.Array, mw: Union[ivy.Array, ivy.NativeArray], vw: Union[ivy.Array, ivy.NativeArray], step: Union[int, float], /, *, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-7, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.adam_step. This method simply wraps the function, and so the docstring for ivy.adam_step also applies to this method with minimal changes. Parameters ---------- self Derivates of the cost c with respect to the weights ws, [dc/dw for w in ws]. mw running average of the gradients. vw running average of second moments of the gradients. step training step. beta1 gradient forgetting factor (Default value = 0.9). beta2 second moment of gradient forgetting factor (Default value = 0.999). epsilon divisor during adam update, preventing division by zero (Default value = 1e-7). out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The adam step delta. Examples -------- With :class:`ivy.Array` inputs: >>> dcdw = ivy.array([1, 2, 3]) >>> mw = ivy.ones(3) >>> vw = ivy.ones(1) >>> step = ivy.array(3) >>> adam_step_delta = dcdw.adam_step(mw, vw, step) >>> print(adam_step_delta) (ivy.array([0.2020105,0.22187898,0.24144873]), ivy.array([1.,1.10000002,1.20000005]), ivy.array([1.,1.00300002,1.00800002])) """ return ivy.adam_step( self, mw, vw, step, beta1=beta1, beta2=beta2, epsilon=epsilon, out=out ) def optimizer_update( self: ivy.Array, effective_grad: Union[ivy.Array, ivy.NativeArray], lr: Union[float, ivy.Array, ivy.NativeArray], /, *, stop_gradients: bool = True, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.optimizer_update. This method simply wraps the function, and so the docstring for ivy.optimizer_update also applies to this method with minimal changes. Parameters ---------- self Weights of the function to be updated. effective_grad Effective gradients of the cost c with respect to the weights ws, [dc/dw for w in ws]. lr Learning rate(s), the rate(s) at which the weights should be updated relative to the gradient. stop_gradients Whether to stop the gradients of the variables after each gradient step. Default is ``True``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The new function weights ws_new, following the optimizer updates. Examples -------- >>> w = ivy.array([1., 2., 3.]) >>> effective_grad = ivy.zeros(3) >>> lr = 3e-4 >>> ws_new = w.optimizer_update(effective_grad, lr) >>> print(ws_new) ivy.array([1., 2., 3.]) """ return ivy.optimizer_update( self, effective_grad, lr, stop_gradients=stop_gradients, out=out ) def gradient_descent_update( self: ivy.Array, dcdw: Union[ivy.Array, ivy.NativeArray], lr: Union[float, ivy.Array, ivy.NativeArray], /, *, stop_gradients: bool = True, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.gradient_descent_update. This method simply wraps the function, and so the docstring for ivy.gradient_descent_update also applies to this method with minimal changes. Parameters ---------- self Weights of the function to be updated. dcdw Derivates of the cost c with respect to the weights ws, [dc/dw for w in ws]. lr Learning rate(s), the rate(s) at which the weights should be updated relative to the gradient. stop_gradients Whether to stop the gradients of the variables after each gradient step. Default is ``True``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The new weights, following the gradient descent updates. Examples -------- With :class:`ivy.Array` inputs: >>> w = ivy.array([[1., 2, 3], ... [4, 6, 1], ... [1, 0, 7]]) >>> dcdw = ivy.array([[0.5, 0.2, 0.1], ... [0.3, 0.6, 0.4], ... [0.4, 0.7, 0.2]]) >>> lr = ivy.array(0.1) >>> new_weights = w.gradient_descent_update(dcdw, lr, stop_gradients = True) >>> print(new_weights) ivy.array([[ 0.95, 1.98, 2.99], ... [ 3.97, 5.94, 0.96], ... [ 0.96, -0.07, 6.98]]) """ return ivy.gradient_descent_update( self, dcdw, lr, stop_gradients=stop_gradients, out=out ) def lars_update( self: ivy.Array, dcdw: Union[ivy.Array, ivy.NativeArray], lr: Union[float, ivy.Array, ivy.NativeArray], /, *, decay_lambda: float = 0, stop_gradients: bool = True, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.lars_update. This method simply wraps the function, and so the docstring for ivy.lars_update also applies to this method with minimal changes. Parameters ---------- self Weights of the function to be updated. dcdw Derivates of the cost c with respect to the weights ws, [dc/dw for w in ws]. lr Learning rate, the rate at which the weights should be updated relative to the gradient. decay_lambda The factor used for weight decay. Default is zero. stop_gradients Whether to stop the gradients of the variables after each gradient step. Default is ``True``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The new function weights ws_new, following the LARS updates. Examples -------- With :class:`ivy.Array` inputs: >>> w = ivy.array([[3., 1, 5], ... [7, 2, 9]]) >>> dcdw = ivy.array([[0.3, 0.1, 0.2], ... [0.1, 0.2, 0.4]]) >>> lr = ivy.array(0.1) >>> new_weights = w.lars_update(dcdw, lr, stop_gradients = True) >>> print(new_weights) ivy.array([[2.34077978, 0.78025991, 4.56051969], ... [6.78026009, 1.56051981, 8.12103939]]) """ return ivy.lars_update( self, dcdw, lr, decay_lambda=decay_lambda, stop_gradients=stop_gradients, out=out, ) def adam_update( self: ivy.Array, dcdw: Union[ivy.Array, ivy.NativeArray], lr: Union[float, ivy.Array, ivy.NativeArray], mw_tm1: Union[ivy.Array, ivy.NativeArray], vw_tm1: Union[ivy.Array, ivy.NativeArray], step: int, /, *, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-7, stop_gradients: bool = True, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.adam_update. This method simply wraps the function, and so the docstring for ivy.adam_update also applies to this method with minimal changes. Parameters ---------- self Weights of the function to be updated. dcdw Derivates of the cost c with respect to the weights ws, [dc/dw for w in ws]. lr Learning rate(s), the rate(s) at which the weights should be updated relative to the gradient. mw_tm1 running average of the gradients, from the previous time-step. vw_tm1 running average of second moments of the gradients, from the previous time-step. step training step. beta1 gradient forgetting factor (Default value = 0.9). beta2 second moment of gradient forgetting factor (Default value = 0.999). epsilon divisor during adam update, preventing division by zero (Default value = 1e-7). stop_gradients Whether to stop the gradients of the variables after each gradient step. Default is ``True``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The new function weights ws_new, and also new mw and vw, following the adam updates. Examples -------- With :class:`ivy.Array` inputs: >>> w = ivy.array([1., 2, 3.]) >>> dcdw = ivy.array([0.2,0.1,0.3]) >>> lr = ivy.array(0.1) >>> vw_tm1 = ivy.zeros(1) >>> mw_tm1 = ivy.zeros(3) >>> step = 2 >>> updated_weights = w.adam_update(dcdw, lr, mw_tm1, vw_tm1, step) >>> print(updated_weights) (ivy.array([0.92558753, 1.92558873, 2.92558718]), ivy.array([0.02, 0.01, 0.03]), ivy.array([4.00000063e-05, 1.00000016e-05, 9.00000086e-05])) """ return ivy.adam_update( self, dcdw, lr, mw_tm1, vw_tm1, step, beta1=beta1, beta2=beta2, epsilon=epsilon, stop_gradients=stop_gradients, out=out, ) def lamb_update( self: ivy.Array, dcdw: Union[ivy.Array, ivy.NativeArray], lr: Union[float, ivy.Array, ivy.NativeArray], mw_tm1: Union[ivy.Array, ivy.NativeArray], vw_tm1: Union[ivy.Array, ivy.NativeArray], step: int, /, *, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-7, max_trust_ratio: Union[int, float] = 10, decay_lambda: float = 0, stop_gradients: bool = True, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.lamb_update. This method simply wraps the function, and so the docstring for ivy.lamb_update also applies to this method with minimal changes. Parameters ---------- self Weights of the function to be updated. dcdw Derivates of the cost c with respect to the weights ws, [dc/dw for w in ws]. lr Learning rate(s), the rate(s) at which the weights should be updated relative to the gradient. mw_tm1 running average of the gradients, from the previous time-step. vw_tm1 running average of second moments of the gradients, from the previous time-step. step training step. beta1 gradient forgetting factor (Default value = 0.9). beta2 second moment of gradient forgetting factor (Default value = 0.999). epsilon divisor during adam update, preventing division by zero (Default value = 1e-7). max_trust_ratio The maximum value for the trust ratio. Default is 10. decay_lambda The factor used for weight decay. Default is zero. stop_gradients Whether to stop the gradients of the variables after each gradient step. Default is ``True``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The new function weights ws_new, following the LAMB updates. Examples -------- With :class:`ivy.Array` inputs: >>> w = ivy.array([1., 2, 3]) >>> dcdw = ivy.array([0.5,0.2,0.1]) >>> lr = ivy.array(0.1) >>> vw_tm1 = ivy.zeros(1) >>> mw_tm1 = ivy.zeros(3) >>> step = ivy.array(1) >>> new_weights = w.lamb_update(dcdw, lr, mw_tm1, vw_tm1, step) >>> print(new_weights) (ivy.array([0.784, 1.78 , 2.78 ]), ivy.array([0.05, 0.02, 0.01]), ivy.array([2.5e-04, 4.0e-05, 1.0e-05])) """ return ivy.lamb_update( self, dcdw, lr, mw_tm1, vw_tm1, step, beta1=beta1, beta2=beta2, epsilon=epsilon, max_trust_ratio=max_trust_ratio, decay_lambda=decay_lambda, stop_gradients=stop_gradients, out=out, )
ivy/ivy/data_classes/array/gradients.py/0
{ "file_path": "ivy/ivy/data_classes/array/gradients.py", "repo_id": "ivy", "token_count": 7366 }
8
"""Base Container Object.""" # global import inspect from itertools import chain import re import abc import copy import termcolor import numpy as np import json from ivy.utils.exceptions import IvyBackendException, IvyException try: # noinspection PyPackageRequirements import h5py except ModuleNotFoundError: h5py = None import pickle import random from operator import mul from functools import reduce as _reduce from typing import Union, Tuple from builtins import set # local import ivy ansi_escape = re.compile(r"\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])") def _is_jsonable(x): try: json.dumps(x) return True except (TypeError, OverflowError): return False def _repr(x): try: return x.__repr__() except TypeError: return str(x) # noinspection PyMissingConstructor class ContainerBase(dict, abc.ABC): def __init__( self, dict_in=None, queues=None, queue_load_sizes=None, container_combine_method="list_join", queue_timeout=None, print_limit=10, key_length_limit=None, print_indent=4, print_line_spacing=0, ivyh=None, default_key_color="green", keyword_color_dict=None, rebuild_child_containers=False, types_to_iteratively_nest=None, alphabetical_keys=True, dynamic_backend=None, build_callable=False, **kwargs, ): """Initialize container object from input dict representation. Parameters ---------- dict_in the dictionary the container should wrap around. Default is ``None``. queues Sequence of multiprocessing queues, each of which returns containers. This enables the current container to be passed around asynchronously while waiting for data. Default is ``None``. queue_load_sizes Size of leading dimension of the containers returned by each queue. Default is ``None``. container_combine_method The method to use for combining containers arriving from different queues. Default is ivy.Container.cont_list_join queue_timeout The timeout when waiting for containers to arrive from the queues. Default is global. print_limit The total array size limit when printing the container. Default is 10. key_length_limit The maximum key length when printing the container. Default is ``None``. print_indent The number of whitespaces to use for indenting when printing the container. Default is 4. print_line_spacing The number of extra newlines to use between keys when printing the container. Default is ``0``. ivyh Handle to ivy module to use for the calculations. Default is ``None``, which results in the global ivy. default_key_color The default key color for printing the container to the terminal. Default is 'green'. keyword_color_dict A dict mapping keywords to their termcolor color codes for printing the container. (Default value = None) rebuild_child_containers Whether to rebuild container found in dict_in with these constructor params. Default is ``False``, in which case the original container are kept as are. build_callable Whether to treat functions encountered at leaf nodes as further instructions to build the container types_to_iteratively_nest The data types to nest iteratively in the dict structure, each type must be iterable. Default is ``None``. alphabetical_keys Whether to sort the container keys alphabetically, or preserve the dict order. Default is ``True``. kwargs keyword arguments for dict creation. Default is ``None``. """ self._queues = queues self._container_combine_method = container_combine_method if ivy.exists(self._queues): if isinstance(self._container_combine_method, str): self._container_combine_method = { "list_join": self.cont_list_join, "concat": lambda conts: self.concat(conts, 0), }[self._container_combine_method] self._loaded_containers_from_queues = {} self._queue_load_sizes_cum = np.cumsum(queue_load_sizes) self._queue_timeout = ivy.default(queue_timeout, ivy.queue_timeout) if dynamic_backend is not None: self._dynamic_backend = dynamic_backend else: self._dynamic_backend = ivy.dynamic_backend if dict_in is None: if kwargs: dict_in = dict(**kwargs) else: dict_in = {} elif kwargs: raise ivy.utils.exceptions.IvyException( "dict_in and **kwargs cannot both be specified for ivy.Container " "constructor, please specify one or the other, not both." ) self._config_in = { "print_limit": print_limit, "print_indent": print_indent, "key_length_limit": key_length_limit, "print_line_spacing": print_line_spacing, "ivyh": ivyh, "default_key_color": default_key_color, "keyword_color_dict": keyword_color_dict, "rebuild_child_containers": rebuild_child_containers, "build_callable": build_callable, "types_to_iteratively_nest": types_to_iteratively_nest, "alphabetical_keys": alphabetical_keys, } self._config = {} self.cont_inplace_update(dict_in, **self._config_in) # Class Methods # # --------------# @staticmethod def cont_multi_map_in_function( fn, *args, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=None, out=None, **kwargs, ) -> Union[Tuple[ivy.Container, ivy.Container], ivy.Container]: inspect_fn = fn if isinstance(fn, str): inspect_fn = ivy.__dict__[fn] # retrieve indices where leaves of args are also nested arg_cont_idxs = ivy.nested_argwhere( args, ivy.is_ivy_container, to_ignore=ivy.Container ) # retrieve indices where leaves of kwargs are also nested kwarg_cont_idxs = ivy.nested_argwhere( kwargs, ivy.is_ivy_container, to_ignore=ivy.Container ) # retrieve all the containers in args arg_conts = ivy.multi_index_nest(args, arg_cont_idxs) num_arg_conts = len(arg_conts) # retrieve all the containers in kwargs kwarg_conts = ivy.multi_index_nest(kwargs, kwarg_cont_idxs) # Combine the retrieved containers from args and kwargs into a single list with_out = ( inspect.signature(inspect_fn).parameters.get("out") is not None and out is not None ) if with_out: out_conts = [out] num_out_conts = 1 out_cont_idxs = [] if not ivy.is_array(out) and not ivy.is_ivy_container(out): out_cont_idxs = ivy.nested_argwhere( out, ivy.is_ivy_container, to_ignore=ivy.Container ) out_conts = ivy.multi_index_nest(out, out_cont_idxs) num_out_conts = len(out_conts) conts = arg_conts + kwarg_conts + out_conts else: conts = arg_conts + kwarg_conts ivy.utils.assertions.check_exists( conts, message="no containers found in arguments" ) cont0 = conts[0] if isinstance(fn, str): fn = cont0.cont_ivy.__dict__[fn] # Get the function with the name fn_name, enabling containers to specify # their backends irrespective of global ivy's backend def map_fn(vals, _): if with_out: out = vals[-num_out_conts:] del vals[-num_out_conts:] arg_vals = vals[:num_arg_conts] a = ivy.copy_nest(args) a = ivy.set_nest_at_indices(a, arg_cont_idxs, arg_vals) kwarg_vals = vals[num_arg_conts:] kw = ivy.copy_nest(kwargs) kw = ivy.set_nest_at_indices(kw, kwarg_cont_idxs, kwarg_vals) if with_out: out = out[0] if len(out) == 1 else out return fn(*a, out=out, **kw) else: return fn(*a, **kw) # Replace each container in arg and kwarg with the arrays at the leaf # levels of that container using map_fn and call fn using those arrays # as inputs ret = ivy.Container.cont_multi_map( map_fn, conts, key_chains, to_apply, prune_unapplied, map_nests=map_sequences, ) # Multiple containers for functions returning multiple arrays if ivy.is_ivy_container(ret): for values in ret.values(): if isinstance(values, (tuple, list)): for v in values: if ivy.is_ivy_array(v): return ret.cont_unstack_conts(0) if with_out: for out_cont_idx, out_cont in zip(out_cont_idxs, out_conts): out_cont.cont_inplace_update(ivy.index_nest(ret, out_cont_idx)) if len(out_conts) == 1: out.cont_inplace_update(ret) ret = out return ret @staticmethod def cont_handle_inplace(ret, out): """Return an inplace update of out, provided it is not None, by updating with the values in ret. Parameters ---------- ret The container with the return values out The optional out container, which is primed for being overwritten if it exists Returns ------- The out container, but filled with the values from the ret container """ if ivy.exists(out): out.cont_inplace_update(ret) ret = out return ret @staticmethod def cont_list_join(containers, config=None): """Join containers of lists together along the specified dimension. Parameters ---------- containers containers to list join config The configuration for the containers. Default is the same as container0. Returns ------- List joined containers, with each entry being a list of arrays """ container0 = containers[0] if not ivy.exists(config): config = ( container0.cont_config if isinstance(container0, ivy.Container) else {} ) if isinstance(container0, ivy.Container): return_dict = {} for key in container0.keys(): new_list = [] for container in containers: new_list.append(container[key]) return_dict[key] = ivy.Container.cont_list_join(new_list, config) return ivy.Container(return_dict, **config) else: return [item for sublist in containers for item in sublist] @staticmethod def cont_list_stack(containers, dim, config=None): """List stack containers together along the specified dimension. Parameters ---------- containers containers to list stack dim dimension along which to list stack config The configuration for the containers. Default is the same as container0. Returns ------- Stacked containers, with each entry being a list of arrays """ container0 = containers[0] if not ivy.exists(config): config = ( container0.cont_config if isinstance(container0, ivy.Container) else {} ) if isinstance(container0, ivy.Container): return_dict = {} for key in container0.keys(): return_dict[key] = ivy.Container.cont_list_stack( [container[key] for container in containers], dim, config ) return ivy.Container(return_dict, **config) else: return containers @staticmethod def _cont_concat_unify(containers, device, axis=0): return ivy.concat( [cont.to_device(device) for cont in containers.values()], axis=axis ) @staticmethod def _cont_sum_unify(containers, device, _=None, _1=None): return sum( (cont.to_device(device) for cont in containers.values()), start=ivy.zeros([]), ) @staticmethod def _cont_mean_unify(containers, device, _=None, _1=None): return ivy.Container._cont_sum_unify(containers, device) / len(containers) @staticmethod def cont_unify(containers, device, mode, axis=0): """Unify a list of containers, on arbitrary devices, to a single container on the specified device. Parameters ---------- containers containers to unify dev The device to unify the containers to. mode The mode by which to unify, must be one of [ concat | mean | sum ] axis The axis along which to concattenate the container, if concat mode is set. Default is ``0``. Returns ------- Unified container """ return { "concat": ivy.Container._cont_concat_unify, "sum": ivy.Container._cont_sum_unify, "mean": ivy.Container._cont_mean_unify, }[mode](containers, device, axis) @staticmethod def cont_combine(*containers, config=None): """Combine keys and values in a sequence of containers, with priority given to the right-most container in the case of duplicates. Parameters ---------- containers containers to compare config The configuration for the containers. Default is the same as container_rightmost. Returns ------- Combined containers """ # if inputs are not dicts, then simply return the right-most value container_rightmost = containers[-1] if not isinstance(container_rightmost, dict): return container_rightmost if not ivy.exists(config): # noinspection PyUnresolvedReferences config = ( container_rightmost.cont_config if isinstance(container_rightmost, ivy.Container) else {} ) # return if len==1 if len(containers) == 1: return container_rightmost # otherwise, check that the keys are aligned between each container, and apply # this method recursively return_dict = {} all_keys = { item for sublist in [list(cont.keys()) for cont in containers] for item in sublist } for key in all_keys: keys_present = [key in cont for cont in containers] return_dict[key] = ivy.Container.cont_combine( *[cont[key] for cont, kp in zip(containers, keys_present) if kp], config=config, ) return ivy.Container(return_dict, **config) @staticmethod def cont_diff( *containers, mode="all", diff_keys="diff", detect_key_diffs=True, detect_value_diffs=True, detect_shape_diffs=True, config=None, ): """Compare keys and values in a sequence of containers, returning the single shared values where they are the same, and new nested sub-dicts with all values where they are different. Parameters ---------- containers containers to compare mode The mode of the diff operation, returning either all keys and values, only those that are consist across the containers, or only the differences. Default is all. diff_keys The key/keys to add to the returned container when differences are found. Default is ``"diff"``. detect_key_diffs Whether to treat different keys as detected differences. If not, the keys among the input containers are simply combined without flagging differences. Default is ``True``. detect_value_diffs Whether to treat different values as detected differences. Default is ``True``. detect_shape_diffs Whether to treat different array shapes as detected differences. Default is ``True``. config The configuration for the containers. Default is the same as container0. *containers Returns ------- Compared containers """ ivy.utils.assertions.check_elem_in_list(mode, ["all", "same_only", "diff_only"]) # if inputs are not dicts, then compare their values to determine the diff dict num_containers = len(containers) container0 = containers[0] if not ivy.exists(config): config = ( container0.cont_config if isinstance(container0, ivy.Container) else {} ) if not isinstance(container0, dict): equal_mat = ivy.all_equal(*containers, equality_matrix=True) if not detect_value_diffs: equal_mat = ivy.ones_like(equal_mat) if detect_shape_diffs: shape_equal_mat = ivy.all_equal( *[c.shape if ivy.is_array(c) else None for c in containers], equality_matrix=True, ) equal_mat = ivy.logical_and(equal_mat, shape_equal_mat) # noinspection PyTypeChecker if ivy.min(ivy.astype(equal_mat, "int32")) == 1: if mode == "diff_only": return ivy.Container(**config) return container0 elif mode == "same_only": return ivy.Container(**config) else: cont_range = range(num_containers) diff_dict = {} cont_dict = dict(zip(cont_range, containers)) idxs_added = [] for idx in cont_range: if idx not in idxs_added: idxs_to_add = ivy.argwhere(equal_mat[idx]) idxs_to_add_list = sorted( ivy.to_numpy(idxs_to_add).reshape(-1).tolist() ) if isinstance(diff_keys, str): key = f"{diff_keys}_{str(idxs_to_add_list)[1:-1]}" elif isinstance(diff_keys, (list, tuple)): key = diff_keys[idx] else: raise ivy.utils.exceptions.IvyException( "diff_keys must be either a string or list of strings," f" but found {diff_keys} of type {type(diff_keys)}" ) diff_dict[key] = cont_dict[idx] idxs_added += idxs_to_add_list return ivy.Container(diff_dict, **config) # otherwise, check that the keys are aligned between each container, and apply # this method recursively return_dict = {} all_keys = { item for sublist in [list(cont.keys()) for cont in containers] for item in sublist } for key in all_keys: keys_present = [key in cont for cont in containers] all_keys_present = sum(keys_present) == num_containers if all_keys_present: res = ivy.Container.cont_diff( *[ ( cont[key]() if cont.cont_config["build_callable"] and callable(cont[key]) else cont[key] ) for cont in containers ], mode=mode, diff_keys=diff_keys, detect_key_diffs=detect_key_diffs, detect_value_diffs=detect_value_diffs, detect_shape_diffs=detect_shape_diffs, config=config, ) if not isinstance(res, dict) or res: return_dict[key] = res continue elif sum(keys_present) == 1 and not detect_key_diffs: if mode == "all": return_dict[key] = containers[keys_present.index(True)][key] continue diff_dict = {} for i, (key_present, cont) in enumerate(zip(keys_present, containers)): if detect_key_diffs: if key_present and mode != "same_only": if isinstance(diff_keys, str): diff_dict[diff_keys + "_" + str(i)] = cont[key] elif isinstance(diff_keys, (list, tuple)): diff_dict[diff_keys[i]] = cont[key] else: raise ivy.utils.exceptions.IvyException( "diff_keys must be either a string or list of strings," f" but found {diff_keys} of type {type(diff_keys)}" ) if diff_dict: return_dict[key] = diff_dict return ivy.Container(return_dict, **config) @staticmethod def cont_structural_diff( *containers, mode="all", diff_keys="diff", detect_key_diffs=True, detect_shape_diffs=True, config=None, ): """Compare keys and shapes in a sequence of containers, returning the single shared values where they are the same, and new nested sub-dicts with all values where they are different. Parameters ---------- containers containers to compare mode The mode of the diff operation, returning either all keys and values, only those that are consist across the containers, or only the differences. Default is all. diff_keys The key/keys to add to the returned container when differences are found. Default is "diff". detect_key_diffs Whether to treat different keys as detected differences. If not, the keys among the input containers are simply combined without flagging differences. Default is ``True``. detect_shape_diffs Whether to treat different array shapes as detected differences. Default is ``True``. config The configuration for the containers. Default is the same as container0. *containers Returns ------- Compared containers """ return ivy.Container.cont_diff( *containers, mode=mode, diff_keys=diff_keys, detect_key_diffs=detect_key_diffs, detect_value_diffs=False, detect_shape_diffs=detect_shape_diffs, config=config, ) @staticmethod def cont_multi_map( func, containers, key_chains=None, to_apply=True, prune_unapplied=False, key_chain="", config=None, map_nests=False, assert_identical=False, ): """Apply function to all array values from a collection of containers. Parameters ---------- func Function to apply to each container entry. containers containers to map. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied, otherwise the leftmost container value is used. Default is ``False``. key_chain Chain of keys for this dict entry (Default value = '') config The configuration for the containers. Default is the same as container0. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. assert_identical Whether to assert that the input containers are identical or not. Returns ------- Container """ # retrieve all keys and the first container if it exists keys = set([]) container0 = None for container in containers: if isinstance(container, ivy.Container): if container0 is None: container0 = container keys = keys.union(container.keys()) ivy.utils.assertions.check_exists( container0, message="No containers found in the inputs to ivy.Container.cont_multi_map", ) if not ivy.exists(config): config = ( container0.cont_config if isinstance(container0, ivy.Container) else {} ) return_dict = {} for key in keys: values = [] for cont in containers: if isinstance(cont, (ivy.Container, list, tuple)) and key in cont: values.append(cont[key]) elif not isinstance(cont, (ivy.Container, list, tuple)): values.append(cont) value0 = values[0] if len(values) >= 1: this_key_chain = key if key_chain == "" else (key_chain + "/" + key) is_container = [ivy.is_ivy_container(x) for x in values] def _found_in_key_chains(this_key_chain, key_chains): if key_chains is None: return False for key_chain in key_chains: if this_key_chain.startswith(key_chain): return True return False if not assert_identical and not all(is_container) and any(is_container): found = _found_in_key_chains(this_key_chain, key_chains) if key_chains is not None: if (found and not to_apply) or (not found and to_apply): if prune_unapplied: continue return_dict[key] = value0 continue return_dict[key] = func(values, this_key_chain) else: if isinstance(value0, ivy.Container): ret = ivy.Container.cont_multi_map( func, values, key_chains, to_apply, prune_unapplied, this_key_chain, config, map_nests, assert_identical, ) if ret: return_dict[key] = ret elif ( any(isinstance(x, (list, tuple)) for x in values) and map_nests ): ret = ivy.nested_multi_map( lambda x, _: func(x, None), values, to_ivy=False ) if prune_unapplied and not ret: continue return_dict[key] = ret else: found = _found_in_key_chains(this_key_chain, key_chains) if key_chains is not None: if (found and not to_apply) or (not found and to_apply): if prune_unapplied: continue return_dict[key] = value0 continue return_dict[key] = func(values, this_key_chain) else: return_dict[key] = value0 # noinspection PyProtectedMember return ivy.Container(return_dict, **config) @staticmethod def cont_common_key_chains(containers): """Return the key-chains common across all containers. Parameters ---------- containers Containers to check. Returns ------- list of key-chains. """ if len(containers) == 1: return containers[0].cont_all_key_chains() sets = [set(cont.cont_all_key_chains()) for cont in containers] return list(sets[0].intersection(*sets[1:])) @staticmethod def cont_identical( containers, check_types=True, check_shapes=True, same_arrays=True, arrays_equal=True, key_chains=None, to_apply=True, partial=False, key_chain="", assert_and_assign=False, ): """Return a single boolean as to whether the input containers have identical key- chains and data types. Parameters ---------- containers containers to check. check_types Whether to check if the datatypes of the leaf nodes are the same. Default is ``True``. check_shapes Whether to check if the shapes of the leaf nodes are the same. Default is ``True``. same_arrays Whether to check if the arrays are the exact same instances. Default is ``True``. arrays_equal Whether to check if the arrays have equal values. Default is ``True``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. partial Whether to also check for partially complete sub-containers. Default is ``False``. key_chain Chain of keys for this dict entry (Default value = '') assert_and_assign if true, then the container being compared with is updated with the value in the container being compared to given that the structures are congruent Returns ------- Boolean """ if partial: common_key_chains = ivy.Container.cont_common_key_chains(containers) if not common_key_chains: return False containers = [ cont.cont_at_key_chains(common_key_chains) for cont in containers ] keys = {i for sl in [list(cont.keys()) for cont in containers] for i in sl} # noinspection PyProtectedMember for key in keys: if not min(key in cont for cont in containers): return False for cont in containers: if cont.cont_config["build_callable"]: cont[key] = cont[key]() if callable(cont[key]) else cont[key] values = [cont[key] for cont in containers] value_0 = values[0] type_0 = type(value_0) types = [type(val) for val in values] if not min(type_n is type_0 for type_n in types): if isinstance(value_0, ivy.Container) or check_types: return False if ivy.is_array(value_0): if check_shapes: shape_0 = value_0.shape shapes = [val.shape for val in values] if not min(shape_n == shape_0 for shape_n in shapes): return False if same_arrays: id_0 = id(value_0) ids = [id(val) for val in values] if not min(id_n == id_0 for id_n in ids): return False elif arrays_equal: if not ivy.all_equal(*values): return False if assert_and_assign: containers[0].cont_set_at_key_chain( key, containers[1][key], inplace=True ) this_key_chain = key if key_chain == "" else f"{key_chain}/{key}" if isinstance(value_0, ivy.Container): ret = ivy.Container.cont_identical( values, check_types, check_shapes, same_arrays, arrays_equal, key_chains, to_apply, partial, this_key_chain, assert_and_assign=assert_and_assign, ) if not ret: return False if assert_and_assign: # TODO optimise this further, such that keys are assigned # without waiting for more building containers[0][key].cont_set_at_key_chains( target_dict=containers[1][key], inplace=True ) return True @staticmethod def cont_assert_identical( containers, check_types=True, check_shapes=True, same_arrays=True, arrays_equal=True, key_chains=None, to_apply=True, partial=False, ): """Assert whether the input containers are identical. Otherwise, the diff is shown in an exception. Parameters ---------- containers containers to check. check_types Whether to check if the datatypes of the leaf nodes are the same. Default is ``True``. check_shapes Whether to check if the shapes of the leaf nodes are the same. Default is ``True``. same_arrays Whether to check if the arrays are the exact same instances. Default is ``True``. arrays_equal Whether to check if the arrays have equal values. Default is ``True``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. partial Whether to also check for partially complete sub-containers. Default is ``False``. """ ivy.utils.assertions.check_true( ivy.Container.cont_identical( containers, check_types, check_shapes, same_arrays, arrays_equal, key_chains, to_apply, partial, ), f"Containers were not identical:\n\n{ivy.Container.cont_diff(*containers)}", ) @staticmethod def cont_identical_structure( containers, check_types=True, check_shapes=True, key_chains=None, to_apply=True, partial=False, key_chain="", assert_and_assign=False, ): """Return a single boolean as to whether the input containers have identical structure. Parameters ---------- containers containers to check. check_types Whether to also check whether the datatypes of the leaf nodes are the same. Default is ``True``. check_shapes Whether to also check whether the shapes of the leaf nodes are the same. Default is ``True``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. partial Whether to also check for partially complete sub-containers. Default is ``False``. key_chain Chain of keys for this dict entry (Default value = '') assert_and_assign if true, then the container being compared with is updated with the value in the container being compared to given that the structures are congruent Returns ------- Boolean """ return ivy.Container.cont_identical( containers, check_types, check_shapes, False, False, key_chains, to_apply, partial, key_chain, assert_and_assign=assert_and_assign, ) @staticmethod def cont_assert_identical_structure( containers, check_types=True, check_shapes=True, key_chains=None, to_apply=True, partial=False, assert_and_assign=False, ): """Assert whether the input containers have identical structure. Otherwise, the diff is shown in an exception. Parameters ---------- containers containers to check. check_types Whether to also check whether the datatypes of the leaf nodes are the same. Default is ``True``. check_shapes Whether to also check whether the shapes of the leaf nodes are the same. Default is ``True``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. partial Whether to also check for partially complete sub-containers. Default is ``False``. assert_and_assign if true, then the container being compared with is updated with the value in the container being compared to given that the structures are congruent """ ivy.utils.assertions.check_true( ivy.Container.cont_identical_structure( containers, check_types, check_shapes, key_chains, to_apply, partial, assert_and_assign=assert_and_assign, ), "Containers did not have identical" f" structure:\n\n{ivy.Container.cont_structural_diff(*containers)}", ) @staticmethod def cont_identical_configs(containers): """Return a single boolean as to whether the input containers all have identical configs. Parameters ---------- containers containers to check. """ ivy.utils.assertions.check_greater(len(containers), 1, as_array=False) configs = [cont.cont_config for cont in containers] config0 = configs[0] return all( min(config[k] == v for config in configs) for k, v in config0.items() ) @staticmethod def cont_identical_array_shapes(containers, exclusive=False): """Determine whether all of the containers have identical number of arrays and identical array shapes, regardless of their key-chain structures. Parameters ---------- containers containers to check. exclusive Whether to check if the data type is exclusively an array, rather than a variable or traced array. (Default value = False) Returns ------- Boolean """ array_conts = [cont.cont_size_ordered_arrays(exclusive) for cont in containers] array_cont0 = array_conts[0] array_cont0_len = len(array_cont0) for array_cont in array_conts[1:]: if len(array_cont) != array_cont0_len: return False elif not min( a.shape == a0.shape for a, a0 in zip(array_cont.values(), array_cont0.values()) ): return False return True @staticmethod def cont_load(filepath, format="h5py"): if format == "json": return ivy.Container.cont_from_disk_as_json(filepath) elif format == "pickle": return ivy.Container.cont_from_disk_as_pickled(filepath) elif format == "h5py": return ivy.Container.cont_from_disk_as_hdf5(filepath) else: raise ivy.utils.exceptions.IvyException("Unsupported format") @staticmethod def cont_from_disk_as_hdf5( h5_obj_or_filepath, slice_obj=slice(None), alphabetical_keys=True, ivyh=None ): """Load container object from disk, as an h5py file, at the specified hdf5 filepath. Parameters ---------- h5_obj_or_filepath Filepath where the container object is saved to disk, or h5 object. slice_obj slice object to slice all h5 elements. (Default value = slice(None)) alphabetical_keys Whether to sort the container keys alphabetically, or preserve the dict order. Default is ``True``. ivyh Handle to ivy module to use for the calculations. Default is ``None``, which results in the global ivy. Returns ------- Container loaded from disk """ ivy.utils.assertions.check_exists( h5py, message=( "You must install python package h5py in order to load hdf5 " "files from disk into a container." ), ) container_dict = {} if isinstance(h5_obj_or_filepath, str): h5_obj = h5py.File(h5_obj_or_filepath, "r") else: h5_obj = h5_obj_or_filepath items = sorted(h5_obj.items()) if alphabetical_keys else h5_obj.items() for key, value in items: if isinstance(value, h5py.Group): container_dict[key] = ivy.Container.cont_from_disk_as_hdf5( value, slice_obj, ivyh ) elif isinstance(value, h5py.Dataset): container_dict[key] = ivy.default(ivyh, ivy).array( list(value[slice_obj]), dtype=str(value[slice_obj].dtype) ) else: raise ivy.utils.exceptions.IvyException( "Item found inside h5_obj which was neither a Group nor a Dataset." ) return ivy.Container(container_dict, ivyh=ivyh) @staticmethod def cont_from_disk_as_pickled(pickle_filepath, ivyh=None): """Load container object from disk at the specified pickle filepath. Parameters ---------- pickle_filepath Filepath where the container object is saved to disk. ivyh Handle to ivy module to use for the calculations. Default is ``None``, which results in the global ivy. Returns ------- Container loaded from disk """ return ivy.Container( pickle.load(open(pickle_filepath, "rb")), rebuild_child_containers=True, ivyh=ivyh, ).to_ivy() @staticmethod def cont_from_disk_as_json(json_filepath, ivyh=None): """Load container object from disk at the specified json filepath. If some objects were not json-able during saving, then they will be loaded as strings. Parameters ---------- json_filepath Filepath where the container object is saved to disk. ivyh Handle to ivy module to use for the calculations. Default is ``None``, which results in the global ivy. Returns ------- Container loaded from disk """ with open(json_filepath) as json_data_file: return ivy.Container(json.load(json_data_file), ivyh=ivyh) @staticmethod def h5_file_size(h5_obj_or_filepath): """Get file size of h5 file contents. Parameters ---------- h5_obj_or_filepath Filepath where the container object is saved to disk, or h5 object. Returns ------- Size of h5 file contents, and batch size. """ ivy.utils.assertions.check_exists( h5py, message=( "You must install python package h5py in order to determine " "the size of hdf5 files." ), ) if isinstance(h5_obj_or_filepath, str): h5_obj = h5py.File(h5_obj_or_filepath, "r") else: h5_obj = h5_obj_or_filepath size = 0 batch_size = 0 for value in h5_obj.values(): if isinstance(value, h5py.Group): size_to_add, batch_size = ivy.Container.h5_file_size(value) size += size_to_add elif isinstance(value, h5py.Dataset): value_shape = value.shape size += _reduce(mul, value_shape, 1) * value.dtype.itemsize batch_size = value_shape[0] else: raise ivy.utils.exceptions.IvyException( "Item found inside h5_obj which was neither a Group nor a Dataset." ) return size, batch_size @staticmethod def shuffle_h5_file(h5_obj_or_filepath, seed_value=0): """Shuffle entries in all datasets of h5 file, such that they are still aligned along axis 0. Parameters ---------- h5_obj_or_filepath Filepath where the container object is saved to disk, or h5 object. seed_value random seed to use for array shuffling (Default value = 0) """ ivy.utils.assertions.check_exists( h5py, message=( "You must install python package h5py in order to shuffle " "hdf5 files on disk." ), ) if seed_value is None: seed_value = random.randint(0, 1000) if isinstance(h5_obj_or_filepath, str): h5_obj = h5py.File(h5_obj_or_filepath, "a") else: h5_obj = h5_obj_or_filepath for value in h5_obj.values(): if isinstance(value, h5py.Group): ivy.Container.shuffle_h5_file(value, seed_value) elif isinstance(value, h5py.Dataset): random.seed(seed_value) # noinspection PyTypeChecker random.shuffle(value) else: raise ivy.utils.exceptions.IvyException( "Item found inside h5_obj which was neither a Group nor a Dataset." ) if isinstance(h5_obj, h5py.File): h5_obj.close() @staticmethod def cont_reduce(containers, reduction, config=None): """Reduce containers. Parameters ---------- containers containers to reduce reduction the reduction function config The configuration for the containers. Default is the same as container0. Returns ------- reduced containers """ container0 = containers[0] if not ivy.exists(config): config = ( container0.cont_config if isinstance(container0, ivy.Container) else {} ) if isinstance(container0, ivy.Container): return_dict = {} for key in container0.keys(): return_dict[key] = ivy.Container.cont_reduce( [container[key] for container in containers], reduction ) return ivy.Container(return_dict, **config) else: # noinspection PyBroadException try: return reduction(containers) except Exception as e: raise ivy.utils.exceptions.IvyException( str(e) + "\nContainer reduce operation only valid for containers of arrays" ) @staticmethod def cont_flatten_key_chain( key_chain, replacement="__", above_height=None, below_depth=None ): """Summary. Parameters ---------- key_chain param replacement: (Default value = '__') above_height Default value = None) below_depth Default value = None) replacement (Default value = '__') """ # noinspection RegExpSingleCharAlternation flat_keys = re.split("/|\.", key_chain) # noqa num_keys = len(flat_keys) pre_keys = [] post_keys = [] if above_height and num_keys > above_height: post_keys = flat_keys[-above_height:] del flat_keys[-above_height:] if below_depth and num_keys > below_depth: pre_keys = flat_keys[0:below_depth] del flat_keys[0:below_depth] return "/".join( [ k for k in [ "/".join(pre_keys), replacement.join(flat_keys), "/".join(post_keys), ] if k ] ) @staticmethod def cont_trim_key(key, max_length): """Summary. Returns a trimmed key with a maximum length of max_length. Parameters ---------- key key to trim max_length maximum length of key """ key_len = len(key) if not ivy.exists(max_length) or key_len <= max_length: return key idxs = ( np.round( (key_len - 1) / (max_length - 1) * np.linspace(0, max_length - 1, max_length) ) .astype(np.int32) .tolist() ) return "".join([key[idx] for idx in idxs]) # Private Methods # # ----------------# def _cont_call_static_method_with_flexible_args( self, static_method, *args, kw, required, defaults, self_idx=0, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=None, out=None, ) -> ivy.Container: if args: num_args = len(args) kw = { k: defaults[k] if k in defaults else v for i, (k, v) in enumerate(kw.items()) if i > num_args } args = list(args) if self_idx > num_args: k = list(kw.keys())[self_idx - num_args - 1] kw[k] = self else: args.insert(self_idx, self) return static_method( *args, **kw, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) self_set = False # set to leftmost non-specified required arg, if present for k in required: if kw[k] is None: kw[k] = self self_set = True break # go through each key and value of the keyword arguments for k, v in kw.items(): if v is None: if self_set: if k in defaults: # if self is set and a default value exists, set it kw[k] = defaults[k] else: # otherwise set self to this argument kw[k] = self self_set = True # call the static method return static_method( **kw, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def _cont_get_shape(self): if not len(self.keys()): if ivy.exists(self._queues): return [self._queue_load_sizes_cum[-1]] return [0] sub_shapes = [ v for k, v in self.cont_map( lambda x, kc: ( list(x.shape) if self._cont_ivy.is_native_array(x) or isinstance(x, ivy.Array) else ([len(x)] if isinstance(x, (list, tuple)) else None) ) ).cont_to_iterator() if v ] if not sub_shapes: return sub_shapes min_num_dims = min(len(sub_shape) for sub_shape in sub_shapes) sub_shapes_array = np.asarray( [sub_shape[0:min_num_dims] for sub_shape in sub_shapes] ) sub_shapes_array = np.where(sub_shapes_array == 0, -1, sub_shapes_array) mask = np.prod(sub_shapes_array / sub_shapes_array[0:1], 0) == 1 # noinspection PyTypeChecker return [ None if np.isnan(i) else int(i) for i in np.where( mask, sub_shapes_array[0], np.ones(min_num_dims) * float("nan") ).tolist() ] def _cont_get_shapes(self): return self.cont_map(lambda x, kc: x.shape if hasattr(x, "shape") else None) def _cont_get_dtype(self): sub_dtypes = [ v for k, v in self.cont_map(lambda x, kc: x.dtype).cont_to_iterator() if v ] unique_dtypes = list(set(sub_dtypes)) return sub_dtypes[0] if len(unique_dtypes) == 1 else None def _cont_get_dev(self, as_native=False): sub_devs = [ v for k, v in self.cont_map( lambda x, kc: ( self._cont_ivy.dev(x, as_native=as_native) if self._cont_ivy.is_native_array(x) or isinstance(x, ivy.Array) else None ) ).cont_to_iterator() if v ] if len(set(sub_devs)) <= 1: return sub_devs[0] return None def _cont_at_key_chains_input_as_seq(self, key_chains, ignore_key_errors=False): return_cont = ivy.Container({}, **self._config) for kc in key_chains: val = self.cont_at_key_chain(kc, ignore_key_errors=ignore_key_errors) if ignore_key_errors and not ivy.exists(val): continue return_cont.cont_set_at_key_chain(kc, val, inplace=True) return return_cont def _cont_at_key_chains_input_as_dict( self, key_chains, current_chain="", ignore_key_errors=False ): return_dict = {} for k, v in key_chains.items(): if current_chain == "": new_current_chain = k else: new_current_chain = current_chain + "/" + k if isinstance(v, dict): return_dict[k] = self._cont_at_key_chains_input_as_dict( v, new_current_chain, ignore_key_errors=ignore_key_errors ) else: val = self.cont_at_key_chain( new_current_chain, ignore_key_errors=ignore_key_errors ) if ignore_key_errors and not ivy.exists(val): continue return_dict[k] = val return ivy.Container(return_dict, **self._config) def _cont_prune_key_chains_input_as_seq(self, key_chains): return_cont = self.cont_copy() for kc in key_chains: return_cont = return_cont.cont_prune_key_chain(kc) return return_cont def _cont_prune_key_chains_input_as_dict(self, key_chains, return_cont=None): if return_cont is None: return_cont = self.cont_copy() for k, v in key_chains.items(): if isinstance(v, dict): ret_cont = self._cont_prune_key_chains_input_as_dict(v, return_cont[k]) if ret_cont.cont_shape[0] == 0: del return_cont[k] else: del return_cont[k] return return_cont # Public Methods # # ---------------# def cont_duplicate_array_keychains(self): duplicates = () key_chains = self.cont_all_key_chains() skips = set() for i in range(len(key_chains)): temp_duplicates = () if key_chains[i] in skips: continue for j in range(i + 1, len(key_chains)): if key_chains[j] in skips: continue if self[key_chains[i]] is self[key_chains[j]]: if key_chains[i] not in temp_duplicates: temp_duplicates += (key_chains[i],) if key_chains[j] not in temp_duplicates: temp_duplicates += (key_chains[j],) if len(temp_duplicates) > 0: duplicates += (temp_duplicates,) skips = chain.from_iterable(duplicates) return duplicates def cont_update_config(self, **config): new_config = {} for k, v in config.items(): att_name = f"_{k}" if k in self._config_in: if k == "types_to_iteratively_nest": v = ivy.default(lambda: tuple(v), (), catch_exceptions=True) elif k == "keyword_color_dict": v = ivy.default(v, {}) elif k == "ivyh": att_name = "_local_ivy" new_config[k] = v self.__setattr__(att_name, v) self._config = new_config def cont_inplace_update( self, dict_in: Union[ivy.Container, dict], **config ) -> ivy.Container: """Update the contents of this container inplace, using either a new dict or container. Parameters ---------- dict_in New dict or container to update the current container inplace with. **config """ # # update config self.cont_update_config(**config) # update container values inplace if dict_in is None: return dict_types = tuple([dict] + ivy.container_types()) if isinstance(dict_in, dict_types): dict_in = dict_in elif isinstance(dict_in, tuple(self._types_to_iteratively_nest)): dict_in = dict( zip( [ f"it_{str(i).zfill(len(str(len(dict_in))))}" for i in range(len(dict_in)) ], dict_in, ) ) else: raise ivy.utils.exceptions.IvyException(f"invalid input {dict_in}") items = sorted(dict_in.items()) if self._alphabetical_keys else dict_in.items() for key, value in items: if ( isinstance(value, dict_types) and ( not isinstance(value, ivy.Container) or self._rebuild_child_containers ) ) or isinstance(value, tuple(self._types_to_iteratively_nest)): self[key] = ivy.Container(value, **self._config) elif key in self and isinstance(self[key], ivy.Container): self[key].cont_inplace_update(value) else: self[key] = value def cont_all_true( self, assert_is_bool=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, ): """Determine whether all the entries in the container boolean evaluate to True. Parameters ---------- assert_is_bool Whether or not to assert each entry is of type Boolean. (Default value = False) key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. Returns ------- Boolean, whether all entries are boolean True. """ return bool( np.prod( [ v for k, v in self.cont_as_bools( assert_is_bool, key_chains, to_apply, prune_unapplied, map_sequences, ).cont_to_iterator() ] ) ) def cont_all_false( self, assert_is_bool=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, ): """Determine whether all the entries in the container boolean evaluate to False. Parameters ---------- assert_is_bool Whether or not to assert each entry is of type Boolean. (Default value = False) key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. Returns ------- Boolean, whether all entries are boolean False. """ return not bool( np.sum( [ v for k, v in self.cont_as_bools( assert_is_bool, key_chains, to_apply, prune_unapplied, map_sequences, ).cont_to_iterator() ] ) ) def cont_slice_via_key(self, slice_key): """Get slice of container, based on key. Parameters ---------- slice_key key to slice container at. Returns ------- Container object sliced at desired key. """ return_dict = {} for key, value in self.items(): if key == slice_key: return value elif isinstance(value, ivy.Container): return_dict[key] = value.cont_slice_via_key(slice_key) else: return_dict[key] = value return ivy.Container(return_dict, **self._config) def cont_as_bools( self, assert_is_bool=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, ): """Return boolean evaluation for all nested items in the container. Parameters ---------- assert_is_bool Whether or not to assert the entry is of type Boolean. (Default value = False) key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. Returns ------- Container object with all entries boolean evaluated. """ def _ret_bool(x): if assert_is_bool: ivy.utils.assertions.check_isinstance(x, bool) return x return bool(x) return self.cont_map( lambda x, kc: _ret_bool(x), key_chains, to_apply, prune_unapplied, map_sequences, ) def cont_unstack_conts(self, axis, keepdims=False, dim_size=None): """Unstack containers along specified dimension. Parameters ---------- axis Dimensions along which to unstack. keepdims Whether to keep dimension 1 in the unstack dimensions. Default is ``False``. dim_size Size of the dimension to unstack. Determined from inputs by default. Returns ------- List of containers, unstacked along the specified dimension. """ if dim_size is None: dim_size = self.cont_shape[axis] if keepdims: # noinspection PyTypeChecker return [ self[ ( slice(i, i + 1, 1) if axis == 0 else tuple( [slice(None, None, None)] * axis + [slice(i, i + 1, 1)] ) ) ] for i in range(dim_size) ] # noinspection PyTypeChecker return [ self[i if axis == 0 else tuple([slice(None, None, None)] * axis + [i])] for i in range(dim_size) ] def split_conts( self, num_or_size_splits=None, axis=0, with_remainder=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, ): """Split a container into multiple sub-containers. The function does that by splitting their constituent arrays. Parameters ---------- num_or_size_splits Number of equal arrays to divide the array into along the given axis if an integer. The size of each split element if a sequence of integers. Default is to divide into as many 1-dimensional arrays as the axis dimension. axis The axis along which to split, default is ``0``. with_remainder If the tensor does not split evenly, then store the last remainder entry. Default is ``False``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is False. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. Returns ------- A list of sub-arrays. """ dim_size = ( num_or_size_splits if isinstance(num_or_size_splits, int) else len(num_or_size_splits) ) # noinspection PyTypeChecker return self.cont_map( lambda x, kc: ( self._cont_ivy.split( x, num_or_size_splits=num_or_size_splits, axis=axis, with_remainder=with_remainder, ) if self._cont_ivy.is_native_array(x) or isinstance(x, ivy.Array) else x ), key_chains, to_apply, prune_unapplied, map_sequences, ).cont_unstack_conts(0, dim_size=dim_size) def cont_num_arrays(self, exclusive=False): """Compute the number of arrays present at the leaf nodes, including variables by default. Parameters ---------- exclusive Whether to check if the data type is exclusively an array, rather than a variable or traced array. (Default value = False) """ return sum( self.cont_map( lambda x, kc: ivy.is_array(x, exclusive=exclusive) ).cont_to_iterator_values() ) def cont_size_ordered_arrays(self, exclusive=False): """Return a container with keychains mapped to flat keys, and arrays given in order of smallest to largest. Parameters ---------- exclusive Whether to check if the data type is exclusively an array, rather than a variable or traced array. (Default value = False) """ array_dict = { ivy.Container.cont_flatten_key_chain(kc): v for kc, v in self.cont_to_iterator() if ivy.is_array(v, exclusive=exclusive) } return ivy.Container( dict( sorted( array_dict.items(), key=lambda item: _reduce(mul, item[1].shape, 1) ) ), alphabetical_keys=False, ) def cont_save(self, filepath, format="h5py"): if format == "json": self.cont_to_disk_as_json(filepath) elif format == "pickle": self.cont_to_disk_as_pickled(filepath) elif format == "h5py": self.cont_to_disk_as_hdf5(filepath) else: raise ValueError("Unsupported format") def cont_to_disk_as_hdf5( self, h5_obj_or_filepath, starting_index=0, mode="a", max_batch_size=None ): """Save container object to disk, as an h5py file, at the specified filepath. Parameters ---------- h5_obj_or_filepath Filepath for where to save the container to disk, or h5 object. starting_index Batch index for which to start writing to file, if it already exists (Default value = 0) mode H5 read/write mode for writing to disk, ['r', 'r+', 'w', 'w-', 'a'], default is 'a'. max_batch_size Maximum batch size for the container on disk, this is useful if later appending to file. (Default value = None) """ ivy.utils.assertions.check_exists( h5py, message=( "You must install python package h5py in order to save " "containers to disk as hdf5 files." ), ) if isinstance(h5_obj_or_filepath, str): h5_obj = h5py.File(h5_obj_or_filepath, mode) else: h5_obj = h5_obj_or_filepath for key, value in self.items(): if isinstance(value, ivy.Container): if key not in h5_obj.keys(): h5_group = h5_obj.create_group(key) else: h5_group = h5_obj[key] value.cont_to_disk_as_hdf5( h5_group, starting_index, mode, max_batch_size ) else: value_as_np = self._cont_ivy.to_numpy(value) value_shape = value_as_np.shape this_batch_size = value_shape[0] max_bs = ( max_batch_size if max_batch_size else starting_index + this_batch_size ) if key not in h5_obj.keys(): dataset_shape = [max_bs] + list(value_shape[1:]) maxshape = [None for _ in dataset_shape] h5_obj.create_dataset( key, dataset_shape, dtype=value_as_np.dtype, maxshape=maxshape ) space_left = max_bs - starting_index amount_to_write = min(this_batch_size, space_left) for i in range(amount_to_write): h5_obj[key][starting_index + i : starting_index + i + 1] = ( value_as_np[i : i + 1] ) def cont_to_disk_as_pickled(self, pickle_filepath): """Save container object to disk, as an pickled file, at the specified filepath. Parameters ---------- pickle_filepath Filepath for where to save the container to disk. """ pickle.dump(self.to_native().cont_to_dict(), open(pickle_filepath, "wb")) def cont_to_jsonable(self, return_dict=None): """ Parameters ---------- return_dict Default value = None) """ if return_dict is None: return_dict = self.cont_copy() for k, v in return_dict.items(): if not _is_jsonable(v): if isinstance(v, dict): return_dict[k] = self.cont_to_jsonable(v) else: return_dict[k] = str(v) return return_dict def cont_to_disk_as_json(self, json_filepath): """Save container object to disk, as an json file, at the specified filepath. Parameters ---------- json_filepath Filepath for where to save the container to disk. """ with open(json_filepath, "w+") as json_data_file: json.dump(self.cont_to_jsonable().cont_to_dict(), json_data_file, indent=4) def cont_to_nested_list(self): return_list = [] for key, value in self.items(): if isinstance(value, ivy.Container): return_list.append(value.cont_to_nested_list()) elif value is not None and key != "_f": return_list.append(value) return return_list def cont_to_raw(self): """Convert container to its original form. Returns ------- ret Container data in its raw form. """ return_item = {} for key, value in self.items(): if isinstance(value, ivy.Container): return_item[key] = value.cont_to_raw() elif key[0:3] == "it_" and tuple(self._types_to_iteratively_nest): return_item = [ v.cont_to_raw() if isinstance(v, ivy.Container) else v for v in self.values() ] break else: return_item[key] = value return return_item def cont_to_dict(self): """Summary. Returns ------- ret Container as nested dict. """ return_dict = {} for key, value in self.items(): if isinstance(value, ivy.Container): return_dict[key] = value.cont_to_dict() else: return_dict[key] = value return return_dict def cont_to_iterator(self, key_chain="", leaf_keys_only=False, include_empty=False): """ Parameters ---------- key_chain Default value = '') leaf_keys_only Default value = False) include_empty Default value = False) Returns ------- Iterator for the container elements. """ for key, value in self.items(): if leaf_keys_only: kc = key else: kc = f"{key_chain}/{key}" if key_chain != "" else key if isinstance(value, ivy.Container) and (not include_empty or value): yield from value.cont_to_iterator(kc, leaf_keys_only, include_empty) else: yield kc, value def cont_to_iterator_values(self, include_empty=False): """ Parameters ---------- include_empty Default value = False) Returns ------- Iterator for the container values. """ for value in self.values(): if isinstance(value, ivy.Container) and (not include_empty or value): # noinspection PyCompatibility yield from value.cont_to_iterator_values(include_empty) else: yield value def cont_to_iterator_keys( self, key_chain="", leaf_keys_only=False, include_empty=False ): """ Parameters ---------- key_chain Default value = '') leaf_keys_only Default value = False) include_empty Default value = False) Returns ------- Iterator for the container elements. """ for key, value in self.items(): if leaf_keys_only: kc = key else: kc = f"{key_chain}/{key}" if key_chain != "" else key if isinstance(value, ivy.Container) and (not include_empty or value): # noinspection PyCompatibility yield from value.cont_to_iterator_keys( kc, leaf_keys_only, include_empty ) else: yield kc def cont_to_flat_list(self): """Summary. Returns ------- ret Container as flat list. """ return [item for key, item in self.cont_to_iterator()] def cont_from_flat_list(self, flat_list): """Return new container object with the same hierarchy, but with values replaced from flat list. Parameters ---------- flat_list flat list of values to populate container with. Returns ------- Container. """ new_dict = {} for key, value in self.items(): if isinstance(value, ivy.Container): new_value = value.cont_from_flat_list(flat_list) else: new_value = flat_list.pop(0) new_dict[key] = new_value return ivy.Container(new_dict, **self._config) def cont_has_key(self, query_key): """Determine whether container object has specified key somewhere in the nested structure. Parameters ---------- query_key Returns ------- ret Boolean """ has_key = False def map_fn(x, kc): """ Parameters ---------- x param kc: kc """ nonlocal has_key if query_key in kc: has_key = True return x self.cont_map(map_fn) return has_key def cont_has_key_chain(self, key_chain): """Determine whether container object has specified key-chain. Parameters ---------- key_chain Returns ------- ret Boolean """ keys = re.split("[/.]", key_chain) ret = self for key in keys: try: ret = ret[key] except KeyError: return False return True def cont_find_sub_container(self, sub_cont_to_find, partial=False): """Find the sub-container in the current container if it exists. Parameters ---------- sub_cont_to_find The sub-container to find. partial Whether to also check for partially complete sub-containers. Default is ``False``. """ key_chain_found = False def _check_sub_cont(sub_cont, kc): sub_cont_key_chains = sub_cont_to_find.cont_all_key_chains() kcs_in_sub_cont = [kc in sub_cont for kc in sub_cont_key_chains] if ( kcs_in_sub_cont and min(kcs_in_sub_cont) and ivy.Container.cont_identical( [sub_cont, sub_cont_to_find], partial=partial ) ): nonlocal key_chain_found key_chain_found = kc return sub_cont self.cont_map_sub_conts(_check_sub_cont) return key_chain_found def cont_contains_sub_container(self, sub_cont, partial=False): """Determine whether the current container contains the sub-container, with matching structure and array values. Parameters ---------- sub_cont The sub-container to check. partial Whether to also check for partially complete sub-containers. Default is ``False``. Returns ------- Bool """ return isinstance(self.cont_find_sub_container(sub_cont, partial), str) def cont_assert_contains_sub_container(self, sub_cont, partial=False): """Assert that the current container contains the sub-container, otherwise exception raised with the diff printed to screen. Parameters ---------- sub_cont The sub-container to check. partial Whether to also check for partially complete sub-containers. Default is ``False``. """ try: ivy.utils.assertions.check_true( self.cont_contains_sub_container(sub_cont, partial) ) except ivy.utils.exceptions.IvyException: key_chain = self.cont_find_sub_structure( sub_cont, check_shapes=False, partial=True ) if not key_chain: key_chain = "" # noinspection PyTypeChecker raise ivy.utils.exceptions.IvyException( "Containers did not have identical structure and" f" values:\n\n{ivy.Container.cont_diff(self[key_chain], sub_cont)}" ) def cont_find_sub_structure( self, sub_struc_to_find, check_shapes=True, partial=False ): """Find the sub-container structure in the current container if it exists. Parameters ---------- sub_struc_to_find The sub-container to find. check_shapes Whether to check array shapes in the sub-structure. Default is ``True``. partial Whether to also check for partially complete sub-containers. Default is ``False``. """ key_chain_found = False def _check_sub_cont(sub_cont, kc): """ Parameters ---------- sub_cont param kc: kc """ sub_struc_key_chains = sub_struc_to_find.cont_all_key_chains() kcs_in_sub_cont = [kc in sub_cont for kc in sub_struc_key_chains] if ( kcs_in_sub_cont and min(kcs_in_sub_cont) and ivy.Container.cont_identical_structure( [sub_cont, sub_struc_to_find], check_shapes=check_shapes, partial=partial, ) ): nonlocal key_chain_found key_chain_found = kc return sub_cont self.cont_map_sub_conts(_check_sub_cont) return key_chain_found def cont_contains_sub_structure(self, sub_cont, check_shapes=True, partial=False): """Determine whether the current container contains the sub-container structure. Parameters ---------- sub_cont The sub-container to check. check_shapes Whether to check array shapes in the sub-structure. Default is ``True``. partial Whether to also check for partially complete sub-containers. Default is ``False``. """ return isinstance( self.cont_find_sub_structure(sub_cont, check_shapes, partial), str ) def cont_assert_contains_sub_structure( self, sub_cont, check_shapes=True, partial=False ): """Assert that the current container contains the sub-container structure, otherwise exception raised with the diff printed to screen. Parameters ---------- sub_cont The sub-container to check. check_shapes Whether to check array shapes in the sub-structure. Default is ``True``. partial Whether to also check for partially complete sub-containers. Default is ``False``. """ try: ivy.utils.assertions.check_true( self.cont_contains_sub_structure(sub_cont, check_shapes, partial) ) except ivy.utils.exceptions.IvyException: key_chain = self.cont_find_sub_structure( sub_cont, check_shapes=False, partial=True ) if not key_chain: key_chain = "" # noinspection PyTypeChecker raise ivy.utils.exceptions.IvyException( "Containers did not have identical structure:\n\n{}".format( ivy.Container.cont_structural_diff( self[key_chain], sub_cont, detect_key_diffs=not partial, detect_shape_diffs=check_shapes, mode="diff_only" if partial else "all", ) ) ) def cont_at_keys( self, queries, ignore_none=True, containing=False, ignore_key_errors=False ): """Query container object at specified keys, either as list or nested dict. Parameters ---------- queries The keys to query. ignore_none Whether to ignore None input. Default is ``True``. containing Whether to include keys which only contain the query substrings. Default is ``False``. ignore_key_errors Whether to ignore Key-errors when trying to access the dict. Default is ``False``. Returns ------- sub-container containing only key-chains containing the specified keys. """ if queries is None and ignore_none: return self key_chains_to_keep = [] if isinstance(queries, str): queries = [queries] def map_fn(x, kc): nonlocal key_chains_to_keep kc_split = re.split("[/.]", kc) for query_key in queries: if ( query_key in kc_split or containing and min(query_key in k for k in kc_split) ): key_chains_to_keep.append(kc) return x self.cont_map(map_fn) return self.cont_at_key_chains( key_chains_to_keep, ignore_key_errors=ignore_key_errors ) def cont_at_key_chain(self, key_chain, ignore_key_errors=False): """Query container object at a specified key-chain. Parameters ---------- key_chain param ignore_key_errors: (Default value = False) ignore_key_errors (Default value = False) Returns ------- ret sub-container or value at specified key chain """ keys = re.split("[/.]", key_chain) ret = self for key in keys: try: ret = ret[key] except KeyError as e: if ignore_key_errors: return raise ivy.utils.exceptions.IvyException(repr(e)) return ret def cont_at_key_chains(self, key_chains, ignore_none=True, ignore_key_errors=False): """Query container object at specified key-chains, either as list or nested dict. Parameters ---------- key_chains param ignore_none: (Default value = True) ignore_key_errors Default value = False) ignore_none (Default value = True) Returns ------- type sub-container containing only the specified key chains """ if key_chains is None and ignore_none: return self if isinstance(key_chains, (list, tuple)): return self._cont_at_key_chains_input_as_seq( key_chains, ignore_key_errors=ignore_key_errors ) elif isinstance(key_chains, dict): return self._cont_at_key_chains_input_as_dict( key_chains, ignore_key_errors=ignore_key_errors ) elif isinstance(key_chains, str): return self._cont_at_key_chains_input_as_seq( [key_chains], ignore_key_errors=ignore_key_errors ) else: raise ivy.utils.exceptions.IvyException( "Invalid type for input key_chains, must either be a list, tuple, dict" f" or ivy.Container, but found type {type(key_chains)}" ) def cont_all_key_chains(self, include_empty=False): """ Parameters ---------- include_empty Default value = False) """ return [kc for kc, v in self.cont_to_iterator(include_empty=include_empty)] def cont_key_chains_containing(self, sub_str, include_empty=False): """ Parameters ---------- sub_str param include_empty: (Default value = False) include_empty (Default value = False) """ return [ kc for kc, v in self.cont_to_iterator(include_empty=include_empty) if sub_str in kc ] def cont_set_at_keys(self, target_dict): """Set values of container object at specified keys. Parameters ---------- target_dict Returns ------- type new container with updated value at each key """ return_dict = {} for key, val in self.items(): if key in target_dict: return_dict[key] = target_dict[key] elif isinstance(val, ivy.Container): return_dict[key] = val.cont_set_at_keys(target_dict) else: return_dict[key] = val return ivy.Container(return_dict, **self._config) def cont_set_at_key_chain(self, key_chain, val, inplace=False): """Set value of container object at a specified key-chain. Parameters ---------- key_chain param val: inplace Default value = False) val Returns ------- ret new container with updated value at key chain """ keys = re.split("[/.]", key_chain) if inplace: cont = self else: cont = self.cont_copy() sub_cont = cont for key in keys[:-1]: if key not in sub_cont: sub_cont[key] = ivy.Container(**self._config) sub_cont = sub_cont[key] sub_cont[keys[-1]] = val return cont def cont_overwrite_at_key_chain(self, key_chain, val, inplace=False): """Overwrite value of container object at a specified key-chain. Parameters ---------- key_chain param val: inplace Default value = False) val Returns ------- ret new container with updated value at key chain, provided it existed before. """ keys = re.split("[/.]", key_chain) if inplace: cont = self else: cont = self.cont_copy() sub_cont = cont for key in keys[:-1]: ivy.utils.assertions.check_elem_in_list( key, sub_cont, message=( "key chain must already exist in container in order to " "call cont_overwrite_at_key_chain" ), ) sub_cont = sub_cont[key] ivy.utils.assertions.check_elem_in_list( keys[-1], sub_cont, message=( "key chain must already exist in container in order to call " "cont_overwrite_at_key_chain" ), ) sub_cont[keys[-1]] = val return cont def cont_set_at_key_chains(self, target_dict, return_dict=None, inplace=False): """Set values of container object at specified key-chains. Parameters ---------- target_dict param return_dict: (Default value = None) inplace Default value = False) return_dict (Default value = None) Returns ------- ret new container with updated values at the key chains """ if return_dict is None: if inplace: return_dict = self else: return_dict = self.cont_copy() for k, v in target_dict.items(): if isinstance(v, dict): return_dict[k] = self.cont_set_at_key_chains(v, return_dict[k], inplace) else: return_dict[k] = v return return_dict def cont_overwrite_at_key_chains( self, target_dict, return_dict=None, inplace=False ): """Overwrite values of container object at specified key-chains. Parameters ---------- target_dict param return_dict: (Default value = None) inplace Default value = False) return_dict (Default value = None) Returns ------- ret new container with updated values at the key chains, provided they existed before. """ if return_dict is None: if inplace: return_dict = self else: return_dict = self.cont_copy() for k, v in target_dict.items(): ivy.utils.assertions.check_elem_in_list( k, return_dict, message=( "key chain must already exist in container in order to " "call cont_overwrite_at_key_chain" ), ) if isinstance(v, dict): return_dict[k] = self.cont_overwrite_at_key_chains( v, return_dict[k], inplace ) else: return_dict[k] = v return return_dict def cont_prune_keys(self, query_keys, ignore_none=True): """Recursively prune set of keys. Parameters ---------- query_keys param ignore_none: (Default value = True) ignore_none (Default value = True) Returns ------- ret Container with key-chains containing the specified keys pruned. """ if query_keys is None and ignore_none: return self key_chains_to_prune = [] if isinstance(query_keys, str): query_keys = [query_keys] def map_fn(x, kc): """ Parameters ---------- x param kc: kc """ nonlocal key_chains_to_prune for query_key in query_keys: if query_key in kc: key_chains_to_prune.append(kc) return x self.cont_map(map_fn) return self.cont_prune_key_chains(key_chains_to_prune) def cont_prune_key_chain(self, key_chain): """Recursively prune chain of keys, specified as 'key1/key2/key3/...'. Parameters ---------- key_chain Returns ------- ret Container with keys in key chain pruned. """ keys_in_chain = re.split("[/.]", key_chain) out_dict = {} for key, value in self.items(): if isinstance(value, ivy.Container): if key == keys_in_chain[0]: if len(keys_in_chain) == 1: new_val = [] else: new_val = value.cont_prune_key_chain( "/".join(keys_in_chain[1:]) ) if len(new_val) > 0: out_dict[key] = new_val else: new_val = value.cont_to_dict() if len(new_val) > 0: out_dict[key] = value.cont_to_dict() else: if len(keys_in_chain) != 1 or key != keys_in_chain[0]: out_dict[key] = value return ivy.Container(out_dict, **self._config) def cont_prune_key_chains(self, key_chains, ignore_none=True): """Recursively prune set of key chains. Parameters ---------- key_chains param ignore_none: (Default value = True) ignore_none (Default value = True) Returns ------- ret Container with keys in the set of key chains pruned. """ if key_chains is None and ignore_none: return self if isinstance(key_chains, (list, tuple)): return self._cont_prune_key_chains_input_as_seq(key_chains) elif isinstance(key_chains, dict): return self._cont_prune_key_chains_input_as_dict(key_chains) elif isinstance(key_chains, str): return self._cont_prune_key_chains_input_as_seq([key_chains]) else: raise ivy.utils.exceptions.IvyException( "Invalid type for input key_chains, must either be a list, tuple, dict" f" or ivy.Container, but found type {type(key_chains)}" ) def cont_format_key_chains(self, format_fn): """Format all key-chains, using the formatting function. Parameters ---------- format_fn Returns ------- ret Container with the same key-chain structure, but the key strings formatted. """ return ivy.Container({format_fn(k): v for k, v in self.cont_to_iterator()}) def cont_sort_by_key(self): new_dict = {} for k, v in self.items(): if isinstance(v, ivy.Container): v_back = v.cont_sort_by_key() else: v_back = v new_dict[k] = v_back return ivy.Container(new_dict, **self._config) def cont_prune_empty(self, keep_nones=False, base=True): """Recursively prunes empty keys from the container dict structure. Returns None if the entire container is empty. Parameters ---------- keep_nones Default value = False) base Default value = True) Returns ------- ret Container with empty keys pruned. """ out_dict = {} for key, value in self.items(): if isinstance(value, ivy.Container): new_value = value.cont_prune_empty(keep_nones, False) if new_value: out_dict[key] = new_value elif self._cont_ivy.exists(value) or keep_nones: out_dict[key] = value if len(out_dict): return ivy.Container(out_dict, **self._config) if base: return ivy.Container(**self._config) return def cont_prune_key_from_key_chains(self, absolute=None, containing=None): """Recursively prune absolute key or key containing a certain substring from all key chains. Parameters ---------- absolute The absolute key to detect in the key chains. (Default value = None) containing A substring to check each key for, when deciding which keys to prune. (Default value = None) Returns ------- Container with specified key or substring-containing-key from all key chains removed from the chain. """ ivy.utils.assertions.check_all_or_any_fn( absolute, containing, fn=ivy.exists, type="any", limit=[1, 2], message="at least one of absolute or containing must be specified", as_array=False, ) out_cont = ivy.Container(**self._config) for key, value in self.items(): if (absolute and key == absolute) or (containing and containing in key): if isinstance(value, ivy.Container): out_cont = ivy.Container.cont_combine(out_cont, value) else: out_cont = value elif isinstance(value, ivy.Container): out_cont[key] = value.cont_prune_key_from_key_chains( absolute, containing ) else: out_cont[key] = value return out_cont def cont_prune_keys_from_key_chains(self, absolute=None, containing=None): """Recursively prune absolute keys or keys containing certain substrings from all key chains. Parameters ---------- absolute The absolute key to detect in the key chains. (Default value = None) containing A substring to check each key for, when deciding which keys to prune. (Default value = None) Returns ------- Container with specified keys or substring-containing-keys from all key chains removed from the chain. """ ivy.utils.assertions.check_all_or_any_fn( absolute, containing, fn=ivy.exists, type="any", limit=[1, 2], message="at least one of absolute or containing must be specified", as_array=False, ) out_cont = ivy.Container(**self._config) for key, value in self.items(): if ( (absolute and key in absolute) or containing and max(con in key for con in containing) ): if isinstance(value, ivy.Container): out_cont = ivy.Container.cont_combine(out_cont, value) else: out_cont = value elif isinstance(value, ivy.Container): out_cont[key] = value.cont_prune_key_from_key_chains( absolute, containing ) else: out_cont[key] = value return out_cont def cont_restructure_key_chains( self, keychain_mapping, keep_orig=True, replace=True ): """Create a new container with the same contents, but a new key-chain structure. Given by the mapping with keys as old key-chains and values as new key-chains. Parameters ---------- keychain_mapping A dict with keys as old key-chains and values as new key-chains. keep_orig Whether to keep the original keys, or start from a new empty container. Default is ``True``. replace Whether to replace the old key-chains by the new ones. Default is ``True``. """ new_cont = self.cont_copy() if keep_orig else ivy.Container() for old_kc, new_kc in keychain_mapping.items(): if replace and old_kc in new_cont: new_cont = new_cont.cont_prune_key_chain(old_kc) new_cont = ivy.Container.cont_combine( new_cont, ivy.Container({new_kc: self[old_kc]}) ) return new_cont def cont_restructure(self, mapping, keep_orig=True, replace=True): """Create a new container with the same contents, but a new key-chain structure, and transposes and/or reshaped arrays. Given by the mapping with keys as old key-chains and values as new key-chains. Parameters ---------- mapping A dict with keys as old key-chains and values as new key-chains. keep_orig Whether to keep the original keys, are start from a new container. Default is ``True``. replace Whether to replace the old key-chains by the new ones. Default is ``True``. """ new_cont = self.cont_copy() if keep_orig else ivy.Container() for old_kc, new in mapping.items(): if replace and old_kc in new_cont: new_cont = new_cont.cont_prune_key_chain(old_kc) val = self[old_kc] if isinstance(new, dict): new_kc = new["key_chain"] if "pattern" in new: pattern = new["pattern"] axes_lengths = new["axes_lengths"] if "axes_lengths" in new else {} if isinstance(val, ivy.Container): val = val.einops_rearrange(pattern, **axes_lengths) else: val = ivy.einops_rearrange(val, pattern, **axes_lengths) else: new_kc = new new_cont = ivy.Container.cont_combine( new_cont, ivy.Container({new_kc: val}) ) return new_cont def cont_flatten_key_chains( self, include_empty=False, above_height=None, below_depth=None ): """Summary. Parameters ---------- include_empty Default value = False) above_height Default value = None) below_depth Default value = None) """ return ivy.Container( { ivy.Container.cont_flatten_key_chain( kc, above_height=above_height, below_depth=below_depth ): v for kc, v in self.cont_to_iterator(include_empty=include_empty) }, **self._config, ) def cont_copy(self): """Create a copy of this container. Returns ------- A copy of the container """ return ivy.Container(self.cont_to_dict(), **self._config) def cont_deep_copy(self): """Create a deep copy (copying all internal tensors) of this container. return: A deep copy of the container """ return self.cont_map( lambda x, kc: ( ivy.copy_array(x) if ivy.is_array(x) and not isinstance(x, str) else x ) ) def __deepcopy__(self, memo): return self.cont_deep_copy() def cont_map( self, func, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, inplace=False, key_chain="", ): """Apply function to all array values of container. Parameters ---------- func Function to apply to each container entry key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. inplace Whether to apply the mapping inplace, or return a new container. Default is ``False``. key_chain Chain of keys for this dict entry (Default value = '') Returns ------- New container following the function mapped to each sub-array. """ return_dict = self if inplace else {} for key, value in self.items(): this_key_chain = key if key_chain == "" else f"{str(key_chain)}/{str(key)}" if isinstance(value, ivy.Container): ret = value.cont_map( func, key_chains, to_apply, prune_unapplied, map_sequences, inplace, this_key_chain, ) if prune_unapplied and not ret: continue if not inplace: return_dict[key] = ret elif isinstance(value, (list, tuple)) and map_sequences: ret = ivy.nested_map( lambda x: func(x, None), value, True, shallow=False ) if prune_unapplied and not ret: continue return_dict[key] = ret else: if key_chains is not None: if (this_key_chain in key_chains and not to_apply) or ( this_key_chain not in key_chains and to_apply ): if prune_unapplied: continue return_dict[key] = value continue return_dict[key] = func(value, this_key_chain) if inplace: return self return ivy.Container(return_dict, **self._config) def cont_map_sub_conts( self, func, key_chains=None, to_apply=True, prune_unapplied=False, inplace=False, key_chain="", include_self=True, ): """Apply function to all sub-contains in the container. Parameters ---------- func Function to apply to each sub-container key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. inplace Whether to apply the mapping inplace, or return a new container. Default is ``False``. key_chain Chain of keys for this dict entry (Default value = '') include_self Whether to also apply the (possibly in-place) function to this container. Default is ``True``. Returns ------- New container following the function mapped to each sub-container. """ return_dict = self if inplace else {} for key, value in self.items(): this_key_chain = key if key_chain == "" else f"{key_chain}/{key}" if isinstance(value, ivy.Container): ret = value.cont_map_sub_conts( func, key_chains, to_apply, prune_unapplied, inplace, this_key_chain ) if prune_unapplied and not ret: continue if not inplace: return_dict[key] = ret elif ( key_chains is None or (this_key_chain not in key_chains or to_apply) and (this_key_chain in key_chains or not to_apply) or not prune_unapplied ): return_dict[key] = value ret = return_dict if inplace else ivy.Container(return_dict, **self._config) if key_chain != "" or include_self: ret = func(ret, key_chain) if inplace: return return ret def cont_with_entries_as_lists(self): def to_list(x, _=""): try: return self._cont_ivy.to_list(x) except (IvyException, IvyBackendException): return x return self.cont_map(to_list) def cont_reshape_like(self, target_dict, leading_shape=None, return_cont=None): """Set shapes of container entries to shapes specified by new container with the same key structure. Parameters ---------- target_dict param leading_shape: (Default value = None) return_cont Default value = None) leading_shape (Default value = None) Returns ------- ret new container with values of updated shapes """ leading_shape = self._cont_ivy.default(leading_shape, []) if return_cont is None: return_cont = self.cont_copy() for (_, v_shape), (k, v) in zip(target_dict.items(), return_cont.items()): if isinstance(v_shape, dict): return_cont[k] = self.cont_reshape_like( v_shape, leading_shape, return_cont[k] ) else: return_cont[k] = self._cont_ivy.reshape( v, leading_shape + list(v_shape) ) return ivy.Container(return_cont, **self._config) def cont_create_if_absent(self, key, value, inplace=True): """Add a key to the container with corresponding value, if it is not already present. otherwise, do nothing. Parameters ---------- key param value: inplace Default value = True) value """ if key in self: return self.cont_set_at_key_chain(key, value, inplace) def cont_if_exists(self, key): """Return the sub-container at the following key if it exists, otherwise None. Parameters ---------- key """ try: return self[key] except KeyError: return def cont_try_kc(self, key): """Try the following key or key chain, returning self if not present. Parameters ---------- key """ try: return self[key] except IvyException: return self def cont_cutoff_at_depth(self, depth_cutoff, inplace=False): """Summary. Parameters ---------- depth_cutoff param inplace: (Default value = False) inplace (Default value = False) """ total_depth = self.cont_max_depth copy = self.cont_copy() def _maybe_cutoff(cont, kc): if total_depth - copy[kc].cont_max_depth < depth_cutoff: return cont if inplace: cont.clear() return ivy.Container() ret = self.cont_map_sub_conts(_maybe_cutoff, inplace=inplace) if inplace: return return ret def cont_cutoff_at_height(self, height_cutoff, inplace=False): """Summary. Parameters ---------- height_cutoff param inplace: (Default value = False) inplace (Default value = False) """ copy = self.cont_copy() def _maybe_cutoff(cont, kc): if copy[kc].cont_max_depth > height_cutoff: return cont if inplace: cont.clear() return ivy.Container() ret = self.cont_map_sub_conts(_maybe_cutoff, inplace=inplace) if inplace: return return ret def _cont_slice_keys(self, key_slice): keys = list(self.keys()) if isinstance(key_slice, str): ivy.utils.assertions.check_true(len(key_slice) == 3 and key_slice[1] == ":") ivy.utils.assertions.check_true(self._alphabetical_keys) start_char = key_slice[0] end_char = key_slice[2] start_idx = min(i for i, k in enumerate(keys) if k[0] == start_char) end_idx = max(i for i, k in enumerate(keys) if k[0] == end_char) + 1 key_slice = slice(start_idx, end_idx, 1) ret = self.cont_copy() desired_keys = keys[key_slice] # noinspection PyUnresolvedReferences return ret.cont_at_key_chains(desired_keys) def cont_slice_keys(self, key_slice, all_depths=False): """Summary. Parameters ---------- key_slice param all_depths: (Default value = False) all_depths (Default value = False) """ top_depth = self.cont_max_depth if all_depths: if isinstance(key_slice, dict): first_slice = list(key_slice.values())[0] for d in range(0, top_depth + 1): if d not in key_slice: key_slice[d] = first_slice else: key_slice = {d: key_slice for d in range(0, top_depth + 1)} if isinstance(key_slice, dict): def _fn(cont, kc): depth = 0 if kc == "" else len(kc.split("/")) if depth in key_slice: # noinspection PyProtectedMember return cont._cont_slice_keys(key_slice[depth]) return cont return self.cont_map_sub_conts(_fn) return self._cont_slice_keys(key_slice) def cont_with_print_limit(self, print_limit, inplace=False): """Summary. Parameters ---------- print_limit param inplace: (Default value = False) inplace (Default value = False) """ def _update_print_limit(cont, _): cont._print_limit = print_limit return cont ret = self.cont_map_sub_conts(_update_print_limit, inplace=inplace) if inplace: return return ret # noinspection PyTypeChecker def cont_remove_print_limit(self, inplace=False): """Summary. Parameters ---------- inplace Default value = False) """ return self.cont_with_print_limit(None, inplace) def cont_with_key_length_limit(self, key_length_limit, inplace=False): """Summary. Parameters ---------- key_length_limit param inplace: (Default value = False) inplace (Default value = False) """ def _update_key_length_limit(cont, _): cont._key_length_limit = key_length_limit return cont ret = self.cont_map_sub_conts(_update_key_length_limit, inplace=inplace) if inplace: return return ret def cont_remove_key_length_limit(self, inplace=False): """Summary. Parameters ---------- inplace Default value = False) """ return self.cont_with_key_length_limit(None, inplace) def cont_with_print_indent(self, print_indent, inplace=False): """Summary. Parameters ---------- print_indent param inplace: (Default value = False) inplace (Default value = False) """ def _update_print_indent(cont, _): cont._print_indent = print_indent return cont ret = self.cont_map_sub_conts(_update_print_indent, inplace=inplace) if inplace: return return ret def cont_with_print_line_spacing(self, print_line_spacing, inplace=False): """Summary. Parameters ---------- print_line_spacing param inplace: (Default value = False) inplace (Default value = False) """ def _update_print_line_spacing(cont, _): cont._print_line_spacing = print_line_spacing return cont ret = self.cont_map_sub_conts(_update_print_line_spacing, inplace=inplace) if inplace: return return ret def cont_with_default_key_color(self, default_key_color, inplace=False): """Summary. Parameters ---------- default_key_color param inplace: (Default value = False) inplace (Default value = False) """ def _update_default_key_color(cont, _): cont._default_key_color = default_key_color return cont ret = self.cont_map_sub_conts(_update_default_key_color, inplace=inplace) if inplace: return return ret def cont_with_ivy_backend(self, ivy_backend: str, inplace=False): """Summary. Parameters ---------- self input Container ivy_backend backend to use inplace whether to modify the container or return a copy """ if inplace: self._cont_ivy = ivy_backend self._config["ivyh"] = ivy_backend return self else: return ivy.Container(self, ivyh=ivy_backend) def cont_show(self): print(self) # noinspection PyUnresolvedReferences def cont_show_sub_container(self, sub_cont_or_keychain): """Summary. Parameters ---------- sub_cont_or_keychain """ # copy this container this_cont = self.cont_copy() # get the sub-container if isinstance(sub_cont_or_keychain, str): sub_cont = self.cont_at_key_chain(sub_cont_or_keychain) else: sub_cont = sub_cont_or_keychain # find the key chain of the sub-container sub_cont_kc = self.cont_find_sub_container(sub_cont) # show this container if key-chain not found, and return if not sub_cont_kc: print(self) return # otherwise, replace sub-container in this container with known key this_cont[sub_cont_kc] = ivy.Container({"SUB_CONT": None}) # get the formatted reprs this_repr = this_cont.cont_with_default_key_color("green").__repr__() this_repr_red = this_cont.cont_with_default_key_color("red").__repr__() this_repr_stripped = ansi_escape.sub("", this_repr) sub_repr = sub_cont.cont_with_default_key_color("red").__repr__() # remove the outer brackets from the sub repr sub_repr = "\n" + "\n".join(sub_repr.split("\n")[1:-1]) + "\n" # find the sub-container placeholder idx = this_repr_stripped.find("SUB_CONT: null") # count the lines above and below the sub-container num_lines_above = this_repr_stripped[0:idx].count("\n") num_lines_below = this_repr_stripped[idx:].count("\n") # get the str reprs above and below this_repr_split = this_repr.split("\n") this_repr_red_split = this_repr_red.split("\n") this_repr_above = "\n".join( this_repr_split[0 : num_lines_above - 1] + [this_repr_red_split[num_lines_above - 1]] ) this_repr_below = "\n".join(this_repr_split[-num_lines_below:]) # count the number of lines needed to be prepended to the sub-container repr cur_num_spaces = 0 for i, s in enumerate(sub_repr[1:]): if s != " ": break cur_num_spaces += 1 exp_num_spaces = 0 for i, s in enumerate(this_repr.split("\n")[num_lines_above]): if s != " ": break exp_num_spaces += 1 num_spaces_to_add = exp_num_spaces - cur_num_spaces # prepend these lines to the sub-container sub_repr = ( "\n" + "\n".join( [" " * num_spaces_to_add + s for s in sub_repr[1:-1].split("\n")] ) + "\n" ) # show print(this_repr_above + sub_repr + this_repr_below) # Built-ins # # ----------# def __repr__(self, as_repr=True): indent_str = " " * self._print_indent def _align_array(array_str_in): split_phrase_dict = { "": "([", "jax": "([", "numpy": "([", "tensorflow": "([", "torch": "([", "paddle": "])", "mxnet": "])", } split_phrase = split_phrase_dict[self._cont_ivy.current_backend_str()] array_str_in_split = array_str_in.split(split_phrase) leading_str_to_keep = array_str_in_split[0].replace("\\n", "") indented_key_size = len(leading_str_to_keep.replace('"', "").split(": ")[0]) indented_key_str = " " * (indented_key_size + 2) padded = False def _pre_pad_alpha_line(str_in): nonlocal padded padded = True return "\\n" + indent_str + indented_key_str + str_in leading_str_to_keep = ", ".join( [ _pre_pad_alpha_line(s) if s[0].isalpha() and i != 0 else s for i, s in enumerate(leading_str_to_keep.split(", ")) ] ) local_indent_str = "" if padded else indent_str leading_str = leading_str_to_keep.split("\\n")[-1].replace('"', "") remaining_str = array_str_in_split[1] num_extra_dims = 0 for i, char in enumerate(remaining_str): if char != "[": num_extra_dims = i break extra_indent = (len(leading_str) + 1 + num_extra_dims) * " " array_str_in = split_phrase.join([leading_str_to_keep, remaining_str]) uniform_indent_wo_overflow = array_str_in.replace( "\\n[", "\n" + local_indent_str + extra_indent + "[" ) uniform_indent_wo_overflow_list = list( filter(None, uniform_indent_wo_overflow.split("\\n")) ) uniform_indent = "\n".join( [ ( local_indent_str + extra_indent + " " + s if ( s[0].isnumeric() or s[0] == "-" or s[0:3] == "..." or max(ss in s[0:6] for ss in ["nan, ", "inf, "]) ) else ( indent_str + indented_key_str + s if (not s[0].isspace() and s[0] != '"') else s ) ) for s in uniform_indent_wo_overflow_list ] ) indented = uniform_indent # 10 dimensions is a sensible upper bound for the number in a single array for i in range(2, 10): indented = indented.replace(" " * (i - 1) + "[" * i, "[" * i) indented = "\n".join( [s for s in indented.split("\n") if bool(s) and not s.isspace()] ) return indented def _align_arrays(str_in): chunks = str_in.split("\n" + indent_str) aligned_array_chunks = { i: _align_array(c) for i, c in enumerate(chunks) if "\\n" in c } chunks = [ aligned_array_chunks[i] if i in aligned_array_chunks else c_orig for i, c_orig in enumerate(chunks) ] return ("\n" + indent_str).join(chunks) new_dict = {} for k, v in self.items(): if isinstance(v, ivy.Container): # noinspection PyArgumentList rep = v.__repr__(as_repr=False) else: if ( (self._cont_ivy.is_native_array(v) or isinstance(v, ivy.Array)) and len(list(v.shape)) > 0 and ivy.exists(self._print_limit) and _reduce(mul, v.shape) > self._print_limit ): rep = (type(v), "shape=", list(v.shape)) elif ( isinstance(v, (list, tuple)) and v and ( self._cont_ivy.is_native_array(v[0]) or isinstance(v[0], ivy.Array) ) ): if ( isinstance(v, tuple) and hasattr(v, "_asdict") and hasattr(v, "_fields") ): if len(v) <= self._print_limit: rep = tuple( [ ( f"{name} = {v[i]}" if v[i].size < self._print_limit else ( f"{name} = {type(v[i])}," f" shape={list(v[i].shape)}" ) ) for i, name in enumerate(v._fields) ], ) else: rep = ( f"NamedTuple({len(v)})", type(v[0]), f"shape={list(v[0].shape)}", ) elif isinstance(v, tuple): rep = ( f"tuple({len(v)})", type(v[0]), f"shape={list(v[0].shape)}", ) else: rep = ( f"list[{len(v)}]", type(v[0]), f"shape={list(v[0].shape)}", ) else: rep = v new_dict[k] = rep if as_repr: json_dumped_str = _align_arrays( json.dumps( ivy.Container(new_dict, **self._config) .cont_map( lambda x, kc: ( x if _is_jsonable(x) else _repr(x).replace(" ", "").replace(",", ", ") ) ) .cont_to_dict(), indent=self._print_indent, ) ) json_dumped_str = json_dumped_str.replace("true", "True").replace( "false", "False" ) def _add_newline(str_in): str_in_split = str_in.split("\n") str_split_size = len(str_in_split) return "\n".join( [ ( ("\n" * self._print_line_spacing + ss) if i == (str_split_size - 1) else ss ) for i, ss in enumerate(str_in_split) ] ) json_dumped_str = '":'.join( [_add_newline(s) for s in json_dumped_str.split('":')] ) # improve tf formatting if ivy.backend_stack and ivy.current_backend_str() == "tensorflow": json_dumped_str_split = json_dumped_str.split("'Variable:") json_dumped_str = ( json_dumped_str_split[0] + ", " + ", ".join( [ "'".join(ss.split("'")[1:]) for ss in json_dumped_str_split[1:] ] ) ) json_dumped_str = ( json_dumped_str.replace(":shape", ", shape") .replace(")dtype=", "), dtype=") .replace(", ),", ",),") ) json_dumped_str = re.sub("}, $", "}", json_dumped_str) # color keys json_dumped_str_split = json_dumped_str.split('":') split_size = len(json_dumped_str_split) json_dumped_str = '":'.join( [ ( ' "'.join( sub_str.split(' "')[:-1] + [ termcolor.colored( ivy.Container.cont_trim_key( sub_str.split(' "')[-1], self._key_length_limit ), self._default_key_color, ) ] ) if i < split_size - 1 else sub_str ) for i, sub_str in enumerate(json_dumped_str_split) ] ) # remove quotation marks, shape tuple, and color other elements of the dict ret = ( json_dumped_str.replace('"', "") .replace(", 'shape=', [", " shape=[") .replace(":", termcolor.colored(":", "magenta")) .replace("{", termcolor.colored("{", "blue")) .replace("}", termcolor.colored("}", "blue")) .replace("shape=", termcolor.colored("shape=", "magenta")) .replace("device=", termcolor.colored("device=", "magenta")) .replace("<class'", "<class '") .replace("'", "") .replace("<class", "<" + termcolor.colored("class", "blue")) ) # ToDo: make the solution below more elegant for i in range(10): ret = ret.replace(f"diff_{i}", termcolor.colored(f"diff_{i}", "red")) for keyword, color in self._keyword_color_dict.items(): ret = ret.replace(keyword, termcolor.colored(keyword, color)) return ret return new_dict def __dir__(self): return list(super().__dir__()) + list(self.keys()) # noinspection PyProtectedMember def __getattr__(self, item, *args, **kwargs): try: ret = dict.__getitem__(self, item) except KeyError: # noinspection PyUnresolvedReferences ret = ivy.Container() for k, v in self.items(): if isinstance(v, ivy.Container): result = v.__getattr__(item, *args, **kwargs) else: # raise error if not hasattr(v, item): raise AttributeError( f"'{type(v).__module__}' object has no attribute '{item}'" ) attr = getattr(v, item) result = attr(*args, **kwargs) if callable(attr) else attr ret.__setitem__(k, result) return ret def __setattr__(self, name, value): if name[0] != "_": self[name] = value else: super().__setattr__(name, value) def _get_queue_item(self, query): if isinstance(query, int): queue_queries = [query] elif isinstance(query, slice): queue_queries = list( range(query.start, query.stop, ivy.default(query.step, 1)) ) elif isinstance(query, (list, tuple)): queue_queries = list( range(query[0].start, query[0].stop, ivy.default(query[0].step, 1)) ) else: raise ivy.utils.exceptions.IvyException( "Invalid slice type, must be one of integer, slice " "or sequences of slices." ) queue_idxs = { np.sum(q >= self._queue_load_sizes_cum).item() for q in queue_queries } conts = [] for i in queue_idxs: if i not in self._loaded_containers_from_queues: cont = ivy.Container( self._queues[i].get(timeout=self._queue_timeout), **self._config ).to_ivy() self._loaded_containers_from_queues[i] = cont else: cont = self._loaded_containers_from_queues[i] conts.append(cont) combined_cont = self._container_combine_method(conts) idx = list(queue_idxs)[0] offset = 0 if idx == 0 else self._queue_load_sizes_cum[idx - 1] if isinstance(query, int): shifted_query = query - offset elif isinstance(query, slice): shifted_query = slice(query.start - offset, query.stop - offset, query.step) elif isinstance(query, (list, tuple)): shifted_query = tuple( slice(slc.start - offset, slc.stop - offset, slc.step) for slc in query ) # noinspection PyUnboundLocalVariable return combined_cont[shifted_query] def __getitem__(self, query): """Get slice, key or key chain of container object. Parameters ---------- query slice or str slice object, key or key chain to query all container elements. Returns ------- Container object at desired query. """ if isinstance(query, str): if query == "": return self if "/" in query or "." in query: ret = self.cont_at_key_chain(query) return ret ret = dict.__getitem__(self, query) return ret elif ivy.exists(self._queues): ret = self._get_queue_item(query) return ret return_dict = {} for key, value in self.items(): if isinstance(value, ivy.Container): return_dict[key] = value[query] else: # noinspection PyBroadException if isinstance(value, (list, tuple)): if len(value) == 0: return_dict[key] = value else: return_dict[key] = value[query] elif value is None or hasattr(value, "shape") and value.shape == (): return_dict[key] = value else: return_dict[key] = value[query] ret = ivy.Container(return_dict, **self._config) return ret def __setitem__(self, query, val): """Set key or key chain of container object. Parameters ---------- query slice or str slice object, key or key chain at which to set all container elements. val ivy.Container, array, or other The value to set at the desired query. Returns ------- New container after updating. """ def _map_fn(fn, x): x = x.data if isinstance(x, ivy.Array) else x return fn(x) if query == "_backend": self._backend = val return if query == "dynamic_backend": def func(x, _): if isinstance(x, ivy.Array): x.dynamic_backend = True self.cont_map(func) self._dynamic_backend = val return if isinstance(query, str) and ("/" in query or "." in query): return self.cont_set_at_key_chain(query, val, inplace=True) else: return dict.__setitem__(self, query, val) def __contains__(self, key): if isinstance(key, str) and ("/" in key or "." in key): return self.cont_has_key_chain(key) elif isinstance(key, ivy.Container): return self.cont_contains_sub_container(key) else: return dict.__contains__(self, key) def __getstate__(self): state_dict = copy.copy(self.__dict__) state_dict["_local_ivy"] = ( state_dict["_local_ivy"].current_backend_str() if state_dict["_local_ivy"] is not None else None ) config_in = copy.copy(state_dict["_config_in"]) config_in["ivyh"] = ( config_in["ivyh"].current_backend_str() if config_in["ivyh"] is not None else None ) state_dict["_config_in"] = config_in config = copy.copy(state_dict["_config"]) config["ivyh"] = ( config["ivyh"].current_backend_str() if getattr(config, "ivyh", None) is not None else None ) state_dict["_config"] = config return state_dict def __setstate__(self, state_dict): if "_local_ivy" in state_dict and ivy.exists(state_dict["_local_ivy"]): if len(state_dict["_local_ivy"]) > 0: state_dict["_local_ivy"] = ivy.with_backend(state_dict["_local_ivy"]) else: state_dict["_local_ivy"] = ivy if "_config_in" in state_dict: config_in = copy.copy(state_dict["_config_in"]) if "ivyh" in config_in and ivy.exists(config_in["ivyh"]): if len(config_in["ivyh"]) > 0: config_in["ivyh"] = ivy.with_backend(config_in["ivyh"]) else: config_in["ivyh"] = ivy state_dict["_config_in"] = config_in if "_config" in state_dict: config = copy.copy(state_dict["_config"]) if "ivyh" in config and ivy.exists(config["ivyh"]): if len(config["ivyh"]) > 0: config["ivyh"] = ivy.with_backend(config["ivyh"]) else: config["ivyh"] = ivy state_dict["_config"] = config self.__dict__.update(state_dict) # Getters and Setters # # --------------------# # private @property def _cont_ivy(self): return ivy.default(self._local_ivy, ivy) @_cont_ivy.setter def _cont_ivy(self, local_ivy): self._local_ivy = local_ivy # public @property def cont_shape(self): """The shape of the arrays in the container. None is placed in indices which are not consistent across arrays. """ return self._cont_get_shape() @property def cont_dtype(self): """The dtype of the arrays in the container. None is returned if the dtypes are not consistent. """ return self._cont_get_dtype() @property def cont_shapes(self): """The shapes of each array in the container. None is placed in leaf entries without a shape attribute. """ return self._cont_get_shapes() @property def cont_dev(self): """The device to which the arrays in the container belong. None returned if the devices are not consistent. """ return self._cont_get_dev() @property def cont_dev_str(self): """The device to which the arrays in the container belong. None returned if the devices are not consistent. """ return self._cont_get_dev() @property def cont_ivy(self): return self._cont_ivy @property def cont_config(self): return self._config @property def cont_max_depth(self): kcs = [kc for kc in self.cont_to_iterator_keys(include_empty=True)] if not kcs: return 0 return max(len(kc.split("/")) for kc in kcs) @property def dynamic_backend(self): return self._dynamic_backend
ivy/ivy/data_classes/container/base.py/0
{ "file_path": "ivy/ivy/data_classes/container/base.py", "repo_id": "ivy", "token_count": 74486 }
9
from ivy.data_classes.container.base import ContainerBase class _ContainerWithImageExperimental(ContainerBase): pass
ivy/ivy/data_classes/container/experimental/image.py/0
{ "file_path": "ivy/ivy/data_classes/container/experimental/image.py", "repo_id": "ivy", "token_count": 33 }
10
# global from typing import Union, Optional, Tuple, Literal, List, Dict, Sequence # local from ivy.data_classes.container.base import ContainerBase import ivy inf = float("inf") # ToDo: implement all methods here as public instance methods # noinspection PyMissingConstructor,PyMethodParameters class _ContainerWithLinearAlgebra(ContainerBase): @staticmethod def _static_matmul( x1: Union[ivy.Array, ivy.NativeArray, ivy.Container], x2: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, transpose_a: Union[bool, ivy.Container] = False, transpose_b: Union[bool, ivy.Container] = False, adjoint_a: Union[bool, ivy.Container] = False, adjoint_b: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.matmul. This method simply wraps the function, and so the docstring for ivy.matul also applies to this method with minimal changes. Parameters ---------- x1 first input array x2 second input array key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret the matrix multiplication result of x1 and x2 Examples -------- >>> x = ivy.Container(a = ivy.array([[3., -1.], [-1., 3.]]) , ... b = ivy.array([[2., 1.], [1., 1.]])) >>> y = ivy.Container.static_matmul(x, x) >>> print(y) { a: ivy.array([[10., -6.], [-6., 10.]]), b: ivy.array([[5., 3.], [3., 2.]]) } """ return ContainerBase.cont_multi_map_in_function( "matmul", x1, x2, transpose_a=transpose_a, transpose_b=transpose_b, adjoint_a=adjoint_a, adjoint_b=adjoint_b, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def matmul( self: ivy.Container, x2: Union[ivy.Container, ivy.Array, ivy.NativeArray], /, *, transpose_a: Union[bool, ivy.Container] = False, transpose_b: Union[bool, ivy.Container] = False, adjoint_a: Union[bool, ivy.Container] = False, adjoint_b: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.matmul. This method simply wraps the function, and so the docstring for ivy.matmul also applies to this method with minimal changes. Parameters ---------- self first input array x2 second input array key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret the matrix multiplication result of self and x2 Examples -------- >>> x = ivy.Container(a = ivy.array([[3., -1.], [-1., 3.]]) , ... b = ivy.array([[2., 1.], [1., 1.]])) >>> y = x.matmul(x) >>> print(y) { a: ivy.array([[10., -6.], [-6., 10.]]), b: ivy.array([[5., 3.], [3., 2.]]) } """ return self._static_matmul( self, x2, transpose_a=transpose_a, transpose_b=transpose_b, adjoint_a=adjoint_a, adjoint_b=adjoint_b, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_cholesky( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, upper: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.cholesky. This method simply wraps the function, and so the docstring for ivy.cholesky also applies to this method with minimal changes. Parameters ---------- x input array or container having shape (..., M, M) and whose innermost two dimensions form square symmetric positive-definite matrices. Should have a floating-point data type. upper If True, the result must be the upper-triangular Cholesky factor U. If False, the result must be the lower-triangular Cholesky factor L. Default: ``False``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container containing the Cholesky factors for each square matrix. If upper is False, the returned container must contain lower-triangular matrices; otherwise, the returned container must contain upper-triangular matrices. The returned container must have a floating-point data type determined by Type Promotion Rules and must have the same shape as self. Examples -------- With one :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([[3., -1.], [-1., 3.]]), ... b=ivy.array([[2., 1.], [1., 1.]])) >>> y = ivy.Container.static_cholesky(x, upper='false') >>> print(y) { a: ivy.array([[1.73, -0.577], [0., 1.63]]), b: ivy.array([[1.41, 0.707], [0., 0.707]]) } With multiple :class:`ivy.Container` inputs: >>> x = ivy.Container(a=ivy.array([[3., -1], [-1., 3.]]), ... b=ivy.array([[2., 1.], [1., 1.]])) >>> upper = ivy.Container(a=1, b=-1) >>> y = ivy.Container.static_roll(x, upper=False) >>> print(y) { a: ivy.array([[3., 3.], [-1., -1.]]), b: ivy.array([[1., 1.], [1., 2.]]) } """ return ContainerBase.cont_multi_map_in_function( "cholesky", x, upper=upper, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def cholesky( self: ivy.Container, /, *, upper: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.cholesky. This method simply wraps the function, and so the docstring for ivy.cholesky also applies to this method with minimal changes. Parameters ---------- self input container having shape (..., M, M) and whose innermost two dimensions form square symmetric positive-definite matrices. Should have a floating-point data type. upper If True, the result must be the upper-triangular Cholesky factor U. If False, the result must be the lower-triangular Cholesky factor L. Default: ``False``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container containing the Cholesky factors for each square matrix. If upper is False, the returned container must contain lower-triangular matrices; otherwise, the returned container must contain upper-triangular matrices. The returned container must have a floating-point data type determined by Type Promotion Rules and must have the same shape as self. Examples -------- >>> x = ivy.Container(a=ivy.array([[3., -1],[-1., 3.]]), ... b=ivy.array([[2., 1.],[1., 1.]])) >>> y = x.cholesky(upper='false') >>> print(y) { a: ivy.array([[1.73, -0.577], [0., 1.63]]), b: ivy.array([[1.41, 0.707], [0., 0.707]]) } """ return self._static_cholesky( self, upper=upper, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_cross( x1: Union[ivy.Array, ivy.NativeArray, ivy.Container], x2: Union[ivy.Container, ivy.Array, ivy.NativeArray], /, *, axis: Union[int, ivy.Container] = -1, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.cross. This method simply wraps the function, and so the docstring for ivy.cross also applies to this method with minimal changes. Parameters ---------- x1 first input array. Should have a numeric data type. x2 second input array. Must be compatible with ``self`` (see :ref:`broadcasting`). Should have a numeric data type. axis the axis (dimension) of x1 and x2 containing the vectors for which to compute the cross product.vIf set to -1, the function computes the cross product for vectors defined by the last axis (dimension). Default: ``-1``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the element-wise products. The returned array must have a data type determined by :ref:`type-promotion`. Examples -------- With one :class:`ivy.Container` input: >>> x = ivy.array([9., 0., 3.]) >>> y = ivy.Container(a=ivy.array([1., 1., 0.]), b=ivy.array([1., 0., 1.])) >>> z = ivy.Container.static_cross(x, y) >>> print(z) { a: ivy.array([-3., 3., 9.]), b: ivy.array([0., -6., 0.]) } With multiple :class:`ivy.Container` inputs: >>> x = x = ivy.Container(a=ivy.array([5., 0., 0.]), b=ivy.array([0., 0., 2.])) >>> y = ivy.Container(a=ivy.array([0., 7., 0.]), b=ivy.array([3., 0., 0.])) >>> z = ivy.Container.static_cross(x, y) >>> print(z) { a: ivy.array([0., 0., 35.]), b: ivy.array([0., 6., 0.]) } """ return ContainerBase.cont_multi_map_in_function( "cross", x1, x2, axis=axis, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def cross( self: ivy.Container, x2: Union[ivy.Container, ivy.Array, ivy.NativeArray], /, *, axis: Union[int, ivy.Container] = -1, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.cross. This method simply wraps the function, and so the docstring for ivy.cross also applies to this method with minimal changes. Parameters ---------- self first input array. Should have a numeric data type. x2 second input array. Must be compatible with ``self`` (see :ref:`broadcasting`). Should have a numeric data type. axis the axis (dimension) of x1 and x2 containing the vectors for which to compute (default: -1) the cross product.vIf set to -1, the function computes the cross product for vectors defined by the last axis (dimension). Default: ``-1``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the element-wise products. The returned array must have a data type determined by :ref:`type-promotion`. Examples -------- >>> x = ivy.Container(a=ivy.array([5., 0., 0.]), b=ivy.array([0., 0., 2.])) >>> y = ivy.Container(a=ivy.array([0., 7., 0.]), b=ivy.array([3., 0., 0.])) >>> z = x.cross(y) >>> print(z) { a: ivy.array([0., 0., 35.]), b: ivy.array([0., 6., 0.]) } """ return self._static_cross( self, x2, axis=axis, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_det( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return ContainerBase.cont_multi_map_in_function( "det", x, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def det( self: ivy.Container, /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ Examples -------- >>> x = ivy.Container(a = ivy.array([[3., -1.], [-1., 3.]]) , ... b = ivy.array([[2., 1.], [1., 1.]])) >>> y = x.det() >>> print(y) {a:ivy.array(8.),b:ivy.array(1.)} """ return self._static_det( self, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_diagonal( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, offset: Union[int, ivy.Container] = 0, axis1: Union[int, ivy.Container] = -2, axis2: Union[int, ivy.Container] = -1, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.diagonal. This method simply wraps the function, and so the docstring for ivy.diagonal also applies to this method with minimal changes. Parameters ---------- x input Container with leave arrays having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. offset offset specifying the off-diagonal relative to the main diagonal. - ``offset = 0``: the main diagonal. - ``offset > 0``: off-diagonal above the main diagonal. - ``offset < 0``: off-diagonal below the main diagonal. Default: `0`. axis1 axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to first axis (-2). axis2 axis to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to second axis (-1). out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret A container with the diagonals. More details can be found in the docstring for ivy.diagonal. Examples -------- With :class:`ivy.Container` inputs: >>> x = ivy.Container(a=ivy.array([[1., 2.], [3., 4.]], ... b=ivy.array([[5., 6.], [7., 8.]]))) >>> d = ivy.Container.static_diagonal(x) >>> print(d) { a:ivy.array([1., 4.]), b:ivy.array([5., 8.]) } >>> a = ivy.array([[0, 1, 2], ... [3, 4, 5], ... [6, 7, 8]]) >>> b = ivy.array([[-1., -2., -3.], ... [-3., 4., 5.], ... [5., 6., 7.]])], >>> x = ivy.Container(a=a, b=b) >>> d = ivy.Container.static_diagonal(offset=-1, axis1=0) >>> print(d) { a:ivy.array([3., 7.]), b:ivy.array([-3., 6.]) } """ return ContainerBase.cont_multi_map_in_function( "diagonal", x, offset=offset, axis1=axis1, axis2=axis2, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def diagonal( self: ivy.Container, /, *, offset: Union[int, ivy.Container] = 0, axis1: Union[int, ivy.Container] = -2, axis2: Union[int, ivy.Container] = -1, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.diagonal. This method simply wraps the function, and so the docstring for ivy.diagonal also applies to this method with minimal changes. Parameters ---------- self input Container with leave arrays having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. offset offset specifying the off-diagonal relative to the main diagonal. - ``offset = 0``: the main diagonal. - ``offset > 0``: off-diagonal above the main diagonal. - ``offset < 0``: off-diagonal below the main diagonal. Default: `0`. axis1 axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to first axis (-2). axis2 axis to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to second axis (-1). out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret A container with the diagonals. More details can be found in the docstring for ivy.diagonal. Examples -------- With :class:`ivy.Container` inputs: >>> x = ivy.Container(a=ivy.array([[1., 2.], [3., 4.]]), ... b=ivy.array([[5., 6.], [7., 8.]])) >>> d = x.diagonal() >>> print(d) { a:ivy.array([1., 4.]), b:ivy.array([5., 8.]) } >>> a = ivy.array([[0, 1, 2], ... [3, 4, 5], ... [6, 7, 8]]) >>> b = ivy.array([[-1., -2., -3.], ... [-3., 4., 5.], ... [5., 6., 7.]]), >>> x = ivy.Container(a=a, b=b) >>> d = x.diagonal(offset=-1) >>> print(d) { a: ivy.array([3, 7]), b: ivy.array([[-3., 6.]]) } """ return self._static_diagonal( self, offset=offset, axis1=axis1, axis2=axis2, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_diag( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, k: Union[int, ivy.Container] = 0, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return ContainerBase.cont_multi_map_in_function( "diag", x, k=k, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def diag( self: ivy.Container, /, *, k: Union[int, ivy.Container] = 0, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.diag. This method simply wraps the function, and so the docstring for ivy.diag also applies to this method with minimal changes. Examples -------- >>> x = ivy.Container(a=[[0, 1, 2], >>> [3, 4, 5], >>> [6, 7, 8]]) >>> ivy.diag(x, k=1) { a: ivy.array([1, 5]) } """ return self._static_diag( self, k=k, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_eigh( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, UPLO: Union[str, ivy.Container] = "L", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return ContainerBase.cont_multi_map_in_function( "eigh", x, UPLO=UPLO, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def eigh( self: ivy.Container, /, *, UPLO: Union[str, ivy.Container] = "L", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.eigh. This method simply wraps the function, and so the docstring for ivy.eigh also applies to this method with minimal changes. Parameters ---------- self : ivy.Container Ivy container having shape `(..., M, M)` and whose innermost two dimensions form square matrices. Should have a floating-point data type. UPLO : str, optional Specifies whether the upper or lower triangular part of the Hermitian matrix should be used for the eigenvalue decomposition. Default is 'L'. key_chains : Union[List[str], Dict[str, str]], optional The key-chains to apply or not apply the method to. Default is `None`. to_apply : bool, optional If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is `True`. prune_unapplied : bool, optional Whether to prune key_chains for which the function was not applied. Default is `False`. map_sequences : bool, optional Whether to also map method to sequences (lists, tuples). Default is `False`. out : ivy.Container, optional Optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ivy.Container A container containing the computed eigenvalues. The returned array must have shape `(..., M)` and have the same data type as `self`. Examples -------- With `ivy.Container` inputs: >>> x = ivy.Container(a=ivy.array([[[1.,2.],[2.,1.]]]), ... b=ivy.array([[[2.,4.],[4.,2.]]])) >>> y = x.eigh() >>> print(y) { a: ivy.array([[-1., 3.]]), b: ivy.array([[-2., 6.]]) } """ return self._static_eigh( self, UPLO=UPLO, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_eigvalsh( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, UPLO: Union[str, ivy.Container] = "L", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.eigvalsh. This method simply wraps the function, and so the docstring for ivy.eigvalsh also applies to this method with minimal changes. Parameters ---------- x Ivy container having shape ``(..., M, M)`` and whose innermost two dimensions form square matrices. Should have a floating-point data type. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container containing the computed eigenvalues. The returned array must have shape (..., M) and have the same data type as x. Examples -------- With :class:`ivy.Container` inputs: >>> x = ivy.Container(a=ivy.array([[[1.,2.,3.],[2.,4.,5.],[3.,5.,6.]]]), ... b=ivy.array([[[1.,1.,2.],[1.,2.,1.],[2.,1.,1.]]]), ... c=ivy.array([[[2.,2.,2.],[2.,3.,3.],[2.,3.,3.]]])) >>> e = ivy.Container.static_eigvalsh(x) >>> print(e) { a: ivy.array([[-0.51572949, 0.17091519, 11.3448143]]), b: ivy.array([[-1., 1., 4.]]), c: ivy.array([[-8.88178420e-16, 5.35898387e-01, 7.46410179e+00]]) } """ return ContainerBase.cont_multi_map_in_function( "eigvalsh", x, UPLO=UPLO, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def eigvalsh( self: ivy.Container, /, *, UPLO: Union[str, ivy.Container] = "L", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.eigvalsh. This method simply wraps the function, and so the docstring for ivy.eigvalsh also applies to this method with minimal changes. Parameters ---------- self Ivy container having shape ``(..., M, M)`` and whose innermost two dimensions form square matrices. Should have a floating-point data type. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container containing the computed eigenvalues. The returned array must have shape (..., M) and have the same data type as x. Examples -------- With :class:`ivy.Container` inputs: >>> x = ivy.Container(a=ivy.array([[[1.,2.],[2.,1.]]]), ... b=ivy.array([[[2.,4.],[4.,2.]]])) >>> y = ivy.eigvalsh(x) >>> print(y) { a: ivy.array([[-1., 3.]]), b: ivy.array([[-2., 6.]]) } """ return self._static_eigvalsh( self, UPLO=UPLO, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_inner( x1: Union[ivy.Array, ivy.NativeArray, ivy.Container], x2: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.inner. This method simply wraps the function, and so the docstring for ivy.inner also applies to this method with minimal changes. Return the inner product of two vectors ``x1`` and ``x2``. Parameters ---------- x1 first one-dimensional input array of size N. Should have a numeric data type. a(N,) array_like First input vector. Input is flattened if not already 1-dimensional. x2 second one-dimensional input array of size M. Should have a numeric data type. b(M,) array_like Second input vector. Input is flattened if not already 1-dimensional. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a two-dimensional array containing the inner product and whose shape is (N, M). The returned array must have a data type determined by Type Promotion Rules. Examples -------- >>> x1 = ivy.Container(a=ivy.array([[1, 2], [3, 4]])) >>> x2 = ivy.Container(a=ivy.array([5, 6])) >>> y = ivy.Container.static_inner(x1, x2) >>> print(y) { a: ivy.array([17, 39]) } """ return ContainerBase.cont_multi_map_in_function( "inner", x1, x2, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def inner( self: ivy.Container, x2: Union[ivy.Container, ivy.Array, ivy.NativeArray], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.inner. This method simply wraps the function, and so the docstring for ivy.inner also applies to this method with minimal changes. Return the inner product of two vectors ``self`` and ``x2``. Parameters ---------- self input container of size N. Should have a numeric data type. a(N,) array_like First input vector. Input is flattened if not already 1-dimensional. x2 one-dimensional input array of size M. Should have a numeric data type. b(M,) array_like Second input vector. Input is flattened if not already 1-dimensional. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a new container representing the inner product and whose shape is (N, M). The returned array must have a data type determined by Type Promotion Rules. Examples -------- >>> x1 = ivy.Container(a=ivy.array([[1, 2], [3, 4]])) >>> x2 = ivy.Container(a=ivy.array([5, 6])) >>> y = ivy.Container.inner(x1, x2) >>> print(y) { a: ivy.array([17, 39]) } """ return self._static_inner( self, x2, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_inv( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, adjoint: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.inv. This method simply wraps the function, and so the docstring for ivy.inv also applies to this method with minimal changes. Parameters ---------- x Ivy container having shape ``(..., M, M)`` and whose innermost two dimensions form square matrices. Should have a floating-point data type. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret A container containing the multiplicative inverses. The returned array must have a floating-point data type determined by :ref:`type-promotion` and must have the same shape as ``x``. Examples -------- With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([[0., 1.], [4., 4.]]), ... b=ivy.array([[4., 4.], [2., 1.]])) >>> y = ivy.Container.static_inv(x) >>> print(y) { a: ivy.array([[-1, 0.25], [1., 0.]]), b: ivy.array([-0.25, 1.], [0.5, -1.]) } """ return ContainerBase.cont_multi_map_in_function( "inv", x, adjoint=adjoint, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def inv( self: ivy.Container, /, *, adjoint: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.inv. This method simply wraps the function, and so the docstring for ivy.inv also applies to this method with minimal changes. Parameters ---------- self Ivy container having shape ``(..., M, M)`` and whose innermost two dimensions form square matrices. Should have a floating-point data type. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret A container containing the multiplicative inverses. The returned array must have a floating-point data type determined by :ref:`type-promotion` and must have the same shape as ``x``. Examples -------- With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([[0., 1.], [4., 4.]]), ... b=ivy.array([[4., 4.], [2., 1.]])) >>> y = x.inv() >>> print(y) { a: ivy.array([[-1, 0.25], [1., 0.]]), b: ivy.array([-0.25, 1.], [0.5, -1.]) } """ return self._static_inv( self, adjoint=adjoint, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_pinv( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, rtol: Optional[Union[float, Tuple[float], ivy.Container]] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container special method variant of ivy.pinv. This method simply wraps the function, and so the docstring for ivy.pinv also applies to this method with minimal changes. Parameters ---------- x input array having shape ``(..., M, N)`` and whose innermost two dimensions form``MxN`` matrices. Should have a floating-point data type. rtol relative tolerance for small singular values approximately less than or equal to ``rtol * largest_singular_value`` are set to zero. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the pseudo-inverses. The returned array must have a floating-point data type determined by :ref:`type-promotion` and must have shape ``(..., N, M)`` (i.e., must have the same shape as ``x``, except the innermost two dimensions must be transposed). Examples -------- >>> x = ivy.Container(a= ivy.array([[1., 2.], [3., 4.]])) >>> y = ivy.Container.static_pinv(x) >>> print(y) { a: ivy.array([[-2., 1.], [1.5, -0.5]]) } >>> x = ivy.Container(a=ivy.array([[1., 2.], [3., 4.]])) >>> out = ivy.Container(a=ivy.zeros((2, 2))) >>> ivy.Container.static_pinv(x, rtol=1e-1, out=out) >>> print(out) { a: ivy.array([[0.0426, 0.0964], [0.0605, 0.1368]]) } """ return ContainerBase.cont_multi_map_in_function( "pinv", x, rtol=rtol, out=out, ) def pinv( self: ivy.Container, /, *, rtol: Optional[Union[float, Tuple[float], ivy.Container]] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.pinv. This method simply wraps the function, and so the docstring for ivy.pinv also applies to this method with minimal changes. Parameters ---------- x input array having shape ``(..., M, N)`` and whose innermost two dimensions form``MxN`` matrices. Should have a floating-point data type. rtol relative tolerance for small singular values approximately less than or equal to ``rtol * largest_singular_value`` are set to zero. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the pseudo-inverses. The returned array must have a floating-point data type determined by :ref:`type-promotion` and must have shape ``(..., N, M)`` (i.e., must have the same shape as ``x``, except the innermost two dimensions must be transposed). Examples -------- >>> x = ivy.Container(a= ivy.array([[1., 2.], [3., 4.]])) >>> y = x.pinv() >>> print(y) { a: ivy.array([[-1.99999988, 1.], [1.5, -0.5]]) } >>> x = ivy.Container(a = ivy.array([[1., 2.], [3., 4.]])) >>> out = ivy.Container(a = ivy.zeros(x["a"].shape)) >>> x.pinv(out=out) >>> print(out) { a: ivy.array([[-1.99999988, 1.], [1.5, -0.5]]) } """ return self._static_pinv( self, rtol=rtol, out=out, ) @staticmethod def _static_matrix_norm( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, ord: Union[int, float, Literal[inf, -inf, "fro", "nuc"], ivy.Container] = "fro", axis: Tuple[int, int, ivy.Container] = (-2, -1), keepdims: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.matrix_norm. This method simply wraps the function, and so the docstring for ivy.matrix_norm also applies to this method with minimal changes. Parameters ---------- x Input array having shape (..., M, N) and whose innermost two deimensions form MxN matrices. Should have a floating-point data type. ord Order of the norm. Default is "fro". axis specifies the axes that hold 2-D matrices. Default: (-2, -1). keepdims If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x. Default is ``False``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Matrix norm of the array at specified axes. Examples -------- >>> x = ivy.Container(a=ivy.array([[1.1, 2.2], [1., 2.]]), \ b=ivy.array([[1., 2.], [3., 4.]])) >>> y = ivy.Container.static_matrix_norm(x, ord=1) >>> print(y) { a: ivy.array(4.2), b: ivy.array(6.) } >>> x = ivy.Container(a=ivy.arange(12, dtype=float).reshape((3, 2, 2)), \ b=ivy.arange(8, dtype=float).reshape((2, 2, 2))) >>> ord = ivy.Container(a=1, b=float('inf')) >>> axis = ivy.Container(a=(1, 2), b=(2, 1)) >>> k = ivy.Container(a=False, b=True) >>> y = ivy.Container.static_matrix_norm(x, ord=ord, axis=axis, keepdims=k) >>> print(y) { a: ivy.array([4.24, 11.4, 19.2]), b: ivy.array([[[3.7]], [[11.2]]]) } """ return ContainerBase.cont_multi_map_in_function( "matrix_norm", x, ord=ord, axis=axis, keepdims=keepdims, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def matrix_norm( self: ivy.Container, /, *, ord: Union[int, float, Literal[inf, -inf, "fro", "nuc"], ivy.Container] = "fro", axis: Tuple[int, int, ivy.Container] = (-2, -1), keepdims: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.matrix_norm. This method simply wraps the function, and so the docstring for ivy.matrix_norm also applies to this method with minimal changes. Parameters ---------- self Container having shape (..., M, N) and whose innermost two dimensions form MxN matrices. Should have a floating-point data type. ord Order of the norm. Default is "fro". axis specifies the axes that hold 2-D matrices. Default: (-2, -1). keepdims If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x. Default is ``False``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Matrix norm of the array at specified axes. Examples -------- >>> x = ivy.Container(a=ivy.array([[1.1, 2.2], [1., 2.]]), \ b=ivy.array([[1., 2.], [3., 4.]])) >>> y = x.matrix_norm(ord=1) >>> print(y) { a: ivy.array(4.2), b: ivy.array(6.) } >>> x = ivy.Container(a=ivy.arange(12, dtype=float).reshape((3, 2, 2)), \ b=ivy.arange(8, dtype=float).reshape((2, 2, 2))) >>> ord = ivy.Container(a="nuc", b=ivy.inf) >>> axis = ivy.Container(a=(1, 2), b=(2, 1)) >>> k = ivy.Container(a=True, b=False) >>> y = x.matrix_norm(ord=ord, axis=axis, keepdims=k) >>> print(y) { a: ivy.array([[[4.24]], [[11.4]], [[19.2]]]), b: ivy.array([4., 12.]) } """ return self._static_matrix_norm( self, ord=ord, axis=axis, keepdims=keepdims, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_matrix_power( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], n: Union[int, ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return ContainerBase.cont_multi_map_in_function( "matrix_power", x, n, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def matrix_power( self: ivy.Container, n: Union[int, ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return self._static_matrix_power( self, n, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_matrix_rank( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, atol: Optional[Union[float, Tuple[float], ivy.Container]] = None, rtol: Optional[Union[float, Tuple[float], ivy.Container]] = None, hermitian: Optional[Union[bool, ivy.Container]] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.matrix_rank. This method returns the rank (i.e., number of non-zero singular values) of a matrix (or a stack of matrices). Parameters ---------- x input array or container having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. Should have a floating-point data type. atol absolute tolerance. When None it’s considered to be zero. rtol relative tolerance for small singular values. Singular values approximately less than or equal to ``rtol * largest_singular_value`` are set to zero. If a ``float``, the value is equivalent to a zero-dimensional array having a floating-point data type determined by :ref:`type-promotion` (as applied to ``x``) and must be broadcast against each matrix. If an ``array``, must have a floating-point data type and must be compatible with ``shape(x)[:-2]`` (see:ref:`broadcasting`). If ``None``, the default value is ``max(M, N) * eps``, where ``eps`` must be the machine epsilon associated with the floating-point data type determined by :ref:`type-promotion` (as applied to ``x``). Default: ``None``. hermitian indicates whether ``x`` is Hermitian. When ``hermitian=True``, ``x`` is assumed to be Hermitian, enabling a more efficient method for finding eigenvalues, but x is not checked inside the function. Instead, We just use the lower triangular of the matrix to compute. Default: ``False``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container containing the ranks. The returned array must have a floating-point data type determined by :ref:`type-promotion` and must have shape ``(...)`` (i.e., must have a shape equal to ``shape(x)[:-2]``). Examples -------- With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([[1., 0.], [0., 1.]]), ... b=ivy.array([[1., 0.], [0., 0.]])) >>> y = ivy.Container.static_matrix_rank(x) >>> print(y) { a: ivy.array(2.), b: ivy.array(1.) } """ return ContainerBase.cont_multi_map_in_function( "matrix_rank", x, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, atol=atol, rtol=rtol, hermitian=hermitian, out=out, ) def matrix_rank( self: ivy.Container, /, *, atol: Optional[Union[float, Tuple[float], ivy.Container]] = None, rtol: Optional[Union[float, Tuple[float], ivy.Container]] = None, hermitian: Optional[Union[bool, ivy.Container]] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.matrix_rank. This method returns the rank (i.e., number of non-zero singular values) of a matrix (or a stack of matrices). Parameters ---------- self input container having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. Should have a floating-point data type. atol absolute tolerance. When None it’s considered to be zero. rtol relative tolerance for small singular values. Singular values approximately less than or equal to ``rtol * largest_singular_value`` are set to zero. If a ``float``, the value is equivalent to a zero-dimensional array having a floating-point data type determined by :ref:`type-promotion` (as applied to ``x``) and must be broadcast against each matrix. If an ``array``, must have a floating-point data type and must be compatible with ``shape(x)[:-2]`` (see :ref:`broadcasting`). If ``None``, the default value is ``max(M, N) * eps``, where ``eps`` must be the machine epsilon associated with the floating-point data type determined by :ref:`type-promotion` (as applied to ``x``). Default: ``None``. hermitian indicates whether ``x`` is Hermitian. When ``hermitian=True``, ``x`` is assumed to be Hermitian, enabling a more efficient method for finding eigenvalues, but x is not checked inside the function. Instead, We just use the lower triangular of the matrix to compute. Default: ``False``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container containing the ranks. The returned array must have a floating-point data type determined by :ref:`type-promotion` and must have shape ``(...)`` (i.e., must have a shape equal to ``shape(x)[:-2]``). Examples -------- With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([[1., 0.], [0., 1.]]), ... b=ivy.array([[1., 0.], [0., 0.]])) >>> y = x.matrix_rank() >>> print(y) { a: ivy.array(2), b: ivy.array(1) } """ return self._static_matrix_rank( self, atol=atol, rtol=rtol, hermitian=hermitian, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_matrix_transpose( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, conjugate: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """Transpose a matrix (or a stack of matrices) ``x``. Parameters ---------- x input Container which will have arrays with shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret A container with the transposes for each matrix and having shape ``(..., N, M)``. The returned array must have the same data type as ``x``. Examples -------- With :code:`ivy.Container` instance method: >>> x = ivy.Container(a=ivy.array([[1., 1.], [0., 3.]]), \ b=ivy.array([[0., 4.], [3., 1.]])) >>> y = ivy.Container.static_matrix_transpose(x) >>> print(y) { a: ivy.array([[1., 0.], [1., 3.]]), b: ivy.array([[0., 3.], [4., 1.]]) } """ return ContainerBase.cont_multi_map_in_function( "matrix_transpose", x, conjugate=conjugate, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def matrix_transpose( self: ivy.Container, /, *, conjugate: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """Transpose a matrix (or a stack of matrices) ``x``. Parameters ---------- self input Container which will have arrays with shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret A container with the transposes for each matrix and having shape ``(..., N, M)``. The returned array must have the same data type as ``x``. Examples -------- With :code:`ivy.Container` instance method: >>> x = ivy.Container(a=ivy.array([[1., 1.], [0., 3.]]), \ b=ivy.array([[0., 4.], [3., 1.]])) >>> y = x.matrix_transpose() >>> print(y) { a: ivy.array([[1., 0.], [1., 3.]]), b: ivy.array([[0., 3.], [4., 1.]]) } """ return self._static_matrix_transpose( self, conjugate=conjugate, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_outer( x1: Union[ivy.Array, ivy.NativeArray, ivy.Container], x2: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.outer. This method simply wraps the function, and so the docstring for ivy.outer also applies to this method with minimal changes. Computes the outer product of two arrays, x1 and x2, by computing the tensor product along the last dimension of both arrays. Parameters ---------- x1 first input array having shape (..., N1) x2 second input array having shape (..., N2) key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. The container must have shape (..., N1, N2). The first x1.ndim-1 dimensions must have the same size as those of the input array x1 and the first x2.ndim-1 dimensions must have the same size as those of the input array x2. Returns ------- ret an ivy container whose shape is (..., N1, N2). The first x1.ndim-1 dimensions have the same size as those of the input array x1 and the first x2.ndim-1 dimensions have the same size as those of the input array x2. Example ------- >>> x1 =ivy.Container( a=ivy.array([[1, 2, 3], [4, 5, 6]])) >>> x2 = ivy.Container(a=ivy.array([1, 2, 3])) >>> y = ivy.Container.static_outer(x1, x2) >>> print(y) ivy.array([[[ 1., 2., 3.], [ 2., 4., 6.], [ 3., 6., 9.]], [[ 4., 8., 12.], [ 5., 10., 15.], [ 6., 12., 18.]]]) """ return ContainerBase.cont_multi_map_in_function( "outer", x1, x2, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def outer( self: ivy.Container, x2: Union[ivy.Container, ivy.Array, ivy.NativeArray], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """Return the outer product of two arrays or containers. The instance method implementation of the static method static_outer of the ivy.Container class. It calculates the outer product of two input arrays or containers along the last dimension and returns the resulting container. The input arrays should be either ivy.Container, ivy.Array, or ivy.NativeArray. The output container shape is the concatenation of the shapes of the input containers along the last dimension. Parameters ---------- self : ivy.Container Input container of shape (...,B) where the last dimension represents B elements. x2 : Union[ivy.Container, ivy.Array, ivy.NativeArray] Second input array or container of shape (..., N) where the last dimension represents N elements. key_chains : Optional[Union[List[str], Dict[str, str]]] The key-chains to apply or not apply the method to. Default is None. to_apply : bool If True, the method will be applied to key_chains, otherwise key_chains will be skipped.Default is True. prune_unapplied : bool Whether to prune key_chains for which the function was not applied. Default is False. map_sequences : bool Whether to also map the method to sequences (lists, tuples). Default is False. out : Optional[ivy.Container] Optional output container to write the result to. If not provided, a new container will be created. Returns ------- ivy.Container A new container of shape (..., M, N) representing the outer product of the input arrays or containers along the last dimension. Examples -------- >>> x = ivy.array([[1., 2.],[3., 4.]]) >>> y = ivy.array([[5., 6.],[7., 8.]]) >>> d = ivy.outer(x,y) >>> print(d) ivy.array([[ 5., 6., 7., 8.], [10., 12., 14., 16.], [15., 18., 21., 24.], [20., 24., 28., 32.]]) """ return self._static_outer( self, x2, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_qr( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, mode: Union[str, ivy.Container] = "reduced", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[Tuple[ivy.Container, ivy.Container]] = None, ) -> Tuple[ivy.Container, ivy.Container]: """ivy.Container static method variant of ivy.qr. This method simply wraps the function, and so the docstring for ivy.qr also applies to this method with minimal changes. Returns the qr decomposition x = QR of a full column rank matrix (or a stack of matrices), where Q is an orthonormal matrix (or a stack of matrices) and R is an upper-triangular matrix (or a stack of matrices). Parameters ---------- x input container having shape (..., M, N) and whose innermost two dimensions form MxN matrices of rank N. Should have a floating-point data type. mode decomposition mode. Should be one of the following modes: - 'reduced': compute only the leading K columns of q, such that q and r have dimensions (..., M, K) and (..., K, N), respectively, and where K = min(M, N). - 'complete': compute q and r with dimensions (..., M, M) and (..., M, N), respectively. Default: 'reduced'. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output tuple of containers, for writing the result to. The arrays must have shapes that the inputs broadcast to. Returns ------- ret a namedtuple (Q, R) whose - first element must have the field name Q and must be an container whose shape depends on the value of mode and contain matrices with orthonormal columns. If mode is 'complete', the container must have shape (..., M, M). If mode is 'reduced', the container must have shape (..., M, K), where K = min(M, N). The first x.ndim-2 dimensions must have the same size as those of the input container x. - second element must have the field name R and must be an container whose shape depends on the value of mode and contain upper-triangular matrices. If mode is 'complete', the container must have shape (..., M, N). If mode is 'reduced', the container must have shape (..., K, N), where K = min(M, N). The first x.ndim-2 dimensions must have the same size as those of the input x. Examples -------- >>> x = ivy.Container(a = ivy.native_array([[1., 2.], [3., 4.]]), ... b = ivy.array([[2., 3.], [4. ,5.]])) >>> q,r = ivy.Container.static_qr(x, mode='complete') >>> print(q) { a: ivy.array([[-0.31622777, -0.9486833], [-0.9486833, 0.31622777]]), b: ivy.array([[-0.4472136, -0.89442719], [-0.89442719, 0.4472136]]) } >>> print(r) { a: ivy.array([[-3.16227766, -4.42718872], [0., -0.63245553]]), b: ivy.array([[-4.47213595, -5.81377674], [0., -0.4472136]]) } """ return ContainerBase.cont_multi_map_in_function( "qr", x, mode=mode, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def qr( self: ivy.Container, /, *, mode: Union[str, ivy.Container] = "reduced", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[Tuple[ivy.Container, ivy.Container]] = None, ) -> Tuple[ivy.Container, ivy.Container]: """ivy.Container instance method variant of ivy.qr. This method simply wraps the function, and so the docstring for ivy.qr also applies to this method with minimal changes. Returns the qr decomposition x = QR of a full column rank matrix (or a stack of matrices), where Q is an orthonormal matrix (or a stack of matrices) and R is an upper-triangular matrix (or a stack of matrices). Parameters ---------- self input container having shape (..., M, N) and whose innermost two dimensions form MxN matrices of rank N. Should have a floating-point data type. mode decomposition mode. Should be one of the following modes: - 'reduced': compute only the leading K columns of q, such that q and r have dimensions (..., M, K) and (..., K, N), respectively, and where K = min(M, N). - 'complete': compute q and r with dimensions (..., M, M) and (..., M, N), respectively. Default: 'reduced'. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output tuple of containers, for writing the result to. The arrays must have shapes that the inputs broadcast to. Returns ------- ret a namedtuple (Q, R) whose - first element must have the field name Q and must be an container whose shape depends on the value of mode and contain matrices with orthonormal columns. If mode is 'complete', the container must have shape (..., M, M). If mode is 'reduced', the container must have shape (..., M, K), where K = min(M, N). The first x.ndim-2 dimensions must have the same size as those of the input container x. - second element must have the field name R and must be an container whose shape depends on the value of mode and contain upper-triangular matrices. If mode is 'complete', the container must have shape (..., M, N). If mode is 'reduced', the container must have shape (..., K, N), where K = min(M, N). The first x.ndim-2 dimensions must have the same size as those of the input x. Examples -------- >>> x = ivy.Container(a = ivy.native_array([[1., 2.], [3., 4.]]), ... b = ivy.array([[2., 3.], [4. ,5.]])) >>> q,r = x.qr(mode='complete') >>> print(q) { a: ivy.array([[-0.31622777, -0.9486833], [-0.9486833, 0.31622777]]), b: ivy.array([[-0.4472136, -0.89442719], [-0.89442719, 0.4472136]]) } >>> print(r) { a: ivy.array([[-3.16227766, -4.42718872], [0., -0.63245553]]), b: ivy.array([[-4.47213595, -5.81377674], [0., -0.4472136]]) } """ return self._static_qr( self, mode=mode, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_slogdet( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, ) -> ivy.Container: """ivy.Container static method variant of ivy.slogdet. This method simply wraps the function, and so the docstring for ivy.slogdet also applies to this method with minimal changes. Parameters ---------- x input array or container having shape (..., M, M) and whose innermost two dimensions form square matrices. Should have a floating-point data type. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. Returns ------- ret This function returns a container containing NamedTuples. Each NamedTuple of output will have - sign: An array containing a number representing the sign of the determinant for each square matrix. logabsdet: An array containing natural log of the absolute determinant of each square matrix. Examples -------- >>> x = ivy.Container(a=ivy.array([[1.0, 2.0], ... [3.0, 4.0]]), ... b=ivy.array([[1.0, 2.0], ... [2.0, 1.0]])) >>> y = ivy.Container.static_slogdet(x) >>> print(y) { a: [ sign = ivy.array(-1.), logabsdet = ivy.array(0.6931472) ], b: [ sign = ivy.array(-1.), logabsdet = ivy.array(1.0986123) ] } """ return ContainerBase.cont_multi_map_in_function( "slogdet", x, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, ) def slogdet( self: ivy.Container, /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, ) -> ivy.Container: """ivy.Container instance method variant of ivy.slogdet. This method simply wraps the function, and so the docstring for ivy.slogdet also applies to this method with minimal changes. Parameters ---------- self input container having shape (..., M, M) and whose innermost two dimensions form square matrices. Should have a floating-point data type. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. Returns ------- ret This function returns container containing NamedTuples. Each NamedTuple of output will have - sign: An array of a number representing the sign of the determinant of each square. logabsdet: An array of the natural log of the absolute value of the determinant of each square. Examples -------- >>> x = ivy.Container(a=ivy.array([[1.0, 2.0], ... [3.0, 4.0]]), ... b=ivy.array([[1.0, 2.0], ... [2.0, 1.0]])) >>> y = x.slogdet() >>> print(y) [{ a: ivy.array(-1.), b: ivy.array(-1.) }, { a: ivy.array(0.69314718), b: ivy.array(1.09861231) }] """ return self._static_slogdet( self, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, ) @staticmethod def _static_solve( x1: Union[ivy.Array, ivy.NativeArray, ivy.Container], x2: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, adjoint: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return ContainerBase.cont_multi_map_in_function( "solve", x1, x2, adjoint=adjoint, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def solve( self: ivy.Container, x2: Union[ivy.Container, ivy.Array, ivy.NativeArray], /, *, adjoint: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return self._static_solve( self, x2, adjoint=adjoint, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_svd( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, compute_uv: Union[bool, ivy.Container] = True, full_matrices: Union[bool, ivy.Container] = True, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> Union[ivy.Container, Tuple[ivy.Container, ...]]: """ivy.Container static method variant of ivy.svd. This method simply wraps the function, and so the docstring for ivy.svd also applies to this method with minimal changes. Parameters ---------- x input container with array leaves having shape ``(..., M, N)`` and whose innermost two dimensions form matrices on which to perform singular value decomposition. Should have a floating-point data type. full_matrices If ``True``, compute full-sized ``U`` and ``Vh``, such that ``U`` has shape ``(..., M, M)`` and ``Vh`` has shape ``(..., N, N)``. If ``False``, compute on the leading ``K`` singular vectors, such that ``U`` has shape ``(..., M, K)`` and ``Vh`` has shape ``(..., K, N)`` and where ``K = min(M, N)``. Default: ``True``. compute_uv If ``True`` then left and right singular vectors will be computed and returned in ``U`` and ``Vh``, respectively. Otherwise, only the singular values will be computed, which can be significantly faster. .. note:: with backend set as torch, svd with still compute left and right singular vectors irrespective of the value of compute_uv, however Ivy will still only return the singular values. Returns ------- .. note:: once complex numbers are supported, each square matrix must be Hermitian. ret A container of a namedtuples ``(U, S, Vh)``. More details in ivy.svd. Examples -------- With :class:`ivy.Container` input: >>> x = ivy.random_normal(shape = (9, 6)) >>> y = ivy.random_normal(shape = (2, 4)) >>> z = ivy.Container(a=x, b=y) >>> ret = ivy.Container.static_svd(z) >>> aU, aS, aVh = ret.a >>> bU, bS, bVh = ret.b >>> print(aU.shape, aS.shape, aVh.shape, bU.shape, bS.shape, bVh.shape) (9, 9) (6,) (6, 6) (2, 2) (2,) (4, 4) """ return ContainerBase.cont_multi_map_in_function( "svd", x, compute_uv=compute_uv, full_matrices=full_matrices, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def svd( self: ivy.Container, /, *, compute_uv: Union[bool, ivy.Container] = True, full_matrices: Union[bool, ivy.Container] = True, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.svd. This method simply wraps the function, and so the docstring for ivy.svd also applies to this method with minimal changes. Parameters ---------- self input container with array leaves having shape ``(..., M, N)`` and whose innermost two dimensions form matrices on which to perform singular value decomposition. Should have a floating-point data type. full_matrices If ``True``, compute full-sized ``U`` and ``Vh``, such that ``U`` has shape ``(..., M, M)`` and ``Vh`` has shape ``(..., N, N)``. If ``False``, compute on the leading ``K`` singular vectors, such that ``U`` has shape ``(..., M, K)`` and ``Vh`` has shape ``(..., K, N)`` and where ``K = min(M, N)``. Default: ``True``. compute_uv If ``True`` then left and right singular vectors will be computed and returned in ``U`` and ``Vh``, respectively. Otherwise, only the singular values will be computed, which can be significantly faster. .. note:: with backend set as torch, svd with still compute left and right singular vectors irrespective of the value of compute_uv, however Ivy will still only return the singular values. Returns ------- .. note:: once complex numbers are supported, each square matrix must be Hermitian. ret A container of a namedtuples ``(U, S, Vh)``. More details in ivy.svd. Examples -------- With :class:`ivy.Container` input: >>> x = ivy.random_normal(shape = (9, 6)) >>> y = ivy.random_normal(shape = (2, 4)) >>> z = ivy.Container(a=x, b=y) >>> ret = z.svd() >>> print(ret[0], ret[1], ret[2]) { a: (<class ivy.data_classes.array.array.Array> shape=[9, 9]), b: ivy.array([[-0.3475602, -0.93765765], [-0.93765765, 0.3475602]]) } { a: ivy.array([3.58776021, 3.10416126, 2.80644298, 1.87024701, 1.48127627, 0.79101127]), b: ivy.array([1.98288572, 0.68917423]) } { a: (<class ivy.data_classes.array.array.Array> shape=[6, 6]), b: (<class ivy.data_classes.array.array.Array> shape=[4, 4]) } """ return self._static_svd( self, compute_uv=compute_uv, full_matrices=full_matrices, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_svdvals( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return ContainerBase.cont_multi_map_in_function( "svdvals", x, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def svdvals( self: ivy.Container, /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return self._static_svdvals( self, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_tensordot( x1: Union[ivy.Array, ivy.NativeArray, ivy.Container], x2: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, axes: Union[int, Tuple[List[int], List[int]], ivy.Container] = 2, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return ContainerBase.cont_multi_map_in_function( "tensordot", x1, x2, axes=axes, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def tensordot( self: ivy.Container, x2: Union[ivy.Container, ivy.Array, ivy.NativeArray], /, *, axes: Union[int, Tuple[List[int], List[int]], ivy.Container] = 2, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return self._static_tensordot( self, x2, axes=axes, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_tensorsolve( x1: Union[ivy.Array, ivy.NativeArray, ivy.Container], x2: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, axes: Optional[Union[int, Tuple[List[int], List[int]], ivy.Container]] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return ContainerBase.cont_multi_map_in_function( "tensorsolve", x1, x2, axes=axes, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def tensorsolve( self: ivy.Container, x2: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, axes: Optional[Union[int, Tuple[List[int], List[int]], ivy.Container]] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return self._static_tensorsolve( self, x2, axes=axes, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_trace( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, offset: Union[int, ivy.Container] = 0, axis1: Union[int, ivy.Container] = 0, axis2: Union[int, ivy.Container] = 1, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.trace. This method Returns the sum along the specified diagonals of a matrix (or a stack of matrices). Parameters ---------- x input container having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. Should have a floating-point data type. offset Offset of the diagonal from the main diagonal. Can be both positive and negative. Defaults to 0. axis1 axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to ``0.`` . axis2 axis to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to ``1.`` . key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container containing the traces and whose shape is determined by removing the last two dimensions and storing the traces in the last array dimension. For example, if ``x`` has rank ``k`` and shape ``(I, J, K, ..., L, M, N)``, then an output array has rank ``k-2`` and shape ``(I, J, K, ..., L)`` where :: out[i, j, k, ..., l] = trace(a[i, j, k, ..., l, :, :]) The returned array must have the same data type as ``x``. Examples -------- With :class:`ivy.Container` input: >>> x = ivy.Container( ... a = ivy.array([[7, 1, 2], ... [1, 3, 5], ... [0, 7, 4]]), ... b = ivy.array([[4, 3, 2], ... [1, 9, 5], ... [7, 0, 6]]) ) >>> y = x.Container.static_trace(x) >>> print(y) { a: ivy.array(14), b: ivy.array(19) } """ return ContainerBase.cont_multi_map_in_function( "trace", x, offset=offset, axis1=axis1, axis2=axis2, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def trace( self: ivy.Container, /, *, offset: Union[int, ivy.Container] = 0, axis1: Union[int, ivy.Container] = 0, axis2: Union[int, ivy.Container] = 1, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.trace. This method Returns the sum along the specified diagonals of a matrix (or a stack of matrices). Parameters ---------- self input container having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. Should have a floating-point data type. offset Offset of the diagonal from the main diagonal. Can be both positive and negative. Defaults to 0. axis1 axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to ``0.`` . axis2 axis to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to ``1.`` . key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container containing the traces and whose shape is determined by removing the last two dimensions and storing the traces in the last array dimension. For example, if ``x`` has rank ``k`` and shape ``(I, J, K, ..., L, M, N)``, then an output array has rank ``k-2`` and shape ``(I, J, K, ..., L)`` where :: out[i, j, k, ..., l] = trace(a[i, j, k, ..., l, :, :]) The returned array must have the same data type as ``x``. Examples -------- With :class:`ivy.Container` input: >>> x = ivy.Container( ... a = ivy.array([[7, 1, 2], ... [1, 3, 5], ... [0, 7, 4]]), ... b = ivy.array([[4, 3, 2], ... [1, 9, 5], ... [7, 0, 6]])) >>> y = x.trace() >>> print(y) { a: ivy.array(14), b: ivy.array(19) } """ return self._static_trace( self, offset=offset, axis1=axis1, axis2=axis2, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_vecdot( x1: Union[ivy.Container, ivy.Array, ivy.NativeArray], x2: Union[ivy.Container, ivy.Array, ivy.NativeArray], /, *, axis: Union[int, ivy.Container] = -1, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return ContainerBase.cont_multi_map_in_function( "vecdot", x1, x2, axis=axis, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def vecdot( self: ivy.Container, x2: Union[ivy.Container, ivy.Array, ivy.NativeArray], /, *, axis: Union[int, ivy.Container] = -1, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return self._static_vecdot( self, x2, axis=axis, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_vector_norm( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, axis: Optional[Union[int, Sequence[int], ivy.Container]] = None, keepdims: Union[bool, ivy.Container] = False, ord: Union[int, float, Literal[inf, -inf], ivy.Container] = 2, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype, ivy.Container]] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.vector_norm. This method simply wraps the function, and so the docstring for ivy.vector_norm also applies to this method with minimal changes. Parameters ---------- x input array. Should have a floating-point data type. axis If an integer, ``axis`` specifies the axis (dimension) along which to compute vector norms. If an n-tuple, ``axis`` specifies the axes (dimensions) along which to compute batched vector norms. If ``None``, the vector norm must be computed over all array values (i.e., equivalent to computing the vector norm of a flattened array). Negative indices must be supported. Default: ``None``. keepdims If ``True``, the axes (dimensions) specified by ``axis`` must be included in the result as singleton dimensions, and, accordingly, the result must be compatible with the input array (see :ref:`broadcasting`). Otherwise, if ``False``, the axes (dimensions) specified by ``axis`` must not be included in the result. Default: ``False``. ord order of the norm. The following mathematical norms must be supported: +------------------+----------------------------+ | ord | description | +==================+============================+ | 1 | L1-norm (Manhattan) | +------------------+----------------------------+ | 2 | L2-norm (Euclidean) | +------------------+----------------------------+ | inf | infinity norm | +------------------+----------------------------+ | (int,float >= 1) | p-norm | +------------------+----------------------------+ The following non-mathematical "norms" must be supported: +------------------+--------------------------------+ | ord | description | +==================+================================+ | 0 | sum(a != 0) | +------------------+--------------------------------+ | -1 | 1./sum(1./abs(a)) | +------------------+--------------------------------+ | -2 | 1./sqrt(sum(1./abs(a)/*/*2)) | # noqa +------------------+--------------------------------+ | -inf | min(abs(a)) | +------------------+--------------------------------+ | (int,float < 1) | sum(abs(a)/*/*ord)/*/*(1./ord) | +------------------+--------------------------------+ Default: ``2``. dtype data type that may be used to perform the computation more precisely. The input array ``x`` gets cast to ``dtype`` before the function's computations. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the vector norms. If ``axis`` is ``None``, the returned array must be a zero-dimensional array containing a vector norm. If ``axis`` is a scalar value (``int`` or ``float``), the returned array must have a rank which is one less than the rank of ``x``. If ``axis`` is a ``n``-tuple, the returned array must have a rank which is ``n`` less than the rank of ``x``. The returned array must have a floating-point data type determined by :ref:`type-promotion`. Examples -------- >>> x = ivy.Container(a = [1., 2., 3.], b = [-2., 0., 3.2]) >>> y = ivy.Container.static_vector_norm(x) >>> print(y) { a: ivy.array([3.7416575]), b: ivy.array([3.77359247]) } """ return ContainerBase.cont_multi_map_in_function( "vector_norm", x, axis=axis, keepdims=keepdims, ord=ord, dtype=dtype, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def vector_norm( self: ivy.Container, /, *, axis: Optional[Union[int, Sequence[int], ivy.Container]] = None, keepdims: Union[bool, ivy.Container] = False, ord: Union[int, float, Literal[inf, -inf], ivy.Container] = 2, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype, ivy.Container]] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: r"""ivy.Container instance method variant of ivy.vector_norm. This method simply wraps the function, and so the docstring for ivy.vector_norm also applies to this method with minimal changes. Parameters ---------- self input array. Should have a floating-point data type. axis If an integer, ``axis`` specifies the axis (dimension) along which to compute vector norms. If an n-tuple, ``axis`` specifies the axes (dimensions) along which to compute batched vector norms. If ``None``, the vector norm must be computed over all array values (i.e., equivalent to computing the vector norm of a flattened array). Negative indices must be supported. Default: ``None``. keepdims If ``True``, the axes (dimensions) specified by ``axis`` must be included in the result as singleton dimensions, and, accordingly, the result must be compatible with the input array (see :ref:`broadcasting`).Otherwise, if ``False``, the axes (dimensions) specified by ``axis`` must not be included in the result. Default: ``False``. ord order of the norm. The following mathematical norms must be supported: +------------------+----------------------------+ | ord | description | +==================+============================+ | 1 | L1-norm (Manhattan) | +------------------+----------------------------+ | 2 | L2-norm (Euclidean) | +------------------+----------------------------+ | inf | infinity norm | +------------------+----------------------------+ | (int,float >= 1) | p-norm | +------------------+----------------------------+ The following non-mathematical "norms" must be supported: +------------------+--------------------------------+ | ord | description | +==================+================================+ | 0 | sum(a != 0) | +------------------+--------------------------------+ | -1 | 1./sum(1./abs(a)) | +------------------+--------------------------------+ | -2 | 1./sqrt(sum(1./abs(a)/*/*2)) | # noqa +------------------+--------------------------------+ | -inf | min(abs(a)) | +------------------+--------------------------------+ | (int,float < 1) | sum(abs(a)/*/*ord)/*/*(1./ord) | +------------------+--------------------------------+ Default: ``2``. dtype data type that may be used to perform the computation more precisely. The input array ``x`` gets cast to ``dtype`` before the function's computations. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the vector norms. If ``axis`` is ``None``, the returned array must be a zero-dimensional array containing a vector norm. If ``axis`` is a scalar value (``int`` or ``float``), the returned array must have a rank which is one less than the rank of ``x``. If ``axis`` is a ``n``-tuple, the returned array must have a rank which is ``n`` less than the rank of ``x``. The returned array must have a floating-point data type determined by :ref:`type-promotion`. Examples -------- >>> x = ivy.Container(a = [1., 2., 3.], b = [-2., 0., 3.2]) >>> y = x.vector_norm() >>> print(y) { a: ivy.array([3.7416575]), b: ivy.array([3.77359247]) } """ return self._static_vector_norm( self, axis=axis, keepdims=keepdims, ord=ord, dtype=dtype, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_vector_to_skew_symmetric_matrix( vector: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return ContainerBase.cont_multi_map_in_function( "vector_to_skew_symmetric_matrix", vector, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def vector_to_skew_symmetric_matrix( self: ivy.Container, /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: return self._static_vector_to_skew_symmetric_matrix( self, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_vander( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, N: Optional[Union[int, ivy.Container]] = None, increasing: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.vander. This method simply wraps the function, and so the docstring for ivy.vander also applies to this method with minimal changes. Parameters ---------- x ivy container that contains 1-D arrays. N Number of columns in the output. If N is not specified, a square array is returned (N = len(x)) increasing Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. out optional output container, for writing the result to. Returns ------- ret container that contains the Vandermonde matrix of the arrays included in the input container. Examples -------- With :class:`ivy.Container` inputs: >>> x = ivy.Container( a = ivy.array([1, 2, 3, 5]) b = ivy.array([6, 7, 8, 9]) ) >>> ivy.Container.static_vander(x) { a: ivy.array( [[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]] ), b: ivy.array( [[216, 36, 6, 1], [343, 49, 7, 1], [512, 64, 8, 1], [729, 81, 9, 1]] ) } """ return ContainerBase.cont_multi_map_in_function( "vander", x, N=N, increasing=increasing, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def vander( self: ivy.Container, /, *, N: Optional[Union[int, ivy.Container]] = None, increasing: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.vander. This method Returns the Vandermonde matrix of the input array. Parameters ---------- self 1-D input array. N Number of columns in the output. If N is not specified, a square array is returned (N = len(x)) increasing Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. out optional output container, for writing the result to. Returns ------- ret an container containing the Vandermonde matrices of the arrays included in the input container. Examples -------- With :class:`ivy.Container` inputs: >>> x = ivy.Container( a = ivy.array([1, 2, 3, 5]) b = ivy.array([6, 7, 8, 9]) ) >>> x.vander() { a: ivy.array( [[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]] ), b: ivy.array( [[216, 36, 6, 1], [343, 49, 7, 1], [512, 64, 8, 1], [729, 81, 9, 1]] ) } """ return self._static_vander( self, N=N, increasing=increasing, out=out, ) @staticmethod def static_general_inner_product( x1: Union[ivy.Container, ivy.Array, ivy.NativeArray], x2: Union[ivy.Container, ivy.Array, ivy.NativeArray], n_modes: Optional[Union[int, ivy.Container]] = None, /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.general_inner_product. This method simply wraps the function, and so the docstring for ivy.general_inner_product also applies to this method with minimal changes. Parameters ---------- x1 First input container containing input array. x2 First input container containing input array. n_modes int, default is None. If None, the traditional inner product is returned (i.e. a float) otherwise, the product between the `n_modes` last modes of `x1` and the `n_modes` first modes of `x2` is returned. The resulting tensor's order is `len(x1) - n_modes`. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out Alternate output container in which to place the result. The default is None. Returns ------- ret Container including the inner product tensor. Examples -------- >>> x = ivy.Container( a=ivy.reshape(ivy.arange(4), (2, 2)), b=ivy.reshape(ivy.arange(8), (2, 4)), ) >>> ivy.Container.general_inner_product(x, 1) { a: ivy.array(6), b: ivy.array(28) } """ return ContainerBase.cont_multi_map_in_function( "general_inner_product", x1, x2, n_modes, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def general_inner_product( self: Union[ivy.Container, ivy.Array, ivy.NativeArray], x2: Union[ivy.Container, ivy.Array, ivy.NativeArray], n_modes: Optional[Union[int, ivy.Container]] = None, /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.general_inner_product. This method simply wraps the function, and so the docstring for ivy.general_inner_product also applies to this method with minimal changes. """ return self.static_general_inner_product( self, x2, n_modes, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, )
ivy/ivy/data_classes/container/linear_algebra.py/0
{ "file_path": "ivy/ivy/data_classes/container/linear_algebra.py", "repo_id": "ivy", "token_count": 63795 }
11
from .base import FactorizedTensor import ivy import warnings class TTTensor(FactorizedTensor): def __init__(self, factors, inplace=False): super().__init__() shape, rank = ivy.TTTensor.validate_tt_tensor(factors) self.shape = tuple(shape) self.rank = tuple(rank) self.factors = factors # Built-ins # def __getitem__(self, index): return self.factors[index] def __setitem__(self, index, value): self.factors[index] = value def __iter__(self): for index in range(len(self)): yield self[index] def __len__(self): return len(self.factors) def __repr__(self): message = ( f"factors list : rank-{self.rank} matrix-product-state tensor of shape" f" {self.shape} " ) return message # Public Methods # def to_tensor(self): return ivy.TTTensor.tt_to_tensor(self) def to_unfolding(self, mode): return ivy.TTTensor.tt_to_unfolded(self, mode) def to_vec(self): return ivy.TTTensor.tt_to_vec(self) # Properties # @property def n_param(self): factor_params = [] for i, s in enumerate(self.shape): factor_params.append(self.rank[i] * s * self.rank[i + 1]) return ivy.sum(factor_params) # Class Methods # @staticmethod def validate_tt_tensor(tt_tensor): factors = tt_tensor n_factors = len(factors) if isinstance(tt_tensor, TTTensor): return tt_tensor.shape, tt_tensor.rank elif isinstance(tt_tensor, (float, int)): return 0, 0 rank = [] shape = [] for index, factor in enumerate(factors): current_rank, current_shape, next_rank = ivy.shape(factor) if len(ivy.shape(factor)) != 3: raise ValueError( "TT expresses a tensor as third order factors" f" (tt-cores).\nHowever, len(ivy.shape(factors[{index}])) =" f" {len(ivy.shape(factor))}" ) if index and ivy.shape(factors[index - 1])[2] != current_rank: raise ValueError( "Consecutive factors should have matching ranks\n -- e.g." " ivy.shape(factors[0])[2]) == ivy.shape(factors[1])[0])\nHowever," f" ivy.shape(factor[{index-1}])[2] ==" f" {ivy.shape(factors[index - 1])[2]} but" f" ivy.shape(factor[{index}])[0] == {current_rank} " ) if (index == 0) and current_rank != 1: raise ValueError( "Boundary conditions dictate factor[0].shape[0] == 1." f"However, got factor[0].shape[0] = {current_rank}." ) if (index == n_factors - 1) and next_rank != 1: raise ValueError( "Boundary conditions dictate factor[-1].shape[2] == 1." f"However, got factor[{n_factors}].shape[2] = {next_rank}." ) shape.append(current_shape) rank.append(current_rank) rank.append(next_rank) return tuple(shape), tuple(rank) @staticmethod def tt_to_tensor(factors): """Return the full tensor whose TT decomposition is given by 'factors'. Re-assembles 'factors', which represent a tensor in TT/Matrix-Product-State format into the corresponding full tensor Parameters ---------- factors TT factors (TT-cores) Returns ------- output_tensor tensor whose TT/MPS decomposition was given by 'factors' """ # noqa: E501 if isinstance(factors, (float, int)): return factors full_shape = [f.shape[1] for f in factors] full_tensor = ivy.reshape(factors[0], (full_shape[0], -1)) for factor in factors[1:]: rank_prev, _, rank_next = factor.shape factor = ivy.reshape(factor, (rank_prev, -1)) full_tensor = ivy.matmul(full_tensor, factor) full_tensor = ivy.reshape(full_tensor, (-1, rank_next)) return ivy.reshape(full_tensor, full_shape) @staticmethod def tt_to_unfolded(factors, mode): """Return the unfolding matrix of a tensor given in TT (or Tensor- Train) format. Reassembles a full tensor from 'factors' and returns its unfolding matrix with mode given by 'mode' Parameters ---------- factors TT factors mode unfolding matrix to be computed along this mode Returns ------- 2-D array unfolding matrix at mode given by 'mode' """ return ivy.unfold(ivy.TTTensor.tt_to_tensor(factors), mode) @staticmethod def tt_to_vec(factors): """Return the tensor defined by its TT format ('factors') into its vectorized format. Parameters ---------- factors TT factors Returns ------- 1-D array vectorized format of tensor defined by 'factors' """ return ivy.reshape(ivy.TTTensor.tt_to_tensor(factors), (-1,)) @staticmethod def _tt_n_param(tensor_shape, rank): """Return the number of parameters of a MPS decomposition for a given `rank` and full `tensor_shape`. Parameters ---------- tensor_shape shape of the full tensor to decompose (or approximate) rank rank of the MPS decomposition Return ------- n_params Number of parameters of a MPS decomposition of rank `rank` of a full tensor of shape `tensor_shape` """ factor_params = [] for i, s in enumerate(tensor_shape): factor_params.append(rank[i] * s * rank[i + 1]) return ivy.sum(factor_params) @staticmethod def validate_tt_rank( tensor_shape, rank="same", constant_rank=False, rounding="round", allow_overparametrization=True, ): """Return the rank of a TT Decomposition. Parameters ---------- tensor_shape shape of the tensor to decompose rank way to determine the rank, by default 'same' if 'same': rank is computed to keep the number of parameters (at most) the same if float, computes a rank so as to keep rank percent of the original number of parameters if int or tuple, just returns rank constant_rank if True, the *same* rank will be chosen for each modes if False (default), the rank of each mode will be proportional to the corresponding tensor_shape used only if rank == 'same' or 0 < rank <= 1* rounding Mode for rounding One of ["round", "floor", "ceil"] allow_overparametrization if False, the rank must be realizable through iterative application of SVD Returns ------- rank rank of the decomposition """ # noqa: E501 if rounding == "ceil": rounding_fn = ivy.ceil elif rounding == "floor": rounding_fn = ivy.floor elif rounding == "round": rounding_fn = ivy.round else: raise ValueError( f"Rounding should be round, floor or ceil, but got {rounding}" ) if rank == "same": rank = float(1) if isinstance(rank, float) and constant_rank: n_param_tensor = ivy.prod(tensor_shape) * rank order = len(tensor_shape) if order == 2: rank = (1, n_param_tensor / (tensor_shape[0] + tensor_shape[1]), 1) warnings.warn( "Determining the tt-rank for the trivial case of a matrix (order 2" f" tensor) of shape {tensor_shape}, not a higher-order tensor." ) a = ivy.sum(tensor_shape[1:-1]) b = ivy.sum(tensor_shape[0] + tensor_shape[-1]) c = -n_param_tensor delta = ivy.sqrt(b**2 - 4 * a * c) solution = int(rounding_fn((-b + delta) / (2 * a))) rank = rank = (1,) + (solution,) * (order - 1) + (1,) elif isinstance(rank, float): order = len(tensor_shape) avg_dim = [ (tensor_shape[i] + tensor_shape[i + 1]) / 2 for i in range(order - 1) ] if len(avg_dim) > 1: a = sum( avg_dim[i - 1] * tensor_shape[i] * avg_dim[i] for i in range(1, order - 1) ) else: warnings.warn( "Determining the tt-rank for the trivial case of a matrix (order 2" f" tensor) of shape {tensor_shape}, not a higher-order tensor." ) a = avg_dim[0] ** 2 * tensor_shape[0] b = tensor_shape[0] * avg_dim[0] + tensor_shape[-1] * avg_dim[-1] c = -ivy.prod(tensor_shape) * rank delta = ivy.sqrt(b**2 - 4 * a * c) fraction_param = (-b + delta) / (2 * a) rank = tuple(max(int(rounding_fn(d * fraction_param)), 1) for d in avg_dim) rank = (1,) + rank + (1,) else: n_dim = len(tensor_shape) if isinstance(rank, int): rank = [1] + [rank] * (n_dim - 1) + [1] elif n_dim + 1 != len(rank): message = ( "Provided incorrect number of ranks. Should verify len(rank) ==" f" len(ivy.shape(tensor)) + 1, but len(rank) = {len(rank)} while" f" len(ivy.shape(tensor)) + 1 = {n_dim+1}" ) raise (ValueError(message)) if rank[0] != 1: message = ( f"Provided rank[0] == {rank[0]} but boundary conditions dictate" " rank[0] == rank[-1] == 1." ) raise ValueError(message) if rank[-1] != 1: message = ( f"Provided rank[-1] == {rank[-1]} but boundary conditions dictate" " rank[0] == rank[-1] == 1." ) raise ValueError(message) if allow_overparametrization: return list(rank) else: validated_rank = [1] for i, s in enumerate(tensor_shape[:-1]): n_row = int(rank[i] * s) n_column = ivy.prod(tensor_shape[(i + 1) :]) validated_rank.append(min(n_row, n_column, rank[i + 1])) validated_rank.append(1) return validated_rank @staticmethod def pad_tt_rank(factor_list, n_padding=1, pad_boundaries=False): """Pad the factors of a Tensor-Train so as to increase its rank without changing its reconstruction. The tensor-train (ring) will be padded with 0s to increase its rank only but not the underlying tensor it represents. Parameters ---------- factor_list tensor list n_padding how much to increase the rank (bond dimension) by pad_boundaries if True, also pad the boundaries (useful for a tensor-ring) should be False for a tensor-train to keep the boundary rank to be 1 Returns ------- padded_factor_list """ new_factors = [] n_factors = len(factor_list) for i, factor in enumerate(factor_list): n_padding_left = n_padding_right = n_padding if (i == 0) and not pad_boundaries: n_padding_left = 0 elif (i == n_factors - 1) and not pad_boundaries: n_padding_right = 0 r1, *s, r2 = ivy.shape(factor) new_factor = ivy.zeros((r1 + n_padding_left, *s, r2 + n_padding_right)) new_factors.append( ivy.TTTensor.index_update( new_factor, (slice(None, r1, None), ..., slice(None, r2, None)), factor, ) ) return new_factors @staticmethod def index_update(tensor, indices, values): tensor[indices] = values return tensor
ivy/ivy/data_classes/factorized_tensor/tt_tensor.py/0
{ "file_path": "ivy/ivy/data_classes/factorized_tensor/tt_tensor.py", "repo_id": "ivy", "token_count": 6319 }
12
//! A device (CPUs, GPUs, TPUs) where computations can be run. use super::{ArrayElement, Literal, PjRtBuffer, PjRtDevice, PjRtLoadedExecutable, XlaComputation}; use crate::{c_lib, Error, Result}; use std::marker::PhantomData; use std::rc::Rc; use pyo3::prelude::*; pub(super) struct PjRtClientInternal(pub(self) c_lib::pjrt_client); /// A client represents a device that can be used to run some computations. A computation graph is /// compiled in a way that is specific to a device before it can be run. #[derive(Clone)] #[pyclass(unsendable)] pub struct PjRtClient(Rc<PjRtClientInternal>); impl PjRtClient { /// A CPU client, this can run computations on multiple CPUs at the same time. pub fn cpu() -> Result<Self> { let mut ptr: c_lib::pjrt_client = std::ptr::null_mut(); let status = unsafe { c_lib::pjrt_cpu_client_create(&mut ptr) }; super::handle_status(status)?; Ok(Self(Rc::new(PjRtClientInternal(ptr)))) } /// A GPU client, the memory requirements are limited by the specified `memory_fraction` and /// this memory can either be allocated dynamically or pre-allocated depending on /// `preallocate`. pub fn gpu(memory_fraction: f64, preallocate: bool) -> Result<Self> { let mut ptr: c_lib::pjrt_client = std::ptr::null_mut(); let status = unsafe { c_lib::pjrt_gpu_client_create(&mut ptr, memory_fraction, preallocate) }; super::handle_status(status)?; Ok(Self(Rc::new(PjRtClientInternal(ptr)))) } /// A TPU client. pub fn tpu(max_inflight_computations: usize) -> Result<Self> { let mut ptr: c_lib::pjrt_client = std::ptr::null_mut(); let status = unsafe { c_lib::pjrt_tpu_client_create(&mut ptr, max_inflight_computations as i32) }; super::handle_status(status)?; Ok(Self(Rc::new(PjRtClientInternal(ptr)))) } fn ptr(&self) -> c_lib::pjrt_client { self.0 .0 } /// Compile a computation for this device, and return the executable. pub fn compile(&self, c: &XlaComputation) -> Result<PjRtLoadedExecutable> { let mut exe: c_lib::pjrt_loaded_executable = std::ptr::null_mut(); let status = unsafe { c_lib::compile(self.ptr(), c.0, &mut exe) }; super::handle_status(status)?; Ok(PjRtLoadedExecutable { exe, client: self.clone() }) } /// The number of devices that this client has detected, e.g. the number of GPUs. pub fn device_count(&self) -> usize { unsafe { c_lib::pjrt_client_device_count(self.ptr()) as usize } } /// The number of devices that this client can use. pub fn addressable_device_count(&self) -> usize { unsafe { c_lib::pjrt_client_addressable_device_count(self.ptr()) as usize } } /// The name of the platform. pub fn platform_name(&self) -> String { unsafe { let ptr = c_lib::pjrt_client_platform_name(self.ptr()); super::c_ptr_to_string(ptr) } } /// The version of the platform. pub fn platform_version(&self) -> String { unsafe { let ptr = c_lib::pjrt_client_platform_version(self.ptr()); super::c_ptr_to_string(ptr) } } /// A list of devices attached to this client. pub fn devices(&self) -> Vec<PjRtDevice> { let device_count = self.device_count(); let mut device_ptrs = vec![std::ptr::null_mut(); device_count]; unsafe { c_lib::pjrt_client_devices(self.ptr(), device_ptrs.as_mut_ptr()) }; device_ptrs.into_iter().map(|device| PjRtDevice { device, marker: PhantomData }).collect() } /// A list of devices that can be used by this client. pub fn addressable_devices(&self) -> Vec<PjRtDevice> { let device_count = self.addressable_device_count(); let mut device_ptrs = vec![std::ptr::null_mut(); device_count]; unsafe { c_lib::pjrt_client_addressable_devices(self.ptr(), device_ptrs.as_mut_ptr()) }; device_ptrs.into_iter().map(|device| PjRtDevice { device, marker: PhantomData }).collect() } /// Transfer some data from the host to a `PjRtBuffer` stored on the target device. If the /// device is not specified, the default device is used. /// The source data is passed as a slice of the specified primitive type, as well as the /// dimensions. The dimensions have to match the number of elements in the source data, /// otherwise an error is returned. pub fn buffer_from_host_buffer<T: ArrayElement>( &self, data: &[T], dims: &[usize], device: Option<&PjRtDevice>, ) -> Result<PjRtBuffer> { let mut buffer: c_lib::pjrt_buffer = std::ptr::null_mut(); let element_count: usize = dims.iter().product(); if element_count != data.len() { Err(Error::WrongElementCount { dims: dims.to_vec(), element_count })? } let device = device.map_or(std::ptr::null_mut(), |d| d.device); let dims: Vec<_> = dims.iter().map(|d| *d as i64).collect(); let status = unsafe { c_lib::pjrt_buffer_from_host_buffer( self.ptr(), device, data.as_ptr() as *const libc::c_void, T::TY.primitive_type() as i32, dims.len() as i32, dims.as_ptr(), &mut buffer, ) }; super::handle_status(status)?; Ok(PjRtBuffer { buffer, client: self.clone() }) } /// Transfer some data from the host to a `PjRtBuffer` stored on the target device. If the /// device is not specified, the default device is used. /// The source data is passed as a slice of raw bytes, as well as the dimensions. The /// dimensions have to match the number of bytes in the source data, otherwise an error /// is returned. pub fn buffer_from_host_raw_bytes( &self, ty: super::ElementType, data: &[u8], dims: &[usize], device: Option<&PjRtDevice>, ) -> Result<PjRtBuffer> { let mut buffer: c_lib::pjrt_buffer = std::ptr::null_mut(); let element_count: usize = dims.iter().product(); let element_size_in_bytes = ty.element_size_in_bytes(); if element_count * element_size_in_bytes != data.len() { Err(Error::WrongElementCount { dims: dims.to_vec(), element_count })? } let device = device.map_or(std::ptr::null_mut(), |d| d.device); let dims: Vec<_> = dims.iter().map(|d| *d as i64).collect(); let status = unsafe { c_lib::pjrt_buffer_from_host_buffer( self.ptr(), device, data.as_ptr() as *const libc::c_void, ty as i32, dims.len() as i32, dims.as_ptr(), &mut buffer, ) }; super::handle_status(status)?; Ok(PjRtBuffer { buffer, client: self.clone() }) } /// Transfer some data from the host to a `PjRtBuffer` stored on the target device. If the /// device is not specified, the default device is used. /// The source data is passed as a literal. pub fn buffer_from_host_literal( &self, device: Option<&PjRtDevice>, literal: &Literal, ) -> Result<PjRtBuffer> { let mut buffer: c_lib::pjrt_buffer = std::ptr::null_mut(); let device = device.map_or(std::ptr::null_mut(), |d| d.device); let status = unsafe { c_lib::pjrt_buffer_from_host_literal(self.ptr(), device, literal.0, &mut buffer) }; super::handle_status(status)?; Ok(PjRtBuffer { buffer, client: self.clone() }) } } impl Drop for PjRtClientInternal { fn drop(&mut self) { unsafe { c_lib::pjrt_client_free(self.0) } } }
ivy/ivy/engines/XLA/rust_api/src/wrappers/pjrt_client.rs/0
{ "file_path": "ivy/ivy/engines/XLA/rust_api/src/wrappers/pjrt_client.rs", "repo_id": "ivy", "token_count": 3369 }
13
# global from numbers import Number import numpy as np from typing import Union, Optional, List, Sequence, Tuple import jax.dlpack import jax.numpy as jnp import jax._src as _src import jaxlib.xla_extension # local import ivy from ivy import as_native_dtype from ivy.functional.backends.jax import JaxArray from ivy.functional.backends.jax.device import dev from ivy.functional.ivy.creation import ( _asarray_to_native_arrays_and_back, _asarray_infer_device, _asarray_infer_dtype, _asarray_handle_nestable, NestedSequence, SupportsBufferProtocol, _asarray_inputs_to_native_shapes, ) # Array API Standard # # ------------------ # def arange( start: float, /, stop: Optional[float] = None, step: float = 1, *, dtype: Optional[jnp.dtype] = None, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: if dtype: dtype = as_native_dtype(dtype) ivy.utils.assertions._check_jax_x64_flag(dtype.name) res = jnp.arange(start, stop, step, dtype=dtype) if not dtype: if res.dtype == jnp.float64: return res.astype(jnp.float32) elif res.dtype == jnp.int64: return res.astype(jnp.int32) return res @_asarray_to_native_arrays_and_back @_asarray_infer_device @_asarray_handle_nestable @_asarray_inputs_to_native_shapes @_asarray_infer_dtype def asarray( obj: Union[ JaxArray, bool, int, float, tuple, NestedSequence, SupportsBufferProtocol, np.ndarray, ], /, *, copy: Optional[bool] = None, dtype: Optional[jnp.dtype] = None, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: ivy.utils.assertions._check_jax_x64_flag(dtype) ret = jnp.asarray(obj, dtype=dtype) # jnp.copy is used to ensure correct device placement # it's slower than jax.device_put before JIT, but it's necessary to use since # jax device objects aren't serializable and prevent saving transpiled graphs # this workaround only works because we are inside jax.default_device context # invoked in @handle_device decorator return jnp.copy(ret) if (dev(ret, as_native=True) != device or copy) else ret def empty( shape: Union[ivy.NativeShape, Sequence[int]], *, dtype: jnp.dtype, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.empty(shape, dtype) def empty_like( x: JaxArray, /, *, dtype: jnp.dtype, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.empty_like(x, dtype=dtype) def eye( n_rows: int, n_cols: Optional[int] = None, /, *, k: int = 0, batch_shape: Optional[Union[int, Sequence[int]]] = None, dtype: jnp.dtype, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: if n_cols is None: n_cols = n_rows i = jnp.eye(n_rows, n_cols, k, dtype) if batch_shape is None: return i reshape_dims = [1] * len(batch_shape) + [n_rows, n_cols] tile_dims = list(batch_shape) + [1, 1] return_mat = jnp.tile(jnp.reshape(i, reshape_dims), tile_dims) return return_mat def to_dlpack(x, /, *, out: Optional[JaxArray] = None): return jax.dlpack.to_dlpack(x) def from_dlpack(x, /, *, out: Optional[JaxArray] = None) -> JaxArray: return jax.dlpack.from_dlpack(x) def full( shape: Union[ivy.NativeShape, Sequence[int]], fill_value: Union[int, float, bool], *, dtype: Optional[Union[ivy.Dtype, jnp.dtype]] = None, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: dtype = ivy.default_dtype(dtype=dtype, item=fill_value, as_native=True) return jnp.full(shape, fill_value, dtype) def full_like( x: JaxArray, /, fill_value: Number, *, dtype: jnp.dtype, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.full_like(x, fill_value, dtype=dtype) # https://github.com/google/jax/blob/8b2e4f975c8c830502f5cc749b7253b02e78c9e8/jax/_src/numpy/lax_numpy.py#L2164 # with some modification def linspace( start: Union[JaxArray, float], stop: float, /, num: int, *, axis: Optional[int] = None, endpoint: bool = True, dtype: jnp.dtype, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: if axis is None: axis = -1 if num < 0: raise ivy.utils.exceptions.IvyException( f"Number of samples, {num}, must be non-negative." ) if dtype is None: dtype = ivy.promote_types(start.dtype, stop.dtype) dtype = jnp.dtype(dtype) computation_dtype = dtype start = jnp.asarray(start, dtype=computation_dtype) stop = jnp.asarray(stop, dtype=computation_dtype) bounds_shape = list(jax.lax.broadcast_shapes(jnp.shape(start), jnp.shape(stop))) broadcast_start = jnp.broadcast_to(start, bounds_shape) broadcast_stop = jnp.broadcast_to(stop, bounds_shape) axis = len(bounds_shape) + axis + 1 if axis < 0 else axis bounds_shape.insert(axis, 1) div = (num - 1) if endpoint else num if num > 1: iota_shape = [ 1, ] * len(bounds_shape) iota_shape[axis] = div # This approach recovers the endpoints with float32 arithmetic, # but can lead to rounding errors for integer outputs. real_dtype = jnp.finfo(computation_dtype).dtype step = jnp.reshape(jax.lax.iota(real_dtype, div), iota_shape) / div step = step.astype(computation_dtype) start_reshaped = jnp.reshape(broadcast_start, bounds_shape) end_reshaped = jnp.reshape(broadcast_stop, bounds_shape) out = start_reshaped + step * (end_reshaped - start_reshaped) if endpoint: out = jax.lax.concatenate( [out, jax.lax.expand_dims(broadcast_stop, (axis,))], _src.util.canonicalize_axis(axis, out.ndim), ) elif num == 1: out = jnp.reshape(broadcast_start, bounds_shape) else: # num == 0 degenerate case, match numpy behavior empty_shape = list(jax.lax.broadcast_shapes(jnp.shape(start), jnp.shape(stop))) empty_shape.insert(axis, 0) out = jnp.reshape(jnp.array([], dtype=dtype), empty_shape) if jnp.issubdtype(dtype, jnp.integer) and not jnp.issubdtype( out.dtype, jnp.integer ): out = jax.lax.floor(out) ans = jax.lax.convert_element_type(out, dtype) return ans def meshgrid( *arrays: JaxArray, sparse: bool = False, indexing: str = "xy", out: Optional[JaxArray] = None, ) -> List[JaxArray]: return jnp.meshgrid(*arrays, sparse=sparse, indexing=indexing) def ones( shape: Union[ivy.NativeShape, Sequence[int]], *, dtype: jnp.dtype, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.ones(shape, dtype) def ones_like( x: JaxArray, /, *, dtype: jnp.dtype, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.ones_like(x, dtype=dtype) def tril(x: JaxArray, /, *, k: int = 0, out: Optional[JaxArray] = None) -> JaxArray: return jnp.tril(x, k) def triu(x: JaxArray, /, *, k: int = 0, out: Optional[JaxArray] = None) -> JaxArray: return jnp.triu(x, k) def zeros( shape: Union[ivy.NativeShape, Sequence[int]], *, dtype: jnp.dtype, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.zeros(shape, dtype) def zeros_like( x: JaxArray, /, *, dtype: jnp.dtype, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.zeros_like(x, dtype=dtype) # Extra # # ------# array = asarray def copy_array( x: JaxArray, *, to_ivy_array: bool = True, out: Optional[JaxArray] = None ) -> JaxArray: x = ( jax.core.ShapedArray(x.shape, x.dtype) if isinstance(x, jax.core.ShapedArray) else jnp.array(x) ) if to_ivy_array: return ivy.to_ivy(x) return x def one_hot( indices: JaxArray, depth: int, /, *, on_value: Optional[Number] = None, off_value: Optional[Number] = None, axis: Optional[int] = None, dtype: Optional[jnp.dtype] = None, device: jaxlib.xla_extension.Device = None, out: Optional[JaxArray] = None, ) -> JaxArray: on_none = on_value is None off_none = off_value is None if dtype is None: if on_none and off_none: dtype = jnp.float32 else: if not on_none: dtype = jnp.array(on_value).dtype elif not off_none: dtype = jnp.array(off_value).dtype res = jnp.eye(depth, dtype=dtype)[jnp.array(indices, dtype="int64").reshape(-1)] res = res.reshape(list(indices.shape) + [depth]) if not on_none and not off_none: res = jnp.where(res == 1, on_value, off_value) if axis is not None: res = jnp.moveaxis(res, -1, axis) return res def frombuffer( buffer: bytes, dtype: Optional[jnp.dtype] = float, count: Optional[int] = -1, offset: Optional[int] = 0, ) -> JaxArray: return jnp.frombuffer(buffer, dtype=dtype, count=count, offset=offset) def triu_indices( n_rows: int, n_cols: Optional[int] = None, k: int = 0, /, *, device: jaxlib.xla_extension.Device = None, ) -> Tuple[JaxArray]: return jnp.triu_indices(n=n_rows, k=k, m=n_cols)
ivy/ivy/functional/backends/jax/creation.py/0
{ "file_path": "ivy/ivy/functional/backends/jax/creation.py", "repo_id": "ivy", "token_count": 4480 }
14
# local from typing import ( Iterable, Optional, Union, Sequence, Tuple, NamedTuple, Literal, Callable, Any, List, ) import jax.numpy as jnp import jax.lax as jlax from numbers import Number from collections import namedtuple from ivy.func_wrapper import handle_out_argument # local import ivy from ivy.functional.backends.jax import JaxArray def moveaxis( a: JaxArray, source: Union[int, Sequence[int]], destination: Union[int, Sequence[int]], /, *, copy: Optional[bool] = None, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.moveaxis(a, source, destination) def heaviside( x1: JaxArray, x2: JaxArray, /, *, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.heaviside(x1, x2) def flipud( m: JaxArray, /, *, copy: Optional[bool] = None, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.flipud(m) def vstack( arrays: Sequence[JaxArray], /, *, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.vstack(arrays) def hstack( arrays: Sequence[JaxArray], /, *, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.hstack(arrays) def rot90( m: JaxArray, /, *, copy: Optional[bool] = None, k: int = 1, axes: Tuple[int, int] = (0, 1), out: Optional[JaxArray] = None, ) -> JaxArray: if isinstance(axes, list): axes = tuple(axes) return jnp.rot90(m, k, axes) def top_k( x: JaxArray, k: int, /, *, axis: int = -1, largest: bool = True, sorted: bool = True, out: Optional[Tuple[JaxArray, JaxArray]] = None, ) -> Tuple[JaxArray, JaxArray]: k = min(k, x.shape[axis]) if not largest: indices = jnp.argsort(x, axis=axis) indices = jnp.take(indices, jnp.arange(k), axis=axis) else: indices = jnp.argsort(-x, axis=axis) indices = jnp.take(indices, jnp.arange(k), axis=axis) if not sorted: indices = jnp.sort(indices, axis=axis) topk_res = NamedTuple("top_k", [("values", JaxArray), ("indices", JaxArray)]) val = jnp.take_along_axis(x, indices, axis=axis) return topk_res(val, indices) def fliplr( m: JaxArray, /, *, copy: Optional[bool] = None, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.fliplr(m) def i0( x: JaxArray, /, *, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.i0(x) def _flat_array_to_1_dim_array(x): return x.reshape((1,)) if x.shape == () else x def _to_nested_tuple(nested_list): ret = () if hasattr(nested_list, "__iter__"): for inner_list in nested_list: if hasattr(inner_list, "__iter__"): ret += (tuple(inner_list),) else: ret += (inner_list,) return ret if ret == (): return nested_list def pad( input: JaxArray, pad_width: Union[Iterable[Tuple[int]], int], /, *, mode: Union[ Literal[ "constant", "dilated", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty", ], Callable, ] = "constant", stat_length: Union[Iterable[Tuple[int]], int] = 1, constant_values: Union[Iterable[Tuple[Number]], Number] = 0, end_values: Union[Iterable[Tuple[Number]], Number] = 0, reflect_type: Literal["even", "odd"] = "even", **kwargs: Optional[Any], ) -> JaxArray: pad_width = _to_nested_tuple(pad_width) stat_length = _to_nested_tuple(stat_length) constant_values = _to_nested_tuple(constant_values) end_values = _to_nested_tuple(end_values) input_dtype = input.dtype if mode == "dilated": if not ivy.is_array(constant_values) or constant_values.dtype != input_dtype: constant_values = jnp.array(constant_values, dtype=input_dtype) return jlax.pad(input, constant_values, pad_width) if callable(mode): ret = jnp.pad( _flat_array_to_1_dim_array(input), pad_width, mode=mode, **kwargs, ) elif mode in ["maximum", "mean", "median", "minimum"]: ret = jnp.pad( _flat_array_to_1_dim_array(input), pad_width, mode=mode, stat_length=stat_length, ) elif mode == "constant": ret = jnp.pad( _flat_array_to_1_dim_array(input), pad_width, mode=mode, constant_values=constant_values, ) elif mode == "linear_ramp": ret = jnp.pad( _flat_array_to_1_dim_array(input), pad_width, mode=mode, end_values=end_values, ) elif mode in ["reflect", "symmetric"]: ret = jnp.pad( _flat_array_to_1_dim_array(input), pad_width, mode=mode, reflect_type=reflect_type, ) else: ret = jnp.pad( _flat_array_to_1_dim_array(input), pad_width, mode=mode, ) if jnp.issubdtype(input_dtype, jnp.integer) and mode in ["mean", "median"]: ret = jnp.round(ret).astype(input_dtype) return ret def vsplit( ary: JaxArray, indices_or_sections: Union[int, Sequence[int], JaxArray], /, *, copy: Optional[bool] = None, ) -> List[JaxArray]: if ary.ndim < 2: raise ivy.exceptions.IvyError( "vsplit only works on arrays of 2 or more dimensions" ) return ivy.split(ary, num_or_size_splits=indices_or_sections, axis=0) def dsplit( ary: JaxArray, indices_or_sections: Union[int, Sequence[int], JaxArray], /, *, copy: Optional[bool] = None, ) -> List[JaxArray]: if ary.ndim < 3: raise ivy.utils.exceptions.IvyError( "dsplit only works on arrays of 3 or more dimensions" ) return ivy.split(ary, num_or_size_splits=indices_or_sections, axis=2) def atleast_1d( *arys: Union[JaxArray, bool, Number], copy: Optional[bool] = None ) -> List[JaxArray]: return jnp.atleast_1d(*arys) def dstack( arrays: Sequence[JaxArray], /, *, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.dstack(arrays) def atleast_2d(*arys: JaxArray, copy: Optional[bool] = None) -> List[JaxArray]: return jnp.atleast_2d(*arys) def atleast_3d( *arys: Union[JaxArray, bool, Number], copy: Optional[bool] = None ) -> List[JaxArray]: return jnp.atleast_3d(*arys) def take_along_axis( arr: JaxArray, indices: JaxArray, axis: int, /, *, mode: str = "fill", out: Optional[JaxArray] = None, ) -> JaxArray: if arr.ndim != indices.ndim and axis is not None: raise ivy.utils.exceptions.IvyException( "arr and indices must have the same number of dimensions;" + f" got {arr.ndim} vs {indices.ndim}" ) return jnp.take_along_axis(arr, indices, axis, mode=mode) def hsplit( ary: JaxArray, indices_or_sections: Union[int, Tuple[int, ...]], /, *, copy: Optional[bool] = None, ) -> List[JaxArray]: if ary.ndim == 1: return ivy.split(ary, num_or_size_splits=indices_or_sections, axis=0) return ivy.split(ary, num_or_size_splits=indices_or_sections, axis=1) def broadcast_shapes(*shapes: Union[List[int], List[Tuple]]) -> Tuple[int]: return jnp.broadcast_shapes(*shapes) def expand( x: JaxArray, shape: Union[List[int], List[Tuple]], /, *, copy: Optional[bool] = None, out: Optional[JaxArray] = None, ) -> JaxArray: shape = list(shape) if len(shape) > len(x.shape): x = jnp.expand_dims(x, range(len(shape) - len(x.shape))) for i, dim in enumerate(shape): if dim < 0: shape[i] = x.shape[i] return jnp.broadcast_to(x, tuple(shape)) def concat_from_sequence( input_sequence: Union[Tuple[JaxArray], List[JaxArray]], /, *, new_axis: int = 0, axis: int = 0, out: Optional[JaxArray] = None, ) -> JaxArray: is_tuple = type(input_sequence) is tuple if is_tuple: input_sequence = list(input_sequence) if new_axis == 0: ret = jnp.concatenate(input_sequence, axis=axis) return ret elif new_axis == 1: ret = jnp.stack(input_sequence, axis=axis) return ret def unique_consecutive( x: JaxArray, /, *, axis: Optional[int] = None, ) -> Tuple[JaxArray, JaxArray, JaxArray]: Results = namedtuple( "Results", ["output", "inverse_indices", "counts"], ) x_shape = None if axis is None: x_shape = x.shape x = x.flatten() axis = -1 if axis < 0: axis += x.ndim sub_arrays = jnp.split( x, jnp.where( jnp.any( jnp.diff(x, axis=axis) != 0, axis=tuple(i for i in jnp.arange(x.ndim) if i != axis), ) )[0] + 1, axis=axis, ) output = jnp.concatenate( [jnp.unique(sub_array, axis=axis) for sub_array in sub_arrays], axis=axis, ) counts = jnp.array([sub_array.shape[axis] for sub_array in sub_arrays]) inverse_indices = jnp.repeat(jnp.arange(len(counts)), counts) if x_shape: inverse_indices = jnp.reshape(inverse_indices, x_shape) return Results( output.astype(x.dtype), inverse_indices, counts, ) def fill_diagonal( a: JaxArray, v: Union[int, float], /, *, wrap: bool = False, ) -> JaxArray: shape = jnp.array(a.shape) end = None if len(shape) == 2: step = shape[1] + 1 if not wrap: end = shape[1] * shape[1] else: step = 1 + (jnp.cumprod(shape[:-1])).sum() a = jnp.reshape(a, (-1,)) a = a.at[:end:step].set(jnp.array(v).astype(a.dtype)) a = jnp.reshape(a, shape) return a def take( x: Union[int, JaxArray], indices: Union[int, JaxArray], /, *, axis: Optional[int] = None, mode: str = "fill", fill_value: Optional[Number] = None, out: Optional[JaxArray] = None, ) -> JaxArray: if mode not in ["raise", "wrap", "clip", "fill"]: raise ValueError("mode must be one of 'clip', 'raise', 'wrap', or 'fill'") if not isinstance(x, JaxArray): x = jnp.array(x) if len(x.shape) == 0: x = jnp.array([x]) if not isinstance(indices, JaxArray): indices = jnp.array(indices) if jnp.issubdtype(indices.dtype, jnp.floating): indices = indices.astype(jnp.int64) # raise if mode == "raise": mode = "fill" if ivy.exists(axis): try: x_shape = x.shape[axis] except Exception as e: raise ValueError( f"axis {axis} is out of bounds for array of dimension" f" {len(x.shape)}" ) from e else: x_shape = jnp.prod(x.shape) bound_check = (indices < -x_shape) | (indices >= x_shape) if jnp.any(bound_check): if len(indices.shape) != 0: indices = indices[bound_check].flatten()[0] raise IndexError( f"index {indices} is out of bounds for axis " f"{axis if axis else 0} with size {x_shape}" ) # clip, wrap, fill ret = jnp.take(x, indices, axis=axis, mode=mode, fill_value=fill_value) if ivy.exists(out): ivy.inplace_update(out, ret) return ret def trim_zeros(a: JaxArray, /, *, trim: Optional[str] = "bf") -> JaxArray: return jnp.trim_zeros(a, trim=trim) @handle_out_argument def unflatten( x: JaxArray, /, shape: Tuple[int] = None, dim: int = 0, *, out: Optional[JaxArray] = None, order: Optional[str] = None, ) -> JaxArray: dim = abs(len(x.shape) + dim) if dim < 0 else dim res_shape = x.shape[:dim] + shape + x.shape[dim + 1 :] res = jnp.reshape(x, res_shape) return res
ivy/ivy/functional/backends/jax/experimental/manipulation.py/0
{ "file_path": "ivy/ivy/functional/backends/jax/experimental/manipulation.py", "repo_id": "ivy", "token_count": 6029 }
15
from numbers import Number from typing import Optional, Tuple, Union import jax.numpy as jnp import ivy from ivy.functional.backends.jax import JaxArray from . import backend_version from ivy.func_wrapper import with_unsupported_dtypes # Array API Standard # # ------------------ # @with_unsupported_dtypes({"0.4.24 and below": ("complex",)}, backend_version) def argmax( x: JaxArray, /, *, axis: Optional[int] = None, keepdims: bool = False, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, select_last_index: bool = False, out: Optional[JaxArray] = None, ) -> JaxArray: if select_last_index: x = jnp.flip(x, axis=axis) ret = jnp.array(jnp.argmax(x, axis=axis, keepdims=keepdims)) if axis is not None: ret = x.shape[axis] - ret - 1 else: ret = x.size - ret - 1 else: ret = jnp.argmax(x, axis=axis, keepdims=keepdims) if dtype: dtype = ivy.as_native_dtype(dtype) return ret.astype(dtype) return ret @with_unsupported_dtypes({"0.4.24 and below": ("complex",)}, backend_version) def argmin( x: JaxArray, /, *, axis: Optional[int] = None, keepdims: bool = False, dtype: Optional[jnp.dtype] = None, select_last_index: bool = False, out: Optional[JaxArray] = None, ) -> JaxArray: if select_last_index: x = jnp.flip(x, axis=axis) ret = jnp.array(jnp.argmin(x, axis=axis, keepdims=keepdims)) if axis is not None: ret = x.shape[axis] - ret - 1 else: ret = x.size - ret - 1 else: ret = jnp.argmin(x, axis=axis, keepdims=keepdims) if dtype: dtype = ivy.as_native_dtype(dtype) return ret.astype(dtype) return ret def nonzero( x: JaxArray, /, *, as_tuple: bool = True, size: Optional[int] = None, fill_value: Number = 0, ) -> Union[JaxArray, Tuple[JaxArray]]: res = jnp.nonzero(x, size=size, fill_value=fill_value) if as_tuple: return tuple(res) return jnp.stack(res, axis=1) def where( condition: JaxArray, x1: JaxArray, x2: JaxArray, /, *, out: Optional[JaxArray] = None, ) -> JaxArray: x1, x2 = ivy.promote_types_of_inputs(x1, x2) return ivy.astype(jnp.where(condition, x1, x2), x1.dtype, copy=False) # Extra # # ----- # def argwhere( x: JaxArray, /, *, out: Optional[JaxArray] = None, ) -> JaxArray: return jnp.argwhere(x)
ivy/ivy/functional/backends/jax/searching.py/0
{ "file_path": "ivy/ivy/functional/backends/jax/searching.py", "repo_id": "ivy", "token_count": 1171 }
16
import mxnet as mx from typing import Union, Optional import numpy as np from ivy.utils.exceptions import IvyNotImplementedException def current_backend_str() -> str: return "mxnet" def is_native_array( x: Union[(None, mx.ndarray.NDArray)], /, *, exclusive: bool = False, ) -> bool: if exclusive: return isinstance(x, mx.ndarray.NDArray) else: return isinstance(x, (mx.ndarray.NDArray, np.ndarray)) def to_numpy(x: mx.ndarray.NDArray, /, *, copy: bool = True) -> np.ndarray: if copy: if x.shape == (): new_arr = x.asnumpy() return new_arr return x.copy().asnumpy() else: return x.asnumpy() def itemsize(x: mx.ndarray.NDArray, /) -> int: return x.asnumpy().itemsize def container_types(): return [] def gather( x: mx.ndarray.NDArray, indices: mx.ndarray.NDArray, /, *, axis: int = -1, batch_dims: int = 0, out: Optional[mx.ndarray.NDArray] = None, ) -> Union[(None, mx.ndarray.NDArray)]: raise IvyNotImplementedException()
ivy/ivy/functional/backends/mxnet/general.py/0
{ "file_path": "ivy/ivy/functional/backends/mxnet/general.py", "repo_id": "ivy", "token_count": 482 }
17
# global from numbers import Number from typing import Union, Optional, List, Sequence, Tuple import numpy as np # local import ivy from ivy.functional.ivy.creation import ( _asarray_to_native_arrays_and_back, _asarray_infer_device, _asarray_infer_dtype, _asarray_handle_nestable, NestedSequence, SupportsBufferProtocol, _asarray_inputs_to_native_shapes, ) from .data_type import as_native_dtype # Array API Standard # # -------------------# def arange( start: float, /, stop: Optional[float] = None, step: float = 1, *, dtype: Optional[np.dtype] = None, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: if dtype: dtype = as_native_dtype(dtype) res = np.arange(start, stop, step, dtype=dtype) if not dtype: if res.dtype == np.float64: return res.astype(np.float32) elif res.dtype == np.int64: return res.astype(np.int32) return res @_asarray_to_native_arrays_and_back @_asarray_infer_device @_asarray_handle_nestable @_asarray_inputs_to_native_shapes @_asarray_infer_dtype def asarray( obj: Union[ np.ndarray, bool, int, float, tuple, NestedSequence, SupportsBufferProtocol ], /, *, copy: Optional[bool] = None, dtype: Optional[np.dtype] = None, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: ret = np.asarray(obj, dtype=dtype) return np.copy(ret) if copy else ret def empty( shape: Union[ivy.NativeShape, Sequence[int]], *, dtype: np.dtype, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.empty(shape, dtype) def empty_like( x: np.ndarray, /, *, dtype: np.dtype, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.empty_like(x, dtype=dtype) def eye( n_rows: int, n_cols: Optional[int] = None, /, *, k: int = 0, batch_shape: Optional[Union[int, Sequence[int]]] = None, dtype: np.dtype, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: if n_cols is None: n_cols = n_rows i = np.eye(n_rows, n_cols, k, dtype) if batch_shape is None: return i else: reshape_dims = [1] * len(batch_shape) + [n_rows, n_cols] tile_dims = list(batch_shape) + [1, 1] return_mat = np.tile(np.reshape(i, reshape_dims), tile_dims) return return_mat def to_dlpack(x, /, *, out: Optional[np.ndarray] = None): return x.__dlpack__() class _dlpack_wrapper: def __init__(self, capsule) -> None: self.capsule = capsule def dlpack(self): return self.capsule def from_dlpack(x, /, *, out: Optional[np.ndarray] = None): if not hasattr(x, "__dlpack__"): capsule = _dlpack_wrapper(x) else: capsule = x return np.from_dlpack(capsule) def full( shape: Union[ivy.NativeShape, Sequence[int]], fill_value: Union[int, float, bool], *, dtype: Optional[Union[ivy.Dtype, np.dtype]] = None, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: dtype = ivy.default_dtype(dtype=dtype, item=fill_value, as_native=True) return np.full(shape, fill_value, dtype) def full_like( x: np.ndarray, /, fill_value: Number, *, dtype: np.dtype, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.full_like(x, fill_value, dtype=dtype) def linspace( start: Union[np.ndarray, float], stop: Union[np.ndarray, float], /, num: int, *, axis: Optional[int] = None, endpoint: bool = True, dtype: np.dtype, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: if axis is None: axis = -1 ans = np.linspace(start, stop, num, endpoint, dtype=dtype, axis=axis) # Waiting for fix when start is -0.0: https://github.com/numpy/numpy/issues/21513 if ( ans.shape[0] >= 1 and (not isinstance(start, np.ndarray)) and (not isinstance(stop, np.ndarray)) ): ans[0] = start return ans def meshgrid( *arrays: np.ndarray, sparse: bool = False, indexing: str = "xy", out: Optional[np.ndarray] = None, ) -> List[np.ndarray]: return np.meshgrid(*arrays, sparse=sparse, indexing=indexing) def ones( shape: Union[ivy.NativeShape, Sequence[int]], *, dtype: np.dtype, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.ones(shape, dtype) def ones_like( x: np.ndarray, /, *, dtype: np.dtype, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.ones_like(x, dtype=dtype) def tril( x: np.ndarray, /, *, k: int = 0, out: Optional[np.ndarray] = None ) -> np.ndarray: return np.tril(x, k) def triu( x: np.ndarray, /, *, k: int = 0, out: Optional[np.ndarray] = None ) -> np.ndarray: return np.triu(x, k) def zeros( shape: Union[ivy.NativeShape, Sequence[int]], *, dtype: np.dtype, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.zeros(shape, dtype) def zeros_like( x: np.ndarray, /, *, dtype: np.dtype, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.zeros_like(x, dtype=dtype) # Extra # # ------# array = asarray def copy_array( x: np.ndarray, *, to_ivy_array: bool = True, out: Optional[np.ndarray] = None, ) -> np.ndarray: if to_ivy_array: return ivy.to_ivy(x.copy()) return x.copy() def one_hot( indices: np.ndarray, depth: int, /, *, on_value: Optional[Number] = None, off_value: Optional[Number] = None, axis: Optional[int] = None, dtype: Optional[np.dtype] = None, device: Optional[str] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: on_none = on_value is None off_none = off_value is None if dtype is None: if on_none and off_none: dtype = np.float32 else: if not on_none: dtype = np.array(on_value).dtype elif not off_none: dtype = np.array(off_value).dtype res = np.eye(depth, dtype=dtype)[np.array(indices, dtype="int64").reshape(-1)] res = res.reshape(list(indices.shape) + [depth]) if not on_none and not off_none: res = np.where(res == 1, on_value, off_value) if axis is not None: res = np.moveaxis(res, -1, axis) return res def frombuffer( buffer: bytes, dtype: Optional[np.dtype] = float, count: Optional[int] = -1, offset: Optional[int] = 0, ) -> np.ndarray: if isinstance(dtype, list): dtype = np.dtype(dtype[0]) return np.frombuffer(buffer, dtype=dtype, count=count, offset=offset) def triu_indices( n_rows: int, n_cols: Optional[int] = None, k: int = 0, /, *, device: Optional[str] = None, ) -> Tuple[np.ndarray]: return tuple(np.asarray(np.triu_indices(n=n_rows, k=k, m=n_cols)))
ivy/ivy/functional/backends/numpy/creation.py/0
{ "file_path": "ivy/ivy/functional/backends/numpy/creation.py", "repo_id": "ivy", "token_count": 3330 }
18
# global from typing import ( Iterable, Optional, Union, Sequence, Tuple, NamedTuple, Literal, Callable, Any, List, ) from numbers import Number from collections import namedtuple import numpy as np # local import ivy from ivy.functional.backends.numpy.helpers import _scalar_output_to_0d_array from ivy.func_wrapper import with_supported_dtypes, handle_out_argument # noinspection PyProtectedMember from . import backend_version def moveaxis( a: np.ndarray, source: Union[int, Sequence[int]], destination: Union[int, Sequence[int]], /, *, copy: Optional[bool] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.moveaxis(a, source, destination) moveaxis.support_native_out = False def heaviside( x1: np.ndarray, x2: np.ndarray, /, *, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.heaviside( x1, x2, out=out, ) heaviside.support_native_out = True def flipud( m: np.ndarray, /, *, copy: Optional[bool] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.flipud(m) flipud.support_native_out = False def vstack( arrays: Sequence[np.ndarray], /, *, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.vstack(arrays) def hstack( arrays: Sequence[np.ndarray], /, *, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.hstack(arrays) def rot90( m: np.ndarray, /, *, copy: Optional[bool] = None, k: int = 1, axes: Tuple[int, int] = (0, 1), out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.rot90(m, k, axes) def top_k( x: np.ndarray, k: int, /, *, axis: int = -1, largest: bool = True, sorted: bool = True, out: Optional[Tuple[np.ndarray, np.ndarray]] = None, ) -> Tuple[np.ndarray, np.ndarray]: k = min(k, x.shape[axis]) if not largest: indices = np.argsort(x, axis=axis) indices = np.take(indices, np.arange(k), axis=axis) else: indices = np.argsort(-x, axis=axis) indices = np.take(indices, np.arange(k), axis=axis) if not sorted: indices = np.sort(indices, axis=axis) topk_res = NamedTuple("top_k", [("values", np.ndarray), ("indices", np.ndarray)]) val = np.take_along_axis(x, indices, axis=axis) return topk_res(val, indices) def fliplr( m: np.ndarray, /, *, copy: Optional[bool] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.fliplr(m) fliplr.support_native_out = False def i0( x: np.ndarray, /, *, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.i0(x) i0.support_native_out = False def _flat_array_to_1_dim_array(x): return x.reshape((1,)) if x.shape == () else x def _slice(operand, start_indices, limit_indices, strides=None): strides = [1] * len(operand.shape) if strides is None else strides full_slice = () for i, _ in enumerate(operand.shape): strides_i = int(strides[i]) start_i = int(start_indices[i]) limit_i = int(limit_indices[i]) full_slice += (slice(start_i, limit_i, strides_i),) return operand[full_slice] def _interior_pad(operand, padding_value, padding_config): for axis, (_, _, interior) in enumerate(padding_config): if interior > 0: new_shape = list(operand.shape) new_shape[axis] = new_shape[axis] + (new_shape[axis] - 1) * interior new_array = np.full(new_shape, padding_value, dtype=operand.dtype) src_indices = np.arange(operand.shape[axis]) dst_indices = src_indices * (interior + 1) index_tuple = [slice(None)] * operand.ndim index_tuple[axis] = dst_indices new_array[tuple(index_tuple)] = operand operand = new_array start_indices = [0] * operand.ndim limit_indices = [0] * operand.ndim for axis, (low, high, _) in enumerate(padding_config): if low < 0: start_indices[axis] = abs(low) if high < 0: limit_indices[axis] = high else: limit_indices[axis] = operand.shape[axis] + 1 padded = _slice(operand, start_indices, limit_indices) pad_width = [(0, 0)] * operand.ndim for axis, (low, high, _) in enumerate(padding_config): if low > 0 and high > 0: pad_width[axis] = (low, high) elif low > 0 and not high > 0: pad_width[axis] = (low, 0) elif high > 0 and not low > 0: pad_width[axis] = (0, high) padded = np.pad(padded, pad_width, constant_values=padding_value) return padded def pad( input: np.ndarray, pad_width: Union[Iterable[Tuple[int]], int], /, *, mode: Union[ Literal[ "constant", "dilated", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty", ], Callable, ] = "constant", stat_length: Union[Iterable[Tuple[int]], int] = 1, constant_values: Union[Iterable[Tuple[Number]], Number] = 0, end_values: Union[Iterable[Tuple[Number]], Number] = 0, reflect_type: Literal["even", "odd"] = "even", **kwargs: Optional[Any], ) -> np.ndarray: if mode == "dilated": return _interior_pad(input, constant_values, pad_width) if callable(mode): return np.pad( _flat_array_to_1_dim_array(input), pad_width, mode=mode, **kwargs, ) if mode in ["maximum", "mean", "median", "minimum"]: return np.pad( _flat_array_to_1_dim_array(input), pad_width, mode=mode, stat_length=stat_length, ) elif mode == "constant": return np.pad( _flat_array_to_1_dim_array(input), pad_width, mode=mode, constant_values=constant_values, ) elif mode == "linear_ramp": return np.pad( _flat_array_to_1_dim_array(input), pad_width, mode=mode, end_values=end_values, ) elif mode in ["reflect", "symmetric"]: return np.pad( _flat_array_to_1_dim_array(input), pad_width, mode=mode, reflect_type=reflect_type, ) else: return np.pad( _flat_array_to_1_dim_array(input), pad_width, mode=mode, ) def vsplit( ary: np.ndarray, indices_or_sections: Union[int, Sequence[int], np.ndarray], /, *, copy: Optional[bool] = None, ) -> List[np.ndarray]: if ary.ndim < 2: raise ivy.exceptions.IvyError( "vsplit only works on arrays of 2 or more dimensions" ) return ivy.split(ary, num_or_size_splits=indices_or_sections, axis=0) def dsplit( ary: np.ndarray, indices_or_sections: Union[int, Tuple[int, ...]], /, *, copy: Optional[bool] = None, ) -> List[np.ndarray]: if ary.ndim < 3: raise ivy.utils.exceptions.IvyError( "dsplit only works on arrays of 3 or more dimensions" ) return ivy.split(ary, num_or_size_splits=indices_or_sections, axis=2) def atleast_1d( *arys: Union[np.ndarray, bool, Number], copy: Optional[bool] = None ) -> List[np.ndarray]: return np.atleast_1d(*arys) def dstack( arrays: Sequence[np.ndarray], /, *, out: Optional[np.ndarray] = None, ) -> np.ndarray: return np.dstack(arrays) def atleast_2d(*arys: np.ndarray, copy: Optional[bool] = None) -> List[np.ndarray]: return np.atleast_2d(*arys) def atleast_3d( *arys: Union[np.ndarray, bool, Number], copy: Optional[bool] = None ) -> List[np.ndarray]: return np.atleast_3d(*arys) @_scalar_output_to_0d_array def take_along_axis( arr: np.ndarray, indices: np.ndarray, axis: int, /, *, mode: str = "fill", out: Optional[np.ndarray] = None, ) -> np.ndarray: if arr.ndim != indices.ndim: raise ivy.utils.exceptions.IvyException( "arr and indices must have the same number of dimensions;" + f" got {arr.ndim} vs {indices.ndim}" ) if mode not in ["clip", "fill", "drop"]: raise ValueError( f"Invalid mode '{mode}'. Valid modes are 'clip', 'fill', 'drop'." ) arr_shape = arr.shape if axis < 0: axis += arr.ndim if mode == "clip": max_index = arr.shape[axis] - 1 indices = np.clip(indices, 0, max_index) elif mode in ("fill", "drop"): if "float" in str(arr.dtype) or "complex" in str(arr.dtype): fill_value = np.NAN elif "uint" in str(arr.dtype): fill_value = np.iinfo(arr.dtype).max elif "int" in str(arr.dtype): fill_value = -np.iinfo(arr.dtype).max - 1 else: raise TypeError( f"Invalid dtype '{arr.dtype}'. Valid dtypes are 'float', 'complex'," " 'uint', 'int'." ) indices = np.where((indices < 0) | (indices >= arr.shape[axis]), -1, indices) arr_shape = list(arr_shape) arr_shape[axis] = 1 fill_arr = np.full(arr_shape, fill_value, dtype=arr.dtype) arr = np.concatenate([arr, fill_arr], axis=axis) return np.take_along_axis(arr, indices, axis) def hsplit( ary: np.ndarray, indices_or_sections: Union[int, Tuple[int, ...]], /, *, copy: Optional[bool] = None, ) -> List[np.ndarray]: if ary.ndim == 1: return ivy.split(ary, num_or_size_splits=indices_or_sections, axis=0) return ivy.split(ary, num_or_size_splits=indices_or_sections, axis=1) take_along_axis.support_native_out = False def broadcast_shapes(*shapes: Union[List[int], List[Tuple]]) -> Tuple[int]: return np.broadcast_shapes(*shapes) broadcast_shapes.support_native_out = False def expand( x: np.ndarray, shape: Union[List[int], List[Tuple]], /, *, copy: Optional[bool] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: shape = list(shape) n_extra_dims = len(shape) - x.ndim if n_extra_dims > 0: x = np.expand_dims(x, tuple(range(n_extra_dims))) for i, dim in enumerate(shape): if dim < 0: shape[i] = x.shape[i] return np.broadcast_to(x, tuple(shape)) expand.support_native_out = False def concat_from_sequence( input_sequence: Union[Tuple[np.ndarray], List[np.ndarray]], /, *, new_axis: int = 0, axis: int = 0, out: Optional[np.ndarray] = None, ) -> np.ndarray: is_tuple = type(input_sequence) is tuple if is_tuple: input_sequence = list(input_sequence) if new_axis == 0: ret = np.concatenate(input_sequence, axis=axis) return ret elif new_axis == 1: ret = np.stack(input_sequence, axis=axis) return ret def unique_consecutive( x: np.ndarray, /, *, axis: Optional[int] = None, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: Results = namedtuple( "Results", ["output", "inverse_indices", "counts"], ) x_shape = None if axis is None: x_shape = x.shape x = x.flatten() axis = -1 if axis < 0: axis += x.ndim sub_arrays = np.split( x, np.where( np.any( np.diff(x, axis=axis) != 0, axis=tuple(i for i in np.arange(x.ndim) if i != axis), ) )[0] + 1, axis=axis, ) output = np.concatenate( [np.unique(sub_array, axis=axis) for sub_array in sub_arrays], axis=axis, ) counts = np.array([sub_array.shape[axis] for sub_array in sub_arrays]) inverse_indices = np.repeat(np.arange(len(counts)), counts) if x_shape: inverse_indices = np.reshape(inverse_indices, x_shape) return Results( output.astype(x.dtype), inverse_indices, counts, ) def fill_diagonal( a: np.ndarray, v: Union[int, float, np.ndarray], /, *, wrap: bool = False, ) -> np.ndarray: np.fill_diagonal(a, v, wrap=wrap) return a @_scalar_output_to_0d_array def take( x: Union[int, List, np.ndarray], indices: Union[int, List, np.ndarray], /, *, axis: Optional[int] = None, mode: str = "raise", fill_value: Optional[Number] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: if mode not in ["raise", "wrap", "clip", "fill"]: raise ValueError("mode must be one of 'clip', 'raise', 'wrap', or 'fill'") # raise, clip, wrap if mode != "fill": return np.take(x, indices, axis=axis, mode=mode, out=out) if not isinstance(x, np.ndarray): x = np.array(x) if len(x.shape) == 0: x = np.array([x]) if not isinstance(indices, np.ndarray): indices = np.array(indices) if np.issubdtype(indices.dtype, np.floating): indices = indices.astype(np.int64) # fill x_dtype = x.dtype if fill_value is None: # set according to jax behaviour # https://tinyurl.com/66jn68uj # NaN for inexact types (let fill_value as None) if not np.issubdtype(x_dtype, np.inexact): if np.issubdtype(x_dtype, np.bool_): # True for booleans fill_value = True elif np.issubdtype(x_dtype, np.unsignedinteger): # the largest positive value for unsigned types fill_value = np.iinfo(x_dtype).max else: # the largest negative value for signed types fill_value = np.iinfo(x_dtype).min fill_value = np.array(fill_value, dtype=x_dtype) x_shape = x.shape ret = np.take(x, indices, axis=axis, mode="wrap") if len(ret.shape) == 0: # if scalar, scalar fill (replace) if np.any(indices != 0): ret = fill_value else: if ivy.exists(axis): rank = len(x.shape) axis = ((axis % rank) + rank) % rank x_shape = x_shape[axis] else: axis = 0 x_shape = np.prod(x_shape) bound_check = (indices < -x_shape) | (indices >= x_shape) if np.any(bound_check): if axis > 0: bound_check = np.broadcast_to( bound_check, (*x.shape[:axis], *bound_check.shape) ) ret[bound_check] = fill_value if ivy.exists(out): ivy.inplace_update(out, ret) return ret take.support_native_out = True def trim_zeros( a: np.ndarray, /, *, trim: Optional[str] = "fb", ) -> np.ndarray: return np.trim_zeros(a, trim=trim) def column_stack( arrays: Sequence[np.ndarray], /, *, out: Optional[np.ndarray] = None ) -> np.ndarray: return np.column_stack(arrays) @with_supported_dtypes( {"1.25.2 and below": ("float32", "float64", "int32", "int64")}, backend_version ) def put_along_axis( arr: np.ndarray, indices: np.ndarray, values: Union[int, np.ndarray], axis: int, /, *, mode: Literal["sum", "min", "max", "mul", "replace"] = "replace", out: Optional[np.ndarray] = None, ): ret = np.put_along_axis(arr.copy(), indices, values, axis) return ivy.inplace_update(out, ret) if ivy.exists(out) else ret put_along_axis.partial_mixed_handler = lambda *args, mode=None, **kwargs: mode in [ "replace", ] @handle_out_argument def unflatten( x: np.ndarray, /, shape: Tuple[int] = None, dim: Optional[int] = 0, *, out: Optional[np.ndarray] = None, order: Optional[str] = None, ) -> np.ndarray: dim = abs(len(x.shape) + dim) if dim < 0 else dim res_shape = x.shape[:dim] + shape + x.shape[dim + 1 :] res = np.reshape(x, res_shape) return res
ivy/ivy/functional/backends/numpy/experimental/manipulation.py/0
{ "file_path": "ivy/ivy/functional/backends/numpy/experimental/manipulation.py", "repo_id": "ivy", "token_count": 7757 }
19
"""Collection of Numpy random functions, wrapped to fit Ivy syntax and signature.""" # global import numpy as np from typing import Optional, Union, Sequence # local import ivy from ivy.functional.ivy.random import ( _check_bounds_and_get_shape, _randint_check_dtype_and_bound, _check_valid_scale, ) from ivy.func_wrapper import with_unsupported_dtypes from . import backend_version # Extra # # ------# def random_uniform( *, low: Union[float, np.ndarray] = 0.0, high: Union[float, np.ndarray] = 1.0, shape: Optional[Union[ivy.NativeShape, Sequence[int], np.ndarray]] = None, dtype: np.dtype, device: Optional[str] = None, out: Optional[np.ndarray] = None, seed: Optional[int] = None, ) -> np.ndarray: if seed: np.random.seed(seed) shape = _check_bounds_and_get_shape(low, high, shape).shape return np.asarray(np.random.uniform(low, high, shape), dtype=dtype) def random_normal( *, mean: Union[float, np.ndarray] = 0.0, std: Union[float, np.ndarray] = 1.0, shape: Optional[Union[ivy.NativeShape, Sequence[int]]] = None, device: Optional[str] = None, dtype: np.dtype, seed: Optional[int] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: _check_valid_scale(std) shape = _check_bounds_and_get_shape(mean, std, shape).shape if seed: np.random.seed(seed) return np.asarray(np.random.normal(mean, std, shape), dtype=dtype) @with_unsupported_dtypes({"1.26.3 and below": ("bfloat16",)}, backend_version) def multinomial( population_size: int, num_samples: int, /, *, batch_size: int = 1, probs: Optional[np.ndarray] = None, replace: bool = True, device: Optional[str] = None, seed: Optional[int] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: if seed: np.random.seed(seed) if probs is None: probs = ( np.ones( ( batch_size, population_size, ) ) / population_size ) orig_probs_shape = list(probs.shape) num_classes = orig_probs_shape[-1] probs_flat = np.reshape(probs, (-1, orig_probs_shape[-1])) probs_flat = probs_flat / np.sum(probs_flat, -1, keepdims=True, dtype="float64") probs_stack = np.split(probs_flat, probs_flat.shape[0]) samples_stack = [ np.random.choice(num_classes, num_samples, replace, p=prob[0]) for prob in probs_stack ] samples_flat = np.stack(samples_stack) return np.asarray(np.reshape(samples_flat, orig_probs_shape[:-1] + [num_samples])) def randint( low: Union[float, np.ndarray], high: Union[float, np.ndarray], /, *, shape: Optional[Union[ivy.NativeShape, Sequence[int]]] = None, device: Optional[str] = None, dtype: Optional[Union[np.dtype, ivy.Dtype]] = None, seed: Optional[int] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: if not dtype: dtype = ivy.default_int_dtype() dtype = ivy.as_native_dtype(dtype) _randint_check_dtype_and_bound(low, high, dtype) shape = _check_bounds_and_get_shape(low, high, shape).shape if seed: np.random.seed(seed) return np.random.randint(low, high, shape, dtype=dtype) def seed(*, seed_value: int = 0): np.random.seed(seed_value) return def shuffle( x: np.ndarray, axis: Optional[int] = 0, /, *, seed: Optional[int] = None, out: Optional[np.ndarray] = None, ) -> np.ndarray: if seed: np.random.seed(seed) if len(x.shape) == 0: return x x = np.array(x) rng = np.random.default_rng() rng.shuffle(x, axis=axis) return x
ivy/ivy/functional/backends/numpy/random.py/0
{ "file_path": "ivy/ivy/functional/backends/numpy/random.py", "repo_id": "ivy", "token_count": 1676 }
20
# global import paddle from typing import Optional, Union # local import ivy # invert_permutation def invert_permutation( x: Union[paddle.Tensor, list, tuple], /, ) -> paddle.Tensor: x = paddle.to_tensor(x) if not ivy.is_array(x) else x sorted_indices = paddle.argsort(x) inverse = paddle.zeros_like(sorted_indices) inverse[sorted_indices] = paddle.arange(len(x)) inverse_permutation = paddle.argsort(inverse) return inverse_permutation # lexsort def lexsort( keys: paddle.Tensor, /, *, axis: int = -1, out: Optional[paddle.Tensor] = None ) -> paddle.Tensor: shape = keys.shape if len(shape) == 1: return paddle.argsort(keys, axis=axis) if shape[0] == 0: raise TypeError("need sequence of keys with len > 0 in lexsort") if len(shape) == 2 and shape[1] == 1: return paddle.to_tensor([0], dtype=paddle.int64) result = paddle.argsort(keys[0], axis=axis) if shape[0] == 1: return result for i in range(1, shape[0]): key = keys[i] ind = paddle.take_along_axis(key, result, axis=axis) temp = paddle.argsort(ind, axis=axis) result = paddle.take_along_axis(result, temp, axis=axis) return result
ivy/ivy/functional/backends/paddle/experimental/sorting.py/0
{ "file_path": "ivy/ivy/functional/backends/paddle/experimental/sorting.py", "repo_id": "ivy", "token_count": 505 }
21
# global import paddle from typing import Union, Optional, Sequence import ivy.functional.backends.paddle as paddle_backend def all( x: paddle.Tensor, /, *, axis: Optional[Union[int, Sequence[int]]] = None, keepdims: bool = False, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: x = x.cast("bool") if axis is None: axis = list(range(x.ndim)) if isinstance(axis, int): ret = paddle.all(x, axis=axis, keepdim=keepdims) else: axis = [i % x.ndim for i in axis] axis.sort() ret = x.clone() for i, a in enumerate(axis): ret = paddle.all(ret, axis=a if keepdims else a - i, keepdim=keepdims) # The following code is to simulate other frameworks # output shapes behaviour since min output dim is 1 in paddle if isinstance(axis, Sequence): if len(axis) == x.ndim: axis = None if (x.ndim == 1 or axis is None) and not keepdims: ret = paddle_backend.squeeze(ret, axis=-1) return ret def any( x: paddle.Tensor, /, *, axis: Optional[Union[int, Sequence[int]]] = None, keepdims: bool = False, out: Optional[paddle.Tensor] = None, ) -> paddle.Tensor: x = x.cast("bool") if axis is None: axis = list(range(x.ndim)) if isinstance(axis, int): ret = paddle.any(x, axis=axis, keepdim=keepdims) else: axis = [i % x.ndim for i in axis] axis.sort() ret = x.clone() for i, a in enumerate(axis): ret = paddle.any(ret, axis=a if keepdims else a - i, keepdim=keepdims) # The following code is to simulate other frameworks # output shapes behaviour since min output dim is 1 in paddle if isinstance(axis, Sequence): if len(axis) == x.ndim: axis = None if (x.ndim == 1 or axis is None) and not keepdims: ret = paddle_backend.squeeze(ret, axis=-1) return ret
ivy/ivy/functional/backends/paddle/utility.py/0
{ "file_path": "ivy/ivy/functional/backends/paddle/utility.py", "repo_id": "ivy", "token_count": 840 }
22
# global import math from typing import Union, Optional, Tuple, List, Literal, Sequence, Callable import tensorflow as tf # local from ivy.func_wrapper import ( inputs_to_ivy_arrays, output_to_native_arrays, with_unsupported_dtypes, with_supported_dtypes, with_supported_device_and_dtypes, ) from .. import backend_version import ivy from ivy.functional.ivy.layers import ( _handle_padding, _get_num_padded_values, _validate_max_pool_params, _depth_max_pooling_helper, ) from ivy.functional.ivy.experimental.layers import _padding_ceil_mode, _get_size def _determine_depth_max_pooling(x, kernel, strides, dims, data_format="channel_last"): # Determine depth pooling kernel, strides, depth_pooling = _depth_max_pooling_helper( x.shape, kernel, strides, dims=dims, data_format=data_format ) if depth_pooling: x = tf.transpose(x, (0, dims + 1, *range(1, dims + 1))) return x, kernel, strides, depth_pooling def max_pool1d( x: Union[tf.Tensor, tf.Variable], kernel: Union[int, Tuple[int, ...]], strides: Union[int, Tuple[int, ...]], padding: Union[str, int, Tuple[int], List[Tuple[int, int]]], /, *, data_format: str = "NWC", dilation: Union[int, Tuple[int]] = 1, ceil_mode: bool = False, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: dims = 1 kernel, strides, padding, dilation = _validate_max_pool_params( kernel, strides, padding, dilation, ceil_mode, dims, data_format ) permuted_x = False if data_format == "NCW" and ivy.dev(x) == "cpu": x = tf.transpose(x, (0, 2, 1)) kernel = [kernel[i] for i in [0, 2, 1]] if len(kernel) == (dims + 2) else kernel strides = ( [strides[i] for i in [0, 2, 1]] if len(strides) == (dims + 2) else strides ) data_format = "NWC" permuted_x = True # determine depth pooling x, kernel, strides, depth_pooling = _determine_depth_max_pooling( x, kernel, strides, dims, data_format=data_format ) if not depth_pooling: if ceil_mode: new_kernel = [kernel[0] + (kernel[0] - 1) * (dilation[0] - 1)] if data_format == "NCW": x_shape = x.shape[2:] else: x_shape = x.shape[1:-1] if isinstance(padding, str): pad_w = _handle_padding(x_shape[0], strides[0], new_kernel[0], padding) padding = [(pad_w // 2, pad_w - pad_w // 2)] padding[0] = _padding_ceil_mode( x_shape[0], new_kernel[0], padding[0], strides[0] ) if isinstance(padding, list): if any(item != 0 for sublist in padding for item in sublist): if len(padding) < dims + 2: if data_format == "NCW": padding = [(0, 0), (0, 0), *padding] else: padding = [(0, 0), *padding, (0, 0)] x = tf.pad(x, padding, constant_values=tf.math.reduce_min(x)) padding = "VALID" elif isinstance(padding, list): if any(item != 0 for sublist in padding for item in sublist): raise NotImplementedError( "Nonzero explicit padding is not supported for depthwise max pooling" ) else: padding = "VALID" res = tf.nn.pool( x, kernel, "MAX", strides, padding, dilations=dilation, data_format=data_format ) if depth_pooling: res = tf.transpose(res, (0, 2, 1)) if permuted_x: return tf.transpose(res, (0, 2, 1)) return res def max_pool2d( x: Union[tf.Tensor, tf.Variable], kernel: Union[int, Tuple[int, ...]], strides: Union[int, Tuple[int, ...]], padding: Union[str, int, Tuple[int], List[Tuple[int, int]]], /, *, data_format: str = "NHWC", dilation: Union[int, Tuple[int, ...]] = 1, ceil_mode: bool = False, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: dims = 2 kernel, strides, padding, dilation = _validate_max_pool_params( kernel, strides, padding, dilation, ceil_mode, dims, data_format ) permuted_x = False if data_format == "NCHW" and ivy.dev(x) == "cpu": x = tf.transpose(x, (0, 2, 3, 1)) kernel = ( [kernel[i] for i in [0, 2, 3, 1]] if len(kernel) == (dims + 2) else kernel ) strides = ( [strides[i] for i in [0, 2, 3, 1]] if len(strides) == (dims + 2) else strides ) data_format = "NHWC" permuted_x = True # determine depth pooling x, kernel, strides, depth_pooling = _determine_depth_max_pooling( x, kernel, strides, dims, data_format=data_format ) if not depth_pooling: if ceil_mode: new_kernel = [ kernel[i] + (kernel[i] - 1) * (dilation[i] - 1) for i in range(dims) ] if data_format == "NCHW": x_shape = x.shape[2:] else: x_shape = x.shape[1:-1] if isinstance(padding, str): pad_h = _handle_padding(x_shape[0], strides[0], new_kernel[0], padding) pad_w = _handle_padding(x_shape[1], strides[1], new_kernel[1], padding) padding = [ (pad_h // 2, pad_h - pad_h // 2), (pad_w // 2, pad_w - pad_w // 2), ] for i in range(dims): padding[i] = _padding_ceil_mode( x_shape[i], new_kernel[i], padding[i], strides[i] ) if isinstance(padding, list): if any(item != 0 for sublist in padding for item in sublist): if len(padding) < dims + 2: if data_format == "NCHW": padding = [(0, 0), (0, 0), *padding] else: padding = [(0, 0), *padding, (0, 0)] x = tf.pad(x, padding, constant_values=tf.math.reduce_min(x)) padding = "VALID" elif isinstance(padding, list): if any(item != 0 for sublist in padding for item in sublist): raise NotImplementedError( "Nonzero explicit padding is not supported for depthwise max pooling" ) else: padding = "VALID" if any(d > 1 for d in dilation): res = tf.nn.pool( x, kernel, "MAX", strides, padding, dilations=dilation, data_format=data_format, ) else: # faster res = tf.nn.max_pool2d(x, kernel, strides, padding, data_format=data_format) if depth_pooling: res = tf.transpose(res, (0, 2, 3, 1)) if permuted_x: return tf.transpose(res, (0, 3, 1, 2)) return res @with_unsupported_dtypes( {"2.15.0 and below": ("bfloat16", "float64", "float16")}, backend_version ) def max_pool3d( x: Union[tf.Tensor, tf.Variable], kernel: Union[int, Tuple[int, ...]], strides: Union[int, Tuple[int, ...]], padding: Union[str, int, Tuple[int], List[Tuple[int, int]]], /, *, data_format: str = "NDHWC", dilation: Union[int, Tuple[int, ...]] = 1, ceil_mode: bool = False, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: dims = 3 kernel, strides, padding, dilation = _validate_max_pool_params( kernel, strides, padding, dilation, ceil_mode, dims, data_format ) permuted_x = False if data_format == "NCDHW" and ivy.dev(x) == "cpu": x = tf.transpose(x, (0, 2, 3, 4, 1)) kernel = ( [kernel[i] for i in [0, 2, 3, 4, 1]] if len(kernel) == (dims + 2) else kernel ) strides = ( [strides[i] for i in [0, 2, 3, 4, 1]] if len(strides) == (dims + 2) else strides ) data_format = "NDHWC" permuted_x = True # determine depth pooling x, kernel, strides, depth_pooling = _determine_depth_max_pooling( x, kernel, strides, dims, data_format=data_format ) if not depth_pooling: if ceil_mode: new_kernel = [ kernel[i] + (kernel[i] - 1) * (dilation[i] - 1) for i in range(dims) ] if data_format == "NCDHW": x_shape = x.shape[2:] else: x_shape = x.shape[1:-1] if isinstance(padding, str): pad_d = _handle_padding(x_shape[0], strides[0], new_kernel[0], padding) pad_h = _handle_padding(x_shape[1], strides[1], new_kernel[1], padding) pad_w = _handle_padding(x_shape[2], strides[2], new_kernel[2], padding) padding = [ (pad_d // 2, pad_d - pad_d // 2), (pad_h // 2, pad_h - pad_h // 2), (pad_w // 2, pad_w - pad_w // 2), ] for i in range(dims): padding[i] = _padding_ceil_mode( x_shape[i], new_kernel[i], padding[i], strides[i] ) if isinstance(padding, list): if any(item != 0 for sublist in padding for item in sublist): if len(padding) < dims + 2: if data_format == "NCDHW": padding = [(0, 0), (0, 0), *padding] else: padding = [(0, 0), *padding, (0, 0)] x = tf.pad(x, padding, constant_values=tf.math.reduce_min(x)) padding = "VALID" elif isinstance(padding, list): if any(item != 0 for sublist in padding for item in sublist): raise NotImplementedError( "Nonzero explicit padding is not supported for depthwise max pooling" ) else: padding = "VALID" res = tf.nn.pool( x, kernel, "MAX", strides, padding, dilations=dilation, data_format=data_format ) if depth_pooling: res = tf.transpose(res, (0, 2, 3, 4, 1)) if permuted_x: return tf.transpose(res, (0, 4, 1, 2, 3)) return res def _handle_manual_pad_avg_pool(x, kernel, strides, padding, ceil_mode, dims): if isinstance(padding, str): pad_specific = [ _handle_padding(x.shape[i + 1], strides[i], kernel[i], padding) for i in range(dims) ] padding = [ (pad_specific[i] // 2, pad_specific[i] - pad_specific[i] // 2) for i in range(dims) ] else: if isinstance(padding, int): padding = [(padding,) * 2] * dims pad_specific = [sum(padding[i]) for i in range(dims)] c = [] if ceil_mode: for i in range(dims): padding[i], c_i = _padding_ceil_mode( x.shape[i + 1], kernel[i], padding[i], strides[i], True ) c.append(c_i) pad_specific[i] = sum(padding[i]) return padding, pad_specific, c @with_unsupported_dtypes({"2.15.0 and below": ("bfloat16", "float64")}, backend_version) def avg_pool1d( x: Union[tf.Tensor, tf.Variable], kernel: Union[int, Tuple[int]], strides: Union[int, Tuple[int]], padding: Union[str, int, List[Tuple[int, int]]], /, *, data_format: str = "NWC", count_include_pad: bool = False, ceil_mode: bool = False, divisor_override: Optional[int] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if isinstance(kernel, int): kernel = [kernel] elif len(kernel) == 1: kernel = [kernel[0]] if isinstance(strides, int): strides = [strides] elif len(strides) == 1: strides = [strides[0]] if data_format in ("NCW", "NCL"): print("why") x = tf.transpose(x, (0, 2, 1)) manual_padding = False # Have to manually pad if explicit padding is provided, or if ceil_mode is True if not isinstance(padding, str) or ceil_mode or count_include_pad: padding, pad_specific, c = _handle_manual_pad_avg_pool( x, kernel, strides, padding, ceil_mode, 1 ) x = tf.pad(x, [(0, 0), *padding, (0, 0)], constant_values=0) manual_padding = True padding = "VALID" res = tf.nn.avg_pool1d(x, kernel, strides, padding) # removing any manual padding added because of ceil_mode or count_include_pad if (manual_padding and not count_include_pad) or ceil_mode: if not count_include_pad: num_padded_values = tf.convert_to_tensor( ivy.map( _get_num_padded_values, constant={ "p": pad_specific[0], "n": x.shape[1] - pad_specific[0], "k": kernel[0], "s": strides[0], }, unique={ "i": tf.range(res.shape[1]), }, ), dtype=res.dtype, ) else: num_padded_values = tf.scatter_nd( tf.constant([[res.shape[1] - 1]]), tf.constant([c[0]], dtype=res.dtype), tf.constant([res.shape[1]], dtype=tf.int32), ) res = (kernel[0] * res) / (kernel[0] - num_padded_values[:, None]) if data_format in ("NCW", "NCL"): res = tf.transpose(res, (0, 2, 1)) return res @with_unsupported_dtypes( {"2.15.0 and below": ("bfloat16", "float64", "float16")}, backend_version ) def avg_pool2d( x: Union[tf.Tensor, tf.Variable], kernel: Union[int, Tuple[int], Tuple[int, int]], strides: Union[int, Tuple[int], Tuple[int, int]], padding: Union[str, int, List[Tuple[int, int]]], /, *, data_format: str = "NHWC", count_include_pad: bool = False, ceil_mode: bool = False, divisor_override: Optional[int] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if isinstance(kernel, int): kernel = (kernel,) * 2 elif len(kernel) == 1: kernel = (kernel[0],) * 2 if isinstance(strides, int): strides = (strides,) * 2 elif len(strides) == 1: strides = (strides[0],) * 2 if data_format == "NCHW": x = tf.transpose(x, (0, 2, 3, 1)) manual_padding = False # Have to manually pad if explicit padding is provided, or if ceil_mode is True if not isinstance(padding, str) or ceil_mode or count_include_pad: padding, pad_specific, c = _handle_manual_pad_avg_pool( x, kernel, strides, padding, ceil_mode, 2 ) x = tf.pad(x, [(0, 0), *padding, (0, 0)], constant_values=0) manual_padding = True padding = "VALID" if divisor_override is not None: # sum pooling then dividing by divisor_override if it is provided res = tf.nn.depthwise_conv2d( x, tf.ones(kernel + (x.shape[-1], 1)), (1,) + strides + (1,), padding ) res = res / divisor_override else: res = tf.nn.avg_pool2d(x, kernel, strides, padding) # removing any manual padding added because of ceil_mode or count_include_pad if (manual_padding and not count_include_pad) or ceil_mode and not divisor_override: if not count_include_pad: num_padded_values = [ tf.convert_to_tensor( ivy.map( _get_num_padded_values, constant={ "p": pad_specific[i], "n": x.shape[i + 1] - pad_specific[i], "k": kernel[i], "s": strides[i], }, unique={ "i": tf.range(res.shape[i + 1]), }, ), dtype=res.dtype, ) for i in range(2) ] else: num_padded_values = [] for i in range(2): num_pad = tf.scatter_nd( tf.constant([[res.shape[i + 1] - 1]]), tf.constant([c[i]], dtype=res.dtype), tf.constant([res.shape[i + 1]], dtype=tf.int32), ) num_padded_values.append(num_pad) num_padded_values1 = num_padded_values[0][:, None] num_padded_values2 = num_padded_values[1][None, :] num_padded_values = ( num_padded_values1 * kernel[1] + num_padded_values2 * kernel[0] - num_padded_values1 * num_padded_values2 ) kernel_mul = tf.cast(tf.math.reduce_prod(kernel), res.dtype) res = (kernel_mul * res) / (kernel_mul - tf.expand_dims(num_padded_values, -1)) if data_format == "NCHW": return tf.transpose(res, (0, 3, 1, 2)) return res @with_unsupported_dtypes( {"2.15.0 and below": ("bfloat16", "float64", "float16")}, backend_version ) def avg_pool3d( x: Union[tf.Tensor, tf.Variable], kernel: Union[int, Tuple[int], Tuple[int, int, int]], strides: Union[int, Tuple[int], Tuple[int, int, int]], padding: Union[str, int, List[Tuple[int, int]]], /, *, data_format: str = "NDHWC", count_include_pad: bool = False, ceil_mode: bool = False, divisor_override: Optional[int] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if isinstance(kernel, int): kernel = (kernel,) * 3 elif len(kernel) == 1: kernel = (kernel[0],) * 3 if isinstance(strides, int): strides = (strides,) * 3 elif len(strides) == 1: strides = (strides[0],) * 3 if data_format == "NCDHW": x = tf.transpose(x, (0, 2, 3, 4, 1)) manual_padding = False # Have to manually pad if explicit padding is provided, or if ceil_mode is True if not isinstance(padding, str) or ceil_mode or count_include_pad: padding, pad_specific, c = _handle_manual_pad_avg_pool( x, kernel, strides, padding, ceil_mode, 3 ) x = tf.pad(x, [(0, 0), *padding, (0, 0)], constant_values=0) manual_padding = True padding = "VALID" if divisor_override is not None: # sum pooling then dividing by divisor_override if it is provided res = ivy.conv_general_dilated( x, tf.ones(kernel + (1, x.shape[-1])), list(strides), padding, dims=3, feature_group_count=x.shape[-1], ) res = res / divisor_override else: res = tf.nn.avg_pool3d(x, kernel, strides, padding) # removing any manual padding added because of ceil_mode or count_include_pad if ( (manual_padding and not count_include_pad) or ceil_mode ) and not divisor_override: if not count_include_pad: num_padded_values = [ tf.convert_to_tensor( ivy.map( _get_num_padded_values, constant={ "p": pad_specific[i], "n": x.shape[i + 1] - pad_specific[i], "k": kernel[i], "s": strides[i], }, unique={ "i": tf.range(res.shape[i + 1]), }, ), dtype=res.dtype, ) for i in range(3) ] else: num_padded_values = [] for i in range(3): num_pad = tf.scatter_nd( tf.constant([[res.shape[i + 1] - 1]]), tf.constant([c[i]], dtype=res.dtype), tf.constant([res.shape[i + 1]], dtype=tf.int32), ) num_padded_values.append(num_pad) num_padded_values1 = tf.reshape(num_padded_values[0], (-1, 1, 1)) num_padded_values2 = tf.reshape(num_padded_values[1], (1, -1, 1)) num_padded_values3 = tf.reshape(num_padded_values[2], (1, 1, -1)) num_padded_values = ( num_padded_values1 * kernel[1] * kernel[2] + num_padded_values2 * kernel[0] * kernel[2] + num_padded_values3 * kernel[0] * kernel[1] + num_padded_values1 * num_padded_values2 * num_padded_values3 - num_padded_values1 * num_padded_values2 * kernel[2] - num_padded_values1 * num_padded_values3 * kernel[1] - num_padded_values2 * num_padded_values3 * kernel[0] ) kernel_mul = tf.cast(tf.math.reduce_prod(kernel), res.dtype) res = (kernel_mul * res) / (kernel_mul - tf.expand_dims(num_padded_values, -1)) if data_format == "NCDHW": return tf.transpose(res, (0, 4, 1, 2, 3)) return res @with_unsupported_dtypes( {"2.15.0 and below": ("bfloat16", "float64", "float16")}, backend_version ) def pool( x: Union[tf.Tensor, tf.Variable], window_shape: Union[int, Tuple[int], Tuple[int, int]], pool_type: str, /, *, strides: Optional[Union[int, Tuple[int], Tuple[int, int]]] = None, padding: str = "VALID", data_format: Optional[str] = None, dilations: Optional[Union[int, Tuple[int], Tuple[int, int]]] = None, ceil_mode: bool = False, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.nn.pool( x, window_shape, pool_type, strides=strides, padding=padding, data_format=data_format, dilations=dilations, ) @with_supported_dtypes({"2.15.0 and below": ("float32", "float64")}, backend_version) def dct( x: Union[tf.Tensor, tf.Variable], /, *, type: Literal[1, 2, 3, 4] = 2, n: Optional[int] = None, axis: int = -1, norm: Optional[Literal["ortho"]] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> tf.Tensor: # ToDo: Update this once tf.signal.dct supports axis other than -1 if axis != -1: new_dims = list(range(len(x.shape))) if axis < 0: axis = len(x.shape) + axis new_dims[axis], new_dims[-1] = new_dims[-1], axis x = tf.transpose(x, new_dims) dct_out = tf.signal.dct(x, type=type, n=n, axis=-1, norm=norm) dct_out = tf.transpose(dct_out, new_dims) else: dct_out = tf.signal.dct(x, type=type, n=n, axis=-1, norm=norm) return dct_out def idct( x: Union[tf.Tensor, tf.Variable], /, *, type: Literal[1, 2, 3, 4] = 2, n: Optional[int] = None, axis: int = -1, norm: Optional[Literal["ortho"]] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> tf.Tensor: inverse_type = {1: 1, 2: 3, 3: 2, 4: 4}[type] return dct(x, type=inverse_type, n=n, axis=axis, norm=norm, out=out) def _fft_norm( x: Union[tf.Tensor, tf.Variable], dim: int, /, *, norm: str = "backward", ): n = tf.constant(x.shape[dim], dtype=x.dtype) if norm == "backward": return x elif norm == "ortho": return x / tf.cast(tf.sqrt(tf.cast(n, tf.float32)), x.dtype) elif norm == "forward": return x / tf.cast(n, x.dtype) else: raise ivy.utils.exceptions.IvyError(f"Unrecognized normalization mode {norm}") def _ifft_norm( x: Union[tf.Tensor, tf.Variable], dim: int, *, norm: str = "backward", ): n = x.shape[dim] if norm == "backward": return x elif norm == "ortho": return x * math.sqrt(n) elif norm == "forward": return x * n else: raise ivy.utils.exceptions.IvyError(f"Unrecognized normalization mode {norm}") @with_supported_dtypes( {"2.15.0 and below": ("complex", "float32", "float64")}, backend_version ) def fft( x: Union[tf.Tensor, tf.Variable], dim: int, /, *, norm: str = "backward", n: Optional[Union[int, Tuple[int]]] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: # ToDo: Remove conversion from float to complex when casting mode is working if x.dtype == "float32": x = tf.cast(x, tf.complex64) elif x.dtype == "float64": x = tf.cast(x, tf.complex128) if not isinstance(dim, int): raise ivy.utils.exceptions.IvyError( f"Expecting <class 'int'> instead of {type(dim)}" ) if n is None: n = x.shape[dim] if n < -len(x.shape): raise ivy.utils.exceptions.IvyError( f"Invalid dim {dim}, expecting ranging" " from {-len(x.shape)} to {len(x.shape)-1} " ) if not isinstance(n, int): raise ivy.utils.exceptions.IvyError( f"Expecting <class 'int'> instead of {type(n)}" ) if n <= 1: raise ivy.utils.exceptions.IvyError( f"Invalid data points {n}, expecting more than 1" ) if norm not in ["backward", "ortho", "forward"]: raise ivy.utils.exceptions.IvyError(f"Unrecognized normalization mode {norm}") if x.shape[dim] != n: s = list(x.shape) if s[dim] > n: index = [slice(None)] * len(s) index[dim] = slice(0, n) x = x[tuple(index)] del index else: s[dim] = n - s[dim] z = tf.zeros(s, x.dtype) x = tf.concat([x, z], dim) del s operation_name = f"{n} points FFT at dim {dim} with {norm} normalization" if dim != -1 or dim != len(x.shape) - 1: permute = [i for i in range(len(x.shape))] permute[dim], permute[-1] = permute[-1], permute[dim] x = tf.transpose(x, permute) ret = tf.signal.fft(x, operation_name) ret = tf.transpose(ret, permute) del permute else: ret = tf.signal.fft(x, operation_name) ret = _fft_norm(ret, dim, norm=norm) return ret @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def dropout( x: Union[tf.Tensor, tf.Variable], prob: float, /, *, scale: bool = True, dtype: tf.DType = None, training: bool = True, seed: Optional[int] = None, noise_shape: Optional[Sequence[int]] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: x = ivy.astype(x, dtype) if dtype and x.dtype != dtype else x if prob == 0 or not training: return x res = tf.nn.dropout(x, prob, noise_shape=noise_shape, seed=seed) res = tf.multiply(res, (1.0 - prob)) if not scale else res return res def dropout1d( x: Union[tf.Tensor, tf.Variable], prob: float, /, *, training: bool = True, data_format: str = "NWC", out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if training: is_batched = len(x.shape) == 3 if data_format == "NCW": perm = (0, 2, 1) if is_batched else (1, 0) x = tf.transpose(x, perm) res = tf.nn.dropout(x, prob) if data_format == "NCW": res = tf.transpose(res, perm) else: res = x return res def dropout2d( x: Union[tf.Tensor, tf.Variable], prob: float, /, *, training: bool = True, data_format: str = "NHWC", out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if training: is_batched = len(x.shape) == 4 if data_format == "NCHW": perm = (0, 2, 3, 1) if is_batched else (1, 2, 0) x = tf.transpose(x, perm) res = tf.nn.dropout(x, prob) if data_format == "NCHW": perm = (0, 3, 1, 2) if is_batched else (2, 0, 1) res = tf.transpose(res, perm) else: res = x return res def dropout3d( x: Union[tf.Tensor, tf.Variable], prob: float, /, *, training: bool = True, data_format: str = "NDHWC", out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if training: is_batched = len(x.shape) == 5 if data_format == "NCDHW": perm = (0, 2, 3, 4, 1) if is_batched else (1, 2, 3, 0) x = tf.transpose(x, perm) res = tf.nn.dropout(x, prob) if data_format == "NCDHW": perm = (0, 4, 1, 2, 3) if is_batched else (3, 0, 1, 2) res = tf.transpose(res, perm) else: res = x return res def ifft( x: Union[tf.Tensor, tf.Variable], dim: int, *, norm: str = "backward", n: Optional[Union[int, Tuple[int]]] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if not isinstance(dim, int): raise ivy.utils.exceptions.IvyError( f"Expecting <class 'int'> instead of {type(dim)}" ) if n is None: n = x.shape[dim] if n < -len(x.shape): raise ivy.utils.exceptions.IvyError( f"Invalid dim {dim}, expecting ranging" " from {-len(x.shape)} to {len(x.shape)-1} " ) if not isinstance(n, int): raise ivy.utils.exceptions.IvyError( f"Expecting <class 'int'> instead of {type(n)}" ) if n <= 1: raise ivy.utils.exceptions.IvyError( f"Invalid data points {n}, expecting more than 1" ) if norm not in ["backward", "ortho", "forward"]: raise ivy.utils.exceptions.IvyError(f"Unrecognized normalization mode {norm}") if x.shape[dim] != n: s = list(x.shape) if s[dim] > n: index = [slice(None)] * len(s) index[dim] = slice(0, n) x = x[tuple(index)] del index else: s[dim] = n - s[dim] z = tf.zeros(s, x.dtype) x = tf.concat([x, z], axis=dim) del s operation_name = f"{n} points FFT at dim {dim} with {norm} normalization" if dim != -1 or dim != len(x.shape) - 1: permute = [i for i in range(len(x.shape))] permute[dim], permute[-1] = permute[-1], permute[dim] x = tf.transpose(x, permute) ret = tf.signal.ifft(x, operation_name) ret = tf.transpose(ret, permute) del permute else: ret = tf.signal.ifft(x, operation_name) ret = _ifft_norm(ret, dim, norm=norm) return ret @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def embedding( weights: Union[tf.Tensor, tf.Variable], indices: Union[tf.Tensor, tf.Variable], /, *, max_norm: Optional[float] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: ivy.utils.assertions.check_equal( len(weights.shape), 2, message="weights must be 2-d", as_array=False ) return tf.nn.embedding_lookup(weights, indices, max_norm=max_norm) def interpolate( x: Union[tf.Tensor, tf.Variable], size: Union[Sequence[int], int], /, *, mode: Literal[ "linear", "bilinear", "trilinear", "nd", "nearest", "area", "nearest_exact", "tf_area", "tf_bicubic", "bicubic", "mitchellcubic", "lanczos3", "lanczos5", "gaussian", ] = "linear", scale_factor: Optional[Union[Sequence[int], int]] = None, recompute_scale_factor: Optional[bool] = None, align_corners: bool = False, antialias: bool = False, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ): input_size = ivy.shape(x)[2:] dims = len(input_size) size, _ = _get_size(scale_factor, size, dims, input_size) if all(a == b for a, b in zip(size, input_size)): ret = x else: remove_dim = False if mode in ["linear", "tf_area", "lanczos3", "lanczos5", "nearest-exact"]: if dims == 1: size = (1,) + tuple(size) x = tf.expand_dims(x, axis=-2) dims = 2 remove_dim = True mode = ( "bilinear" if mode == "linear" else ( "area" if mode == "tf_area" else "nearest" if mode == "nearest-exact" else mode ) ) if mode == "tf_bicubic": mode = "bicubic" x = tf.transpose(x, (0, *range(2, dims + 2), 1)) ret = tf.transpose( tf.cast( tf.image.resize(x, size=size, method=mode, antialias=antialias), x.dtype ), (0, dims + 1, *range(1, dims + 1)), ) if remove_dim: ret = tf.squeeze(ret, axis=-2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret interpolate.partial_mixed_handler = ( lambda x, *args, mode="linear", recompute_scale_factor=None, align_corners=None, **kwargs: len( # noqa: E501 x.shape ) < 4 and mode not in ["nearest", "area", "bicubic", "nd"] and not align_corners and recompute_scale_factor ) def _fft2_norm( x: Union[tf.Tensor, tf.Variable], s: Optional[Sequence[int]] = None, dim: Sequence[int] = (-2, -1), norm: str = "backward", ): n = tf.constant(s[0] * s[1], dtype=x.dtype) if norm == "backward": return x elif norm == "ortho": return x / tf.sqrt(n) elif norm == "forward": return x / n else: raise ivy.utils.exceptions.IvyError(f"Unrecognized normalization mode {norm}") def trans_x_to_s( x: Union[tf.Tensor, tf.Variable], s: Optional[Sequence[int]] = None, dim: Sequence[int] = (-2, -1), ) -> Union[tf.Tensor, tf.Variable]: """Change the shape of the input array x to the desired output shape s.""" if x.dtype not in [tf.complex128, tf.complex64]: x = tf.cast(x, tf.float32) x_shape = x.shape if dim in [(-1, -2), (1, 0)]: s = (s[1], s[0]) if s[0] >= x_shape[0] and s[1] >= x_shape[1]: paddings = tf.constant([[0, s[0] - x_shape[0]], [0, s[1] - x_shape[1]]]) x_new = tf.pad(x, paddings=paddings) elif (s[0] <= x_shape[0] or s[1] <= x_shape[1]) and min(s) > min(x_shape): x_new = x[: s[0], : s[1]] if s[0] != x_new.shape[0]: size = s[0] - x_new.shape[0] z = tf.zeros((size, s[1]), dtype=x.dtype) x_new = tf.concat([x_new, z], 0) elif s[1] != x_new.shape[1]: size = s[1] - x_new.shape[1] z = tf.zeros((s[0], size), dtype=x.dtype) x_new = tf.concat([x_new, z], 1) elif (s[0] >= x_shape[0] and s[1] <= x_shape[1]) and min(s) <= min(x_shape): x_new = x[: s[0], : s[1]] size = s[0] - x_new.shape[0] z = tf.zeros((size, s[1]), dtype=x.dtype) x_new = tf.concat([x_new, z], 0) elif (s[0] < x_shape[0] and s[1] > x_shape[1]) and min(s) == min(x_shape): x_new = x[: s[0], : s[1]] size = s[1] - x_new.shape[1] z = tf.zeros((s[0], size), dtype=x.dtype) x_new = tf.concat([x_new, z], axis=1) else: x_new = x[: s[0], : s[1]] return x_new def fft2_operations(x, rank): if x.shape.rank == 1: x = tf.signal.fft(x) elif x.shape.rank == 2: x = tf.switch_case( rank - 1, {0: lambda: tf.signal.fft(x), 1: lambda: tf.signal.fft2d(x)} ) else: x = tf.switch_case( rank - 1, { 0: lambda: tf.signal.fft(x), 1: lambda: tf.signal.fft2d(x), 2: lambda: tf.signal.fft3d(x), }, ) return x def _fft2_helper(x, shape, axes): x = fft_input_validation(tf.convert_to_tensor(x)) input_shape = x.shape input_rank_tensor = tf.rank(x) shape_, axes_ = shape_and_axes_validation(shape, axes, input_rank_tensor) axes = axes_initialization(shape, axes, input_shape, input_rank_tensor) perform_padding, perform_transpose = perform_actions_initialization( shape, axes, input_shape, input_rank_tensor ) shape = shape_initialization(shape, axes, x) rank = rank_initialization(axes) x = get_x_after_pad_or_crop(x, shape, axes, perform_padding, input_rank_tensor) perm = get_perm(input_rank_tensor, axes) x = transpose_x(x, perm, perform_transpose) x = fft2_operations(x, rank) x = transpose_x(x, tf.argsort(perm), perform_transpose) x = tf.ensure_shape(x, static_output_shape(input_shape, shape_, axes_)) return x @with_supported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def fft2( x: Union[tf.Tensor, tf.Variable], *, s: Optional[Sequence[int]] = None, dim: Sequence[int] = (-2, -1), norm: str = "backward", out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if s is None: s = (x.shape[dim[0]], x.shape[dim[1]]) if len(x.shape) > 2: result = _fft2_helper(x, s, dim) else: x_new = trans_x_to_s(x, s, dim) x_complex = tf.cast(x_new, tf.complex128) result = tf.signal.fft2d(x_complex) result = _fft2_norm(result, s, dim, norm) if x.dtype == tf.complex64: result = tf.cast(result, dtype=tf.complex128) return result # --- IFFTN --- # def fft_input_validation(x): if not x.dtype.is_complex: raise TypeError( f"Invalid FFT input: `x` must be of a complex dtype. Received: {x.dtype}" ) return x def shape_and_axes_validation(shape, axes, input_rank_tensor): if shape is not None: shape = tf.convert_to_tensor(shape, dtype=tf.dtypes.int32) checks_shape = [ tf.debugging.assert_less_equal( tf.size(shape), input_rank_tensor, message=( "Argument `shape` cannot have length greater than the rank of `x`." f" Received: {shape}" ), ) ] with tf.control_dependencies(checks_shape): shape = tf.identity(shape) if axes is not None: axes = tf.convert_to_tensor(axes, dtype=tf.dtypes.int32) checks_axes = [ tf.debugging.assert_less_equal( tf.size(axes), input_rank_tensor, message=( "Argument `axes` cannot have length greater than the rank of `x`." f" Received: {axes}" ), ), tf.debugging.assert_less( axes, input_rank_tensor, message=f"Argument `axes` contains invalid indices. Received: {axes}", ), tf.debugging.assert_greater_equal( axes, -input_rank_tensor, message=f"Argument `axes` contains invalid indices. Received: {axes}", ), ] with tf.control_dependencies(checks_axes): axes = tf.identity(axes) if shape is not None and axes is not None: checks_shape_axes = [ tf.debugging.assert_equal( tf.size(shape), tf.size(axes), message=( "Arguments `shape` and `axes` must have equal length. Received:" f" {shape}, {axes}" ), ) ] with tf.control_dependencies(checks_shape_axes): shape, axes = tf.identity_n([shape, axes]) return shape, axes def axes_initialization(shape, axes, input_shape, input_rank_tensor): if axes is None: axes = ( tf.range(-tf.size(input_shape), 0) if shape is None else tf.range(-tf.size(shape), 0) ) axes = tf.where(tf.math.less(axes, 0), axes + input_rank_tensor, axes) return axes def perform_actions_initialization(shape, axes, input_shape, input_rank_tensor): perform_padding = shape is not None perform_transpose = tf.math.logical_not( tf.math.reduce_all( tf.math.equal( axes, tf.range(input_rank_tensor - tf.size(axes), input_rank_tensor) ) ) ) return perform_padding, perform_transpose def shape_initialization(shape, axes, x): if shape is None: shape = tf.gather(tf.shape(x), axes, axis=0) return shape def rank_initialization(axes): rank = tf.size(axes) with tf.control_dependencies( [ tf.debugging.assert_less_equal( rank, 3, message="N-D FFT supported only up to 3-D." ) ] ): rank = tf.identity(rank) return rank def norm_initialization(norm, shape, x): if norm == "backward": norm_factor = tf.constant(1, x.dtype) elif norm in ["forward", "ortho"]: norm_factor = tf.cast(tf.math.reduce_prod(shape), x.dtype) if norm == "ortho": norm_factor = tf.math.sqrt(norm_factor) return norm_factor def get_x_after_pad_or_crop(x, shape, axes, perform_padding, input_rank_tensor): if perform_padding: pad_shape = -tf.ones([input_rank_tensor], dtype=tf.int32) pad_shape = tf.tensor_scatter_nd_update( pad_shape, tf.expand_dims(axes, -1), shape ) x = _right_pad_or_crop(x, pad_shape) return x def get_perm(input_rank_tensor, axes): all_dims = tf.range(input_rank_tensor, dtype=tf.dtypes.int32) perm = tf.concat( [ tf.boolean_mask( all_dims, tf.foldl( lambda acc, elem: tf.math.logical_and( acc, tf.math.not_equal(all_dims, elem) ), axes, initializer=tf.fill(all_dims.shape, True), ), ), axes, ], 0, ) return perm def ifft_operations(x, rank, norm_factor): if x.shape.rank == 1: x = tf.signal.ifft(x) elif x.shape.rank == 2: x = tf.switch_case( rank - 1, {0: lambda: tf.signal.ifft(x), 1: lambda: tf.signal.ifft2d(x)} ) else: x = tf.switch_case( rank - 1, { 0: lambda: tf.signal.ifft(x), 1: lambda: tf.signal.ifft2d(x), 2: lambda: tf.signal.ifft3d(x), }, ) x = x * norm_factor return x def transpose_x(x, perm, perform_transpose): x = tf.cond(perform_transpose, lambda: tf.transpose(x, perm=perm), lambda: x) return x def static_output_shape(input_shape, shape, axes): output_shape = input_shape.as_list() if shape is not None: if axes is None: axes = list(range(-len(shape), 0)) if isinstance(shape, tf.Tensor): if isinstance(axes, tf.Tensor): output_shape = [None] * len(output_shape) else: for ax in axes: output_shape[ax] = None else: for idx, ax in enumerate(axes): output_shape[ax] = shape[idx] return tf.TensorShape(output_shape) def _right_pad_or_crop(tensor, shape): input_shape = tf.shape(tensor) shape = tf.convert_to_tensor(shape, dtype=tf.dtypes.int32) with tf.control_dependencies( [tf.debugging.assert_less_equal(tf.size(shape), tf.size(input_shape))] ): shape = tf.identity(shape) shape = tf.concat([input_shape[: tf.size(input_shape) - tf.size(shape)], shape], 0) pad_sizes = tf.math.maximum(shape - input_shape, 0) pad_sizes = tf.expand_dims(pad_sizes, -1) pad_sizes = tf.concat( [tf.zeros(pad_sizes.shape, dtype=tf.dtypes.int32), pad_sizes], -1 ) tensor = tf.pad(tensor, pad_sizes, constant_values=0) crop_tensor = tf.zeros(shape.shape, dtype=tf.dtypes.int32) tensor = tf.slice(tensor, crop_tensor, shape) return tensor def _ifftn_helper(x, shape, axes, norm): x = fft_input_validation(tf.convert_to_tensor(x)) input_shape = x.shape input_rank_tensor = tf.rank(x) shape_, axes_ = shape_and_axes_validation(shape, axes, input_rank_tensor) axes = axes_initialization(shape, axes, input_shape, input_rank_tensor) perform_padding, perform_transpose = perform_actions_initialization( shape, axes, input_shape, input_rank_tensor ) shape = shape_initialization(shape, axes, x) rank = rank_initialization(axes) norm_factor = norm_initialization(norm, shape, x) x = get_x_after_pad_or_crop(x, shape, axes, perform_padding, input_rank_tensor) perm = get_perm(input_rank_tensor, axes) x = transpose_x(x, perm, perform_transpose) x = ifft_operations(x, rank, norm_factor) x = transpose_x(x, tf.argsort(perm), perform_transpose) x = tf.ensure_shape(x, static_output_shape(input_shape, shape_, axes_)) return x def ifftn( x: Union[tf.Tensor, tf.Variable], s: Optional[Union[int, Tuple[int]]] = None, axes: Optional[Union[int, Tuple[int]]] = None, *, norm: Optional[str] = "backward", out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: result = _ifftn_helper(x, s, axes, norm) if out is not None: out = result return out else: return result """ RFFTN Function """ def rfft_input_validation(x): if not x.dtype.is_floating: raise TypeError( f"Invalid FFT input: `x` must be of a real dtype. Received: {x.dtype}" ) return x def rfft_operations(x, rank, norm_factor): if x.shape.rank == 1: x = tf.signal.rfft(x) elif x.shape.rank == 2: x = tf.switch_case( rank - 1, {0: lambda: tf.signal.rfft(x), 1: lambda: tf.signal.rfft2d(x)} ) else: x = tf.switch_case( rank - 1, { 0: lambda: tf.signal.rfft(x), 1: lambda: tf.signal.rfft2d(x), 2: lambda: tf.signal.rfft3d(x), }, ) norm_factor = tf.cast(norm_factor, tf.complex128) x = tf.cast(x, tf.complex128) x = x / norm_factor return x def _rfftn_helper(x, shape, axes, norm): x = rfft_input_validation(tf.convert_to_tensor(x)) input_shape = x.shape input_rank_tensor = tf.rank(x) shape_, axes_ = shape_and_axes_validation(shape, axes, input_rank_tensor) axes = axes_initialization(shape, axes, input_shape, input_rank_tensor) perform_padding, perform_transpose = perform_actions_initialization( shape, axes, input_shape, input_rank_tensor ) shape = shape_initialization(shape, axes, x) rank = rank_initialization(axes) norm_factor = norm_initialization(norm, shape, x) x = get_x_after_pad_or_crop(x, shape, axes, perform_padding, input_rank_tensor) perm = get_perm(input_rank_tensor, axes) x = transpose_x(x, perm, perform_transpose) x = rfft_operations(x, rank, norm_factor) x = transpose_x(x, tf.argsort(perm), perform_transpose) x = tf.ensure_shape(x, static_output_shape(input_shape, shape_, axes_)) return x def rfft( x: Union[tf.Tensor, tf.Variable], /, *, n: Optional[int] = None, axis: int = -1, norm: Literal["backward", "ortho", "forward"] = "backward", out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: # type cast if x.dtype in [tf.complex64, tf.complex128]: x = tf.math.real(x) if x.dtype not in [tf.float32, tf.float64]: x = tf.cast(x, tf.float32) # axis check if not isinstance(axis, int): raise ivy.utils.exceptions.IvyError( f"Expecting <class 'int'> instead of {type(axis)}" ) # axis normalization naxis = axis if axis < 0: naxis = x.ndim + axis if naxis < 0 or naxis >= x.ndim: raise ivy.utils.exceptions.IvyError( f"Axis {axis} is out of bounds for array of dimension {x.ndim}" ) axis = naxis # n checks if n is None: n = x.shape[axis] if not isinstance(n, int): raise ivy.utils.exceptions.IvyError( f"Expecting <class 'int'> instead of {type(n)}" ) if n < 1: raise ivy.utils.exceptions.IvyError( f"Invalid number of FFT data points ({n}) specified." ) # norm check & value if norm == "backward": inv_norm = tf.constant(1, dtype=x.dtype) elif norm in ["forward", "ortho"]: inv_norm = tf.cast(tf.math.reduce_prod(n), dtype=x.dtype) if norm == "ortho": inv_norm = tf.math.sqrt(inv_norm) else: raise ivy.utils.exceptions.IvyError( f'Invalid norm value {norm}; should be "backward", "ortho" or "forward".' ) fct = 1 / inv_norm if x.shape[axis] != n: s = list(x.shape) if s[axis] > n: index = [slice(None)] * len(s) index[axis] = slice(0, n) x = x[tuple(index)] else: s[axis] = n - s[axis] z = tf.zeros(s, x.dtype) x = tf.concat([x, z], axis=axis) if axis == x.ndim - 1: ret = tf.signal.rfft(x, fft_length=None, name=None) else: x = tf.experimental.numpy.swapaxes(x, axis, -1) ret = tf.signal.rfft(x, fft_length=None, name=None) ret = tf.experimental.numpy.swapaxes(ret, axis, -1) ret *= tf.cast(fct, dtype=ret.dtype) if x.dtype != tf.float64: ret = tf.cast(ret, dtype=tf.complex64) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret @with_supported_device_and_dtypes( { "2.5.0 and above": { "cpu": ( "float32", "float64", "complex128", ) } }, backend_version, ) def rfftn( x: Union[tf.Tensor, tf.Variable], s: Optional[Union[int, Tuple[int]]] = None, axes: Optional[Union[int, Tuple[int]]] = None, *, norm: str = "backward", out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: result = _rfftn_helper(x, s, axes, norm) if out is not None: out = tf.cast(result, tf.complex128) # out = result return out else: # return result return tf.cast(result, tf.complex128) # stft @with_supported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def stft( signals: Union[tf.Tensor, tf.Variable], frame_length: int, frame_step: int, /, *, fft_length: Optional[int] = None, window_fn: Optional[Callable] = None, pad_end: Optional[bool] = False, name: Optional[str] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if not isinstance(frame_length, int): raise ivy.utils.exceptions.IvyError( f"Expecting <class 'int'> instead of {type(frame_length)}" ) if frame_length < 1: raise ivy.utils.exceptions.IvyError( f"Invalid data points {frame_length}, expecting frame_length larger than or" " equal to 1" ) if not isinstance(frame_step, int): raise ivy.utils.exceptions.IvyError( f"Expecting <class 'int'> instead of {type(frame_step)}" ) if frame_step < 1: raise ivy.utils.exceptions.IvyError( f"Invalid data points {frame_length}, expecting frame_length larger than or" " equal to 1" ) if fft_length is not None: if not isinstance(fft_length, int): raise ivy.utils.exceptions.IvyError( f"Expecting <class 'int'> instead of {type(fft_length)}" ) if fft_length < 1: raise ivy.utils.exceptions.IvyError( f"Invalid data points {frame_length}, expecting frame_length larger" " than or equal to 1" ) result = tf.signal.stft( signals, frame_length, frame_step, fft_length=fft_length, window_fn=window_fn, pad_end=pad_end, name=name, ) if out is not None: return out else: return result def _to_4d(x): t = x # Start with the original tensor while len(t.shape) < 4: # Continue expanding dimensions until 4D t = tf.expand_dims(t, axis=0) return t def sliding_window( input: Union[tf.Tensor, tf.Variable], kernel_size: Union[int, Tuple[int, int]], /, *, stride: Union[int, Tuple[int, int]] = 1, dilation: Union[int, Tuple[int, int]] = 1, padding: Union[str, int, Tuple[int, int]] = "VALID", ) -> Union[tf.Tensor, tf.Variable]: if len(input.shape) != 4: input = _to_4d(input) input = tf.transpose(input, (0, 2, 3, 1)) kernel_size = ( [1] + ([kernel_size] * 2 if isinstance(kernel_size, int) else list(kernel_size)) + [1] ) if len(kernel_size) < 4: kernel_size.append(1) stride = [1] + ([stride] * 2 if isinstance(stride, int) else list(stride)) + [1] if len(stride) < 4: stride.append(1) dilation = ( [1] + ([dilation] * 2 if isinstance(dilation, int) else list(dilation)) + [1] ) if len(dilation) < 4: dilation.append(1) padding = [padding] * 2 if isinstance(padding, int) else padding if isinstance(padding, str) and padding.upper() in ["VALID", "SAME"]: padding = padding elif padding[0] == padding[1] == 0: padding = "VALID" elif padding[0] == padding[1] != 0: padding = "SAME" else: raise ivy.utils.exceptions.IvyError( f"Cannot convert padding sequence {padding} to TensorFlow padding mode" ) return tf.image.extract_patches( images=input, sizes=kernel_size, strides=stride, rates=dilation, padding=padding ) def rnn( step_function, inputs, initial_states, /, *, go_backwards: bool = False, mask: Optional[Union[tf.Tensor, tf.Variable]] = None, constants: Optional[Union[tf.Tensor, tf.Variable]] = None, unroll: bool = False, input_length: Optional[int] = None, time_major: bool = False, zero_output_for_mask: bool = False, return_all_outputs: bool = True, ): step_function = inputs_to_ivy_arrays(output_to_native_arrays(step_function)) return tf.keras.backend.rnn( step_function, inputs, initial_states, go_backwards=go_backwards, mask=mask, constants=constants, unroll=unroll, input_length=input_length, time_major=time_major, zero_output_for_mask=zero_output_for_mask, return_all_outputs=return_all_outputs, )
ivy/ivy/functional/backends/tensorflow/experimental/layers.py/0
{ "file_path": "ivy/ivy/functional/backends/tensorflow/experimental/layers.py", "repo_id": "ivy", "token_count": 27661 }
23
# global import math from numbers import Number from typing import Union, Tuple, Optional, List, Sequence import numpy as np import tensorflow as tf # local import ivy # noinspection PyProtectedMember from ivy.func_wrapper import with_unsupported_dtypes from ivy.functional.ivy.manipulation import _calculate_out_shape from . import backend_version def _reshape_fortran_tf(x, shape): if len(x.shape) > 0: x = tf.transpose(x) return tf.transpose(tf.reshape(x, shape[::-1])) # Array API Standard # # -------------------# def concat( xs: Union[Tuple[tf.Tensor, ...], List[tf.Tensor]], /, *, axis: int = 0, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if axis is not None: try: return tf.concat(xs, axis) except tf.errors.InvalidArgumentError as error: if "(zero-based) was expected to be" in error.message: highest_dtype = xs[0].dtype for i in xs: highest_dtype = ivy.promote_types(highest_dtype, i.dtype) highest_dtype = ivy.as_native_dtype(highest_dtype) return tf.concat( [ tf.cast(x, highest_dtype) if x.dtype != highest_dtype else x for x in xs ], axis, ) else: raise return concat([tf.reshape(x, -1) for x in xs], axis=0) def expand_dims( x: Union[tf.Tensor, tf.Variable], /, *, copy: Optional[bool] = None, axis: Union[int, Sequence[int]] = 0, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: try: out_shape = _calculate_out_shape(axis, x.shape) ret = tf.reshape(x, shape=out_shape) return ret except (tf.errors.InvalidArgumentError, np.AxisError) as error: raise ivy.utils.exceptions.IvyIndexError(error) from error def flip( x: Union[tf.Tensor, tf.Variable], /, *, copy: Optional[bool] = None, axis: Optional[Union[int, Sequence[int]]] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: num_dims = len(x.shape) if not num_dims: ret = x else: if axis is None: new_axis = list(range(num_dims)) else: new_axis = axis if isinstance(new_axis, int): new_axis = [new_axis] else: new_axis = new_axis new_axis = [item + num_dims if item < 0 else item for item in new_axis] ret = tf.reverse(x, new_axis) return ret def permute_dims( x: Union[tf.Tensor, tf.Variable], /, axes: Tuple[int, ...], *, copy: Optional[bool] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.transpose(x, perm=axes) @with_unsupported_dtypes({"2.15.0 and below": ("bool",)}, backend_version) def reshape( x: Union[tf.Tensor, tf.Variable], /, shape: Union[ivy.NativeShape, Sequence[int]], *, copy: Optional[bool] = None, order: str = "C", allowzero: bool = True, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: ivy.utils.assertions.check_elem_in_list(order, ["C", "F"]) if not allowzero: shape = [ new_s if con else old_s for new_s, con, old_s in zip(shape, tf.constant(shape) != 0, x.shape) ] if order == "F": return _reshape_fortran_tf(x, shape) return tf.reshape(x, shape) def roll( x: Union[tf.Tensor, tf.Variable], /, shift: Union[int, Sequence[int]], *, axis: Optional[Union[int, Sequence[int]]] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if axis is None: originalShape = x.shape axis = 0 x = tf.reshape(x, [-1]) roll = tf.roll(x, shift, axis) ret = tf.reshape(roll, originalShape) else: if isinstance(shift, int) and (type(axis) in [list, tuple]): shift = [shift for _ in range(len(axis))] ret = tf.roll(x, shift, axis) return ret def squeeze( x: Union[tf.Tensor, tf.Variable], /, *, axis: Optional[Union[int, Sequence[int]]] = None, copy: Optional[bool] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if isinstance(axis, int): if ivy.any(x.shape[axis] > 1): raise ValueError(f"{x.shape[axis]} must be lesser than or equal to 1") ret = tf.squeeze(x, axis) elif axis is None: ret = tf.squeeze(x) else: if isinstance(axis, tuple): axis = list(axis) normalise_axis = [ (len(x.shape) - abs(element)) if element < 0 else element for element in axis ] normalise_axis.sort() axis_updated_after_squeeze = [ dim - key for (key, dim) in enumerate(normalise_axis) ] for i in axis_updated_after_squeeze: if x.shape[i] > 1: raise ValueError( "Expected dimension of size 1, but found dimension size" f" {x.shape[i]}" ) else: x = tf.squeeze(x, i) ret = x return ret @with_unsupported_dtypes({"2.15.0 and below": ("bfloat16",)}, backend_version) def stack( arrays: Union[Tuple[tf.Tensor], List[tf.Tensor]], /, *, axis: int = 0, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: try: return tf.experimental.numpy.stack(arrays, axis) except ValueError as e: raise ivy.utils.exceptions.IvyIndexError(e) from e # Extra # # ------# def split( x: Union[tf.Tensor, tf.Variable], /, *, copy: Optional[bool] = None, num_or_size_splits: Optional[ Union[int, Sequence[int], Union[tf.Tensor, tf.Variable]] ] = None, axis: int = 0, with_remainder: bool = False, ) -> Union[tf.Tensor, tf.Variable]: if x.shape == (): if num_or_size_splits is not None and num_or_size_splits != 1: raise ivy.utils.exceptions.IvyException( "input array had no shape, but num_sections specified was" f" {num_or_size_splits}" ) return [x] if num_or_size_splits is None: dim_size = tf.shape(x)[axis] num_or_size_splits = int(dim_size) if isinstance(num_or_size_splits, (tf.Tensor, tf.Variable)): num_or_size_splits = tf.cast(num_or_size_splits, tf.int32) elif isinstance(num_or_size_splits, int) and with_remainder: num_chunks = x.shape[axis] / num_or_size_splits num_chunks_int = math.floor(num_chunks) remainder = num_chunks - num_chunks_int if remainder != 0: num_or_size_splits = [num_or_size_splits] * num_chunks_int + [ int(remainder * num_or_size_splits) ] return tf.split(x, num_or_size_splits, axis) def repeat( x: Union[tf.Tensor, tf.Variable], /, repeats: Union[int, List[int]], *, axis: Optional[int] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: return tf.repeat(x, repeats, axis) @with_unsupported_dtypes( { "2.15.0 and below": ( "uint8", "uint16", "uint32", "int8", "int16", ) }, backend_version, ) def tile( x: Union[tf.Tensor, tf.Variable], /, repeats: Sequence[int], *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if x.shape == (): x = tf.reshape(x, (-1,)) if isinstance(repeats, Number): repeats = [repeats] if isinstance(repeats, tf.Tensor) and repeats.shape == (): repeats = tf.reshape(repeats, (-1,)) # code to unify behaviour with numpy and torch if len(x.shape) < len(repeats): while len(x.shape) != len(repeats): x = tf.expand_dims(x, 0) elif len(x.shape) > len(repeats): repeats = list(repeats) while len(x.shape) != len(repeats): repeats = [1] + repeats # TODO remove the unifying behaviour code if tensorflow handles this # https://github.com/tensorflow/tensorflow/issues/58002 return tf.tile(x, repeats) def constant_pad( x, /, pad_width, *, value=0, out: Optional[Union[tf.Tensor, tf.Variable]] = None ): if x.shape == (): x = tf.reshape(x, (-1,)) return tf.pad(x, pad_width, constant_values=value) def zero_pad(x, /, pad_width, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None): if x.shape == (): x = tf.reshape(x, (-1,)) return tf.pad(x, pad_width) def swapaxes( x, axis0, axis1, /, *, copy: Optional[bool] = None, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ): x_shape = x.shape num_dims = len(x_shape) axis0 %= num_dims axis1 %= num_dims config = list(range(num_dims)) config.pop(axis0) config.insert(axis0, axis1) config.pop(axis1) config.insert(axis1, axis0) return tf.transpose(x, config) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, backend_version) def clip( x: Union[tf.Tensor, tf.Variable], /, x_min: Optional[Union[Number, tf.Tensor, tf.Variable]] = None, x_max: Optional[Union[Number, tf.Tensor, tf.Variable]] = None, *, out: Optional[Union[tf.Tensor, tf.Variable]] = None, ) -> Union[tf.Tensor, tf.Variable]: if x_min is None and x_max is None: raise ValueError("At least one of the x_min or x_max must be provided") promoted_type = x.dtype if x_min is not None: if not hasattr(x_min, "dtype"): x_min = ivy.array(x_min).data promoted_type = ivy.as_native_dtype(ivy.promote_types(x.dtype, x_min.dtype)) if x_max is not None: if not hasattr(x_max, "dtype"): x_max = ivy.array(x_max).data promoted_type = ivy.as_native_dtype( ivy.promote_types(promoted_type, x_max.dtype) ) x_max = tf.cast(x_max, promoted_type) x = tf.cast(x, promoted_type) if x_min is not None: x_min = tf.cast(x_min, promoted_type) cond = True if x_min is not None and x_max is not None: if tf.math.reduce_any(tf.experimental.numpy.greater(x_min, x_max)): cond = False if cond: return tf.experimental.numpy.clip(x, x_min, x_max) else: return tf.experimental.numpy.minimum( x_max, tf.experimental.numpy.maximum(x, x_min) ) def unstack( x: Union[tf.Tensor, tf.Variable], /, *, copy: Optional[bool] = None, axis: int = 0, keepdims: bool = False, ) -> List[tf.Tensor]: if x.shape == (): return [x] ret = tf.unstack(x, axis=axis) if keepdims: return [tf.expand_dims(r, axis) for r in ret] return ret
ivy/ivy/functional/backends/tensorflow/manipulation.py/0
{ "file_path": "ivy/ivy/functional/backends/tensorflow/manipulation.py", "repo_id": "ivy", "token_count": 5311 }
24
# global import copy from numbers import Number from typing import Union, List, Optional, Sequence, Tuple import numpy as np import torch from torch import Tensor # local import ivy from ivy.func_wrapper import ( with_unsupported_dtypes, with_unsupported_device_and_dtypes, ) from ivy.functional.ivy.creation import ( _asarray_to_native_arrays_and_back, _asarray_infer_device, _asarray_infer_dtype, _asarray_handle_nestable, NestedSequence, SupportsBufferProtocol, _asarray_inputs_to_native_shapes, _remove_np_bfloat16, ) from . import backend_version # noinspection PyProtectedMember # Array API Standard # # -------------------# def _differentiable_linspace(start, stop, num, *, device, dtype=None): if num == 1: return torch.unsqueeze(start, 0) n_m_1 = num - 1 increment = (stop - start) / n_m_1 increment_tiled = increment.repeat(n_m_1) increments = increment_tiled * torch.linspace( 1, n_m_1, n_m_1, device=device, dtype=dtype ) res = torch.cat( (torch.unsqueeze(torch.tensor(start, dtype=dtype), 0), start + increments), 0 ) return res @with_unsupported_dtypes({"2.2 and below": ("complex",)}, backend_version) def arange( start: float, /, stop: Optional[float] = None, step: float = 1, *, dtype: Optional[Union[ivy.Dtype, torch.dtype]] = None, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if stop is None: stop = start start = 0 if (step > 0 and start > stop) or (step < 0 and start < stop): if isinstance(stop, float): stop = float(start) else: stop = start if dtype is None: if isinstance(start, int) and isinstance(stop, int) and isinstance(step, int): return torch.arange(start, stop, step, dtype=torch.int64, device=device).to( torch.int32 ) else: return torch.arange(start, stop, step, device=device) else: dtype = ivy.as_native_dtype(ivy.default_dtype(dtype=dtype)) return torch.arange(start, stop, step, dtype=dtype, device=device) arange.support_native_out = True def _stack_tensors(x, dtype): if isinstance(x, (list, tuple)) and len(x) != 0 and isinstance(x[0], (list, tuple)): for i, item in enumerate(x): x[i] = _stack_tensors(item, dtype) x = torch.stack(x) else: if isinstance(x, (list, tuple)): if isinstance(x[0], torch.Tensor): x = torch.stack([torch.as_tensor(i, dtype=dtype) for i in x]) else: x = torch.as_tensor(x, dtype=dtype) return x @with_unsupported_dtypes({"2.2 and below": ("bfloat16",)}, backend_version) @_asarray_to_native_arrays_and_back @_asarray_infer_device @_asarray_handle_nestable @_asarray_inputs_to_native_shapes @_asarray_infer_dtype def asarray( obj: Union[ torch.Tensor, np.ndarray, torch.Size, bool, int, float, NestedSequence, SupportsBufferProtocol, ], /, *, copy: Optional[bool] = None, dtype: Optional[Union[ivy.Dtype, torch.dtype]] = None, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: obj = ivy.nested_map(_remove_np_bfloat16, obj, shallow=False) if isinstance(obj, Sequence) and len(obj) != 0: contain_tensor = ivy.nested_any(obj, lambda x: isinstance(x, torch.Tensor)) # if `obj` is a list of specifically tensors or # a multidimensional list which contains a tensor if contain_tensor: ret = _stack_tensors(obj, dtype).to(device) return ret.clone().detach() if copy else ret try: ret = torch.as_tensor(obj, dtype=dtype, device=device) except ValueError as e: if "At least one stride in the given numpy array is negative" in str(e): ret = torch.as_tensor(obj.copy(), dtype=dtype, device=device) else: raise return ret.clone().detach() if copy else ret def empty( shape: Union[ivy.NativeShape, Sequence[int]], *, dtype: torch.dtype, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.empty( shape, dtype=dtype, device=device, out=out, ) empty.support_native_out = True def empty_like( x: torch.Tensor, /, *, dtype: torch.dtype, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.empty_like(x, dtype=dtype, device=device) @with_unsupported_dtypes({"2.2 and below": ("bfloat16",)}, backend_version) def eye( n_rows: int, n_cols: Optional[int] = None, /, *, k: int = 0, batch_shape: Optional[Union[int, Sequence[int]]] = None, dtype: torch.dtype, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if n_cols is None: n_cols = n_rows if batch_shape is None: batch_shape = [] i = torch.eye(n_rows, n_cols, dtype=dtype, device=device) reshape_dims = [1] * len(batch_shape) + [n_rows, n_cols] tile_dims = list(batch_shape) + [1, 1] return_mat = torch.reshape(i, reshape_dims).repeat(tile_dims) # k=index of the diagonal. A positive value refers to an upper diagonal, # a negative value to a lower diagonal, and 0 to the main diagonal. # Default: ``0``. # value of k ranges from -n_rows < k < n_cols if k == 0: # refers to the main diagonal ret = return_mat # when k is negative elif -n_rows < k < 0: mat = torch.concat( [ torch.zeros([-k, n_cols], dtype=dtype, device=device, out=out), i[: n_rows + k], ], 0, ) ret = torch.reshape(mat, reshape_dims).repeat(tile_dims) # when k is positive elif 0 < k < n_cols: mat = torch.concat( [ torch.zeros([n_rows, k], dtype=dtype, device=device), i[:, : n_cols - k], ], 1, ) ret = torch.reshape(mat, reshape_dims).repeat(tile_dims) if out is not None: return ivy.inplace_update(out, ret) else: ret = torch.zeros( batch_shape + [n_rows, n_cols], dtype=dtype, device=device, out=out ) return ret eye.support_native_out = True def to_dlpack(x, /, *, out: Optional[torch.Tensor] = None): return torch.to_dlpack(x) def from_dlpack(x, /, *, out: Optional[torch.Tensor] = None): return torch.from_dlpack(x) def full( shape: Union[ivy.NativeShape, Sequence[int]], fill_value: Union[int, float, bool], *, dtype: Optional[Union[ivy.Dtype, torch.dtype]] = None, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> Tensor: dtype = ivy.default_dtype(dtype=dtype, item=fill_value, as_native=True) if isinstance(shape, int): shape = (shape,) return torch.full( shape, fill_value, dtype=dtype, device=device, out=out, ) full.support_native_out = True def full_like( x: torch.Tensor, /, fill_value: Number, *, dtype: torch.dtype, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.full_like(x, fill_value, dtype=dtype, device=device) def _slice_at_axis(sl, axis): return (slice(None),) * axis + (sl,) + (...,) @with_unsupported_device_and_dtypes( {"2.2 and below": {"cpu": ("float16",)}}, backend_version ) def linspace( start: Union[torch.Tensor, float], stop: Union[torch.Tensor, float], /, num: int, *, axis: Optional[int] = None, endpoint: bool = True, dtype: torch.dtype, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if axis is None: axis = -1 if not endpoint: if dtype is not None: ans = linspace_helper( start, stop, num + 1, axis, dtype=dtype, device=device ) else: ans = linspace_helper(start, stop, num + 1, axis, device=device) if axis < 0: axis += len(ans.shape) ans = ans[_slice_at_axis(slice(None, -1), axis)] else: if dtype is not None: ans = linspace_helper(start, stop, num, axis, dtype=dtype, device=device) else: ans = linspace_helper(start, stop, num, axis, device=device) if ( endpoint and ans.shape[0] > 1 and (not isinstance(start, torch.Tensor)) and (not isinstance(stop, torch.Tensor)) ): ans[-1] = stop if ( ans.shape[0] >= 1 and (not isinstance(start, torch.Tensor)) and (not isinstance(stop, torch.Tensor)) and ans[0] != start ): ans[0] = start if "int" in str(dtype) and torch.is_floating_point(ans): ans = torch.floor(ans) return ans.to(dtype) linspace.support_native_out = True def linspace_helper(start, stop, num, axis=None, *, dtype=None, device): num = num.detach().numpy().item() if isinstance(num, torch.Tensor) else num start_is_array = isinstance(start, torch.Tensor) stop_is_array = isinstance(stop, torch.Tensor) linspace_method = torch.linspace sos_shape = [] if start_is_array: start_shape = list(start.shape) sos_shape = start_shape if num == 1: if axis is not None: return start.unsqueeze(axis).to(device) else: return start.unsqueeze(-1).to(device) start = start.reshape((-1,)) linspace_method = ( _differentiable_linspace if start.requires_grad else torch.linspace ) if stop_is_array: stop_shape = list(stop.shape) sos_shape = stop_shape if num == 1: return ( torch.ones( stop_shape[:axis] + [1] + stop_shape[axis:], device=device, ) * start ) stop = stop.reshape((-1,)) linspace_method = ( _differentiable_linspace if stop.requires_grad else torch.linspace ) if start_is_array and stop_is_array: if num < start.shape[0]: start = start.unsqueeze(-1) stop = stop.unsqueeze(-1) diff = stop - start inc = diff / (num - 1) res = [start] res += [start + inc * i for i in range(1, num - 1)] res.append(stop) else: res = [ linspace_method(strt, stp, num, device=device) for strt, stp in zip(start, stop) ] elif start_is_array and not stop_is_array: if num < start.shape[0]: start = start.unsqueeze(-1) diff = stop - start inc = diff / (num - 1) res = [start] res += [start + inc * i for i in range(1, num - 1)] res.append(torch.ones_like(start, device=device) * stop) else: res = [linspace_method(strt, stop, num, device=device) for strt in start] elif not start_is_array and stop_is_array: if num < stop.shape[0]: stop = stop.unsqueeze(-1) diff = stop - start inc = diff / (num - 1) res = [torch.ones_like(stop, device=device) * start] res += [start + inc * i for i in range(1, num - 1)] res.append(stop) else: res = [linspace_method(start, stp, num, device=device) for stp in stop] else: return linspace_method(start, stop, num, dtype=dtype, device=device) res = torch.cat(res, -1).reshape(sos_shape + [num]) if axis is not None: ndim = res.ndim perm = list(range(0, ndim - 1)) perm.insert(axis % (ndim + 1), ndim - 1) res = res.permute(perm) return res.to(device) def meshgrid( *arrays: torch.Tensor, sparse: bool = False, indexing: str = "xy", out: Optional[torch.Tensor] = None, ) -> List[torch.Tensor]: if not sparse: return list(torch.meshgrid(*arrays, indexing=indexing)) sd = (1,) * len(arrays) res = [ torch.reshape(torch.as_tensor(a), (sd[:i] + (-1,) + sd[i + 1 :])) for i, a in enumerate(arrays) ] if indexing == "xy" and len(arrays) > 1: res[0] = torch.reshape(res[0], (1, -1) + sd[2:]) res[1] = torch.reshape(res[1], (-1, 1) + sd[2:]) return res def ones( shape: Union[ivy.NativeShape, Sequence[int]], *, dtype: torch.dtype, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.ones(shape, dtype=dtype, device=device, out=out) ones.support_native_out = True def ones_like_v_0p4p0_and_above( x: torch.Tensor, /, *, dtype: torch.dtype, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.ones_like(x, dtype=dtype, device=device) def ones_like_v_0p3p0_to_0p3p1( x: torch.Tensor, /, *, dtype: torch.dtype, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.ones_like(x, out=out) def ones_like_v_0p1p12_to_0p2p0( x: torch.Tensor, /, *, dtype: torch.dtype, device: torch.device = None, out: Optional[torch.Tensor] = None, ): if len(x.shape) == 1: for i in range(x.shape[0]): x[i] = 1 return x for i in range(x.shape[0]): x[i, :] = ones_like_v_0p1p12_to_0p2p0(x[i, :], dtype=dtype) return x def tril( x: torch.Tensor, /, *, k: int = 0, out: Optional[torch.Tensor] = None ) -> torch.Tensor: return torch.tril(x, diagonal=k, out=out) tril.support_native_out = True def triu( x: torch.Tensor, /, *, k: int = 0, out: Optional[torch.Tensor] = None ) -> torch.Tensor: return torch.triu(x, diagonal=k, out=out) triu.support_native_out = True def zeros( shape: Union[ivy.NativeShape, Sequence[int]], *, dtype: torch.dtype, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> Tensor: return torch.zeros(shape, dtype=dtype, device=device, out=out) zeros.support_native_out = True def zeros_like( x: torch.Tensor, /, *, dtype: torch.dtype, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.zeros_like(x, dtype=dtype, device=device) # Extra # # ------# array = asarray def copy_array( x: torch.Tensor, *, to_ivy_array: bool = True, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if to_ivy_array: return ivy.to_ivy(x.clone()) return x.clone() def one_hot( indices: torch.Tensor, depth: int, /, *, on_value: Optional[torch.Tensor] = None, off_value: Optional[torch.Tensor] = None, axis: Optional[int] = None, dtype: Optional[torch.dtype] = None, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: on_none = on_value is None off_none = off_value is None if dtype is None: if on_none and off_none: dtype = torch.float32 else: if not on_none: dtype = torch.tensor(on_value).dtype elif not off_none: dtype = torch.tensor(off_value).dtype else: dtype = ivy.as_native_dtype(dtype) on_value = torch.tensor(1.0) if on_none else torch.tensor(on_value, dtype=dtype) off_value = torch.tensor(0.0) if off_none else torch.tensor(off_value, dtype=dtype) res = torch.nn.functional.one_hot(indices.to(torch.int64), depth) if not on_none or not off_none: res = torch.where(res == 1, on_value, off_value) if axis is not None: res = torch.moveaxis(res, -1, axis) return res.to(device, dtype) def frombuffer( buffer: bytes, dtype: Optional[torch.dtype] = float, count: Optional[int] = -1, offset: Optional[int] = 0, ) -> torch.Tensor: buffer_copy = copy.deepcopy(buffer) dtype = ivy.as_native_dtype(dtype) return torch.frombuffer(buffer_copy, dtype=dtype, count=count, offset=offset) def triu_indices( n_rows: int, n_cols: Optional[int] = None, k: int = 0, /, *, device: torch.device = None, ) -> Tuple[torch.Tensor]: n_cols = n_rows if n_cols is None else n_cols return tuple( torch.triu_indices( row=n_rows, col=n_cols, offset=k, dtype=torch.int64, device=device ) )
ivy/ivy/functional/backends/torch/creation.py/0
{ "file_path": "ivy/ivy/functional/backends/torch/creation.py", "repo_id": "ivy", "token_count": 7940 }
25
# global from typing import ( Iterable, Optional, Union, Sequence, Tuple, NamedTuple, List, Literal, Callable, Any, ) from numbers import Number from collections import namedtuple import torch # local from ivy.func_wrapper import ( with_unsupported_dtypes, with_supported_dtypes, handle_out_argument, ) from .. import backend_version import ivy from ivy.functional.ivy.experimental.manipulation import ( _to_tf_padding, _check_paddle_pad, _to_paddle_padding, ) def moveaxis( a: torch.Tensor, source: Union[int, Sequence[int]], destination: Union[int, Sequence[int]], /, *, copy: Optional[bool] = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.moveaxis(a, source, destination) moveaxis.support_native_out = False def heaviside( x1: torch.tensor, x2: torch.tensor, /, *, out: Optional[torch.tensor] = None, ) -> torch.tensor: return torch.heaviside( x1, x2, out=out, ) heaviside.support_native_out = True @with_supported_dtypes( {"2.2 and below": ("float32", "float64", "complex64", "complex128")}, backend_version, ) def pad( input: torch.Tensor, pad_width: Union[Iterable[Tuple[int]], int], /, *, mode: Union[ Literal[ "constant", "dilated", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty", ], Callable, ] = "constant", stat_length: Union[Iterable[Tuple[int]], int] = 1, constant_values: Union[Iterable[Tuple[Number]], Number] = 0, end_values: Union[Iterable[Tuple[Number]], Number] = 0, reflect_type: Literal["even", "odd"] = "even", **kwargs: Optional[Any], ) -> torch.Tensor: constant_values = ( float(constant_values) if not isinstance(constant_values, float) else constant_values ) pad_width = _to_paddle_padding(pad_width, input.ndim) mode = "replicate" if mode == "edge" else "circular" if mode == "wrap" else mode if mode == "circular": return ( torch.nn.functional.pad( input.unsqueeze(0).unsqueeze(0), tuple(pad_width), mode=mode, ) .squeeze(0) .squeeze(0) ) elif mode == "constant": return torch.nn.functional.pad( input.unsqueeze(0), tuple(pad_width), mode=mode, value=constant_values, ).squeeze(0) else: return torch.nn.functional.pad( input.unsqueeze(0), tuple(pad_width), mode=mode, ).squeeze(0) pad.partial_mixed_handler = ( lambda *args, mode="constant", constant_values=0, reflect_type="even", **kwargs: ( _check_torch_pad(mode, reflect_type, args[1], args[0].shape, constant_values) ) ) def _check_torch_pad(mode, reflect_type, pad_width, input_shape, constant_values): ndim = len(input_shape) pad_width = _to_tf_padding(pad_width, ndim) if mode != "constant" and (ndim > 4 or (ndim > 1 and len(pad_width) > ndim - 1)): return False return _check_paddle_pad( mode, reflect_type, pad_width, input_shape, constant_values, 4, extend=False, ) and ( mode != "wrap" or all( pad_width[i][0] <= s and pad_width[i][1] <= s for i, s in enumerate(input_shape) ) ) def flipud( m: torch.Tensor, /, *, copy: Optional[bool] = None, out: Optional[torch.tensor] = None, ) -> torch.tensor: return torch.flipud(m) flipud.support_native_out = False def vstack( arrays: Sequence[torch.Tensor], /, *, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if not isinstance(arrays, tuple): arrays = tuple(arrays) return torch.vstack(arrays, out=None) def hstack( arrays: Sequence[torch.Tensor], /, *, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if not isinstance(arrays, tuple): arrays = tuple(arrays) return torch.hstack(arrays, out=None) def rot90( m: torch.Tensor, /, *, copy: Optional[bool] = None, k: int = 1, axes: Tuple[int, int] = (0, 1), out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.rot90(m, k, axes) def top_k( x: torch.Tensor, k: int, /, *, axis: int = -1, largest: bool = True, sorted: bool = True, out: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: k = min(k, x.shape[axis]) topk_res = NamedTuple( "top_k", [("values", torch.Tensor), ("indices", torch.Tensor)] ) if not largest: indices = torch.argsort(x, dim=axis) indices = torch.index_select(indices, axis, torch.arange(k)) else: indices = torch.argsort(-x, dim=axis) indices = torch.index_select(indices, axis, torch.arange(k)) if not sorted: indices = torch.sort(indices, dim=axis)[0] val = torch.gather(x, axis, indices) return topk_res(val, indices) def fliplr( m: torch.Tensor, /, *, copy: Optional[bool] = None, out: Optional[torch.tensor] = None, ) -> torch.tensor: return torch.fliplr(m) fliplr.support_native_out = False @with_unsupported_dtypes({"2.2 and below": ("float16",)}, backend_version) def i0( x: torch.Tensor, /, *, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.i0(x, out=out) i0.support_native_out = True def flatten( x: torch.Tensor, /, *, copy: Optional[bool] = None, start_dim: Optional[int] = 0, end_dim: Optional[int] = -1, order: Optional[str] = "C", out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return torch.flatten(x, start_dim=start_dim, end_dim=end_dim) flatten.partial_mixed_handler = ( lambda *args, copy=None, start_dim=0, end_dim=1, order="C", **kwargs: order == "C" ) def vsplit( ary: torch.Tensor, indices_or_sections: Union[int, Sequence[int], torch.Tensor], /, *, copy: Optional[bool] = None, ) -> List[torch.Tensor]: if len(ary.shape) < 2: raise ivy.utils.exceptions.IvyError( "vsplit only works on arrays of 2 or more dimensions" ) return ivy.split(ary, num_or_size_splits=indices_or_sections, axis=0) def dsplit( ary: torch.Tensor, indices_or_sections: Union[int, Sequence[int], torch.Tensor], /, *, copy: Optional[bool] = None, ) -> List[torch.Tensor]: if len(ary.shape) < 2: raise ivy.utils.exceptions.IvyError( "dsplit only works on arrays of 3 or more dimensions" ) return ivy.split(ary, num_or_size_splits=indices_or_sections, axis=2) def atleast_1d(*arys: torch.Tensor, copy: Optional[bool] = None) -> List[torch.Tensor]: transformed = torch.atleast_1d(*arys) if isinstance(transformed, tuple): return list(transformed) return transformed def dstack( arrays: Sequence[torch.Tensor], /, *, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if not isinstance(arrays, tuple): arrays = tuple(arrays) return torch.dstack(arrays, out=out) def atleast_2d(*arys: torch.Tensor, copy: Optional[bool] = None) -> List[torch.Tensor]: transformed = torch.atleast_2d(*arys) if isinstance(transformed, tuple): return list(transformed) return transformed def atleast_3d( *arys: Union[torch.Tensor, bool, Number], copy: Optional[bool] = None ) -> List[torch.Tensor]: transformed = torch.atleast_3d(*arys) if isinstance(transformed, tuple): return list(transformed) return transformed @with_unsupported_dtypes({"2.2 and below": ("float16", "bfloat16")}, backend_version) def take_along_axis( arr: torch.Tensor, indices: torch.Tensor, axis: int, /, *, mode: str = "fill", out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if arr.ndim != indices.ndim: raise ivy.utils.exceptions.IvyException( "arr and indices must have the same number of dimensions;" + f" got {arr.ndim} vs {indices.ndim}" ) indices = indices.long() if mode not in ["clip", "fill", "drop"]: raise ValueError( f"Invalid mode '{mode}'. Valid modes are 'clip', 'fill', 'drop'." ) arr_shape = arr.shape if axis < 0: axis += arr.ndim if mode == "clip": max_index = arr.shape[axis] - 1 indices = torch.clamp(indices, 0, max_index) elif mode in {"fill", "drop"}: if "float" in str(arr.dtype) or "complex" in str(arr.dtype): fill_value = float("nan") elif "uint" in str(arr.dtype): fill_value = torch.iinfo(arr.dtype).max elif "int" in str(arr.dtype): fill_value = -torch.iinfo(arr.dtype).max - 1 indices = torch.where((indices < 0) | (indices >= arr.shape[axis]), -1, indices) arr_shape = list(arr_shape) arr_shape[axis] = 1 fill_arr = torch.full(arr_shape, fill_value, dtype=arr.dtype) arr = torch.cat([arr, fill_arr], dim=axis) indices = torch.where(indices < 0, arr.shape[axis] + indices, indices) return torch.take_along_dim(arr, indices, axis, out=out) def hsplit( ary: torch.Tensor, indices_or_sections: Union[int, Tuple[int, ...]], /, *, copy: Optional[bool] = None, ) -> List[torch.Tensor]: if len(ary.shape) == 1: return ivy.split(ary, num_or_size_splits=indices_or_sections, axis=0) return ivy.split(ary, num_or_size_splits=indices_or_sections, axis=1) take_along_axis.support_native_out = True def broadcast_shapes(*shapes: Union[List[int], List[Tuple]]) -> Tuple[int]: return tuple(torch.broadcast_shapes(*shapes)) broadcast_shapes.support_native_out = False def expand( x: torch.Tensor, shape: Union[List[int], List[Tuple]], /, *, copy: Optional[bool] = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: return x.expand(shape) expand.support_native_out = False @with_unsupported_dtypes({"2.2 and below": ("complex", "float16")}, backend_version) def unique_consecutive( x: torch.Tensor, /, *, axis: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Results = namedtuple( "Results", ["output", "inverse_indices", "counts"], ) output, inverse_indices, counts = torch.unique_consecutive( x, return_inverse=True, return_counts=True, dim=axis, ) return Results( output.to(x.dtype), inverse_indices, counts, ) def column_stack( arrays: Sequence[torch.Tensor], /, *, out: Optional[torch.Tensor] = None ) -> torch.Tensor: return torch.column_stack(arrays) @with_supported_dtypes({"2.2 and below": ("float32", "float64")}, backend_version) def put_along_axis( arr: torch.Tensor, indices: torch.Tensor, values: Union[int, torch.Tensor], axis: int, /, *, mode: Literal["sum", "min", "max", "mul", "replace"] = "replace", out: Optional[torch.Tensor] = None, ) -> torch.Tensor: mode_mappings = { "sum": "sum", "min": "amin", "max": "amax", "mul": "prod", "replace": "replace", } mode = mode_mappings.get(mode, mode) indices = indices.to(torch.int64) if mode == "replace": return torch.scatter(arr, axis, indices, values, out=out) else: return torch.scatter_reduce(arr, axis, indices, values, reduce=mode, out=out) put_along_axis.partial_mixed_handler = lambda *args, mode=None, **kwargs: mode in [ "replace", "sum", "mul", "mean", "max", "min", ] def concat_from_sequence( input_sequence: Union[Tuple[torch.Tensor], List[torch.Tensor]], /, *, new_axis: int = 0, axis: int = 0, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: is_tuple = type(input_sequence) is tuple if is_tuple: input_sequence = list(input_sequence) if new_axis == 0: ret = torch.cat(input_sequence, dim=axis) return ret elif new_axis == 1: ret = torch.stack(input_sequence, dim=axis) return ret def _take_with_axis( x: torch.Tensor, indices: torch.Tensor, /, *, axis: int, mode: str ) -> torch.Tensor: # has no checks # default behaviour is 'raise' like ON CPU # additional check is recommended x_shape = x.shape[axis] if not ivy.exists(axis): x = x.flatten() x_shape = torch.prod(torch.tensor(x_shape)) else: x_shape = x.shape[axis] # wrap if mode == "wrap": indices = ((indices % x_shape) + x_shape) % x_shape # clip else: indices = torch.clip(indices, 0, x_shape - 1) rank = len(x.shape) axis = ((axis % rank) + rank) % rank slicer = ([slice(None)] * axis) + [indices] slicer = tuple(slicer) return x[slicer] def take( x: Union[int, List, torch.Tensor], indices: Union[int, List, torch.Tensor], /, *, axis: Optional[int] = None, mode: str = "clip", fill_value: Optional[Number] = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if mode not in ["raise", "wrap", "clip", "fill"]: raise ValueError("mode must be one of 'clip', 'raise', 'wrap', or 'fill'") if not isinstance(x, torch.Tensor): x = torch.tensor(x) if len(x.shape) == 0: x = torch.tensor([x]) if not isinstance(indices, torch.Tensor): indices = torch.tensor(indices) if indices.dtype.is_floating_point: indices = indices.to(torch.int64) # raise if mode == "raise": mode = "clip" if ivy.exists(axis): try: x_shape = x.shape[axis] except Exception as e: rank = len(x.shape) raise IndexError( "IndexError: Dimension out of range" f"(expected to be in range of[-{rank}, {rank-1}]" f", but got {axis})" ) from e else: x_shape = torch.prod(torch.tensor(x.shape)) bound_check = (indices < -x_shape) | (indices >= x_shape) if torch.any(torch.tensor(bound_check)): raise IndexError("index out of range in self") # clip, wrap if mode != "fill": ret = _take_with_axis(x, indices, axis=axis, mode=mode) if ivy.exists(out): ivy.inplace_update(out, ret) return ret # fill x_dtype = x.dtype if fill_value is None: # set according to jax behaviour # https://tinyurl.com/66jn68uj if x_dtype.is_floating_point or x_dtype.is_complex: # NaN for inexact types fill_value = float("NaN") else: if x_dtype == torch.bool: # True for booleans fill_value = True elif str(x_dtype).split(".")[-1].startswith("u"): # the largest positive value for unsigned types fill_value = torch.iinfo(x_dtype).max else: # the largest negative value for signed types fill_value = torch.iinfo(x_dtype).min fill_value = torch.tensor(fill_value, dtype=x_dtype) x_shape = x.shape ret = _take_with_axis(x, indices, axis=axis, mode="wrap") if len(ret.shape) == 0: # if scalar (paddle scalar), scalar fill (replace) if torch.any(torch.tensor(indices != 0)): ret = fill_value else: if ivy.exists(axis): rank = len(x.shape) axis = ((axis % rank) + rank) % rank x_shape = x_shape[axis] else: axis = 0 x_shape = torch.prod(x_shape) bound_check = torch.tensor((indices < -x_shape) | (indices >= x_shape)) if torch.any(bound_check): if axis > 0: bound_check = torch.broadcast_to( bound_check, (*x.shape[:axis], *bound_check.shape) ) ret[bound_check] = fill_value if ivy.exists(out): ivy.inplace_update(out, ret) return ret def trim_zeros(a: torch.Tensor, /, *, trim: Optional[str] = "bf") -> torch.Tensor: first = 0 trim = trim.upper() if "F" in trim: for i in a: if i != 0.0: break else: first = first + 1 last = len(a) if "B" in trim: for i in torch.flip(a, [0]): if i != 0.0: break else: last = last - 1 return a[first:last] @handle_out_argument def unflatten( x: torch.Tensor, /, shape: Tuple[int] = None, dim: Optional[int] = 0, *, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: res = torch.unflatten(x, dim, shape) return res
ivy/ivy/functional/backends/torch/experimental/manipulation.py/0
{ "file_path": "ivy/ivy/functional/backends/torch/experimental/manipulation.py", "repo_id": "ivy", "token_count": 8099 }
26
"""Collection of PyTorch random functions, wrapped to fit Ivy syntax and signature.""" # global import torch from typing import Optional, Union, Sequence # local import ivy from ivy.functional.ivy.random import ( _check_bounds_and_get_shape, _randint_check_dtype_and_bound, _check_valid_scale, ) from ivy.func_wrapper import with_unsupported_dtypes from . import backend_version # Extra # # ------# def random_uniform( *, low: Union[float, torch.Tensor] = 0.0, high: Union[float, torch.Tensor] = 1.0, shape: Optional[Union[torch.Tensor, ivy.NativeShape, Sequence[int]]] = None, dtype: torch.dtype, device: torch.device = None, seed: Optional[int] = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: shape = _check_bounds_and_get_shape(low, high, shape).shape rand_range = high - low if seed: torch.manual_seed(seed) if torch.is_tensor(shape): shape = shape.tolist() return ( torch.rand(shape, device=device, dtype=torch.float) * rand_range + low ).type(dtype) def random_normal( *, mean: Union[float, torch.Tensor] = 0.0, std: Union[float, torch.Tensor] = 1.0, shape: Optional[Union[ivy.NativeShape, Sequence[int]]] = None, dtype: torch.dtype, seed: Optional[int] = None, device: torch.device = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: _check_valid_scale(std) shape = _check_bounds_and_get_shape(mean, std, shape).shape dtype = ivy.as_native_dtype(dtype) if seed: torch.manual_seed(seed) if isinstance(mean, (int, float)) and isinstance(std, (int, float)): return torch.normal(mean, std, shape, out=out).type(dtype).to(device) return torch.normal(mean, std, out=out).type(dtype).to(device) random_normal.support_native_out = True @with_unsupported_dtypes({"2.2 and below": ("bfloat16",)}, backend_version) def multinomial( population_size: int, num_samples: int, /, *, batch_size: int = 1, probs: Optional[torch.Tensor] = None, replace: bool = True, device: torch.device = None, seed: Optional[int] = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if probs is None: probs = ( torch.ones( ( batch_size, population_size, ) ) / population_size ) if seed: torch.manual_seed(seed) return torch.multinomial(probs.float(), num_samples, replace, out=out).to(device) multinomial.support_native_out = True def randint( low: Union[int, torch.Tensor], high: Union[int, torch.Tensor], /, *, shape: Optional[Union[ivy.NativeShape, Sequence[int]]] = None, device: torch.device = None, dtype: Optional[Union[torch.dtype, ivy.Dtype]] = None, seed: Optional[int] = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if not dtype: dtype = ivy.default_int_dtype() dtype = ivy.as_native_dtype(dtype) _randint_check_dtype_and_bound(low, high, dtype) shape = _check_bounds_and_get_shape(low, high, shape).shape rand_range = high - low if seed: torch.manual_seed(seed) return (torch.rand(shape, device=device) * rand_range + low).to(dtype) def seed(*, seed_value: int = 0): torch.manual_seed(seed_value) torch.cuda.manual_seed(seed_value) if hasattr(torch.backends, "mps"): if torch.backends.mps.is_available(): from torch import mps mps.manual_seed(seed_value) return def shuffle( x: torch.Tensor, axis: Optional[int] = 0, /, *, seed: Optional[int] = None, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if len(x.shape) == 0: return x batch_size = x.shape[0] if seed: torch.manual_seed(seed) return torch.index_select(x, 0, torch.randperm(batch_size), out=out) shuffle.support_native_out = True
ivy/ivy/functional/backends/torch/random.py/0
{ "file_path": "ivy/ivy/functional/backends/torch/random.py", "repo_id": "ivy", "token_count": 1748 }
27
# local from . import lax_numpy _IndexUpdateHelper = lax_numpy._IndexUpdateHelper _IndexUpdateRef = lax_numpy._IndexUpdateRef
ivy/ivy/functional/frontends/jax/_src/numpy/array_methods.py/0
{ "file_path": "ivy/ivy/functional/frontends/jax/_src/numpy/array_methods.py", "repo_id": "ivy", "token_count": 40 }
28
import ivy from ivy.func_wrapper import with_unsupported_dtypes from ivy.functional.frontends.jax.array import Array import ivy.functional.frontends.jax.numpy as jnp_frontend from ivy.functional.frontends.jax.func_wrapper import ( to_ivy_arrays_and_back, outputs_to_frontend_arrays, handle_jax_dtype, inputs_to_ivy_arrays, ) from ivy.func_wrapper import handle_out_argument from ivy import with_unsupported_device_and_dtypes ndarray = Array @with_unsupported_device_and_dtypes( { "0.4.24 and below": { "cpu": ( "float16", "bflooat16", "complex64", "complex128", ), "gpu": ( "complex64", "complex128", ), } }, "jax", ) @handle_jax_dtype @outputs_to_frontend_arrays def arange(start, stop=None, step=1, dtype=None): return ivy.arange(start, stop, step=step, dtype=dtype) @handle_jax_dtype @to_ivy_arrays_and_back def array(object, dtype=None, copy=True, order="K", ndmin=0): if order is not None and order != "K": raise ivy.utils.exceptions.IvyNotImplementedException( "Only implemented for order='K'" ) device = ivy.default_device() if ivy.is_array(object): device = ivy.dev(object) ret = ivy.array(object, dtype=dtype, device=device) if ivy.get_num_dims(ret) < ndmin: ret = ivy.expand_dims(ret, axis=list(range(ndmin - ivy.get_num_dims(ret)))) if ret.shape == () and dtype is None: return Array(ret, weak_type=True) return Array(ret) @handle_jax_dtype @to_ivy_arrays_and_back def asarray(a, dtype=None, order=None): return array(a, dtype=dtype, order=order) @to_ivy_arrays_and_back def bool_(x): return ivy.astype(x, ivy.bool) @to_ivy_arrays_and_back def cdouble(x): return ivy.astype(x, ivy.complex128) @to_ivy_arrays_and_back @handle_out_argument def compress(condition, a, *, axis=None, out=None): condition_arr = ivy.asarray(condition).astype(bool) if condition_arr.ndim != 1: raise ivy.utils.exceptions.IvyException("Condition must be a 1D array") if axis is None: arr = ivy.asarray(a).flatten() axis = 0 else: arr = ivy.moveaxis(a, axis, 0) if condition_arr.shape[0] > arr.shape[0]: raise ivy.utils.exceptions.IvyException( "Condition contains entries that are out of bounds" ) arr = arr[: condition_arr.shape[0]] return ivy.moveaxis(arr[condition_arr], 0, axis) @to_ivy_arrays_and_back def copy(a, order=None): return array(a, order=order) @to_ivy_arrays_and_back def csingle(x): return ivy.astype(x, ivy.complex64) @to_ivy_arrays_and_back def double(x): return ivy.astype(x, ivy.float64) @handle_jax_dtype @to_ivy_arrays_and_back def empty(shape, dtype=None): return Array(ivy.empty(shape=shape, dtype=dtype)) @handle_jax_dtype @to_ivy_arrays_and_back def empty_like(prototype, dtype=None, shape=None): # XLA cannot create uninitialized arrays # jax.numpy.empty_like returns an array initialized with zeros. if shape: return ivy.zeros(shape, dtype=dtype) return ivy.zeros_like(prototype, dtype=dtype) @handle_jax_dtype @to_ivy_arrays_and_back def eye(N, M=None, k=0, dtype=None): return Array(ivy.eye(N, M, k=k, dtype=dtype)) @to_ivy_arrays_and_back def from_dlpack(x): return ivy.from_dlpack(x) @to_ivy_arrays_and_back def frombuffer(buffer, dtype="float", count=-1, offset=0): return ivy.frombuffer(buffer, dtype, count, offset) @to_ivy_arrays_and_back def full(shape, fill_value, dtype=None): return ivy.full(shape, fill_value, dtype=dtype) @to_ivy_arrays_and_back def full_like(a, fill_value, dtype=None, shape=None): return ivy.full_like(a, fill_value, dtype=dtype) @to_ivy_arrays_and_back def geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0): cr = ivy.log(stop / start) / (num - 1 if endpoint else num) x = ivy.linspace( 0, cr * (num - 1 if endpoint else num), num, endpoint=endpoint, axis=axis ) x = ivy.exp(x) x = start * x x[0] = (start * cr) / cr if endpoint: x[-1] = stop return x.asarray(dtype=dtype) @handle_jax_dtype @to_ivy_arrays_and_back def hstack(tup, dtype=None): # TODO: dtype supported in JAX v0.3.20 return ivy.hstack(tup) @handle_jax_dtype @to_ivy_arrays_and_back def identity(n, dtype=None): return ivy.eye(n, dtype=dtype) @to_ivy_arrays_and_back def in1d(ar1, ar2, assume_unique=False, invert=False): del assume_unique ar1_flat = ivy.flatten(ar1) ar2_flat = ivy.flatten(ar2) if invert: return (ar1_flat[:, None] != ar2_flat[None, :]).all(axis=-1) else: return (ar1_flat[:, None] == ar2_flat[None, :]).any(axis=-1) @inputs_to_ivy_arrays def iterable(y): return hasattr(y, "__iter__") and y.ndim > 0 @handle_jax_dtype @to_ivy_arrays_and_back @with_unsupported_dtypes( { "0.4.24 and below": ( "float16", "bfloat16", ) }, "jax", ) def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0): ret = ivy.linspace(start, stop, num, axis=axis, endpoint=endpoint, dtype=dtype) if retstep: if endpoint: num -= 1 step = ivy.divide(ivy.subtract(stop, start), num) return ret, step return ret @handle_jax_dtype @to_ivy_arrays_and_back @with_unsupported_dtypes( { "0.4.24 and below": ( "float16", "bfloat16", ) }, "jax", ) def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0): if not endpoint: interval = (stop - start) / num stop -= interval return ivy.logspace(start, stop, num, base=base, axis=axis, dtype=dtype) @to_ivy_arrays_and_back def meshgrid(*x, copy=True, sparse=False, indexing="xy"): # TODO: handle 'copy' argument when ivy.meshgrid supports it ivy_meshgrid = ivy.meshgrid(*x, sparse=sparse, indexing=indexing) return ivy_meshgrid @to_ivy_arrays_and_back def ndim(a): if not isinstance(a, ivy.Array): return 0 return ivy.astype(ivy.array(a.ndim), ivy.int64) @handle_jax_dtype @to_ivy_arrays_and_back def ones(shape, dtype=None): return Array(ivy.ones(shape, dtype=dtype)) @handle_jax_dtype @to_ivy_arrays_and_back def ones_like(a, dtype=None, shape=None): if shape: return ivy.ones(shape, dtype=dtype) return ivy.ones_like(a, dtype=dtype) @to_ivy_arrays_and_back def setdiff1d(ar1, ar2, assume_unique=False, *, size=None, fill_value=None): fill_value = ivy.array(0 if fill_value is None else fill_value, dtype=ar1.dtype) if ar1.size == 0: return ivy.full(size or 0, fill_value, dtype=ar1.dtype) if not assume_unique: val = ( ivy.to_scalar(ivy.all(ar1)) if ivy.is_bool_dtype(ar1.dtype) else ivy.to_scalar(ivy.min(ar1)) ) ar1 = jnp_frontend.unique(ar1, size=size and ar1.size, fill_value=val).ivy_array mask = in1d(ar1, ar2, invert=True).ivy_array if size is None: return ar1[mask] else: if not assume_unique: # Set mask to zero at locations corresponding to unique() padding. n_unique = ar1.size + 1 - (ar1 == ar1[0]).sum(dtype=ivy.int64) mask = ivy.where(ivy.arange(ar1.size) < n_unique, mask, False) return ivy.where( ivy.arange(size) < mask.sum(dtype=ivy.int64), ar1[jnp_frontend.where(mask, size=size)[0].ivy_array], fill_value, ) @to_ivy_arrays_and_back def single(x): return ivy.astype(x, ivy.float32) @to_ivy_arrays_and_back def size(a, axis=None): ivy.set_default_int_dtype("int64") if axis is not None: sh = ivy.shape(a) return sh[axis] return a.size @to_ivy_arrays_and_back def triu(m, k=0): return ivy.triu(m, k=k) @to_ivy_arrays_and_back def vander(x, N=None, increasing=False): if x.ndim != 1: raise ValueError("x must be a one-dimensional array") if N == 0: return ivy.array([], dtype=x.dtype).reshape((x.shape[0], 0)) else: return ivy.vander(x, N=N, increasing=increasing) @handle_jax_dtype @to_ivy_arrays_and_back def zeros(shape, dtype=None): return Array(ivy.zeros(shape, dtype=dtype)) @handle_jax_dtype @to_ivy_arrays_and_back def zeros_like(a, dtype=None, shape=None): if shape: return ivy.zeros(shape, dtype=dtype) return ivy.zeros_like(a, dtype=dtype)
ivy/ivy/functional/frontends/jax/numpy/creation.py/0
{ "file_path": "ivy/ivy/functional/frontends/jax/numpy/creation.py", "repo_id": "ivy", "token_count": 4081 }
29
import ivy def array(obj, dtype=None, copy=True, ndmin=4): ret = ivy.array(obj, dtype=dtype, copy=copy) while ndmin > len(ret.shape): ret = ivy.expand_dims(ret, axis=0) return ret
ivy/ivy/functional/frontends/mindspore/numpy.py/0
{ "file_path": "ivy/ivy/functional/frontends/mindspore/numpy.py", "repo_id": "ivy", "token_count": 95 }
30
# global import sys # local import ivy from ivy.utils.exceptions import handle_exceptions from ivy.functional.frontends import set_frontend_to_specific_version from typing import Union, Iterable, Tuple from numbers import Number from .data_type_routines import dtype from . import ndarray from .ndarray import * from . import scalars from .scalars import * # Constructing dtypes are required as ivy.<dtype> # will change dynamically on the backend and may not be available _int8 = ivy.IntDtype("int8") _int16 = ivy.IntDtype("int16") _int32 = ivy.IntDtype("int32") _int64 = ivy.IntDtype("int64") _uint8 = ivy.UintDtype("uint8") _uint16 = ivy.UintDtype("uint16") _uint32 = ivy.UintDtype("uint32") _uint64 = ivy.UintDtype("uint64") _bfloat16 = ivy.FloatDtype("bfloat16") _float16 = ivy.FloatDtype("float16") _float32 = ivy.FloatDtype("float32") _float64 = ivy.FloatDtype("float64") _complex64 = ivy.ComplexDtype("complex64") _complex128 = ivy.ComplexDtype("complex128") _bool = ivy.Dtype("bool") numpy_promotion_table = { (_bool, _bool): _bool, (_bool, _int8): _int8, (_bool, _int16): _int16, (_bool, _int32): _int32, (_bool, _int64): _int64, (_bool, _uint8): _uint8, (_bool, _uint16): _uint16, (_bool, _uint32): _uint32, (_bool, _uint64): _uint64, (_bool, _bfloat16): _bfloat16, (_bool, _float16): _float16, (_bool, _float32): _float32, (_bool, _float64): _float64, (_bool, _complex64): _complex64, (_bool, _complex128): _complex128, (_int8, _bool): _int8, (_int8, _int8): _int8, (_int8, _int16): _int16, (_int8, _int32): _int32, (_int8, _int64): _int64, (_int16, _bool): _int16, (_int16, _int8): _int16, (_int16, _int16): _int16, (_int16, _int32): _int32, (_int16, _int64): _int64, (_int32, _bool): _int32, (_int32, _int8): _int32, (_int32, _int16): _int32, (_int32, _int32): _int32, (_int32, _int64): _int64, (_int64, _bool): _int64, (_int64, _int8): _int64, (_int64, _int16): _int64, (_int64, _int32): _int64, (_int64, _int64): _int64, (_uint8, _bool): _uint8, (_uint8, _uint8): _uint8, (_uint8, _uint16): _uint16, (_uint8, _uint32): _uint32, (_uint8, _uint64): _uint64, (_uint16, _bool): _uint16, (_uint16, _uint8): _uint16, (_uint16, _uint16): _uint16, (_uint16, _uint32): _uint32, (_uint16, _uint64): _uint64, (_uint32, _bool): _uint32, (_uint32, _uint8): _uint32, (_uint32, _uint16): _uint32, (_uint32, _uint32): _uint32, (_uint32, _uint64): _uint64, (_uint64, _bool): _uint64, (_uint64, _uint8): _uint64, (_uint64, _uint16): _uint64, (_uint64, _uint32): _uint64, (_uint64, _uint64): _uint64, (_int8, _uint8): _int16, (_int8, _uint16): _int32, (_int8, _uint32): _int64, (_int16, _uint8): _int16, (_int16, _uint16): _int32, (_int16, _uint32): _int64, (_int32, _uint8): _int32, (_int32, _uint16): _int32, (_int32, _uint32): _int64, (_int64, _uint8): _int64, (_int64, _uint16): _int64, (_int64, _uint32): _int64, (_uint8, _int8): _int16, (_uint16, _int8): _int32, (_uint32, _int8): _int64, (_uint8, _int16): _int16, (_uint16, _int16): _int32, (_uint32, _int16): _int64, (_uint8, _int32): _int32, (_uint16, _int32): _int32, (_uint32, _int32): _int64, (_uint8, _int64): _int64, (_uint16, _int64): _int64, (_uint32, _int64): _int64, (_float16, _bool): _float16, (_float16, _float16): _float16, (_float16, _float32): _float32, (_float16, _float64): _float64, (_float32, _bool): _float32, (_float32, _float16): _float32, (_float32, _float32): _float32, (_float32, _float64): _float64, (_float64, _bool): _float64, (_float64, _float16): _float64, (_float64, _float32): _float64, (_float64, _float64): _float64, (_uint64, _int8): _float64, (_int8, _uint64): _float64, (_uint64, _int16): _float64, (_int16, _uint64): _float64, (_uint64, _int32): _float64, (_int32, _uint64): _float64, (_uint64, _int64): _float64, (_int64, _uint64): _float64, (_int8, _float16): _float16, (_float16, _int8): _float16, (_int8, _float32): _float32, (_float32, _int8): _float32, (_int8, _float64): _float64, (_float64, _int8): _float64, (_int16, _float16): _float32, (_float16, _int16): _float32, (_int16, _float32): _float32, (_float32, _int16): _float32, (_int16, _float64): _float64, (_float64, _int16): _float64, (_int32, _float16): _float64, (_float16, _int32): _float64, (_int32, _float32): _float64, (_float32, _int32): _float64, (_int32, _float64): _float64, (_float64, _int32): _float64, (_int64, _float16): _float64, (_float16, _int64): _float64, (_int64, _float32): _float64, (_float32, _int64): _float64, (_int64, _float64): _float64, (_float64, _int64): _float64, (_uint8, _float16): _float16, (_float16, _uint8): _float16, (_uint8, _float32): _float32, (_float32, _uint8): _float32, (_uint8, _float64): _float64, (_float64, _uint8): _float64, (_uint16, _float16): _float32, (_float16, _uint16): _float32, (_uint16, _float32): _float32, (_float32, _uint16): _float32, (_uint16, _float64): _float64, (_float64, _uint16): _float64, (_uint32, _float16): _float64, (_float16, _uint32): _float64, (_uint32, _float32): _float64, (_float32, _uint32): _float64, (_uint32, _float64): _float64, (_float64, _uint32): _float64, (_uint64, _float16): _float64, (_float16, _uint64): _float64, (_uint64, _float32): _float64, (_float32, _uint64): _float64, (_uint64, _float64): _float64, (_float64, _uint64): _float64, (_bfloat16, _bfloat16): _bfloat16, (_bfloat16, _uint8): _bfloat16, (_uint8, _bfloat16): _bfloat16, (_bfloat16, _int8): _bfloat16, (_int8, _bfloat16): _bfloat16, (_bfloat16, _float32): _float32, (_float32, _bfloat16): _float32, (_bfloat16, _float64): _float64, (_float64, _bfloat16): _float64, (_complex64, _bool): _complex64, (_complex64, _int8): _complex64, (_complex64, _int16): _complex64, (_complex64, _int32): _complex128, (_complex64, _int64): _complex128, (_complex64, _uint8): _complex64, (_complex64, _uint16): _complex64, (_complex64, _uint32): _complex128, (_complex64, _uint64): _complex128, (_complex64, _float16): _complex64, (_complex64, _float32): _complex64, (_complex64, _float64): _complex128, (_complex64, _bfloat16): _complex64, (_complex64, _complex64): _complex64, (_complex64, _complex128): _complex128, (_complex128, _bool): _complex128, (_complex128, _int8): _complex128, (_complex128, _int16): _complex128, (_complex128, _int32): _complex128, (_complex128, _int64): _complex128, (_complex128, _uint8): _complex128, (_complex128, _uint16): _complex128, (_complex128, _uint32): _complex128, (_complex128, _uint64): _complex128, (_complex128, _float16): _complex128, (_complex128, _float32): _complex128, (_complex128, _float64): _complex128, (_complex128, _bfloat16): _complex128, (_complex128, _complex64): _complex128, (_complex128, _complex128): _complex128, (_int8, _complex64): _complex64, (_int16, _complex64): _complex64, (_int32, _complex64): _complex128, (_int64, _complex64): _complex128, (_uint8, _complex64): _complex64, (_uint16, _complex64): _complex64, (_uint32, _complex64): _complex128, (_uint64, _complex64): _complex128, (_float16, _complex64): _complex64, (_float32, _complex64): _complex64, (_float64, _complex64): _complex128, (_bfloat16, _complex64): _complex64, (_int8, _complex128): _complex128, (_int16, _complex128): _complex128, (_int32, _complex128): _complex128, (_int64, _complex128): _complex128, (_uint8, _complex128): _complex128, (_uint16, _complex128): _complex128, (_uint32, _complex128): _complex128, (_uint64, _complex128): _complex128, (_float16, _complex128): _complex128, (_float32, _complex128): _complex128, (_float64, _complex128): _complex128, (_bfloat16, _complex128): _complex128, } numpy_str_to_type_table = { "b": "int8", "h": "int16", "i": "int32", "l": "int64", "q": "int64", "B": "uint8", "H": "uint16", "I": "uint32", "L": "uint64", "e": "float16", "f": "float32", "d": "float64", "?": "bool", "E": "bfloat16", "F": "complex64", "D": "complex128", "f2": "float16", "f4": "float32", "f8": "float64", "i1": "int8", "i2": "int16", "i4": "int32", "i8": "int64", "u1": "uint8", "u2": "uint16", "u4": "uint32", "u8": "uint64", "c8": "complex64", "c16": "complex128", "bool_": "bool", } numpy_type_to_str_and_num_table = { "int8": ("b", 1), "int16": ("h", 3), "int32": ("i", 5), "int64": ("l", 7), "uint8": ("B", 2), "uint16": ("H", 4), "uint32": ("I", 6), "uint64": ("L", 8), "float16": ("e", 23), "float32": ("f", 11), "float64": ("d", 12), "bool": ("?", 0), "bfloat16": ("E", 256), "complex64": ("F", 14), "complex128": ("D", 15), } numpy_scalar_to_dtype = { bool_: _bool, number: _float64, integer: _int64, signedinteger: _int64, byte: _int8, short: _int16, intc: _int32, longlong: _int64, int_: _int64, unsignedinteger: _uint64, ubyte: _uint8, ushort: _uint16, uintc: _uint32, ulonglong: _uint64, uint: _uint64, inexact: _float64, floating: _float64, half: _float16, single: _float32, float_: _float64, _bfloat16: _bfloat16, complexfloating: _complex128, csingle: _complex64, complex_: _complex128, } numpy_dtype_to_scalar = {v: k for k, v in numpy_scalar_to_dtype.items()} numpy_casting_rules = { _bool: [ _bool, _uint8, _uint16, _uint32, _uint64, _int8, _int16, _int32, _int64, _float16, _float32, _float64, _complex64, _complex128, ], _int8: [ _int8, _int16, _int32, _int64, _float16, _float32, _float64, _complex64, _complex128, ], _int16: [ _int16, _int32, _int64, _float32, _float64, _complex64, _complex128, ], _int32: [_int32, _int64, _float64, _complex128], _int64: [_int64, _float64, _complex128], _uint8: [ _uint8, _uint16, _uint32, _uint64, _int16, _int32, _int64, _float16, _float32, _float64, _complex64, _complex128, ], _uint16: [ _uint16, _uint32, _uint64, _int32, _int64, _float32, _float64, _complex64, _complex128, ], _uint32: [ _uint32, _uint64, _int64, _float64, _complex128, ], _uint64: [_uint64, _float64, _complex128], _float16: [ _float16, _float32, _float64, _complex64, _complex128, ], _float32: [ _float32, _float64, _complex64, _complex128, ], _float64: [_float64, _complex128], _complex64: [_complex64, _complex128], _complex128: [_complex128], } @handle_exceptions def promote_numpy_dtypes( type1: Union[ivy.Dtype, ivy.NativeDtype], type2: Union[ivy.Dtype, ivy.NativeDtype], /, ): type1, type2 = ivy.as_ivy_dtype(type1), ivy.as_ivy_dtype(type2) try: return numpy_promotion_table[(type1, type2)] except KeyError as e: raise ivy.utils.exceptions.IvyException( "these dtypes are not type promotable" ) from e @handle_exceptions def promote_types_of_numpy_inputs( x1: Union[ivy.Array, Number, Iterable[Number]], x2: Union[ivy.Array, Number, Iterable[Number]], /, ) -> Tuple[ivy.Array, ivy.Array]: """Promote the dtype of the given ivy array inputs to a common dtype based on numpy type promotion rules. While passing float or integer values or any other non-array input to this function, it should be noted that the return will be an array-like object. Therefore, outputs from this function should be used as inputs only for those functions that expect an array-like or tensor-like objects, otherwise it might give unexpected results. """ # ToDo: Overflows not working properly for numpy, if a scalar or 0-dim # is passed with an array, it should go to the next largest dtype that # can hold the value without overflow. E.g a np.array([5], 'int8') + 300 operation # results in np.array([305]) with int16 dtype x1 = ivy.asarray(x1) x2 = ivy.asarray(x2) type1 = ivy.default_dtype(item=x1).strip("u123456789") type2 = ivy.default_dtype(item=x2).strip("u123456789") # Ignore type of 0-dim arrays or scalars to mimic numpy if x1.shape != () and x2.shape == () and type1 == type2: x2 = ivy.asarray( x2, dtype=x1.dtype, device=ivy.default_device(item=x1, as_native=False) ) elif x1.shape == () and x2.shape != () and type1 == type2: x1 = ivy.asarray( x1, dtype=x2.dtype, device=ivy.default_device(item=x2, as_native=False) ) else: promoted = promote_numpy_dtypes(x1.dtype, x2.dtype) x1 = ivy.asarray(x1, dtype=promoted) x2 = ivy.asarray(x2, dtype=promoted) return x1, x2 from . import creation_routines from .creation_routines import * from . import data_type_routines from .data_type_routines import * from . import logic from .logic import * from . import manipulation_routines from .manipulation_routines import * from . import mathematical_functions from .mathematical_functions import * from . import sorting_searching_counting from .sorting_searching_counting import * from . import statistics from .statistics import * from . import matrix from .matrix import * from . import random from .random import * from . import indexing_routines from .indexing_routines import * from . import broadcast from .broadcast import * from . import ma from . import fft from .ufunc import ufunc from . import linalg from .linalg.matrix_and_vector_products import ( # dot, # vdot, inner, outer, matrix_power, tensordot, # einsum, # einsum_path, kron, cross, ) from .linalg.decompositions import cholesky, qr, svd from .linalg.norms_and_other_numbers import det, slogdet, matrix_rank, norm, trace from .linalg.solving_equations_and_inverting_matrices import pinv, inv, solve # importing private functions for ufunc initialization # # -----------------------------------------------------# from ivy.functional.frontends.numpy.mathematical_functions.miscellaneous import ( _absolute, _cbrt, _copysign, _fabs, _heaviside, _sign, _sqrt, _square, _lcm, _gcd, _clip, ) from ivy.functional.frontends.numpy.mathematical_functions.arithmetic_operations import ( # noqa _add, _divide, _float_power, _floor_divide, _fmod, _mod, _modf, _multiply, _remainder, _negative, _positive, _power, _reciprocal, _subtract, _divmod, ) from ivy.functional.frontends.numpy.mathematical_functions.trigonometric_functions import ( # noqa _arccos, _arcsin, _arctan, _cos, _deg2rad, _rad2deg, _sin, _tan, _degrees, _arctan2, ) from ivy.functional.frontends.numpy.mathematical_functions.handling_complex_numbers import ( # noqa _conj, ) from ivy.functional.frontends.numpy.mathematical_functions.hyperbolic_functions import ( _arccosh, _arcsinh, _arctanh, _cosh, _sinh, _tanh, ) from ivy.functional.frontends.numpy.mathematical_functions.rounding import ( _ceil, _trunc, _floor, _rint, ) from ivy.functional.frontends.numpy.logic.comparison import ( _equal, _greater, _greater_equal, _less, _less_equal, _not_equal, ) from ivy.functional.frontends.numpy.mathematical_functions.exponents_and_logarithms import ( # noqa _exp, _exp2, _expm1, _log, _log10, _log1p, _log2, _logaddexp, _logaddexp2, _ldexp, _frexp, ) from ivy.functional.frontends.numpy.logic.array_type_testing import ( _isfinite, _isinf, _isnan, ) from ivy.functional.frontends.numpy.logic.logical_operations import ( _logical_and, _logical_not, _logical_or, _logical_xor, ) from ivy.functional.frontends.numpy.linalg.matrix_and_vector_products import ( _matmul, dot, einsum, ) from ivy.functional.frontends.numpy.mathematical_functions.extrema_finding import ( _maximum, _minimum, _fmax, _fmin, ) from ivy.functional.frontends.numpy.mathematical_functions.floating_point_routines import ( # noqa _nextafter, _signbit, _spacing, ) _frontend_array = array # initializing ufuncs # # ---------------------# absolute = ufunc("_absolute") cbrt = ufunc("_cbrt") copysign = ufunc("_copysign") fabs = ufunc("_fabs") heaviside = ufunc("_heaviside") sign = ufunc("_sign") sqrt = ufunc("_sqrt") square = ufunc("_square") add = ufunc("_add") divide = ufunc("_divide") float_power = ufunc("_float_power") floor_divide = ufunc("_floor_divide") fmod = ufunc("_fmod") mod = ufunc("_mod") modf = ufunc("_modf") multiply = ufunc("_multiply") remainder = ufunc("_remainder") negative = ufunc("_negative") positive = ufunc("_positive") power = ufunc("_power") reciprocal = ufunc("_reciprocal") subtract = ufunc("_subtract") true_divide = ufunc("_divide") arccos = ufunc("_arccos") arcsin = ufunc("_arcsin") arctan = ufunc("_arctan") arctan2 = ufunc("_arctan2") cos = ufunc("_cos") deg2rad = ufunc("_deg2rad") rad2deg = ufunc("_rad2deg") sin = ufunc("_sin") tan = ufunc("_tan") degrees = ufunc("_degrees") arccosh = ufunc("_arccosh") arcsinh = ufunc("_arcsinh") arctanh = ufunc("_arctanh") cosh = ufunc("_cosh") sinh = ufunc("_sinh") tanh = ufunc("_tanh") ceil = ufunc("_ceil") trunc = ufunc("_trunc") equal = ufunc("_equal") greater = ufunc("_greater") greater_equal = ufunc("_greater_equal") less = ufunc("_less") less_equal = ufunc("_less_equal") not_equal = ufunc("_not_equal") exp = ufunc("_exp") exp2 = ufunc("_exp2") expm1 = ufunc("_expm1") log = ufunc("_log") log10 = ufunc("_log10") log1p = ufunc("_log1p") log2 = ufunc("_log2") logaddexp = ufunc("_logaddexp") logaddexp2 = ufunc("_logaddexp2") isfinite = ufunc("_isfinite") isinf = ufunc("_isinf") isnan = ufunc("_isnan") logical_and = ufunc("_logical_and") logical_not = ufunc("_logical_not") logical_or = ufunc("_logical_or") logical_xor = ufunc("_logical_xor") matmul = ufunc("_matmul") maximum = ufunc("_maximum") minimum = ufunc("_minimum") divmod = ufunc("_divmod") fmax = ufunc("_fmax") fmin = ufunc("_fmin") ldexp = ufunc("_ldexp") floor = ufunc("_floor") frexp = ufunc("_frexp") conj = ufunc("_conj") rint = ufunc("_rint") nextafter = ufunc("_nextafter") signbit = ufunc("_signbit") conjugate = ufunc("_conj") lcm = ufunc("_lcm") gcd = ufunc("_gcd") spacing = ufunc("_spacing") clip = ufunc("_clip") remainder = ufunc("_remainder") # setting to specific version # # --------------------------- # if ivy.is_local(): module = ivy.utils._importlib.import_cache[__name__] else: module = sys.modules[__name__] __version__ = set_frontend_to_specific_version(module)
ivy/ivy/functional/frontends/numpy/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/__init__.py", "repo_id": "ivy", "token_count": 9067 }
31
import ivy from ivy.functional.frontends.numpy.func_wrapper import to_ivy_arrays_and_back from ivy.func_wrapper import with_unsupported_dtypes _SWAP_DIRECTION_MAP = { None: "forward", "backward": "forward", "ortho": "ortho", "forward": "backward", } # --- Helpers --- # # --------------- # def _swap_direction(norm): try: return _SWAP_DIRECTION_MAP[norm] except KeyError: raise ValueError( f'Invalid norm value {norm}; should be "backward", "ortho" or "forward".' ) from None # --- Main --- # # ------------ # @to_ivy_arrays_and_back def fft(a, n=None, axis=-1, norm=None): return ivy.fft(ivy.astype(a, ivy.complex128), axis, norm=norm, n=n) @with_unsupported_dtypes({"1.26.3 and below": ("int",)}, "numpy") @to_ivy_arrays_and_back def fftfreq(n, d=1.0): if not isinstance( n, (int, type(ivy.int8), type(ivy.int16), type(ivy.int32), type(ivy.int64)) ): raise TypeError("n should be an integer") N = (n - 1) // 2 + 1 val = 1.0 / (n * d) results = ivy.empty((n,), dtype=int) p1 = ivy.arange(0, N, dtype=int) results[:N] = p1 p2 = ivy.arange(-(n // 2), 0, dtype=int) results[N:] = p2 return results * val @to_ivy_arrays_and_back @with_unsupported_dtypes({"1.26.3 and below": ("float16",)}, "numpy") def fftshift(x, axes=None): x = ivy.asarray(x) if axes is None: axes = tuple(range(x.ndim)) shift = [(dim // 2) for dim in x.shape] elif isinstance( axes, (int, type(ivy.uint8), type(ivy.uint16), type(ivy.uint32), type(ivy.uint64)), ): shift = x.shape[axes] // 2 else: shift = [(x.shape[ax] // 2) for ax in axes] roll = ivy.roll(x, shift, axis=axes) return roll @to_ivy_arrays_and_back def ifft(a, n=None, axis=-1, norm=None): a = ivy.array(a, dtype=ivy.complex128) if norm is None: norm = "backward" return ivy.ifft(a, axis, norm=norm, n=n) @with_unsupported_dtypes({"1.24.3 and below": ("float16",)}, "numpy") @to_ivy_arrays_and_back def ifft2(a, s=None, axes=(-2, -1), norm=None): a = ivy.asarray(a, dtype=ivy.complex128) a = ivy.ifftn(a, s=s, axes=axes, norm=norm) return a @with_unsupported_dtypes({"1.24.3 and below": ("float16",)}, "numpy") @to_ivy_arrays_and_back def ifftn(a, s=None, axes=None, norm=None): a = ivy.asarray(a, dtype=ivy.complex128) a = ivy.ifftn(a, s=s, axes=axes, norm=norm) return a @to_ivy_arrays_and_back @with_unsupported_dtypes({"1.26.3 and below": ("float16",)}, "numpy") def ifftshift(x, axes=None): x = ivy.asarray(x) if axes is None: axes = tuple(range(x.ndim)) shift = [-(dim // 2) for dim in x.shape] elif isinstance( axes, (int, type(ivy.uint8), type(ivy.uint16), type(ivy.uint32), type(ivy.uint64)), ): shift = -(x.shape[axes] // 2) else: shift = [-(x.shape[ax] // 2) for ax in axes] roll = ivy.roll(x, shift, axis=axes) return roll @with_unsupported_dtypes({"1.26.3 and below": ("float16",)}, "numpy") @to_ivy_arrays_and_back def ihfft(a, n=None, axis=-1, norm=None): if n is None: n = a.shape[axis] norm = _swap_direction(norm) output = ivy.conj(rfft(a, n, axis, norm=norm).ivy_array) return output @with_unsupported_dtypes({"1.26.3 and below": ("float16",)}, "numpy") @to_ivy_arrays_and_back def rfft(a, n=None, axis=-1, norm=None): if norm is None: norm = "backward" a = ivy.array(a, dtype=ivy.float64) return ivy.dft(a, axis=axis, inverse=False, onesided=True, dft_length=n, norm=norm) @to_ivy_arrays_and_back def rfftfreq(n, d=1.0): if not isinstance( n, (int, type(ivy.int8), type(ivy.int16), type(ivy.int32), type(ivy.int64)) ): raise TypeError("n should be an integer") val = 1.0 / (n * d) N = n // 2 + 1 results = ivy.arange(0, N, dtype=int) return results * val @with_unsupported_dtypes({"1.24.3 and below": ("float16",)}, "numpy") @to_ivy_arrays_and_back def rfftn(a, s=None, axes=None, norm=None): a = ivy.asarray(a, dtype=ivy.complex128) return ivy.rfftn(a, s=s, axes=axes, norm=norm)
ivy/ivy/functional/frontends/numpy/fft/discrete_fourier_transform.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/fft/discrete_fourier_transform.py", "repo_id": "ivy", "token_count": 1998 }
32
# global import ivy from ivy.functional.frontends.numpy.func_wrapper import ( to_ivy_arrays_and_back, inputs_to_ivy_arrays, from_zero_dim_arrays_to_scalar, handle_numpy_out, ) from ivy.functional.frontends.numpy import promote_types_of_numpy_inputs from ivy.func_wrapper import with_supported_dtypes @inputs_to_ivy_arrays @from_zero_dim_arrays_to_scalar def allclose(a, b, /, *, rtol=1e-05, atol=1e-08, equal_nan=False): a, b = promote_types_of_numpy_inputs(a, b) return ivy.allclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan) @to_ivy_arrays_and_back @from_zero_dim_arrays_to_scalar def isclose(a, b, /, *, rtol=1e-05, atol=1e-08, equal_nan=False): a, b = promote_types_of_numpy_inputs(a, b) return ivy.isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan) @with_supported_dtypes( {"2.6.0 and below": ("int64", "float64", "float32", "int32", "bfloat16")}, "paddle" ) @to_ivy_arrays_and_back def isin(element, test_elements, assume_unique=False, invert=False): return ivy.isin(element, test_elements, assume_unique=assume_unique, invert=invert) @handle_numpy_out @to_ivy_arrays_and_back @from_zero_dim_arrays_to_scalar def isneginf(x, out=None): return ivy.isinf(x, detect_positive=False) @handle_numpy_out @to_ivy_arrays_and_back @from_zero_dim_arrays_to_scalar def isposinf(x, out=None): return ivy.isinf(x, detect_negative=False)
ivy/ivy/functional/frontends/numpy/logic/array_contents.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/logic/array_contents.py", "repo_id": "ivy", "token_count": 635 }
33
# local import ivy.functional.frontends.numpy as np_frontend import ivy def asmatrix(data, dtype=None): return np_frontend.matrix(ivy.array(data), dtype=dtype, copy=False) def asscalar(a): return a.item()
ivy/ivy/functional/frontends/numpy/manipulation_routines/changing_kind_of_array.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/manipulation_routines/changing_kind_of_array.py", "repo_id": "ivy", "token_count": 86 }
34
# global import ivy # local from ivy.functional.frontends.numpy.func_wrapper import ( to_ivy_arrays_and_back, from_zero_dim_arrays_to_scalar, ) @to_ivy_arrays_and_back def sinc(x): if ivy.get_num_dims(x) == 0: x = ivy.astype(x, ivy.float64) return ivy.sinc(x) @to_ivy_arrays_and_back @from_zero_dim_arrays_to_scalar def unwrap(p, discont=None, axis=-1, *, period=2 * ivy.pi): p = ivy.asarray(p) nd = p.ndim dd = ivy.diff(p, axis=axis) if discont is None: discont = period / 2 slice1 = [slice(None, None)] * nd # full slices slice1[axis] = ivy.slice(1, None) slice1 = ivy.tuple(slice1) dtype = ivy.result_type(dd, period) if ivy.issubdtype(dtype, ivy.integer): interval_high, rem = ivy.divmod(period, 2) boundary_ambiguous = rem == 0 else: interval_high = period / 2 boundary_ambiguous = True interval_low = -interval_high ddmod = ivy.mod(dd - interval_low, period) + interval_low if boundary_ambiguous: ivy.copyto(ddmod, interval_high, where=(ddmod == interval_low) & (dd > 0)) ph_correct = ddmod - dd ivy.copyto(ph_correct, 0, where=ivy.abs(dd) < discont) up = ivy.array(p, copy=True, dtype=dtype) up[slice1] = p[slice1] + ph_correct.cumsum(axis) return up
ivy/ivy/functional/frontends/numpy/mathematical_functions/other_special_functions.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/mathematical_functions/other_special_functions.py", "repo_id": "ivy", "token_count": 612 }
35
# global # local import ivy from ivy.functional.frontends.numpy.creation_routines.from_existing_data import array from ivy.functional.frontends.numpy.ndarray.ndarray import ndarray class generic(ndarray): _name = "generic" def __init__(self): raise ivy.utils.exceptions.IvyException( f"cannot create 'numpy.{self._name}' instances" ) class bool_(generic): def __new__(cls, value=0): ret = array(value, dtype="bool") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "bool") if hasattr(value, "ivy_array") else ivy.array(value, dtype="bool") ) def __repr__(self): return "True" if self.ivy_array else "False" class number(generic): _name = "number" class bfloat16(generic): def __new__(cls, value=0): ret = array(value, dtype="bfloat16") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "bfloat16") if hasattr(value, "ivy_array") else ivy.array(value, dtype="bfloat16") ) class integer(number): _name = "integer" def __repr__(self): return self.ivy_array.__repr__()[10:-1] class inexact(number): _name = "inexact" class signedinteger(integer): _name = "signedinteger" class unsignedinteger(integer): _name = "unsignedinteger" class floating(inexact): _name = "floating" def __repr__(self): return self.ivy_array.__repr__()[10:-1] class complexfloating(inexact): _name = "complexfloating" def __repr__(self): return self.ivy_array.__repr__()[10:-1] class byte(signedinteger): def __new__(cls, value=0): ret = array(value, dtype="int8") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "int8") if hasattr(value, "ivy_array") else ivy.array(value, dtype="int8") ) class short(signedinteger): def __new__(cls, value=0): ret = array(value, dtype="int16") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "int16") if hasattr(value, "ivy_array") else ivy.array(value, dtype="int16") ) class intc(signedinteger): def __new__(cls, value=0): ret = array(value, dtype="int32") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "int32") if hasattr(value, "ivy_array") else ivy.array(value, dtype="int32") ) class int_(signedinteger): def __new__(cls, value=0): ret = array(value, dtype="int64") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "int64") if hasattr(value, "ivy_array") else ivy.array(value, dtype="int64") ) class longlong(signedinteger): def __new__(cls, value=0): ret = array(value, dtype="int64") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "int64") if hasattr(value, "ivy_array") else ivy.array(value, dtype="int64") ) class uint(signedinteger): def __new__(cls, value=0): ret = array(value, dtype="uint64") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "uint64") if hasattr(value, "ivy_array") else ivy.array(value, dtype="uint64") ) class ulonglong(signedinteger): def __new__(cls, value=0): ret = array(value, dtype="uint64") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "uint64") if hasattr(value, "ivy_array") else ivy.array(value, dtype="uint64") ) class ubyte(unsignedinteger): def __new__(cls, value=0): ret = array(value, dtype="uint8") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "uint8") if hasattr(value, "ivy_array") else ivy.array(value, dtype="uint8") ) class ushort(unsignedinteger): def __new__(cls, value=0): ret = array(value, dtype="uint16") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "uint16") if hasattr(value, "ivy_array") else ivy.array(value, dtype="uint16") ) class uintc(unsignedinteger): def __new__(cls, value=0): ret = array(value, dtype="uint32") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "uint32") if hasattr(value, "ivy_array") else ivy.array(value, dtype="uint32") ) class half(floating): def __new__(cls, value=0): ret = array(value, dtype="float16") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "float16") if hasattr(value, "ivy_array") else ivy.array(value, dtype="float16") ) class single(floating): def __new__(cls, value=0): ret = array(value, dtype="float32") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "float32") if hasattr(value, "ivy_array") else ivy.array(value, dtype="float32") ) class double(floating, float): def __new__(cls, value=0): ret = array(value, dtype="float64") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "float64") if hasattr(value, "ivy_array") else ivy.array(value, dtype="float64") ) class csingle(complexfloating): def __new__(cls, value=0): ret = array(value, dtype="complex64") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "complex64") if hasattr(value, "ivy_array") else ivy.array(value, dtype="complex64") ) class cdouble(complexfloating, complex): def __new__(cls, value=0): ret = array(value, dtype="complex128") if ret.shape != (): return ret obj = super().__new__(cls) return obj def __init__(self, value=0): ndarray.__init__(self, 0) self.ivy_array = ( ivy.astype(value.ivy_array, "complex128") if hasattr(value, "ivy_array") else ivy.array(value, dtype="complex128") ) bool8 = bool_ complex128 = cfloat = complex_ = cdouble complex64 = singlecomplex = csingle float16 = half float32 = single float64 = float_ = double int16 = short int32 = intc int64 = intp = int_ int8 = byte uint16 = ushort uint32 = uintc uint64 = uintp = uint uint8 = ubyte
ivy/ivy/functional/frontends/numpy/scalars/scalars.py/0
{ "file_path": "ivy/ivy/functional/frontends/numpy/scalars/scalars.py", "repo_id": "ivy", "token_count": 4642 }
36
import ivy from ivy.functional.frontends.onnx.func_wrapper import to_ivy_arrays_and_back @to_ivy_arrays_and_back def MatMul(x1, x2): return ivy.matmul(x1, x2)
ivy/ivy/functional/frontends/onnx/linalg.py/0
{ "file_path": "ivy/ivy/functional/frontends/onnx/linalg.py", "repo_id": "ivy", "token_count": 78 }
37
# local import ivy from ivy.func_wrapper import with_supported_dtypes from ivy.functional.frontends.torch.func_wrapper import to_ivy_arrays_and_back from ivy.functional.frontends.torch.nn.functional import convolution_functions # --- Helpers --- # # --------------- # def _channel_first_input(x, data_format): ndims = len(x.shape) dims = ndims - 2 if 1 >= dims >= 3: raise ivy.utils.exceptions.IvyError(f"invalid for input with {dims} dims") # channel first input if data_format not in ["NCL", "NCHW", "NCDHW"]: if data_format in ["NLC", "NHWC", "NDHWC"]: x = ivy.permute_dims(x, axes=(0, ndims - 1, *range(1, ndims - 1))) else: raise ivy.utils.exceptions.IvyError( "data_format should be " + "'NCL' or 'NLC' " if dims == 1 else ( "'NCHW' or 'NHWC' " if dims == 2 else "'NCDHW' or 'NDHWC' " + f"but got data_format '{data_format}'" ) ) return x def _conv( x, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, data_format="NLC" ): x = _channel_first_input(x, data_format) if padding == "same": dilation = 1 return convolution_functions._conv( x, weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups, ) def _conv_transpose( x, weight, bias=None, stride=1, padding=0, output_padding=0, dilation=1, groups=1, data_format="NLC", ): x = _channel_first_input(x, data_format) if padding == "same": dilation = 1 return convolution_functions._conv_transpose( x, weight, bias=bias, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation, ) # --- Main --- # # ------------ # @with_supported_dtypes({"2.6.0 and below": ("float32", "float64")}, "paddle") @to_ivy_arrays_and_back def conv1d( x, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, data_format="NCL", name=None, ): return _conv(x, weight, bias, stride, padding, dilation, groups, data_format) @with_supported_dtypes({"2.6.0 and below": ("float32", "float64")}, "paddle") @to_ivy_arrays_and_back def conv1d_transpose( x, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1, output_size=None, data_format="NCL", name=None, ): return _conv_transpose( x, weight, bias, stride, padding, output_padding, dilation, groups, data_format ) @with_supported_dtypes({"2.6.0 and below": ("float32", "float64")}, "paddle") @to_ivy_arrays_and_back def conv2d( x, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, data_format="NCHW", name=None, ): return _conv(x, weight, bias, stride, padding, dilation, groups, data_format) @with_supported_dtypes({"2.6.0 and below": ("float32", "float64")}, "paddle") @to_ivy_arrays_and_back def conv2d_transpose( x, weight, bias=None, stride=1, padding=0, output_padding=0, dilation=1, groups=1, output_size=None, data_format="NCHW", name=None, ): return _conv_transpose( x, weight, bias, stride, padding, output_padding, dilation, groups, data_format ) @with_supported_dtypes({"2.6.0 and below": ("float32", "float64")}, "paddle") @to_ivy_arrays_and_back def conv3d( x, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, data_format="NCDHW", name=None, ): return _conv(x, weight, bias, stride, padding, dilation, groups, data_format) @with_supported_dtypes({"2.6.0 and below": ("float32", "float64")}, "paddle") @to_ivy_arrays_and_back def conv3d_transpose( x, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1, output_size=None, data_format="NCDHW", name=None, ): return _conv_transpose( x, weight, bias, stride, padding, output_padding, dilation, groups, data_format )
ivy/ivy/functional/frontends/paddle/nn/functional/conv.py/0
{ "file_path": "ivy/ivy/functional/frontends/paddle/nn/functional/conv.py", "repo_id": "ivy", "token_count": 2016 }
38
# local from ..manipulation import * # noqa: F401 import ivy from ivy.functional.frontends.paddle.func_wrapper import ( to_ivy_arrays_and_back, ) from ivy.func_wrapper import with_unsupported_dtypes @with_supported_dtypes( {"2.5.1 and below": ("bool", "int32", "int64", "float16", "float32", "float64")}, "paddle", ) @to_ivy_arrays_and_back def index_add_(x, index, axis, value, *, name=None): x = ivy.swapaxes(x, axis, 0) value = ivy.swapaxes(value, axis, 0) _to_adds = [] index = sorted(zip(ivy.to_list(index), range(len(index))), key=(lambda i: i[0])) while index: _curr_idx = index[0][0] while len(_to_adds) < _curr_idx: _to_adds.append(ivy.zeros_like(value[0])) _to_add_cum = ivy.get_item(value, index[0][1]) while (len(index)) > 1 and (index[0][0] == index[1][0]): _to_add_cum = _to_add_cum + ivy.get_item(value, index.pop(1)[1]) index.pop(0) _to_adds.append(_to_add_cum) while len(_to_adds) < x.shape[0]: _to_adds.append(ivy.zeros_like(value[0])) _to_adds = ivy.stack(_to_adds) if len(x.shape) < 2: # Added this line due to the paddle backend treating scalars as 1-d arrays _to_adds = ivy.flatten(_to_adds) ret = ivy.add(x, _to_adds) ret = ivy.swapaxes(ret, axis, 0) x = ret return x # NOTE: # Only inplace functions are to be added in this file. # Please add non-inplace counterparts to `/frontends/paddle/manipulation.py`. @with_unsupported_dtypes( {"2.6.0 and below": ("int8", "uint8", "int16", "uint16", "float16", "bfloat16")}, "paddle", ) @to_ivy_arrays_and_back def reshape_(x, shape): ivy.reshape(x, shape) return x
ivy/ivy/functional/frontends/paddle/tensor/manipulation.py/0
{ "file_path": "ivy/ivy/functional/frontends/paddle/tensor/manipulation.py", "repo_id": "ivy", "token_count": 806 }
39
from .ndimage import *
ivy/ivy/functional/frontends/scipy/ndimage/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/scipy/ndimage/__init__.py", "repo_id": "ivy", "token_count": 7 }
40
from . import _split from ._split import *
ivy/ivy/functional/frontends/sklearn/model_selection/__init__.py/0
{ "file_path": "ivy/ivy/functional/frontends/sklearn/model_selection/__init__.py", "repo_id": "ivy", "token_count": 12 }
41
# local from ivy.functional.frontends.tensorflow.general_functions import pad as tf_pad pad = tf_pad
ivy/ivy/functional/frontends/tensorflow/compat/v1/general_functions.py/0
{ "file_path": "ivy/ivy/functional/frontends/tensorflow/compat/v1/general_functions.py", "repo_id": "ivy", "token_count": 34 }
42
# global import ivy from ivy.functional.frontends.tensorflow.func_wrapper import to_ivy_arrays_and_back from ivy.func_wrapper import with_unsupported_dtypes, with_supported_dtypes from ivy.functional.frontends.tensorflow import check_tensorflow_casting # --- Helpers --- # # --------------- # def _convolution_broadcast_helper( arg, num_spatial_dims, channel_index, name="dilations" ): # Helper to broadcast dilations and strides to correct dims if arg is None: return [1] * num_spatial_dims else: if isinstance(arg, int): arg = [arg] else: arg = list(arg) len_arg = len(arg) if len_arg == num_spatial_dims + 2: return arg # Broadcast to rcorrect dimensions if len_arg == 1: arg = arg * num_spatial_dims elif len_arg != num_spatial_dims: raise ValueError( f"{name} should be of length 1, " f"{num_spatial_dims} or {num_spatial_dims + 2}. " f"Received: {name}={arg} of length {len_arg}." ) # Add dimensions for batch and channel if channel_index == 1: return [1, 1] + arg else: return [1] + arg + [1] def _reduce_padding(padding, data_format): if not isinstance(padding, str): if data_format[1] == "C": padding = padding[2:] else: padding = padding[1:-1] return padding def _reduce_strides_dilations(dim, stride, dilations): if not isinstance(stride, int): if len(stride) > dim: stride = stride[1:-1] if len(stride) == 1 and dim != 1: stride = stride[0] if not isinstance(dilations, int): if len(dilations) > dim: dilations = dilations[1:-1] if len(dilations) == 1 and dim != 1: dilations = dilations[0] return stride, dilations # --- Main --- # # ------------ # @to_ivy_arrays_and_back def atrous_conv2d(value, filters, rate, padding): return ivy.conv2d(value, filters, 1, padding, dilations=[rate] * 2) @to_ivy_arrays_and_back def atrous_conv2d_transpose(value, filters, output_shape, rate, padding): filters = filters.swapaxes(-2, -1) return ivy.conv2d_transpose( value, filters, 1, padding, output_shape=output_shape, dilations=[rate] * 2 ) @to_ivy_arrays_and_back def avg_pool(input, ksize, strides, padding, data_format="NWC", name=None): if len(ivy.shape(input)) == 3: return ivy.avg_pool1d(input, ksize, strides, padding, data_format=data_format) elif len(ivy.shape(input)) == 4: return ivy.avg_pool2d(input, ksize, strides, padding, data_format=data_format) return ivy.avg_pool3d(input, ksize, strides, padding, data_format=data_format) # avg_pool1d @to_ivy_arrays_and_back def avg_pool1d(input, ksize, strides, padding, data_format="NWC", name=None): return ivy.avg_pool1d(input, ksize, strides, padding, data_format=data_format) # avg_pool2d @to_ivy_arrays_and_back def avg_pool2d(input, ksize, strides, padding, data_format="NHWC", name=None): return ivy.avg_pool2d(input, ksize, strides, padding, data_format=data_format) # avg_pool3d @to_ivy_arrays_and_back def avg_pool3d(input, ksize, strides, padding, data_format="NDHWC", name=None): return ivy.avg_pool3d(input, ksize, strides, padding, data_format=data_format) @to_ivy_arrays_and_back def batch_normalization(x, mean, variance, offset, scale, variance_epsilon, name=None): xnormalized, _, _ = ivy.batch_norm( x, mean, variance, offset=offset, scale=scale, eps=variance_epsilon, ) return xnormalized @to_ivy_arrays_and_back def bias_add(value, bias, data_format=None, name=None): if data_format is None: data_format = "N...C" channel_index = data_format.find("C") if channel_index != 1: return ivy.add(value, bias) else: value = ivy.swapaxes(value, 1, -1) res = ivy.add(value, bias) return ivy.swapaxes(res, 1, -1) @to_ivy_arrays_and_back def conv1d( input, filters, stride, padding, data_format="NWC", dilations=None, name=None ): dilations = 1 if dilations is None else dilations stride, dilations = _reduce_strides_dilations(1, stride, dilations) return ivy.conv1d( input, filters, stride, padding, data_format=data_format, dilations=dilations ) @to_ivy_arrays_and_back def conv1d_transpose( input, filters, output_shape, strides, padding="SAME", data_format="NWC", dilations=None, name=None, ): dilations = 1 if dilations is None else dilations strides, dilations = _reduce_strides_dilations(1, strides, dilations) return ivy.conv1d_transpose( input, filters, strides, padding, output_shape=output_shape, data_format=data_format, dilations=dilations, ) @to_ivy_arrays_and_back def conv2d( input, filters, strides, padding, data_format="NHWC", dilations=None, name=None ): dilations = 1 if dilations is None else dilations strides, dilations = _reduce_strides_dilations(2, strides, dilations) padding = _reduce_padding(padding, data_format) return ivy.conv2d( input, filters, strides, padding, data_format=data_format, dilations=dilations ) @to_ivy_arrays_and_back def conv2d_transpose( input, filters, output_shape, strides, padding="SAME", data_format="NHWC", dilations=None, name=None, ): dilations = 1 if dilations is None else dilations strides, dilations = _reduce_strides_dilations(2, strides, dilations) padding = _reduce_padding(padding, data_format) return ivy.conv2d_transpose( input, filters, strides, padding, output_shape=output_shape, data_format=data_format, dilations=dilations, ) @to_ivy_arrays_and_back def conv3d( input, filters, strides, padding, data_format="NDHWC", dilations=None, name=None ): dilations = 1 if dilations is None else dilations strides, dilations = _reduce_strides_dilations(3, strides, dilations) return ivy.conv3d( input, filters, strides, padding, data_format=data_format, dilations=dilations ) @with_unsupported_dtypes({"2.15.0 and below": ("bfloat16",)}, "tensorflow") @to_ivy_arrays_and_back def conv3d_transpose( input, filters, output_shape, strides, padding="SAME", data_format="NDHWC", dilations=None, name=None, ): dilations = 1 if dilations is None else dilations strides, dilations = _reduce_strides_dilations(3, strides, dilations) return ivy.conv3d_transpose( input, filters, strides, padding, output_shape=output_shape, data_format=data_format, dilations=dilations, ) @to_ivy_arrays_and_back def convolution( input, filters, strides=None, padding="VALID", data_format=None, dilations=None, name=None, ): num_spatial_dims = input.ndim - 2 if data_format is None or not data_format.startswith("NC"): data_format = "channel_last" else: data_format = "channel_first" channel_index = -1 if data_format == "channel_last" else 1 input_depth = ivy.shape(input)[channel_index] filters_depth = ivy.shape(filters)[-2] feature_group_count = 1 if input_depth != filters_depth: if input_depth % filters_depth != 0: raise ValueError( "input depth must be evenly divisible by filter depth: " f"{input_depth} vs {filters_depth}" ) feature_group_count = input_depth // filters_depth return ivy.conv_general_dilated( input, filters, strides, padding, dims=num_spatial_dims, data_format=data_format, dilations=dilations, feature_group_count=feature_group_count, ) @to_ivy_arrays_and_back def crelu(features, axis=-1, name=None): c = ivy.concat([features, -features], axis=axis) return ivy.relu(c) # ctc_unique_labels @to_ivy_arrays_and_back def ctc_unique_labels(labels, name=None): ctc_labels = ivy.unique_all(labels, by_value=False) unique_pad = ivy.pad( ctc_labels[0], (0, labels.size - ctc_labels[0].size), mode="constant" ) return unique_pad, ctc_labels[2] @with_unsupported_dtypes({"2.15.0 and below": ("bfloat16",)}, "tensorflow") @to_ivy_arrays_and_back def depthwise_conv2d( input, filter, strides, padding="SAME", data_format="NHWC", dilations=None, name=None, ): dilations = 1 if dilations is None else dilations strides, dilations = _reduce_strides_dilations(2, strides, dilations) fc = filter.shape[-2] filter = filter.reshape( [*filter.shape[0:2], 1, filter.shape[-2] * filter.shape[-1]] ) return ivy.conv_general_dilated( input, filter, strides, padding, data_format="channel_last" if data_format[-1] == "C" else "channel_first", dilations=dilations, feature_group_count=fc, ) @to_ivy_arrays_and_back def dropout(x, rate, noise_shape=None, seed=None, name=None): return ivy.dropout(x, rate, noise_shape=noise_shape, training=True, seed=seed) @with_unsupported_dtypes({"2.11.1 and below": ("complex",)}, "tensorflow") @to_ivy_arrays_and_back def embedding_lookup(params, ids, max_norm=None, name=None): return ivy.embedding(params, ids, max_norm=max_norm) @to_ivy_arrays_and_back def gelu(features, approximate=False, name=None): return ivy.gelu(features, approximate=approximate) @with_unsupported_dtypes({"2.15.0 and below": "float16"}, "tensorflow") @to_ivy_arrays_and_back def leaky_relu(features, alpha=0.2, name=None): return ivy.leaky_relu(features, alpha=alpha) @with_supported_dtypes({"2.15.0 and below": ("float32", "float16")}, "tensorflow") @to_ivy_arrays_and_back def local_response_normalization( input, depth_radius=5, bias=1.0, alpha=1.0, beta=0.5, name=None ): return ivy.local_response_norm( input, 2 * depth_radius + 1, bias=bias, alpha=alpha, beta=beta ) @to_ivy_arrays_and_back def log_poisson_loss(targets, log_input, compute_full_loss=False, name=None): return ivy.log_poisson_loss(targets, log_input, compute_full_loss=compute_full_loss) @to_ivy_arrays_and_back def max_pool1d(input, ksize, strides, padding, data_format="NWC", name=None): return ivy.max_pool1d(input, ksize, strides, padding, data_format=data_format) @to_ivy_arrays_and_back def max_pool2d(input, ksize, strides, padding, data_format="NHWC", name=None): return ivy.max_pool2d(input, ksize, strides, padding, data_format=data_format) @with_supported_dtypes({"2.15.0 and below": ("float32",)}, "tensorflow") @to_ivy_arrays_and_back def max_pool3d(input, ksize, strides, padding, data_format="NDHWC", name=None): return ivy.max_pool3d(input, ksize, strides, padding, data_format=data_format) @to_ivy_arrays_and_back def moments(x, axes, shift=None, keepdims=False, name=None): return ivy.mean(x, axis=ivy.to_list(axes), keepdims=keepdims), ivy.var( x, axis=ivy.to_list(axes), keepdims=keepdims ) @with_unsupported_dtypes( { "2.15.0 and below": ( "int8", "int16", "int32", "int64", "bool", ) }, "tensorflow", ) @to_ivy_arrays_and_back def normalize_moments(counts, mean_ss, variance_ss, shift=None, name=None): divisor = ivy.reciprocal(counts) if shift is not None: shifted_mean = ivy.multiply(mean_ss, divisor) mean = ivy.add(shifted_mean, shift) else: shifted_mean = ivy.multiply(mean_ss, divisor) mean = shifted_mean variance = ivy.subtract( ivy.multiply(variance_ss, divisor), ivy.square(shifted_mean) ) return mean, variance # pool @to_ivy_arrays_and_back def pool( input, window_shape, pooling_type, strides=None, padding="VALID", data_format=None, dilations=None, name=None, ): return ivy.pool( input, window_shape, pooling_type, strides=strides, padding=padding, data_format=data_format, dilations=dilations, ) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, "tensorflow") @to_ivy_arrays_and_back def relu(features, name=None): return ivy.relu(features) @with_unsupported_dtypes({"2.15.0 and below": ("complex",)}, "tensorflow") @to_ivy_arrays_and_back def relu6(features, name=None): return ivy.relu6(features) @with_unsupported_dtypes({"2.15.0 and below": ("bfloat16",)}, "tensorflow") @to_ivy_arrays_and_back def separable_conv2d( input, depthwise_filter, pointwise_filter, strides, padding, data_format=None, dilations=None, name=None, ): dilations = 1 if dilations is None else dilations strides, dilations = _reduce_strides_dilations(2, strides, dilations) ret = depthwise_conv2d( input, depthwise_filter, strides=strides, padding=padding, dilations=dilations, data_format=data_format, ) return conv2d(ret, pointwise_filter, 1, "SAME", data_format=data_format) @with_unsupported_dtypes( { "2.15.0 and below": ( "int8", "int16", "int32", "int64", "bool", ) }, "tensorflow", ) @to_ivy_arrays_and_back def sigmoid_cross_entropy_with_logits(labels=None, logits=None, name=None): ivy.utils.assertions.check_shape(labels, logits) zeros = ivy.zeros_like(logits) max_logits = ivy.where(logits >= zeros, logits, zeros) neg_abs_logits = ivy.negative(ivy.abs(logits)) neg_multiple = ivy.negative(ivy.multiply(logits, labels)) ret_val = ivy.add(max_logits, neg_multiple) return ivy.add(ret_val, ivy.log1p(ivy.exp(neg_abs_logits))) @to_ivy_arrays_and_back def silu(features, beta: float = 1.0): beta = ivy.astype(ivy.array(beta), ivy.dtype(features)) return ivy.multiply(features, ivy.sigmoid(ivy.multiply(beta, features))) @with_unsupported_dtypes({"2.15.0 and below": ("float16",)}, "tensorflow") @to_ivy_arrays_and_back def softmax(logits, axis=None, name=None): return ivy.softmax(logits, axis=axis) # Softsign @with_unsupported_dtypes( { "2.15.0 and below": ( "int8", "int16", "int32", "int64", ) }, "tensorflow", ) @to_ivy_arrays_and_back def softsign(x, name=None): return ivy.softsign(x) # sufficient_statistics @to_ivy_arrays_and_back def sufficient_statistics(x, axes, shift=None, keepdims=False, name=None): count = 1 shape = ivy.shape(x) axes = list(set(axes)) for a in axes: if ivy.to_scalar(a) < 0: index = x.ndim + ivy.to_scalar(a) else: index = ivy.to_scalar(a) count *= shape[index] count = ivy.array(count, dtype=ivy.dtype(x)) if shift is None: sum_of_elements = ivy.sum(x, axis=axes, keepdims=keepdims) sum_of_squares = ivy.sum(ivy.square(x), axis=axes, keepdims=keepdims) else: sum_of_elements = ivy.sum( (ivy.subtract(x, shift)), axis=axes, keepdims=keepdims ) sum_of_squares = ivy.sum( (ivy.square(ivy.subtract(x, shift))), axis=axes, keepdims=keepdims ) if shift.ndim == 0: ivy.reshape(shift, ()) if count.ndim == 0: ivy.reshape(count, ()) if sum_of_elements.ndim == 0: ivy.reshape(sum_of_elements, ()) if sum_of_squares.ndim == 0: ivy.reshape(sum_of_squares, ()) return count, sum_of_elements, sum_of_squares, shift @with_unsupported_dtypes( { "2.15.0 and below": ( "int8", "int16", "int32", "int64", "bool", ) }, "tensorflow", ) @to_ivy_arrays_and_back def weighted_cross_entropy_with_logits( labels=None, logits=None, pos_weight=1.0, name=None ): ivy.utils.assertions.check_shape(labels, logits) ones = ivy.ones_like(labels) zeros = ivy.zeros_like(logits) log_weight = ivy.add(ones, ivy.multiply(pos_weight - 1, labels)) ones_minus_labels = ivy.subtract(ones, labels) first_term = ivy.multiply(ones_minus_labels, logits) max_neg_logits = ivy.where( ivy.negative(logits) >= zeros, ivy.negative(logits), zeros ) neg_abs_logits = ivy.negative(ivy.abs(logits)) log_neg_abs_logits = ivy.log1p(ivy.exp(neg_abs_logits)) second_term = ivy.multiply(log_weight, ivy.add(log_neg_abs_logits, max_neg_logits)) return ivy.add(first_term, second_term) # weighted_moments @to_ivy_arrays_and_back def weighted_moments(x, axes, frequency_weights, keepdims=False, name=None): fw_x_prod = frequency_weights * x fw_x_prod = ivy.array(fw_x_prod) weighted_input_sum = ivy.sum(fw_x_prod, axis=axes, keepdims=True).astype( fw_x_prod.dtype ) broadcasted_weights = frequency_weights + ivy.zeros_like(x) broadcasted_weights = ivy.array(broadcasted_weights) sum_of_weights = ivy.sum(broadcasted_weights, axis=axes, keepdims=True).astype( broadcasted_weights.dtype ) divisor = ivy.reciprocal(sum_of_weights) weighted_input_sum, divisor = check_tensorflow_casting(weighted_input_sum, divisor) weighted_mean = ivy.multiply(weighted_input_sum, divisor) x, weighted_mean = check_tensorflow_casting(x, weighted_mean) squared_difference = ivy.square(ivy.subtract(x, weighted_mean)) if isinstance(squared_difference, complex): squared_difference = squared_difference.real - squared_difference.imag * 1j fw_sq_diff_prod = frequency_weights * squared_difference fw_sq_diff_prod = ivy.array(fw_sq_diff_prod) weighted_distsq = ivy.sum(fw_sq_diff_prod, axis=axes, keepdims=True).astype( fw_sq_diff_prod.dtype ) weighted_distsq, divisor = check_tensorflow_casting(weighted_distsq, divisor) weighted_variance = ivy.multiply(weighted_distsq, divisor) if not keepdims: weighted_mean = ivy.squeeze(weighted_mean, axis=axes) weighted_variance = ivy.squeeze(weighted_variance, axis=axes) return weighted_mean, weighted_variance swish = silu
ivy/ivy/functional/frontends/tensorflow/nn.py/0
{ "file_path": "ivy/ivy/functional/frontends/tensorflow/nn.py", "repo_id": "ivy", "token_count": 8359 }
43
# local import ivy from ivy.functional.frontends.torch.func_wrapper import ( to_ivy_arrays_and_back, to_ivy_shape, ) from ivy.func_wrapper import ( with_unsupported_dtypes, with_supported_dtypes, ) import ivy.functional.frontends.torch as torch_frontend @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def arange( start=0, end=None, step=1, *, out=None, dtype=None, layout=None, device=None, requires_grad=False, ): return ivy.arange(start, end, step, dtype=dtype, device=device, out=out) @to_ivy_arrays_and_back def as_strided(input, size, stride, storage_offset=None): ind = ivy.array([0], dtype=ivy.int64) for i, (size_i, stride_i) in enumerate(zip(size, stride)): r_size = [1] * len(stride) r_size[i] = -1 ind = ind + ivy.reshape(ivy.arange(size_i), r_size) * stride_i if storage_offset: ind = ind + storage_offset # in case the input is a non-contiguous native array, # the return will differ from torch.as_strided if ivy.is_ivy_array(input) and input.base is not None: return ivy.gather(ivy.flatten(input.base), ind) return ivy.gather(ivy.flatten(input), ind) @to_ivy_arrays_and_back def as_tensor( data, *, dtype=None, device=None, ): if dtype is None: if isinstance(data, int): dtype = ivy.int64 elif isinstance(data, float): dtype = torch_frontend.get_default_dtype() elif isinstance(data, (list, tuple)): if all(isinstance(d, int) for d in data): dtype = ivy.int64 else: dtype = torch_frontend.get_default_dtype() return ivy.asarray(data, dtype=dtype, device=device) @to_ivy_arrays_and_back def asarray( obj, *, dtype=None, device=None, copy=None, ): return ivy.asarray(obj, copy=copy, dtype=dtype, device=device) @with_supported_dtypes({"2.2 and below": ("float32", "float64")}, "torch") @to_ivy_arrays_and_back def complex( real, imag, *, out=None, ): assert real.dtype == imag.dtype, TypeError( "Expected real and imag to have the same dtype, " f" but got real.dtype = {real.dtype} and imag.dtype = {imag.dtype}." ) complex_dtype = ivy.complex64 if real.dtype != ivy.float64 else ivy.complex128 complex_array = real + imag * 1j return complex_array.astype(complex_dtype, out=out) @to_ivy_arrays_and_back def empty( *args, size=None, out=None, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False, memory_format=None, ): if args and size: raise TypeError("empty() got multiple values for argument 'shape'") if size is None: size = ( args[0] if isinstance(args[0], (tuple, list, ivy.Shape, ivy.NativeShape)) else args ) if isinstance(size, (tuple, list)): size = tuple(s.to_scalar() if ivy.is_array(s) else s for s in size) return ivy.empty(shape=size, dtype=dtype, device=device, out=out) @to_ivy_arrays_and_back def empty_like( input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=None, ): ret = ivy.empty_like(input, dtype=dtype, device=device) return ret @to_ivy_arrays_and_back def empty_strided( size, stride, *, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False, ): max_offsets = [(s - 1) * st for s, st in zip(size, stride)] items = sum(max_offsets) + 1 empty_array = empty(items, dtype=dtype, device=device) strided_array = as_strided(empty_array, size, stride) return strided_array @to_ivy_arrays_and_back def eye( n, m=None, *, out=None, dtype=None, layout=None, device=None, requires_grad=False ): return ivy.eye(n, m, dtype=dtype, device=device, out=out) @to_ivy_arrays_and_back def from_dlpack(ext_tensor): return ivy.from_dlpack(ext_tensor) @to_ivy_arrays_and_back def from_numpy(data, /): return ivy.asarray(data, dtype=ivy.dtype(data)) @to_ivy_arrays_and_back def frombuffer( buffer, *, dtype, count=-1, offset=0, requires_grad=False, ): return ivy.frombuffer(buffer, dtype=dtype, count=count, offset=offset) @to_ivy_arrays_and_back def full( size, fill_value, *, out=None, dtype=None, layout=None, device=None, requires_grad=None, ): ret = ivy.full(size, fill_value, dtype=dtype, device=device, out=out) return ret @to_ivy_arrays_and_back def full_like( input, fill_value, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=None, ): fill_value = ivy.to_scalar(fill_value) return ivy.full_like(input, fill_value, dtype=dtype, device=device) @to_ivy_arrays_and_back def heaviside(input, values, *, out=None): return ivy.heaviside(input, values, out=out) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def linspace( start, end, steps, *, out=None, dtype=None, device=None, layout=None, requires_grad=False, ): dtype = torch_frontend.get_default_dtype() if dtype is None else dtype return ivy.linspace(start, end, num=steps, dtype=dtype, device=device, out=out) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def logspace( start, end, steps, *, base=10.0, out=None, dtype=None, layout=None, device=None, requires_grad=False, ): ret = ivy.logspace( start, end, num=steps, base=base, dtype=dtype, device=device, out=out ) return ret @to_ivy_shape @to_ivy_arrays_and_back def ones(*args, size=None, out=None, dtype=None, device=None, requires_grad=False): if args and size: raise TypeError("ones() got multiple values for argument 'shape'") if size is None: size = ( args[0] if isinstance(args[0], (tuple, list, ivy.Shape, ivy.NativeShape)) else args ) return ivy.ones(shape=size, dtype=dtype, device=device, out=out) @to_ivy_arrays_and_back def ones_like_v_0p3p0_to_0p3p1(input, out=None): return ivy.ones_like(input, out=None) @to_ivy_arrays_and_back def ones_like_v_0p4p0_and_above( input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=None, ): ret = ivy.ones_like(input, dtype=dtype, device=device) return ret @with_supported_dtypes({"2.2 and below": ("float32", "float64")}, "torch") @to_ivy_arrays_and_back def polar( abs, angle, *, out=None, ): return complex(abs * angle.cos(), abs * angle.sin(), out=out) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def range( *args, dtype=None, layout=None, device=None, requires_grad=False, ): if len(args) == 1: end = args[0] start = 0 step = 1 elif len(args) == 2: end = args[1] start = args[0] step = 1 elif len(args) == 3: start, end, step = args else: ivy.utils.assertions.check_true( len(args) == 1 or len(args) == 3, "only 1 or 3 positional arguments are supported", ) range_vec = [] elem = start while 1: range_vec = range_vec + [elem] elem += step if start == end: break if start < end: if elem > end: break else: if elem < end: break return ivy.array(range_vec, dtype=dtype, device=device) @to_ivy_arrays_and_back def tensor( data, *, dtype=None, device=None, requires_grad=False, pin_memory=False, ): return ivy.array(data, dtype=dtype, device=device) @to_ivy_shape @to_ivy_arrays_and_back def zeros(*args, size=None, out=None, dtype=None, device=None, requires_grad=False): if args and size: raise TypeError("zeros() got multiple values for argument 'shape'") if size is None: size = ( args[0] if isinstance(args[0], (tuple, list, ivy.Shape, ivy.NativeShape)) else args ) return ivy.zeros(shape=size, dtype=dtype, device=device, out=out) @to_ivy_arrays_and_back def zeros_like( input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=None, ): ret = ivy.zeros_like(input, dtype=dtype, device=device) return ret
ivy/ivy/functional/frontends/torch/creation_ops.py/0
{ "file_path": "ivy/ivy/functional/frontends/torch/creation_ops.py", "repo_id": "ivy", "token_count": 4064 }
44
# local import ivy from ivy.func_wrapper import with_unsupported_dtypes, with_supported_dtypes from ivy.functional.frontends.torch.func_wrapper import to_ivy_arrays_and_back @to_ivy_arrays_and_back @with_unsupported_dtypes( { "2.2 and below": ( "complex", "float16", ) }, "torch", ) def celu(input, alpha=1.0, inplace=False): return ivy.celu(input, alpha=alpha) def celu_(input, alpha=1.0): return celu(input, alpha=alpha, inplace=True) @to_ivy_arrays_and_back def elu(input, alpha=1.0, inplace=False): prod = ivy.multiply( alpha, ivy.subtract(ivy.exp(input), 1), ) return ivy.where(ivy.greater(input, 0), input, prod) def elu_(input, alpha=1.0): return elu(input, alpha=alpha, inplace=True) @to_ivy_arrays_and_back @with_unsupported_dtypes( { "2.2 and below": ( "float16", "bfloat16", ) }, "torch", ) def gelu(input, *, approximate="none"): if approximate == "none": return ivy.gelu(input, approximate=False) elif approximate == "tanh": return ivy.gelu(input, approximate=True) else: raise ivy.utils.exceptions.IvyException( "`approximate` argument must be either 'none' or 'tanh'." ) @to_ivy_arrays_and_back def glu(input, dim=-1): a, b = ivy.split(input, num_or_size_splits=2, axis=dim) return ivy.multiply(a, ivy.sigmoid(b)) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def gumbel_softmax(logits, tau=1, hard=False, eps=1e-10, dim=-1): gumbels = -ivy.empty_like(logits).exponential().log() gumbels = (logits + gumbels) / tau y_soft = ivy.softmax(gumbels, axis=dim) if hard: indices = y_soft.max(axis=dim, keepdims=True)[1] y_hard = ivy.zeros_like(logits) updates = ivy.ones_like(indices) y_hard = ivy.scatter_nd(indices, updates, reduction="replace", out=y_hard) ret = y_hard - y_soft.stop_gradient(preserve_type=True) + y_soft else: ret = y_soft return ret @to_ivy_arrays_and_back def hardshrink(input, lambd=0.5): mask = ivy.logical_or(ivy.greater(input, lambd), ivy.less(input, -lambd)) return ivy.where(mask, input, 0.0) @to_ivy_arrays_and_back def hardsigmoid(input, inplace=False): return ivy.divide(ivy.minimum(ivy.maximum(ivy.add(input, 3), 0), 6), 6) @to_ivy_arrays_and_back def hardswish(input, inplace=False): relu6_val = ivy.relu6(ivy.add(input, 3)) return ivy.multiply(input, ivy.divide(relu6_val, 6)) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def hardtanh(input, min_val=-1.0, max_val=1.0, inplace=False): less = ivy.where(ivy.less(input, min_val), min_val, input) return ivy.where(ivy.greater(input, max_val), max_val, less).astype(input.dtype) @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def hardtanh_(input, min_val=-1.0, max_val=1.0): return hardtanh(input, min_val=min_val, max_val=max_val, inplace=True) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def leaky_relu(input, negative_slope=0.01, inplace=False): return ivy.leaky_relu(input, alpha=negative_slope) @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def leaky_relu_(input, negative_slope=0.01): return leaky_relu(input, negative_slope=negative_slope, inplace=True) @to_ivy_arrays_and_back @with_supported_dtypes({"2.2 and below": ("float",)}, "torch") def local_response_norm(input, size, alpha=0.0001, beta=0.75, k=1.0): non_batched = input.ndim == 3 if non_batched: input = ivy.expand_dims(input, axis=2) ret = ivy.local_response_norm( input, size, bias=k, alpha=alpha, beta=beta, average=True, data_format="NCHW" ) if non_batched: ret = ivy.squeeze(ret, axis=2) return ret @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def log_softmax(input, dim=None, _stacklevel=3, dtype=None): if dtype: input = ivy.astype(ivy.array(input), ivy.as_ivy_dtype(dtype)) if dim is None: dim = -1 return ivy.log_softmax(input, axis=dim) @to_ivy_arrays_and_back @with_unsupported_dtypes( { "2.2 and below": ( "float16", "bfloat16", ) }, "torch", ) def logsigmoid(input): return ivy.logsigmoid(input) @to_ivy_arrays_and_back def mish(input, inplace=False): return ivy.multiply( input, ivy.tanh(ivy.softplus(input)), ) @to_ivy_arrays_and_back def normalize(input, p=2.0, dim=1, eps=1e-12, out=None): abs_square = ivy.pow(ivy.abs(input), p) sum_ = ivy.sum(abs_square, axis=dim, keepdims=True) pnorm_res = ivy.pow(sum_, 1.0 / p) max_ = ivy.maximum(pnorm_res, eps) return ivy.divide(input, max_, out=out) @to_ivy_arrays_and_back def prelu(input, weight): return ivy.add(ivy.maximum(0, input), ivy.multiply(weight, ivy.minimum(0, input))) @to_ivy_arrays_and_back def relu(input, inplace=False): return ivy.relu(input) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("complex",)}, "torch") def relu6(input, inplace=False): return ivy.relu6(input) @to_ivy_arrays_and_back def relu_(input): return relu(input, inplace=True) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def rrelu(input, lower=1.0 / 8, upper=1.0 / 3, training=False, inplace=False): if training: # alpha = ivy.random_uniform(low=lower, high=upper) # ToDo implement alpha correctly after fixing ivy.random_uniform pass else: alpha = (lower + upper) / 2 return ivy.subtract( ivy.relu(input), ivy.multiply(alpha, ivy.relu(ivy.negative(input))) ) @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def rrelu_(input, lower=1.0 / 8, upper=1.0 / 3, training=False): return rrelu(input, lower=lower, upper=upper, training=training, inplace=True) @to_ivy_arrays_and_back @with_supported_dtypes({"2.2 and below": ("float32", "float64")}, "torch") def scaled_dot_product_attention( query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None ): return ivy.scaled_dot_product_attention( query, key, value, scale=scale, mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, ) @to_ivy_arrays_and_back def selu(input, inplace=False): return ivy.selu(input) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def sigmoid(input): return ivy.sigmoid(input) @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") @to_ivy_arrays_and_back def silu(input, inplace=False): return ivy.multiply(input, ivy.sigmoid(input)) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def softmax(input, dim=None, _stacklevel=3, dtype=None): if dtype: input = ivy.astype(ivy.array(input), ivy.as_ivy_dtype(dtype)) return ivy.softmax(input, axis=dim) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def softmin(input, dim=None, dtype=None): if dtype: input = ivy.astype(ivy.array(input), ivy.as_ivy_dtype(dtype)) return ivy.softmax(-input, axis=dim) @to_ivy_arrays_and_back @with_unsupported_dtypes( { "2.2 and below": ( "float16", "bfloat16", ) }, "torch", ) def softplus(input, beta=1, threshold=20): return ivy.softplus(input, beta=beta, threshold=threshold) @to_ivy_arrays_and_back def softshrink(input, lambd=0.5): low = ivy.where(ivy.less(input, -lambd), ivy.add(input, lambd), 0) up = ivy.where(ivy.greater(input, lambd), ivy.subtract(input, lambd), 0) return ivy.add(low, up) @to_ivy_arrays_and_back def softsign(input): return ivy.divide(input, ivy.add(1, ivy.abs(input))) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def tanh(input): return ivy.tanh(input) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def tanhshrink(input): return ivy.subtract(input, ivy.tanh(input)) @to_ivy_arrays_and_back @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def threshold(input, threshold, value, inplace=False): return ivy.where(ivy.greater(input, threshold), input, value) @with_unsupported_dtypes({"2.2 and below": ("float16",)}, "torch") def threshold_(input, threshold, value): return threshold(input, threshold, value, inplace=True)
ivy/ivy/functional/frontends/torch/nn/functional/non_linear_activation_functions.py/0
{ "file_path": "ivy/ivy/functional/frontends/torch/nn/functional/non_linear_activation_functions.py", "repo_id": "ivy", "token_count": 4032 }
45
import ivy from ivy.functional.frontends.torch.func_wrapper import to_ivy_arrays_and_back from ivy.func_wrapper import with_supported_dtypes import inspect # --- Helpers --- # # --------------- # @to_ivy_arrays_and_back def _assert(condition, message): if not condition: raise Exception(message) else: return True # --- Main --- # # ------------ # @with_supported_dtypes({"2.2 and above": ("int64",)}, "torch") @to_ivy_arrays_and_back def bincount(x, weights=None, minlength=0): return ivy.bincount(x, weights=weights, minlength=minlength) def if_else(cond_fn, body_fn, orelse_fn, vars): cond_keys = inspect.getfullargspec(cond_fn).args cond_vars = dict(zip(cond_keys, vars)) return ivy.if_else(cond_fn, body_fn, orelse_fn, cond_vars) @to_ivy_arrays_and_back def result_type(tensor, other): return ivy.result_type(tensor, other)
ivy/ivy/functional/frontends/torch/utilities.py/0
{ "file_path": "ivy/ivy/functional/frontends/torch/utilities.py", "repo_id": "ivy", "token_count": 353 }
46
# global import math # Array API Standard # # -------------------# e = math.e """IEEE 754 floating-point representation of Euler's constant.""" pi = math.pi """IEEE 754 floating-point representation of the mathematical constant π.""" nan = math.nan """IEEE 754 floating-point representation of Not a Number (NaN).""" inf = math.inf """IEEE 754 floating-point representation of (positive) infinity.""" newaxis = None """An alias for None which is useful for indexing arrays.""" # Mathematical constants # # ------# golden = golden_ratio = (1 + math.sqrt(5)) / 2 quetta = 1e30 ronna = 1e27 yotta = 1e24 zetta = 1e21 exa = 1e18 peta = 1e15 tera = 1e12 giga = 1e9 mega = 1e6 kilo = 1e3 hecto = 1e2 deka = 1e1 deci = 1e-1 centi = 1e-2 milli = 1e-3 micro = 1e-6 nano = 1e-9 pico = 1e-12 femto = 1e-15 atto = 1e-18 zepto = 1e-21 yocto = 1e-24 ronto = 1e-27 quecto = 1e-30 # Binary prefixes # # ------# kibi = 2**10 mebi = 2**20 gibi = 2**30 tebi = 2**40 pebi = 2**50 exbi = 2**60 zebi = 2**70 yobi = 2**80
ivy/ivy/functional/ivy/constants.py/0
{ "file_path": "ivy/ivy/functional/ivy/constants.py", "repo_id": "ivy", "token_count": 420 }
47
# global import logging from typing import Union, Optional, Tuple, List, Sequence, Literal # local import ivy from ivy.utils.backend import current_backend from ivy.func_wrapper import ( to_native_arrays_and_back, handle_out_argument, handle_nestable, handle_array_like_without_promotion, handle_array_function, handle_device, inputs_to_ivy_arrays, handle_backend_invalid, ) from ivy.utils.exceptions import handle_exceptions # Helpers # # ------- # def _check_valid_dimension_size(std): ivy.utils.assertions.check_dimensions(std) @handle_exceptions @handle_nestable @handle_array_like_without_promotion @handle_array_function def eigh_tridiagonal( alpha: Union[ivy.Array, ivy.NativeArray], beta: Union[ivy.Array, ivy.NativeArray], /, *, eigvals_only: bool = True, select: str = "a", select_range: Optional[ Union[Tuple[int, int], List[int], ivy.Array, ivy.NativeArray] ] = None, tol: Optional[float] = None, ) -> Union[ivy.Array, Tuple[ivy.Array, ivy.Array]]: """Compute the eigenvalues and eigenvectors of a Hermitian tridiagonal matrix. Parameters ---------- alpha A real or complex array of shape (n), the diagonal elements of the matrix. If alpha is complex, the imaginary part is ignored (assumed zero) to satisfy the requirement that the matrix be Hermitian. beta A real or complex array of shape (n-1), containing the elements of the first super-diagonal of the matrix. If beta is complex, the first sub-diagonal of the matrix is assumed to be the conjugate of beta to satisfy the requirement that the matrix be Hermitian. eigvals_only If False, both eigenvalues and corresponding eigenvectors are computed. If True, only eigenvalues are computed. Default is True. select Optional string with values in {'a', 'v', 'i'} (default is 'a') that determines which eigenvalues to calculate: 'a': all eigenvalues. 'v': eigenvalues in the interval (min, max] given by select_range. 'i': eigenvalues with indices min <= i <= max. select_range Size 2 tuple or list or array specifying the range of eigenvalues to compute together with select. If select is 'a', select_range is ignored. tol Optional scalar. Ignored when backend is not Tensorflow. The absolute tolerance to which each eigenvalue is required. An eigenvalue (or cluster) is considered to have converged if it lies in an interval of this width. If tol is None (default), the value eps*|T|_2 is used where eps is the machine precision, and |T|_2 is the 2-norm of the matrix T. Returns ------- eig_vals The eigenvalues of the matrix in non-decreasing order. eig_vectors If eigvals_only is False the eigenvectors are returned in the second output argument. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> alpha = ivy.array([0., 1., 2.]) >>> beta = ivy.array([0., 1.]) >>> y = ivy.eigh_tridiagonal(alpha, beta) >>> print(y) ivy.array([0., 0.38196602, 2.61803389]) >>> alpha = ivy.array([0., 1., 2.]) >>> beta = ivy.array([0., 1.]) >>> y = ivy.eigh_tridiagonal(alpha, ... beta, select='v', ... select_range=[0.2,3.0]) >>> print(y) ivy.array([0.38196602, 2.61803389]) >>> alpha = ivy.array([0., 1., 2., 3.]) >>> beta = ivy.array([2., 1., 2.]) >>> y = ivy.eigh_tridiagonal(alpha, ... beta, ... eigvals_only=False, ... select='i', ... select_range=[1,2], ... tol=1.) >>> print(y) (ivy.array([0.38196602, 2.61803389]), ivy.array([[ 0.35048741, -0.56710052], [ 0.06693714, -0.74234426], [-0.74234426, -0.06693714], [ 0.56710052, 0.35048741]])) With :class:`ivy.Container` input: >>> alpha = ivy.Container(a=ivy.array([0., 1., 2.]), b=ivy.array([2., 2., 2.])) >>> beta = ivy.array([0.,2.]) >>> y = ivy.eigh_tridiagonal(alpha, beta) >>> print(y) { a: ivy.array([-0.56155282, 0., 3.56155276]), b: ivy.array([0., 2., 4.]) } >>> alpha = ivy.Container(a=ivy.array([0., 1., 2.]), b=ivy.array([2., 2., 2.])) >>> beta = ivy.Container(a=ivy.array([0.,2.]), b=ivy.array([2.,2.])) >>> y = ivy.eigh_tridiagonal(alpha, beta) >>> print(y) { a: ivy.array([-0.56155282, 0., 3.56155276]), b: ivy.array([-0.82842714, 2., 4.82842731]) } """ x = ivy.diag(alpha) y = ivy.diag(beta, k=1) z = ivy.diag(beta, k=-1) w = x + y + z eigh_out = ivy.linalg.eigh(w) eigenvalues = eigh_out.eigenvalues eigenvectors = eigh_out.eigenvectors if select == "i": eigenvalues = eigenvalues[select_range[0] : select_range[1] + 1] eigenvectors = eigenvectors[:, select_range[0] : select_range[1] + 1] elif select == "v": condition = ivy.logical_and( eigenvalues.greater(select_range[0]), eigenvalues.less_equal(select_range[1]), ) eigenvalues = eigenvalues[condition] eigenvectors = eigenvectors[:, condition] if eigvals_only: return eigenvalues return eigenvalues, eigenvectors @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device def diagflat( x: Union[ivy.Array, ivy.NativeArray], /, *, offset: int = 0, padding_value: float = 0, align: str = "RIGHT_LEFT", num_rows: int = -1, num_cols: int = -1, out: Optional[Union[ivy.Array, ivy.NativeArray]] = None, ) -> ivy.Array: """Return a two-dimensional array with the flattened input as a diagonal. Parameters ---------- x Input data, which is flattened and set as the k-th diagonal of the output. k Diagonal to set. Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonal. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The 2-D output array. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([[1,2], [3,4]]) >>> ivy.diagflat(x) ivy.array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> x = ivy.array([1,2]) >>> ivy.diagflat(x, k=1) ivy.array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ return current_backend(x).diagflat( x, offset=offset, padding_value=padding_value, align=align, num_rows=num_rows, num_cols=num_cols, out=out, ) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device def kron( a: Union[ivy.Array, ivy.NativeArray], b: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the Kronecker product, a composite array made of blocks of the second array scaled by the first. Parameters ---------- a First input array. b Second input array out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Array representing the Kronecker product of the input arrays. Examples -------- >>> a = ivy.array([1,2]) >>> b = ivy.array([3,4]) >>> ivy.kron(a, b) ivy.array([3, 4, 6, 8]) """ return current_backend(a, b).kron(a, b, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device def matrix_exp( x: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the matrix exponential of a square matrix. Parameters ---------- a Square matrix. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret the matrix exponential of the input. Examples -------- >>> x = ivy.array([[[1., 0.], [0., 1.]], [[2., 0.], [0., 2.]]]) >>> ivy.matrix_exp(x) ivy.array([[[2.7183, 1.0000], [1.0000, 2.7183]], [[7.3891, 1.0000], [1.0000, 7.3891]]]) """ return current_backend(x).matrix_exp(x, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @to_native_arrays_and_back @handle_device def eig( x: Union[ivy.Array, ivy.NativeArray], /, ) -> Tuple[ivy.Array]: """Compute eigenvalies and eigenvectors of x. Returns a tuple with two elements: first is the set of eigenvalues, second is the set of eigenvectors. Parameters ---------- x An array of shape (..., N, N). Returns ------- w Not necessarily ordered array(..., N) of eigenvalues in complex type. v An array(..., N, N) of normalized (unit “length”) eigenvectors, the column v[:,i] is the eigenvector corresponding to the eigenvalue w[i]. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([[1,2], [3,4]]) >>> w, v = ivy.eig(x) >>> w; v ivy.array([-0.37228132+0.j, 5.37228132+0.j]) ivy.array([[-0.82456484+0.j, -0.41597356+0.j], [ 0.56576746+0.j, -0.90937671+0.j]]) >>> x = ivy.array([[[1,2], [3,4]], [[5,6], [5,6]]]) >>> w, v = ivy.eig(x) >>> w; v ivy.array( [ [-3.72281323e-01+0.j, 5.37228132e+00+0.j], [3.88578059e-16+0.j, 1.10000000e+01+0.j] ] ) ivy.array([ [ [-0.82456484+0.j, -0.41597356+0.j], [0.56576746+0.j, -0.90937671+0.j] ], [ [-0.76822128+0.j, -0.70710678+0.j], [0.6401844 +0.j, -0.70710678+0.j] ] ]) """ return current_backend(x).eig(x) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @to_native_arrays_and_back @handle_device def eigvals( x: Union[ivy.Array, ivy.NativeArray], /, ) -> ivy.Array: """Compute eigenvalues of x. Returns a set of eigenvalues. Parameters ---------- x An array of shape (..., N, N). Returns ------- w Not necessarily ordered array(..., N) of eigenvalues in complex type. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([[1,2], [3,4]]) >>> w = ivy.eigvals(x) >>> w ivy.array([-0.37228132+0.j, 5.37228132+0.j]) >>> x = ivy.array([[[1,2], [3,4]], [[5,6], [5,6]]]) >>> w = ivy.eigvals(x) >>> w ivy.array( [ [-0.37228132+0.j, 5.37228132+0.j], [ 0. +0.j, 11. +0.j] ] ) """ return current_backend(x).eigvals(x) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device def adjoint( x: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the complex conjugate transpose of x. Parameters ---------- x An array with more than one dimension. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret the complex conjugate transpose of the input. Examples -------- >>> x = np.array([[1.-1.j, 2.+2.j], [3.+3.j, 4.-4.j]]) >>> x = ivy.array(x) >>> ivy.adjoint(x) ivy.array([[1.+1.j, 3.-3.j], [2.-2.j, 4.+4.j]]) """ return current_backend(x).adjoint(x, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device def lu_factor( A: Union[ivy.Array, ivy.NativeArray], /, *, pivot: bool = True, out: Optional[Union[ivy.Array, ivy.NativeArray]] = None, ) -> Tuple[Union[ivy.Array, ivy.NativeArray], Union[ivy.Array, ivy.NativeArray]]: """ Parameters ---------- A tensor of shape (*, m, n) where * is zero or more batch dimensions. pivot Whether to compute the LU decomposition with partial pivoting, or the regular LU decomposition. pivot = False not supported on CPU. Default: True. out tuple of two tensors to write the output to. Ignored if None. Default: None. Returns ------- ret A named tuple (LU, pivots). """ return current_backend(A).lu_factor(A, pivot=pivot, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device def lu_solve( lu: Union[ivy.Array, ivy.NativeArray], p: Union[ivy.Array, ivy.NativeArray], b: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: return current_backend(lu, p, b).lu_solve(lu, p, b, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device def solve_triangular( x1: Union[ivy.Array, ivy.NativeArray], x2: Union[ivy.Array, ivy.NativeArray], /, *, upper: bool = True, adjoint: bool = False, unit_diagonal: bool = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the unique solution to the triangular system of linear equations AX = B. Parameters ---------- x1 Triangular coefficient array A of shape (..., N, N), with no zeros on diagonal. x2 Right-hand side array B of shape (..., N, K). upper Whether the input `x1` is upper triangular. adjoint Whether to take the adjoint (conjugate transpose) of `x1` as the matrix A. unit_diagonal Whether to ignore the diagonal entries of A and assume them all equal to 1. out Optional output array. If provided, the output array to store the result. Returns ------- ret The solution X, which has the same shape as B. Examples -------- With :class:`ivy.Array` inputs: >>> a = ivy.array([[3, 0, 0, 0], ... [2, 1, 0, 0], ... [1, 0, 1, 0], ... [1, 1, 1, 1]], dtype=ivy.float32) >>> b = ivy.array([[4], ... [2], ... [4], ... [2]], dtype=ivy.float32) >>> x = ivy.solve_triangular(a, b, upper=False) >>> ivy.matmul(a, x) ivy.array([[4.], [2.], [4.], [2.]]) """ return current_backend(x1, x2).solve_triangular( x1, x2, upper=upper, adjoint=adjoint, unit_diagonal=unit_diagonal, out=out ) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_out_argument @to_native_arrays_and_back def multi_dot( x: Sequence[Union[ivy.Array, ivy.NativeArray]], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the dot product of two or more matrices in a single function call, while selecting the fastest evaluation order. Parameters ---------- x sequence of matrices to multiply. out optional output array, for writing the result to. It must have a valid shape, i.e. the resulting shape after applying regular matrix multiplication to the inputs. Returns ------- ret dot product of the arrays. Examples -------- With :class:`ivy.Array` input: >>> A = ivy.arange(2 * 3).reshape((2, 3)) >>> B = ivy.arange(3 * 2).reshape((3, 2)) >>> C = ivy.arange(2 * 2).reshape((2, 2)) >>> ivy.multi_dot((A, B, C)) ivy.array([[ 26, 49], [ 80, 148]]) >>> A = ivy.arange(2 * 3).reshape((2, 3)) >>> B = ivy.arange(3 * 2).reshape((3, 2)) >>> C = ivy.arange(2 * 2).reshape((2, 2)) >>> D = ivy.zeros((2, 2)) >>> ivy.multi_dot((A, B, C), out=D) >>> print(D) ivy.array([[ 26, 49], [ 80, 148]]) """ return current_backend(x).multi_dot(x, out=out) multi_dot.mixed_backend_wrappers = { "to_add": ("handle_device",), "to_skip": (), } @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device def cond( x: Union[ivy.Array, ivy.NativeArray], /, *, p: Optional[Union[int, float, str]] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the condition number of x. Parameters ---------- x An array with more than one dimension. p The order of the norm of the matrix (see :func:`ivy.norm` for details). out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret the condition number of the input. Examples -------- >>> x = ivy.array([[1., 2.], ... [3., 4.]]) >>> ivy.cond(x) ivy.array(14.933034) >>> x = ivy.array([[1., 2.], ... [3., 4.]]) >>> ivy.cond(x, p=ivy.inf) ivy.array(21.0) """ return current_backend(x).cond(x, p=p, out=out) # This code has been adapted from TensorLy # https://github.com/tensorly/tensorly/blob/main/tensorly/tenalg/core_tenalg/_kronecker.py @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_device def kronecker( x: Sequence[Union[ivy.Array, ivy.NativeArray]], skip_matrix: Optional[int] = None, reverse: Optional[bool] = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Kronecker product of a list of matrices. Parameters ---------- x Sequence of matrices skip_matrix if not None, index of a matrix to skip reverse if True, the order of the matrices is reversed Returns ------- kronecker_product: matrix of shape ``(prod(n_rows), prod(n_columns)`` where ``prod(n_rows) = prod([m.shape[0] for m in matrices])`` and ``prod(n_columns) = prod([m.shape[1] for m in matrices])`` """ if skip_matrix is not None: x = [x[i] for i in range(len(x)) if i != skip_matrix] if reverse: order = -1 else: order = 1 for i, matrix in enumerate(x[::order]): if not i: res = matrix else: res = ivy.kron(res, matrix, out=out) return res # The code has been adapted from tensorly.khatri_rao # https://github.com/tensorly/tensorly/blob/main/tensorly/tenalg/core_tenalg/_khatri_rao.py#L9 @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function @handle_device def khatri_rao( x: Sequence[Union[ivy.Array, ivy.NativeArray]], weights: Optional[Union[ivy.Array, ivy.NativeArray]] = None, skip_matrix: Optional[Sequence[int]] = None, mask: Optional[Union[ivy.Array, ivy.NativeArray]] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Khatri-Rao product of a sequence of matrices. This can be seen as a column-wise kronecker product. If one matrix only is given, that matrix is directly returned. Parameters ---------- x Sequence of tensors with the same number of columns, i.e.:: for i in len(x): x[i].shape = (n_i, m) weights array of weights for each rank, of length m, the number of column of the factors (i.e. m == factor[i].shape[1] for any factor) skip_matrix if not None, index of a matrix to skip mask array of 1s and 0s of length m out optional output array, for writing the result to. It must have a shape that the result can broadcast to. Returns ------- khatri_rao_product: ivy.Array of shape ``(prod(n_i), m)`` where ``prod(n_i) = prod([m.shape[0] for m in input])`` i.e. the product of the number of rows of all the input in the product. """ if skip_matrix is not None: x = [x[i] for i in range(len(x)) if i != skip_matrix] # Khatri-rao of only one matrix: just return that matrix if len(x) == 1: if ivy.exists(out): return ivy.inplace_update(out, x[0]) return x[0] if len(x[0].shape) == 2: n_columns = x[0].shape[1] else: n_columns = 1 x = [ivy.reshape(m, (-1, 1)) for m in x] logging.warning( "Khatri-rao of a series of vectors instead of input. " "Considering each as a matrix with 1 column." ) # Testing whether the input have the proper size for i, matrix in enumerate(x): if len(matrix.shape) != 2: raise ValueError( "All the input must have exactly 2 dimensions!" f"Matrix {i} has dimension {len(matrix.shape)} != 2." ) if matrix.shape[1] != n_columns: raise ValueError( "All input must have same number of columns!" f"Matrix {i} has {matrix.shape[1]} columns != {n_columns}." ) for i, e in enumerate(x[1:]): if not i: if weights is None: res = x[0] else: res = x[0] * ivy.reshape(weights, (1, -1)) s1, s2 = ivy.shape(res) s3, s4 = ivy.shape(e) a = ivy.reshape(res, (s1, 1, s2)) b = ivy.reshape(e, (1, s3, s4)) res = ivy.reshape(a * b, (-1, n_columns)) m = ivy.reshape(mask, (1, -1)) if mask is not None else 1 res = res * m if ivy.exists(out): return ivy.inplace_update(out, res) return res # The following code has been adapted from TensorLy # https://github.com/tensorly/tensorly/blob/main/tensorly/tenalg/core_tenalg/n_mode_product.py#L5 @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function @handle_device def mode_dot( x: Union[ivy.Array, ivy.NativeArray], /, matrix_or_vector: Union[ivy.Array, ivy.NativeArray], mode: int, transpose: Optional[bool] = False, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """N-mode product of a tensor and a matrix or vector at the specified mode. Parameters ---------- x tensor of shape ``(i_1, ..., i_k, ..., i_N)`` matrix_or_vector 1D or 2D array of shape ``(J, i_k)`` or ``(i_k, )`` matrix or vectors to which to n-mode multiply the tensor mode int in the range(1, N) transpose If True, the matrix is transposed. For complex tensors, the conjugate transpose is used. out optional output array, for writing the result to. It must have a shape that the result can broadcast to. Returns ------- ivy.Array `mode`-mode product of `tensor` by `matrix_or_vector` * of shape :math:`(i_1, ..., i_{k-1}, J, i_{k+1}, ..., i_N)` if matrix_or_vector is a matrix * of shape :math:`(i_1, ..., i_{k-1}, i_{k+1}, ..., i_N)` if matrix_or_vector is a vector """ # the mode along which to fold might decrease if we take product with a vector fold_mode = mode new_shape = list(x.shape) ndims = len(matrix_or_vector.shape) if ndims == 2: # Tensor times matrix # Test for the validity of the operation dim = 0 if transpose else 1 if matrix_or_vector.shape[dim] != x.shape[mode]: raise ValueError( f"shapes {x.shape} and {matrix_or_vector.shape} not aligned in" f" mode-{mode} multiplication: {x.shape[mode]} (mode {mode}) !=" f" {matrix_or_vector.shape[dim]} (dim 1 of matrix)" ) if transpose: matrix_or_vector = ivy.conj(ivy.permute_dims(matrix_or_vector, (1, 0))) new_shape[mode] = matrix_or_vector.shape[0] vec = False elif ndims == 1: # Tensor times vector if matrix_or_vector.shape[0] != x.shape[mode]: raise ValueError( f"shapes {x.shape} and {matrix_or_vector.shape} not aligned for" f" mode-{mode} multiplication: {x.shape[mode]} (mode {mode}) !=" f" {matrix_or_vector.shape[0]} (vector size)" ) if len(new_shape) > 1: new_shape.pop(mode) else: new_shape = [] vec = True else: raise ValueError( "Can only take n_mode_product with a vector or a matrix." f"Provided array of dimension {ndims} not in [1, 2]." ) res = ivy.matmul(matrix_or_vector, ivy.unfold(x, mode)) if vec: # We contracted with a vector, leading to a vector return ivy.reshape(res, new_shape, out=out) else: # tensor times vec: refold the unfolding return ivy.fold(res, fold_mode, new_shape, out=out) # The following code has been adapted from TensorLy # https://github.com/tensorly/tensorly/blob/main/tensorly/tenalg/core_tenalg/n_mode_product.py#L81 @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function @handle_device def multi_mode_dot( x: Union[ivy.Array, ivy.NativeArray], mat_or_vec_list: Sequence[Union[ivy.Array, ivy.NativeArray]], /, modes: Optional[Sequence[int]] = None, skip: Optional[Sequence[int]] = None, transpose: Optional[bool] = False, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: r"""N-mode product of a tensor and several matrices or vectors over several modes. Parameters ---------- x the input tensor mat_or_vec_list sequence of matrices or vectors of length ``tensor.ndim`` skip None or int, optional, default is None If not None, index of a matrix to skip. modes None or int list, optional, default is None transpose If True, the matrices or vectors in in the list are transposed. For complex tensors, the conjugate transpose is used. out optional output array, for writing the result to. It must have a shape that the result can broadcast to. Returns ------- ivy.Array tensor times each matrix or vector in the list at mode `mode` Notes ----- If no modes are specified, just assumes there is one matrix or vector per mode and returns: :math:`\\text{x }\\times_0 \\text{ matrix or vec list[0] }\\times_1 \\cdots \\times_n \\text{ matrix or vec list[n] }` """ # noqa: E501 if modes is None: modes = range(len(mat_or_vec_list)) decrement = 0 # If we multiply by a vector, we diminish the dimension of the tensor res = x # Order of mode dots doesn't matter for different modes # Sorting by mode shouldn't change order for equal modes factors_modes = sorted(zip(mat_or_vec_list, modes), key=lambda x: x[1]) for i, (mat_or_vec_list, mode) in enumerate(factors_modes): ndims = len(mat_or_vec_list.shape) if (skip is not None) and (i == skip): continue if transpose and ndims == 2: res = mode_dot( res, ivy.conj(ivy.permute_dims(mat_or_vec_list, (1, 0))), mode - decrement, ) else: res = mode_dot(res, mat_or_vec_list, mode - decrement) if ndims == 1: decrement += 1 if ivy.exists(out): return ivy.inplace_update(out, res) return res def _svd_checks(x, n_eigenvecs=None): """Run common checks to all of the SVD methods. Parameters ---------- matrix : 2D-array n_eigenvecs : int, optional, default is None if specified, number of eigen[vectors-values] to return Returns ------- n_eigenvecs : int the number of eigenvectors to solve for min_dim : int the minimum dimension of matrix max_dim : int the maximum dimension of matrix """ # ndims = len(x.shape) # if ndims != 2: # raise ValueError(f"matrix be a matrix. matrix.ndim is {ndims} != 2") dim_1, dim_2 = ivy.shape(x)[-2:] min_dim, max_dim = min(dim_1, dim_2), max(dim_1, dim_2) if n_eigenvecs is None: n_eigenvecs = max_dim if n_eigenvecs > max_dim: logging.warning( f"Trying to compute SVD with n_eigenvecs={n_eigenvecs}, which is larger " f"than max(matrix.shape)={max_dim}. Setting n_eigenvecs to {max_dim}." ) n_eigenvecs = max_dim return n_eigenvecs, min_dim, max_dim # This function has been adapted from TensorLy # https://github.com/tensorly/tensorly/blob/main/tensorly/tenalg/svd.py#L12 @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function @handle_device def svd_flip( U: Union[ivy.Array, ivy.NativeArray], V: Union[ivy.Array, ivy.NativeArray], /, u_based_decision: Optional[bool] = True, ) -> Tuple[ivy.Array, ivy.Array]: """Sign correction to ensure deterministic output from SVD. Adjusts the columns of u and the rows of v such that the loadings in the columns in u that are largest in absolute value are always positive. This function is borrowed from scikit- learn/utils/extmath.py. Parameters ---------- U left singular matrix output of SVD V right singular matrix output of SVD u_based_decision If True, use the columns of u as the basis for sign flipping. Otherwise, use the rows of v. The choice of which variable to base the decision on is generally algorithm dependent. Returns ------- u_adjusted, v_adjusted : arrays with the same dimensions as the input. """ if u_based_decision: # columns of U, rows of V max_abs_cols = ivy.argmax(ivy.abs(U), axis=0) signs = ivy.sign( ivy.array( [U[i, j] for (i, j) in zip(max_abs_cols, range(ivy.shape(U)[1]))], ) ) U = U * signs if ivy.shape(V)[0] > ivy.shape(U)[1]: signs = ivy.concat((signs, ivy.ones(ivy.shape(V)[0] - ivy.shape(U)[1]))) V = V * signs[: ivy.shape(V)[0]][:, None] else: # rows of V, columns of U max_abs_rows = ivy.argmax(ivy.abs(V), axis=1) signs = ivy.sign( ivy.array( [V[i, j] for (i, j) in zip(range(ivy.shape(V)[0]), max_abs_rows)], ) ) V = V * signs[:, None] if ivy.shape(U)[1] > ivy.shape(V)[0]: signs = ivy.concat( ( signs, ivy.ones( ivy.shape(U)[1] - ivy.shape(V)[0], ), ) ) U = U * signs[: ivy.shape(U)[1]] return U, V # This function has been adapted from TensorLy # https://github.com/tensorly/tensorly/blob/main/tensorly/tenalg/svd.py#L65 @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function @handle_device def make_svd_non_negative( x: Union[ivy.Array, ivy.NativeArray], U: Union[ivy.Array, ivy.NativeArray], S: Union[ivy.Array, ivy.NativeArray], V: Union[ivy.Array, ivy.NativeArray], /, *, nntype: Optional[Literal["nndsvd", "nndsvda"]] = "nndsvd", ) -> Tuple[ivy.Array, ivy.Array]: """Use NNDSVD method to transform SVD results into a non-negative form. This method leads to more efficient solving with NNMF [1]. Parameters ---------- x tensor being decomposed. U left singular matrix from SVD. S diagonal matrix from SVD. V right singular matrix from SVD. nntype whether to fill small values with 0.0 (nndsvd), or the tensor mean (nndsvda, default). [1]: Boutsidis & Gallopoulos. Pattern Recognition, 41(4): 1350-1362, 2008. """ W = ivy.zeros_like(U) H = ivy.zeros_like(V) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = ivy.sqrt(S[0]) * ivy.abs(U[:, 0]) H[0, :] = ivy.sqrt(S[0]) * ivy.abs(V[0, :]) for j in range(1, len(S)): a, b = U[:, j], V[j, :] # extract positive and negative parts of column vectors a_p, b_p = ivy.where(a < 0.0, 0, a), ivy.where(b < 0.0, 0.0, b) # a_p, b_p = ivy.clip(a, 0.0), ivy.clip(b, 0.0) # a_n, b_n = ivy.abs(ivy.clip(a, 0.0)), ivy.abs(ivy.clip(b, 0.0)) a_n, b_n = ivy.abs(ivy.where(a > 0.0, 0.0, a)), ivy.abs( ivy.where(b > 0.0, 0.0, b) ) # and their norms a_p_nrm, b_p_nrm = float(ivy.vector_norm(a_p)), float(ivy.vector_norm(b_p)) a_n_nrm, b_n_nrm = float(ivy.vector_norm(a_n)), float(ivy.vector_norm(b_n)) m_p, m_n = a_p_nrm * b_p_nrm, a_n_nrm * b_n_nrm # choose update if m_p > m_n: u = a_p / a_p_nrm v = b_p / b_p_nrm sigma = m_p else: u = a_n / a_n_nrm v = b_n / b_n_nrm sigma = m_n lbd = float(ivy.sqrt(S[j] * sigma)) W[:, j] = lbd * u H[j, :] = lbd * v # After this point we no longer need H eps = ivy.finfo(x.dtype).min if nntype == "nndsvd": W = ivy.soft_thresholding(W, eps) H = ivy.soft_thresholding(H, eps) elif nntype == "nndsvda": avg = ivy.mean(x) W = ivy.where(eps > W, ivy.ones(ivy.shape(W)) * avg, W) H = ivy.where(eps > H, ivy.ones(ivy.shape(H)) * avg, H) else: raise ValueError( f'Invalid nntype parameter: got {nntype} instead of one of ("nndsvd",' ' "nndsvda")' ) return W, H # The following function has been adapted from TensorLy # https://github.com/tensorly/tensorly/blob/main/tensorly/tenalg/svd.py#L206 @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function @handle_device def truncated_svd( x: Union[ivy.Array, ivy.NativeArray], /, compute_uv: bool = True, n_eigenvecs: Optional[int] = None, ) -> Union[ivy.Array, Tuple[ivy.Array, ivy.Array, ivy.Array]]: """Compute a truncated SVD on `x` using the standard SVD. Parameters ---------- x 2D-array compute_uv If ``True`` then left and right singular vectors will be computed and returned in ``U`` and ``Vh``, respectively. Otherwise, only the singular values will be computed, which can be significantly faster. n_eigenvecs if specified, number of eigen[vectors-values] to return else full matrices will be returned Returns ------- ret a namedtuple ``(U, S, Vh)`` Each returned array must have the same floating-point data type as ``x``. """ n_eigenvecs, min_dim, _ = _svd_checks(x, n_eigenvecs=n_eigenvecs) full_matrices = True if n_eigenvecs > min_dim else False if compute_uv: U, S, Vh = ivy.svd(x, full_matrices=full_matrices, compute_uv=True) return U[:, :n_eigenvecs], S[:n_eigenvecs], Vh[:n_eigenvecs, :] else: S = ivy.svd(x, full_matrices=full_matrices, compute_uv=False) return S[:n_eigenvecs] @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function def tensor_train( input_tensor: Union[ivy.Array, ivy.NativeArray], rank: Union[int, Sequence[int]], /, *, svd: Optional[Literal["truncated_svd"]] = "truncated_svd", verbose: Optional[bool] = False, ) -> ivy.TTTensor: """TT decomposition via recursive SVD. Decomposes the input into a sequence of order-3 tensors (factors) Also known as Tensor-Train decomposition [1]_ Parameters ---------- input_tensor tensor to decompose rank maximum allowable TT rank of the factors if int, then this is the same for all the factors if int list, then rank[k] is the rank of the kth factor svd function to use to compute the SVD verbose level of verbosity Returns ------- factors order-3 tensors of the TT decomposition [1]: Ivan V. Oseledets. "Tensor-train decomposition", SIAM J. Scientific Computing, 33(5):2295–2317, 2011. """ rank = ivy.TTTensor.validate_tt_rank(ivy.shape(input_tensor), rank=rank) tensor_size = input_tensor.shape n_dim = len(tensor_size) unfolding = input_tensor factors = [None] * n_dim for k in range(n_dim - 1): n_row = int(rank[k] * tensor_size[k]) unfolding = ivy.reshape(unfolding, (n_row, -1)) (n_row, n_column) = unfolding.shape current_rank = min(n_row, n_column, rank[k + 1]) U, S, V = _svd_interface(unfolding, n_eigenvecs=current_rank, method=svd) rank[k + 1] = current_rank factors[k] = ivy.reshape(U, (rank[k], tensor_size[k], rank[k + 1])) if verbose is True: print( "TT factor " + str(k) + " computed with shape " + str(factors[k].shape) ) unfolding = ivy.reshape(S, (-1, 1)) * V (prev_rank, last_dim) = unfolding.shape factors[-1] = ivy.reshape(unfolding, (prev_rank, last_dim, 1)) if verbose is True: print( "TT factor " + str(n_dim - 1) + " computed with shape " + str(factors[n_dim - 1].shape) ) return ivy.TTTensor(factors) # TODO uncomment the code below when these svd # methods have been added def _svd_interface( matrix, method="truncated_svd", n_eigenvecs=None, flip_sign=True, u_based_flip_sign=True, non_negative=None, mask=None, n_iter_mask_imputation=5, **kwargs, ): if method == "truncated_svd": svd_fun = truncated_svd # elif method == "symeig_svd": # svd_fun = symeig_svd # elif method == "randomized_svd": # svd_fun = randomized_svd elif callable(method): svd_fun = method else: raise ValueError("Invalid Choice") U, S, V = svd_fun(matrix, n_eigenvecs=n_eigenvecs, **kwargs) if mask is not None and n_eigenvecs is not None: for _ in range(n_iter_mask_imputation): S = S * ivy.eye(U.shape[-1], V.shape[-2]) matrix = matrix * mask + (U @ S @ V) * (1 - mask) U, S, V = svd_fun(matrix, n_eigenvecs=n_eigenvecs, **kwargs) if flip_sign: U, V = svd_flip(U, V, u_based_decision=u_based_flip_sign) if non_negative is not False and non_negative is not None: U, V = make_svd_non_negative(matrix, U, S, V) return U, S, V # This function has been adapted from TensorLy # https://github.com/tensorly/tensorly/blob/main/tensorly/decomposition/_tucker.py#L22 # TODO update svd type hints when other svd methods have been added # also update the test @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function @handle_device def initialize_tucker( x: Union[ivy.Array, ivy.NativeArray], rank: Sequence[int], modes: Sequence[int], /, *, init: Optional[Union[Literal["svd", "random"], ivy.TuckerTensor]] = "svd", seed: Optional[int] = None, svd: Optional[Literal["truncated_svd"]] = "truncated_svd", non_negative: Optional[bool] = False, mask: Optional[Union[ivy.Array, ivy.NativeArray]] = None, svd_mask_repeats: Optional[int] = 5, ) -> Tuple[ivy.Array, Sequence[ivy.Array]]: """Initialize core and factors used in `tucker`. The type of initialization is set using `init`. If `init == 'random'` then initialize factor matrices using `random_state`. If `init == 'svd'` then initialize the `m`th factor matrix using the `rank` left singular vectors of the `m`th unfolding of the input tensor. Parameters ---------- x input tensor rank number of components modes modes to consider in the input tensor seed Used to create a random seed distribution when init == 'random' init initialization scheme for tucker decomposition. svd function to use to compute the SVD non_negative if True, non-negative factors are returned mask array of booleans with the same shape as ``tensor`` should be 0 where the values are missing and 1 everywhere else. Note: if tensor is sparse, then mask should also be sparse with a fill value of 1 (or True). svd_mask_repeats number of iterations for imputing the values in the SVD matrix when mask is not None Returns ------- core initialized core tensor factors list of factors """ try: assert len(x.shape) >= 2 except ValueError as e: raise ValueError( "expected x to have at least 2 dimensions but it has only" f" {len(x.shape)} dimension(s)" ) from e # Initialisation if init == "svd": factors = [] for index, mode in enumerate(modes): mask_unfold = None if mask is None else ivy.unfold(mask, mode) U, _, _ = _svd_interface( ivy.unfold(x, mode), n_eigenvecs=rank[index], method=svd, non_negative=non_negative, mask=mask_unfold, n_iter_mask_imputation=svd_mask_repeats, # random_state=random_state, ) factors.append(U) # The initial core approximation is needed here for the masking step core = multi_mode_dot(x, factors, modes=modes, transpose=True) elif init == "random": core = ( ivy.random_uniform( shape=[rank[index] for index in range(len(modes))], dtype=x.dtype, seed=seed, ) + 0.01 ) factors = [ ivy.random_uniform( shape=(x.shape[mode], rank[index]), dtype=x.dtype, seed=seed ) for index, mode in enumerate(modes) ] else: (core, factors) = init if non_negative is True: factors = [ivy.abs(f) for f in factors] core = ivy.abs(core) return (core, factors) # This function has been adapted from TensorLy # https://github.com/tensorly/tensorly/blob/main/tensorly/decomposition/_tucker.py#L98 @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function @handle_device def partial_tucker( x: Union[ivy.Array, ivy.NativeArray], rank: Optional[Sequence[int]] = None, modes: Optional[Sequence[int]] = None, /, *, n_iter_max: Optional[int] = 100, init: Optional[Union[Literal["svd", "random"], ivy.TuckerTensor]] = "svd", svd: Optional[Literal["truncated_svd"]] = "truncated_svd", seed: Optional[int] = None, mask: Optional[Union[ivy.Array, ivy.NativeArray]] = None, svd_mask_repeats: Optional[int] = 5, tol: Optional[float] = 10e-5, verbose: Optional[bool] = False, return_errors: Optional[bool] = False, ) -> Tuple[ivy.Array, Sequence[ivy.Array]]: """Partial tucker decomposition via Higher Order Orthogonal Iteration (HOI) Decomposes `tensor` into a Tucker decomposition exclusively along the provided modes. Parameters ---------- x the input tensor rank size of the core tensor, ``(len(ranks) == tensor.ndim)`` if int, the same rank is used for all modes if None, original tensors size will be preserved. modes list of the modes on which to perform the decomposition n_iter_max maximum number of iteration init {'svd', 'random'}, or TuckerTensor optional if a TuckerTensor is provided, this is used for initialization svd str, default is 'truncated_svd' function to use to compute the SVD, seed Used to create a random seed distribution when init == 'random' mask array of booleans with the same shape as ``tensor`` should be 0 where the values are missing and 1 everywhere else. Note: if tensor is sparse, then mask should also be sparse with a fill value of 1 (or True). svd_mask_repeats number of iterations for imputing the values in the SVD matrix when mask is not None tol tolerance: the algorithm stops when the variation in the reconstruction error is less than the tolerance. verbose if True, different in reconstruction errors are returned at each iteration. return_erros if True, list of reconstruction errors are returned. Returns ------- core : ndarray core tensor of the Tucker decomposition factors : ndarray list list of factors of the Tucker decomposition. with ``core.shape[i] == (tensor.shape[i], ranks[i]) for i in modes`` """ if modes is None: modes = list(range(len(x.shape))) if rank is None: logging.warning( "No value given for 'rank'. The decomposition will preserve the original" " size." ) rank = [ivy.shape(x)[mode] for mode in modes] elif isinstance(rank, int): logging.warning( f"Given only one int for 'rank' instead of a list of {len(modes)} modes." " Using this rank for all modes." ) rank = tuple(rank for _ in modes) else: rank = ivy.TuckerTensor.validate_tucker_rank(x.shape, rank=rank) # SVD init core, factors = initialize_tucker( x, rank, modes, init=init, svd=svd, seed=seed, mask=mask, svd_mask_repeats=svd_mask_repeats, ) rec_errors = [] norm_tensor = ivy.sqrt(ivy.sum(x**2)) for iteration in range(n_iter_max): if mask is not None: x = x * mask + multi_mode_dot( core, factors, modes=modes, transpose=False ) * (1 - mask) for index, mode in enumerate(modes): core_approximation = multi_mode_dot( x, factors, modes=modes, skip=index, transpose=True ) eigenvecs, _, _ = _svd_interface( ivy.unfold(core_approximation, mode), n_eigenvecs=rank[index], # random_state=random_state, ) factors[index] = eigenvecs core = multi_mode_dot(x, factors, modes=modes, transpose=True) # The factors are orthonormal and # therefore do not affect the reconstructed tensor's norm norm_core = ivy.sqrt(ivy.sum(core**2)) rec_error = ivy.sqrt(abs(norm_tensor**2 - norm_core**2)) / norm_tensor rec_errors.append(rec_error) if iteration > 1: if verbose: print( f"reconstruction error={rec_errors[-1]}," f" variation={rec_errors[-2] - rec_errors[-1]}." ) if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol: if verbose: print(f"converged in {iteration} iterations.") break if return_errors: return (core, factors), rec_errors return (core, factors) @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function @handle_device def tucker( x: Union[ivy.Array, ivy.NativeArray], rank: Optional[Sequence[int]] = None, /, *, fixed_factors: Optional[Sequence[int]] = None, n_iter_max: Optional[int] = 100, init: Optional[Union[Literal["svd", "random"], ivy.TuckerTensor]] = "svd", svd: Optional[Literal["truncated_svd"]] = "truncated_svd", seed: Optional[int] = None, mask: Optional[Union[ivy.Array, ivy.NativeArray]] = None, svd_mask_repeats: Optional[int] = 5, tol: Optional[float] = 10e-5, verbose: Optional[bool] = False, return_errors: Optional[bool] = False, ): """Tucker decomposition via Higher Order Orthogonal Iteration (HOI) Decomposes `tensor` into a Tucker decomposition: ``tensor = [| core; factors[0], ...factors[-1] |]`` [1]_ Parameters ---------- x input tensor rank size of the core tensor, ``(len(ranks) == tensor.ndim)`` if int, the same rank is used for all modes fixed_factors if not None, list of modes for which to keep the factors fixed. Only valid if a Tucker tensor is provided as init. n_iter_max maximum number of iteration init {'svd', 'random'}, or TuckerTensor optional if a TuckerTensor is provided, this is used for initialization svd str, default is 'truncated_svd' function to use to compute the SVD, seed Used to create a random seed distribution when init == 'random' mask array of booleans with the same shape as ``tensor`` should be 0 where the values are missing and 1 everywhere else. Note: if tensor is sparse, then mask should also be sparse with a fill value of 1 (or True). svd_mask_repeats number of iterations for imputing the values in the SVD matrix when mask is not None tol tolerance: the algorithm stops when the variation in the reconstruction error is less than the tolerance verbose if True, different in reconstruction errors are returned at each iteration. return_errors Indicates whether the algorithm should return all reconstruction errors and computation time of each iteration or not Default: False Returns ------- ivy.TuckerTensor or ivy.TuckerTensor and list of reconstruction errors if return_erros is True. References ---------- .. [1] tl.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications", SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009. """ if fixed_factors: try: (core, factors) = init except ValueError as e: raise ValueError( f"Got fixed_factor={fixed_factors} but no appropriate Tucker tensor was" ' passed for "init".' ) from e if len(fixed_factors) == len(factors): return ivy.TuckerTensor((core, factors)) fixed_factors = sorted(fixed_factors) modes_fixed, factors_fixed = zip( *[(i, f) for (i, f) in enumerate(factors) if i in fixed_factors] ) core = multi_mode_dot(core, factors_fixed, modes=modes_fixed) modes, factors = zip( *[(i, f) for (i, f) in enumerate(factors) if i not in fixed_factors] ) init = (core, list(factors)) rank = ivy.TuckerTensor.validate_tucker_rank(x.shape, rank=rank) (core, new_factors), rec_errors = partial_tucker( x, rank, modes, n_iter_max=n_iter_max, init=init, svd=svd, tol=tol, seed=seed, mask=mask, verbose=verbose, svd_mask_repeats=svd_mask_repeats, return_errors=True, ) factors = list(new_factors) for i, e in enumerate(fixed_factors): factors.insert(e, factors_fixed[i]) core = multi_mode_dot(core, factors_fixed, modes=modes_fixed, transpose=True) if return_errors: return ivy.TuckerTensor((core, factors)), rec_errors return ivy.TuckerTensor((core, factors)) else: modes = list(range(len(x.shape))) rank = ivy.TuckerTensor.validate_tucker_rank(x.shape, rank=rank) (core, factors), rec_errors = partial_tucker( x, rank, modes, n_iter_max=n_iter_max, init=init, svd=svd, tol=tol, seed=seed, mask=mask, verbose=verbose, return_errors=True, ) if return_errors: return ivy.TuckerTensor((core, factors)), rec_errors else: return ivy.TuckerTensor((core, factors)) @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function def tt_matrix_to_tensor( tt_matrix: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the full tensor whose TT-Matrix decomposition is given by 'factors' Re- assembles 'factors', which represent a tensor in TT-Matrix format into the corresponding full tensor. Parameters ---------- tt_matrix array of 4D-arrays TT-Matrix factors (known as core) of shape (rank_k, left_dim_k, right_dim_k, rank_{k+1}) out Optional output array. If provided, the output array to store the result. Returns ------- output_tensor: array tensor whose TT-Matrix decomposition was given by 'factors' Examples -------- >>> x = ivy.array([[[[[0.49671414], ... [-0.1382643]], ... ... [[0.64768857], ... [1.5230298]]]], ... [[[[-0.23415337], ... [-0.23413695]], ... ... [[1.57921278], ... [0.76743472]]]]]) >>> y = ivy.tt_matrix_to_tensor(x) >>> print(y) ivy.array([[[[-0.1163073 , -0.11629914], [ 0.03237505, 0.03237278]], [[ 0.78441733, 0.38119566], [-0.21834874, -0.10610882]]], [[[-0.15165846, -0.15164782], [-0.35662258, -0.35659757]], [[ 1.02283812, 0.49705869], [ 2.40518808, 1.16882598]]]]) """ _, in_shape, out_shape, _ = zip(*(f.shape for f in tt_matrix)) ndim = len(in_shape) full_shape = sum(zip(*(in_shape, out_shape)), ()) order = list(range(0, ndim * 2, 2)) + list(range(1, ndim * 2, 2)) for i, factor in enumerate(tt_matrix): if not i: res = factor else: res = ivy.tensordot(res, factor, axes=([len(res.shape) - 1], [0])) return ivy.permute_dims(ivy.reshape(res, full_shape), axes=order, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_out_argument @to_native_arrays_and_back def dot( a: Union[ivy.Array, ivy.NativeArray], b: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the dot product between two arrays `a` and `b` using the current backend's implementation. The dot product is defined as the sum of the element-wise product of the input arrays. Parameters ---------- a First input array. b Second input array. out Optional output array. If provided, the output array to store the result. Returns ------- ret The dot product of the input arrays. Examples -------- With :class:`ivy.Array` inputs: >>> a = ivy.array([1, 2, 3]) >>> b = ivy.array([4, 5, 6]) >>> result = ivy.dot(a, b) >>> print(result) ivy.array(32) >>> a = ivy.array([[1, 2], [3, 4]]) >>> b = ivy.array([[5, 6], [7, 8]]) >>> c = ivy.empty_like(a) >>> ivy.dot(a, b, out=c) >>> print(c) ivy.array([[19, 22], [43, 50]]) >>> a = ivy.array([[1.1, 2.3, -3.6]]) >>> b = ivy.array([[-4.8], [5.2], [6.1]]) >>> c = ivy.zeros((1, 1)) >>> ivy.dot(a, b, out=c) >>> print(c) ivy.array([[-15.28]]) """ return current_backend(a, b).dot(a, b, out=out) @handle_exceptions @handle_nestable @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function @handle_device def general_inner_product( a: Union[ivy.Array, ivy.NativeArray], b: Union[ivy.Array, ivy.NativeArray], n_modes: Optional[int] = None, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Generalised inner products between tensors. Takes the inner product between the last (respectively first) `n_modes` of `a` (respectively `b`) Parameters ---------- a first input tensor. b second input tensor. n_modes int, default is None. If None, the traditional inner product is returned (i.e. a float) otherwise, the product between the `n_modes` last modes of `a` and the `n_modes` first modes of `b` is returned. The resulting tensor's order is `len(a) - n_modes`. out Optional output array. If provided, the output array to store the result. Returns ------- The inner product of the input arrays. Examples -------- With :class:`ivy.Array` inputs: >>> a = ivy.array([1, 2, 3]) >>> b = ivy.array([4, 5, 6]) >>> result = ivy.general_inner_product(a, b, 1) >>> print(result) ivy.array(32) >>> a = ivy.array([1, 2]) >>> b = ivy.array([4, 5]) >>> result = ivy.general_inner_product(a, b) >>> print(result) ivy.array(14) >>> a = ivy.array([[1, 1], [1, 1]]) >>> b = ivy.array([[1, 2, 3, 4],[1, 1, 1, 1]]) >>> result = ivy.general_inner_product(a, b, 1) >>> print(result) ivy.array([[2, 3, 4, 5], [2, 3, 4, 5]]) """ shape_a = a.shape shape_b = b.shape if n_modes is None: if shape_a != shape_b: raise ValueError( "Taking a generalised product between two tensors without specifying" " common modes is equivalent to taking inner product.This requires" f" a.shape == b.shape.However, got shapes {a.shape} and {b.shape}" ) return ivy.sum(ivy.multiply(a, b), out=out) common_modes = shape_a[len(shape_a) - n_modes :] if common_modes != shape_b[:n_modes]: raise ValueError( f"Incorrect shapes for inner product along {n_modes} common modes." f"Shapes {shape_a.shape} and {shape_b.shape}" ) common_size = int(ivy.prod(common_modes)) if len(common_modes) != 0 else 0 output_shape = shape_a[:-n_modes] + shape_b[n_modes:] inner_product = ivy.dot( ivy.reshape(a, (-1, common_size)), ivy.reshape(b, (common_size, -1)) ) return ivy.reshape(inner_product, output_shape, out=out) # This function has been adapted from TensorLy # https://github.com/tensorly/tensorly/blob/main/tensorly/tenalg/core_tenalg/moments.py#L5 @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function @handle_device def higher_order_moment( x: Union[ivy.Array, ivy.NativeArray], order: int, /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the Higher-Order Moment. Parameters ---------- x matrix of size (n_samples, n_features) or tensor of size(n_samples, D1, ..., DN) order number of the higher-order moment to compute Returns ------- tensor if tensor is a matrix of size (n_samples, n_features), tensor of size (n_features, )*order Examples -------- >>> a = ivy.array([[1, 2], [3, 4]]) >>> result = ivy.higher_order_moment(a, 3) >>> print(result) ivy.array([[ [14, 19], [19, 26]], [[19, 26], [26, 36] ]]) """ moment = ivy.copy_array(x) for _ in range(order - 1): moment = ivy.batched_outer([moment, x]) return ivy.mean(moment, axis=0, out=out) @handle_nestable @handle_exceptions @handle_array_like_without_promotion @inputs_to_ivy_arrays @handle_array_function @handle_device def batched_outer( tensors: Sequence[Union[ivy.Array, ivy.NativeArray]], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return a generalized outer product of the tensors. Parameters ---------- tensors list of tensors of shape (n_samples, J1, ..., JN) , (n_samples, K1, ..., KM) ... Returns ------- outer product of tensors of shape (n_samples, J1, ..., JN, K1, ..., KM, ...) Examples -------- >>> a = ivy.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) >>> b = ivy.array([[[.1, .2], [.3, .4]], [[.5, .6], [.7, .8]]]) >>> result = ivy.batched_outer([a, b]) >>> print(result) ivy.array([[[[[0.1, 0.2], [0.30000001, 0.40000001]], [[0.2 , 0.40000001], [0.60000002, 0.80000001]]], [[[0.3 , 0.60000001], [0.90000004, 1.20000002]], [[0.40000001, 0.80000001], [1.20000005, 1.60000002]]]], [[[[2.5 , 3.00000012], [3.49999994, 4.00000006]], [[3. , 3.60000014], [4.19999993, 4.80000007]]], [[[3.5 , 4.20000017], [4.89999992, 5.60000008]], [[4. , 4.80000019], [5.5999999 , 6.4000001 ]]]]]) """ result = None result_size = None result_shape = None for i, tensor in enumerate(tensors): if i: current_shape = ivy.shape(tensor) current_size = len(current_shape) - 1 n_samples = current_shape[0] _check_same_batch_size(i, n_samples, result_shape) shape_1 = result_shape + (1,) * current_size shape_2 = (n_samples,) + (1,) * result_size + tuple(current_shape[1:]) result = ivy.reshape(result, shape_1) * ivy.reshape(tensor, shape_2) else: result = tensor result_shape = ivy.shape(result) result_size = len(result_shape) - 1 if ivy.exists(out): result = ivy.inplace_update(out, result) return result def _check_same_batch_size(i, n_samples, result_shape): if n_samples != result_shape[0]: raise ValueError( f"Tensor {i} has a batch-size of {n_samples} but those before had a" f" batch-size of {result_shape[0]}, all tensors should have the" " same batch-size." )
ivy/ivy/functional/ivy/experimental/linear_algebra.py/0
{ "file_path": "ivy/ivy/functional/ivy/experimental/linear_algebra.py", "repo_id": "ivy", "token_count": 29192 }
48
# global from typing import Union, Optional, Tuple, Literal, List, Sequence # local import ivy from ivy.utils.backend import current_backend from ivy.func_wrapper import ( handle_array_function, to_native_arrays_and_back, handle_out_argument, handle_nestable, handle_array_like_without_promotion, handle_device, handle_backend_invalid, ) from ivy.utils.exceptions import handle_exceptions inf = float("inf") # Array API Standard # # -------------------# @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def cholesky( x: Union[ivy.Array, ivy.NativeArray], /, *, upper: bool = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the cholesky decomposition of the x matrix. Parameters ---------- x input array having shape (..., M, M) and whose innermost two dimensions form square symmetric positive-definite matrices. Should have a floating-point data type. upper If True, the result must be the upper-triangular Cholesky factor U. If False, the result must be the lower-triangular Cholesky factor L. Default: ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the Cholesky factors for each square matrix. If upper is False, the returned array must contain lower-triangular matrices; otherwise, the returned array must contain upper-triangular matrices. The returned array must have a floating-point data type determined by Type Promotion Rules and must have the same shape as x. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.cholesky.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([[4.0, 1.0, 2.0, 0.5, 2.0], ... [1.0, 0.5, 0.0, 0.0, 0.0], ... [2.0, 0.0, 3.0, 0.0, 0.0], ... [0.5, 0.0, 0.0, 0.625, 0.0], ... [2.0, 0.0, 0.0, 0.0, 16.0]]) >>> l = ivy.cholesky(x, upper='false') >>> print(l) ivy.array([[ 2. , 0.5 , 1. , 0.25, 1. ], [ 0. , 0.5 , -1. , -0.25, -1. ], [ 0. , 0. , 1. , -0.5 , -2. ], [ 0. , 0. , 0. , 0.5 , -3. ], [ 0. , 0. , 0. , 0. , 1. ]]) >>> x = ivy.array([[4.0, 1.0, 2.0, 0.5, 2.0], ... [1.0, 0.5, 0.0, 0.0, 0.0], ... [2.0, 0.0, 3.0, 0.0, 0.0], ... [0.5, 0.0, 0.0, 0.625, 0.0], ... [2.0, 0.0, 0.0, 0.0, 16.0]]) >>> y = ivy.zeros([5,5]) >>> ivy.cholesky(x, upper='false', out=y) >>> print(y) ivy.array([[ 2. , 0.5 , 1. , 0.25, 1. ], [ 0. , 0.5 , -1. , -0.25, -1. ], [ 0. , 0. , 1. , -0.5 , -2. ], [ 0. , 0. , 0. , 0.5 , -3. ], [ 0. , 0. , 0. , 0. , 1. ]]) >>> x = ivy.array([[4.0, 1.0, 2.0, 0.5, 2.0], ... [1.0, 0.5, 0.0, 0.0, 0.0], ... [2.0, 0.0, 3.0, 0.0, 0.0], ... [0.5, 0.0, 0.0, 0.625, 0.0], ... [2.0, 0.0, 0.0, 0.0, 16.0]]) >>> ivy.cholesky(x, upper='false', out=x) >>> print(x) ivy.array([[ 2. , 0.5 , 1. , 0.25, 1. ], [ 0. , 0.5 , -1. , -0.25, -1. ], [ 0. , 0. , 1. , -0.5 , -2. ], [ 0. , 0. , 0. , 0.5 , -3. ], [ 0. , 0. , 0. , 0. , 1. ]]) >>> x = ivy.array([[1., -2.], [2., 5.]]) >>> u = ivy.cholesky(x, upper='false') >>> print(u) ivy.array([[ 1., -2.], [ 0., 1.]]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([[3., -1],[-1., 3.]]), ... b=ivy.array([[2., 1.],[1., 1.]])) >>> y = ivy.cholesky(x, upper='false') >>> print(y) { a: ivy.array([[1.73, -0.577], [0., 1.63]]), b: ivy.array([[1.41, 0.707], [0., 0.707]]) } With multiple :class:`ivy.Container` inputs: >>> x = ivy.Container(a=ivy.array([[3., -1],[-1., 3.]]), ... b=ivy.array([[2., 1.],[1., 1.]])) >>> upper = ivy.Container(a=1, b=-1) >>> y = ivy.cholesky(x, upper='false') >>> print(y) { a: ivy.array([[1.73, -0.577], [0., 1.63]]), b: ivy.array([[1.41, 0.707], [0., 0.707]]) } With a mix of :class:`ivy.Array` and :class:`ivy.Container` inputs: >>> x = ivy.array([[1., -2.], [2., 5.]]) >>> upper = ivy.Container(a=1, b=-1) >>> y = ivy.cholesky(x, upper='false') >>> print(y) ivy.array([[ 1., -2.], [ 0., 1.]]) """ return current_backend(x).cholesky(x, upper=upper, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def cross( x1: Union[ivy.Array, ivy.NativeArray], x2: Union[ivy.Array, ivy.NativeArray], /, *, axisa: int = -1, axisb: int = -1, axisc: int = -1, axis: Optional[int] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return cross product of 3-element vectors. If x1 and x2 are multi- dimensional arrays (i.e., both have a rank greater than 1), then the cross- product of each pair of corresponding 3-element vectors is independently computed. Parameters ---------- x1 first input array. Should have a numeric data type. x2 second input array. Must be compatible with ``x1`` for all non-compute axes. The size of the axis over which to compute the cross product must be the same size as the respective axis in ``x``. Should have a numeric data type. .. note:: The compute axis (dimension) must not be broadcasted. axis the axis (dimension) of x1 and x2 containing the vectors for which to compute the cross product. Must be an integer on the interval``[-N, N)``, where ``N`` is the rank (number of dimensions) of the shape. If specified as a negative integer, the function must determine the axis along which to compute the cross product by counting backward from the last dimension (where ``-1`` refers to the last dimension). By default, the function must compute the cross product over the last axis. Default: ``-1``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the cross products. The returned array must have a data type determined by Type Promotion Rules. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.cross.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([1., 0., 0.]) >>> y = ivy.array([0., 1., 0.]) >>> z = ivy.cross(x, y) >>> print(z) ivy.array([0., 0., 1.]) With :class:`ivy.Container` inputs: >>> x = ivy.Container(a=ivy.array([5., 0., 0.]), ... b=ivy.array([0., 0., 2.])) >>> y = ivy.Container(a=ivy.array([0., 7., 0.]), ... b=ivy.array([3., 0., 0.])) >>> z = ivy.cross(x,y) >>> print(z) { a: ivy.array([0., 0., 35.]), b: ivy.array([0., 6., 0.]) } With a combination of :class:`ivy.Array` and :class:`ivy.Container` inputs: >>> x = ivy.array([9., 0., 3.]) >>> y = ivy.Container(a=ivy.array([1., 1., 0.]), ... b=ivy.array([1., 0., 1.])) >>> z = ivy.cross(x,y) >>> print(z) { a: ivy.array([-3., 3., 9.]), b: ivy.array([0., -6., 0.]) } """ return current_backend(x1).cross( x1, x2, axisa=axisa, axisb=axisb, axisc=axisc, axis=axis, out=out ) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def det( x: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None ) -> ivy.Array: """Return the determinant of a square matrix (or a stack of square matrices)``x``. Parameters ---------- x input array having shape ``(..., M, M)`` and whose innermost two dimensions form square matrices. Should have a floating-point data type. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret if ``x`` is a two-dimensional array, a zero-dimensional array containing the determinant; otherwise,a non-zero dimensional array containing the determinant for each square matrix. The returned array must have the same data type as ``x``. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.det.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([[2.,4.],[6.,7.]]) >>> y = ivy.det(x) >>> print(y) ivy.array(-10.) >>> x = ivy.array([[3.4,-0.7,0.9],[6.,-7.4,0.],[-8.5,92,7.]]) >>> y = ivy.det(x) >>> print(y) ivy.array(293.46997) With :class:`ivy.NativeArray` input: >>> x = ivy.native_array([[3.4,-0.7,0.9],[6.,-7.4,0.],[-8.5,92,7.]]) >>> y = ivy.det(x) >>> print(y) ivy.array(293.46997) With :class:`ivy.Container` input: >>> x = ivy.Container(a = ivy.array([[3., -1.], [-1., 3.]]) , ... b = ivy.array([[2., 1.], [1., 1.]])) >>> y = ivy.det(x) >>> print(y) {a:ivy.array(8.),b:ivy.array(1.)} """ return current_backend(x).det(x, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def diagonal( x: Union[ivy.Array, ivy.NativeArray], /, *, offset: int = 0, axis1: int = -2, axis2: int = -1, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the specified diagonals of a matrix (or a stack of matrices) ``x``. Parameters ---------- x input array having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. offset offset specifying the off-diagonal relative to the main diagonal. - ``offset = 0``: the main diagonal. - ``offset > 0``: off-diagonal above the main diagonal. - ``offset < 0``: off-diagonal below the main diagonal. Default: `0`. axis1 axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to first axis (-2). axis2 axis to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to second axis (-1). out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the diagonals and whose shape is determined by removing the last two dimensions and appending a dimension equal to the size of the resulting diagonals. The returned array must have the same data type as ``x``. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.diagonal.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([[1., 2.], ... [3., 4.]]) >>> d = ivy.diagonal(x) >>> print(d) ivy.array([1., 4.]) >>> x = ivy.array([[[1., 2.], ... [3., 4.]], ... [[5., 6.], ... [7., 8.]]]) >>> d = ivy.diagonal(x) >>> print(d) ivy.array([[1., 4.], [5., 8.]]) >>> x = ivy.array([[1., 2.], ... [3., 4.]]) >>> d = ivy.diagonal(x, offset=1) >>> print(d) ivy.array([2.]) >>> x = ivy.array([[0, 1, 2], ... [3, 4, 5], ... [6, 7, 8]]) >>> d = ivy.diagonal(x, offset=-1, axis1=0) >>> print(d) ivy.array([3, 7]) >>> x = ivy.array([[[ 0, 1, 2], ... [ 3, 4, 5], ... [ 6, 7, 8]], ... [[ 9, 10, 11], ... [12, 13, 14], ... [15, 16, 17]], ... [[18, 19, 20], ... [21, 22, 23], ... [24, 25, 26]]]) >>> d = ivy.diagonal(x, offset=1, axis1=-3) >>> print(d) ivy.array([[1, 11], [4, 14], [7, 17]]) >>> x = ivy.array([[[0, 1], ... [2, 3]], ... [[4, 5], ... [6, 7]]]) >>> d = ivy.diagonal(x, offset=0, axis1=0, axis2=1) >>> print(d) ivy.array([[0, 6], [1, 7]]) >>> x = ivy.array([[[1., 2.], ... [3., 4.]], ... [[5., 6.], ... [7., 8.]]]) >>> d = ivy.diagonal(x, offset=1, axis1=0, axis2=1) >>> print(d) ivy.array([[3.], [4.]]) >>> x = ivy.array([[1., 2.], ... [3., 4.]]) >>> d = ivy.diagonal(x) >>> print(d) ivy.array([1., 4.]) >>> x = ivy.array([[[ 0, 1, 2], ... [ 3, 4, 5], ... [ 6, 7, 8]], ... [[ 9, 10, 11], ... [12, 13, 14], ... [15, 16, 17]], ... [[18, 19, 20], ... [21, 22, 23], ... [24, 25, 26]]]) >>> d = ivy.diagonal(x, offset=1, axis1=1, axis2=-1) >>> print(d) ivy.array([[ 1, 5], [10, 14], [19, 23]]) >>> x = ivy.array([[0, 1, 2], ... [3, 4, 5], ... [6, 7, 8]]) >>> d = ivy.diagonal(x) >>> print(d) ivy.array([0, 4, 8]) With :class:`ivy.Container` inputs: >>> x = ivy.Container( ... a = ivy.array([[7, 1, 2], ... [1, 3, 5], ... [0, 7, 4]]), ... b = ivy.array([[4, 3, 2], ... [1, 9, 5], ... [7, 0, 6]]) ... ) >>> d = ivy.diagonal(x) >>> print(d) { a: ivy.array([7, 3, 4]), b: ivy.array([4, 9, 6]) } """ return current_backend(x).diagonal( x, offset=offset, axis1=axis1, axis2=axis2, out=out ) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def eig( x: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None, ) -> Tuple[Union[ivy.Array, ivy.NativeArray]]: """Return an eigendecomposition x = QLQᵀ of a symmetric matrix (or a stack of symmetric matrices) ``x``, where ``Q`` is an orthogonal matrix (or a stack of matrices) and ``L`` is a vector (or a stack of vectors). .. note:: The function ``eig`` currently behaves like ``eigh``, as it requires complex number support, once complex numbers are supported, x does not need to be a complex Hermitian or real symmetric matrix. Parameters ---------- x input array having shape ``(..., M, M)`` and whose innermost two dimensions form square matrices. Must have a floating-point data type. Returns ------- ret a namedtuple (``eigenvalues``, ``eigenvectors``) whose - first element must have the field name ``eigenvalues`` (corresponding to ``L`` above) and must be an array consisting of computed eigenvalues. The array containing the eigenvalues must have shape ``(..., M)``. - second element have have the field name ``eigenvectors`` (corresponding to ``Q`` above) and must be an array where the columns of the inner most matrices contain the computed eigenvectors. These matrices must be orthogonal. The array containing the eigenvectors must have shape ``(..., M, M)``. - Each returned array must have the same floating-point data type as ``x``. .. note:: Eigenvalue sort order is left unspecified and is thus implementation-dependent. """ return current_backend(x).eig(x, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def eigh( x: Union[ivy.Array, ivy.NativeArray], /, *, UPLO: str = "L", out: Optional[ivy.Array] = None, ) -> Tuple[Union[ivy.Array, ivy.NativeArray]]: r"""Return an eigendecomposition x = QLQᵀ of a symmetric matrix (or a stack of symmetric matrices) ``x``, where ``Q`` is an orthogonal matrix (or a stack of matrices) and ``L`` is a vector (or a stack of vectors). .. note:: The function ``eig`` will be added in a future version of the specification, as it requires complex number support, once complex numbers are supported, each square matrix must be Hermitian. .. note:: Whether an array library explicitly checks whether an input array is a symmetric matrix (or a stack of symmetric matrices) is implementation-defined. Parameters ---------- x input array having shape ``(..., M, M)`` and whose innermost two dimensions form square matrices. Must have a floating-point data type. Returns ------- ret a namedtuple (``eigenvalues``, ``eigenvectors``) whose - first element must have the field name ``eigenvalues`` (corresponding to :math:`\operatorname{diag}\Lambda` above) and must be an array consisting of computed eigenvalues. The array containing the eigenvalues must have shape ``(..., M)`` and must have a real-valued floating-point data type whose precision matches the precision of ``x`` (e.g., if ``x`` is ``complex128``, then the ``eigenvalues`` must be ``float64``). - second element have have the field name ``eigenvectors`` (corresponding to ``Q`` above) and must be an array where the columns of the inner most matrices contain the computed eigenvectors. These matrices must be orthogonal. The array containing the eigenvectors must have shape ``(..., M, M)``. - Each returned array must have the same floating-point data type as ``x``. .. note:: Eigenvalue sort order is left unspecified and is thus implementation-dependent. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.eigh.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([[1., 2.],[2., 5.]]) >>> eigenvalues, eigenvectors = ivy.eigh(x) >>> print(eigenvalues) ivy.array([0.17157288, 5.82842731]) >>> print(eigenvectors) ivy.array([[-0.9238795 , 0.38268343], [ 0.38268343, 0.9238795 ]]) >>> x = ivy.array([[1., 2.], [2., 5.]]) >>> eigenvalues, eigenvectors = ivy.zeros(len(x)), ivy.zeros(x.shape) >>> ivy.eigh(x, out=(eigenvalues, eigenvectors)) >>> print(eigenvalues) ivy.array([0.17157288, 5.82842731]) >>> print(eigenvectors) ivy.array([[-0.9238795 , 0.38268343], [ 0.38268343, 0.9238795 ]]) With :class:`ivy.Container` input: >>> x = ivy.Container( ... a = ivy.native_array([[1., 2., 0.], [3., 4., 5.], [1., 5., 9]]), ... b = ivy.array([[2., 4., 6.], [3., 5., 7.], [0., 0.8, 2.9]])) >>> eigenvalues, eigenvectors = ivy.eigh(x, UPLO = 'U') >>> print(eigenvalues) { a: ivy.array([-0.78930789, 2.59803128, 12.19127655]), b: ivy.array([-4.31213903, -0.63418275, 14.84632206]) } >>> print(eigenvectors) { a: ivy.array([[0.70548367, -0.70223427, 0.09570674], [-0.63116378, -0.56109613, 0.53554028], [0.32237405, 0.43822157, 0.83906901]]), b: ivy.array([[0.50766778, 0.71475857, 0.48103389], [0.3676433, -0.68466955, 0.62933773], [-0.77917379, 0.14264561, 0.61036086]]) } """ return current_backend(x).eigh(x, UPLO=UPLO, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def eigvalsh( x: Union[ivy.Array, ivy.NativeArray], /, *, UPLO: str = "L", out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the eigenvalues of a symmetric matrix (or a stack of symmetric matrices) x. .. note:: The function ``eig`` will be added in a future version of the specification, as it requires complex number support, once complex numbers are supported, each square matrix must be Hermitian. .. note:: Whether an array library explicitly checks whether an input array is a symmetric matrix (or a stack of symmetric matrices) is implementation-defined. Parameters ---------- x input array having shape (..., M, M) and whose innermost two dimensions form square matrices. Must have floating-point data type. UPLO optional string being 'L' or 'U', specifying whether the calculation is done with the lower triangular part of `x` ('L', default) or the upper triangular part ('U'). out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the computed eigenvalues. The returned array must have shape (..., M) and and must have a real-valued floating-point data type whose precision matches the precision of ``x`` (e.g., if ``x`` is ``complex128``, then the ``eigenvalues`` must be ``float64``). This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.eigvalsh.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([[[1.0,2.0],[2.0,1.0]]]) >>> y = ivy.eigvalsh(x) >>> print(y) ivy.array([[-1., 3.]]) >>> x = ivy.array([[[3.0,2.0],[2.0,3.0]]]) >>> y = ivy.zeros([1,2]) >>> ivy.eigvalsh(x, out=y) >>> print(y) ivy.array([[1., 5.]]) >>> x = ivy.array([[[3.0,2.0],[2.0,3.0]]]) >>> ivy.eigvalsh(x, out=x) >>> print(x) ivy.array([[1., 5.]]) >>> x = ivy.array([[[2.0,3.0,6.0],[3.0,4.0,5.0],[6.0,5.0,9.0]], ... [[1.0,1.0,1.0],[1.0,2.0,2.0],[1.0,2.0,2.0]]]) >>> y = ivy.eigvalsh(x, UPLO="U") >>> print(y) ivy.array([[-1.45033181e+00, 1.02829754e+00, 1.54220343e+01], [-1.12647155e-15, 4.38447177e-01, 4.56155300e+00]]) With :class:`ivy.NativeArray` inputs: >>> x = ivy.native_array([[[1., 1., 2.], [1., 2., 1.], [1., 1., 2]]]) >>> y = ivy.eigvalsh(x) >>> print(y) ivy.array([[0.26794919, 1. , 3.7320509 ]]) With :class:`ivy.Container` inputs: >>> x = ivy.Container(a=ivy.array([[[1.,2.,3.],[2.,4.,5.],[3.,5.,6.]]]), ... b=ivy.array([[[1.,1.,2.],[1.,2.,1.],[2.,1.,1.]]]), ... c=ivy.array([[[2.,2.,2.],[2.,3.,3.],[2.,3.,3.]]])) >>> y = ivy.eigvalsh(x) >>> print(y) { a: ivy.array([[-0.51572949, 0.17091519, 11.3448143]]), b: ivy.array([[-1., 1., 4.]]), c: ivy.array([[-8.88178420e-16, 5.35898387e-01, 7.46410179e+00]]) } """ return current_backend(x).eigvalsh(x, UPLO=UPLO, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def inner( x1: Union[ivy.Array, ivy.NativeArray], x2: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the inner product of two vectors ``x1`` and ``x2``. Parameters ---------- x1 first one-dimensional input array of size N. Should have a numeric data type. a(N,) array_like First input vector. Input is flattened if not already 1-dimensional. x2 second one-dimensional input array of size M. Should have a numeric data type. b(M,) array_like Second input vector. Input is flattened if not already 1-dimensional. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a two-dimensional array containing the inner product and whose shape is (N, M). The returned array must have a data type determined by Type Promotion Rules. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- Matrices of identical shapes >>> x = ivy.array([[1., 2.], [3., 4.]]) >>> y = ivy.array([[5., 6.], [7., 8.]]) >>> d = ivy.inner(x, y) >>> print(d) ivy.array([[17., 23.], [39., 53.]]) # Matrices of different shapes >>> x = ivy.array([[1., 2.], [3., 4.], [5., 6.]]) >>> y = ivy.array([[5., 6.], [7., 8.]]) >>> d = ivy.inner(x, y) >>> print(d) ivy.array([[17., 23.], [39., 53.], [61., 83.]]) # 3D matrices >>> x = ivy.array([[[1., 2.], [3., 4.]], ... [[5., 6.], [7., 8.]]]) >>> y = ivy.array([[[9., 10.], [11., 12.]], ... [[13., 14.], [15., 16.]]]) >>> d = ivy.inner(x, y) >>> print(d) ivy.array([[[[ 29., 35.], [ 41., 47.]], [[ 67., 81.], [ 95., 109.]]], [[[105., 127.], [149., 171.]], [[143., 173.], [203., 233.]]]]) """ return current_backend(x1, x2).inner(x1, x2, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def inv( x: Union[ivy.Array, ivy.NativeArray], /, *, adjoint: bool = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the multiplicative inverse of a square matrix (or a stack of square matrices) ``x``. Parameters ---------- x input array having shape ``(..., M, M)`` and whose innermost two dimensions form square matrices. Should have a floating-point data type. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the multiplicative inverses. The returned array must have a floating-point data type determined by :ref:`type-promotion` and must have the same shape as ``x``. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.inv.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([[1.0, 2.0], [3.0, 4.0]]) >>> y = ivy.zeros((2, 2)) >>> ivy.inv(x, out=y) >>> print(y) ivy.array([[-2., 1.],[1.5, -0.5]]) >>> x = ivy.array([[1.0, 2.0], [5.0, 5.0]]) >>> ivy.inv(x, out=x) >>> print(x) ivy.array([[-1., 0.4],[1., -0.2]]) >>> x = ivy.array([[[1.0, 2.0],[3.0, 4.0]], ... [[1.0, 3.0], [3.0, 5.0]]]) >>> y = ivy.inv(x) >>> print(y) ivy.array([[[-2., 1.],[1.5, -0.5]], [[-1.25, 0.75],[0.75, -0.25]]]) With :class:`ivy.Container` inputs >>> x = ivy.Container(a=ivy.array([[11., 100., 10.], ... [300., 40., 20.], [25., 30, 100.]]), ... b=ivy.array([[4., 400., 50.], [10., 10., 15.], ... [50., 5000., 40.]]), ... c=ivy.array([[25., 22., 100.], [55, 20., 20.], ... [55., 50., 100.]])) >>> y = x.inv() >>> print(y) { a: ivy.array([[-0.0012, 0.00342, -0.000565], [0.0104, -0.0003, -0.000981], [-0.00282, -0.000766, 0.0104]]), b: ivy.array([[-0.0322, 0.101, 0.00237], [0.000151, -0.00101, 0.00019], [0.0214, 0., -0.00171]]), c: ivy.array([[0.0107, 0.03, -0.0167], [-0.0472, -0.0322, 0.0536], [0.0177, -0.000429, -0.00762]]) } """ return current_backend(x).inv(x, adjoint=adjoint, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def matmul( x1: Union[ivy.Array, ivy.NativeArray], x2: Union[ivy.Array, ivy.NativeArray], /, *, transpose_a: bool = False, transpose_b: bool = False, adjoint_a: bool = False, adjoint_b: bool = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the matrix product. Parameters ---------- x1 first input array. Should have a numeric data type. Must have at least one dimension. x2 second input array. Should have a numeric data type. Must have at least one dimension. transpose_a if True, ``x1`` is transposed before multiplication. transpose_b if True, ``x2`` is transposed before multiplication. adjoint_a If True, takes the conjugate of the matrix then the transpose of the matrix. adjoint_a and transpose_a can not be true at the same time. adjoint_b If True, takes the conjugate of the matrix then the transpose of the matrix. adjoint_b and transpose_b can not be true at the same time. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret - if both x1 and x2 are one-dimensional arrays having shape (N,), a zero-dimensional array containing the inner product as its only element. - if x1 is a two-dimensional array having shape (M, K) and x2 is a two-dimensional array having shape (K, N), a two-dimensional array containing the conventional matrix product and having shape (M, N). - if x1 is a one-dimensional array having shape (K,) and x2 is an array having shape (..., K, N), an array having shape (..., N) (i.e., prepended dimensions during vector-to-matrix promotion must be removed) and containing the conventional matrix product. - if x1 is an array having shape (..., M, K) and x2 is a one-dimensional array having shape (K,), an array having shape (..., M) (i.e., appended dimensions during vector-to-matrix promotion must be removed) and containing the conventional matrix product. - if x1 is a two-dimensional array having shape (M, K) and x2 is an array having shape (..., K, N), an array having shape (..., M, N) and containing the conventional matrix product for each stacked matrix. - if x1 is an array having shape (..., M, K) and x2 is a two-dimensional array having shape (K, N), an array having shape (..., M, N) and containing the conventional matrix product for each stacked matrix. - if either x1 or x2 has more than two dimensions, an array having a shape determined by Broadcasting shape(x1)[:-2] against shape(x2)[:-2] and containing the conventional matrix product for each stacked matrix. **Raises** - if either x1 or x2 is a zero-dimensional array. - if x1 is a one-dimensional array having shape (K,), x2 is a one-dimensional array having shape (L,), and K != L. - if x1 is a one-dimensional array having shape (K,), x2 is an array having shape (..., L, N), and K != L. - if x1 is an array having shape (..., M, K), x2 is a one-dimensional array having shape (L,), and K != L. - if x1 is an array having shape (..., M, K), x2 is an array having shape (..., L, N), and K != L. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.matmul.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([2., 0., 3.]) >>> y = ivy.array([4., 1., 8.]) >>> z = ivy.matmul(x, y) >>> print(z) ivy.array(32.) >>> x = ivy.array([[1., 2.], [0., 1.]]) >>> y = ivy.array([[2., 0.], [0., 3.]]) >>> z = ivy.matmul(x, y, transpose_b=True) >>> print(z) ivy.array([[2., 6.], [0., 3.]]) With :class:`ivy.Container` inputs: >>> x = ivy.Container(a=ivy.array([5., 1.]), b=ivy.array([1., 0.])) >>> y = ivy.Container(a=ivy.array([4., 7.]), b=ivy.array([3., 0.])) >>> z = ivy.matmul(x,y) >>> print(z) { a: ivy.array(27.), b: ivy.array(3.) } With a combination of :class:`ivy.Array` and :class:`ivy.Container` inputs: >>> x = ivy.array([9., 0.]) >>> y = ivy.Container(a=ivy.array([2., 1.]), b=ivy.array([1., 0.])) >>> z = ivy.matmul(x, y) >>> print(z) { a: ivy.array(18.), b: ivy.array(9.) } >>> x = ivy.array([[1., 2.], [0., 3.]]) >>> y = ivy.array([[1.], [3.]]) >>> z = ivy.matmul(x, y, transpose_a=True) >>> print(z) ivy.array([[ 1.], [11.]]) """ return current_backend(x1).matmul( x1, x2, transpose_a=transpose_a, transpose_b=transpose_b, adjoint_a=adjoint_a, adjoint_b=adjoint_b, out=out, ) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def matrix_norm( x: Union[ivy.Array, ivy.NativeArray], /, *, ord: Union[int, float, Literal[inf, -inf, "fro", "nuc"]] = "fro", axis: Tuple[int, int] = (-2, -1), keepdims: bool = False, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the matrix p-norm. Parameters ---------- x Input array having shape (..., M, N) and whose innermost two dimensions form MxN matrices. Should have a floating-point data type. ord order of the norm. The following mathematical norms must be supported: +------------------+---------------------------------+ | ord | description | +==================+=================================+ | 'fro' | Frobenius norm | +------------------+---------------------------------+ | 'nuc' | nuclear norm | +------------------+---------------------------------+ | 1 | max(sum(abs(x), axis=0)) | +------------------+---------------------------------+ | 2 | largest singular value | +------------------+---------------------------------+ | inf | max(sum(abs(x), axis=1)) | +------------------+---------------------------------+ The following non-mathematical "norms" must be supported: +------------------+---------------------------------+ | ord | description | +==================+=================================+ | -1 | min(sum(abs(x), axis=0)) | +------------------+---------------------------------+ | -2 | smallest singular value | +------------------+---------------------------------+ | -inf | min(sum(abs(x), axis=1)) | +------------------+---------------------------------+ If ``ord=1``, the norm corresponds to the induced matrix norm where ``p=1`` (i.e., the maximum absolute value column sum). If ``ord=2``, the norm corresponds to the induced matrix norm where ``p=inf`` (i.e., the maximum absolute value row sum). If ``ord=inf``, the norm corresponds to the induced matrix norm where ``p=2`` (i.e., the largest singular value). Default: "fro". axis specifies the axes that hold 2-D matrices. Default: (-2, -1). keepdims If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x. Default is ``False``. dtype If specified, the input tensor is cast to dtype before performing the operation, and the returned tensor's type will be dtype. Default: None out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Matrix norm of the array at specified axes. If ``keepdims`` is ``False``, the returned array must have a rank which is two less than the ranl of ``x``. If ``x`` has a real-valued data type, the returned array must have a real-valued floating-point data type based on Type promotion. If ``x`` has a complex-valued data type, the returned array must have a real-valued floating-point data type whose precision matches the precision of ``x`` (e.g., if ``x`` is ``complex128``, then the returned array must have a `float64`` data type). This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.matrix_norm.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([[1., 2.], [3., 4.]]) >>> y = ivy.matrix_norm(x) >>> print(y) ivy.array(5.47722558) >>> x = ivy.arange(8, dtype=float).reshape((2, 2, 2)) >>> y = ivy.zeros(2) >>> ivy.matrix_norm(x, ord=1, out=y) >>> print(y) ivy.array([ 4., 12.]) >>> x = ivy.arange(12, dtype=float).reshape((3, 2, 2)) >>> y = ivy.zeros((3,)) >>> ivy.matrix_norm(x, ord=ivy.inf, axis=(2, 1), out=y) >>> print(y) ivy.array([ 4., 12., 20.]) >>> x = ivy.array([[1.1, 2.2], [3.3, 4.4], [5.5, 6.6]]) >>> y = ivy.matrix_norm(x, ord='nuc', keepdims=True) >>> print(y) ivy.array([[11.]]) >>> x = ivy.array([[[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], ... [[1., 0., 1.1], [1., 1., 0.]]]) >>> y = ivy.zeros((2,)) >>> ivy.matrix_norm(x, ord='fro', out=y) >>> print(y) ivy.array([10.5 , 2.05]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([[0.666, 9.11], ... [42.69, 9.23]]), ... b=ivy.array([[1.1, 2.2, 3.3], ... [4.4, 5.5, 6.6]])) >>> y = ivy.matrix_norm(x, ord=-ivy.inf) >>> print(y) { a: ivy.array(9.776), b: ivy.array(6.6000004) } With multiple :class:`ivy:Container` inputs: >>> x = ivy.Container(a=ivy.arange(12, dtype=float).reshape((3, 2, 2)), ... b=ivy.arange(8, dtype=float).reshape((2, 2, 2))) >>> ord = ivy.Container(a=1, b=float('inf')) >>> axis = ivy.Container(a=(1, 2), b=(2, 1)) >>> k = ivy.Container(a=False, b=True) >>> y = ivy.matrix_norm(x, ord=ord, axis=axis, keepdims=k) >>> print(y) { a: ivy.array([4., 12., 20.]), b: ivy.array([[[4.]], [[12.]]]) } """ return current_backend(x).matrix_norm( x, ord=ord, axis=axis, keepdims=keepdims, dtype=dtype, out=out ) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def matrix_power( x: Union[ivy.Array, ivy.NativeArray], n: int, /, *, out: Optional[ivy.Array] = None ) -> ivy.Array: """Raise a square matrix (or a stack of square matrices) x to an integer power n. Parameters ---------- x input array having shape (..., M, M) and whose innermost two dimensions form square matrices. Should have a floating-point data type. n integer exponent. Returns ------- ret if n is equal to zero, an array containing the identity matrix for each square matrix. If n is less than zero, an array containing the inverse of each square matrix raised to the absolute value of n, provided that each square matrix is invertible. If n is greater than zero, an array containing the result of raising each square matrix to the power n. The returned array must have the same shape as x and a floating-point data type determined by Type Promotion Rules. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.matrix_power.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :code: 'ivy.Array' inputs: >>> x = ivy.array([[1., 2.], [3., 4.]]) >>> ivy.matrix_power(x,1) ivy.array([[1., 2.], [3., 4.]]) >>> x = ivy.array([[3., 2.], [-5., -3.]]) >>> ivy.matrix_power(x,-1) ivy.array([[-3., -2.], [ 5., 3.]]) >>> x = ivy.array([[4., -1.], [0., 2.]]) >>> ivy.matrix_power(x,0) ivy.array([[1., 0.], [0., 1.]]) >>> x = ivy.array([[1., 2.], [0., 1.]]) >>> ivy.matrix_power(x,5) ivy.array([[ 1., 10.], [ 0., 1.]]) >>> x = ivy.array([[1/2, 0.], [0., -1/3]]) >>> ivy.matrix_power(x,-2) ivy.array([[4., 0.], [0., 9.]]) With :code: 'ivy.NativeArray' inputs: >>> x = ivy.native_array([[1., 2., 3.], [6., 5., 4.], [7., 8., 9.]]) >>> ivy.matrix_power(x,2) ivy.array([[ 34., 36., 38.], [ 64., 69., 74.], [118., 126., 134.]]) With :code: 'ivy.Container' inputs: >>> x = ivy.Container(a = ivy.array([[1., 2.], [3., 4.]]), b = ivy.array([[1., 0.], [0., 0.]])) >>> ivy.matrix_power(x,3) { a: ivy.array([[37., 54.], [81., 118.]]), b: ivy.array([[1., 0.], [0., 0.]]) } """ return current_backend(x).matrix_power(x, n, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def matrix_rank( x: Union[ivy.Array, ivy.NativeArray], /, *, atol: Optional[Union[float, Tuple[float]]] = None, rtol: Optional[Union[float, Tuple[float]]] = None, hermitian: Optional[bool] = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the rank (i.e., number of non-zero singular values) of a matrix (or a stack of matrices). Parameters ---------- x input array having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. Should have a floating-point data type. atol absolute tolerance. When None it's considered to be zero. rtol relative tolerance for small singular values. Singular values approximately less than or equal to ``rtol * largest_singular_value`` are set to zero. If a ``float``, the value is equivalent to a zero-dimensional array having a floating-point data type determined by :ref:`type-promotion` (as applied to ``x``) and must be broadcast against each matrix. If an ``array``, must have a floating-point data type and must be compatible with ``shape(x)[:-2]`` (see :ref:`broadcasting`). If ``None``, the default value is ``max(M, N) * eps``, where ``eps`` must be the machine epsilon associated with the floating-point data type determined by :ref:`type-promotion` (as applied to ``x``). Default: ``None``. hermitian indicates whether ``x`` is Hermitian. When ``hermitian=True``, ``x`` is assumed to be Hermitian, enabling a more efficient method for finding eigenvalues, but x is not checked inside the function. Instead, We just use the lower triangular of the matrix to compute. Default: ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the ranks. The returned array must have a floating-point data type determined by :ref:`type-promotion` and must have shape ``(...)`` (i.e., must have a shape equal to ``shape(x)[:-2]``). This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.matrix_rank.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :code: 'ivy.Array' inputs: 1. Full Matrix >>> x = ivy.array([[1., 2.], [3., 4.]]) >>> ivy.matrix_rank(x) ivy.array(2.) 2. Rank Deficient Matrix >>> x = ivy.array([[1., 0.], [0., 0.]]) >>> ivy.matrix_rank(x) ivy.array(1.) 3. 1 Dimension - rank 1 unless all 0 >>> x = ivy.array([[1., 1.]) >>> ivy.matrix_rank(x) ivy.array(1.) >>> x = ivy.array([[0., 0.]) >>> ivy.matrix_rank(x) ivy.array(0) With :code: 'ivy.NativeArray' inputs: >>> x = ivy.native_array([[1., 2.], [3., 4.]], [[1., 0.], [0., 0.]]) >>> ivy.matrix_rank(x) ivy.array([2., 1.]) With :code: 'ivy.Container' inputs: >>> x = ivy.Container(a = ivy.array([[1., 2.], [3., 4.]]), \ b = ivy.array([[1., 0.], [0., 0.]])) >>> ivy.matrix_rank(x) { a:ivy.array(2.), b:ivy.array(1.) } """ return current_backend(x).matrix_rank( x, atol=atol, rtol=rtol, hermitian=hermitian, out=out ) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def matrix_transpose( x: Union[ivy.Array, ivy.NativeArray], /, *, conjugate: bool = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Transposes a matrix (or a stack of matrices) ``x``. Parameters ---------- x input array having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. conjugate If True, takes the conjugate of the matrix. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the transpose for each matrix and having shape ``(..., N, M)``. The returned array must have the same data type as ``x``. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.matrix_transpose.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :code: 'ivy.Array' inputs: >>> x = ivy.array([[0., 2.], [1., 3.]]) >>> y = ivy.matrix_transpose(x) >>> print(y) ivy.array([[0., 1.], [2., 3.]]) >>> x = ivy.array([[1., 4.], [2., 5.], [3., 1.]]) >>> y = ivy.zeros((2, 3)) >>> ivy.matrix_transpose(x, out=y) ivy.array([[1., 2., 3.], [4., 5., 1.]]) >>> x = ivy.array([[2., 3.], [1., 2.]]) >>> ivy.matrix_transpose(x, out=x) ivy.array([[2., 1.], [3., 2.]]) >>> x = ivy.array([[0., 1., 2.], [1., 2., 3.]]) >>> y = ivy.matrix_transpose(x) >>> print(y) ivy.array([[0., 1.], [1., 2.], [2., 3.]]) With :code: 'ivy.Container' inputs: >>> x = ivy.Container(a=ivy.array([[0., 1.], [0., 2.]]), \ b=ivy.array([[3., 4.], [3., 5.]])) >>> y = ivy.matrix_transpose(x) >>> print(y) { a: ivy.array([[0., 0.], [1., 2.]]), b: ivy.array([[3., 3.], [4., 5.]]) } """ return current_backend(x).matrix_transpose(x, conjugate=conjugate, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def outer( x1: Union[ivy.Array, ivy.NativeArray], x2: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the outer product of two vectors ``x1`` and ``x2``. Parameters ---------- x1 first one-dimensional input array of size N. Should have a numeric data type. a(N,) array_like First input vector. Input is flattened if not already 1-dimensional. x2 second one-dimensional input array of size M. Should have a numeric data type. b(M,) array_like Second input vector. Input is flattened if not already 1-dimensional. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a two-dimensional array containing the outer product and whose shape is (N, M). The returned array must have a data type determined by Type Promotion Rules. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.outer.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- >>> x = ivy.array([[1., 2.],[3., 4.]]) >>> y = ivy.array([[5., 6.],[7., 8.]]) >>> d = ivy.outer(x,y) >>> print(d) ivy.array([[ 5., 6., 7., 8.], [10., 12., 14., 16.], [15., 18., 21., 24.], [20., 24., 28., 32.]]) >>> d = ivy.outer(x, 1) >>> print(d) ivy.array([[1.], [2.], [3.], [4.]]) >>> x = ivy.array([[[1., 2.],[3., 4.]],[[5., 6.],[7., 8.]]]) >>> y = ivy.array([[[9., 10.],[11., 12.]],[[13., 14.],[15., 16.]]]) >>> d = ivy.outer(x, y) >>> print(d) ivy.array([[ 9., 10., 11., 12., 13., 14., 15., 16.], [ 18., 20., 22., 24., 26., 28., 30., 32.], [ 27., 30., 33., 36., 39., 42., 45., 48.], [ 36., 40., 44., 48., 52., 56., 60., 64.], [ 45., 50., 55., 60., 65., 70., 75., 80.], [ 54., 60., 66., 72., 78., 84., 90., 96.], [ 63., 70., 77., 84., 91., 98., 105., 112.], [ 72., 80., 88., 96., 104., 112., 120., 128.]]) """ return current_backend(x1, x2).outer(x1, x2, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def pinv( x: Union[ivy.Array, ivy.NativeArray], /, *, rtol: Optional[Union[float, Tuple[float]]] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the (Moore-Penrose) pseudo-inverse of a matrix (or a stack of matrices) ``x``. Parameters ---------- x input array having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. Should have a floating-point data type. rtol relative tolerance for small singular values. Singular values approximately less than or equal to ``rtol * largest_singular_value`` are set to zero. If a ``float``, the value is equivalent to a zero-dimensional array having a floating-point data type determined by :ref:`type-promotion` (as applied to ``x``) and must be broadcast against each matrix. If an ``array``, must have a floating-point data type and must be compatible with ``shape(x)[:-2]`` (see :ref:`broadcasting`). If ``None``, the default value is ``max(M, N) * eps``, where ``eps`` must be the machine epsilon associated with the floating-point data type determined by :ref:`type-promotion` (as applied to ``x``). Default: ``None``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the pseudo-inverses. The returned array must have a floating-point data type determined by :ref:`type-promotion` and must have shape ``(..., N, M)`` (i.e., must have the same shape as ``x``, except the innermost two dimensions must be transposed). This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.pinv.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- >>> x = ivy.array([[1., 2.],[3., 4.]]) >>> y = ivy.pinv(x) >>> print(y) ivy.array([[-1.99999988, 1. ], [ 1.5 , -0.5 ]]) >>> x = ivy.array([[1., 2.],[3., 4.]]) >>> out = ivy.zeros(x.shape) >>> ivy.pinv(x, out=out) >>> print(out) ivy.array([[-1.99999988, 1. ], [ 1.5 , -0.5 ]]) """ return current_backend(x).pinv(x, rtol=rtol, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def qr( x: Union[ivy.Array, ivy.NativeArray], /, *, mode: str = "reduced", out: Optional[Tuple[ivy.Array, ivy.Array]] = None, ) -> Tuple[ivy.Array, ivy.Array]: """Return the qr decomposition x = QR of a full column rank matrix (or a stack of matrices), where Q is an orthonormal matrix (or a stack of matrices) and R is an upper-triangular matrix (or a stack of matrices). Parameters ---------- x input array having shape (..., M, N) and whose innermost two dimensions form MxN matrices of rank N. Should have a floating-point data type. mode decomposition mode. Should be one of the following modes: - 'reduced': compute only the leading K columns of q, such that q and r have dimensions (..., M, K) and (..., K, N), respectively, and where K = min(M, N). - 'complete': compute q and r with dimensions (..., M, M) and (..., M, N), respectively. Default: 'reduced'. out optional output tuple of arrays, for writing the result to. The arrays must have shapes that the inputs broadcast to. Returns ------- ret a namedtuple (Q, R) whose - first element must have the field name Q and must be an array whose shape depends on the value of mode and contain matrices with orthonormal columns. If mode is 'complete', the array must have shape (..., M, M). If mode is 'reduced', the array must have shape (..., M, K), where K = min(M, N). The first x.ndim-2 dimensions must have the same size as those of the input array x. - second element must have the field name R and must be an array whose shape depends on the value of mode and contain upper-triangular matrices. If mode is 'complete', the array must have shape (..., M, N). If mode is 'reduced', the array must have shape (..., K, N), where K = min(M, N). The first x.ndim-2 dimensions must have the same size as those of the input x. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.qr.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]]) >>> q, r = ivy.qr(x) >>> print(q) ivy.array([[-0.12309149, 0.90453403, 0.40824829], [-0.49236596, 0.30151134, -0.81649658], [-0.86164044, -0.30151134, 0.40824829]]) >>> print(r) ivy.array([[-8.12403841e+00,-9.60113630e+00, -1.10782342e+01], [ 0.00000000e+00, 9.04534034e-01, 1.80906807e+00], [ 0.00000000e+00, 0.00000000e+00, -8.88178420e-16]]) # Note: if `int` values are used in `x` the output for q, r vary >>> x = ivy.array([[1., 2.], [3., 4.]]) >>> q = ivy.zeros_like(x) >>> r = ivy.zeros_like(x) >>> ivy.qr(x, out=(q,r)) >>> print(q) ivy.array([[-0.31622776, -0.94868332], [-0.94868332, 0.31622776]]) >>> print(r) ivy.array([[-3.1622777 , -4.42718887], [ 0. , -0.63245553]]) With :class:`ivy.Container` input: >>> x = ivy.Container(a = ivy.native_array([[1., 2.], [3., 4.]]), ... b = ivy.array([[2., 3.], [4. ,5.]])) >>> q,r = ivy.qr(x, mode='complete') >>> print(q) { a: ivy.array([[-0.31622777, -0.9486833], [-0.9486833, 0.31622777]]), b: ivy.array([[-0.4472136, -0.89442719], [-0.89442719, 0.4472136]]) } >>> print(r) { a: ivy.array([[-3.16227766, -4.42718872], [0., -0.63245553]]), b: ivy.array([[-4.47213595, -5.81377674], [0., -0.4472136]]) } """ return current_backend(x).qr(x, mode=mode, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @to_native_arrays_and_back @handle_array_function @handle_device def slogdet( x: Union[ivy.Array, ivy.NativeArray], /, ) -> Tuple[Union[ivy.Array, ivy.NativeArray], Union[ivy.Array, ivy.NativeArray]]: """ Return the sign and the natural logarithm of the absolute value of the determinant of a square matrix (or a stack of square matrices) ``x``. .. note:: The purpose of this function is to calculate the determinant more accurately when the determinant is either very small or very large, as calling ``det`` may overflow or underflow. **Special cases** For real-valued floating-point operands, - If the determinant is zero, the ``sign`` should be ``0``and ``logabsdet`` should be ``infinity``. For complex floating-point operands, - If the detereminant is ``0 + 0j``, the ``sign`` should be ``0 + 0j`` and ``logabsdet`` should be ``infinity + 0j``. Parameters ---------- x: input array having shape ``(..., M, M)`` and whose innermost two dimensions form square matrices. Should have a real-valued floating-point data type. Returns ------- ret: a namedtuple (``sign``, ``logabsdet``) whose - first element must have the field name ``sign`` and must be an array containing a number representing the sign of the determinant for each square matrix. - second element must have the field name ``logabsdet`` and must be an array containing the determinant for each square matrix. For a real matrix, the sign of the determinant must be either ``1``, ``0``, or ``-1``. Each returned array must have shape ``shape(x)[:-2]`` and a real-valued floating-point data type determined by :ref:`type-promotion`. If ``x`` is complex, the returned array must have a real-valued floating-point data type having the same precision as ``x`` (1.g., if ``x`` is ``complex64``, ``logabsdet`` must have a ``float32`` data type) .. note:: If a determinant is zero, then the corresponding ``sign`` should be ``0`` and ``logabsdet`` should be ``-infinity``; however, depending on the underlying algorithm, the returned result may differ. In all cases, the determinant should be equal to ``sign * exp(logsabsdet)`` (although, again, the result may be subject to numerical precision errors). This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.slogdet.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([[2.0, 1.0], ... [3.0, 4.0]]) >>> y = ivy.slogdet(x) >>> print(y) slogdet(sign=ivy.array(1.), logabsdet=ivy.array(1.60943794)) >>> ivy.set_backend('numpy') # As the precision of results depends on backend. >>> x = ivy.array([[1.2, 2.0, 3.1], ... [6.0, 5.2, 4.0], ... [9.0, 8.0, 7.0]]) >>> y = ivy.slogdet(x) >>> print(y) slogdet(sign=ivy.array(-1.), logabsdet=ivy.array(1.098611)) With :class:`ivy.Container` input: >>> ivy.unset_backend() # unset backend again. >>> x = ivy.Container(a=ivy.array([[1.0, 2.0], ... [3.0, 4.0]]), ... b=ivy.array([[1.0, 2.0], ... [2.0, 1.0]])) >>> y = ivy.slogdet(x) >>> print(y) [{ a: ivy.array(-1.), b: ivy.array(-1.) }, { a: ivy.array(0.69314718), b: ivy.array(1.09861231) }] """ return current_backend(x).slogdet(x) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def solve( x1: Union[ivy.Array, ivy.NativeArray], x2: Union[ivy.Array, ivy.NativeArray], /, *, adjoint: bool = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the solution x to the system of linear equations represented by the well- determined (i.e., full rank) linear matrix equation Ax = B. Parameters ---------- x1 coefficient array A having shape (..., M, M) and whose innermost two dimensions form square matrices. Must be of full rank (i.e., all rows or, equivalently, columns must be linearly independent). Should have a floating-point data type. x2 ordinate (or “dependent variable”) array B. If x2 has shape (M,1), x2 is equivalent to an array having shape (..., M, 1). If x2 has shape (..., M, K), each column k defines a set of ordinate values for which to compute a solution, and shape(x2)[:-1] must be compatible with shape(x1)[:-1] (see Broadcasting). Should have a floating-point data type. adjoint specifies whether the system should be solved for x1 or adjoint(x1) out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the solution to the system AX = B (or adjoint(A)X = B) for each square matrix. The returned array must have the same shape as x2 (i.e., the array corresponding to B) and must have a floating-point data type determined by Type Promotion Rules. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.solve.html>`_ in the standard. Both the description and the type hints above assume an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With class:`ivy.Array` input: >>> A = ivy.array([[1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3]]), >>> B = ivy.array([[1.1], [2.1], [3.1]]), >>> x = ivy.solve(A,B); >>> print(x) ivy.array([[1], [0], [0]]) >>> print(x.shape) (1,3) With shape(A) = (2,3,3) and shape(B) = (2,3,1): >>> A = ivy.array([[[11.1, 11.2, 11.3],[12.1, 12.2, 12.3],[13.1, 13.2, 13.3]], [[21.1, 21.2, 21.3],[22.1, 22.2, 22.3],[23.1, 23.2, 23.3]]]), >>> B = ivy.array([[[11.1], [12.1], [13.1]], [[21.1], [22.1], [23.1]]]), >>> x = ivy.solve(A,B); >>> print(x) ivy.array([[[1], [0], [0]], [[1], [0], [0]]]) >>> print(x.shape) (2,1,3) With shape(A) = (3,3) and shape(B) = (3,2): >>> A = ivy.array([[1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3]]), >>> B = ivy.array([[1.1, 2.2], [2.1, 4.2], [3.1, 6.2]]), >>> x = ivy.solve(A,B); >>> print(x) ivy.array([[[1], [0], [0]], [[2], [0], [0]]]) >>> print(x.shape) (2,1,3) With class:`ivy.Container` input: >>> A = ivy.array([[1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3]]), >>> B = ivy.container(B1 = ivy.array([[1.1], [2.1], [3.1]]), B2 = ivy.array([[2.2], [4.2], [6.2]])) >>> x = ivy.solve(A,B); >>> print(x) { B1:([[1],[0],[0]]), B2:([[2],[0],[0]]) } """ # noqa: E501 return current_backend(x1, x2).solve(x1, x2, adjoint=adjoint, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @to_native_arrays_and_back @handle_array_function @handle_device def svd( x: Union[ivy.Array, ivy.NativeArray], /, *, compute_uv: bool = True, full_matrices: bool = True, ) -> Union[ivy.Array, Tuple[ivy.Array, ...]]: """Return a singular value decomposition A = USVh of a matrix (or a stack of matrices) ``x``, where ``U`` is a matrix (or a stack of matrices) with orthonormal columns, ``S`` is a vector of non-negative numbers (or stack of vectors), and ``Vh`` is a matrix (or a stack of matrices) with orthonormal rows. Parameters ---------- x input array having shape ``(..., M, N)`` and whose innermost two dimensions form matrices on which to perform singular value decomposition. Should have a floating-point data type. full_matrices If ``True``, compute full-sized ``U`` and ``Vh``, such that ``U`` has shape ``(..., M, M)`` and ``Vh`` has shape ``(..., N, N)``. If ``False``, compute on the leading ``K`` singular vectors, such that ``U`` has shape ``(..., M, K)`` and ``Vh`` has shape ``(..., K, N)`` and where ``K = min(M, N)``. Default: ``True``. compute_uv If ``True`` then left and right singular vectors will be computed and returned in ``U`` and ``Vh``, respectively. Otherwise, only the singular values will be computed, which can be significantly faster. .. note:: with backend set as torch, svd with still compute left and right singular vectors irrespective of the value of compute_uv, however Ivy will still only return the singular values. Returns ------- .. note:: once complex numbers are supported, each square matrix must be Hermitian. ret a namedtuple ``(U, S, Vh)`` whose - first element must have the field name ``U`` and must be an array whose shape depends on the value of ``full_matrices`` and contain matrices with orthonormal columns (i.e., the columns are left singular vectors). If ``full_matrices`` is ``True``, the array must have shape ``(..., M, M)``. If ``full_matrices`` is ``False``, the array must have shape ``(..., M, K)``, where ``K = min(M, N)``. The first ``x.ndim-2`` dimensions must have the same shape as those of the input ``x``. - second element must have the field name ``S`` and must be an array with shape ``(..., K)`` that contains the vector(s) of singular values of length ``K``, where ``K = min(M, N)``. For each vector, the singular values must be sorted in descending order by magnitude, such that ``s[..., 0]`` is the largest value, ``s[..., 1]`` is the second largest value, et cetera. The first ``x.ndim-2`` dimensions must have the same shape as those of the input ``x``. Must have a real-valued floating-point data type having the same precision as ``x`` (e.g., if ``x`` is ``complex64``, ``S`` must have a ``float32`` data type). - third element must have the field name ``Vh`` and must be an array whose shape depends on the value of ``full_matrices`` and contain orthonormal rows (i.e., the rows are the right singular vectors and the array is the adjoint). If ``full_matrices`` is ``True``, the array must have shape ``(..., N, N)``. If ``full_matrices`` is ``False``, the array must have shape ``(..., K, N)`` where ``K = min(M, N)``. The first ``x.ndim-2`` dimensions must have the same shape as those of the input ``x``. Must have the same data type as ``x``. Each returned array must have the same floating-point data type as ``x``. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.svd.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.random_normal(shape = (9, 6)) >>> U, S, Vh = ivy.svd(x) >>> print(U.shape, S.shape, Vh.shape) (9, 9) (6,) (6, 6) With reconstruction from SVD, result is numerically close to x >>> reconstructed_x = ivy.matmul(U[:,:6] * S, Vh) >>> print((reconstructed_x - x > 1e-3).sum()) ivy.array(0) >>> U, S, Vh = ivy.svd(x, full_matrices = False) >>> print(U.shape, S.shape, Vh.shape) (9, 6) (6,) (6, 6) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([[2.0, 3.0, 6.0], [5.0, 3.0, 4.0], ... [1.0, 7.0, 3.0], [3.0, 2.0, 5.0]]), ... b=ivy.array([[7.0, 1.0, 2.0, 3.0, 9.0], ... [2.0, 5.0, 3.0, 4.0, 10.0], ... [2.0, 11.0, 6.0, 1.0, 3.0], ... [8.0, 3.0, 4.0, 5.0, 9.0]])) >>> U, S, Vh = ivy.svd(x) >>> print(U.shape) { a: [ 4, 4 ], b: [ 4, 4 ] } """ return current_backend(x).svd(x, compute_uv=compute_uv, full_matrices=full_matrices) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def svdvals( x: Union[ivy.Array, ivy.NativeArray], /, *, driver: Optional[str] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the singular values of a matrix (or a stack of matrices) ``x``. Parameters ---------- x input array having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. driver optional output array,name of the cuSOLVER method to be used. This keyword argument only works on CUDA inputs. Available options are: None, gesvd, gesvdj, and gesvda.Default: None. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret array with shape ``(..., K)`` that contains the vector(s) of singular values of length ``K``, where K = min(M, N). The values are sorted in descending order by magnitude. The returned array must have a real-valued floating-point data type having the same precision as ``x`` (e.g., if ``x`` is ``complex64``, the returned array must have a ``float32`` data type). This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.svdvals.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([[5.0, 7.0], [4.0, 3.0]]) >>> y = ivy.svdvals(x) >>> print(y.shape) ivy.Shape(2,) With comparison of the singular value S ivy.svdvals() by the result ivy.svd(). >>> x = ivy.array([[5.0, 7.0], [4.0, 3.0]]) >>> _, y, _ = ivy.svd(x) >>> print(y.shape) ivy.Shape(2,) >>> x = ivy.array([9.86217213, 1.31816804]) >>> y = ivy.array([9.86217213, 1.31816804]) >>> error = (x - y).abs() >>> print(error) ivy.array([0.,0.]) With :class:`ivy.NativeArray` input: >>> x = ivy.native_array([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0], ... [2.0, 1.0, 3.0], [3.0, 4.0, 5.0]]) >>> x.shape (4, 3) >>> x = ivy.native_array([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0], ... [2.0, 1.0, 3.0], [3.0, 4.0, 5.0]]) >>> y = ivy.svdvals(x) >>> print(y) ivy.array([10.3, 1.16, 0.615]) >>> _, SS, _ = ivy.svd(x) >>> print(SS) ivy.array([10.3, 1.16, 0.615]) with comparison of singular value S ivy.svdvals() by the result ivy.svd(). >>> x = ivy.array([10.25994301, 1.16403675, 0.61529762]) >>> y = ivy.array([9.86217213, 1.31816804, 0.51231241]) >>> error = (x - y).abs() >>> print(error) ivy.array([0.39777088, 0.15413129, 0.1029852 ]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([[2.0, 3.0], [3.0, 4.0], ... [1.0, 3.0], [3.0, 5.0]]), ... b=ivy.array([[7.0, 1.0, 2.0, 3.0], ... [2.0, 5.0, 3.0, 4.0], ... [2.0, 6.0, 1.0, 3.0], ... [3.0, 4.0, 5.0, 9.0]])) >>> y = ivy.svdvals(x) >>> print(y) { a: ivy.array([9.01383495, 0.86647356]), b: ivy.array([15.7786541, 5.55970621, 4.16857576, 0.86412698]) } Instance Method Examples ~~~~~~~~~~~~~~~~~~~~~~~~ Using :class:`ivy.Array` instance method: >>> x = ivy.array([[8.0, 3.0], [2.0, 3.0], ... [2.0, 1.0], [3.0, 4.0], ... [4.0, 1.0], [5.0, 6.0]]) >>> y = x.svdvals() >>> print(y) ivy.array([13.37566757, 3.88477993]) With :class:`ivy.Container` instance method: >>> x = ivy.Container(a=ivy.array([[2.0, 3.0, 6.0], [5.0, 3.0, 4.0], ... [1.0, 7.0, 3.0], [3.0, 2.0, 5.0]]), ... b=ivy.array([[7.0, 1.0, 2.0, 3.0, 9.0], ... [2.0, 5.0, 3.0, 4.0, 10.0], ... [2.0, 11.0, 6.0, 1.0, 3.0], ... [8.0, 3.0, 4.0, 5.0, 9.0]])) >>> y = x.svdvals() >>> print(y) { a: ivy.array([12.95925522, 4.6444726, 2.54687881]), b: ivy.array([23.16134834, 10.35037804, 4.31025076, 1.35769391]) } """ return current_backend(x).svdvals(x, driver=driver, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def tensordot( x1: Union[ivy.Array, ivy.NativeArray], x2: Union[ivy.Array, ivy.NativeArray], /, *, axes: Union[int, Tuple[List[int], List[int]]] = 2, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return a tensor contraction of x1 and x2 over specific axes. .. note:: If either ``x1`` or ``x2`` has a complex floating-point data type, neither argument must be complex-conjugated or transposed. If conjugation and/or transposition is desired, these operations should explicitly performed prior to computing the generalized matrix product. Parameters ---------- x1 First input array. Should have a numeric data type. x2 second input array. Must be compatible with x1 for all non-contracted axes. Should have a numeric data type. axes The axes to contract over. Default is 2. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The tensor contraction of x1 and x2 over the specified axes. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.tensordot.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> x = ivy.array([[1., 2.], [2., 3.]]) >>> y = ivy.array([[3., 4.], [4., 5.]]) >>> res = ivy.tensordot(x, y, axes =0) >>> print(res) ivy.array([[[[3.,4.],[4.,5.]],[[6.,8.],[8.,10.]]],[[[6.,8.],[8.,10.]],[[9.,12.],[12.,15.]]]]) With :class:'ivy.NativeArray' input: >>> x = ivy.native_array([[1., 2.], [2., 3.]]) >>> y = ivy.native_array([[3., 4.], [4., 5.]]) >>> res = ivy.tensordot(x, y, axes = ([1],[1])) >>> print(res) ivy.array([[11., 14.], [18., 23.]]) With a mix of :class:`ivy.Array` and :class:`ivy.NativeArray` inputs: >>> x = ivy.array([[1., 0., 1.], [2., 3., 6.], [0., 7., 2.]]) >>> y = ivy.native_array([[1.], [2.], [3.]]) >>> res = ivy.tensordot(x, y, axes = 1) >>> print(res) ivy.array([[ 4.], [26.], [20.]]) With :class:`ivy.Container` input: >>> x = ivy.Container(a=ivy.array([[1., 0., 3.], [2., 3., 4.]]), ... b=ivy.array([[5., 6., 7.], [3., 4., 8.]])) >>> y = ivy.Container(a=ivy.array([[2., 4., 5.], [9., 10., 6.]]), ... b=ivy.array([[1., 0., 3.], [2., 3., 4.]])) >>> res = ivy.tensordot(x, y) >>> print(res) { a: ivy.array(89.), b: ivy.array(76.) } """ return current_backend(x1, x2).tensordot(x1, x2, axes=axes, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def trace( x: Union[ivy.Array, ivy.NativeArray], /, *, offset: int = 0, axis1: int = 0, axis2: int = 1, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the sum along the specified diagonals of a matrix (or a stack of matrices) ``x``. **Special cases** Let ``N`` equal the number of elements over which to compute the sum. - If ``N`` is ``0``, the sum is ``0`` (i.e., the empty sum). For both real-valued and complex floating-point operands, special cases must be handled as if the operation is implemented by successive application of :func:`ivy.add`: Parameters ---------- x input array having shape ``(..., M, N)`` and whose innermost two dimensions form ``MxN`` matrices. Should have a numeric data type. offset offset specifying the off-diagonal relative to the main diagonal. - ``offset = 0``: the main diagonal. - ``offset > 0``: off-diagonal above the main diagonal. - ``offset < 0``: off-diagonal below the main diagonal. Default: ``0``. axis1 axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to ``0.`` . axis2 axis to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to ``1.`` . out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the traces and whose shape is determined by removing the last two dimensions and storing the traces in the last array dimension. For example, if ``x`` has rank ``k`` and shape ``(I, J, K, ..., L, M, N)``, then an output array has rank ``k-2`` and shape ``(I, J, K, ..., L)`` where :: out[i, j, k, ..., l] = trace(a[i, j, k, ..., l, :, :]) The returned array must have the same data type as ``x``. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([[2., 0., 3.], ... [3., 5., 6.]]) >>> y = ivy.trace(x, offset=0) >>> print(y) ivy.array(7.) >>> x = ivy.array([[[1., 2.], ... [3., 4.]], ... [[5., 6.], ... [7., 8.]]]) >>> y = ivy.trace(x, offset=1) >>> print(y) ivy.array([3., 4.]) >>> x = ivy.array([[1., 2., 3.], ... [4., 5., 6.], ... [7., 8., 9.]]) >>> y = ivy.zeros(1) >>> ivy.trace(x, offset=1,out=y) >>> print(y) ivy.array(8.) With :class:`ivy.NativeArray` inputs: >>> x = ivy.native_array([[2., 0., 3.],[3., 5., 6.]]) >>> y = ivy.trace(x, offset=0) >>> print(y) ivy.array(7.) >>> x = ivy.native_array([[0, 1, 2], ... [3, 4, 5], ... [6, 7, 8]]) >>> y = ivy.trace(x, offset=1) >>> print(y) ivy.array(6) With :class:`ivy.Container` inputs: >>> x = ivy.Container( ... a = ivy.array([[7, 1, 2], ... [1, 3, 5], ... [0, 7, 4]]), ... b = ivy.array([[4, 3, 2], ... [1, 9, 5], ... [7, 0, 6]]) ... ) >>> y = ivy.trace(x, offset=0) >>> print(y) { a: ivy.array(14), b: ivy.array(19) } >>> x = ivy.Container( ... a = ivy.array([[7, 1, 2], ... [1, 3, 5], ... [0, 7, 4]]), ... b = ivy.array([[4, 3, 2], ... [1, 9, 5], ... [7, 0, 6]]) ... ) >>> y = ivy.trace(x, offset=1) >>> print(y) { a: ivy.array(6), b: ivy.array(8) } With multiple ivy.Container inputs: >>> x = ivy.Container( ... a = ivy.array([[7, 1, 3], ... [8, 6, 5], ... [9, 7, 2]]), ... b = ivy.array([[4, 3, 2], ... [1, 9, 5], ... [7, 0, 6]]) ... ) >>> offset = ivy.Container(a=1, b=0) >>> y = ivy.trace(x, offset=offset) >>> print(y) { a: ivy.array(6), b: ivy.array(19) } With Array instance method example: >>> x = ivy.array([[2., 0., 11.], ... [3., 5., 12.], ... [1., 6., 13.], ... [8., 9., 14.]]) >>> y = x.trace(offset=1) >>> print(y) ivy.array(12.) With Container instance method example: >>> x = ivy.Container( ... a=ivy.array([[2., 0., 11.], ... [3., 5., 12.]]), ... b=ivy.array([[1., 6., 13.], ... [8., 9., 14.]]) ... ) >>> y = x.trace(offset=0) >>> print(y) { a: ivy.array(7.), b: ivy.array(10.) } """ return current_backend(x).trace(x, offset=offset, axis1=axis1, axis2=axis2, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def vecdot( x1: Union[ivy.Array, ivy.NativeArray], x2: Union[ivy.Array, ivy.NativeArray], /, *, axis: int = -1, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Compute the (vector) dot product of two arrays. Parameters ---------- x1 first input array. Should have a numeric data type. x2 second input array. Must be compatible with ``x1`` (see :ref:`broadcasting`). Should have a numeric data type. axis axis over which to compute the dot product. Must be an integer on the interval ``[-N, N)``, where ``N`` is the rank (number of dimensions) of the shape determined according to :ref:`broadcasting`. If specified as a negative integer, the function must determine the axis along which to compute the dot product by counting backward from the last dimension (where ``-1`` refers to the last dimension). By default, the function must compute the dot product over the last axis. Default: ``-1``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret if ``x1`` and ``x2`` are both one-dimensional arrays, a zero-dimensional containing the dot product; otherwise, a non-zero-dimensional array containing the dot products and having rank ``N-1``, where ``N`` is the rank (number of dimensions) of the shape determined according to :ref:`broadcasting`. The returned array must have a data type determined by :ref:`type-promotion`. **Raises** - if provided an invalid ``axis``. - if the size of the axis over which to compute the dot product is not the same for both ``x1`` and ``x2``. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.vecdot.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` input: >>> x1 = ivy.array([1., 2., 3.]) >>> x2 = ivy.array([4., 5., 6.]) >>> dot_product = ivy.vecdot(x1, x2) >>> print(dot_product) ivy.array(32.) >>> x1 = ivy.array([1., 2., 3.]) >>> x2 = ivy.array([1., .8, 4.]) >>> y = ivy.zeros(1) >>> ivy.vecdot(x1, x2, out=y) ivy.array(14.60000038) With :class:`ivy.Container` input: >>> x1 = ivy.array([1., 2., 3.]) >>> x2 = ivy.Container(a=ivy.array([7., 8., 9.]), b=ivy.array([10., 11., 12.])) >>> dot_product = ivy.vecdot(x1, x2, axis=0) >>> print(dot_product) { a: ivy.array(50.), b: ivy.array(68.) } """ return current_backend(x1).vecdot(x1, x2, axis=axis, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def vector_norm( x: Union[ivy.Array, ivy.NativeArray], /, *, axis: Optional[Union[int, Sequence[int]]] = None, keepdims: bool = False, ord: Union[int, float, Literal[inf, -inf]] = 2, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, out: Optional[ivy.Array] = None, ) -> ivy.Array: r"""Compute the vector norm of a vector (or batch of vectors) ``x``. Parameters ---------- x input array. Should have a floating-point data type. axis If an integer, ``axis`` specifies the axis (dimension) along which to compute vector norms. If an n-tuple, ``axis`` specifies the axes (dimensions) along which to compute batched vector norms. If ``None``, the vector norm must be computed over all array values (i.e., equivalent to computing the vector norm of a flattened array). Negative indices are also supported. Default: ``None``. keepdims If ``True``, the axes (dimensions) specified by ``axis`` must be included in the result as singleton dimensions, and, accordingly, the result must be compatible with the input array (see :ref:`broadcasting`). Otherwise, if ``False``, the axes (dimensions) specified by ``axis`` must not be included in the result. Default: ``False``. ord order of the norm. The following mathematical norms are supported: +------------------+----------------------------+ | ord | description | +==================+============================+ | 1 | L1-norm (Manhattan) | +------------------+----------------------------+ | 2 | L2-norm (Euclidean) | +------------------+----------------------------+ | inf | infinity norm | +------------------+----------------------------+ | (int,float >= 1) | p-norm | +------------------+----------------------------+ The following non-mathematical "norms" are also supported: +------------------+--------------------------------+ | ord | description | +==================+================================+ | 0 | sum(a != 0) | +------------------+--------------------------------+ | -inf | min(abs(a)) | +------------------+--------------------------------+ | (int,float < 1) | sum(abs(a)\*\*ord)\*\*(1./ord) | +------------------+--------------------------------+ Default: ``2``. dtype data type that may be used to perform the computation more precisely. The input array ``x`` gets cast to ``dtype`` before the function's computations. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret an array containing the vector norms. If ``axis`` is ``None``, the returned array must be a zero-dimensional array containing a vector norm. If ``axis`` is a scalar value (``int`` or ``float``), the returned array must have a rank which is one less than the rank of ``x``. If ``axis`` is a ``n``-tuple, the returned array must have a rank which is ``n`` less than the rank of ``x``. The returned array must have a floating-point data type determined by :ref:`type-promotion`. If ``x`` has a complex-valued data type, the returned array must have a real-valued floating-point data type whose precision matches the precision of ``x`` (e.g., if ``x`` is ``complex128``, then the returned array must have a ``float64`` data type). This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.vector_norm.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- >>> x = ivy.array([1., 2., 3.]) >>> y = ivy.vector_norm(x) >>> print(y) ivy.array([3.7416575]) >>> x = ivy.array([[1, 2, 3], [1.3, 2.4, -1.2]]) >>> y = ivy.vector_norm(x, axis = 1, ord = 1, dtype = ivy.float32) >>> print(y) ivy.array([6., 4.9000001]) >>> x = ivy.array([[1, 2, 3], [1.3, 2.4, -1.2]]) >>> y = ivy.vector_norm(x, axis = 0, keepdims = True, ord = float("inf")) >>> print(y) ivy.array([[1.3, 2.4, 3.]]) >>> x = ivy.native_array([1, 2, 3, 4], dtype = ivy.float32) >>> y = ivy.vector_norm(x, ord = 3.) >>> print(y) ivy.array([4.64158917]) >>> x = ivy.array([1.,2.,3.,4.], dtype = ivy.float16) >>> z = ivy.empty(shape = 1, dtype=ivy.float16) >>> y = ivy.vector_norm(x, ord = 0, out = z) >>> print(y) ivy.array(4.) >>> x = ivy.arange(8, dtype=ivy.float32).reshape((2,2,2)) >>> y = ivy.vector_norm(x, axis = (0,1), ord = float("-inf")) >>> print(y) ivy.array([0, 1]) >>> x = ivy.Container(a = [-1., 1., -2., 2.], b = [0., 1.2, 2.3, -3.1]) >>> y = ivy.vector_norm(x, ord = -1) >>> print(y) { a: ivy.array([0.33333334]), b: ivy.array([0.]) } """ return current_backend(x).vector_norm( x, axis=axis, keepdims=keepdims, ord=ord, dtype=dtype, out=out ) # Extra # # ------# @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def diag( x: Union[ivy.Array, ivy.NativeArray], /, *, k: int = 0, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Return the specified diagonals of the input array, or an array with the input array's elements as diagonals. Parameters ---------- x An array with rank >= 1. k An integer that controls which diagonal to consider. Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonal. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret If x is a 1-D array, the function returns a 2-D square array with the elements of input as diagonals. If x is a 2-D array, the function returns a 1-D array with the diagonal elements of x. This function conforms to the `Array API Standard <https://data-apis.org/array-api/latest/>`_. This docstring is an extension of the `docstring <https://data-apis.org/array-api/latest/ extensions/generated/array_api.linalg.diagonal.html>`_ in the standard. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([[0, 1, 2], >>> [3, 4, 5], >>> [6, 7, 8]]) >>> ivy.diag(x) ivy.array([0, 4, 8]) >>> x = ivy.array([[0, 1, 2], >>> [3, 4, 5], >>> [6, 7, 8]]) >>> ivy.diag(x, k=1) ivy.array([1, 5]) >>> x = ivy.array([[0, 1, 2], >>> [3, 4, 5], >>> [6, 7, 8]]) >>> ivy.diag(x, k=-1) ivy.array([3, 7]) >>> x = ivy.array([[0, 1, 2], >>> [3, 4, 5], >>> [6, 7, 8]]) >>> ivy.diag(ivy.diag(x)) ivy.array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ return current_backend(x).diag(x, k=k, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def vander( x: Union[ivy.Array, ivy.NativeArray], /, *, N: Optional[int] = None, increasing: bool = False, out: Optional[ivy.Array] = None, ) -> ivy.Array: """Generate a Vandermonde matrix. The columns of the output matrix are elementwise powers of the input vector x^{(N-1)}, x^{(N-2)}, ..., x^0x. If increasing is True, the order of the columns is reversed x^0, x^1, ..., x^{(N-1)}. Such a matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde. Parameters ---------- x 1-D input array. N Number of columns in the output. If N is not specified, a square array is returned (N = len(x)) increasing Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. out optional output array, for writing the result to. Returns ------- ret Vandermonde matrix. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([1, 2, 3, 5]) >>> ivy.vander(x) ivy.array( [[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]] ) >>> x = ivy.array([1, 2, 3, 5]) >>> ivy.vander(x, N=3) ivy.array( [[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]] ) >>> x = ivy.array([1, 2, 3, 5]) >>> ivy.vander(x, N=3, increasing=True) ivy.array( [[ 1, 1, 1], [ 1, 2, 4], [ 1, 3, 9], [ 1, 5, 25]] ) """ return current_backend(x).vander(x, N=N, increasing=increasing, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_array_like_without_promotion @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def vector_to_skew_symmetric_matrix( vector: Union[ivy.Array, ivy.NativeArray], /, *, out: Optional[ivy.Array] = None ) -> ivy.Array: """ Given vector, return the associated `Skew-symmetric matrix <https://en.wikipedia.org/wiki/Skew-symmetric_matrix#Cross_product/>`_. Parameters ---------- vector Vector to convert *(batch_shape,3)*. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Skew-symmetric matrix *(batch_shape,3,3)*. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :class:`ivy.Container` instances in place of any of the arguments. """ return current_backend(vector).vector_to_skew_symmetric_matrix(vector, out=out) @handle_exceptions @handle_backend_invalid @handle_nestable @handle_out_argument @to_native_arrays_and_back @handle_array_function @handle_device def tensorsolve( x1: Union[ivy.Array, ivy.NativeArray], x2: Union[ivy.Array, ivy.NativeArray], /, *, axes: Union[int, Tuple[List[int], List[int]]] = 2, out: Optional[ivy.Array] = None, ) -> ivy.Array: ndim1 = ivy.get_num_dims(x1) ndim2 = ivy.get_num_dims(x2) if axes is not None: allaxes = list(range(0, ndim1)) for k in axes: allaxes.remove(k) allaxes.insert(ndim1, k) x1 = ivy.matrix_transpose(x1) old_shape = x1.shape[-(ndim1 - ndim2) :] prod = 1 for k in old_shape: prod *= k if ivy.shape(ivy.flatten(x1))[0] != prod**2: raise ivy.utils.exceptions.IvyException( "Input arrays must satisfy the requirement " "prod(x1.shape[x2.ndim:]) == prod(x1.shape[:x2.ndim])" ) x1 = ivy.reshape(x1, (prod, prod)) x2 = ivy.flatten(x2) res = ivy.solve(x1, x2) res = ivy.reshape(res, old_shape) return res # return current_backend(x1, x2).tensorsolve(x1, x2, axes=axes, out=out)
ivy/ivy/functional/ivy/linear_algebra.py/0
{ "file_path": "ivy/ivy/functional/ivy/linear_algebra.py", "repo_id": "ivy", "token_count": 47809 }
49
# global from typing import Tuple, Union, Optional import abc # local import ivy from ivy.functional.ivy.gradients import _variable # Initializer # # ----------- # class Initializer(abc.ABC): """An initializer for internal variables for a layer. A neuron is a function of the form `a = g(z)`, where `g` is the activation functions and `z = w_1x_1 + w_2x_2 + ... + w_nx_n` where the `w_i` are the weights and the `x_i` are the inputs. To prevent this `z` from vanishing (getting too small) or exploding (getting too big), the initial weights must be picked carefully. """ @abc.abstractmethod def create_variables( self, var_shape: Tuple[int, int], device: Union[ivy.Device, ivy.NativeDevice], fan_out: Optional[float] = None, fan_in: Optional[float] = None, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, ) -> ivy.Array: """Create internal variables for the layer. Parameters ---------- var_shape Tuple representing the shape of the desired array. If considering the array as a rectangular matrix, this tuple is represented as '(ROWS, COLUMNS)'. device Device on which to create the layer's variables 'cuda:0', 'cuda:1', 'cpu' etc. Default is cpu. fan_out The number of nodes in the next layer. fan_in The number of nodes in the previous layer. dtype Desired data type. """ return None # Constant # # ---------# class Constant(Initializer): def __init__(self, constant: float): """Constant initializer, will fill in all values with the value of `constant`. Parameters ---------- constant Constant value for initialization. """ self._constant = constant def create_variables( self, var_shape: Tuple[int, int], device: Union[ivy.Device, ivy.NativeDevice], fan_out: Optional[float] = None, fan_in: Optional[float] = None, dtype: Optional[Union[ivy.Dtype, ivy.NativeDtype]] = None, ) -> ivy.Array: return _variable( ivy.full(var_shape, self._constant, device=device, dtype=dtype), ) class Zeros(Constant): def __init__(self): """Constant initializer that fills with the constant value `0.0`.""" super().__init__(0.0) class Ones(Constant): def __init__(self): """Constant initializer that fills with the constant value `1.0`.""" super().__init__(1.0) # Uniform # # --------# class Uniform(Initializer): def __init__(self, numerator, fan_mode, power, gain): """Initialize based on a uniform distribution, will fill in all values with values drawn from a uniform (all values have an equal probability) distribution. with range `[-wlim, wlim]` (endpoints included) with `wlim` being calculated as `gain * (numerator / fan)**power`. This distribution helps with issues when trying to optimize and train networks. The expected value of this distribution is `0` and the variance is `(gain * numerator / fan)^power / 4`. This is intended as a base-class for special predefined initializers. Parameters ---------- numerator fan_mode Determines how `fan` is calculated. - `fan_out` sets `fan` to the number of output features of this neuron. This is useful when training using back-propogation. - `fan_in` sets `fan` to the number of input features of this neuron. This is useful when training using forward-propogation. - `fan_sum` sets `fan` to the sum of the number of input features and output features of this neuron. - `fan_avg` sets `fan` to the average of the number of input features and output features of this neuron. power Sets the drop-off factor for the calculated `fan`. gain Scales the output of the distribution. """ ivy.utils.assertions.check_elem_in_list( fan_mode, ["fan_in", "fan_out", "fan_sum", "fan_avg"] ) self._numerator = numerator self._fan_mode = fan_mode self._power = power self._gain = gain def create_variables( self, var_shape, device, fan_out=None, fan_in=None, dtype=None ): """Create internal variables for the layer. Parameters ---------- var_shape Tuple representing the shape of the desired array. If considering the array as a rectangular matrix, this tuple is represented as '(ROWS, COLUMNS)'. device Device on which to create the layer's variables 'cuda:0', 'cuda:1', 'cpu' etc. Default is cpu. fan_out The number of nodes in the next layer. fan_in The number of nodes in the previous layer. dtype Desired data type. """ if self._fan_mode == "fan_in": ivy.utils.assertions.check_exists( fan_in, message="input_channels must be specified for fan_in denominator mode", ) fan = fan_in elif self._fan_mode == "fan_out": ivy.utils.assertions.check_exists( fan_out, message=( "output_channels must be specified for fan_out denominator mode" ), ) fan = fan_out elif self._fan_mode == "fan_sum": ivy.utils.assertions.check_all_or_any_fn( fan_in, fan_out, fn=ivy.exists, type="all", message=( "input_channels and output_channels must both be" " specified for fan_sum denominator mode." ), as_array=False, ) fan = fan_in + fan_out elif self._fan_mode == "fan_avg": ivy.utils.assertions.check_all_or_any_fn( fan_in, fan_out, fn=ivy.exists, type="all", message=( "input_channels and output_channels must both be" " specified for fan_avg denominator mode." ), as_array=False, ) fan = (fan_in + fan_out) / 2 else: raise ivy.utils.exceptions.IvyException( "Invalid denominator mode, must be one of [ fan_in | fan_out | " "fan_sum | fan_avg ] " ) wlim = ((self._numerator / fan) ** self._power) * self._gain return _variable( ivy.random_uniform( low=-wlim, high=wlim, shape=var_shape, device=device, dtype=dtype ), ) class GlorotUniform(Uniform): def __init__(self): """Initialize Glorot uniform, also known as the Xavier uniform initializer. It draws values from a uniform distribution `[-limit, limit]` where `limit = sqrt(6 / (fan_in + fan_out))` where `fan_in` and `fan_out` are the number of input and output features respectively. """ super().__init__(numerator=6, fan_mode="fan_sum", power=0.5, gain=1) class FirstLayerSiren(Uniform): def __init__(self): """Initialize Siren uniform for the first layer. It draws values from a uniform distribution `[-limit, limit]` where `limit=fan_in` where `fan_in` is the number of input features. """ super().__init__(numerator=1, fan_mode="fan_in", power=1, gain=1) class Siren(Uniform): def __init__(self, w0=30): """Initialize Siren uniform initializer for the first layer. It draws values from a uniform distribution `[-limit, limit]` where `limit=sqrt(6 / fan_in) / w0` where `fan_in` is the number of input features. """ super().__init__(numerator=6, fan_mode="fan_in", power=0.5, gain=1 / w0) # Gaussian # # ---------# class KaimingNormal(Initializer): def __init__(self, mean=0, fan_mode="fan_in"): """Initialize Kaiming normal, also known as He Initialization. It is an method for initializing layers that takes into account the non-linearity of activation functions. It uses a normal distribution centered at `mean` with standard distribution `sqrt(2 / ((1 + negative_slope^2) * fan))`. Parameters ---------- mean Sets the expected value, average, and center of the normal distribution. fan_mode Determines how `fan` is calculated. - `fan_out` sets `fan` to the number of output features of this neuron. This is useful when training using back-propogation. - `fan_in` sets `fan` to the number of input features of this neuron. This is useful when training using forward-propogation. - `fan_sum` sets `fan` to the sum of the number of input features and output features of this neuron. - `fan_sum` sets `fan` to the average of the number of input features and output features of this neuron. """ ivy.utils.assertions.check_elem_in_list( fan_mode, ["fan_in", "fan_out", "fan_sum", "fan_avg"] ) self._mean = mean self._fan_mode = fan_mode def create_variables( self, var_shape, device, fan_out=None, fan_in=None, negative_slope=0.0, dtype=None, ): """Create internal variables for the layer. Parameters ---------- var_shape Tuple representing the shape of the desired array. If considering the array as a rectangular matrix, this tuple is represented as '(ROWS, COLUMNS)'. device Device on which to create the layer's variables 'cuda:0', 'cuda:1', 'cpu' etc. Default is cpu. fan_out The number of nodes in the next layer. fan_in The number of nodes in the previous layer. negative_slope How much a higher `fan` should lower the standard deviation. A value of `0` gives a relationship proportional to `1/fan`. dtype Desired data type. """ if self._fan_mode == "fan_in": ivy.utils.assertions.check_exists( fan_in, message="input_channels must be specified for fan_in denominator mode", ) fan = fan_in elif self._fan_mode == "fan_out": ivy.utils.assertions.check_exists( fan_out, message=( "output_channels must be specified for fan_out denominator mode" ), ) fan = fan_out elif self._fan_mode == "fan_sum": ivy.utils.assertions.check_all_or_any_fn( fan_in, fan_out, fn=ivy.exists, type="all", message=( "input_channels and output_channels must both be" " specified for fan_sum denominator mode." ), as_array=False, ) fan = fan_in + fan_out elif self._fan_mode == "fan_avg": ivy.utils.assertions.check_all_or_any_fn( fan_in, fan_out, fn=ivy.exists, type="all", message=( "input_channels and output_channels must both be" " specified for fan_avg denominator mode." ), as_array=False, ) fan = (fan_in + fan_out) / 2 else: raise ivy.utils.exceptions.IvyException( "Invalid denominator mode, must be one of [ fan_in | fan_out | " "fan_sum | fan_avg ] " ) std = (2 / ((1 + negative_slope**2) * fan)) ** 0.5 return _variable( ivy.random_normal( mean=self._mean, std=std, shape=var_shape, device=device, dtype=dtype ) ) class RandomNormal(Initializer): def __init__(self, mean=0.0, stddev=0.05, seed=None): """Initialize with Random Normal Distribution. It draws values from a Random Normal Distribution with given mean and standard deviation. Parameters ---------- mean Sets the expected value, average, and center of the normal distribution. stddev Sets the standard deviation of the normal distribution. seed Used to create a random seed distribution.(Default:None) """ self._mean = mean self._stddev = stddev self._seed = seed def create_variables( self, var_shape=None, device=None, dtype=None, ): """Create internal variables for the layer. Parameters ---------- var_shape Tuple representing the shape of the desired array. If considering the array as a rectangular matrix, this tuple is represented as '(ROWS, COLUMNS)'. device Device on which to create the layer's variables 'cuda:0', 'cuda:1', 'cpu' etc. Default is cpu. dtype Desired data type. """ return _variable( ivy.random_normal( mean=self._mean, std=self._stddev, shape=var_shape, seed=self._seed, device=device, dtype=dtype, ) )
ivy/ivy/stateful/initializers.py/0
{ "file_path": "ivy/ivy/stateful/initializers.py", "repo_id": "ivy", "token_count": 6607 }
50
# Einsum expression parser, this file has been adapted from `opt_einsum` parser here # https://github.com/dgasmith/opt_einsum/blob/master/opt_einsum/parser.py import itertools from typing import Any, Dict, Iterator, List, Tuple, Union import numpy as np ArrayType = Any TensorShapeType = Tuple[int, ...] _einsum_symbols_base = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" def is_valid_einsum_char(x: str) -> bool: """Check if the character ``x`` is valid for numpy einsum. **Examples:** ```python is_valid_einsum_char("a") #> True is_valid_einsum_char("Ǵ") #> False ``` """ return (x in _einsum_symbols_base) or (x in ",->.") def has_valid_einsum_chars_only(einsum_str: str) -> bool: # [x] """Check if ``einsum_str`` contains only valid characters for numpy einsum. **Examples:** ```python has_valid_einsum_chars_only("abAZ") #> True has_valid_einsum_chars_only("Över") #> False ``` """ return all(map(is_valid_einsum_char, einsum_str)) def get_symbol(i: int) -> str: """ Get the symbol corresponding to int ``i`` - runs through the usual 52 letters before resorting to unicode characters, starting at ``chr(192)`` and skipping surrogates. **Examples:** ```python get_symbol(2) #> 'c' get_symbol(200) #> 'Ŕ' get_symbol(20000) #> '京' ``` """ if i < 52: return _einsum_symbols_base[i] elif i >= 55296: # Skip chr(57343) - chr(55296) as surrogates return chr(i + 2048) else: return chr(i + 140) def gen_unused_symbols(used: str, n: int) -> Iterator[str]: """Generate ``n`` symbols that are not already in ``used``. **Examples:** ```python list(oe.parser.gen_unused_symbols("abd", 2)) #> ['c', 'e'] ``` """ i = cnt = 0 while cnt < n: s = get_symbol(i) i += 1 if s in used: continue yield s cnt += 1 def find_output_str(subscripts: str) -> str: """Find the output string for the inputs ``subscripts`` under canonical einstein summation rules.That is, repeated indices are summed over by default. Examples -------- >>> oe.parser.find_output_str("ab,bc") 'ac' >>> oe.parser.find_output_str("a,b") 'ab' >>> oe.parser.find_output_str("a,a,b,b") '' """ tmp_subscripts = subscripts.replace(",", "") return "".join( s for s in sorted(set(tmp_subscripts)) if tmp_subscripts.count(s) == 1 ) def find_output_shape( inputs: List[str], shapes: List[TensorShapeType], output: str ) -> TensorShapeType: """Find the output shape for given inputs, shapes and output string, taking into account broadcasting. Examples -------- >>> oe.parser.find_output_shape(["ab", "bc"], [(2, 3), (3, 4)], "ac") (2, 4) # Broadcasting is accounted for >>> oe.parser.find_output_shape(["a", "a"], [(4, ), (1, )], "a") (4,) """ return tuple( max( shape[loc] for shape, loc in zip(shapes, [x.find(c) for x in inputs]) if loc >= 0 ) for c in output ) def possibly_convert_to_numpy(x: Any) -> Any: # possibly convert to native """Convert things without a 'shape' to ndarrays, but leave everything else. Examples -------- >>> oe.parser.possibly_convert_to_numpy(5) array(5) >>> oe.parser.possibly_convert_to_numpy([5, 3]) array([5, 3]) >>> oe.parser.possibly_convert_to_numpy(np.array([5, 3])) array([5, 3]) # Any class with a shape is passed through >>> class Shape: ... def __init__(self, shape): ... self.shape = shape ... >>> myshape = Shape((5, 5)) >>> oe.parser.possibly_convert_to_numpy(myshape) <__main__.Shape object at 0x10f850710> """ if not hasattr(x, "shape"): return np.asanyarray(x) else: return x def convert_subscripts(old_sub: List[Any], symbol_map: Dict[Any, Any]) -> str: """Convert user custom subscripts list to subscript string according to `symbol_map`. Examples -------- >>> oe.parser.convert_subscripts(['abc', 'def'], {'abc':'a', 'def':'b'}) 'ab' >>> oe.parser.convert_subscripts([Ellipsis, object], {object:'a'}) '...a' """ return "".join("..." if s is Ellipsis else symbol_map[s] for s in old_sub) def convert_interleaved_input( operands: Union[List[Any], Tuple[Any]], ) -> Tuple[str, List[Any]]: """Convert 'interleaved' input to standard einsum input.""" tmp_operands = list(operands) operand_list = [] subscript_list = [] for p in range(len(operands) // 2): operand_list.append(tmp_operands.pop(0)) subscript_list.append(tmp_operands.pop(0)) output_list = tmp_operands[-1] if len(tmp_operands) else None operands = [possibly_convert_to_numpy(x) for x in operand_list] # build a map from user symbols to single-character symbols based on `get_symbol` # The map retains the intrinsic order of user symbols try: # collect all user symbols symbol_set = set(itertools.chain.from_iterable(subscript_list)) # remove Ellipsis because it can not be compared with other objects symbol_set.discard(Ellipsis) # build the map based on sorted user symbols retaining order lost in `set` symbol_map = { symbol: get_symbol(idx) for idx, symbol in enumerate(sorted(symbol_set)) } except TypeError as e: # unhashable or uncomparable object raise TypeError( "For this input type lists must contain either Ellipsis " "or hashable and comparable object (e.g. int, str)." ) from e subscripts = ",".join(convert_subscripts(sub, symbol_map) for sub in subscript_list) if output_list is not None: subscripts += "->" subscripts += convert_subscripts(output_list, symbol_map) return subscripts, operands def legalise_einsum_expr(*operands: Any) -> str: """Reproduction of einsum c side einsum parsing in python. **Parameters:** Intakes the same inputs as `contract_path`, but NOT the keyword args. The only. supported keyword argument is: - **shapes** - *(bool, optional)* Whether ``parse_einsum_input`` should assume arrays (the default) or array shapes have been supplied. Returns ------- einsum_eqn : str Legalised einsum equation Examples -------- The operand list is simplified to reduce printing: >>> a = np.random.rand(4, 4) >>> b = np.random.rand(4, 4, 4) >>> legalise_einsum_eqn(('...a,...a->...', a, b)) 'za,xza->xz' >>> parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0])) 'za,xza->xz' """ if len(operands) == 0: raise ValueError("No input operands") if isinstance(operands[0], str): subscripts = operands[0].replace(" ", "") operands = [possibly_convert_to_numpy(x) for x in operands[1:]] else: subscripts, operands = convert_interleaved_input(operands) operand_shapes = [o.shape for o in operands] # Check for proper "->" if ("-" in subscripts) or (">" in subscripts): invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1) if invalid or (subscripts.count("->") != 1): raise ValueError("Subscripts can only contain one '->'.") # Parse ellipses if "." in subscripts: used = subscripts.replace(".", "").replace(",", "").replace("->", "") ellipse_inds = "".join( gen_unused_symbols(used, max(len(x) for x in operand_shapes)) ) longest = 0 # Do we have an output to account for? if "->" in subscripts: input_tmp, output_sub = subscripts.split("->") split_subscripts = input_tmp.split(",") out_sub = True else: split_subscripts = subscripts.split(",") out_sub = False for num, sub in enumerate(split_subscripts): if "." in sub: if (sub.count(".") != 3) or (sub.count("...") != 1): raise ValueError("Invalid Ellipses.") # Take into account numerical values if operand_shapes[num] == (): ellipse_count = 0 else: ellipse_count = max(len(operand_shapes[num]), 1) - (len(sub) - 3) if ellipse_count > longest: longest = ellipse_count if ellipse_count < 0: raise ValueError("Ellipses lengths do not match.") elif ellipse_count == 0: split_subscripts[num] = sub.replace("...", "") else: split_subscripts[num] = sub.replace( "...", ellipse_inds[-ellipse_count:] ) subscripts = ",".join(split_subscripts) # Figure out output ellipses if longest == 0: out_ellipse = "" else: out_ellipse = ellipse_inds[-longest:] if out_sub: subscripts += "->" + output_sub.replace("...", out_ellipse) else: # Special care for outputless ellipses output_subscript = find_output_str(subscripts) normal_inds = "".join(sorted(set(output_subscript) - set(out_ellipse))) subscripts += f"->{out_ellipse}{normal_inds}" # Build output string if does not exist if "->" in subscripts: input_subscripts, output_subscript = subscripts.split("->") else: input_subscripts, output_subscript = subscripts, find_output_str(subscripts) # Make sure output subscripts are in the input for char in output_subscript: if char not in input_subscripts: raise ValueError(f"Output character '{char}' did not appear in the input") # Make sure number operands is equivalent to the number of terms if len(input_subscripts.split(",")) != len(operands): raise ValueError( f"Number of einsum subscripts, {len(input_subscripts.split(','))}, must be" f" equal to the number of operands, {len(operands)}." ) eqn = f"{input_subscripts}->{output_subscript}" return eqn
ivy/ivy/utils/einsum_parser.py/0
{ "file_path": "ivy/ivy/utils/einsum_parser.py", "repo_id": "ivy", "token_count": 4560 }
51
# global import warnings import re from contextlib import redirect_stdout from io import StringIO import numpy as np import sys warnings.filterwarnings("ignore", category=DeprecationWarning) import pytest # local import ivy import ivy_tests.test_ivy.helpers as helpers # function that trims white spaces from docstrings def trim(*, docstring): """Trim function from PEP-257.""" if not docstring: return "" # Convert tabs to spaces (following the normal Python rules) # and split into a list of lines: lines = docstring.expandtabs().splitlines() # Determine minimum indentation (first line doesn't count): indent = sys.maxsize for line in lines[1:]: stripped = line.lstrip() if stripped: indent = min(indent, len(line) - len(stripped)) # Remove indentation (first line is special): trimmed = [lines[0].strip()] if indent < sys.maxsize: for line in lines[1:]: trimmed.append(line[indent:].rstrip()) # Strip off trailing and leading blank lines: while trimmed and not trimmed[-1]: trimmed.pop() while trimmed and not trimmed[0]: trimmed.pop(0) # Current code/unittests expects a line return at # end of multiline docstrings # workaround expected behavior from unittests if "\n" in docstring: trimmed.append("") return "\n".join(trimmed) def check_docstring_examples_run( *, fn, from_container=False, from_array=False, num_sig_fig=2 ): """Performs docstring tests for a given function. Parameters ---------- fn Callable function to be tested. from_container if True, check docstring of the function as a method of an Ivy Container. from_array if True, check docstring of the function as a method of an Ivy Array. num_sig_fig Number of significant figures to check in the example. Returns ------- None if the test passes, else marks the test as failed. """ """ Functions skipped as their output dependent on outside factors: random_normal, random_uniform, shuffle, num_gpus, current_backend, get_backend """ to_skip = [ "random_normal", "random_uniform", "randint", "shuffle", "beta", "gamma", "dev", "num_gpus", "current_backend", "get_backend", "namedtuple", "invalid_dtype", "DType", "NativeDtype", "Dtype", "multinomial", "num_cpu_cores", "get_all_ivy_arrays_on_dev", "num_ivy_arrays_on_dev", "total_mem_on_dev", "used_mem_on_dev", "percent_used_mem_on_dev", "function_supported_dtypes", "function_unsupported_dtypes", "randint", "unique_counts", "unique_all", "dropout", "dropout1d", "dropout2d", "dropout3d", "total_mem_on_dev", "supports_inplace_updates", "get", "deserialize", "set_split_factor", ] # the temp skip list consists of functions # which have an issue with their implementation skip_list_temp = [ "outer", # Failing only torch backend as inputs must be 1-D. "pool", # Maximum recursion depth exceeded ivy.pool "put_along_axis", # Depends on scatter_nd for numpy. "result_type", # Different ouput coming for diff backends in 1st example. "scaled_dot_product_attention", # Different backends giving different answers. "eigh_tridiagonal", # Failing only for TF backend "dct", "choose", # Maximum recurion depth exceeded (No backend choose fn). "idct", # Function already failing for all 5 backends. "set_item", # Different errors for diff backends (jax, torch) "l1_normalize", # Function already failing for all 5 backends. "histogram", # Failing for TF, Torch backends (TODO's left) "value_and_grad", # Failing only for Torch backend. (Requires_grad=True) "layer_norm", # Failing only for Torch backend. "eigvalsh", # Failing only Jax Backend + only for Native Array Example. "conv2d_transpose", # Function already failing for all 5 backends. "solve", "one_hot", # One small example failing for all backends except torch. "scatter_flat", # Function Already failing for 3 backends "scatter_nd", # "execute_with_gradients", # Function Already failing for 4 backends. "gather", "multiprocessing", "if_else", "trace_graph", # SystemExit: Please sign up for free pilot access. "dill", "smooth_l1_loss", # Function already failing for all 5 backends. "cummax", # Function already failing for all 5 backends. "insert_into_nest_at_index", "while_loop", "argmax", "native_array", ] # skip list for array and container docstrings skip_arr_cont = [ # generates different results due to randomization "cumprod", "supports_inplace_updates", "shuffle", "dropout", "dropout1d", "dropout2d", "dropout3", "svd", "unique_all", # exec and self run generates diff results "dev", "scaled_dot_product_attention", # temp list for array/container methods "einops_reduce", "array_equal", "batched_outer", "huber_loss", "softshrink", "tt_matrix_to_tensor", "unsorted_segment_mean", "array_equal", "batched_outer", "huber_loss", "kl_div", "soft_margin_loss", "threshold", ] # comment out the line below in future to check for the functions in temp skip list to_skip += skip_list_temp # + currently_being_worked_on if not hasattr(fn, "__name__"): return True fn_name = fn.__name__ if fn_name not in ivy.utils.backend.handler.ivy_original_dict: return True if from_container: docstring = getattr( ivy.utils.backend.handler.ivy_original_dict["Container"], fn_name ).__doc__ elif from_array: docstring = getattr( ivy.utils.backend.handler.ivy_original_dict["Array"], fn_name ).__doc__ else: docstring = ivy.utils.backend.handler.ivy_original_dict[fn_name].__doc__ if docstring is None: return True if fn_name in to_skip: return True if (from_container or from_array) and fn_name in skip_arr_cont: return True # removing extra new lines and trailing white spaces from the docstrings trimmed_docstring = trim(docstring=docstring) trimmed_docstring = trimmed_docstring.split("\n") # end_index: -1, if print statement is not found in the docstring end_index = -1 # parsed_output is set as an empty string to manage functions with multiple inputs parsed_output = "" # parsing through the docstrings to find lines with print statement # following which is our parsed output sub = ">>> print(" for index, line in enumerate(trimmed_docstring): if sub in line: for i, s in enumerate(trimmed_docstring[index + 1 :]): if s.startswith(">>>") or s.lower().startswith( ("with", "#", "instance") ): end_index = index + i + 1 break else: end_index = len(trimmed_docstring) p_output = trimmed_docstring[index + 1 : end_index] p_output = "".join(p_output).replace(" ", "") p_output = p_output.replace("...", "") if parsed_output != "": parsed_output += "," parsed_output += p_output if end_index == -1: return True executable_lines = [] for line in trimmed_docstring: if line.startswith(">>>"): executable_lines.append(line.split(">>>")[1][1:]) is_multiline_executable = True if line.startswith("...") and is_multiline_executable: executable_lines[-1] += line.split("...")[1][1:] if ">>> print(" in line: is_multiline_executable = False # noinspection PyBroadException f = StringIO() with redirect_stdout(f): for line in executable_lines: # noinspection PyBroadException try: if f.getvalue() != "" and f.getvalue()[-2] != ",": print(",") exec(line) except Exception as e: print(e, " ", ivy.current_backend_str(), " ", line) output = f.getvalue() output = output.rstrip() output = output.replace(" ", "").replace("\n", "") output = output.rstrip(",") # handling cases when the stdout contains ANSI colour codes # 7-bit C1 ANSI sequences ansi_escape = re.compile( r""" \x1B # ESC (?: # 7-bit C1 Fe (except CSI) [@-Z\\-_] | # or [ for CSI, followed by a control sequence \[ [0-?]* # Parameter bytes [ -/]* # Intermediate bytes [@-~] # Final byte ) """, re.VERBOSE, ) output = ansi_escape.sub("", output) # print("Output: ", output) # print("Putput: ", parsed_output) # assert output == parsed_output, "Output is unequal to the docstrings output." sig_fig = float(f"1e-{str(num_sig_fig)}") atol = sig_fig / 10000 numeric_pattern = re.compile( r""" [\{\}\(\)\[\]\<>]|\w+: """, re.VERBOSE, ) num_output = output.replace("ivy.array", "").replace("ivy.Shape", "") num_parsed_output = parsed_output.replace("ivy.array", "").replace("ivy.Shape", "") num_output = numeric_pattern.sub("", num_output) num_parsed_output = numeric_pattern.sub("", num_parsed_output) num_output = num_output.split(",") num_parsed_output = num_parsed_output.split(",") docstr_result = True for doc_u, doc_v in zip(num_output, num_parsed_output): try: docstr_result = np.allclose( np.nan_to_num(complex(doc_u)), np.nan_to_num(complex(doc_v)), rtol=sig_fig, atol=atol, ) except Exception: if str(doc_u) != str(doc_v): docstr_result = False if not docstr_result: print( "output for ", fn_name, " on run: ", output, "\noutput in docs :", parsed_output, "\n", doc_u, " != ", doc_v, "\n", ) ivy.warn( f"Output is unequal to the docstrings output: {fn_name}", stacklevel=0, ) break return docstr_result @pytest.mark.parametrize("backend", ["jax", "numpy", "tensorflow", "torch"]) def test_docstrings(backend): ivy.set_default_device("cpu") ivy.set_backend(backend) failures = [] success = True for k, v in ivy.__dict__.copy().items(): if k == "Array": for method_name in dir(v): method = getattr(ivy.Array, method_name) if hasattr(ivy.functional, method_name): if helpers.gradient_incompatible_function( fn=getattr(ivy.functional, method_name) ) or check_docstring_examples_run(fn=method, from_array=True): continue elif helpers.gradient_incompatible_function( fn=method ) or check_docstring_examples_run(fn=method, from_array=True): continue failures.append(f"Array.{method_name}") success = False elif k == "Container": for method_name in dir(v): method = getattr(ivy.Container, method_name) if hasattr(ivy.functional, method_name): if helpers.gradient_incompatible_function( fn=getattr(ivy.functional, method_name) ) or check_docstring_examples_run(fn=method, from_container=True): continue elif helpers.gradient_incompatible_function( fn=method ) or check_docstring_examples_run(fn=method, from_container=True): continue failures.append(f"Container.{method_name}") success = False else: if check_docstring_examples_run( fn=v ) or helpers.gradient_incompatible_function(fn=v): continue success = False failures.append(k) if not success: assert ( success ), "\nThe following methods had failing docstrings:\n\n{}\n".format( "\n".join(failures) ) ivy.previous_backend()
ivy/ivy_tests/test_docstrings.py/0
{ "file_path": "ivy/ivy_tests/test_docstrings.py", "repo_id": "ivy", "token_count": 6113 }
52
import abc from hypothesis import strategies as st from . import globals as test_globals from .pipeline_helper import BackendHandler from dataclasses import dataclass from hypothesis.strategies import SearchStrategy @dataclass class DynamicFlag: strategy: SearchStrategy @st.composite def _gradient_strategy(draw): if test_globals.CURRENT_BACKEND == "numpy": return draw(st.just(False)) return draw(st.booleans()) @st.composite def _as_varaible_strategy(draw): if ( test_globals.CURRENT_BACKEND is not test_globals._Notsetval and test_globals.CURRENT_BACKEND == "numpy" ): return draw(st.just([False])) if not test_globals.CURRENT_FRONTEND_STR: if ( test_globals.CURRENT_FRONTEND is not test_globals._Notsetval and test_globals.CURRENT_FRONTEND == "numpy" ): return draw(st.just([False])) return draw(st.lists(st.booleans(), min_size=1, max_size=1)) BuiltNativeArrayStrategy = DynamicFlag(st.lists(st.booleans(), min_size=1, max_size=1)) BuiltAsVariableStrategy = DynamicFlag(_as_varaible_strategy()) BuiltContainerStrategy = DynamicFlag(st.lists(st.booleans(), min_size=1, max_size=1)) BuiltInstanceStrategy = DynamicFlag(st.booleans()) BuiltInplaceStrategy = DynamicFlag(st.just(False)) BuiltGradientStrategy = DynamicFlag(_gradient_strategy()) BuiltWithOutStrategy = DynamicFlag(st.booleans()) BuiltWithCopyStrategy = DynamicFlag(st.just(False)) BuiltCompileStrategy = DynamicFlag(st.just(False)) BuiltTraceStrategy = DynamicFlag(st.just(False)) BuiltFrontendArrayStrategy = DynamicFlag(st.booleans()) BuiltTranspileStrategy = DynamicFlag(st.just(False)) BuiltPrecisionModeStrategy = DynamicFlag(st.booleans()) BuiltCythonWrapperStrategy = DynamicFlag(st.just(False)) flags_mapping = { "native_array": "BuiltNativeArrayStrategy", "as_variable": "BuiltAsVariableStrategy", "container": "BuiltContainerStrategy", "instance_method": "BuiltInstanceStrategy", "test_gradients": "BuiltGradientStrategy", "with_out": "BuiltWithOutStrategy", "with_copy": "BuiltWithCopyStrategy", "inplace": "BuiltInplace", "test_trace": "BuiltTraceStrategy", "transpile": "BuiltTranspileStrategy", "precision_mode": "BuiltPrecisionModeStrategy", "test_cython_wrapper": "BuiltCythonWrapperStrategy", } def build_flag(key: str, value: bool): if value is not None: value = st.just(value) # Prevent silently passing if variables names were changed assert ( flags_mapping[key] in globals() ), f"{flags_mapping[key]} is not a valid flag variable." globals()[flags_mapping[key]].strategy = value # Strategy Helpers # class TestFlags(metaclass=abc.ABCMeta): def apply_flags(self, args_to_iterate, input_dtypes, offset, *, backend, on_device): pass class FunctionTestFlags(TestFlags): def __init__( self, ground_truth_backend, num_positional_args, with_out, with_copy, instance_method, as_variable, native_arrays, container, test_gradients, test_trace, transpile, precision_mode, test_cython_wrapper, ): self.ground_truth_backend = ground_truth_backend self.num_positional_args = num_positional_args self.with_out = with_out self.with_copy = with_copy self.instance_method = instance_method self.native_arrays = native_arrays self.container = container self.as_variable = as_variable self.test_gradients = test_gradients self.test_trace = test_trace self.transpile = transpile self.precision_mode = precision_mode self.test_cython_wrapper = test_cython_wrapper def apply_flags(self, args_to_iterate, input_dtypes, offset, *, backend, on_device): ret = [] with BackendHandler.update_backend(backend) as backend: for i, entry in enumerate(args_to_iterate, start=offset): x = backend.array(entry, dtype=input_dtypes[i], device=on_device) if self.as_variable[i]: x = backend.gradients._variable(x) if self.native_arrays[i]: x = backend.to_native(x) if self.container[i]: x = backend.Container({"a": x, "b": {"c": x, "d": x}}) ret.append(x) return ret def __str__(self): return ( f"ground_truth_backend={self.ground_truth_backend}" f"num_positional_args={self.num_positional_args}. " f"with_out={self.with_out}. " f"with_copy={self.with_copy}. " f"instance_method={self.instance_method}. " f"native_arrays={self.native_arrays}. " f"container={self.container}. " f"as_variable={self.as_variable}. " f"test_gradients={self.test_gradients}. " f"test_trace={self.test_trace}. " f"transpile={self.transpile}. " f"precision_mode={self.precision_mode}. " ) def __repr__(self): return self.__str__() @st.composite def function_flags( draw, *, ground_truth_backend, num_positional_args, instance_method, with_out, with_copy, test_gradients, test_trace, transpile, as_variable, native_arrays, container_flags, precision_mode, test_cython_wrapper, ): return draw( st.builds( FunctionTestFlags, ground_truth_backend=ground_truth_backend, num_positional_args=num_positional_args, with_out=with_out, with_copy=with_copy, instance_method=instance_method, test_gradients=test_gradients, test_trace=test_trace, transpile=transpile, as_variable=as_variable, native_arrays=native_arrays, container=container_flags, precision_mode=precision_mode, test_cython_wrapper=test_cython_wrapper, ) ) class FrontendFunctionTestFlags(TestFlags): def __init__( self, num_positional_args, with_out, with_copy, inplace, as_variable, native_arrays, test_trace, generate_frontend_arrays, transpile, precision_mode, ): self.num_positional_args = num_positional_args self.with_out = with_out self.with_copy = with_copy self.inplace = inplace self.native_arrays = native_arrays self.as_variable = as_variable self.test_trace = test_trace self.generate_frontend_arrays = generate_frontend_arrays self.transpile = transpile self.precision_mode = precision_mode def apply_flags(self, args_to_iterate, input_dtypes, offset, *, backend, on_device): ret = [] with BackendHandler.update_backend(backend) as backend: for i, entry in enumerate(args_to_iterate, start=offset): x = backend.array(entry, dtype=input_dtypes[i], device=on_device) if self.as_variable[i]: x = backend.gradients._variable(x) if self.native_arrays[i]: x = backend.to_native(x) ret.append(x) return ret def __str__(self): return ( f"num_positional_args={self.num_positional_args}. " f"with_out={self.with_out}. " f"with_copy={self.with_copy}. " f"inplace={self.inplace}. " f"native_arrays={self.native_arrays}. " f"as_variable={self.as_variable}. " f"test_trace={self.test_trace}. " f"generate_frontend_arrays={self.generate_frontend_arrays}. " f"transpile={self.transpile}." f"precision_mode={self.precision_mode}. " ) def __repr__(self): return self.__str__() @st.composite def frontend_function_flags( draw, *, num_positional_args, with_out, with_copy, inplace, as_variable, native_arrays, test_trace, generate_frontend_arrays, transpile, precision_mode, ): return draw( st.builds( FrontendFunctionTestFlags, num_positional_args=num_positional_args, with_out=with_out, with_copy=with_copy, inplace=inplace, as_variable=as_variable, native_arrays=native_arrays, test_trace=test_trace, generate_frontend_arrays=generate_frontend_arrays, transpile=transpile, precision_mode=precision_mode, ) ) class InitMethodTestFlags(TestFlags): def __init__( self, num_positional_args, as_variable, native_arrays, precision_mode, ): self.num_positional_args = num_positional_args self.native_arrays = native_arrays self.as_variable = as_variable self.precision_mode = precision_mode def apply_flags(self, args_to_iterate, input_dtypes, offset, *, backend, on_device): ret = [] with BackendHandler.update_backend(backend) as backend: for i, entry in enumerate(args_to_iterate, start=offset): x = backend.array(entry, dtype=input_dtypes[i], device=on_device) if self.as_variable[i]: x = backend.gradients._variable(x) if self.native_arrays[i]: x = backend.to_native(x) ret.append(x) return ret def __str__(self): return ( f"num_positional_args={self.num_positional_args}. " f"native_arrays={self.native_arrays}. " f"as_variable={self.as_variable}. " f"precision_mode={self.precision_mode}. " ) def __repr__(self): return self.__str__() @st.composite def init_method_flags( draw, *, num_positional_args, as_variable, native_arrays, precision_mode, ): return draw( st.builds( InitMethodTestFlags, num_positional_args=num_positional_args, as_variable=as_variable, native_arrays=native_arrays, precision_mode=precision_mode, ) ) class MethodTestFlags(TestFlags): def __init__( self, num_positional_args, as_variable, native_arrays, container_flags, precision_mode, ): self.num_positional_args = num_positional_args self.native_arrays = native_arrays self.as_variable = as_variable self.container = container_flags self.precision_mode = precision_mode def apply_flags(self, args_to_iterate, input_dtypes, offset, *, backend, on_device): ret = [] with BackendHandler.update_backend(backend) as backend: for i, entry in enumerate(args_to_iterate, start=offset): x = backend.array(entry, dtype=input_dtypes[i], device=on_device) if self.as_variable[i]: x = backend.gradients._variable(x) if self.native_arrays[i]: x = backend.to_native(x) if self.container[i]: x = backend.Container({"a": x, "b": {"c": x, "d": x}}) ret.append(x) return ret def __str__(self): return ( f"num_positional_args={self.num_positional_args}. " f"native_arrays={self.native_arrays}. " f"as_variable={self.as_variable}. " f"container_flags={self.container}. " f"precision_mode={self.precision_mode}. " ) def __repr__(self): return self.__str__() @st.composite def method_flags( draw, *, num_positional_args, as_variable, native_arrays, container_flags, precision_mode, ): return draw( st.builds( MethodTestFlags, num_positional_args=num_positional_args, as_variable=as_variable, native_arrays=native_arrays, container_flags=container_flags, precision_mode=precision_mode, ) ) class FrontendInitTestFlags(TestFlags): def __init__( self, num_positional_args, as_variable, native_arrays, ): self.num_positional_args = num_positional_args self.native_arrays = native_arrays self.as_variable = as_variable def apply_flags(self, args_to_iterate, input_dtypes, offset, *, backend, on_device): ret = [] with BackendHandler.update_backend(backend) as backend: for i, entry in enumerate(args_to_iterate, start=offset): x = backend.array(entry, dtype=input_dtypes[i], device=on_device) if self.as_variable[i]: x = backend.gradients._variable(x) if self.native_arrays[i]: x = backend.to_native(x) ret.append(x) return ret def __str__(self): return ( f"num_positional_args={self.num_positional_args}. " f"native_arrays={self.native_arrays}. " f"as_variable={self.as_variable}. " ) def __repr__(self): return self.__str__() @st.composite def frontend_init_flags( draw, *, num_positional_args, as_variable, native_arrays, ): return draw( st.builds( FrontendInitTestFlags, num_positional_args=num_positional_args, as_variable=as_variable, native_arrays=native_arrays, ) ) class FrontendMethodTestFlags(TestFlags): def __init__( self, num_positional_args, as_variable, native_arrays, precision_mode, inplace, test_trace, generate_frontend_arrays, ): self.num_positional_args = num_positional_args self.native_arrays = native_arrays self.as_variable = as_variable self.precision_mode = precision_mode self.inplace = inplace self.test_trace = test_trace self.generate_frontend_arrays = generate_frontend_arrays def apply_flags(self, args_to_iterate, input_dtypes, offset, *, backend, on_device): ret = [] with BackendHandler.update_backend(backend) as backend: for i, entry in enumerate(args_to_iterate, start=offset): x = backend.array(entry, dtype=input_dtypes[i], device=on_device) if self.as_variable[i]: x = backend.gradients._variable(x) if self.native_arrays[i]: x = backend.to_native(x) ret.append(x) return ret def __str__(self): return ( f"num_positional_args={self.num_positional_args}. " f"native_arrays={self.native_arrays}. " f"as_variable={self.as_variable}. " f"precision_mode={self.precision_mode}. " f"inplace={self.inplace}. " f"test_trace={self.test_trace}." f"generate_frontend_arrays={self.generate_frontend_arrays}." ) def __repr__(self): return self.__str__() @st.composite def frontend_method_flags( draw, *, num_positional_args, as_variable, native_arrays, precision_mode, inplace, test_trace, generate_frontend_arrays, ): return draw( st.builds( FrontendMethodTestFlags, num_positional_args=num_positional_args, as_variable=as_variable, native_arrays=native_arrays, precision_mode=precision_mode, inplace=inplace, test_trace=test_trace, generate_frontend_arrays=generate_frontend_arrays, ) )
ivy/ivy_tests/test_ivy/helpers/test_parameter_flags.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/helpers/test_parameter_flags.py", "repo_id": "ivy", "token_count": 7661 }
53
import pytest from ivy_tests.test_ivy.helpers import globals as test_globals @pytest.fixture(autouse=True) def run_around_tests(request, on_device, backend_fw, frontend, trace_graph, implicit): try: test_globals.setup_frontend_test( frontend, backend_fw, on_device, ( request.function.test_data if hasattr(request.function, "test_data") else None ), ) except Exception as e: test_globals.teardown_frontend_test() raise RuntimeError(f"Setting up test for {request.function} failed.") from e yield test_globals.teardown_frontend_test()
ivy/ivy_tests/test_ivy/test_frontends/conftest.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/conftest.py", "repo_id": "ivy", "token_count": 331 }
54
# global import sys from hypothesis import strategies as st import numpy as np # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import ( handle_frontend_test, assert_all_close, BackendHandler, ) from ivy_tests.test_ivy.test_functional.test_core.test_linalg import ( _get_dtype_and_matrix, ) # eig @handle_frontend_test( fn_tree="numpy.linalg.eig", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=0, max_value=10, shape=helpers.ints(min_value=2, max_value=5).map(lambda x: (x, x)), ).filter( lambda x: "float16" not in x[0] and "bfloat16" not in x[0] and np.linalg.cond(x[1][0]) < 1 / sys.float_info.epsilon and np.linalg.det(np.asarray(x[1][0])) != 0 ), test_with_out=st.just(False), ) def test_numpy_eig( dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x x = np.array(x[0], dtype=dtype[0]) """Make symmetric positive-definite since ivy does not support complex data dtypes currently.""" x = np.matmul(x.T, x) + np.identity(x.shape[0]) * 1e-3 ret, frontend_ret = helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, a=x, ) with BackendHandler.update_backend(backend_fw) as ivy_backend: ret = [ivy_backend.to_numpy(x).astype(np.float64) for x in ret] frontend_ret = [x.astype(np.float64) for x in frontend_ret] L, Q = ret frontend_L, frontend_Q = frontend_ret assert_all_close( ret_np=Q @ np.diag(L) @ Q.T, ret_from_gt_np=frontend_Q @ np.diag(frontend_L) @ frontend_Q.T, atol=1e-02, backend=backend_fw, ground_truth_backend=frontend, ) # eigh @handle_frontend_test( fn_tree="numpy.linalg.eigh", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=0, max_value=10, shape=helpers.ints(min_value=2, max_value=5).map(lambda x: (x, x)), ).filter( lambda x: "float16" not in x[0] and "bfloat16" not in x[0] and np.linalg.cond(x[1][0]) < 1 / sys.float_info.epsilon and np.linalg.det(np.asarray(x[1][0])) != 0 ), UPLO=st.sampled_from(("L", "U")), test_with_out=st.just(False), ) def test_numpy_eigh( *, dtype_and_x, UPLO, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x x = np.array(x[0], dtype=dtype[0]) # make symmetric positive-definite beforehand x = np.matmul(x.T, x) + np.identity(x.shape[0]) * 1e-3 ret, frontend_ret = helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, a=x, UPLO=UPLO, ) with BackendHandler.update_backend(backend_fw) as ivy_backend: ret = [ivy_backend.to_numpy(x) for x in ret] frontend_ret = [np.asarray(x) for x in frontend_ret] L, Q = ret frontend_L, frontend_Q = frontend_ret assert_all_close( ret_np=Q @ np.diag(L) @ Q.T, ret_from_gt_np=frontend_Q @ np.diag(frontend_L) @ frontend_Q.T, atol=1e-02, backend=backend_fw, ground_truth_backend=frontend, ) @handle_frontend_test( fn_tree="numpy.linalg.eigvals", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=0, max_value=10, shape=helpers.ints(min_value=2, max_value=4).map(lambda x: (x, x)), ).filter( lambda x: "float16" not in x[0] and "bfloat16" not in x[0] and np.linalg.cond(x[1][0]) < 1 / sys.float_info.epsilon and np.linalg.det(np.asarray(x[1][0])) != 0 ), test_with_out=st.just(False), ) def test_numpy_eigvals( dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x ret, frontend_ret = helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, a=x, ) with BackendHandler.update_backend(backend_fw) as ivy_backend: ret = np.sort( np.array([ivy_backend.to_numpy(x).astype(np.float128) for x in ret]) ) frontend_ret = np.sort(np.array([x.astype(np.float128) for x in frontend_ret])) assert_all_close( ret_np=ret, ret_from_gt_np=frontend_ret, backend=backend_fw, ground_truth_backend=frontend, atol=1e-2, rtol=1e-2, ) # eigvalsh @handle_frontend_test( fn_tree="numpy.linalg.eigvalsh", x=_get_dtype_and_matrix(symmetric=True), UPLO=st.sampled_from(["L", "U"]), ) def test_numpy_eigvalsh( x, UPLO, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, xs = x helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-2, atol=1e-2, a=xs, UPLO=UPLO, )
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_linalg/test_matrix_eigenvalues.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_linalg/test_matrix_eigenvalues.py", "repo_id": "ivy", "token_count": 3028 }
55
# local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test import ivy_tests.test_ivy.test_frontends.test_numpy.helpers as np_frontend_helpers # nextafter @handle_frontend_test( fn_tree="numpy.nextafter", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, ) ], ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="nextafter" ), ) def test_numpy_nextafter( dtypes_values_casting, where, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, xs, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, x1=xs[0], x2=xs[1], out=None, where=where, casting=casting, order="K", dtype=dtype, subok=True, ) # signbit @handle_frontend_test( fn_tree="numpy.signbit", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shared_dtype=True, ) ], ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="signbit" ), ) def test_numpy_signbit( dtypes_values_casting, where, frontend, test_flags, backend_fw, fn_tree, on_device, ): input_dtypes, xs, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, frontend=frontend, test_flags=test_flags, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, x=xs[0], out=None, where=where, casting="safe", order="K", dtype=dtype, subok=True, ) # spacing @handle_frontend_test( fn_tree="numpy.spacing", dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype( arr_func=[ lambda: helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=1, ) ], ), where=np_frontend_helpers.where(), number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc( fn_name="spacing" ), ) def test_numpy_spacing( dtypes_values_casting, where, frontend, test_flags, backend_fw, fn_tree, on_device, ): input_dtypes, xs, casting, dtype = dtypes_values_casting where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools( where=where, input_dtype=input_dtypes, test_flags=test_flags, ) np_frontend_helpers.test_frontend_function( input_dtypes=input_dtypes, frontend=frontend, test_flags=test_flags, backend_to_test=backend_fw, fn_tree=fn_tree, on_device=on_device, rtol=1e-02, atol=1e-03, x=xs[0], out=None, where=where, casting=casting, order="K", dtype=dtype, subok=True, )
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_mathematical_functions/test_floating_point_routines.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_mathematical_functions/test_floating_point_routines.py", "repo_id": "ivy", "token_count": 2033 }
56
# global, from hypothesis import strategies as st, assume import numpy as np # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # beta @handle_frontend_test( fn_tree="numpy.random.beta", input_dtypes=helpers.get_dtypes("float", index=2), a=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, exclude_min=True ), b=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, exclude_min=True ), size=st.tuples( st.integers(min_value=2, max_value=5), st.integers(min_value=2, max_value=5) ), ) def test_numpy_beta( input_dtypes, size, frontend, test_flags, fn_tree, backend_fw, on_device, a, b, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, a=a, b=b, size=size, ) # binomial @handle_frontend_test( fn_tree="numpy.random.binomial", n=st.integers(min_value=0, max_value=2), dtype=helpers.get_dtypes("float", full=False, index=2), p=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, max_value=1 ), size=st.tuples( st.integers(min_value=2, max_value=5), st.integers(min_value=2, max_value=5) ), ) def test_numpy_binomial( dtype, size, test_flags, frontend, backend_fw, fn_tree, on_device, n, p, ): helpers.test_frontend_function( input_dtypes=dtype, test_flags=test_flags, backend_to_test=backend_fw, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_values=False, n=n, p=p, size=size, ) # chisquare # The test values are restricted to (0, 1000] because df<=0 is invalid # and very large df can cause problems with type conversions @handle_frontend_test( fn_tree="numpy.random.chisquare", dtypes=helpers.get_dtypes("float", full=False), df=st.one_of( st.floats( min_value=0, max_value=1000, exclude_min=True, allow_subnormal=False, width=32, ), st.integers(min_value=1, max_value=1000), st.lists( st.one_of( st.floats( min_value=0, max_value=1000, exclude_min=True, allow_subnormal=False, width=32, ) | st.integers(min_value=1, max_value=1000) ), min_size=1, ), ), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_chisquare( dtypes, df, size, frontend, test_flags, fn_tree, backend_fw, on_device, ): # make sure `size` is something `df` can be broadcast to if ( hasattr(df, "__len__") and size is not None and (len(size) == 0 or size[-1] != len(df)) ): size = (*size, len(df)) helpers.test_frontend_function( input_dtypes=dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, df=df, size=size, ) @handle_frontend_test( fn_tree="numpy.random.choice", dtypes=helpers.get_dtypes("float", full=False), a=helpers.ints(min_value=2, max_value=10), size=helpers.get_shape(allow_none=True), ) def test_numpy_choice( dtypes, size, frontend, test_flags, backend_fw, fn_tree, on_device, a, ): helpers.test_frontend_function( input_dtypes=dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, a=a, size=size, replace=True, p=np.array([1 / a] * a, dtype=dtypes[0]), ) # dirichlet @handle_frontend_test( fn_tree="numpy.random.dirichlet", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=st.tuples( st.integers(min_value=2, max_value=5), ), min_value=1, max_value=100, exclude_min=True, ), size=st.tuples( st.integers(min_value=2, max_value=5), st.integers(min_value=2, max_value=5) ), test_with_out=st.just(False), ) def test_numpy_dirichlet( dtype_and_x, size, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, alpha=x[0], test_values=False, size=size, ) # exponential @handle_frontend_test( fn_tree="numpy.random.exponential", input_dtypes=helpers.get_dtypes("float", index=2), scale=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, exclude_min=True ), size=st.tuples( st.integers(min_value=2, max_value=5), st.integers(min_value=2, max_value=5) ), test_with_out=st.just(False), ) def test_numpy_exponential( input_dtypes, size, frontend, test_flags, fn_tree, on_device, backend_fw, scale, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_values=False, scale=scale, size=size, ) @handle_frontend_test( fn_tree="numpy.random.f", input_dtypes=helpers.get_dtypes("float"), dfn=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=1, max_value=1000, exclude_min=True, ), dfd=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=1, max_value=1000, exclude_min=True, ), size=helpers.get_shape(allow_none=False), ) def test_numpy_f( input_dtypes, size, frontend, test_flags, backend_fw, fn_tree, on_device, dfn, dfd, ): test_flags.num_positional_args = 2 helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, test_values=False, on_device=on_device, dfn=dfn, dfd=dfd, size=size, ) @handle_frontend_test( fn_tree="numpy.random.gamma", input_dtypes=helpers.get_dtypes("float", full=False), shape=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, exclude_min=True ), scale=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, exclude_min=True ), size=st.tuples( st.integers(min_value=2, max_value=5), st.integers(min_value=2, max_value=5) ), test_with_out=st.just(False), ) def test_numpy_gamma( input_dtypes, shape, scale, size, frontend, test_flags, fn_tree, on_device, backend_fw, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_values=False, shape=shape, scale=scale, size=size, ) @handle_frontend_test( fn_tree="numpy.random.geometric", input_dtypes=helpers.get_dtypes("float"), p=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=9.999999747378752e-06, max_value=0.9999899864196777, ), size=st.tuples( st.integers(min_value=2, max_value=5), st.integers(min_value=2, max_value=5) ), ) def test_numpy_geometric( input_dtypes, size, frontend, test_flags, fn_tree, backend_fw, on_device, p, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_values=False, p=p, size=size, ) # gumbel @handle_frontend_test( fn_tree="numpy.random.gumbel", input_dtypes=helpers.get_dtypes("float"), loc=st.floats( allow_nan=False, allow_infinity=False, width=32, max_value=1000, ), scale=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, max_value=1000, exclude_min=True, ), size=helpers.get_shape(allow_none=True), ) def test_numpy_gumbel( input_dtypes, frontend, test_flags, backend_fw, fn_tree, on_device, loc, scale, size, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, loc=loc, scale=scale, size=size, ) @handle_frontend_test( fn_tree="numpy.random.laplace", input_dtypes=helpers.get_dtypes("float", full=False), loc=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, exclude_min=True, ), scale=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, exclude_min=True, ), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_laplace( input_dtypes, size, frontend, test_flags, fn_tree, on_device, backend_fw, loc, scale, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_values=False, loc=loc, scale=scale, size=size, ) # logistic @handle_frontend_test( fn_tree="numpy.random.logistic", input_dtypes=helpers.get_dtypes("float", full=False), loc=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, exclude_min=True, ), scale=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, exclude_min=True, ), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_logistic( input_dtypes, size, frontend, test_flags, fn_tree, on_device, backend_fw, loc, scale, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_values=False, loc=loc, scale=scale, size=size, ) # lognormal # min value is set 0 @handle_frontend_test( fn_tree="numpy.random.lognormal", input_dtypes=helpers.get_dtypes("float", index=2), mean=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=-5, max_value=5 ), sigma=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, max_value=5 ), size=st.tuples( st.integers(min_value=2, max_value=5), st.integers(min_value=2, max_value=5) ), ) def test_numpy_lognormal( input_dtypes, size, frontend, test_flags, fn_tree, backend_fw, on_device, mean, sigma, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, mean=mean, sigma=sigma, size=size, ) @handle_frontend_test( fn_tree="numpy.random.logseries", input_dtypes=helpers.get_dtypes("float", index=2), p=st.floats( allow_nan=False, allow_infinity=False, min_value=0, max_value=1, exclude_max=True, ), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_logseries( input_dtypes, frontend, test_flags, fn_tree, backend_fw, on_device, p, size, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_values=False, p=p, size=size, ) # multinomial @handle_frontend_test( fn_tree="numpy.random.multinomial", n=helpers.ints(min_value=2, max_value=10), dtype=helpers.get_dtypes("float", full=False), size=st.tuples( st.integers(min_value=1, max_value=10), st.integers(min_value=2, max_value=2) ), ) def test_numpy_multinomial( n, dtype, size, test_flags, frontend, backend_fw, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_values=False, n=n, pvals=np.array([1 / n] * n, dtype=dtype[0]), size=size, ) # negative_binomial @handle_frontend_test( fn_tree="numpy.random.negative_binomial", input_dtypes=helpers.get_dtypes("float", index=2), # max value for n and min value for p are restricted in testing # as they can blow up poisson lambda, which will cause an # error (lam value too large). n=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, max_value=100000, exclude_min=True, ), p=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=9.999999747378752e-06, exclude_min=True, max_value=1, exclude_max=True, ), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_negative_binomial( input_dtypes, size, frontend, test_flags, fn_tree, backend_fw, on_device, n, p, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, n=n, p=p, size=size, ) # noncentral_chisquare @handle_frontend_test( fn_tree="numpy.random.noncentral_chisquare", dtype_and_df=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_value=0, exclude_min=True, ), dtype_and_nonc=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_value=0, ), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_noncentral_chisquare( dtype_and_df, dtype_and_nonc, size, frontend, test_flags, fn_tree, backend_fw, on_device, ): dtype_df, df = dtype_and_df dtype_nonc, nonc = dtype_and_nonc helpers.test_frontend_function( input_dtypes=dtype_df + dtype_nonc, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, df=df[0], nonc=nonc[0], size=size, ) # normal @handle_frontend_test( fn_tree="numpy.random.normal", input_dtypes=helpers.get_dtypes("float", index=2), loc=st.floats(allow_nan=False, allow_infinity=False, width=32), scale=st.floats(allow_nan=False, allow_infinity=False, width=32, min_value=0), size=st.tuples( st.integers(min_value=2, max_value=5), st.integers(min_value=2, max_value=5) ), ) def test_numpy_normal( input_dtypes, size, frontend, test_flags, fn_tree, backend_fw, on_device, loc, scale, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, loc=loc, scale=scale, size=size, ) # pareto @handle_frontend_test( fn_tree="numpy.random.pareto", input_dtypes=helpers.get_dtypes("float", index=2), a=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=1, max_value=1000, exclude_min=True, ), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_pareto( input_dtypes, frontend, test_flags, backend_fw, fn_tree, on_device, a, size, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, a=a, size=size, ) # permutation @handle_frontend_test( fn_tree="numpy.random.permutation", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=1 ), ) def test_numpy_permutation( dtype_and_x, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, x=x[0], ) # poisson @handle_frontend_test( fn_tree="numpy.random.poisson", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=st.tuples(st.integers(min_value=1, max_value=2)), min_value=1, max_value=100, ), size=st.tuples( st.integers(min_value=1, max_value=10), st.integers(min_value=2, max_value=2) ), ) def test_numpy_poisson( dtype_and_x, size, test_flags, frontend, backend_fw, fn_tree, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, lam=x[0], test_values=False, size=size, ) # random_sample @handle_frontend_test( fn_tree="numpy.random.random_sample", input_dtypes=helpers.get_dtypes("integer", full=False), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_random_sample( input_dtypes, size, frontend, test_flags, fn_tree, backend_fw, on_device, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, size=size, ) # rayleigh @handle_frontend_test( fn_tree="numpy.random.rayleigh", input_dtypes=helpers.get_dtypes("float"), scale=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, max_value=1000, exclude_min=True, ), size=helpers.get_shape(allow_none=True), ) def test_numpy_rayleigh( input_dtypes, size, frontend, test_flags, backend_fw, fn_tree, on_device, scale, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, scale=scale, size=size, ) # shuffle @handle_frontend_test( fn_tree="numpy.random.shuffle", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=1 ), ) def test_numpy_shuffle( dtype_and_x, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, x=x[0], ) # standard_cauchy @handle_frontend_test( fn_tree="numpy.random.standard_cauchy", input_dtypes=helpers.get_dtypes("integer", full=False), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_standard_cauchy( input_dtypes, size, frontend, backend_fw, test_flags, fn_tree, on_device, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, size=size, ) @handle_frontend_test( fn_tree="numpy.random.standard_exponential", input_dtypes=helpers.get_dtypes("float", index=2), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_standard_exponential( input_dtypes, frontend, test_flags, backend_fw, fn_tree, on_device, size, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, size=size, ) @handle_frontend_test( fn_tree="numpy.random.standard_gamma", shape_dtypes=helpers.get_dtypes("float", full=False), shape=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, exclude_min=True ), size=st.tuples( st.integers(min_value=2, max_value=5), st.integers(min_value=2, max_value=5) ), size_dtypes=helpers.get_dtypes("integer", full=False), test_with_out=st.just(False), ) def test_numpy_standard_gamma( shape, shape_dtypes, size, size_dtypes, frontend, test_flags, fn_tree, backend_fw, on_device, ): assume("float16" not in shape_dtypes) helpers.test_frontend_function( input_dtypes=shape_dtypes + size_dtypes, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_values=False, shape=shape, size=size, ) @handle_frontend_test( fn_tree="numpy.random.standard_normal", input_dtypes=helpers.get_dtypes("integer", full=False), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_standard_normal( input_dtypes, size, frontend, test_flags, fn_tree, backend_fw, on_device, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, size=size, ) # standard_t @handle_frontend_test( fn_tree="numpy.random.standard_t", df=st.floats(min_value=1, max_value=20), df_dtypes=helpers.get_dtypes("integer", full=False), size=st.tuples( st.integers(min_value=2, max_value=5), st.integers(min_value=2, max_value=5) ), size_dtypes=helpers.get_dtypes("integer", full=False), test_with_out=st.just(False), ) def test_numpy_standard_t( df, df_dtypes, size, size_dtypes, frontend, test_flags, fn_tree, backend_fw, on_device, ): helpers.test_frontend_function( input_dtypes=df_dtypes + size_dtypes, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_values=False, df=df, size=size, ) @handle_frontend_test( fn_tree="numpy.random.triangular", input_dtypes=helpers.get_dtypes("float"), left=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, max_value=10, ), mode=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=10, max_value=100, exclude_min=True, ), right=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=100, max_value=1000, exclude_min=True, ), size=helpers.get_shape(allow_none=True), ) def test_numpy_triangular( input_dtypes, size, frontend, test_flags, backend_fw, fn_tree, on_device, left, mode, right, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, left=left, mode=mode, right=right, size=size, ) # uniform @handle_frontend_test( fn_tree="numpy.random.uniform", input_dtypes=helpers.get_dtypes("float", index=2), low=st.floats(allow_nan=False, allow_infinity=False, width=32), high=st.floats(allow_nan=False, allow_infinity=False, width=32), size=st.tuples( st.integers(min_value=2, max_value=5), st.integers(min_value=2, max_value=5) ), ) def test_numpy_uniform( input_dtypes, size, frontend, test_flags, fn_tree, backend_fw, on_device, low, high, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, low=low, high=high, size=size, ) @handle_frontend_test( fn_tree="numpy.random.vonmises", input_dtypes=helpers.get_dtypes("float"), mu=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, max_value=1, exclude_min=True, ), kappa=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, max_value=10, exclude_min=True, ), size=helpers.get_shape(allow_none=True), ) def test_numpy_vonmises( input_dtypes, frontend, test_flags, backend_fw, fn_tree, on_device, mu, kappa, size, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, mu=mu, kappa=kappa, size=size, ) @handle_frontend_test( fn_tree="numpy.random.wald", input_dtypes=helpers.get_dtypes("float"), mean=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, exclude_min=True, max_value=1000, ), scale=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=0, exclude_min=True, max_value=1000, ), size=helpers.get_shape(allow_none=False), ) def test_numpy_wald( input_dtypes, size, frontend, test_flags, backend_fw, fn_tree, on_device, mean, scale, ): test_flags.num_positional_args = 2 helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, mean=mean, scale=scale, size=size, ) # weibull @handle_frontend_test( fn_tree="numpy.random.weibull", input_dtypes=helpers.get_dtypes("float", index=2), a=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=1, max_value=1000, exclude_min=True, ), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_weibull( input_dtypes, frontend, test_flags, backend_fw, fn_tree, on_device, a, size, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, a=a, size=size, ) @handle_frontend_test( fn_tree="numpy.random.zipf", input_dtypes=helpers.get_dtypes("float", index=2), a=st.floats( allow_nan=False, allow_infinity=False, width=32, min_value=1, max_value=1000, exclude_min=True, ), size=helpers.get_shape(allow_none=True), test_with_out=st.just(False), ) def test_numpy_zipf( input_dtypes, frontend, test_flags, backend_fw, fn_tree, on_device, a, size, ): helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, a=a, size=size, )
ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_random/test_functions.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_numpy/test_random/test_functions.py", "repo_id": "ivy", "token_count": 15690 }
57
# import paddle from ivy_tests.test_ivy.test_frontends import NativeClass paddle_classes_to_ivy_classes = {} def convpaddle(argument): """Convert NativeClass in argument to ivy frontend counter part for paddle.""" if isinstance(argument, NativeClass): return paddle_classes_to_ivy_classes.get(argument._native_class) return argument
ivy/ivy_tests/test_ivy/test_frontends/test_paddle/__init__.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_paddle/__init__.py", "repo_id": "ivy", "token_count": 120 }
58
# global from hypothesis import strategies as st import ivy # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # --- Helpers --- # # --------------- # # cosine embedding loss @st.composite def _cos_embd_loss_helper(draw): dtype_inputs_shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=2, min_dim_size=2, ret_shape=True, num_arrays=2, ) ) input_dtypes, inputs, shape = dtype_inputs_shape _, label = draw( helpers.dtype_and_values( dtype=input_dtypes, shape=(shape[0],), min_value=-1, max_value=1 ), ) return input_dtypes, inputs, label # --- Main --- # # ------------ # @handle_frontend_test( fn_tree="paddle.nn.functional.binary_cross_entropy", dtype_and_vals=helpers.dtype_and_values( available_dtypes=["float32", "float64"], num_arrays=3, min_value=1.0013580322265625e-05, max_value=1, large_abs_safety_factor=2, small_abs_safety_factor=2, safety_factor_scale="linear", allow_inf=False, exclude_min=True, exclude_max=True, min_num_dims=1, max_num_dims=1, min_dim_size=2, ), reduction=st.sampled_from(["mean", "sum", "none"]), ) def test_paddle_binary_cross_entropy( dtype_and_vals, reduction, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_vals helpers.test_frontend_function( input_dtypes=[input_dtype[0], input_dtype[1]], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], label=x[1], weight=x[2], reduction=reduction, rtol=1e-02, atol=1e-02, ) @handle_frontend_test( fn_tree="paddle.nn.functional.binary_cross_entropy_with_logits", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, exclude_min=True, exclude_max=True, shared_dtype=True, min_num_dims=1, ), dtype_and_weight=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=1, ), reduction=st.sampled_from(["mean", "none", "sum"]), ) def test_paddle_binary_cross_entropy_with_logits( dtype_and_x, dtype_and_weight, reduction, on_device, fn_tree, backend_fw, frontend, test_flags, ): # TODO: paddle's implementation of pos_weight is wrong # https://github.com/PaddlePaddle/Paddle/pull/54869 x_dtype, x = dtype_and_x weight_dtype, weight = dtype_and_weight helpers.test_frontend_function( input_dtypes=[ x_dtype[0], x_dtype[1], weight_dtype[0], ], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, logit=x[0], label=x[1], weight=weight[0], reduction=reduction, ) @handle_frontend_test( fn_tree="paddle.nn.functional.cosine_embedding_loss", dtype_xs_label=_cos_embd_loss_helper(), margin=st.floats( min_value=-1.0, max_value=1.0, width=16, ), reduction=st.sampled_from(["none", "mean", "sum"]), test_with_out=st.just(False), ) def test_paddle_cosine_embedding_loss( *, dtype_xs_label, margin, reduction, test_flags, fn_tree, backend_fw, frontend, on_device, ): input_dtypes, xs, label = dtype_xs_label input1_dtype, input1 = input_dtypes[0], xs[0] input2_dtype, input2 = input_dtypes[1], xs[1] helpers.test_frontend_function( input_dtypes=[input1_dtype, input2_dtype], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input1=input1, input2=input2, label=label[0], margin=margin, reduction=reduction, ) @handle_frontend_test( fn_tree="paddle.nn.functional.dice_loss", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=1, shared_dtype=False, min_num_dims=3, min_dim_size=3, max_num_dims=3, max_dim_size=3, ), labels=st.lists( ( st.lists( ( st.lists( st.integers(min_value=0, max_value=1), min_size=3, max_size=3 ) ), min_size=3, max_size=3, ) ), min_size=1, max_size=1, ), epsilon=st.floats( min_value=1e-6, max_value=1e-2, ), ) def test_paddle_dice_loss( dtype_and_x, labels, epsilon, on_device, fn_tree, frontend, test_flags, backend_fw, ): x_dtype, x = dtype_and_x x[0] = x[0].reshape([3, 3, 3]) labels = ivy.array(labels, dtype=ivy.int64) labels = labels.reshape([3, 3, 1]) helpers.test_frontend_function( input_dtypes=[ivy.int64] + [ivy.float64] + x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], label=labels, epsilon=epsilon, ) @handle_frontend_test( fn_tree="paddle.nn.functional.hinge_embedding_loss", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2, shared_dtype=True, ), margin=st.floats( min_value=-1.0, max_value=1.0, width=16, ), reduction=st.sampled_from(["none", "mean", "sum"]), ) def test_paddle_hinge_embedding_loss( dtype_and_x, margin, reduction, test_flags, backend_fw, fn_tree, frontend, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], label=x[1], margin=margin, reduction=reduction, ) @handle_frontend_test( fn_tree="paddle.nn.functional.kl_div", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, min_num_dims=2, max_num_dims=5, min_dim_size=1, max_dim_size=10, min_value=1.0013580322265625e-05, ), reduction=st.sampled_from(["mean", "batchmean", "sum", "none"]), ) def test_paddle_kl_div( dtype_and_x, reduction, on_device, backend_fw, fn_tree, frontend, test_flags ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], label=x[1], reduction=reduction, ) @handle_frontend_test( fn_tree="paddle.nn.functional.l1_loss", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, min_num_dims=2, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), reduction=st.sampled_from(["mean", "sum", "none"]), ) def test_paddle_l1_loss( dtype_and_x, reduction, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], label=x[1], reduction=reduction, ) # log_loss @handle_frontend_test( fn_tree="paddle.nn.functional.log_loss", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2, min_value=0, max_value=1, exclude_min=True, exclude_max=True, shared_dtype=True, min_num_dims=2, max_num_dims=2, max_dim_size=1, ), epsilon=st.floats( min_value=1e-7, max_value=1.0, ), ) def test_paddle_log_loss( dtype_and_x, epsilon, fn_tree, test_flags, backend_fw, frontend, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], label=x[1], epsilon=epsilon, ) @handle_frontend_test( fn_tree="paddle.nn.functional.margin_ranking_loss", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=3, shared_dtype=True, min_num_dims=2, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), margin=st.floats( min_value=-1.0, max_value=1.0, width=16, ), reduction=st.sampled_from(["mean", "sum", "none"]), ) def test_paddle_margin_ranking_loss( dtype_and_x, margin, reduction, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], label=x[2], margin=margin, reduction=reduction, ) # mse_loss @handle_frontend_test( fn_tree="paddle.nn.functional.mse_loss", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, min_num_dims=1, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ), reduction=st.sampled_from(["mean", "none", "sum"]), ) def test_paddle_mse_loss( dtype_and_x, reduction, on_device, backend_fw, fn_tree, frontend, test_flags, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], label=x[1], reduction=reduction, ) @handle_frontend_test( fn_tree="paddle.nn.functional.multi_label_soft_margin_loss", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, min_value=-2, max_value=2, shared_dtype=True, allow_inf=False, min_num_dims=2, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), dtype_and_weight=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=2, min_value=-2, max_value=2, ), reduction=st.sampled_from(["mean", "none", "sum"]), ) def test_paddle_multi_label_soft_margin_loss( dtype_and_x, dtype_and_weight, reduction, on_device, fn_tree, backend_fw, frontend, test_flags, ): x_dtype, x = dtype_and_x weight_dtype, weight = dtype_and_weight helpers.test_frontend_function( input_dtypes=[ x_dtype[0], x_dtype[1], weight_dtype[0], ], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], label=x[1], weight=weight[0], reduction=reduction, ) @handle_frontend_test( fn_tree="paddle.nn.functional.nll_loss", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, min_num_dims=1, max_num_dims=2, ), dtype_and_weight=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=1, max_num_dims=1, ), ignore_index=st.integers( min_value=-100, ), reduction=st.sampled_from(["mean", "sum", "none"]), ) def test_paddle_nll_loss( dtype_and_x, dtype_and_weight, ignore_index, reduction, on_device, fn_tree, frontend, test_flags, backend_fw, ): x_dtype, x = dtype_and_x weight_dtype, weight = dtype_and_weight helpers.test_frontend_function( input_dtypes=[ x_dtype[0], x_dtype[1], weight_dtype[0], ], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], label=x[1], weight=weight[0], ignore_index=ignore_index, reduction=reduction, ) @handle_frontend_test( fn_tree="paddle.nn.functional.sigmoid_focal_loss", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=1, shared_dtype=False, min_num_dims=1, min_dim_size=1, ), dtype_and_normalizer=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=1, shared_dtype=True, min_num_dims=1, min_dim_size=1, max_num_dims=1, max_dim_size=1, ), dtype_and_labels=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=1, shared_dtype=False, min_num_dims=1, min_dim_size=1, min_value=0, max_value=1, ), alpha=st.floats( min_value=0.0, max_value=1.0, ), gamma=st.floats( min_value=0.0, max_value=5.0, ), reduction=st.sampled_from(["mean", "sum", "none"]), ) def test_paddle_sigmoid_focal_loss( dtype_and_x, dtype_and_normalizer, dtype_and_labels, alpha, gamma, reduction, on_device, fn_tree, frontend, test_flags, backend_fw, ): x_dtype, x = dtype_and_x normalizer_dtype, normalizer = dtype_and_normalizer label_dtype, labels = dtype_and_labels normalizer = [norm.reshape(-1) for norm in normalizer] labels = ivy.array(labels, dtype=ivy.int64) helpers.test_frontend_function( input_dtypes=[ivy.int64] + [ivy.float64] + x_dtype + normalizer_dtype + label_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, logit=x[0], label=labels[0], alpha=alpha, gamma=gamma, normalizer=normalizer[0], reduction=reduction, ) # smooth_l1_loss @handle_frontend_test( fn_tree="paddle.nn.functional.smooth_l1_loss", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2, shared_dtype=True, min_num_dims=2, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), delta=st.floats( min_value=0.1, max_value=1.0, ), reduction=st.sampled_from(["mean", "sum", "none"]), ) def test_paddle_smooth_l1_loss( dtype_and_x, delta, reduction, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], label=x[1], reduction=reduction, delta=delta, ) @handle_frontend_test( fn_tree="paddle.nn.functional.softmax_with_cross_entropy", dtype_and_x_and_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, min_value=1e-04, max_value=1, min_num_dims=2, allow_inf=False, shared_dtype=True, force_int_axis=True, valid_axis=True, ), soft_label=st.booleans(), numeric_stable_mode=st.booleans(), return_softmax=st.booleans(), ) def test_paddle_softmax_with_cross_entropy( dtype_and_x_and_axis, soft_label, numeric_stable_mode, return_softmax, on_device, fn_tree, backend_fw, frontend, test_flags, ): x_dtype, x, axis = dtype_and_x_and_axis logits = x[0] labels = x[1] label_dtype = x_dtype ignore_index = 0 if soft_label: labels = labels / ivy.sum(labels).to_native() else: labels = ivy.argmax(labels, axis=axis).to_native() flattened_labels = labels.flatten() ignore_index = ivy.randint(0, flattened_labels.size) ignore_index = flattened_labels[ignore_index] label_dtype = [str(labels.dtype)] if on_device == "cpu" or soft_label: numeric_stable_mode = True helpers.test_frontend_function( input_dtypes=[x_dtype[0], label_dtype[0]], frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, logits=logits, label=labels, soft_label=soft_label, ignore_index=ignore_index, numeric_stable_mode=numeric_stable_mode, return_softmax=return_softmax, axis=axis, ) @handle_frontend_test( fn_tree="paddle.nn.functional.loss.square_error_cost", dtype_and_input_and_label=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2 ), ) def test_paddle_square_error_cost( *, dtype_and_input_and_label, frontend, test_flags, fn_tree, backend_fw, ): input_dtypes, input_and_label = dtype_and_input_and_label input, label = input_and_label helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, input=input, label=label, fn_tree=fn_tree, ) @handle_frontend_test( fn_tree="paddle.nn.functional.triplet_margin_loss", dtype_and_inputs=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=3, allow_inf=False, shared_dtype=True, min_value=0.0, max_value=1.0, min_num_dims=1, max_num_dims=2, min_dim_size=1, ), margin=st.floats(min_value=1e-6, max_value=1e6), p=st.integers(min_value=0, max_value=2), swap=st.booleans(), reduction=st.sampled_from(["none", "mean", "sum"]), test_with_out=st.just(False), ) def test_paddle_triplet_margin_loss( dtype_and_inputs, margin, p, swap, reduction, test_flags, fn_tree, backend_fw, frontend, on_device, ): input_dtype, x = dtype_and_inputs helpers.test_frontend_function( input_dtypes=[input_dtype[0], input_dtype[1], input_dtype[2]], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], positive=x[1], negative=x[2], margin=margin, p=p, swap=swap, reduction=reduction, )
ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_nn/test_functional/test_loss.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_paddle/test_nn/test_functional/test_loss.py", "repo_id": "ivy", "token_count": 10560 }
59
import pytest @pytest.fixture(scope="session") def frontend(): return "pandas"
ivy/ivy_tests/test_ivy/test_frontends/test_pandas/conftest.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_pandas/conftest.py", "repo_id": "ivy", "token_count": 32 }
60
from hypothesis import strategies as st import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test import numpy as np @handle_frontend_test( fn_tree="sklearn.metrics.accuracy_score", arrays_and_dtypes=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_integer"), num_arrays=2, min_value=-2, max_value=2, shared_dtype=True, shape=(helpers.ints(min_value=2, max_value=5)), ), normalize=st.booleans(), ) def test_sklearn_accuracy_score( arrays_and_dtypes, on_device, fn_tree, frontend, test_flags, backend_fw, normalize, ): dtypes, values = arrays_and_dtypes # sklearn accuracy_score does not support continuous values for i in range(2): if "float" in dtypes[i]: values[i] = np.floor(values[i]) helpers.test_frontend_function( input_dtypes=dtypes, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, frontend=frontend, on_device=on_device, y_true=values[0], y_pred=values[1], normalize=normalize, sample_weight=None, )
ivy/ivy_tests/test_ivy/test_frontends/test_sklearn/test_metrics/test_classification.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_sklearn/test_metrics/test_classification.py", "repo_id": "ivy", "token_count": 563 }
61
# global from hypothesis import strategies as st # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # as_dtype @handle_frontend_test( fn_tree="tensorflow.dtypes.as_dtype", gt_fn_tree="tensorflow.as_dtype", input_dtype=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), ) def test_tensorflow_as_dtype( *, input_dtype, frontend, test_flags, fn_tree, gt_fn_tree, backend_fw, on_device, ): helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, gt_fn_tree=gt_fn_tree, on_device=on_device, type_value=input_dtype[0], ) # cast @handle_frontend_test( fn_tree="tensorflow.dtypes.cast", gt_fn_tree="tensorflow.cast", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), dtype=helpers.get_dtypes("valid", full=False), test_with_out=st.just(False), ) def test_tensorflow_cast( *, dtype_and_x, dtype, frontend, test_flags, fn_tree, gt_fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype + dtype, frontend=frontend, backend_to_test=backend_fw, test_flags=test_flags, fn_tree=fn_tree, gt_fn_tree=gt_fn_tree, on_device=on_device, x=x[0], dtype=dtype[0], )
ivy/ivy_tests/test_ivy/test_frontends/test_tensorflow/test_dtypes.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_tensorflow/test_dtypes.py", "repo_id": "ivy", "token_count": 794 }
62
from hypothesis import strategies as st # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_frontend_test # --- Helpers --- # # --------------- # # stateless_poisson @st.composite def _shape_lam_dtype(draw): dtype = draw(helpers.array_dtypes(available_dtypes=("float32", "float64"))) common_shape = draw( helpers.get_shape( allow_none=False, min_num_dims=2, max_num_dims=3, min_dim_size=1, max_dim_size=5, ) ) _, lam = draw( helpers.dtype_and_values( available_dtypes=dtype, min_value=0, max_value=10, shape=(common_shape[-1],) ) ) return common_shape, lam, dtype # --- Main --- # # ------------ # # random gamma @handle_frontend_test( fn_tree="tensorflow.random.gamma", dtype=helpers.array_dtypes( available_dtypes=("float32", "float64"), ), shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=5, ), alpha=st.floats( allow_infinity=False, allow_nan=False, width=32, min_value=1, max_value=3 ), beta=st.floats( allow_infinity=False, allow_nan=False, width=32, min_value=1, max_value=3 ), seed=helpers.ints(min_value=0, max_value=10), test_with_out=st.just(False), ) def test_tensorflow_gamma( frontend, fn_tree, on_device, shape, alpha, beta, dtype, seed, test_flags, backend_fw, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, shape=shape, alpha=alpha, beta=beta, dtype=dtype[0], seed=seed, test_values=False, ) # random_normal @handle_frontend_test( fn_tree="tensorflow.random.normal", shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), mean=st.floats(allow_nan=False, allow_infinity=False, width=32), stddev=st.floats(allow_nan=False, allow_infinity=False, width=32, min_value=0), dtype=helpers.get_dtypes("float", full=False), seed=helpers.ints(min_value=0, max_value=10), test_with_out=st.just(False), ) def test_tensorflow_normal( frontend, fn_tree, on_device, shape, mean, stddev, dtype, seed, test_flags, backend_fw, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, shape=shape, mean=mean, stddev=stddev, dtype=dtype[0], seed=seed, ) # random poisson @handle_frontend_test( fn_tree="tensorflow.random.poisson", shape=helpers.get_shape( min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=5, ), lam=st.one_of( helpers.floats(allow_inf=False, allow_nan=False, min_value=-2, max_value=5), helpers.lists( x=helpers.floats( allow_nan=False, allow_inf=False, min_value=-2, max_value=5 ), min_size=1, max_size=10, ), ), dtype=helpers.get_dtypes("float", full=False), seed=helpers.ints(min_value=0, max_value=10), test_with_out=st.just(False), ) def test_tensorflow_poisson( frontend, fn_tree, on_device, shape, lam, dtype, seed, test_flags, backend_fw, ): helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, shape=shape, lam=lam, dtype=dtype[0], seed=seed, test_values=False, ) # random_shuffle @handle_frontend_test( fn_tree="tensorflow.random.shuffle", dtype_value=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), seed=helpers.ints(min_value=0, max_value=10), test_with_out=st.just(False), ) def test_tensorflow_shuffle( frontend, fn_tree, on_device, dtype_value, seed, test_flags, backend_fw, ): input_dtypes, values = dtype_value helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, value=values[0], seed=seed, ) # stateless_normal @handle_frontend_test( fn_tree="tensorflow.random.stateless_normal", shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=10, ), seed=helpers.dtype_and_values( available_dtypes=("int64", "int32"), min_value=0, max_value=10, shape=[2] ), mean=st.floats(allow_nan=False, allow_infinity=False, width=32), stddev=st.floats(allow_nan=False, allow_infinity=False, width=32, min_value=0), dtype=helpers.get_dtypes("float", full=False), test_with_out=st.just(False), ) def test_tensorflow_stateless_normal( frontend, fn_tree, on_device, shape, seed, mean, stddev, dtype, test_flags, backend_fw, ): input_dtypes, seed = seed helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, shape=shape, seed=seed[0], mean=mean, stddev=stddev, dtype=dtype[0], ) @handle_frontend_test( fn_tree="tensorflow.random.stateless_poisson", shape_lam_dtype=_shape_lam_dtype(), seed=helpers.dtype_and_values( available_dtypes=("int64", "int32"), min_value=0, max_value=10, shape=[2] ), test_with_out=st.just(False), ) def test_tensorflow_stateless_poisson( frontend, fn_tree, on_device, shape_lam_dtype, seed, test_flags, backend_fw, ): shape, lam, dtype = shape_lam_dtype input_dtypes, seed = seed helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, shape=shape, seed=seed[0], lam=lam[0], dtype=dtype[0], ) # random_stateless_uniform @handle_frontend_test( fn_tree="tensorflow.random.stateless_uniform", shape=helpers.dtype_and_values( available_dtypes=("int64", "int32"), min_value=1, max_value=5, min_num_dims=1, max_num_dims=1, max_dim_size=9, ), seed=helpers.dtype_and_values( available_dtypes=("int64", "int32"), min_value=0, max_value=10, shape=[2] ), minmaxval=helpers.get_bounds(dtype="int32"), dtype=helpers.array_dtypes( available_dtypes=("int32", "int64", "float16", "float32", "float64"), ), test_with_out=st.just(False), ) def test_tensorflow_stateless_uniform( shape, seed, minmaxval, dtype, frontend, test_flags, fn_tree, backend_fw, on_device, ): shape_input_dtypes, shape = shape seed_input_dtypes, seed = seed helpers.test_frontend_function( input_dtypes=shape_input_dtypes + seed_input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, shape=shape[0], seed=seed[0], minval=int(minmaxval[0]), maxval=int(minmaxval[1]), dtype=dtype[0], ) # random_sample @handle_frontend_test( fn_tree="tensorflow.random.uniform", shape=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), min_value=1, max_value=5, min_num_dims=1, max_num_dims=1, ), minval=helpers.ints(min_value=0, max_value=3), maxval=helpers.ints(min_value=4, max_value=10), dtype=helpers.get_dtypes("float", full=False), seed=helpers.ints(min_value=0, max_value=10), test_with_out=st.just(False), ) def test_tensorflow_uniform( shape, minval, maxval, dtype, seed, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtypes, shape = shape helpers.test_frontend_function( input_dtypes=input_dtypes, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, shape=shape[0], minval=minval, maxval=maxval, dtype=dtype[0], seed=seed, )
ivy/ivy_tests/test_ivy/test_frontends/test_tensorflow/test_random.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_tensorflow/test_random.py", "repo_id": "ivy", "token_count": 4654 }
63
# global import math import sys import numpy as np from hypothesis import strategies as st, assume, settings, HealthCheck # local import ivy import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import assert_all_close from ivy_tests.test_ivy.helpers import handle_frontend_test from ivy_tests.test_ivy.test_frontends.test_torch.test_miscellaneous_ops import ( dtype_value1_value2_axis, ) from ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers import ( matrix_is_stable, ) from ivy_tests.test_ivy.test_functional.test_core.test_linalg import _matrix_rank_helper # --- Helpers --- # # --------------- # @st.composite def _generate_multi_dot_dtype_and_arrays(draw): input_dtype = [draw(st.sampled_from(draw(helpers.get_dtypes("valid"))))] matrices_dims = draw( st.lists(st.integers(min_value=2, max_value=10), min_size=4, max_size=4) ) shape_1 = (matrices_dims[0], matrices_dims[1]) shape_2 = (matrices_dims[1], matrices_dims[2]) shape_3 = (matrices_dims[2], matrices_dims[3]) matrix_1 = draw( helpers.dtype_and_values( shape=shape_1, dtype=input_dtype, min_value=-10, max_value=10, ) ) matrix_2 = draw( helpers.dtype_and_values( shape=shape_2, dtype=input_dtype, min_value=-10, max_value=10, ) ) matrix_3 = draw( helpers.dtype_and_values( shape=shape_3, dtype=input_dtype, min_value=-10, max_value=10, ) ) return input_dtype, [matrix_1[1][0], matrix_2[1][0], matrix_3[1][0]] @st.composite def _get_axis_and_p(draw): p = draw(st.sampled_from(["fro", "nuc", 1, 2, -1, -2, float("inf"), -float("inf")])) if p in ["fro", "nuc"]: max_axes_size = 2 min_axes_size = 2 else: min_axes_size = 1 max_axes_size = 5 x_dtype, values, axis = draw( helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=2, valid_axis=True, min_value=-1e04, max_value=1e04, min_axes_size=min_axes_size, max_axes_size=max_axes_size, large_abs_safety_factor=2, safety_factor_scale="log", ) ) axis = axis[0] if isinstance(axis, tuple) and len(axis) == 1 else axis # ToDo: fix the castable dtype helper. Right now using `dtype` causes errors # dtype should be real for real inputs, but got ComplexDouble x_dtype, values, dtype = draw( helpers.get_castable_dtype( draw(helpers.get_dtypes("valid")), x_dtype[0], values[0] ) ) return p, x_dtype, values, axis, x_dtype # helpers @st.composite def _get_dtype_and_matrix( draw, dtype="valid", square=False, invertible=False, batch=False ): if batch: arbitrary_dims = draw(helpers.get_shape(max_dim_size=3)) else: arbitrary_dims = [] if square: random_size = draw(st.integers(1, 5)) shape = (*arbitrary_dims, random_size, random_size) else: shape = (*arbitrary_dims, draw(st.integers(1, 5)), draw(st.integers(1, 5))) ret = helpers.dtype_and_values( available_dtypes=helpers.get_dtypes(dtype, full=True), min_value=-10, max_value=10, abs_smallest_val=1e-04, shape=shape, ) if invertible: ret = ret.filter( lambda x: np.all(np.linalg.cond(x[1]) < 1 / sys.float_info.epsilon) ) return draw(ret) @st.composite def _get_dtype_and_symmetrix_matrix(draw): input_dtype = draw(st.shared(st.sampled_from(draw(helpers.get_dtypes("valid"))))) random_size = draw(helpers.ints(min_value=2, max_value=4)) batch_shape = draw(helpers.get_shape(min_num_dims=1, max_num_dims=3)) num_independnt_vals = int((random_size**2) / 2 + random_size / 2) array_vals_flat = np.array( draw( helpers.array_values( dtype=input_dtype, shape=tuple(list(batch_shape) + [num_independnt_vals]), min_value=2, max_value=5, ) ) ) array_vals = np.zeros(batch_shape + (random_size, random_size)) c = 0 for i in range(random_size): for j in range(random_size): if j < i: continue array_vals[..., i, j] = array_vals_flat[..., c] array_vals[..., j, i] = array_vals_flat[..., c] c += 1 return [input_dtype], array_vals # tensorsolve @st.composite def _get_solve_matrices(draw): # batch_shape, random_size, shared # float16 causes a crash when filtering out matrices # for which `np.linalg.cond` is large. input_dtype_strategy = st.shared( st.sampled_from(draw(helpers.get_dtypes("valid"))), key="shared_dtype", ) input_dtype = draw(input_dtype_strategy) dim = draw(helpers.ints(min_value=2, max_value=5)) first_matrix = draw( helpers.array_values( dtype=input_dtype, shape=(dim, dim, dim, dim), min_value=1.2, max_value=5, ).filter( lambda x: np.linalg.cond(x.reshape((dim**2, dim**2))) < 1 / sys.float_info.epsilon ) ) second_matrix = draw( helpers.array_values( dtype=input_dtype, shape=(dim, dim), min_value=1.2, max_value=3, ).filter( lambda x: np.linalg.cond(x.reshape((dim, dim))) < 1 / sys.float_info.epsilon ) ) return input_dtype, first_matrix, second_matrix # tensorinv @st.composite def _tensorinv_helper(draw): def factors(x): result = [ 1, ] i = 2 while i * i <= x: if x % i == 0: result.append(i) if x // i != i: result.append(x // i) i += 1 result.append(x) return np.array(result) ind = draw(helpers.ints(min_value=1, max_value=6)) product_half = draw(helpers.ints(min_value=2, max_value=25)) factors_list = factors(product_half) shape = () while len(shape) < ind and ind > 2: while np.prod(shape) < product_half: a = factors_list[np.random.randint(len(factors_list))] shape += (a,) if np.prod(shape) > product_half or len(shape) > ind: shape = () while len(shape) < ind and shape != (): shape += (1,) if np.prod(shape) == product_half: shape += shape[::-1] break if ind == 1 and shape == (): shape += (product_half, product_half) if ind == 2 and shape == (): shape += (1, product_half, product_half, 1) shape_cor = () for i in shape: shape_cor += (int(i),) shape_draw = (product_half, product_half) dtype, input = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=shape_draw, ).filter(lambda x: np.linalg.cond(x[1]) < 1 / sys.float_info.epsilon) ) input[0] = input[0].reshape(shape_cor) return dtype, input[0], ind # vander @st.composite def _vander_helper(draw): # generate input matrix of shape (*, n) and where '*' is one or more # batch dimensions N = draw(helpers.ints(min_value=2, max_value=5)) if draw(st.floats(min_value=0, max_value=1.0)) < 0.5: N = None shape = draw( helpers.get_shape( min_num_dims=1, max_num_dims=5, min_dim_size=2, max_dim_size=10 ) ) x = draw( helpers.dtype_and_values( available_dtypes=draw(helpers.get_dtypes("valid")), shape=shape, min_value=-10, max_value=10, ) ) return *x, N # --- Main --- # # ------------ # @handle_frontend_test( fn_tree="torch.linalg.lu_solve", dtype_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=helpers.get_shape( min_num_dims=2, max_num_dims=2, min_dim_size=2, max_dim_size=2 ), num_arrays=2, shared_dtype=True, ).filter(lambda x: helpers.matrix_is_stable(x[1][0], cond_limit=10)), ) def test_lu_solve(dtype_x, test_flags, backend_fw, fn_name, on_device): dtype, arr = dtype_x A, B = arr[0], arr[1] ivy.set_backend(backend_fw) lu_ = ivy.lu_factor(A) lu, p = lu_.LU, lu_.p X, X_gt = helpers.test_frontend_function( input_dtypes=dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, lu=lu, p=p, b=B, test_values=False, ) assert np.allclose(A @ X, B) @handle_frontend_test( fn_tree="torch.linalg.cholesky", aliases=["torch.cholesky"], dtype_and_x=_get_dtype_and_matrix(square=True), upper=st.booleans(), ) def test_torch_cholesky( *, dtype_and_x, upper, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x x = np.asarray(x[0], dtype=dtype[0]) x = np.matmul(x.T, x) + np.identity(x.shape[0]) # make symmetric positive-definite helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-01, input=x, upper=upper, ) @handle_frontend_test( fn_tree="torch.linalg.cholesky_ex", dtype_and_x=_get_dtype_and_matrix(square=True, batch=True), upper=st.booleans(), ) def test_torch_cholesky_ex( *, dtype_and_x, upper, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x x = np.matmul(x.T, x) + np.identity(x.shape[0]) # make symmetric positive-definite helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-01, input=x, upper=upper, ) @handle_frontend_test( fn_tree="torch.linalg.cond", dtype_and_x=_get_dtype_and_matrix(square=True, invertible=True, batch=True), p=st.sampled_from([None, "fro", "nuc", np.inf, -np.inf, 1, -1, 2, -2]), ) def test_torch_cond( *, dtype_and_x, p, on_device, fn_tree, frontend, backend_fw, test_flags ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, input=x[0], rtol=1e-2, atol=1e-3, p=p, ) # cross @handle_frontend_test( fn_tree="torch.linalg.cross", dtype_input_other_dim=dtype_value1_value2_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=5, min_dim_size=3, max_dim_size=3, min_value=-1e3, max_value=1e3, abs_smallest_val=0.01, large_abs_safety_factor=2, safety_factor_scale="log", ), ) def test_torch_cross( dtype_input_other_dim, frontend, test_flags, fn_tree, backend_fw, ): dtype, input, other, dim = dtype_input_other_dim helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, rtol=1e-2, atol=1e-3, input=input, other=other, dim=dim, ) # det @handle_frontend_test( fn_tree="torch.linalg.det", aliases=["torch.det"], dtype_and_x=_get_dtype_and_matrix(square=True, batch=True), ) def test_torch_det( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x test_flags.num_positional_args = len(x) helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, A=x[0], ) @handle_frontend_test( fn_tree="torch.diag_embed", dtype_and_values=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), shape=st.shared(helpers.get_shape(min_num_dims=1, max_num_dims=2), key="shape"), ), dims_and_offsets=helpers.dims_and_offset( shape=st.shared(helpers.get_shape(min_num_dims=1, max_num_dims=2), key="shape"), ensure_dim_unique=True, ), ) @settings(suppress_health_check=list(HealthCheck)) def test_torch_diag_embed( *, dtype_and_values, dims_and_offsets, test_flags, on_device, fn_tree, frontend, backend_fw, ): input_dtype, value = dtype_and_values dim1, dim2, offset = dims_and_offsets num_of_dims = len(np.shape(value[0])) if dim1 < 0: assume(dim1 + num_of_dims != dim2) if dim2 < 0: assume(dim1 != dim2 + num_of_dims) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, input=value[0], offset=offset, dim1=dim1, dim2=dim2, ) # eig # TODO: Test for all valid dtypes once ivy.eig supports complex data types @handle_frontend_test( fn_tree="torch.linalg.eig", dtype_and_input=_get_dtype_and_matrix(dtype="float", square=True), ) def test_torch_eig( *, dtype_and_input, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_input x = np.asarray(x[0], dtype=input_dtype[0]) x = np.matmul(x.T, x) + np.identity(x.shape[0]) * 1e-3 if x.dtype == ivy.float32: x = x.astype("float64") input_dtype = [ivy.float64] ret, frontend_ret = helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, input=x, ) ret = [ivy.to_numpy(x).astype("float64") for x in ret] frontend_ret = [np.asarray(x, dtype=np.float64) for x in frontend_ret] l, v = ret # noqa: E741 front_l, front_v = frontend_ret assert_all_close( ret_np=v @ np.diag(l) @ np.linalg.inv(v), ret_from_gt_np=front_v @ np.diag(front_l) @ np.linalg.inv(front_v), rtol=1e-2, atol=1e-2, ground_truth_backend=frontend, backend=backend_fw, ) @handle_frontend_test( fn_tree="torch.linalg.eigh", dtype_and_x=_get_dtype_and_matrix(dtype="valid", square=True, invertible=True), UPLO=st.sampled_from(("L", "U")), ) def test_torch_eigh( *, dtype_and_x, UPLO, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x x = np.array(x[0], dtype=dtype[0]) # make symmetric positive-definite beforehand x = np.matmul(x.T, x) + np.identity(x.shape[0]) * 1e-3 ret, frontend_ret = helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, a=x, UPLO=UPLO, ) ret = [ivy.to_numpy(x) for x in ret] frontend_ret = [np.asarray(x) for x in frontend_ret] L, Q = ret frontend_L, frontend_Q = frontend_ret assert_all_close( ret_np=Q @ np.diag(L) @ Q.T, ret_from_gt_np=frontend_Q @ np.diag(frontend_L) @ frontend_Q.T, atol=1e-02, backend=backend_fw, ) # eigvals @handle_frontend_test( fn_tree="torch.linalg.eigvals", dtype_x=_get_dtype_and_matrix(square=True), ) def test_torch_eigvals( *, dtype_x, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_x ret, frontend_ret = helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], test_values=False, ) """In "ret" we have out eigenvalues calculated with our backend and in "frontend_ret" are our eigenvalues calculated with the specified frontend.""" """ Depending on the chosen framework there may be small differences between our extremely small or big eigenvalues (eg: -3.62831993e-33+0.j(numpy) vs -1.9478e-32+0.j(PyTorch)). Important is that both are very very close to zero, indicating a small value(very close to 0) either way. To asses the correctness of our calculated eigenvalues for our initial matrix we sort both numpy arrays and call assert_all_close on their modulus. """ """ Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if A is a batch of matrices then the output has the same batch dimension """ frontend_ret = np.asarray(frontend_ret[0]) frontend_ret = np.sort(frontend_ret) frontend_ret_modulus = np.zeros(len(frontend_ret), dtype=np.float64) for i in range(len(frontend_ret)): frontend_ret_modulus[i] = math.sqrt( math.pow(frontend_ret[i].real, 2) + math.pow(frontend_ret[i].imag, 2) ) ret = ivy.to_numpy(ret).astype(str(frontend_ret.dtype)) ret = np.sort(ret) ret_modulus = np.zeros(len(ret), dtype=np.float64) for i in range(len(ret)): ret_modulus[i] = math.sqrt(math.pow(ret[i].real, 2) + math.pow(ret[i].imag, 2)) assert_all_close( ret_np=ret_modulus, ret_from_gt_np=frontend_ret_modulus, rtol=1e-2, atol=1e-2, ground_truth_backend=frontend, backend=backend_fw, ) # eigvalsh @handle_frontend_test( fn_tree="torch.linalg.eigvalsh", dtype_x=_get_dtype_and_symmetrix_matrix(), UPLO=st.sampled_from(("L", "U")), ) def test_torch_eigvalsh( *, dtype_x, UPLO, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x, UPLO=UPLO, atol=1e-4, rtol=1e-3, ) # inv @handle_frontend_test( fn_tree="torch.linalg.inv", aliases=["torch.inverse"], dtype_and_x=_get_dtype_and_matrix(square=True, invertible=True, batch=True), ) def test_torch_inv( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x test_flags.num_positional_args = 1 helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-03, atol=1e-03, A=x[0], ) # inv_ex # TODO: Test for singular matrices @handle_frontend_test( fn_tree="torch.linalg.inv_ex", dtype_and_x=_get_dtype_and_matrix(square=True, invertible=True, batch=True), ) def test_torch_inv_ex( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-03, atol=1e-02, A=x[0], ) # lu_factor @handle_frontend_test( fn_tree="torch.linalg.lu_factor", input_dtype_and_input=_get_dtype_and_matrix(batch=True), ) def test_torch_lu_factor( *, input_dtype_and_input, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, input = input_dtype_and_input ret = helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, rtol=1e-03, atol=1e-02, A=input[0], test_values=False, ) ret_f, ret_gt = ret LU, p = ret_f.LU, ret_f.p L = np.tril(LU, -1) + np.eye(LU.shape[0]) U = np.triu(LU) P = np.eye(LU.shape[0])[p] assert np.allclose(L @ U, P @ input[0]) @handle_frontend_test( fn_tree="torch.linalg.lu_factor_ex", input_dtype_and_input=_get_dtype_and_matrix( batch=True, square=True, invertible=True ), ) def test_torch_lu_factor_ex( *, input_dtype_and_input, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, input = input_dtype_and_input ret = helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, rtol=1e-03, atol=1e-02, A=input[0], check_errors=False, test_values=False, ) ret_f, ret_gt = ret ret_f_matrix, ret_f_info = ret_f if ret_f_info == 0: ( LU, p, ) = ( ret_f_matrix.LU, ret_f_matrix.p, ) L = np.tril(LU, -1) + np.eye(LU.shape[0]) U = np.triu(LU) P = np.eye(LU.shape[0])[p] assert np.allclose(L @ U, P @ input[0]) @handle_frontend_test( fn_tree="torch.linalg.matmul", dtype_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=(3, 3), num_arrays=2, shared_dtype=True, min_value=-1e04, max_value=1e04, ), ) def test_torch_matmul( *, dtype_x, frontend, fn_tree, on_device, test_flags, backend_fw, ): input_dtype, x = dtype_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_flags=test_flags, input=x[0], other=x[1], rtol=1e-03, atol=1e-03, ) # matrix_exp @handle_frontend_test( fn_tree="torch.linalg.matrix_exp", dtype_and_x=_get_dtype_and_matrix(square=True, invertible=True), ) def test_torch_matrix_exp( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x test_flags.num_positional_args = len(x) helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-03, atol=1e-03, A=x[0], ) # matrix_norm @handle_frontend_test( fn_tree="torch.linalg.matrix_norm", dtype_values_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("float_and_complex"), min_num_dims=2, min_axes_size=2, max_axes_size=2, max_value=10e4, min_value=-10e4, abs_smallest_val=10e-4, valid_axis=True, force_tuple_axis=True, ), ord=st.sampled_from(["fro", "nuc", np.inf, -np.inf, 1, -1, 2, -2]), keepdim=st.booleans(), dtypes=helpers.get_dtypes("float_and_complex", none=True, full=False), ) def test_torch_matrix_norm( *, dtype_values_axis, ord, keepdim, frontend, dtypes, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x, axis = dtype_values_axis if dtypes[0] is not None and "complex128" in input_dtype[0]: dtypes[0] = input_dtype[0] if dtypes[0] is not None: dtypes[0] = input_dtype[0][:-2] + max([input_dtype[0][-2:], dtypes[0][-2:]]) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-03, atol=1e-03, input=x[0], ord=ord, dim=axis, keepdim=keepdim, dtype=dtypes[0], ) # matrix_power @handle_frontend_test( fn_tree="torch.linalg.matrix_power", aliases=["torch.matrix_power"], dtype_and_x=_get_dtype_and_matrix(square=True, invertible=True, batch=True), n=helpers.ints(min_value=2, max_value=5), ) def test_torch_matrix_power( *, dtype_and_x, n, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x test_flags.num_positional_args = len(x) + 1 helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-01, A=x[0], n=n, ) # matrix_rank @handle_frontend_test( fn_tree="torch.linalg.matrix_rank", dtype_x_hermitian_atol_rtol=_matrix_rank_helper(), ) def test_torch_matrix_rank( dtype_x_hermitian_atol_rtol, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x, hermitian, atol, rtol = dtype_x_hermitian_atol_rtol assume(matrix_is_stable(x, cond_limit=10)) helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x, rtol=rtol, atol=atol, hermitian=hermitian, ) @handle_frontend_test( fn_tree="torch.linalg.multi_dot", dtype_x=_generate_multi_dot_dtype_and_arrays(), ) def test_torch_multi_dot( dtype_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_x helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, test_flags=test_flags, on_device=on_device, frontend=frontend, fn_tree=fn_tree, test_values=True, tensors=x, ) @handle_frontend_test( fn_tree="torch.linalg.norm", args=_get_axis_and_p(), keepdim=st.booleans(), test_with_out=st.just(False), ) def test_torch_norm( *, args, keepdim, on_device, fn_tree, frontend, test_flags, backend_fw, ): p, x_dtype, x, axis, dtype = args helpers.test_frontend_function( input_dtypes=[x_dtype], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-01, atol=1e-08, input=x, ord=p, dim=axis, keepdim=keepdim, dtype=dtype, ) # pinv # TODO: add testing for hermitian @handle_frontend_test( fn_tree="torch.linalg.pinv", dtype_and_input=_get_dtype_and_matrix(batch=True), ) def test_torch_pinv( *, dtype_and_input, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_input helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], atol=1e-02, rtol=1e-02, ) # qr @handle_frontend_test( fn_tree="torch.linalg.qr", dtype_and_input=_get_dtype_and_matrix(batch=True), ) def test_torch_qr( *, dtype_and_input, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_input ivy.set_backend(backend_fw) ret, frontend_ret = helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, A=x[0], test_values=False, ) ret = [ivy.to_numpy(x) for x in ret] frontend_ret = [np.asarray(x) for x in frontend_ret] q, r = ret frontend_q, frontend_r = frontend_ret assert_all_close( ret_np=q @ r, ret_from_gt_np=frontend_q @ frontend_r, rtol=1e-2, atol=1e-2, ground_truth_backend=frontend, backend=backend_fw, ) ivy.previous_backend() # slogdet @handle_frontend_test( fn_tree="torch.linalg.slogdet", aliases=["torch.slogdet"], dtype_and_x=_get_dtype_and_matrix(square=True, batch=True), ) def test_torch_slogdet( *, dtype_and_x, fn_tree, frontend, on_device, test_flags, backend_fw, ): dtype, x = dtype_and_x test_flags.num_positional_args = len(x) helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-2, atol=1e-2, A=x[0], ) # solve @handle_frontend_test( fn_tree="torch.linalg.solve", A=helpers.get_first_solve_batch_matrix(), B=helpers.get_second_solve_batch_matrix(choose_side=True), ) def test_torch_solve( *, A, B, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, A, _ = A _, B, left = B test_flags.num_positional_args = 2 helpers.test_frontend_function( input_dtypes=[dtype, dtype], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-4, atol=1e-4, A=A, B=B, left=left, ) # solve_ex @handle_frontend_test( fn_tree="torch.linalg.solve_ex", A=helpers.get_first_solve_batch_matrix(), B=helpers.get_second_solve_batch_matrix(choose_side=True), check_errors=st.booleans(), ) def test_torch_solve_ex( *, A, B, check_errors, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, A, _ = A _, B, left = B helpers.test_frontend_function( input_dtypes=[dtype, dtype], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-4, atol=1e-4, A=A, B=B, left=left, check_errors=check_errors, ) # svd @handle_frontend_test( fn_tree="torch.linalg.svd", dtype_and_x=_get_dtype_and_matrix(square=True), full_matrices=st.booleans(), ) def test_torch_svd( *, dtype_and_x, full_matrices, frontend, test_flags, fn_tree, backend_fw, on_device, ): dtype, x = dtype_and_x x = np.asarray(x[0], dtype=dtype[0]) # make symmetric positive definite beforehand x = np.matmul(x.T, x) + np.identity(x.shape[0]) * 1e-3 ret, frontend_ret = helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, test_values=False, atol=1e-03, rtol=1e-05, A=x, full_matrices=full_matrices, ) ret = [ivy.to_numpy(x) for x in ret] frontend_ret = [np.asarray(x) for x in frontend_ret] u, s, vh = ret frontend_u, frontend_s, frontend_vh = frontend_ret assert_all_close( ret_np=u @ np.diag(s) @ vh, ret_from_gt_np=frontend_u @ np.diag(frontend_s) @ frontend_vh, rtol=1e-2, atol=1e-2, ground_truth_backend=frontend, backend=backend_fw, ) # svdvals @handle_frontend_test( fn_tree="torch.linalg.svdvals", dtype_and_x=_get_dtype_and_matrix(batch=True), driver=st.sampled_from([None, "gesvd", "gesvdj", "gesvda"]), ) def test_torch_svdvals( *, dtype_and_x, driver, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, driver=driver, A=x[0], ) @handle_frontend_test( fn_tree="torch.linalg.tensorinv", dtype_input_ind=_tensorinv_helper() ) def test_torch_tensorinv( *, dtype_input_ind, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x, ind = dtype_input_ind helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, rtol=1e-04, atol=1e-03, input=x, ind=ind, ) @handle_frontend_test( fn_tree="torch.linalg.tensorsolve", a_and_b=_get_solve_matrices(), ) def test_torch_tensorsolve( *, a_and_b, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, A, B = a_and_b test_flags.num_positional_args = len(a_and_b) - 1 helpers.test_frontend_function( input_dtypes=[input_dtype], backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, atol=1e-3, rtol=1e-3, A=A, B=B, ) @handle_frontend_test( fn_tree="torch.linalg.vander", dtype_and_input=_vander_helper(), ) def test_torch_vander( *, dtype_and_input, frontend, fn_tree, on_device, test_flags, backend_fw, ): input_dtype, x, N = dtype_and_input test_flags.num_positional_args = 1 helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, fn_tree=fn_tree, on_device=on_device, test_flags=test_flags, x=x[0], N=N, ) # vecdot @handle_frontend_test( fn_tree="torch.linalg.vecdot", dtype_input_other_dim=dtype_value1_value2_axis( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=5, min_dim_size=3, max_dim_size=3, min_value=-1e3, max_value=1e3, abs_smallest_val=0.01, large_abs_safety_factor=2, safety_factor_scale="log", ), ) def test_torch_vecdot( dtype_input_other_dim, frontend, test_flags, fn_tree, backend_fw, ): dtype, input, other, dim = dtype_input_other_dim test_flags.num_positional_args = len(dtype_input_other_dim) - 2 helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, rtol=1e-2, atol=1e-3, x=input, y=other, dim=dim, ) # vector_norm @handle_frontend_test( fn_tree="torch.linalg.vector_norm", dtype_values_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("valid"), valid_axis=True, abs_smallest_val=1e04, ), kd=st.booleans(), ord=st.one_of( helpers.ints(min_value=0, max_value=5), helpers.floats(min_value=1.0, max_value=5.0), st.sampled_from((float("inf"), -float("inf"))), ), dtype=helpers.get_dtypes("valid", full=False), ) def test_torch_vector_norm( *, dtype_values_axis, kd, ord, dtype, on_device, fn_tree, frontend, test_flags, backend_fw, ): dtype, x, axis = dtype_values_axis helpers.test_frontend_function( input_dtypes=dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ord=ord, dim=axis, keepdim=kd, dtype=dtype[0], )
ivy/ivy_tests/test_ivy/test_frontends/test_torch/test_linalg.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_torch/test_linalg.py", "repo_id": "ivy", "token_count": 19122 }
64
# global import numpy as np from hypothesis import strategies as st, assume # local import ivy import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers import ( two_broadcastable_shapes, ) from ivy_tests.test_ivy.helpers import handle_frontend_test # --- Helpers --- # # --------------- # # float_power_helper @st.composite def _float_power_helper(draw, *, available_dtypes=None): if available_dtypes is None: available_dtypes = helpers.get_dtypes("numeric") dtype1, x1 = draw( helpers.dtype_and_values( available_dtypes=available_dtypes, small_abs_safety_factor=16, large_abs_safety_factor=16, safety_factor_scale="log", ) ) dtype2 = draw(helpers.get_dtypes("numeric")) if ivy.is_int_dtype(dtype2[0]): min_value = 0 else: min_value = -10 dtype2, x2 = draw( helpers.dtype_and_values( min_value=min_value, max_value=10, dtype=dtype2, ) ) return (dtype1[0], dtype2[0]), (x1[0], x2[0]) @st.composite def _get_clip_inputs(draw): shape = draw( helpers.get_shape( min_num_dims=1, max_num_dims=5, min_dim_size=2, max_dim_size=10 ) ) x_dtype, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), shape=shape, ) ) min = draw(st.booleans()) if min: max = draw(st.booleans()) min = draw( helpers.array_values( dtype=x_dtype[0], shape=shape, min_value=0, max_value=25 ) ) max = ( draw( helpers.array_values( dtype=x_dtype[0], shape=shape, min_value=26, max_value=50 ) ) if max else None ) else: min = None max = draw( helpers.array_values( dtype=x_dtype[0], shape=shape, min_value=26, max_value=50 ) ) return x_dtype, x, min, max @st.composite def _masked_fill_helper(draw): shape_1, shape_2 = draw(two_broadcastable_shapes()) dtype, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), shape=shape_1, ) ) _, mask = draw( helpers.dtype_and_values( dtype=["bool"], shape=shape_2, ) ) _, fill_value = draw( helpers.dtype_and_values( dtype=dtype, shape=(), ) ) return dtype[0], x[0], mask[0], fill_value[0] # --- Main --- # # ------------ # # abs @handle_frontend_test( fn_tree="torch.abs", aliases=["torch.absolute"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric", full=False).filter( lambda x: "uint8" not in x[0] and "int8" not in x[0] and "uint16" not in x[0] and "int16" not in x[0] and "float16" not in x[0] and "bfloat16" not in x[0] ), large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ), ) def test_torch_abs( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # absolute @handle_frontend_test( fn_tree="torch.absolute", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")), ) def test_torch_absolute( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], ) # acos @handle_frontend_test( fn_tree="torch.acos", aliases=["torch.arccos"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_acos( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # acosh @handle_frontend_test( fn_tree="torch.acosh", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_acosh( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # add @handle_frontend_test( fn_tree="torch.add", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ), alpha=st.integers(min_value=1, max_value=5), ) def test_torch_add( *, dtype_and_x, alpha, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-03, input=x[0], other=x[1], alpha=alpha, ) # addcdiv @handle_frontend_test( fn_tree="torch.addcdiv", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=3, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", shared_dtype=True, ), value=st.floats(min_value=-100, max_value=100), ) def test_torch_addcdiv( dtype_and_x, value, frontend, test_flags, fn_tree, backend_fw, ): input_dtype, x = dtype_and_x assume(not np.any(np.isclose(x[2], 0))) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, input=x[0], tensor1=x[1], tensor2=x[2], value=value, atol=1e-03, out=None, ) # addcmul @handle_frontend_test( fn_tree="torch.addcmul", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=3, min_value=-1e4, max_value=1e4, shared_dtype=True, ), value=st.floats(min_value=-10, max_value=10), ) def test_torch_addcmul( dtype_and_x, value, frontend, test_flags, fn_tree, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, atol=1e-2, input=x[0], tensor1=x[1], tensor2=x[2], value=value, out=None, ) # angle @handle_frontend_test( fn_tree="torch.angle", dtype_and_input=helpers.dtype_and_values( available_dtypes=["float64", "complex64", "complex128"], ), ) def test_torch_angle( *, dtype_and_input, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_input helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # arccos @handle_frontend_test( fn_tree="torch.arccos", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_arccos( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # arccosh @handle_frontend_test( fn_tree="torch.arccosh", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_arccosh( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # arcsin @handle_frontend_test( fn_tree="torch.arcsin", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_arcsin( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # arctan @handle_frontend_test( fn_tree="torch.arctan", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_arctan( *, dtype_and_input, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_input helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # arctan2 @handle_frontend_test( fn_tree="torch.arctan2", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, ), ) def test_torch_arctan2( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) # arctanh @handle_frontend_test( fn_tree="torch.arctanh", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_arctanh( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # asin @handle_frontend_test( fn_tree="torch.asin", aliases=["torch.arcsin"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_asin( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # asinh @handle_frontend_test( fn_tree="torch.asinh", aliases=["torch.arcsinh"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_asinh( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # atan @handle_frontend_test( fn_tree="torch.atan", aliases=["torch.arctan"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_atan( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # atan2 @handle_frontend_test( fn_tree="torch.atan2", aliases=["torch.arctan2"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, ), ) def test_torch_atan2( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) # atanh @handle_frontend_test( fn_tree="torch.atanh", aliases=["torch.arctanh"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_atanh( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # bitwise_and @handle_frontend_test( fn_tree="torch.bitwise_and", dtype_and_x=helpers.dtype_and_values( available_dtypes=st.just(("bool",)) | helpers.get_dtypes("integer"), num_arrays=2, ), ) def test_torch_bitwise_and( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) @handle_frontend_test( fn_tree="torch.bitwise_left_shift", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), num_arrays=2, array_api_dtypes=True, ), ) def test_torch_bitwise_left_shift( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x # negative shifts will throw an exception # shifts >= dtype width produce backend-defined behavior x[1] = np.asarray( np.clip(x[1], 0, np.iinfo(input_dtype[1]).bits - 1), dtype=input_dtype[1] ) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) @handle_frontend_test( fn_tree="torch.bitwise_not", dtype_and_x=helpers.dtype_and_values( available_dtypes=st.one_of(st.just(("bool",)), helpers.get_dtypes("integer")), num_arrays=1, ), ) def test_torch_bitwise_not( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) @handle_frontend_test( fn_tree="torch.bitwise_xor", dtype_and_x=helpers.dtype_and_values( available_dtypes=st.just(("bool",)) | helpers.get_dtypes("integer"), num_arrays=2, ), ) def test_torch_bitwise_or( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) @handle_frontend_test( fn_tree="torch.bitwise_right_shift", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("integer"), num_arrays=2, array_api_dtypes=True, ), ) def test_torch_bitwise_right_shift( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x # negative shifts will throw an exception # shifts >= dtype width produce backend-defined behavior x[1] = np.asarray( np.clip(x[1], 0, np.iinfo(input_dtype[1]).bits - 1), dtype=input_dtype[1] ) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) @handle_frontend_test( fn_tree="torch.bitwise_or", dtype_and_x=helpers.dtype_and_values( available_dtypes=st.just(("bool",)) | helpers.get_dtypes("integer"), num_arrays=2, ), ) def test_torch_bitwise_xor( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) # ceil @handle_frontend_test( fn_tree="torch.ceil", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_ceil( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # clamp @handle_frontend_test( fn_tree="torch.clamp", aliases=["torch.clip"], input_and_ranges=_get_clip_inputs(), ) def test_torch_clamp( *, input_and_ranges, on_device, fn_tree, frontend, test_flags, backend_fw, ): x_dtype, x, min, max = input_and_ranges helpers.test_frontend_function( input_dtypes=x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], min=min, max=max, ) # clip @handle_frontend_test( fn_tree="torch.clip", input_and_ranges=_get_clip_inputs(), ) def test_torch_clip( *, input_and_ranges, on_device, fn_tree, frontend, test_flags, backend_fw, ): x_dtype, x, min, max = input_and_ranges helpers.test_frontend_function( input_dtypes=x_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], min=min, max=max, ) # conj_physical @handle_frontend_test( fn_tree="torch.conj_physical", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), ), ) def test_torch_conj_physical( *, dtype_and_input, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_input helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # copysign @handle_frontend_test( fn_tree="torch.copysign", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, min_num_dims=1, min_value=-100, max_value=100, shared_dtype=True, ), ) def test_torch_copysign( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, atol=1e-03, input=x[0], other=x[1], ) # cos @handle_frontend_test( fn_tree="torch.cos", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_cos( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # cosh @handle_frontend_test( fn_tree="torch.cosh", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_cosh( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # deg2rad @handle_frontend_test( fn_tree="torch.deg2rad", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=-1000, max_value=1000, ), ) def test_torch_deg2rad( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # div @handle_frontend_test( fn_tree="torch.div", aliases=["torch.divide"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ), rounding_mode=st.sampled_from(["floor", "trunc"]) | st.none(), ) def test_torch_div( *, dtype_and_x, rounding_mode, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x assume(not np.any(np.isclose(x[1], 0))) # Absolute tolerance is 1, # due to flooring can cause absolute error of 1 due to precision helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, atol=1, input=x[0], other=x[1], rounding_mode=rounding_mode, ) # erf @handle_frontend_test( fn_tree="torch.erf", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_erf( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # erfc @handle_frontend_test( fn_tree="torch.special.erfc", aliases=["torch.erfc"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_erfc( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # exp @handle_frontend_test( fn_tree="torch.exp", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), ) def test_torch_exp( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # exp2 @handle_frontend_test( fn_tree="torch.exp2", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_exp2( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # expm1 @handle_frontend_test( fn_tree="torch.expm1", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_expm1( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # flipud @handle_frontend_test( fn_tree="torch.flipud", dtype_and_m=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=-100, max_value=100, min_num_dims=1, max_num_dims=3, min_dim_size=1, max_dim_size=3, ), ) def test_torch_flipud( *, dtype_and_m, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, m = dtype_and_m helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=m[0], ) @handle_frontend_test( fn_tree="torch.float_power", dtype_and_x=_float_power_helper(), ) def test_torch_float_power( dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x # Making sure zero to the power of negative doesn't occur assume(not np.any(np.isclose(x[0], 0))) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-03, input=x[0], exponent=x[1], ) # floor @handle_frontend_test( fn_tree="torch.floor", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_floor( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], out=None, ) # floor_divide @handle_frontend_test( fn_tree="torch.floor_divide", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ), ) def test_torch_floor_divide( *, dtype_and_x, test_flags, on_device, fn_tree, frontend, backend_fw, ): input_dtype, x = dtype_and_x assume(not np.any(np.isclose(x[1], 0))) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, atol=1, input=x[0], other=x[1], out=None, ) # fmod @handle_frontend_test( fn_tree="torch.fmod", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, min_num_dims=1, min_value=-100, max_value=100, shared_dtype=True, ), ) def test_torch_fmod( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, atol=1e-03, x1=x[0], x2=x[1], ) # frac @handle_frontend_test( fn_tree="torch.frac", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_frac( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) @handle_frontend_test( fn_tree="torch.frexp", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=1, shared_dtype=True, min_value=-10, max_value=10, min_num_dims=1, max_num_dims=1, ), ) def test_torch_frexp( dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], ) # gradient @handle_frontend_test( fn_tree="torch.gradient", dtype_input_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("float"), force_int_axis=True, min_num_dims=1, max_num_dims=3, min_dim_size=2, max_dim_size=4, valid_axis=True, ), spacing=helpers.ints( min_value=-3, max_value=3, ), test_with_out=st.just(False), ) def test_torch_gradient( *, dtype_input_axis, spacing, test_flags, on_device, fn_tree, backend_fw, frontend, ): input_dtype, x, dim = dtype_input_axis helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, test_flags=test_flags, frontend=frontend, fn_tree=fn_tree, on_device=on_device, input=x[0], spacing=spacing, dim=dim, ) # hypot @handle_frontend_test( fn_tree="torch.hypot", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, min_value=-100, max_value=100, min_num_dims=1, max_num_dims=3, ), ) def test_torch_hypot( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, atol=1e-2, input=x[0], other=x[1], ) # i0 @handle_frontend_test( fn_tree="torch.i0", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=1 ), ) def test_torch_i0( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, atol=1e-03, input=x[0], ) # igamma @handle_frontend_test( fn_tree="torch.igamma", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, min_value=2, max_value=100, ), test_with_out=st.just(False), ) def test_torch_igamma( dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-04, input=x[0], other=x[1], ) # imag @handle_frontend_test( fn_tree="torch.imag", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("complex"), ), ) def test_torch_imag( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], ) # ldexp @handle_frontend_test( fn_tree="torch.ldexp", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2, min_value=-1e04, max_value=1e04, allow_inf=False, ), ) def test_torch_ldexp( dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-03, input=x[0], other=x[1], ) # lerp @handle_frontend_test( fn_tree="torch.lerp", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float", mixed_fn_compos=False), num_arrays=3, shared_dtype=True, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", min_value=-1e3, max_value=1e3, ), ) def test_torch_lerp( *, dtype_and_input, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, inputs = dtype_and_input start, end, weight = inputs helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=start, end=end, weight=weight, ) @handle_frontend_test( fn_tree="torch.lgamma", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_lgamma( *, dtype_and_input, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, input = dtype_and_input helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], ) # log @handle_frontend_test( fn_tree="torch.log", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_log( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # log10 @handle_frontend_test( fn_tree="torch.log10", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_log10( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # log1p @handle_frontend_test( fn_tree="torch.log1p", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=-1e4, max_value=1e4, ), ) def test_torch_log1p( dtype_and_x, frontend, test_flags, fn_tree, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, input=x[0], out=None, ) # log2 @handle_frontend_test( fn_tree="torch.log2", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_log2( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], ) # logaddexp @handle_frontend_test( fn_tree="torch.logaddexp", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, min_num_dims=1, min_value=-100, max_value=100, shared_dtype=True, ), ) def test_torch_logaddexp( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, atol=1e-03, x1=x[0], x2=x[1], ) # logaddexp2 @handle_frontend_test( fn_tree="torch.logaddexp2", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, min_num_dims=1, min_value=-100, max_value=100, shared_dtype=True, ), ) def test_torch_logaddexp2( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, atol=1e-02, x1=x[0], x2=x[1], ) # logical and @handle_frontend_test( fn_tree="torch.logical_and", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2 ), ) def test_torch_logical_and( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) # logical not @handle_frontend_test( fn_tree="torch.logical_not", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=1 ), ) def test_torch_logical_not( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # logical or @handle_frontend_test( fn_tree="torch.logical_or", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2 ), ) def test_torch_logical_or( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) # logical xor @handle_frontend_test( fn_tree="torch.logical_xor", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2 ), ) def test_torch_logical_xor( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) @handle_frontend_test( fn_tree="torch.logit", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=1, min_dim_size=1, ), eps=st.sampled_from([1e-05, -1e-05, None]), ) def test_torch_logit( *, dtype_and_input, eps, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, input = dtype_and_input helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], eps=eps, out=None, ) # masked_fill @handle_frontend_test( fn_tree="torch.masked_fill", x_mask_val=_masked_fill_helper(), ) def test_torch_masked_fill( *, x_mask_val, on_device, fn_tree, frontend, test_flags, backend_fw ): dtype, x, mask, val = x_mask_val helpers.test_frontend_function( input_dtypes=[dtype], backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x, mask=mask, value=val, ) # mul @handle_frontend_test( fn_tree="torch.mul", aliases=["torch.multiply"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, min_value=-1e04, max_value=1e04, allow_inf=False, ), ) def test_torch_mul( dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, rtol=1e-03, input=x[0], other=x[1], ) # mvlgamma @handle_frontend_test( fn_tree="torch.mvlgamma", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float") ), p=helpers.ints(min_value=1, max_value=11), ) def test_torch_mvlgamma( *, dtype_and_input, frontend, test_flags, fn_tree, backend_fw, on_device, p ): input_dtype, input = dtype_and_input helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], p=p, ) @handle_frontend_test( fn_tree="torch.nan_to_num", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_num_dims=1, max_num_dims=3, min_value=-100, max_value=100, allow_nan=True, allow_inf=True, ), nan=st.floats(min_value=-100.0, max_value=100.0), posinf=st.just(None) | st.floats(min_value=5e100, max_value=5e100), neginf=st.just(None) | st.floats(min_value=-5e100, max_value=-5e100), test_with_out=st.just(False), ) def test_torch_nan_to_num( *, dtype_and_x, nan, posinf, neginf, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], nan=nan, posinf=posinf, neginf=neginf, ) # negative @handle_frontend_test( fn_tree="torch.negative", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, ), ) def test_torch_negative( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # nextafter @handle_frontend_test( fn_tree="torch.nextafter", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, ), ) def test_torch_nextafter( *, dtype_and_input, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_input helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) # negative @handle_frontend_test( fn_tree="torch.positive", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, ), ) def test_torch_positive( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) @handle_frontend_test( fn_tree="torch.pow", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), num_arrays=2, min_value=1, max_value=7, shared_dtype=True, ), ) def test_torch_pow( dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x if "int" in input_dtype[0] and isinstance(x[1], int) and x[1] < 0: x[1] = -x[1] try: helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], exponent=x[1], ) except Exception as e: if any( error_string in str(e) for error_string in ["overflow", "too large to convert to"] ): assume(False) else: raise # rad2deg @handle_frontend_test( fn_tree="torch.rad2deg", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, shared_dtype=True, max_dim_size=3, max_num_dims=3, min_dim_size=1, min_num_dims=1, ), ) def test_torch_rad2deg( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # real @handle_frontend_test( fn_tree="torch.real", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ), ) def test_torch_real( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], ) # reciprocal @handle_frontend_test( fn_tree="torch.reciprocal", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), min_value=1, ), ) def test_torch_reciprocal( dtype_and_x, frontend, test_flags, fn_tree, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, input=x[0], ) # remainder @handle_frontend_test( fn_tree="torch.remainder", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ), ) def test_torch_remainder( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x assume(not np.any(np.isclose(x[1], 0))) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, atol=1, input=x[0], other=x[1], ) # round @handle_frontend_test( fn_tree="torch.round", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), decimals=st.integers(min_value=0, max_value=5), ) def test_torch_round( dtype_and_x, decimals, frontend, test_flags, fn_tree, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, input=x[0], decimals=decimals, ) # rsqrt @handle_frontend_test( fn_tree="torch.rsqrt", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_rsqrt( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) @handle_frontend_test( fn_tree="torch.sgn", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float_and_complex"), min_num_dims=1, max_num_dims=1, min_dim_size=1, max_dim_size=1, abs_smallest_val=1e-10, min_value=-10, max_value=10, ), ) def test_torch_sgn( *, dtype_and_input, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, input = dtype_and_input helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], out=None, ) # sigmoid @handle_frontend_test( fn_tree="torch.sigmoid", dtype_and_input=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_sigmoid( *, dtype_and_input, frontend, test_flags, fn_tree, backend_fw, on_device, ): input_dtype, x = dtype_and_input helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # sign @handle_frontend_test( fn_tree="torch.sign", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), ), ) def test_torch_sign( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # signbit @handle_frontend_test( fn_tree="torch.signbit", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), ), ) def test_torch_signbit( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # sin @handle_frontend_test( fn_tree="torch.sin", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_sin( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # sinc @handle_frontend_test( fn_tree="torch.sinc", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_sinc( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # sinh @handle_frontend_test( fn_tree="torch.sinh", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_sinh( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # sqrt @handle_frontend_test( fn_tree="torch.sqrt", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")), ) def test_torch_sqrt( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], ) # square @handle_frontend_test( fn_tree="torch.square", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_square( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, input = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=input[0], ) # subtract @handle_frontend_test( fn_tree="torch.subtract", aliases=["torch.sub"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ), alpha=st.integers(min_value=1, max_value=5), ) def test_torch_subtract( *, dtype_and_x, alpha, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], alpha=alpha, ) # tan @handle_frontend_test( fn_tree="torch.tan", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_tan( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # tanh @handle_frontend_test( fn_tree="torch.tanh", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_tanh( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # true_divide @handle_frontend_test( fn_tree="torch.true_divide", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", ), ) def test_torch_true_divide( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x assume(not np.any(np.isclose(x[1], 0))) helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], other=x[1], ) # trunc @handle_frontend_test( fn_tree="torch.trunc", aliases=["torch.fix"], dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), ), ) def test_torch_trunc( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, input=x[0], ) # xlogy @handle_frontend_test( fn_tree="torch.xlogy", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, min_num_dims=1, min_value=-100, max_value=100, shared_dtype=True, ), ) def test_torch_xlogy( *, dtype_and_x, on_device, fn_tree, frontend, test_flags, backend_fw, ): input_dtype, x = dtype_and_x helpers.test_frontend_function( input_dtypes=input_dtype, backend_to_test=backend_fw, frontend=frontend, test_flags=test_flags, fn_tree=fn_tree, on_device=on_device, atol=1e-03, input=x[0], other=x[1], )
ivy/ivy_tests/test_ivy/test_frontends/test_torch/test_pointwise_ops.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_frontends/test_torch/test_pointwise_ops.py", "repo_id": "ivy", "token_count": 33758 }
65
"""Collection of tests for creation functions.""" # global from hypothesis import strategies as st, assume import numpy as np import ivy # local import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_test, BackendHandler import ivy_tests.test_ivy.helpers.globals as test_globals from ivy_tests.test_ivy.test_functional.test_core.test_dtype import astype_helper # --- Helpers --- # # --------------- # @st.composite def _asarray_helper(draw): x_dtype, x = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=st.integers(min_value=1, max_value=10), min_num_dims=0, max_num_dims=5, min_dim_size=1, max_dim_size=5, shared_dtype=True, ) ) with BackendHandler.update_backend(test_globals.CURRENT_BACKEND) as ivy_backend: x_list = ivy_backend.nested_map(lambda x: x.tolist(), x, shallow=False) sh = draw(helpers.get_shape(min_num_dims=1)) sh = ivy_backend.Shape(sh) # np_array = x[0] # dim = draw(helpers.get_shape(min_num_dims=1)) # nested_values = draw( # helpers.create_nested_input(dim, [sh, np_array, x_list[0]]) # ) dtype = draw( helpers.get_castable_dtype( draw(helpers.get_dtypes("numeric")), dtype=x_dtype[0] ) )[-1] dtype = draw(st.sampled_from([dtype, None])) x = draw( st.sampled_from( [ x, x_list, sh, # nested_values, ] ) ) return x_dtype, x, dtype @st.composite def _dtype_and_values(draw): return draw( helpers.dtype_and_values( min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, dtype=draw(helpers.get_dtypes("numeric", full=False, key="dtype")), ) ) @st.composite def _dtype_indices_depth_axis(draw): depth = draw(helpers.ints(min_value=2, max_value=100)) dtype, indices, shape = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_value=0, max_value=depth - 1, small_abs_safety_factor=4, ret_shape=True, ) ) axis = draw(st.integers(min_value=-1, max_value=len(shape) - 1)) return dtype, indices, depth, axis @st.composite def _fill_value(draw): dtype = draw(helpers.get_dtypes("numeric", full=False, key="dtype"))[0] with BackendHandler.update_backend(test_globals.CURRENT_BACKEND) as ivy_backend: if ivy_backend.is_uint_dtype(dtype): return draw(helpers.ints(min_value=0, max_value=5)) if ivy_backend.is_int_dtype(dtype): return draw(helpers.ints(min_value=-5, max_value=5)) return draw(helpers.floats(min_value=-5, max_value=5)) @st.composite def _get_dtype_buffer_count_offset(draw): dtype, value = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), ) ) value = np.array(value) length = value.size value = value.tobytes() offset = draw(helpers.ints(min_value=0, max_value=length - 1)) count = draw(helpers.ints(min_value=-(2**30), max_value=length - offset)) if count == 0: count = -1 offset = offset * np.dtype(dtype[0]).itemsize return dtype, value, count, offset @st.composite def _on_off_dtype(draw): dtype, value = draw( helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), shape=(2,), safety_factor_scale="log", ) ) [on_value, off_value] = value[0] return on_value, off_value, dtype[0] # --- Main --- # # ------------ # def is_capsule(o): t = type(o) return t.__module__ == "builtins" and t.__name__ == "PyCapsule" # arange @handle_test( fn_tree="functional.ivy.arange", start=helpers.ints(min_value=0, max_value=50), stop=helpers.ints(min_value=0, max_value=50) | st.none(), step=helpers.ints(min_value=-50, max_value=50).filter( lambda x: True if x != 0 else False ), dtype=helpers.get_dtypes("numeric", full=False), test_instance_method=st.just(False), test_gradients=st.just(False), ) def test_arange( *, start, stop, step, dtype, test_flags, backend_fw, fn_name, on_device, ): helpers.test_function( input_dtypes=dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, start=start, stop=stop, step=step, dtype=dtype[0], device=on_device, ) # asarray # TODO: Fix container, instance methods and as_variable @handle_test( fn_tree="functional.ivy.asarray", x_dtype_x_and_dtype=_asarray_helper(), test_gradients=st.just(False), test_instance_method=st.just(False), test_with_copy=st.just(True), ) def test_asarray( *, x_dtype_x_and_dtype, test_flags, backend_fw, fn_name, on_device, ): x_dtype, x, dtype = x_dtype_x_and_dtype if isinstance(x, list) and len(x) == 1: x = x[0] assume(not test_flags.container[0]) # avoid casting complex to non-complex if dtype is not None: assume(not ("complex" in x_dtype[0] and "complex" not in dtype)) helpers.test_function( input_dtypes=x_dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, object_in=x, dtype=dtype, device=on_device, ) # copy array @handle_test( fn_tree="functional.ivy.copy_array", dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("valid")), to_ivy_array_bool=st.booleans(), test_with_copy=st.just(True), ) def test_copy_array( *, test_flags, dtype_and_x, to_ivy_array_bool, backend_fw, on_device, ): dtype, x = dtype_and_x # avoid enabling gradients for non-float arrays if test_flags.as_variable[0]: assume("float" in dtype[0]) # smoke test with BackendHandler.update_backend(backend_fw) as ivy_backend: x = test_flags.apply_flags( x, dtype, 0, backend=backend_fw, on_device=on_device )[0] test_flags.instance_method = ( test_flags.instance_method if not test_flags.native_arrays[0] else False ) if test_flags.instance_method: ret = x.copy_array(to_ivy_array=to_ivy_array_bool) else: ret = ivy_backend.copy_array(x, to_ivy_array=to_ivy_array_bool) # type test test_ret = ret test_x = x if test_flags.container[0]: assert ivy_backend.is_ivy_container(ret) test_ret = ret["a"] test_x = x["a"] if to_ivy_array_bool: assert ivy_backend.is_ivy_array(test_ret) else: assert ivy_backend.is_native_array(test_ret) # cardinality test assert test_ret.shape == test_x.shape # value test x, ret = ivy_backend.to_ivy(x), ivy_backend.to_ivy(ret) x_np, ret_np = helpers.flatten_and_to_np( backend=backend_fw, ret=x ), helpers.flatten_and_to_np(backend=backend_fw, ret=ret) helpers.value_test( backend=backend_fw, ground_truth_backend=backend_fw, ret_np_flat=ret_np, ret_np_from_gt_flat=x_np, ) assert id(x) != id(ret) # empty @handle_test( fn_tree="functional.ivy.empty", shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), dtype=helpers.get_dtypes("numeric", full=False), test_instance_method=st.just(False), test_gradients=st.just(False), ) def test_empty(*, shape, dtype, test_flags, backend_fw, fn_name, on_device): ret = helpers.test_function( input_dtypes=dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, shape=shape, dtype=dtype[0], device=on_device, test_values=False, return_flat_np_arrays=True, ) helpers.assert_same_type_and_shape(ret) # empty_like @handle_test( fn_tree="functional.ivy.empty_like", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), ), test_gradients=st.just(False), ) def test_empty_like(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): dtype, x = dtype_and_x ret = helpers.test_function( input_dtypes=dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, x=x[0], dtype=dtype[0], device=on_device, test_values=False, return_flat_np_arrays=True, ) helpers.assert_same_type_and_shape(ret) # eye @handle_test( n_rows=helpers.ints(min_value=0, max_value=10), n_cols=st.none() | helpers.ints(min_value=0, max_value=10), k=helpers.ints(min_value=-10, max_value=10), batch_shape=st.lists( helpers.ints(min_value=1, max_value=10), min_size=1, max_size=2 ), dtype=helpers.get_dtypes("valid", full=False), fn_tree="functional.ivy.eye", test_instance_method=st.just(False), test_gradients=st.just(False), ) def test_eye( *, n_rows, n_cols, k, batch_shape, dtype, test_flags, backend_fw, fn_name, on_device ): helpers.test_function( input_dtypes=dtype, test_flags=test_flags, backend_to_test=backend_fw, on_device=on_device, fn_name=fn_name, n_rows=n_rows, n_cols=n_cols, k=k, batch_shape=batch_shape, dtype=dtype[0], device=on_device, ) # from_dlpack @handle_test( fn_tree="functional.ivy.from_dlpack", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes(kind="float", full=False, key="dtype"), min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), test_gradients=st.just(False), ) def test_from_dlpack(*, dtype_and_x, backend_fw): if backend_fw == "numpy": return ivy.set_backend(backend_fw) input_dtype, x = dtype_and_x native_array = ivy.native_array(x[0]) cap = ivy.to_dlpack(native_array) array = ivy.from_dlpack(cap) assert ivy.is_native_array(array) @handle_test( fn_tree="functional.ivy.frombuffer", dtype_buffer_count_offset=_get_dtype_buffer_count_offset(), test_instance_method=st.just(False), test_with_out=st.just(False), test_gradients=st.just(False), ) def test_frombuffer( dtype_buffer_count_offset, test_flags, backend_fw, fn_name, on_device ): input_dtype, buffer, count, offset = dtype_buffer_count_offset helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, buffer=buffer, dtype=input_dtype[0], count=count, offset=offset, ) # full @handle_test( fn_tree="functional.ivy.full", shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), fill_value=_fill_value(), dtypes=helpers.get_dtypes("valid", full=False), test_instance_method=st.just(False), test_gradients=st.just(False), ) def test_full(*, shape, fill_value, dtypes, test_flags, backend_fw, fn_name, on_device): if dtypes[0].startswith("uint") and fill_value < 0: fill_value = -fill_value helpers.test_function( input_dtypes=dtypes, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, shape=shape, fill_value=fill_value, dtype=dtypes[0], device=on_device, ) # full_like @handle_test( fn_tree="functional.ivy.full_like", dtype_and_x=_dtype_and_values(), dtypes=helpers.get_dtypes("valid", full=False), fill_value=_fill_value(), test_gradients=st.just(False), ) def test_full_like( *, dtype_and_x, dtypes, fill_value, test_flags, backend_fw, fn_name, on_device ): dtype, x = dtype_and_x if dtypes[0].startswith("uint") and fill_value < 0: fill_value = -fill_value helpers.test_function( input_dtypes=dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, x=x[0], fill_value=fill_value, dtype=dtype[0], device=on_device, ) # linspace @handle_test( fn_tree="functional.ivy.linspace", dtype_and_start_stop_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, min_value=-1e5, max_value=1e5, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, allow_inf=False, shared_dtype=True, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", valid_axis=True, force_int_axis=True, ), dtype=helpers.get_dtypes("float", full=False), num=helpers.ints(min_value=1, max_value=5), endpoint=st.booleans(), ) def test_linspace( *, dtype_and_start_stop_axis, num, endpoint, dtype, test_flags, backend_fw, fn_name, on_device, ): input_dtypes, start_stop, axis = dtype_and_start_stop_axis helpers.test_function( input_dtypes=input_dtypes, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1e-1, atol_=0.8, start=start_stop[0], stop=start_stop[1], num=num, axis=axis, endpoint=endpoint, dtype=dtype[0], device=on_device, ) # logspace @handle_test( fn_tree="functional.ivy.logspace", dtype_and_start_stop_axis=helpers.dtype_values_axis( available_dtypes=helpers.get_dtypes("float"), num_arrays=2, min_value=-1e5, max_value=1e5, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, allow_inf=False, shared_dtype=True, large_abs_safety_factor=2.5, small_abs_safety_factor=2.5, safety_factor_scale="log", valid_axis=True, force_int_axis=True, ), dtype=helpers.get_dtypes("float", full=False), num=helpers.ints(min_value=1, max_value=5), base=helpers.floats(min_value=0.1, max_value=20.0), endpoint=st.booleans(), ) def test_logspace( *, dtype_and_start_stop_axis, dtype, num, base, endpoint, test_flags, backend_fw, fn_name, on_device, ): input_dtypes, start_stop, axis = dtype_and_start_stop_axis helpers.test_function( input_dtypes=input_dtypes, test_flags=test_flags, backend_to_test=backend_fw, fn_name=fn_name, on_device=on_device, rtol_=1, # if It's less than one it'll test for inf atol_=0.8, start=start_stop[0], stop=start_stop[1], num=num, base=base, axis=axis, endpoint=endpoint, dtype=dtype[0], device=on_device, ) # meshgrid @handle_test( fn_tree="functional.ivy.meshgrid", dtype_and_arrays=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), num_arrays=st.integers(min_value=2, max_value=5), min_num_dims=1, max_num_dims=1, shared_dtype=True, ), sparse=st.booleans(), indexing=st.sampled_from(["xy", "ij"]), test_with_out=st.just(False), ) def test_meshgrid( *, dtype_and_arrays, test_flags, sparse, indexing, backend_fw, fn_name, on_device ): dtype, arrays = dtype_and_arrays kw = {} i = 0 for x_ in arrays: kw[f"x{i}"] = x_ i += 1 test_flags.num_positional_args = len(arrays) helpers.test_function( input_dtypes=dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, **kw, sparse=sparse, indexing=indexing, ) # native_array @handle_test( fn_tree="functional.ivy.native_array", dtype_and_x_and_cast_dtype=astype_helper(), test_with_out=st.just(False), test_gradients=st.just(False), ) def test_native_array( *, dtype_and_x_and_cast_dtype, test_flags, backend_fw, fn_name, on_device, ): input_dtype, x, dtype = dtype_and_x_and_cast_dtype helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, x=x[0], dtype=dtype[0], device=on_device, ) # one_hot @handle_test( fn_tree="functional.ivy.one_hot", dtype_indices_depth_axis=_dtype_indices_depth_axis(), on_off_dtype=_on_off_dtype(), test_gradients=st.just(False), ) def test_one_hot( dtype_indices_depth_axis, on_off_dtype, test_flags, backend_fw, fn_name, on_device ): input_dtype, indices, depth, axis = dtype_indices_depth_axis on_value, off_value, dtype = on_off_dtype helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, indices=indices[0], depth=depth, on_value=on_value, off_value=off_value, axis=axis, dtype=dtype, ) # ones @handle_test( fn_tree="functional.ivy.ones", shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), dtype=helpers.get_dtypes("numeric", full=False), test_instance_method=st.just(False), test_gradients=st.just(False), ) def test_ones(*, shape, dtype, test_flags, backend_fw, fn_name, on_device): helpers.test_function( input_dtypes=dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, shape=shape, dtype=dtype[0], device=on_device, ) # ones_like @handle_test( fn_tree="functional.ivy.ones_like", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), ), ) def test_ones_like(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): dtype, x = dtype_and_x helpers.test_function( input_dtypes=dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, x=x[0], dtype=dtype[0], device=on_device, ) # to_dlpack @handle_test( fn_tree="functional.ivy.to_dlpack", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes(kind="float", full=False, key="dtype"), min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), test_gradients=st.just(False), ) def test_to_dlpack(*, dtype_and_x, backend_fw): ivy.set_backend(backend_fw) input_dtype, x = dtype_and_x native_array = ivy.native_array(x[0]) cap = ivy.to_dlpack(native_array) assert is_capsule(cap) # tril @handle_test( fn_tree="functional.ivy.tril", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=2, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), k=helpers.ints(min_value=-10, max_value=10), ) def test_tril(*, dtype_and_x, k, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, x=x[0], k=k, ) # triu @handle_test( fn_tree="functional.ivy.triu", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("numeric"), min_num_dims=2, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), k=helpers.ints(min_value=-10, max_value=10), ) def test_triu(*, dtype_and_x, k, test_flags, backend_fw, fn_name, on_device): input_dtype, x = dtype_and_x helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, x=x[0], k=k, ) @handle_test( fn_tree="functional.ivy.triu_indices", n_rows=st.integers(min_value=0, max_value=5), n_cols=st.integers(min_value=0, max_value=5) | st.just(None), k=st.integers(min_value=-5, max_value=5), input_dtype=helpers.get_dtypes("integer"), test_with_out=st.just(False), test_gradients=st.just(False), test_instance_method=st.just(False), ) def test_triu_indices( *, n_rows, n_cols, k, input_dtype, test_flags, backend_fw, fn_name, on_device ): input_dtype = input_dtype helpers.test_function( input_dtypes=input_dtype, test_flags=test_flags, backend_to_test=backend_fw, on_device=on_device, fn_name=fn_name, n_rows=n_rows, n_cols=n_cols, k=k, ) # zeros @handle_test( fn_tree="functional.ivy.zeros", shape=helpers.get_shape( allow_none=False, min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), dtype=helpers.get_dtypes("valid", full=False), test_instance_method=st.just(False), test_gradients=st.just(False), ) def test_zeros(*, shape, dtype, test_flags, backend_fw, fn_name, on_device): helpers.test_function( input_dtypes=dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, shape=shape, dtype=dtype[0], device=on_device, ) # zeros_like @handle_test( fn_tree="functional.ivy.zeros_like", dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid"), min_num_dims=1, max_num_dims=5, min_dim_size=1, max_dim_size=5, ), test_gradients=st.just(False), ) def test_zeros_like(*, dtype_and_x, test_flags, backend_fw, fn_name, on_device): dtype, x = dtype_and_x helpers.test_function( input_dtypes=dtype, test_flags=test_flags, on_device=on_device, backend_to_test=backend_fw, fn_name=fn_name, x=x[0], dtype=dtype[0], device=on_device, )
ivy/ivy_tests/test_ivy/test_functional/test_core/test_creation.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_functional/test_core/test_creation.py", "repo_id": "ivy", "token_count": 11679 }
66
# global from hypothesis import strategies as st # local import ivy import numpy as np import ivy_tests.test_ivy.helpers as helpers from ivy_tests.test_ivy.helpers import handle_method # --- Helpers --- # # --------------- # @st.composite def _sparse_bsc_indices_values_shape(draw): nblockrows = draw(helpers.ints(min_value=2, max_value=5)) nblockcols = draw(helpers.ints(min_value=2, max_value=5)) dim1 = draw(helpers.ints(min_value=2, max_value=5)) dim2 = draw(helpers.ints(min_value=3, max_value=5)) value_dtype = draw(helpers.get_dtypes("numeric", full=False))[0] ccol_indices, row_indices, values = ( [0], [], [ [ [], ], ], ) for _ in range(dim2): index = draw( helpers.ints( min_value=max(ccol_indices[-1] + 1, 1), max_value=ccol_indices[-1] + dim1, ) ) cur_num_elem = index - ccol_indices[-1] row_indices += list(range(cur_num_elem)) ccol_indices.append(index) shape = (dim1 * nblockrows, dim2 * nblockcols) values = draw( helpers.array_values( dtype=value_dtype, shape=(ccol_indices[-1], nblockrows, nblockcols), min_value=0, ) ) return ccol_indices, row_indices, value_dtype, values, shape @st.composite def _sparse_bsr_indices_values_shape(draw): nblockrows = draw(helpers.ints(min_value=2, max_value=5)) nblockcols = draw(helpers.ints(min_value=2, max_value=5)) dim1 = draw(helpers.ints(min_value=3, max_value=5)) dim2 = draw(helpers.ints(min_value=2, max_value=5)) value_dtype = draw(helpers.get_dtypes("numeric", full=False))[0] crow_indices, col_indices, values = ( [0], [], [ [ [], ], ], ) for _ in range(dim1): index = draw( helpers.ints( min_value=max(crow_indices[-1] + 1, 1), max_value=crow_indices[-1] + dim2, ) ) cur_num_elem = index - crow_indices[-1] col_indices += list(range(cur_num_elem)) crow_indices.append(index) shape = (dim1 * nblockrows, dim2 * nblockcols) values = draw( helpers.array_values( dtype=value_dtype, shape=(crow_indices[-1], nblockrows, nblockcols), min_value=0, ) ) return crow_indices, col_indices, value_dtype, values, shape @st.composite def _sparse_coo_indices_values_shape(draw): num_elem = draw(helpers.ints(min_value=2, max_value=8)) dim1 = draw(helpers.ints(min_value=2, max_value=5)) dim2 = draw(helpers.ints(min_value=5, max_value=10)) value_dtype = draw(helpers.get_dtypes("numeric", full=False))[0] coo_indices = draw( helpers.array_values( dtype="int64", shape=(2, num_elem), min_value=0, max_value=dim1, exclude_min=False, ) ) values = draw(helpers.array_values(dtype=value_dtype, shape=(num_elem,))) shape = (dim1, dim2) return coo_indices, value_dtype, values, shape @st.composite def _sparse_csc_indices_values_shape(draw): num_elem = draw(helpers.ints(min_value=2, max_value=8)) dim1 = draw(helpers.ints(min_value=5, max_value=10)) dim2 = draw(helpers.ints(min_value=2, max_value=5)) value_dtype = draw(helpers.get_dtypes("numeric", full=False))[0] values = draw(helpers.array_values(dtype=value_dtype, shape=(num_elem,))) row_indices = draw( helpers.array_values( dtype="int64", shape=(num_elem,), min_value=0, max_value=dim1, exclude_min=False, ) ) indices = draw( helpers.array_values( dtype="int64", shape=(dim2 - 1,), min_value=0, max_value=num_elem, exclude_min=False, ) ) ccol_indices = [0] + sorted(indices) + [num_elem] shape = (dim1, dim2) return ccol_indices, row_indices, value_dtype, values, shape @st.composite def _sparse_csr_indices_values_shape(draw): num_elem = draw(helpers.ints(min_value=2, max_value=8)) dim1 = draw(helpers.ints(min_value=2, max_value=5)) dim2 = draw(helpers.ints(min_value=5, max_value=10)) value_dtype = draw(helpers.get_dtypes("numeric", full=False))[0] values = draw(helpers.array_values(dtype=value_dtype, shape=(num_elem,))) col_indices = draw( helpers.array_values( dtype="int64", shape=(num_elem,), min_value=0, max_value=dim2, exclude_min=False, ) ) indices = draw( helpers.array_values( dtype="int64", shape=(dim1 - 1,), min_value=0, max_value=num_elem, exclude_min=False, ) ) crow_indices = [0] + sorted(indices) + [num_elem] shape = (dim1, dim2) return crow_indices, col_indices, value_dtype, values, shape # --- Main --- # # ------------ # # adding sparse array to dense array @handle_method( init_tree="ivy.array", method_tree="Array.__add__", sparse_data=_sparse_coo_indices_values_shape(), ) def test_array_add_sparse( sparse_data, method_name, class_name, on_device, ): coo_ind, val_dtype, val, shp = sparse_data # set backed to 'torch' as this is the only backend which supports sparse arrays ivy.set_backend("torch") # initiate a sparse array sparse_inst = ivy.sparse_array.SparseArray( coo_indices=coo_ind, values=val, dense_shape=shp, format="coo", ) # create an Array instance array_class = getattr(ivy, class_name) x = np.random.random_sample(shp) x = ivy.array(x, dtype=val_dtype, device=on_device) # call add method add_method = getattr(array_class, method_name) res = add_method(x, sparse_inst) # make sure the result is an Array instance assert isinstance(res, array_class) # bsc - to_dense_array @handle_method( method_tree="SparseArray.to_dense_array", sparse_data=_sparse_bsc_indices_values_shape(), method_num_positional_args=st.just(0), # TODO should not be hardcoded init_num_positional_args=st.just(0), # TODO should not be hardcoded ) def test_sparse_bsc( sparse_data, class_name, method_name, on_device, backend_fw, ground_truth_backend, init_flags, method_flags, ): ccol_indices, row_indices, value_dtype, values, shape = sparse_data helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, on_device=on_device, init_input_dtypes=["int64", "int64", value_dtype], init_all_as_kwargs_np={ "ccol_indices": ccol_indices, "row_indices": row_indices, "values": values, "dense_shape": shape, "format": "bsc", }, method_input_dtypes=[], method_all_as_kwargs_np={}, class_name=class_name, method_name=method_name, ) # bsr - to_dense_array @handle_method( method_tree="SparseArray.to_dense_array", sparse_data=_sparse_bsr_indices_values_shape(), method_num_positional_args=st.just(0), # TODO should not be hardcoded init_num_positional_args=st.just(0), # TODO should not be hardcoded ) def test_sparse_bsr( sparse_data, class_name, method_name, on_device, backend_fw, ground_truth_backend, init_flags, method_flags, ): crow_indices, col_indices, value_dtype, values, shape = sparse_data helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, on_device=on_device, method_flags=method_flags, init_input_dtypes=["int64", "int64", value_dtype], init_all_as_kwargs_np={ "crow_indices": crow_indices, "col_indices": col_indices, "values": values, "dense_shape": shape, "format": "bsr", }, method_input_dtypes=[], method_all_as_kwargs_np={}, class_name=class_name, method_name=method_name, ) # coo - to_dense_array @handle_method( method_tree="SparseArray.to_dense_array", sparse_data=_sparse_coo_indices_values_shape(), method_num_positional_args=st.just(0), # TODO should not be hardcoded init_num_positional_args=st.just(0), # TODO should not be hardcoded ) def test_sparse_coo( sparse_data, class_name, method_name, backend_fw, init_flags, method_flags, on_device, ground_truth_backend, ): coo_ind, val_dtype, val, shp = sparse_data helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, on_device=on_device, init_input_dtypes=["int64", val_dtype], init_all_as_kwargs_np={ "coo_indices": coo_ind, "values": val, "dense_shape": shp, "format": "coo", }, method_input_dtypes=[], method_all_as_kwargs_np={}, class_name=class_name, method_name=method_name, ) # csc - to_dense_array @handle_method( method_tree="SparseArray.to_dense_array", sparse_data=_sparse_csc_indices_values_shape(), method_num_positional_args=st.just(0), # TODO should not be hardcoded init_num_positional_args=st.just(0), # TODO should not be hardcoded ) def test_sparse_csc( sparse_data, class_name, method_name, backend_fw, ground_truth_backend, init_flags, on_device, method_flags, ): ccol_indices, row_indices, value_dtype, values, shape = sparse_data helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, on_device=on_device, init_input_dtypes=["int64", "int64", value_dtype], init_all_as_kwargs_np={ "ccol_indices": ccol_indices, "row_indices": row_indices, "values": values, "dense_shape": shape, "format": "csc", }, method_input_dtypes=[], method_all_as_kwargs_np={}, class_name=class_name, method_name=method_name, ) # csr - to_dense_array @handle_method( method_tree="SparseArray.to_dense_array", sparse_data=_sparse_csr_indices_values_shape(), method_num_positional_args=st.just(0), # TODO should not be hardcoded init_num_positional_args=st.just(0), # TODO should not be hardcoded ) def test_sparse_csr( sparse_data, class_name, method_name, backend_fw, ground_truth_backend, init_flags, on_device, method_flags, ): crow_indices, col_indices, value_dtype, values, shape = sparse_data helpers.test_method( backend_to_test=backend_fw, ground_truth_backend=ground_truth_backend, init_flags=init_flags, method_flags=method_flags, on_device=on_device, init_input_dtypes=["int64", "int64", value_dtype], init_all_as_kwargs_np={ "crow_indices": crow_indices, "col_indices": col_indices, "values": values, "dense_shape": shape, "format": "csr", }, method_input_dtypes=[], method_all_as_kwargs_np={}, class_name=class_name, method_name=method_name, )
ivy/ivy_tests/test_ivy/test_functional/test_experimental/test_core/test_sparse_array.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_functional/test_experimental/test_core/test_sparse_array.py", "repo_id": "ivy", "token_count": 5769 }
67
import pickle import numpy as np import os from hypothesis import given, assume # local import ivy import ivy_tests.test_ivy.helpers as helpers # pickling array test to disk @given( dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid", prune_function=False), min_num_dims=0, max_num_dims=5, min_dim_size=0, max_dim_size=5, ), ) def test_pickle_to_and_from_disk(dtype_and_x, on_device, backend_fw): ivy.set_backend(backend_fw) input_dtype, x = dtype_and_x assume("bfloat16" not in input_dtype) x = ivy.array(x[0], dtype=input_dtype[0], device=on_device) # paddle tensors can't be pickled directly as referenced in this issue # https://github.com/PaddlePaddle/Paddle/issues/41107 if ivy.backend == "paddle": x = x.to_numpy() save_filepath = "ivy_array.pickle" pickle.dump(x, open(save_filepath, "wb")) assert os.path.exists(save_filepath) unpickled_arr = pickle.load(open(save_filepath, "rb")) os.remove(save_filepath) # check for equality assert np.allclose(ivy.to_numpy(x), ivy.to_numpy(unpickled_arr)) ivy.previous_backend() # Tests # # ------# # pickling array test to str @given( dtype_and_x=helpers.dtype_and_values( available_dtypes=helpers.get_dtypes("valid", prune_function=False), min_num_dims=0, max_num_dims=5, min_dim_size=0, max_dim_size=5, ), ) def test_pickle_to_string(dtype_and_x, on_device, backend_fw): ivy.set_backend(backend_fw) input_dtype, x = dtype_and_x assume("bfloat16" not in input_dtype) x = ivy.array(x[0], dtype=input_dtype[0], device=on_device) # paddle tensors can't be pickled directly as referenced in this issue # https://github.com/PaddlePaddle/Paddle/issues/41107 if ivy.backend == "paddle": x = x.to_numpy() pickled_arr = pickle.dumps(x) unpickled_arr = pickle.loads(pickled_arr) # check for equality assert np.allclose(ivy.to_numpy(x), ivy.to_numpy(unpickled_arr)) ivy.previous_backend()
ivy/ivy_tests/test_ivy/test_misc/test_pickling.py/0
{ "file_path": "ivy/ivy_tests/test_ivy/test_misc/test_pickling.py", "repo_id": "ivy", "token_count": 937 }
68
import os if __name__ == "__main__": tag = os.environ["TAG"] python_tag, abi_tag, plat_name = tag.split("-") if os.path.exists("dist"): for file in os.listdir("dist"): old_name = f"{python_tag}-none-{plat_name}.whl" new_name = f"{python_tag}-{abi_tag}-{plat_name}.whl" if file.endswith(old_name): os.rename( os.path.join("dist", file), os.path.join("dist", file[: -len(old_name)] + new_name), )
ivy/scripts/rename_wheels.py/0
{ "file_path": "ivy/scripts/rename_wheels.py", "repo_id": "ivy", "token_count": 293 }
69
import sys backends = ["numpy", "jax", "tensorflow", "torch"] submodules = [ "activations", "converters", "initializers", "layers", "modules", "norms", "optimizers", "sequential", ] run = int(sys.argv[1]) N = len(backends) M = len(submodules) num_tests = N * M run %= num_tests i = run // M j = run % M backend = backends[i] submodule = submodules[j] with open("./fwsubmod.txt", "w") as outfile: outfile.write(f"{backend}-{submodule}") with open("./backend.txt", "w") as f: f.write(f"{backend}") with open("./submodule.txt", "w") as f: f.write(f"test_{submodule}")
ivy/scripts/setup_tests/run_ivy_stateful_test.py/0
{ "file_path": "ivy/scripts/setup_tests/run_ivy_stateful_test.py", "repo_id": "ivy", "token_count": 281 }
70
#!/bin/bash -e docker run --rm --env REDIS_URL="$3" --env REDIS_PASSWD="$4" -v "$(pwd)":/ivy -v "$(pwd)"/.hypothesis:/.hypothesis unifyai/ivy:latest python3 -m pytest --backend "$1" ivy_tests/test_ivy/test_stateful/"$2".py --tb=line
ivy/scripts/shell/test_ivy_stateful.sh/0
{ "file_path": "ivy/scripts/shell/test_ivy_stateful.sh", "repo_id": "ivy", "token_count": 105 }
71
{ "name": "Ivy GPU Development Environment (build)", "build": { "dockerfile": "../../docker/DockerfileGPU", "context": "../..", "args": { "IMAGE_NAME": "unifyai/ivy", "IMAGE_TAG": "latest-gpu" } }, "runArgs": ["--gpus","all"], "customizations": { "vscode": { "extensions": [ "ms-python.python" ], "settings": { "python.defaultInterpreterPath": "/opt/miniconda/envs/multienv/bin/python3" } } }, "postCreateCommand": { "post_create": "bash .devcontainer/post_create_commands.sh", "bashrc": "echo \"alias python=python3\" >> ~/.bashrc" }, // Use 'forwardPorts' to make a list of ports inside the container available locally. // "forwardPorts": [], // Uncomment the next line to run commands after the container is created - for example installing curl. // Uncomment when using a ptrace-based debugger like C++, Go, and Rust // "runArgs": [ "--cap-add=SYS_PTRACE", "--security-opt", "seccomp=unconfined" ], // Uncomment to use the Docker CLI from inside the container. See https://aka.ms/vscode-remote/samples/docker-from-docker. // "mounts": [ "source=/var/run/docker.sock,target=/var/run/docker.sock,type=bind" ], // Uncomment to connect as a non-root user if you've added one. See https://aka.ms/vscode-remote/containers/non-root. // "remoteUser": "vscode", "features": { "ghcr.io/devcontainers/features/common-utils:2": { "installzsh": true, "configurezshasdefaultshell": true, "installohmyzsh": true, "upgradePackages": false }, "ghcr.io/devcontainers/features/docker-outside-of-docker:1": { "moby": true, "installdockerbuildx": true, "version": "20.10", "dockerdashcomposeversion": "v2" }, "ghcr.io/devcontainers/features/github-cli:1": { "installDirectlyFromGitHubRelease": true, "version": "latest" } } }
ivy/.devcontainer/build_gpu/devcontainer.json/0
{ "file_path": "ivy/.devcontainer/build_gpu/devcontainer.json", "repo_id": "ivy", "token_count": 756 }
0
FROM ubuntu:20.04 WORKDIR /ivy ARG CLI FROM unifyai/ivy:latest as base COPY requirements/optional_applied.txt . RUN pip3 install --no-cache-dir -r optional_applied.txt
ivy/docker/DockerfileApplied/0
{ "file_path": "ivy/docker/DockerfileApplied", "repo_id": "ivy", "token_count": 67 }
1
{% extends "top_level_module.rst" %} {% set base_module = fullname + "." + fullname.split('.')[-1] %} {%- block module_name -%} {{base_module}} {%- endblock -%} {%- block discussion_module_name -%} {{base_module}} {%- endblock -%} {% block toctree -%} .. autosummary:: :toctree: {{name}} :template: data_module.rst :hide-table: :recursive: {% for submodule in modules -%} {% if base_module != submodule %} {{ submodule }} {% endif -%} {% endfor -%} {% endblock %}
ivy/docs/_templates/top_data_module.rst/0
{ "file_path": "ivy/docs/_templates/top_data_module.rst", "repo_id": "ivy", "token_count": 209 }
2
Deep Dive ========= .. _`issues`: https://github.com/unifyai/ivy/issues .. _`pull-requests`: https://github.com/unifyai/ivy/pulls For general users of the framework, who are mainly concerned with learning how to *use* Ivy, then the `Design <design.rst>`_ section is the best place to start 🙂 This *deep dive* section is more targeted at people who would like to dive deeper into how Ivy actually works under the hood 🔧 Going through the sections outlined below will get you right into the weeds of the framework 🌱, and hopefully give you a better understanding of what is actually going on behind the scenes 🎬 It's best to go through the sub-sections from start to finish, but you can also dive in at any stage! We're excited for you to get involved! 🦾 | (a) `Navigating the Code <deep_dive/navigating_the_code.rst>`_ 🧭 | A quick tour through the codebase | | (b) `Function Types <deep_dive/function_types.rst>`_ 🧮 | Primary, compositional, mixed, and nestable functions | | (c) `Superset Behaviour <deep_dive/superset_behaviour.rst>`_ ⊃ | Ivy goes for the superset when unifying the backend functions | | (d) `Backend Setting <deep_dive/backend_setting.rst>`_ ⚙ | How the backend is set, and what this means for each function type️ | | (e) `Arrays <deep_dive/arrays.rst>`_ 🔢 | Different types of arrays, and how they're handled | | (f) `Containers <deep_dive/containers.rst>`_ 🗂 | What the :class:`ivy.Container` does | | (g) `Data Types <deep_dive/data_types.rst>`_ 💾 | How functions infer the correct data type | | (h) `Devices <deep_dive/devices.rst>`_ 📱 | How functions infer the correct device | | (i) `Inplace Updates <deep_dive/inplace_updates.rst>`_ 🎯 | How the :code:`out` argument is used to specify the output target | | (j) `Function Wrapping <deep_dive/function_wrapping.rst>`_ 🎁 | How functions are dynamically wrapped at runtime | | (k) `Formatting <deep_dive/formatting.rst>`_ 📋 | How the code is automatically formatted | | (l) `Ivy Lint <deep_dive/ivy_lint.rst>`_ 🧹 | Ivy's Custom Code Formatters | | (m) `Function Arguments <deep_dive/function_arguments.rst>`_ 📑 | How to add the correct function arguments | | (n) `Docstrings <deep_dive/docstrings.rst>`_ 📄 | How to properly write docstrings | | (o) `Docstring Examples <deep_dive/docstring_examples.rst>`_ 💯 | How to add useful examples to the docstrings | | (p) `Array API Tests <deep_dive/array_api_tests.rst>`_ 🤝 | How we're borrowing the test suite from the Array API Standard | | (q) `Ivy Tests <deep_dive/ivy_tests.rst>`_ 🧪 | How to add new tests for each Ivy function | | (r) `Ivy Frontends <deep_dive/ivy_frontends.rst>`_ ➡ | How to implement frontend functions | | (s) `Ivy Frontend Tests <deep_dive/ivy_frontends_tests.rst>`_ 🧪 | How to add new tests for each frontend function | | (t) `Exception Handling <deep_dive/exception_handling.rst>`_ ⚠ | How to handle exceptions and assertions in a function | | (u) `Continuous Integration <deep_dive/continuous_integration.rst>`_ 🔁 | Ivy Tests running on the Repository | | (v) `Gradients <deep_dive/gradients.rst>`_ 🔁 | Everything about our Gradients API | | (w) `Operating Modes <deep_dive/operating_modes.rst>`_ 🧮 | Everything about modes Ivy can operate in, along with their purposes | | (x) `Building the Docs Pipeline <deep_dive/building_the_docs_pipeline.rst>`_ 📚 | How are we building our docs .. toctree:: :hidden: :maxdepth: -1 :caption: Deep Dive deep_dive/navigating_the_code.rst deep_dive/function_types.rst deep_dive/superset_behaviour.rst deep_dive/backend_setting.rst deep_dive/arrays.rst deep_dive/containers.rst deep_dive/data_types.rst deep_dive/devices.rst deep_dive/inplace_updates.rst deep_dive/function_wrapping.rst deep_dive/formatting.rst deep_dive/ivy_lint.rst deep_dive/function_arguments.rst deep_dive/docstrings.rst deep_dive/docstring_examples.rst deep_dive/array_api_tests.rst deep_dive/ivy_tests.rst deep_dive/ivy_frontends.rst deep_dive/ivy_frontends_tests.rst deep_dive/exception_handling.rst deep_dive/continuous_integration.rst deep_dive/gradients.rst deep_dive/operating_modes.rst deep_dive/building_the_docs_pipeline.rst deep_dive/fix_failing_tests.rst
ivy/docs/overview/deep_dive.rst/0
{ "file_path": "ivy/docs/overview/deep_dive.rst", "repo_id": "ivy", "token_count": 1605 }
3
Function Wrapping ================= .. _`wrapped`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/utils/backend/handler.py#L259 .. _`_wrap_function`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L965 .. _`abs`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/functional/ivy/elementwise.py#L28 .. _`creation submodule`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/functional/ivy/creation.py .. _`zeros`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/functional/ivy/creation.py#L482 .. _`asarray`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/functional/ivy/creation.py#L383 .. _`inputs_to_native_arrays`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L405 .. _`inputs_to_ivy_arrays`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L445 .. _`outputs_to_ivy_arrays`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L525 .. _`to_native_arrays_and_back`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L595 .. _`infer_dtype`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L725 .. _`infer_device`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L763 .. _`handle_out_argument`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L800 .. _`handle_nestable`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L896 .. _`inputs_to_native_shapes`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L488 .. _`outputs_to_ivy_shapes`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L501 .. _`to_native_shapes_and_back`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L514 .. _`handle_view`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L627 .. _`handle_view_indexing`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L659 .. _`handle_array_function`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L299 .. _`handle_complex_input`: https://github.com/unifyai/ivy/blob/bd9b5b1080d33004e821a48c486b3a879b9d6616/ivy/func_wrapper.py#L1393 .. _`repo`: https://github.com/unifyai/ivy .. _`discord`: https://discord.gg/sXyFF8tDtm .. _`function wrapping thread`: https://discord.com/channels/799879767196958751/1189906704775794688 .. _`handle_partial_mixed_function`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L944 .. _`stored as an attribute`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/func_wrapper.py#L1054 .. _`ivy.linear`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/functional/ivy/layers.py#L81 .. _`handle_exceptions`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/utils/exceptions.py#L189 .. _`example`: https://github.com/unifyai/ivy/blob/5658401b266352d3bf72c95e4af6ae9233115722/ivy/functional/backends/torch/layers.py#L30 .. _`Arrays`: arrays.rst .. _`Inplace Updates`: inplace_updates.rst .. _`Data Types`: data_types.rst .. _`Devices`: devices.rst .. _`Backend Setting`: backend_setting.rst When a backend framework is set by calling :code:`ivy.set_backend(backend_name)`, then all Ivy functions are `wrapped`_. This is achieved by calling `_wrap_function`_, which will apply the appropriate wrapping to the given function, based on what decorators it has. For example, `abs`_ has the decorators :code:`@to_native_arrays_and_back` and :code:`@handle_out_argument`, and so the backend implementations will also be wrapped with the `to_native_arrays_and_back`_ and `handle_out_argument`_ wrappers. The new function returned by :code:`_wrap_function` is a replacement of the original function with extra code added to support requirements common to many functions in the API. This is the main purpose of the wrapping, to avoid code duplication which would exist if we added identical logic in every single function independently. Depending on the function being wrapped, the new function might handle `Arrays`_, `Inplace Updates`_, `Data Types`_ and/or `Devices`_. Our test decorators actually transforms to :code:`@given` decorators at Pytest collecting time, therefore this allows us to use other **Hypothesis** decorators like, :code:`@reproduce_failure`, :code:`@settings`, :code:`@seed`. Decorator order ^^^^^^^^^^^^^^^ The order in which Ivy decorators are applied is important. It is important to follow this order, as the functionality of many functions depends on it. If the decorators are applied in the wrong order, the test may fail or the function may not behave as expected. The following is the recommended order to follow : #. :code:`@handle_complex_input` #. :code:`@infer_device` #. :code:`@handle_device_shifting` #. :code:`@infer_dtype` #. :code:`@handle_array_function` #. :code:`@outputs_to_ivy_arrays` #. :code:`@outputs_to_ivy_shapes` #. :code:`@outputs_to_native_arrays` #. :code:`@inputs_to_native_arrays` #. :code:`@inputs_to_native_shapes` #. :code:`@inputs_to_ivy_arrays` #. :code:`@handle_out_argument` #. :code:`@handle_view_indexing` #. :code:`@handle_view` #. :code:`@handle_array_like_without_promotion` #. :code:`@handle_partial_mixed_function` #. :code:`@handle_nestable` #. :code:`@handle_ragged` #. :code:`@handle_backend_invalid` #. :code:`@handle_exceptions` #. :code:`@handle_nans` This recommended order is followed to ensure that tests are efficient and accurate. It is important to follow this order because the decorators depend on each other. For example, the :code:`@infer_device` decorator needs to be applied before the :code:`@infer_dtype` decorator, because the :code:`@infer_dtype` decorator needs to know the device of the function in order to infer the data type. Conversion Wrappers ^^^^^^^^^^^^^^^^^^^ #. `inputs_to_native_arrays`_ : This wrapping function converts all :class:`ivy.Array` instances in the arguments to their :class:`ivy.NativeArray` counterparts, based on the `Backend Setting`_ before calling the function. #. `inputs_to_ivy_arrays`_ : This wrapping function converts all :class:`ivy.NativeArray` instances in the arguments to their :class:`ivy.Array` counterparts, based on the `Backend Setting`_ before calling the function. #. `outputs_to_ivy_arrays`_ : This wrapping function converts all :class:`ivy.NativeArray` instances in the outputs to their :class:`ivy.Array` counterparts, based on the `Backend Setting`_ before calling the function. #. `to_native_arrays_and_back`_ : This wrapping function converts all :class:`ivy.Array` instances in the arguments to their :class:`ivy.NativeArray` counterparts, calls the function with those arguments and then converts the :class:`ivy.NativeArray` instances in the output back to :class:`ivy.Array`. This wrapping function is heavily used because it enables achieving the objective of ensuring that every ivy function could accept an :class:`ivy.Array` and return an :class:`ivy.Array`, making it independent of the `Backend Setting`_. Inference Wrappers ^^^^^^^^^^^^^^^^^^ #. `infer_dtype`_ : This wrapping function infers the `dtype` argument to be passed to a function based on the array arguments passed to it. If :code:`dtype` is explicitly passed to the function, then it is used directly. This wrapping function could be found in functions from the `creation submodule`_ such as `zeros`_ where we then allow the user to not enter the :code:`dtype` argument to such functions. #. `infer_device`_ : Similar to the `infer_dtype`_ wrapping function, the `infer_device`_ function wrapping infers the :code:`device` argument to be passed to a function based on the first array argument passed to it. This wrapping function is also used a lot in functions from the `creation submodule`_ such as `asarray`_, where we want to create the `ivy.Array` on the same device as the input array. Out Argument Support ^^^^^^^^^^^^^^^^^^^^ #. `handle_out_argument`_ : This wrapping function is used in nearly all ivy functions. It enables appropriate handling of the :code:`out` argument of functions. In cases where the backend framework natively supports the :code:`out` argument for a function, we prefer to use it as it's a more efficient implementation of the :code:`out` argument for that particular backend framework. But in cases when it isn't supported, we support it anyway with `Inplace Updates`_. Nestable Support ^^^^^^^^^^^^^^^^ #. `handle_nestable`_ : This wrapping function enables the use of :class:`ivy.Container` arguments in functions and directly calling them through the :code:`ivy` namespace, just like calling a function with :class:`ivy.Array` arguments instead. Thus, the function can be called by passing an :class:`ivy.Container` to any or all of its arguments. Partial Mixed Function Support ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #. `handle_partial_mixed_function`_: This wrapping function enables switching between compositional and primary implementations of :ref:`overview/deep_dive/function_types:Mixed Functions` based on some condition on the arguments of the function. #. The condition is specified through a lambda function which when evaluates to `True` the primary implementation is run and otherwise the compositional implementation is executed. #. For backends that have a primary implementation of a mixed function, the reference to the compositional implementation is `stored as an attribute`_ inside the backend function during backend setting. To make use of this decorator, one must #. add the :code:`partial_mixed_handler` attribute containing the lambda function to the backend implementation. Here's an `example`_ from the torch backend implementation of linear. Shape Conversion ^^^^^^^^^^^^^^^^ #. `inputs_to_native_shapes`_ : This wrapping function converts all :class:`ivy.Shape` instances in the arguments to their :class:`ivy.NativeShape` counterparts, based on the `Backend Setting`_ before calling the function. #. `outputs_to_ivy_shapes`_ : This wrapping function converts all :class:`ivy.NativeShape` instances in the outputs to their :class:`ivy.Shape` counterparts, based on the `Backend Setting`_ before calling the function. #. `to_native_shapes_and_back`_ : This wrapping function converts all :class:`ivy.Shape` instances in the arguments to their :class:`ivy.NativeShape` counterparts, calls the function with those arguments and then converts the :class:`ivy.NativeShape` instances in the output back to :class:`ivy.Shape`. View Handling ^^^^^^^^^^^^^ #. `handle_view`_ : This wrapping function performs view handling based on our :ref:`overview/deep_dive/inplace_updates:Views` policy. #. `handle_view_indexing`_ : This wrapping function is aimed at handling views for indexing. Exception Handling ^^^^^^^^^^^^^^^^^^ #. `handle_exceptions`_ : This wrapping function helps in catching native exceptions and unifying them into `IvyException` or the relevant subclasses. More information can be found in the :ref:`overview/deep_dive/function_wrapping:Exception Handling` section. Miscellaneous Wrappers ^^^^^^^^^^^^^^^^^^^^^^ #. `handle_array_function`_ : This wrapping function enables :ref:`overview/deep_dive/arrays:Integrating custom classes with Ivy` #. `handle_complex_input`_ : This wrapping function enables handling of complex numbers. It introduces a keyword argument :code:`complex_mode`, which is used to choose the function's behaviour as per the wrapper's docstring. When calling `_wrap_function`_ during `Backend Setting`_, firstly the attributes of the functions are checked to get all the wrapping functions for a particular function. Then all the wrapping functions applicable to a function are used to wrap the function. Each of these topics and each associated piece of logic added by the various wrapper functions are covered in more detail in the next sections. For now, suffice it to say that they do quite a lot. **Round Up** This should have hopefully given you a good feel for how function wrapping is applied to functions in Ivy. If you have any questions, please feel free to reach out on `discord`_ in the `function wrapping thread`_! **Video** .. raw:: html <iframe width="420" height="315" allow="fullscreen;" src="https://www.youtube.com/embed/-RGXxrP849k" class="video"> </iframe>
ivy/docs/overview/deep_dive/function_wrapping.rst/0
{ "file_path": "ivy/docs/overview/deep_dive/function_wrapping.rst", "repo_id": "ivy", "token_count": 4360 }
4
Ivy as a Transpiler =================== On the `Building Blocks <building_blocks.rst>`_ page, we explored the role of the Backend functional APIs, the Ivy functional API, the Backend handler, and the Tracer. These parts are labelled (a) in the image below. Here, we explain the role of the backend-specific frontends in Ivy, and how these enable automatic code conversions between different ML frameworks. This part is labelled as (b) in the image below. The code conversion tools described on this page are works in progress, as indicated by the construction signs 🚧. This is in keeping with the rest of the documentation. .. image:: https://github.com/unifyai/unifyai.github.io/blob/main/img/externally_linked/design/submodule_dependency_graph.png?raw=true :align: center :width: 100% Frontend Functional APIs 🚧 --------------------------- While the backend API, Ivy API, and backend handler enable all Ivy code to be framework-agnostic, they do not, for example, enable PyTorch code to be framework agnostic. But with frontend APIs, we can also achieve this! Let’s take a look at how the implementation of :code:`clip` method would seem like in the frontends: .. code-block:: python # ivy/functional/frontends/jax/lax/functions.py def clamp(x_min,x, x_max): return ivy.clip(x, x_min, x_max) .. code-block:: python # ivy/functional/frontends/numpy/general.py def clip(x, x_min, x_max): return ivy.clip(x, x_min, x_max) .. code-block:: python # ivy/functional/frontends/tensorflow/general.py def clip_by_value(x, x_min, x_max): return ivy.clip(x, x_min, x_max) .. code-block:: python # ivy/functional/frontends/torch/general.py def clamp(x, x_min, x_max): return ivy.clip(x, x_min, x_max) combined, we have the following situation: .. image:: https://github.com/unifyai/unifyai.github.io/blob/main/img/externally_linked/design/clip_backends_n_frontends.png?raw=true :align: center :width: 100% Importantly, we can select the backend and frontend **independently** from one another. For example, this means we can select a JAX backend, but also select the PyTorch frontend and write Ivy code which fully adheres to the PyTorch functional API. In the reverse direction: we can take pre-written pure PyTorch code, replace each PyTorch function with the equivalent function using Ivy’s PyTorch frontend, and then run this PyTorch code using JAX: .. image:: https://github.com/unifyai/unifyai.github.io/blob/main/img/externally_linked/design/clip_conversion.png?raw=true :align: center :width: 100% | For this example it’s very simple, the differences are only syntactic, but the above process works for **any** function. If there are semantic differences then these will be captured (a) in the wrapped frontend code which expresses the frontend method as a composition of Ivy functions, and (b) in the wrapped backend code which expressed the Ivy functions as compositions of backend methods. Let’s take a more complex example and convert the PyTorch method :func:`torch.nn.functional.one_hot` into NumPy code. The frontend is implemented by wrapping a single Ivy method :func:`ivy.one_hot` as follows: .. code-block:: python # ivy/functional/frontends/torch/nn/sparse_functions.py def one_hot(tensor, num_classes=-1): return ivy.one_hot(tensor, num_classes) Let’s look at the NumPy backend code for this Ivy method: .. code-block:: python # ivy/functional/backends/numpy/general.py def one_hot( indices: np.ndarray, depth: int, *, device: str, out: Optional[np.ndarray] = None ) -> np.ndarray: res = np.eye(depth)[np.array(indices).reshape(-1)] return res.reshape(list(indices.shape) + [depth]) By chaining these methods together, we can now call :func:`torch.nn.functional.one_hot` using NumPy: .. code-block:: python import ivy import ivy.frontends.torch as torch ivy.set_backend('numpy') x = np.array([0., 1., 2.]) ret = torch.nn.functional.one_hot(x, 3) Let’s take one more example and convert TensorFlow method :func:`tf.cumprod` into PyTorch code. This time, the frontend is implemented by wrapping two Ivy methods :func:`ivy.cumprod`, and :func:`ivy.flip` as follows: .. code-block:: python # ivy/functional/frontends/tensorflow/math.py def cumprod(x, axis=0, exclusive=False, reverse=False, name=None): ret = ivy.cumprod(x, axis, exclusive) if reverse: return ivy.flip(ret, axis) return ret Let’s look at the PyTorch backend code for both of these Ivy methods: .. code-block:: python # ivy/functional/backends/torch/general.py def cumprod( x: torch.Tensor, axis: int = 0, exclusive: bool = False, *, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: if exclusive: x = torch.transpose(x, axis, -1) x = torch.cat((torch.ones_like(x[..., -1:]), x[..., :-1]), -1, out=out) res = torch.cumprod(x, -1, out=out) return torch.transpose(res, axis, -1) return torch.cumprod(x, axis, out=out) .. code-block:: python # ivy/functional/backends/torch/manipulation.py def flip( x: torch.Tensor, axis: Optional[Union[int, Sequence[int]]] = None, *, out: Optional[torch.Tensor] = None, ) -> torch.Tensor: num_dims: int = len(x.shape) if not num_dims: return x if axis is None: new_axis: List[int] = list(range(num_dims)) else: new_axis: List[int] = axis if isinstance(new_axis, int): new_axis = [new_axis] else: new_axis = new_axis new_axis = [item + num_dims if item < 0 else item for item in new_axis] ret = torch.flip(x, new_axis) return ret Again, by chaining these methods together, we can now call :func:`tf.math.cumprod` using PyTorch: .. code-block:: python import ivy import ivy.frontends.tensorflow as tf ivy.set_backend('torch') x = torch.tensor([[0., 1., 2.]]) ret = tf.math.cumprod(x, -1) Role of the Tracer 🚧 ----------------------------- The very simple example above worked well, but what about even more complex PyTorch code involving Modules, Optimizers, and other higher level objects? This is where the tracer plays a vital role. The tracer can convert any code into its constituent functions at the functional API level for any ML framework. For example, let’s take the following PyTorch code and run it using JAX: .. code-block:: python import torch class Network(torch.nn.Module): def __init__(self): super().__init__() self._linear = torch.nn.Linear(3, 3) def forward(self, x): return self._linear(x) x = torch.tensor([1., 2., 3.]) net = Network() net(x) We cannot simply :code:`import ivy.frontends.torch` in place of :code:`import torch` as we did in the previous examples. This is because the Ivy frontend only supports the functional API for each framework, whereas the code above makes use of higher level classes through the use of the :mod:`torch.nn` namespace. In general, the way we convert code is by first decomposing the code into its constituent functions in the core API using Ivy’s tracer, and then we convert this executable graph into the new framework. For the example above, this would look like: .. code-block:: python import jax import ivy jax_graph = ivy.trace_graph(net, x).to_backend('jax') x = jax.numpy.array([1., 2., 3.]) jax_graph(x) However, when calling :func:`ivy.trace` the graph only connects the inputs to the outputs. Any other tensors or variables which are not listed in the inputs are treated as constants in the graph. In this case, this means the learnable weights in the Module will be treated as constants. This works fine if we only care about running inference on our graph post-training, but this won’t enable training of the Module in JAX. Converting Network Models 🚧 ---------------------------- In order to convert a model from PyTorch to JAX, we first must convert the :class:`torch.nn.Module` instance to an :class:`ivy.Module` instance using the method :func:`ivy.to_ivy_module` like so: .. code-block:: python net = ivy.to_ivy_module(net) In its current form, the :class:`ivy.Module` instance thinly wraps the PyTorch model into the :class:`ivy.Module` interface, whilst preserving the pure PyTorch backend. We can trace a graph of this network using Ivy’s tracer like so: .. code-block:: python net = net.trace_graph() In this case, the learnable weights are treated as inputs to the graph rather than constants. Now, with a traced graph under the hood of our model, we can call :meth:`to_backend` directly on the :class:`ivy.Module` instance to convert it to any backend of our choosing, like so: .. code-block:: python net = net.to_backend('jax') The network can now be trained using Ivy’s optimizer classes with a JAX backend like so: .. code-block:: python optimizer = ivy.Adam(1e-4) x_in = ivy.array([1., 2., 3.]) target = ivy.array([0.]) def loss_fn(v): out = model(x_in, v=v) return ivy.reduce_mean((out - target)**2) for step in range(100): loss, grads = ivy.execute_with_gradients(loss_fn, model.v) model.v = optimizer.step(model.v, grads) To convert this :class:`ivy.Module` instance to a :class:`haiku.Module` instance, we can call :meth:`to_haiku_module` like so: .. code-block:: python net = net.to_haiku_module() If we want to remove Ivy from the pipeline entirely, we can then train the model in Haiku like so: .. code-block:: python import haiku as hk import jax.numpy as jnp x_in = jnp.array([1., 2., 3.]) target = jnp.array([0.]) def loss_fn(): out = net(x_in) return jnp.mean((out - target)**2) loss_fn_t = hk.transform(loss_fn) loss_fn_t = hk.without_apply_rng(loss_fn_t) rng = jax.random.PRNGKey(42) params = loss_fn_t.init(rng) def update_rule(param, update): return param - 0.01 * update for i in range(100): grads = jax.grad(loss_fn_t.apply)(params) params = jax.tree_multimap(update_rule, params, grads) Other JAX-specific network libraries such as Flax, Trax, and Objax are also supported. Overall, we have taken a :class:`torch.nn.Module` instance, which can be trained using PyTorch’s optimizer classes, and converted this to a :class:`haiku.Module` instance which can be trained using Haiku’s optimizer classes. The same is true for any combination of frameworks, and for any network architecture, regardless of its complexity! **Round Up** Hopefully, this has explained how, with the addition of backend-specific frontends, Ivy will be able to easily convert code between different ML frameworks 🙂 works in progress, as indicated by the construction signs 🚧. This is in keeping with the rest of the documentation. Please reach out on `discord <https://discord.gg/sXyFF8tDtm>`_ if you have any questions!
ivy/docs/overview/design/ivy_as_a_transpiler.rst/0
{ "file_path": "ivy/docs/overview/design/ivy_as_a_transpiler.rst", "repo_id": "ivy", "token_count": 3887 }
5
.. _`RWorks Exchange Formats`: Exchange Formats ================ .. _`Open Neural Network Exchange (ONNX)`: https://onnx.ai/ .. _`ONNX`: https://onnx.ai/ .. _`Neural Network Exchange Format (NNEF)`: https://www.khronos.org/nnef .. _`CoreML`: https://developer.apple.com/documentation/coreml .. _`Khronos Group`: https://www.khronos.org/ .. _`Apple`: https://www.apple.com/ .. _`discord`: https://discord.gg/sXyFF8tDtm .. |onnx| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/exchange_formats/onnx.png :height: 20pt :class: dark-light .. |nnef| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/exchange_formats/nnef.png :height: 15pt :class: dark-light .. |coreml| image:: https://raw.githubusercontent.com/unifyai/unifyai.github.io/main/img/externally_linked/related_work/exchange_formats/coreml.png :height: 20pt :class: dark-light Neural network exchange formats define a standardized file representation specifically for neural networks. The idea is that these can be used as an intermediate representation for communicating or “exchanging” neural network architectures between different ML frameworks or between ML frameworks and the target hardware. The focus is generally on simplifying the deployment of neural networks, with a typical workflow being: train the model, save in an exchange format, and use this exchange format to communicate with the target compilers and hardware for model inference. ONNX |onnx| ----------- The `Open Neural Network Exchange (ONNX)`_ is a standardized static file format which fully defines the structure of a neural network and all of its weights. Third parties can implement their own bindings to the ONNX standard format, which then enables the model to be saved to disk in the standard ONNX file format, and be deployed on any hardware which supports the ONNX format. Some frameworks have also added support to "load in" ONNX models from disk, as well as support for exporting to the format. This enables some degree of model conversion between frameworks, but generally only for model deployment and not training. ONNX focuses on core neural network operations, with limited support for other more general array processing functions such as high order optimization, signal processing, and advanced linear algebra. NNEF |nnef| ----------- Similar to `ONNX`_, the `Neural Network Exchange Format (NNEF)`_ is also a standardized static file format which fully defines the structure of a neural network and all of its weights, with some support also for training tools. The format was developed and is maintained by the `Khronos Group`_. Overall, NNEF shares a lot of similarities with ONNX, but has not reached the same level of adoption. CoreML |coreml| --------------- `CoreML`_ itself is not an exchange format, it is a framework which enables models to be trained and deployed on `Apple`_ devices with a simple zero-code interactive interface. However, CoreML is built upon its own Core ML format, and Apple has open sourced :code:`coremltools`, which provides a set of tools to convert ML models from various frameworks into the Core ML format. The Core ML format is itself an exchange format, albeit with the sole purpose of exchanging to Apple’s CoreML framework, rather than enabling exchanges between multiple different parties as is the case for the other exchange formats.
ivy/docs/overview/related_work/exchange_formats.rst/0
{ "file_path": "ivy/docs/overview/related_work/exchange_formats.rst", "repo_id": "ivy", "token_count": 919 }
6
from typing import Callable, Optional, List, Union, Iterable, Sequence, Mapping def trace_graph( *objs: Callable, stateful: Optional[List] = None, arg_stateful_idxs: Optional[List] = None, kwarg_stateful_idxs: Optional[List] = None, to: Optional[str] = None, include_generators: bool = True, array_caching: bool = True, with_numpy: bool = True, modes_to_trace: str = "all", backend_compile: bool = False, static_argnums: Optional[Union[int, Iterable[int]]] = None, static_argnames: Optional[Union[str, Iterable[str]]] = None, compile_mode: Optional[str] = None, graph_caching: bool = False, args: Optional[Sequence] = None, kwargs: Optional[Mapping] = None, params_v=None, v=None ): """Takes `fn` and traces it into a more efficient composition of backend operations. Parameters ---------- objs callable(s) to trace and create a graph of stateful list of instances to be considered stateful during the graph tracing arg_stateful_idxs positional arguments to be considered stateful during the graph tracing kwarg_stateful_idxs keyword arguments to be considered stateful during the graph tracing include_generators include array creation/generation functions as part of the graph array_caching cache the constant arrays that appear as arguments to the functions in the graph modes_to_trace the module mode(s) which should be traced when tracing a trainable module can be either "all", "train" or "eval". backend_compile whether to apply the native compilers, i.e. tf.function, after ivy's tracing static_argnums for jax's jit compilation static_argnames for jax's jit compilation compile_mode mode for torch's compilation graph_caching whether to cache the traced graph args positional arguments for `obj` kwargs keyword arguments for `obj` Returns ------- the traced `Graph` object. Examples -------- >>> import ivy, time >>> from ivy import trace_graph >>> ivy.set_backend("torch") >>> x = ivy.array([1.]) >>> def fn(x): ... y = ivy.sum(x) ... z = ivy.prod(x) ... a = ivy.sin(y) ... b = ivy.cos(z) ... c = ivy.tan(z) ... i = ivy.round(a) ... j = ivy.floor(b) ... k = ivy.ceil(c) ... return i, j, k >>> graph = trace_graph(fn, args=(x,)) Notice how the time taken to execute the traced function is lower than the original function. A typical run: >>> start = time.time() >>> fn(x) >>> print(time.time() - start) 0.0003559589385986328 >>> start = time.time() >>> graph(x) >>> print(time.time() - start) 0.0001785755157470703 """ from ._compiler import trace_graph as _trace_graph return _trace_graph( *objs, stateful=stateful, arg_stateful_idxs=arg_stateful_idxs, kwarg_stateful_idxs=kwarg_stateful_idxs, to=to, include_generators=include_generators, array_caching=array_caching, with_numpy=with_numpy, modes_to_trace=modes_to_trace, backend_compile=backend_compile, static_argnums=static_argnums, static_argnames=static_argnames, compile_mode=compile_mode, graph_caching=graph_caching, args=args, kwargs=kwargs, params_v=params_v, v=v, ) def transpile( *objs: Callable, source: Optional[str] = None, to: Optional[str] = None, with_numpy: bool = True, backend_compile: bool = False, static_argnums: Optional[Union[int, Iterable[int]]] = None, static_argnames: Optional[Union[str, Iterable[str]]] = None, compile_mode: Optional[str] = None, graph_caching: bool = False, graph_optimizations: bool = True, modes_to_trace: str = "all", stateful: Optional[List] = None, arg_stateful_idxs: Optional[List] = None, kwarg_stateful_idxs: Optional[List] = None, args: Optional[Sequence] = None, kwargs: Optional[Mapping] = None, params_v=None, v=None ): """Transpiles Callable objects passed as arguments. If args and kwargs are specified, transpilation is performed eagerly, otherwise, transpilation will happen lazily. Parameters ---------- objs The native Callables to be transpiled source The framework that `obj` is from. to The target framework to transpile `obj` to. args If specified, arguments that will be used to transpile eagerly. kwargs If specified, keyword arguments that will be used to transpile eagerly. Returns ------- Either a transpiled Graph or a non-initialized LazyGraph. """ from ._compiler import transpile as _transpile return _transpile( *objs, source=source, to=to, with_numpy=with_numpy, backend_compile=backend_compile, static_argnums=static_argnums, static_argnames=static_argnames, compile_mode=compile_mode, graph_caching=graph_caching, graph_optimizations=graph_optimizations, modes_to_trace=modes_to_trace, stateful=stateful, arg_stateful_idxs=arg_stateful_idxs, kwarg_stateful_idxs=kwarg_stateful_idxs, args=args, kwargs=kwargs, params_v=params_v, v=v, ) def unify( *objs: Callable, source: Optional[str] = None, graph_caching: bool = False, graph_optimizations: bool = True, args: Optional[Sequence] = None, kwargs: Optional[Mapping] = None, with_numpy: bool = True, modes_to_trace: str = "all", **transpile_kwargs ): from ._compiler import unify as _unify return _unify( *objs, source=source, graph_caching=graph_caching, graph_optimizations=graph_optimizations, args=args, kwargs=kwargs, with_numpy=with_numpy, modes_to_trace=modes_to_trace, **transpile_kwargs, )
ivy/ivy/compiler/compiler.py/0
{ "file_path": "ivy/ivy/compiler/compiler.py", "repo_id": "ivy", "token_count": 2606 }
7
# global import abc class _ArrayWithDeviceExperimental(abc.ABC): pass
ivy/ivy/data_classes/array/experimental/device.py/0
{ "file_path": "ivy/ivy/data_classes/array/experimental/device.py", "repo_id": "ivy", "token_count": 26 }
8
# global import abc import numpy as np from numbers import Number from typing import Any, Iterable, Union, Optional, Dict, Callable, List, Tuple # ToDo: implement all methods here as public instance methods # local import ivy class _ArrayWithGeneral(abc.ABC): def is_native_array( self: ivy.Array, /, *, exclusive: bool = False, ) -> ivy.Array: """ivy.Array instance method variant of ivy.is_native_array. This method simply wraps the function, and so the docstring for ivy.is_native_array also applies to this method with minimal changes. Parameters ---------- self The input to check exclusive Whether to check if the data type is exclusively an array, rather than a variable or traced array. Returns ------- ret Boolean, whether or not x is a native array. Examples -------- >>> x = ivy.array([0, 1, 2]) >>> ret = x.is_native_array() >>> print(ret) False """ return ivy.is_native_array(self, exclusive=exclusive) def is_ivy_array(self: ivy.Array, /, *, exclusive: bool = False) -> bool: """ivy.Array instance method variant of ivy.is_ivy_array. This method simply wraps the function, and so the docstring for ivy.is_ivy_array also applies to this method with minimal changes. Parameters ---------- self input array exclusive Whether to check if the data type is exclusively an array, rather than a variable or traced array. Returns ------- ret Boolean, whether or not x is an ivy array. Examples -------- >>> x = ivy.array([0, 1, 2]) >>> ret = x.is_ivy_array() >>> print(ret) True """ return ivy.is_ivy_array(self, exclusive=exclusive) def is_array(self: ivy.Array, /, *, exclusive: bool = False) -> bool: """ivy.Array instance method variant of ivy.is_array. This method simply wraps the function, and so the docstring for ivy.is_array also applies to this method with minimal changes. Parameters ---------- self The input to check exclusive Whether to check if the data type is exclusively an array, rather than a variable or traced array. Returns ------- ret Boolean, whether or not x is an array. Examples -------- >>> x = ivy.array([0, 1, 2]) >>> print(x.is_array()) True """ return ivy.is_array(self, exclusive=exclusive) def is_ivy_container(self: ivy.Array) -> bool: """ivy.Array instance method variant of ivy.is_ivy_container. This method simply wraps the function, and so the docstring for ivy.is_ivy_container also applies to this method with minimal changes. Parameters ---------- self The input to check Returns ------- ret Boolean, whether or not x is an ivy container. Examples -------- >>> x = ivy.array([0, 1, 2]) >>> print(x.is_ivy_container()) False """ return ivy.is_ivy_container(self) def all_equal( self: ivy.Array, *x2: Iterable[Any], equality_matrix: bool = False ) -> Union[bool, ivy.Array, ivy.NativeArray]: """ivy.Array instance method variant of ivy.all_equal. This method simply wraps the function, and so the docstring for ivy.all_equal also applies to this method with minimal changes. Parameters ---------- self input array x2 input iterable to compare to ``self`` equality_matrix Whether to return a matrix of equalities comparing each input with every other. Default is ``False``. Returns ------- ret Boolean, whether or not the inputs are equal, or matrix array of booleans if equality_matrix=True is set. Examples -------- >>> x1 = ivy.array([1, 1, 0, 0, 1, -1]) >>> x2 = ivy.array([1, 1, 0, 0, 1, -1]) >>> y = x1.all_equal(x2) >>> print(y) True >>> x1 = ivy.array([0, 0]) >>> x2 = ivy.array([0, 0]) >>> x3 = ivy.array([1, 0]) >>> y = x1.all_equal(x2, x3, equality_matrix=True) >>> print(y) ivy.array([[ True, True, False], [ True, True, False], [False, False, True]]) """ arrays = [self] + [x for x in x2] return ivy.all_equal(*arrays, equality_matrix=equality_matrix) def has_nans(self: ivy.Array, /, *, include_infs: bool = True): """ivy.Array instance method variant of ivy.has_nans. This method simply wraps the function, and so the docstring for ivy.has_nans also applies to this method with minimal changes. Parameters ---------- self input array include_infs Whether to include ``+infinity`` and ``-infinity`` in the check. Default is ``True``. Returns ------- ret Boolean as to whether the array contains nans. Examples -------- >>> x = ivy.array([1, 2, 3]) >>> y = x.has_nans() >>> print(y) False """ return ivy.has_nans(self, include_infs=include_infs) def gather( self: ivy.Array, indices: Union[ivy.Array, ivy.NativeArray], /, *, axis: int = -1, batch_dims: int = 0, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.gather. This method simply wraps the function, and so the docstring for ivy.gather also applies to this method with minimal changes. Parameters ---------- self The array from which to gather values. indices The array which indicates the indices that will be gathered along the specified axis. axis The axis from which the indices will be gathered. Default is ``-1``. batch_dims Optional int, lets you gather different items from each element of a batch. Default is ``0``. out Optional array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret New array with the values gathered at the specified indices along the specified axis. Examples -------- >>> x = ivy.array([0., 1., 2.]) >>> y = ivy.array([0, 1]) >>> gather = x.gather(y) >>> print(gather) ivy.array([0., 1.]) >>> x = ivy.array([[0., 1., 2.],[3., 4., 5.]]) >>> y = ivy.array([[0, 1],[1, 2]]) >>> z = ivy.zeros((2, 2, 2)) >>> gather = x.gather(y, out=z) >>> print(z) ivy.array([[[0., 1.],[1., 2.]],[[3., 4.],[4., 5.]]]) >>> x = ivy.array([[[0., 1.], [2., 3.]], ... [[8., 9.], [10., 11.]]]) >>> y = ivy.array([[0, 1]]) >>> z = ivy.zeros((1, 2, 2, 2)) >>> gather = x.gather(y, axis=0, out=z) >>> print(z) ivy.array( [[[[ 0., 1.], [ 2., 3.]], [[ 8., 9.], [10., 11.]]]]) >>> x = ivy.array([[0, 10, 20, 0, 0], ... [0, 0, 0, 30, 40], ... [0, 10, 0, 0, 40]]) >>> y = ivy.array([[1, 2],[3, 4],[1, 4]]) >>> gather = x.gather(y, batch_dims=1) >>> print(gather) ivy.array([[10, 20], [30, 40],[10, 40]]) """ return ivy.gather(self, indices, axis=axis, batch_dims=batch_dims, out=out) def scatter_nd( self: ivy.Array, updates: Union[ivy.Array, ivy.NativeArray], /, shape: Optional[ivy.Array] = None, *, reduction: str = "sum", out: Optional[ivy.Array] = None, ) -> ivy.Array: """Scatter updates into an array according to indices. Parameters ---------- self array of indices updates values to update input tensor with shape The shape of the result. Default is ``None``, in which case tensor argument must be provided. reduction The reduction method for the scatter, one of 'sum', 'min', 'max' or 'replace' out optional output array, for writing the result to. Returns ------- ret New array of given shape, with the values scattered at the indices. Examples -------- With scatter values into an array >>> arr = ivy.array([1,2,3,4,5,6,7,8, 9, 10]) >>> indices = ivy.array([[4], [3], [1], [7]]) >>> updates = ivy.array([9, 10, 11, 12]) >>> scatter = indices.scatter_nd(updates, reduction='replace', out=arr) >>> print(scatter) ivy.array([ 1, 11, 3, 10, 9, 6, 7, 12, 9, 10]) With scatter values into an empty array >>> shape = ivy.array([2, 5]) >>> indices = ivy.array([[1,4], [0,3], [1,1], [0,2]]) >>> updates = ivy.array([25, 40, 21, 22]) >>> scatter = indices.scatter_nd(updates, shape=shape) >>> print(scatter) ivy.array([[ 0, 0, 22, 40, 0], [ 0, 21, 0, 0, 25]]) """ return ivy.scatter_nd(self, updates, shape, reduction=reduction, out=out) def gather_nd( self: ivy.Array, indices: Union[ivy.Array, ivy.NativeArray], /, *, batch_dims: int = 0, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.gather_nd. This method simply wraps the function, and so the docstring for ivy.gather_nd also applies to this method with minimal changes. Parameters ---------- self The array from which to gather values. indices Index array. batch_dims optional int, lets you gather different items from each element of a batch. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret New array of given shape, with the values gathered at the indices. Examples -------- >>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([1]) >>> z = x.gather_nd(y) >>> print(z) ivy.array(2) """ return ivy.gather_nd(self, indices, batch_dims=batch_dims, out=out) def einops_rearrange( self: ivy.Array, pattern: str, /, *, out: Optional[ivy.Array] = None, **axes_lengths: Dict[str, int], ) -> ivy.Array: """ivy.Array instance method variant of ivy.einops_rearrange. This method simply wraps the function, and so the docstring for ivy.einops_rearrange also applies to this method with minimal changes. Parameters ---------- self Input array to be re-arranged. pattern Rearrangement pattern. axes_lengths Any additional specifications for dimensions. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret New array with einops.rearrange having been applied. Examples -------- With :class:`ivy.Array` instance method: >>> x = ivy.array([[1, 2, 3], ... [-4, -5, -6]]) >>> y = x.einops_rearrange("height width -> width height") >>> print(y) ivy.array([[ 1, -4], [ 2, -5], [ 3, -6]]) >>> x = ivy.array([[[ 1, 2, 3], ... [ 4, 5, 6]], ... [[ 7, 8, 9], ... [10, 11, 12]]]) >>> y = x.einops_rearrange("c h w -> c (h w)") >>> print(y) ivy.array([[ 1, 2, 3, 4, 5, 6], [ 7, 8, 9, 10, 11, 12]]) >>> x = ivy.array([[1, 2, 3, 4, 5, 6] ... [7, 8, 9, 10, 11, 12]]) >>> y = x.einops_rearrange("c (h w) -> (c h) w", h=2, w=3) ivy.array([[ 1, 2, 3], [ 4, 5, 6], [ 7, 8, 9], [10, 11, 12]]) """ return ivy.einops_rearrange(self._data, pattern, out=out, **axes_lengths) def einops_reduce( self: ivy.Array, pattern: str, reduction: Union[str, Callable], /, *, out: Optional[ivy.Array] = None, **axes_lengths: Dict[str, int], ) -> ivy.Array: """ivy.Array instance method variant of ivy.einops_reduce. This method simply wraps the function, and so the docstring for ivy.einops_reduce also applies to this method with minimal changes. Parameters ---------- self Input array to be reduced. pattern Reduction pattern. reduction One of available reductions ('min', 'max', 'sum', 'mean', 'prod'), or callable. axes_lengths Any additional specifications for dimensions. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret New array with einops.reduce having been applied. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([[[5, 4], ... [11, 2]], ... [[3, 5], ... [9, 7]]]) >>> reduced = x.einops_reduce('a b c -> b c', 'max') >>> print(reduced) ivy.array([[ 5, 5], [11, 7]]) With :class:`ivy.Array` inputs: >>> x = ivy.array([[[5, 4, 3], ... [11, 2, 9]], ... [[3, 5, 7], ... [9, 7, 1]]]) >>> reduced = x.einops_reduce('a b c -> a () c', 'min') >>> print(reduced) ivy.array([[[5, 2, 3]], [[3, 5, 1]]]) """ return ivy.einops_reduce( self._data, pattern, reduction, out=out, **axes_lengths ) def einops_repeat( self: ivy.Array, pattern: str, /, *, out: Optional[ivy.Array] = None, **axes_lengths: Dict[str, int], ) -> ivy.Array: """ivy.Array instance method variant of ivy.einops_repeat. This method simply wraps the function, and so the docstring for ivy.einops_repeat also applies to this method with minimal changes. Parameters ---------- self Input array to be repeated. pattern Rearrangement pattern. axes_lengths Any additional specifications for dimensions. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret New array with einops.repeat having been applied. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([5,4]) >>> y = x.einops_repeat('a -> a c', c=3) >>> print(y) ivy.array([[5, 5, 5], [4, 4, 4]]) With :class:`ivy.Array` inputs: >>> x = ivy.array([[5,4], ... [2, 3]]) >>> y = x.einops_repeat('a b -> a b c', c=3) >>> print(y) ivy.array([[[5, 5, 5], [4, 4, 4]], [[2, 2, 2], [3, 3, 3]]]) >>> print(y.shape) (2, 2, 3) """ return ivy.einops_repeat(self._data, pattern, out=out, **axes_lengths) def to_numpy(self: ivy.Array, /, *, copy: bool = True) -> np.ndarray: """ivy.Array instance method variant of ivy.to_numpy. This method simply wraps the function, and so the docstring for ivy.to_numpy also applies to this method with minimal changes. Parameters ---------- self input array. copy whether to copy the array to a new address or not. Default is ``True``. Returns ------- ret a numpy array copying all the element of the array ``self``. Examples -------- With :class:`ivy.Array` inputs: >>> x = ivy.array([-1, 0, 1]) >>> y = x.to_numpy() >>> print(y) [-1 0 1] >>> x = ivy.array([[-1, 0, 1],[-1, 0, 1], [1,0,-1]]) >>> y = x.to_numpy() >>> print(y) [[-1 0 1] [-1 0 1] [ 1 0 -1]] """ return ivy.to_numpy(self, copy=copy) def to_list(self: ivy.Array, /) -> List: """ivy.Array instance method variant of ivy.to_list. This method simply wraps the function, and so the docstring for ivy.to_list also applies to this method with minimal changes. Parameters ---------- self input array. Returns ------- ret A list representation of the input array ``x``. Examples -------- With :class:`ivy.Array` instance method: >>> x = ivy.array([0, 1, 2]) >>> y = x.to_list() >>> print(y) [0, 1, 2] """ return ivy.to_list(self) def to_file( self: ivy.Array, fid: Union[str, bytes, int], sep: str = "", format_: str = "%s" ) -> None: """ivy.Array instance method variant of to_file. Write array to a file as text or binary. The data is always written in 'C' order. Parameters ---------- self : ivy.Array Input array. fid : str, bytes, int An open file object, or a string containing a filename. sep : str, optional Separator between array items for text output. If '', a binary file is written. format_ : str, optional Format string for text file output. Returns ------- None Examples -------- With ivy.Array instance method: >>> x = ivy.array([1, 2, 3]) >>> x.to_file('data.txt', sep=',', format_='%d') Notes ----- The data produced by this method can be recovered using appropriate methods or functions depending on the data type. """ return ivy.to_file(self, fid, sep, format_) def supports_inplace_updates(self: ivy.Array, /) -> bool: """ivy.Array instance method variant of ivy.supports_inplace_updates. This method simply wraps the function, and so the docstring for ivy.supports_inplace_updates also applies to this method with minimal changes. Parameters ---------- self The input array whose elements' data type is to be checked. Returns ------- ret Bool value depends on whether the currently active backend framework supports in-place operations with argument's data type. Examples -------- With :class:`ivy.Array` input and default backend set as `numpy`: >>> x = ivy.array([0, 1, 2]) >>> ret = x.supports_inplace_updates() >>> print(ret) True With `ivy.Array` input and backend set as "tensorflow": >>> x = ivy.array([1., 4.2, 2.2]) >>> ret = x.supports_inplace_updates() >>> print(ret) False """ return ivy.supports_inplace_updates(self) def inplace_decrement( self: Union[ivy.Array, ivy.NativeArray], val: Union[ivy.Array, ivy.NativeArray] ) -> ivy.Array: """ivy.Array instance method variant of ivy.inplace_decrement. This method simply wraps the function, and so the docstring for ivy.inplace_decrement also applies to this method with minimal changes. Parameters ---------- self The input array to be decremented by the defined value. val The value of decrement. Returns ------- ret The array following an in-place decrement. Examples -------- With :class:`ivy.Array` instance methods: >>> x = ivy.array([5.7, 4.3, 2.5, 1.9]) >>> y = x.inplace_decrement(1) >>> print(y) ivy.array([4.7, 3.3, 1.5, 0.9]) >>> x = ivy.asarray([4., 5., 6.]) >>> y = x.inplace_decrement(2.5) >>> print(y) ivy.array([1.5, 2.5, 3.5]) """ return ivy.inplace_decrement(self, val) def stable_divide( self, denominator: Union[Number, ivy.Array, ivy.NativeArray, ivy.Container], /, *, min_denominator: Optional[ Union[Number, ivy.Array, ivy.NativeArray, ivy.Container] ] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.stable_divide. This method simply wraps the function, and so the docstring for ivy.stable_divide also applies to this method with minimal changes. Parameters ---------- self input array, used as the numerator for division. denominator denominator for division. min_denominator the minimum denominator to use, use global ivy._MIN_DENOMINATOR by default. Returns ------- ret a numpy array containing the elements of numerator divided by the corresponding element of denominator Examples -------- With :class:`ivy.Array` instance method: >>> x = ivy.asarray([4., 5., 6.]) >>> y = x.stable_divide(2) >>> print(y) ivy.array([2., 2.5, 3.]) >>> x = ivy.asarray([4, 5, 6]) >>> y = x.stable_divide(4, min_denominator=1) >>> print(y) ivy.array([0.8, 1. , 1.2]) >>> x = ivy.asarray([[4., 5., 6.], [7., 8., 9.]]) >>> y = ivy.asarray([[1., 2., 3.], [2., 3., 4.]]) >>> z = x.stable_divide(y) >>> print(z) ivy.array([[4. , 2.5 , 2. ], [3.5 , 2.67, 2.25]]) """ return ivy.stable_divide(self, denominator, min_denominator=min_denominator) def clip_vector_norm( self: ivy.Array, max_norm: float, /, *, p: float = 2.0, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.clip_vector_norm. This method simply wraps the function, and so the docstring for ivy.clip_vector_norm also applies to this method with minimal changes. Parameters ---------- self input array max_norm float, the maximum value of the array norm. p optional float, the p-value for computing the p-norm. Default is 2. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret An array with the vector norm downscaled to the max norm if needed. Examples -------- With :class:`ivy.Array` instance method: >>> x = ivy.array([0., 1., 2.]) >>> y = x.clip_vector_norm(2.0) >>> print(y) ivy.array([0., 0.894, 1.79]) """ return ivy.clip_vector_norm(self, max_norm, p=p, out=out) def array_equal(self: ivy.Array, x: Union[ivy.Array, ivy.NativeArray], /) -> bool: """ivy.Array instance method variant of ivy.array_equal. This method simply wraps the function, and so the docstring for ivy.array_equal also applies to this method with minimal changes. Parameters ---------- self input array x input array to compare to ``self`` Returns ------- ret Boolean, whether or not the input arrays are equal Examples -------- >>> x = ivy.array([-1,0]) >>> y = ivy.array([1,0]) >>> z = x.array_equal(y) >>> print(z) False >>> a = ivy.array([1, 2]) >>> b = ivy.array([1, 2]) >>> c = a.array_equal(b) >>> print(c) True >>> i = ivy.array([1, 2]) >>> j = ivy.array([1, 2, 3]) >>> k = i.array_equal(j) >>> print(k) False """ return ivy.array_equal(self, x) def assert_supports_inplace(self: ivy.Array, /) -> bool: """ivy.Array instance method variant of ivy.assert_supports_inplace. This method simply wraps the function, and so the docstring for ivy.assert_supports_inplace also applies to this method with minimal changes. Parameters ---------- self input array Returns ------- ret True if supports, raises IvyBackendException otherwise Examples -------- With :class:`ivy.Array` input and default backend set as `torch`: >>> ivy.set_backend("torch") >>> x = ivy.array([1, 2, 3]) >>> print(x.assert_supports_inplace()) True With :class:`ivy.Array` input and default backend set as `numpy`: >>> ivy.set_backend("numpy") >>> x = ivy.array([1, 2, 3]) >>> print(x.assert_supports_inplace()) True """ return ivy.assert_supports_inplace(self) def to_scalar(self: ivy.Array) -> Number: """ivy.Array instance method variant of ivy.to_scalar. This method simply wraps the function, and so the docstring for ivy.to_scalar also applies to this method with minimal changes. Parameters ---------- self input array. Returns ------- ret a scalar copying the element of the array ``x``. Examples -------- With :class:`ivy.Array` instance method: >>> x = ivy.array([3]) >>> y = x.to_scalar() >>> print(y) 3 """ return ivy.to_scalar(self) def fourier_encode( self: ivy.Array, max_freq: Union[float, ivy.Array, ivy.NativeArray], /, *, num_bands: int = 4, linear: bool = False, concat: bool = True, flatten: bool = False, ) -> Union[ivy.Array, ivy.NativeArray, Tuple]: """ivy.Array instance method variant of ivy.fourier_encode. This method simply wraps the function, and so the docstring for ivy.fourier_encode also applies to this method with minimal changes. Parameters ---------- self input array to encode max_freq The maximum frequency of the encoding. num_bands The number of frequency bands for the encoding. Default is 4. linear Whether to space the frequency bands linearly as opposed to geometrically. Default is ``False``. concat Whether to concatenate the position, sin and cos values, or return separately. Default is ``True``. flatten Whether to flatten the position dimension into the batch dimension. Default is ``False``. Returns ------- ret New array with the final dimension expanded, and the encodings stored in this channel. Examples -------- >>> x = ivy.array([1, 2, 3]) >>> y = 1.5 >>> z = x.fourier_encode(y) >>> print(z) ivy.array([[ 1.0000000e+00, 1.2246468e-16, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, -1.0000000e+00, 1.0000000e+00, 1.0000000e+00, 1.0000000e+00], [ 2.0000000e+00, -2.4492936e-16, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 1.0000000e+00, 1.0000000e+00, 1.0000000e+00], [ 3.0000000e+00, 3.6739404e-16, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, -1.0000000e+00, 1.0000000e+00, 1.0000000e+00, 1.0000000e+00]]) >>> x = ivy.array([3, 10]) >>> y = 2.5 >>> z = x.fourier_encode(y, num_bands=3) >>> print(z) ivy.array([[ 3.0000000e+00, 3.6739404e-16, 3.6739404e-16, 3.6739404e-16, -1.0000000e+00, -1.0000000e+00, -1.0000000e+00], [ 1.0000000e+01, -1.2246468e-15, -1.2246468e-15, -1.2246468e-15, 1.0000000e+00, 1.0000000e+00, 1.0000000e+00]]) """ return ivy.fourier_encode( self, max_freq, num_bands=num_bands, linear=linear, concat=concat, flatten=flatten, ) def value_is_nan(self: ivy.Array, /, *, include_infs: bool = True) -> bool: """ivy.Array instance method variant of ivy.value_is_nan. This method simply wraps the function, and so the docstring for ivy.value_is_nan also applies to this method with minimal changes. Parameters ---------- self input array include_infs Whether to include infs and -infs in the check. Default is ``True``. Returns ------- ret Boolean as to whether the input value is a nan or not. Examples -------- With one :class:`ivy.Array` instance method: >>> x = ivy.array([92]) >>> y = x.value_is_nan() >>> print(y) False >>> x = ivy.array([float('inf')]) >>> y = x.value_is_nan() >>> print(y) True >>> x = ivy.array([float('nan')]) >>> y = x.value_is_nan() >>> print(y) True >>> x = ivy.array([float('inf')]) >>> y = x.value_is_nan(include_infs=False) >>> print(y) False """ return ivy.value_is_nan(self, include_infs=include_infs) def exists(self: ivy.Array, /) -> bool: """ivy.Array instance method variant of ivy.exists. This method simply wraps the function, and so the docstring for ivy.exists also applies to this method with minimal changes. Parameters ---------- self input array. Returns ------- ret True if input is not None, else False. Examples -------- >>> x = ivy.array([1, 2, 3, 1.2]) >>> y = x.exists() >>> print(y) True >>> x = ivy.array([]) >>> y = x.exists() >>> print(y) True """ return ivy.exists(self) def default( self: ivy.Array, /, default_val: Any, *, catch_exceptions: bool = False, rev: bool = False, with_callable: bool = False, ) -> Any: """ivy.Array instance method variant of ivy.default. This method simply wraps the function, and so the docstring for ivy.default also applies to this method with minimal changes. Parameters ---------- self input array default_val The default value. catch_exceptions Whether to catch exceptions from callable x. Default is ``False``. rev Whether to reverse the input x and default_val. Default is ``False``. with_callable Whether either of the arguments might be callable functions. Default is ``False``. Returns ------- ret x if x exists (is not None), else default. Examples -------- >>> x = ivy.array([1, 2, 3, 1.2]) >>> y = x.default(0) >>> print(y) ivy.array([1. , 2. , 3. , 1.2]) """ return ivy.default( self, default_val, catch_exceptions=catch_exceptions, rev=rev, with_callable=with_callable, ) def stable_pow( self: ivy.Array, exponent: Union[Number, ivy.Array, ivy.NativeArray], /, *, min_base: Optional[float] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.stable_pow. This method simply wraps the function, and so the docstring for ivy.stable_pow also applies to this method with minimal changes. Parameters ---------- self input array, used as the base. exponent The exponent number. min_base The minimum base to use, use global ivy.min_base by default. Returns ------- ret The new item following the numerically stable power. Examples -------- With :class:`ivy.Array` instance method: >>> x = ivy.asarray([2, 4]) >>> y = x.stable_pow(2) >>> print(y) ivy.array([ 4.00004, 16.00008]) >>> x = ivy.asarray([[2., 4.], [6., 8.]]) >>> y = ivy.asarray([2., 4.]) >>> z = x.stable_pow(y) >>> print(z) ivy.array([[4.00004000e+00, 2.56002560e+02], [3.60001200e+01, 4.09602048e+03]]) """ return ivy.stable_pow(self, exponent, min_base=min_base) def inplace_update( self: ivy.Array, val: Union[ivy.Array, ivy.NativeArray], /, *, ensure_in_backend: bool = False, keep_input_dtype: bool = False, ) -> ivy.Array: """ivy.Array instance method variant of ivy.inplace_update. This method simply wraps the function, and so the docstring for ivy.inplace_update also applies to this method with minimal changes. Parameters ---------- self input array to update val The array to update the variable with. ensure_in_backend Whether to ensure that the `ivy.NativeArray` is also inplace updated. In cases where it should be, backends which do not natively support inplace updates will raise an exception. keep_input_dtype Whether or not to preserve `x` data type after the update, otherwise `val` data type will be applied. Defaults to False. Returns ------- ret The array following the in-place update. Examples -------- With :class:`ivy.Array` input and default backend set as `numpy`: >>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([0]) >>> x.inplace_update(y) >>> print(x) ivy.array([0]) With :class:`ivy.Array` input and default backend set as `numpy`: >>> x = ivy.array([1, 2, 3], dtype=ivy.float32) >>> y = ivy.array([0, 0, 0], dtype=ivy.int32) >>> x.inplace_update(y, keep_input_dtype=True) >>> print(x) ivy.array([0., 0., 0.]) With :class:`ivy.Array` input and default backend set as `torch`: >>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([0]) >>> x.inplace_update(y) >>> print(x) ivy.array([0]) With :class:`ivy.Array` input and default backend set as `jax`: >>> x = ivy.array([4, 5, 6]) >>> y = ivy.array([1]) >>> x.inplace_update(y) IvyBackendException: jax: inplace_update: JAX does not natively support inplace updates """ return ivy.inplace_update( self, val, ensure_in_backend=ensure_in_backend, keep_input_dtype=keep_input_dtype, ) def inplace_increment( self: ivy.Array, val: Union[ivy.Array, ivy.NativeArray] ) -> ivy.Array: """ivy.Array instance method variant of ivy.inplace_increment. This method wraps the function, and so the docstring for ivy.inplace_increment also applies to this method with minimal changes. Parameters ---------- self The input array to be incremented by the defined value. val The value of increment. Returns ------- ret The array following an in-place increment. Examples -------- With :class:`ivy.Array` instance methods: >>> x = ivy.array([5.7, 4.3, 2.5, 1.9]) >>> y = x.inplace_increment(1) >>> print(y) ivy.array([6.7, 5.3, 3.5, 2.9]) >>> x = ivy.asarray([4., 5., 6.]) >>> y = x.inplace_increment(2.5) >>> print(y) ivy.array([6.5, 7.5, 8.5]) """ return ivy.inplace_increment(self, val) def clip_matrix_norm( self: ivy.Array, max_norm: float, /, *, p: float = 2.0, out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.clip_matrix_norm. This method simply wraps the function, and so the docstring for ivy.clip_matrix_norm also applies to this method with minimal changes. Parameters ---------- self input array max_norm The maximum value of the array norm. p The p-value for computing the p-norm. Default is 2. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret An array with the matrix norm downscaled to the max norm if needed. Examples -------- With :class:`ivy.Array` instance method: >>> x = ivy.array([[0., 1., 2.]]) >>> y = x.clip_matrix_norm(2.0) >>> print(y) ivy.array([[0. , 0.894, 1.79 ]]) """ return ivy.clip_matrix_norm(self, max_norm, p=p, out=out) def scatter_flat( self: ivy.Array, updates: Union[ivy.Array, ivy.NativeArray], /, *, size: Optional[int] = None, reduction: str = "sum", out: Optional[ivy.Array] = None, ) -> ivy.Array: """ivy.Array instance method variant of ivy.scatter_flat. This method simply wraps the function, and so the docstring for ivy.scatter_flat also applies to this method with minimal changes. Parameters ---------- self input array containing the indices where the new values will occupy updates Values for the new array to hold. size The size of the result. Default is `None`, in which case tensor argument out must be provided. reduction The reduction method for the scatter, one of 'sum', 'min', 'max' or 'replace' out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret New array of given shape, with the values scattered at the indices. Examples -------- With :class:`ivy.Array` input: >>> indices = ivy.array([0, 0, 1, 0, 2, 2, 3, 3]) >>> updates = ivy.array([5, 1, 7, 2, 3, 2, 1, 3]) >>> size = 8 >>> out = indices.scatter_flat(updates, size=size) >>> print(out) ivy.array([2, 7, 2, 3, 0, 0, 0, 0]) With :class:`ivy.Array` input: >>> indices = ivy.array([0, 0, 1, 0, 2, 2, 3, 3]) >>> updates = ivy.array([5, 1, 7, 2, 3, 2, 1, 3]) >>> out = ivy.array([0, 0, 0, 0, 0, 0, 0, 0]) >>> indices.scatter_flat(updates, out=out) >>> print(out) ivy.array([8, 7, 5, 4, 0, 0, 0, 0]) """ return ivy.scatter_flat(self, updates, size=size, reduction=reduction, out=out) def get_num_dims(self: ivy.Array, /, *, as_array: bool = False) -> int: """ivy.Array instance method variant of ivy.shape. This method simply wraps the function, and so the docstring for ivy.shape also applies to this method with minimal changes. Parameters ---------- self input array to infer the number of dimensions for as_array Whether to return the shape as a array, default False. Returns ------- ret Shape of the array Examples -------- >>> x = ivy.array([[0.,1.,1.],[1.,0.,0.],[8.,2.,3.]]) >>> b = x.get_num_dims() >>> print(b) 2 >>> x = ivy.array([[[0, 0, 0], [0, 0, 0], [0, 0, 0]],\ [[0, 0, 0], [0, 0, 0], [0, 0, 0]],\ [[0, 0, 0], [0, 0, 0], [0, 0, 0]]]) >>> b = x.get_num_dims(as_array=False) >>> print(b) 3 >>> b = x.get_num_dims(as_array=True) >>> print(b) ivy.array(3) """ return ivy.get_num_dims(self, as_array=as_array) def isin( self: ivy.Array, test_elements: ivy.Array, /, *, assume_unique: bool = False, invert: bool = False, ) -> ivy.Array: """ivy.Array instance method variant of ivy.isin. This method simply wraps the function, and so the docstring for ivy.isin also applies to this method with minimal changes. Parameters ---------- self input array test_elements values against which to test for each input element assume_unique If True, assumes both elements and test_elements contain unique elements, which can speed up the calculation. Default value is False. invert If True, inverts the boolean return array, resulting in True values for elements not in test_elements. Default value is False. Returns ------- ret output a boolean array of the same shape as elements that is True for elements in test_elements and False otherwise. Examples -------- >>> x = ivy.array([[10, 7, 4], [3, 2, 1]]) >>> y = ivy.array([1, 2, 3]) >>> x.isin(y) ivy.array([[False, False, False], [ True, True, True]]) >>> x = ivy.array([3, 2, 1, 0]) >>> y = ivy.array([1, 2, 3]) >>> x.isin(y, invert=True) ivy.array([False, False, False, True]) """ return ivy.isin( self._data, test_elements, assume_unique=assume_unique, invert=invert )
ivy/ivy/data_classes/array/general.py/0
{ "file_path": "ivy/ivy/data_classes/array/general.py", "repo_id": "ivy", "token_count": 21024 }
9
# local import ivy from ivy.data_classes.container.base import ContainerBase from typing import Optional, Union, List, Dict, Literal # ToDo: implement all methods here as public instance methods # noinspection PyMissingConstructor class _ContainerWithActivations(ContainerBase): @staticmethod def _static_relu( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.relu. This method simply wraps the function, and so the docstring for ivy.relu also applies to this method with minimal changes. Parameters ---------- x input container. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the rectified linear activation unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([1.0, -1.2]), b=ivy.array([0.4, -0.2])) >>> y = ivy.Container.static_relu(x) >>> print(y) { a: ivy.array([1., 0.]), b: ivy.array([0.40000001, 0.]) } """ return ContainerBase.cont_multi_map_in_function( "relu", x, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) def relu( self: ivy.Container, /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.relu. This method simply wraps the function, and so the docstring for ivy.relu also applies to this method with minimal changes. Parameters ---------- self input container. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the rectified linear activation unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([1.0, -1.2]), b=ivy.array([0.4, -0.2])) >>> y = x.relu() >>> print(y) { a: ivy.array([1., 0.]), b: ivy.array([0.40000001, 0.]) } """ return self._static_relu( self, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) @staticmethod def _static_leaky_relu( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, alpha: ivy.Container = 0.2, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.leaky_relu. This method simply wraps the function, and so the docstring for ivy.leaky_relu also applies to this method with minimal changes. Parameters ---------- x input container. alpha array or scalar specifying the negative slope. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the leaky relu unit function applied element-wise. Examples -------- >>> x = x = ivy.Container(a=ivy.array([0.39, -0.85]), b=ivy.array([1., -0.2])) >>> y = ivy.Container.static_leaky_relu(x) >>> print(y) { a: ivy.array([0.38999999, -0.17]), b: ivy.array([1., -0.04]) } """ return ContainerBase.cont_multi_map_in_function( "leaky_relu", x, alpha=alpha, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) def leaky_relu( self: ivy.Container, /, *, alpha: ivy.Container = 0.2, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.leaky_relu. This method simply wraps the function, and so the docstring for ivy.leaky_relu also applies to this method with minimal changes. Parameters ---------- self input container. alpha array or scalar specifying the negative slope. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the leaky relu unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([0.39, -0.85]), b=ivy.array([1., -0.2])) >>> y = x.leaky_relu() >>> print(y) { a: ivy.array([0.38999999, -0.17]), b: ivy.array([1., -0.04]) } """ return self._static_leaky_relu( self, alpha=alpha, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) @staticmethod def _static_gelu( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, approximate: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.gelu. This method simply wraps the function, and so the docstring for ivy.gelu also applies to this method with minimal changes. Parameters ---------- x input container. approximate whether to use the gelu approximation algorithm or exact formulation. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the gelu unit function applied element-wise. Examples -------- >>> x = ivy.Container(a =ivy.array([0.3, -0.1])) >>> y = ivy.Container.static_gelu(x) >>> print(y) { a: ivy.array([0.185, -0.046]) } """ return ContainerBase.cont_multi_map_in_function( "gelu", x, approximate=approximate, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) def gelu( self: ivy.Container, /, *, approximate: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.gelu. This method simply wraps the function, and so the docstring for ivy.gelu also applies to this method with minimal changes. Parameters ---------- self input container. approximate whether to use the gelu approximation algorithm or exact formulation. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the gelu unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([1., 2.]), b=ivy.array([-0.9, -1.])) >>> y = x.gelu() print(y) { a: ivy.array([0.841, 1.95]), b: ivy.array([-0.166, -0.159]) } """ return self._static_gelu( self, approximate=approximate, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) @staticmethod def _static_sigmoid( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.sigmoid. This method simply wraps the function, and so the docstring for ivy.sigmoid also applies to this method with minimal changes. Parameters ---------- x input container. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the sigmoid unit function applied element-wise. Examples -------- >>> ivy.Container(a=ivy.array([-1., 1., 2.]), b=ivy.array([0.5, 0., -0.1])) >>> y = ivy.Container.static_sigmoid(x) >>> print(y) { a: ivy.array([0.2689414, 0.7310586, 0.88079703]), b: ivy.array([0.62245935, 0.5, 0.4750208]) } """ return ContainerBase.cont_multi_map_in_function( "sigmoid", x, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) def sigmoid( self: ivy.Container, /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.sigmoid. This method simply wraps the function, and so the docstring for ivy.sigmoid also applies to this method with minimal changes. Parameters ---------- self input container. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the sigmoid unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([-1., 1., 2.]), b=ivy.array([0.5, 0., -0.1])) >>> y = x.sigmoid() >>> print(y) { a: ivy.array([0.2689414, 0.7310586, 0.88079703]), b: ivy.array([0.62245935, 0.5, 0.4750208]) } """ return self._static_sigmoid( self, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) @staticmethod def _static_softmax( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, axis: Optional[ivy.Container] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.softmax. This method simply wraps the function, and so the docstring for ivy.softmax also applies to this method with minimal changes. Parameters ---------- x input container. axis the axis or axes along which the softmax should be computed key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the softmax unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([1.0, 0]), b=ivy.array([1.3, 0, -1.0])) >>> y = ivy.Container.static_softmax(x) >>> print(y) { a: ivy.array([0.7310586, 0.2689414]), b: ivy.array([0.72844321, 0.19852395, 0.07303288]) } """ return ContainerBase.cont_multi_map_in_function( "softmax", x, axis=axis, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) def softmax( self: ivy.Container, /, *, axis: Optional[ivy.Container] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.softmax. This method simply wraps the function, and so the docstring for ivy.softmax also applies to this method with minimal changes. Parameters ---------- self input container. axis the axis or axes along which the softmax should be computed key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the softmax unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([1.0, 0]), b=ivy.array([1.3, 0, -1.0])) >>> y = x.softmax() >>> print(y) { a: ivy.array([0.7310586, 0.2689414]), b: ivy.array([0.72844321, 0.19852395, 0.07303288]) } """ return self._static_softmax( self, axis=axis, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) @staticmethod def _static_softplus( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, beta: Optional[Union[int, float, ivy.Container]] = None, threshold: Optional[Union[int, float, ivy.Container]] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.softplus. This method simply wraps the function, and so the docstring for ivy.softplus also applies to this method with minimal changes. Parameters ---------- x input container. beta The beta value for the softplus formation. Default: ``None``. threshold values above this revert to a linear function. Default: ``None``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the softplus unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([-0.3461, -0.6491]), b=ivy.array([1., 0.])) >>> y = ivy.Container.static_softplus(x) >>> print(y) { a: ivy.array([0.53499615, 0.42036411]), b: ivy.array([1.31326175, 0.69314718]) } >>> x = ivy.Container(a=ivy.array([-1., 2., 4.])) >>> y = ivy.Container.static_softplus(x, beta=0.5, threshold=2) >>> print(y) { a: ivy.array([0.948, 2.63, 4.25]) } """ return ContainerBase.cont_multi_map_in_function( "softplus", x, beta=beta, threshold=threshold, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) def softplus( self: ivy.Container, /, *, beta: Optional[Union[int, float, ivy.Container]] = None, threshold: Optional[Union[int, float, ivy.Container]] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.softplus. This method simply wraps the function, and so the docstring for ivy.softplus also applies to this method with minimal changes. Parameters ---------- self input container. beta The beta value for the softplus formation. Default: ``None``. threshold values above this revert to a linear function. Default: ``None``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the softplus unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([-0.3461, -0.6491])) >>> y = x.softplus() >>> print(y) { a: ivy.array([0.535, 0.42]) } >>> x = ivy.Container(a=ivy.array([-1., 2., 4.])) >>> y = x.softplus(beta=0.5, threshold=2) >>> print(y) { a: ivy.array([0.948, 2.63, 4.25]) } """ return self._static_softplus( self, beta=beta, threshold=threshold, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) @staticmethod def _static_log_softmax( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, axis: Optional[ivy.Container] = -1, complex_mode: Literal["split", "magnitude", "jax"] = "jax", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.log_softmax. This method simply wraps the function, and so the docstring for ivy.log_softmax also applies to this method with minimal changes. Parameters ---------- x input container. axis the axis or axes along which the log_softmax should be computed complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the log_softmax unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([-1.0, -0.98, 2.3])) >>> y = ivy.Container.static_log_softmax(x) >>> print(y) { a: ivy.array([-3.37, -3.35, -0.0719]) } >>> x = ivy.Container(a=ivy.array([1.0, 2.4]), b=ivy.array([-0.2, -1.0])) >>> y = ivy.Container.static_log_softmax(x) >>> print(y) { a: ivy.array([-1.62, -0.22]), b: ivy.array([-0.371, -1.17]) } """ return ContainerBase.cont_multi_map_in_function( "log_softmax", x, axis=axis, complex_mode=complex_mode, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def log_softmax( self: ivy.Container, /, *, axis: Optional[ivy.Container] = -1, complex_mode: Literal["split", "magnitude", "jax"] = "jax", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ): """ivy.Container instance method variant of ivy.log_softmax. This method simply wraps the function, and so the docstring for ivy.log_softmax also applies to this method with minimal changes. Parameters ---------- self input container. axis the axis or axes along which the log_softmax should be computed complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the log_softmax unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([-1.0, -0.98, 2.3])) >>> y = x.log_softmax() >>> print(y) { a: ivy.array([-3.37, -3.35, -0.0719]) } >>> x = ivy.Container(a=ivy.array([1.0, 2.4]), b=ivy.array([-0.2, -1.0])) >>> y = x.log_softmax() >>> print(y) { a: ivy.array([-1.62, -0.22]), b: ivy.array([-0.371, -1.17]) } """ return self._static_log_softmax( self, axis=axis, complex_mode=complex_mode, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_mish( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.mish. This method simply wraps the function, and so the docstring for ivy.mish also applies to this method with minimal changes. Parameters ---------- x input container. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the rectified linear activation unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([1.0, -1.2]), b=ivy.array([0.4, -0.2])) >>> y = ivy.Container.static_mish(x) >>> print(y) { a: ivy.array([0.86509842, -0.30883577]), b: ivy.array([0.28903052, -0.10714479]) } """ return ContainerBase.cont_multi_map_in_function( "mish", x, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) def mish( self: ivy.Container, /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.mish. This method simply wraps the function, and so the docstring for ivy.mish also applies to this method with minimal changes. Parameters ---------- self input container. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the rectified linear activation unit function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([1.0, -1.2]), b=ivy.array([0.4, -0.2])) >>> y = x.mish() >>> print(y) { a: ivy.array([0.86509842, -0.30883577]), b: ivy.array([0.28903052, -0.10714479]) } """ return self._static_mish( self, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) @staticmethod def _static_hardswish( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.hardswish. This method simply wraps the function, and so the docstring for ivy.hardswish also applies to this method with minimal changes. Parameters ---------- x input container. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the hardswish activation function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([-3., 4., 5.]), b=ivy.array([0., 5.])) >>> x = ivy.hardswish(x, out=x) >>> x { a: ivy.array([-0., 4., 5.]), b: ivy.array([0., 5.]) } """ return ContainerBase.cont_multi_map_in_function( "hardswish", x, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, ) def hardswish( self: ivy.Container, /, *, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, complex_mode: Literal["split", "magnitude", "jax"] = "jax", out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.hardswish. This method simply wraps the function, and so the docstring for ivy.hardswish also applies to this method with minimal changes. Parameters ---------- self input container. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. complex_mode optional specifier for how to handle complex data types. See ``ivy.func_wrapper.handle_complex_input`` for more detail. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret a container with the hardswish activation function applied element-wise. Examples -------- >>> x = ivy.Container(a=ivy.array([-3., 4., 5.]), b=ivy.array([0., 5.])) >>> x = ivy.hardswish(x, out=x) >>> x { a: ivy.array([-0., 4., 5.]), b: ivy.array([0., 5.]) } """ return self._static_hardswish( self, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, complex_mode=complex_mode, out=out, )
ivy/ivy/data_classes/container/activations.py/0
{ "file_path": "ivy/ivy/data_classes/container/activations.py", "repo_id": "ivy", "token_count": 21075 }
10
from ivy.data_classes.container.base import ContainerBase class _ContainerWithGradientsExperimental(ContainerBase): pass
ivy/ivy/data_classes/container/experimental/gradients.py/0
{ "file_path": "ivy/ivy/data_classes/container/experimental/gradients.py", "repo_id": "ivy", "token_count": 34 }
11
# global from typing import Optional, Tuple, Union, List, Callable, Dict, Sequence # local from ivy.data_classes.container.base import ContainerBase import ivy # ToDo: implement all methods here as public instance methods # ToDo: update docstrings and typehints according to ivy\layers # noinspection PyMissingConstructor class _ContainerWithLayers(ContainerBase): @staticmethod def _static_linear( x: ivy.Container, weight: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, bias: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.linear. This method simply wraps the function, and so the docstring for ivy.linear also applies to this method with minimal changes. Parameters ---------- x The input x to compute linear transformation on. *[outer_batch_shape,inner_batch_shape,in_features]* weight The weight matrix. *[outer_batch_shape,out_features,in_features]* bias The bias vector, default is ``None``. *[outer_batch_shape,out_features]* key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Result array of the linear transformation. *[outer_batch_shape,inner_batch_shape,out_features]* Examples -------- >>> x = ivy.Container(a=ivy.array([[1.1, 2.2, 3.3], \ [11., 22., 33.]]), \ b=ivy.array([[1.245, 0.278, 4.105], \ [7., 13., 17.]])) >>> w = ivy.array([[1., 2., 3.], \ [4., 5., 6.], \ [7., 8., 9.]]) >>> b = ivy.array([1., 0., -1.]) >>> y = ivy.Container.static_linear(x, w, bias=b) >>> print(y) { a: ivy.array([[16.4, 35.2, 54.], [155., 352., 549.]]), b: ivy.array([[15.1, 31., 46.9], [85., 195., 305.]]) } >>> x = ivy.Container(a=ivy.array([[1.1, 2.2, 3.3], \ [.0, .1, .2]]), \ b=ivy.array([[1.245, 0.278, 4.105], \ [.7, .8, .9]])) >>> w = ivy.Container(a=ivy.array([[1., 2., 3.]]), \ b=ivy.array([[.1, .2, .3]])) >>> b = ivy.Container(a=ivy.array([1.]), b=ivy.array([-1.])) >>> y = ivy.Container.static_linear(x, w, bias=b) >>> print(y) { a: ivy.array([[16.4], [1.8]]), b: ivy.array([[0.412], [-0.5]]) } """ return ContainerBase.cont_multi_map_in_function( "linear", x, weight, bias=bias, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def linear( self: ivy.Container, weight: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, bias: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.linear. This method simply wraps the function, and so the docstring for ivy.linear also applies to this method with minimal changes. Parameters ---------- self The input container to compute linear transformation on. *[outer_batch_shape,inner_batch_shape,in_features]* weight The weight matrix. *[outer_batch_shape,out_features,in_features]* bias The bias vector, default is ``None``. *[outer_batch_shape,out_features]* key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Result array of the linear transformation. *[outer_batch_shape,inner_batch_shape,out_features]* Examples -------- >>> x = ivy.Container(a=ivy.array([[1.1, 2.2, 3.3], ... [11., 22., 33.]]), ... b=ivy.array([[1.245, 0.278, 4.105], ... [7., 13., 17.]])) >>> w = ivy.array([[1., 2., 3.], ... [4., 5., 6.], ... [7., 8., 9.]]) >>> b = ivy.Container(a=ivy.array([1., 0., -1.]), ... b=ivy.array([1., 1., 0.])) >>> y = x.linear(w, bias=b, out=x) >>> print(y) { a: ivy.array([[16.39999962, 35.19999695, 54.], [155., 352., 549.]]), b: ivy.array([[15.11600018, 32., 47.88399887], [85., 196., 306.]]) } """ return self._static_linear( self, weight, bias=bias, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_dropout( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], prob: Union[float, ivy.Container], /, *, scale: Union[bool, ivy.Container] = True, dtype: Optional[Union[ivy.Dtype, ivy.Container]] = None, training: Union[bool, ivy.Container] = True, seed: Optional[Union[int, ivy.Container]] = None, noise_shape: Optional[Union[Sequence[int], ivy.Container]] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.dropout. This method simply wraps the function, and so the docstring for ivy.dropout also applies to this method with minimal changes. Parameters ---------- x The input container x to perform dropout on. prob The probability of zeroing out each array element, float between 0 and 1. scale Whether to scale the output by `1/(1-prob)`, default is ``True``. dtype Output array data type. If dtype is None, the output array data type must be inferred from x. Default: ``None``. training Turn on dropout if training, turn off otherwise. Default is ``True``. seed Set a default seed for random number generating (for reproducibility). Default is ``None``. noise_shape a sequence representing the shape of the binary dropout mask that will be multiplied with the input. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Result array of the output after dropout is performed. Examples -------- >>> x = ivy.Container(a=ivy.array([[1., 2., 3.], [4., 5., 6.]]), ... b=ivy.array([7., 8., 9.])) >>> y = ivy.Container.static_dropout(x, 0.3) >>> print(y) { a: ivy.array([[0., 0., 4.28571415], [5.71428585, 7.14285755, 0.]]), b: ivy.array([0., 11.4285717, 12.8571434]) } """ return ContainerBase.cont_multi_map_in_function( "dropout", x, prob, scale=scale, dtype=dtype, training=training, seed=seed, noise_shape=noise_shape, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def dropout( self: ivy.Container, prob: Union[float, ivy.Container], /, *, scale: Union[bool, ivy.Container] = True, dtype: Optional[Union[ivy.Dtype, ivy.Container]] = None, training: Union[bool, ivy.Container] = True, seed: Optional[Union[int, ivy.Container]] = None, noise_shape: Optional[Union[Sequence[int], ivy.Container]] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.dropout. This method simply wraps the function, and so the docstring for ivy.dropout also applies to this method with minimal changes. Parameters ---------- self The input container to perform dropout on. prob The probability of zeroing out each array element, float between 0 and 1. scale Whether to scale the output by `1/(1-prob)`, default is ``True``. dtype output array data type. If dtype is None, the output array data type must be inferred from x. Default: ``None``. training Turn on dropout if training, turn off otherwise. Default is ``True``. seed Set a default seed for random number generating (for reproducibility). Default is ``None``. noise_shape a sequence representing the shape of the binary dropout mask that will be multiplied with the input. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Result array of the output after dropout is performed. Examples -------- >>> x = ivy.Container(a=ivy.array([[1., 2., 3.], [4., 5., 6.]]), ... b=ivy.array([7., 8., 9.])) >>> y = x.dropout(0.3) >>> print(y) { a: ivy.array([[0., 0., 4.28571415], [5.71428585, 7.14285755, 0.]]), b: ivy.array([0., 11.4285717, 12.8571434]) } """ return self._static_dropout( self, prob, scale=scale, dtype=dtype, training=training, seed=seed, noise_shape=noise_shape, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_dropout1d( x: ivy.Container, prob: Union[float, ivy.Container], /, *, training: Union[bool, ivy.Container] = True, data_format: Union[str, ivy.Container] = "NWC", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.dropout1d. This method simply wraps the function, and so the docstring for ivy.dropout1d also applies to this method with minimal changes. Parameters ---------- x The input container to perform dropout on. prob The probability of zeroing out each array element, float between 0 and 1. training Turn on dropout if training, turn off otherwise. Default is ``True``. data_format "NWC" or "NCW". Default is ``"NCW"``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Result container of the output after dropout is performed. Examples -------- >>> x = ivy.Container(a=ivy.array([1, 2, 3]).reshape([1, 1, 3]), ... b=ivy.array([4, 5, 6]).reshape([1, 1, 3])) >>> y = ivy.Container.static_dropout1d(x, 0.5) >>> print(y) { a: ivy.array([[[0., 4., 0.]]]), b: ivy.array([[[0., 0., 12.]]]) } """ return ContainerBase.cont_multi_map_in_function( "dropout1d", x, prob, training=training, data_format=data_format, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def dropout1d( self: ivy.Container, prob: Union[float, ivy.Container], /, *, training: Union[bool, ivy.Container] = True, data_format: Union[str, ivy.Container] = "NWC", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.dropout1d. This method simply wraps the function, and so the docstring for ivy.dropout1d also applies to this method with minimal changes. Parameters ---------- self The input container to perform dropout on. prob The probability of zeroing out each array element, float between 0 and 1. training Turn on dropout if training, turn off otherwise. Default is ``True``. data_format "NWC" or "NCW". Default is ``"NCW"``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Result container of the output after dropout is performed. Examples -------- >>> x = ivy.Container(a=ivy.array([1, 2, 3]).reshape([1, 1, 3]), ... b=ivy.array([4, 5, 6]).reshape([1, 1, 3])) >>> y = x.dropout1d(x, 0.5) >>> print(y) { a: ivy.array([[[0., 4., 0.]]]), b: ivy.array([[[0., 0., 12.]]]) } """ return self._static_dropout1d( self, prob, training=training, data_format=data_format, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_dropout2d( x: ivy.Container, prob: Union[float, ivy.Container], /, *, training: Union[bool, ivy.Container] = True, data_format: Union[str, ivy.Container] = "NHWC", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.dropout2d. This method simply wraps the function, and so the docstring for ivy.dropout2d also applies to this method with minimal changes. Parameters ---------- x The input container to perform dropout on. prob The probability of zeroing out each array element, float between 0 and 1. training Turn on dropout if training, turn off otherwise. Default is ``True``. data_format "NHWC" or "NCHW". Default is ``"NHWC"``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Result container of the output after dropout is performed. """ return ContainerBase.cont_multi_map_in_function( "dropout2d", x, prob, training=training, data_format=data_format, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def dropout2d( self: ivy.Container, prob: Union[float, ivy.Container], /, *, training: Union[bool, ivy.Container] = True, data_format: Union[str, ivy.Container] = "NHWC", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.dropout2d. This method simply wraps the function, and so the docstring for ivy.dropout2d also applies to this method with minimal changes. Parameters ---------- self The input container to perform dropout on. prob The probability of zeroing out each array element, float between 0 and 1. training Turn on dropout if training, turn off otherwise. Default is ``True``. data_format "NHWC" or "NCHW". Default is ``"NHWC"``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Result container of the output after dropout is performed. Examples -------- >>> x = ivy.Container(a=ivy.array([[100, 200, 300]]), ... b=ivy.array([[400, 500, 600]])) >>> y = x.dropout2d(0.5) >>> print(y) { a: ivy.array([[200., 0., 600.]]), b: ivy.array([[0., 0., 0.]]) } """ return self._static_dropout2d( self, prob, training=training, data_format=data_format, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_dropout3d( x: ivy.Container, prob: Union[float, ivy.Container], /, *, training: Union[bool, ivy.Container] = True, data_format: Union[str, ivy.Container] = "NDHWC", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.dropout3d. This method simply wraps the function, and so the docstring for ivy.dropout3d also applies to this method with minimal changes. Parameters ---------- x The input container to perform dropout on. prob The probability of zeroing out each array element, float between 0 and 1. training Turn on dropout if training, turn off otherwise. Default is ``True``. data_format "NDHWC" or "NCDHW". Default is ``"NDHWC"``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Result container of the output after dropout is performed. """ return ContainerBase.cont_multi_map_in_function( "dropout3d", x, prob, training=training, data_format=data_format, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def dropout3d( self: ivy.Container, prob: Union[float, ivy.Container], /, *, training: Union[bool, ivy.Container] = True, data_format: Union[str, ivy.Container] = "NDHWC", key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.dropout3d. This method simply wraps the function, and so the docstring for ivy.dropout3d also applies to this method with minimal changes. Parameters ---------- self The input container to perform dropout on. prob The probability of zeroing out each array element, float between 0 and 1. training Turn on dropout if training, turn off otherwise. Default is ``True``. data_format "NDHWC" or "NCDHW". Default is ``"NDHWC"``. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret Result container of the output after dropout is performed. """ return self._static_dropout3d( self, prob, training=training, data_format=data_format, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_scaled_dot_product_attention( query: Union[ivy.Array, ivy.NativeArray, ivy.Container], key: Union[ivy.Array, ivy.NativeArray, ivy.Container], value: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, scale: Union[float, ivy.Container], mask: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, dropout_p: Optional[float] = 0.0, is_causal: Optional[bool] = False, training: Optional[bool] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.scaled_dot_product_attention. This method simply wraps the function, and so the docstring for ivy.scaled_dot_product_attention also applies to this method with minimal changes. Parameters ---------- query The queries input container. The shape of queries input array leaves should be in *[batch_shape,num_queries,feat_dim]*. The queries input array leaves should have the same size as keys and values. key The keys input array container. The shape of keys input array leaves should be in *[batch_shape,num_keys,feat_dim]*. The keys input array leaves should have the same size as queries and values. value The values input array container. The shape of values input array leaves should be in *[batch_shape,num_keys,feat_dim]*. The values input array leaves should have the same size as queries and keys. scale The scale float value. The scale float value is used to scale the query-key pairs before softmax. mask The mask input array/container. The mask to apply to the query-key values. Default is None. The shape of mask input array leaves should be in *[batch_shape,num_queries,num_keys]*. dropout_p Specifies the dropout probability, if greater than 0.0, dropout is applied is_causal If true, assumes causal attention masking and errors if both `mask` and `is_causal` are set. training If True, dropout is used, otherwise dropout is not activated. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The output container following applications of scaled dot-product attention. The output array is the weighted sum produced by the attention score and value. The shape of output array is *[batch_shape,num_queries,feat_dim]* . Examples -------- With :class:`ivy.Container` input: >>> q = ivy.Container(a=ivy.array([[[0.2, 1.], [2.7, 3.], [4.4, 5.6]]]), ... b=ivy.array([[[1.2, 1.], [2.2, 3.], [4.4, 5.6]]])) >>> k = ivy.Container(a=ivy.array([[[4.2, 1.], [2.2, 3.3],[4.4, 5.6]]]), ... b=ivy.array([[[3.2, 1.], [2.2, 3.6], [4.0, 5.6]]])) >>> v = ivy.Container(a=ivy.array([[[5.2, 1.], [2.1, 3.],[4.4, 5.6]]]), ... b=ivy.array([[[0.2, 1.], [2.2, 3.],[4.4, 5.6]]])) >>> mask = ... ivy.Container(a=ivy.array([[[1.0, 1.0, 1.0], ... [1.0, 1.0, 1.0], ... [1.0, 1.0,1.0]]]), ... b=ivy.array([[[1.0, 1.0, 1.0], ... [1.0, 1.0, 1.0], ... [1.0, 1.0,1.0]]])) >>> result = ivy.Container.static_scaled_dot_product_attention(q, ... k, ... v, ... 1, ... mask=mask) >>> print(result) { a: ivy.array([[[4.27, 5.4], [4.4, 5.6], [4.4, 5.6]]]), b: ivy.array([[[4.35, 5.54], [4.4, 5.6], [4.4, 5.6]]]) } """ return ContainerBase.cont_multi_map_in_function( "scaled_dot_product_attention", query, key, value, scale=scale, mask=mask, dropout_p=dropout_p, is_causal=is_causal, training=training, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def scaled_dot_product_attention( self: ivy.Container, key: Union[ivy.Array, ivy.NativeArray, ivy.Container], value: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, scale: Union[float, ivy.Container], mask: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, dropout_p: Optional[float] = 0.0, is_causal: Optional[bool] = False, training: Optional[bool] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.scaled_dot_product_attention. This method simply wraps the function, and so the docstring for ivy.scaled_dot_product_attention also applies to this method with minimal changes. Parameters ---------- self The queries input container. The shape of queries input array leaves should be in *[batch_shape,num_queries,feat_dim]*. The queries input array leaves should have the same size as keys and values. key The keys input array container. The shape of keys input array leaves should be in *[batch_shape,num_keys,feat_dim]*. The keys input array leaves should have the same size as queries and values. value The values input array container. The shape of values input array leaves should be in *[batch_shape,num_keys,feat_dim]*. The values input array leaves should have the same size as queries and keys. scale The scale float value. The scale float value is used to scale the query-key pairs before softmax. mask The mask input array/container. The mask to apply to the query-key values. Default is None. The shape of mask input array leaves should be in *[batch_shape,num_queries,num_keys]*. dropout_p Specifies the dropout probability, if greater than 0.0, dropout is applied is_causal If true, assumes causal attention masking and errors if both `mask` and `is_causal` are set. training If True, dropout is used, otherwise dropout is not activated. key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The output container following applications of scaled dot-product attention. The output array is the weighted sum produced by the attention score and value. The shape of output array is *[batch_shape,num_queries,feat_dim]* . Examples -------- With :class:`ivy.Container` input: >>> q = ivy.Container(a=ivy.array([[[0.2, 1.], [2.7, 3.], [4.4, 5.6]]]), ... b=ivy.array([[[1.2, 1.], [2.2, 3.], [4.4, 5.6]]])) >>> k = ivy.Container(a=ivy.array([[[4.2, 1.], [2.2, 3.3], [4.4, 5.6]]]), ... b=ivy.array([[[3.2, 1.], [2.2, 3.6], [4.0, 5.6]]])) >>> v = ivy.Container(a=ivy.array([[[5.2, 1.], [2.1, 3.], [4.4, 5.6]]]), ... b=ivy.array([[[0.2, 1.], [2.2, 3.], [4.4, 5.6]]])) >>> result = ivy.scaled_dot_product_attention(q, k, v, scale=1, dropout_p=0.1, ... is_causal=True, training=True) >>> print(result) { a: ivy.array([[[5.19999981, 1.], [2.59249449, 2.68226194], [4.4000001, 5.5999999]]]), b: ivy.array([[[0.2, 1.], [2.19603825, 2.9960382], [4.4000001, 5.5999999]]]) } >>> q = ivy.Container(a=ivy.array([[[0.2, 1.], [2.7, 3.], [4.4, 5.6]]]), ... b=ivy.array([[[1.2, 1.], [2.2, 3.], [4.4, 5.6]]])) >>> k = ivy.Container(a=ivy.array([[[4.2, 1.], [2.2, 3.3], [4.4, 5.6]]]), ... b=ivy.array([[[3.2, 1.], [2.2, 3.6], [4.0, 5.6]]])) >>> v = ivy.Container(a=ivy.array([[[5.2, 1.], [2.1, 3.], [4.4, 5.6]]]), ... b=ivy.array([[[0.2, 1.], [2.2, 3.], [4.4, 5.6]]])) >>> mask = ... ivy.Container(a=ivy.array([[[1.0, 1.0, 1.0], ... [1.0, 1.0, 1.0], ... [1.0, 1.0, 1.0]]]), ... b=ivy.array([[[1.0, 1.0, 1.0], ... [1.0, 1.0, 1.0], ... [1.0, 1.0,1.0]]])) >>> result = ivy.scaled_dot_product_attention(q,k,v,scale=1,mask=mask) >>> print(result) { a: ivy.array([[[4.26894283, 5.40236187], [4.39999437, 5.59999037], [4.4000001, 5.5999999]]]), b: ivy.array([[[4.35046196, 5.54282808], [4.39989519, 5.5998764], [4.4000001, 5.5999999]]]) } """ return self._static_scaled_dot_product_attention( self, key, value, scale=scale, mask=mask, dropout_p=dropout_p, is_causal=is_causal, training=training, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_multi_head_attention( query: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, key: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, value: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, num_heads: Union[int, ivy.Container] = 8, scale: Optional[Union[float, ivy.Container]] = None, attention_mask: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, in_proj_weights: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, q_proj_weights: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, k_proj_weights: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, v_proj_weights: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, out_proj_weights: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, in_proj_bias: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, out_proj_bias: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, is_causal: Union[bool, ivy.Container] = False, key_padding_mask: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, bias_k: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, bias_v: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, static_k: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, static_v: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, add_zero_attn: Union[bool, ivy.Container] = False, return_attention_weights: Union[bool, ivy.Container] = False, average_attention_weights: Union[bool, ivy.Container] = True, dropout: Union[float, ivy.Container] = 0.0, training: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[Union[ivy.Array, ivy.Container]] = None, ) -> ivy.Container: return ContainerBase.cont_multi_map_in_function( "multi_head_attention", query, key=key, value=value, num_heads=num_heads, scale=scale, attention_mask=attention_mask, in_proj_weights=in_proj_weights, q_proj_weights=q_proj_weights, k_proj_weights=k_proj_weights, v_proj_weights=v_proj_weights, out_proj_weights=out_proj_weights, in_proj_bias=in_proj_bias, out_proj_bias=out_proj_bias, is_causal=is_causal, key_padding_mask=key_padding_mask, bias_k=bias_k, bias_v=bias_v, static_k=static_k, static_v=static_v, add_zero_attn=add_zero_attn, return_attention_weights=return_attention_weights, average_attention_weights=average_attention_weights, dropout=dropout, training=training, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def multi_head_attention( self: ivy.Container, /, *, key: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, value: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, num_heads: Union[int, ivy.Container] = 8, scale: Optional[Union[float, ivy.Container]] = None, attention_mask: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, in_proj_weights: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, q_proj_weights: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, k_proj_weights: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, v_proj_weights: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, out_proj_weights: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, in_proj_bias: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, out_proj_bias: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, is_causal: Union[bool, ivy.Container] = False, key_padding_mask: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, bias_k: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, bias_v: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, static_k: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, static_v: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, add_zero_attn: Union[bool, ivy.Container] = False, return_attention_weights: Union[bool, ivy.Container] = False, average_attention_weights: Union[bool, ivy.Container] = True, dropout: Union[float, ivy.Container] = 0.0, training: Union[bool, ivy.Container] = False, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[Union[ivy.Array, ivy.Container]] = None, ) -> ivy.Container: return self._static_multi_head_attention( self, key=key, value=value, num_heads=num_heads, scale=scale, attention_mask=attention_mask, in_proj_weights=in_proj_weights, q_proj_weights=q_proj_weights, k_proj_weights=k_proj_weights, v_proj_weights=v_proj_weights, out_proj_weights=out_proj_weights, in_proj_bias=in_proj_bias, out_proj_bias=out_proj_bias, is_causal=is_causal, key_padding_mask=key_padding_mask, bias_k=bias_k, bias_v=bias_v, static_k=static_k, static_v=static_v, add_zero_attn=add_zero_attn, return_attention_weights=return_attention_weights, average_attention_weights=average_attention_weights, dropout=dropout, training=training, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_conv1d( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[int, Tuple[int], ivy.Container], padding: Union[str, ivy.Container], /, *, data_format: str = "NWC", filter_format: str = "channel_last", x_dilations: Union[int, Tuple[int]] = 1, dilations: Union[int, Tuple[int]] = 1, key_chains: Optional[Union[List[str], Dict[str, str]]] = None, to_apply: bool = True, prune_unapplied: bool = False, map_sequences: bool = False, bias: Optional[ivy.Container] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.conv1d. This method simply wraps the function, and so the docstring for ivy.conv1d also applies to this method with minimal changes. Parameters ---------- x Input image *[batch_size,w, d_in]*. filters Convolution filters *[fw,d_in, d_out]*. (d_in must be the same as d from x) strides The stride of the sliding window for each dimension of input. padding "SAME" or "VALID" indicating the algorithm, or list indicating the per-dimension paddings. data_format "NWC" or "NCW". Defaults to "NWC". filter_format Either "channel_first" or "channel_last". Defaults to "channel_last". x_dilations The dilation factor for each dimension of input. (Default value = 1) dilations The dilation factor for each dimension of input. (Default value = 1) key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. bias Bias array of shape *[d_out]*. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the convolution operation. Examples -------- >>> x = ivy.Container(a=ivy.array([[[2., 3., 4.], [5., 6., 7.]]]), ... b=ivy.array([[[7., 8., 9.], [10., 11., 12]]])) >>> filters = ivy.array([[[0., 0.5, 1.], [0.25, 0.5, 0.75], [-0.5, 0., 0.5 ]]]) >>> result= ivy.Container.static_conv1d(x,filters,(1,),'VALID') >>> print(result) { ... a: ivy.array([[[-1.25, 2.5, 6.25], ... [-2., 5.5, 13.]]]), ... b: ivy.array([[[-2.5, 7.5, 17.5], ... [-3.25, 10.5, 24.2]]]) } """ return ContainerBase.cont_multi_map_in_function( "conv1d", x, filters, strides, padding, data_format=data_format, filter_format=filter_format, x_dilations=x_dilations, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, bias=bias, out=out, ) def conv1d( self: ivy.Container, filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[int, Tuple[int], ivy.Container], padding: Union[str, ivy.Container], /, *, data_format: str = "NWC", filter_format: str = "channel_last", x_dilations: Union[int, Tuple[int]] = 1, dilations: Union[int, Tuple[int]] = 1, key_chains: Optional[Union[List[str], Dict[str, str]]] = None, to_apply: bool = True, prune_unapplied: bool = False, map_sequences: bool = False, bias: Optional[ivy.Container] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.conv1d. This method simply wraps the function, and so the docstring for ivy.conv1d also applies to this method with minimal changes. Parameters ---------- self Input image *[batch_size,w, d_in]*. filters Convolution filters *[fw,d_in, d_out]*. (d_in must be the same as d from x) strides The stride of the sliding window for each dimension of input. padding "SAME" or "VALID" indicating the algorithm, or list indicating the per-dimension paddings. data_format "NWC" or "NCW". Defaults to "NWC". filter_format Either "channel_first" or "channel_last". Defaults to "channel_last". x_dilations The dilation factor for each dimension of input. (Default value = 1) dilations The dilation factor for each dimension of input. (Default value = 1) key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. bias Bias array of shape *[d_out]*. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the convolution operation. Examples -------- >>> x = ivy.Container(a=ivy.array([[[2., 3., 4.], [5., 6., 7.]]]), ... b=ivy.array([[[7., 8., 9.], [10., 11., 12]]])) >>> filters = ivy.array([[[0., 0.5, 1.], [0.25, 0.5, 0.75], [-0.5, 0., 0.5 ]]]) >>> result= x.conv1d(filters, (1,), 'VALID') >>> print(result) { ... a: ivy.array([[[-1.25, 2.5, 6.25], ... [-2., 5.5, 13.]]]), ... b: ivy.array([[[-2.5, 7.5, 17.5], ... [-3.25, 10.5, 24.2]]]) } """ return self._static_conv1d( self, filters, strides, padding, data_format=data_format, filter_format=filter_format, x_dilations=x_dilations, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, bias=bias, out=out, ) @staticmethod def _static_conv2d( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[int, Tuple[int, int], ivy.Container], padding: Union[str, ivy.Container], /, *, data_format: str = "NHWC", filter_format: str = "channel_last", x_dilations: Union[int, Tuple[int, int]] = 1, dilations: Union[int, Tuple[int, int]] = 1, key_chains: Optional[Union[List[str], Dict[str, str]]] = None, to_apply: bool = True, prune_unapplied: bool = False, map_sequences: bool = False, bias: Optional[ivy.Container] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.conv2d. This method simply wraps the function, and so the docstring for ivy.conv2d also applies to this method with minimal changes. Parameters ---------- x Input image *[batch_size,h,w,d_in]*. filters Convolution filters *[fh,fw,d_in,d_out]*. strides The stride of the sliding window for each dimension of input. padding "SAME" or "VALID" indicating the algorithm, or list indicating the per-dimension paddings. data_format "NHWC" or "NCHW". Defaults to "NHWC". dilations The dilation factor for each dimension of input. (Default value = 1) key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the convolution operation. Examples -------- >>> x = ivy.Container(a = ivy.eye(3, 3).reshape((1, 3, 3, 1)), ... b = ivy.eye(5, 5).reshape((1, 5, 5, 1))) >>> filters = ivy.array([[2., 0., 1.], ... [1., 3., 1.], ... [0., 1., 1.]]).reshape((3, 3, 1, 1)) >>> result = ivy.Container.static_conv2d(x, filters, (2,), 'SAME') >>> print(result) { a:ivy.array([[[[4.],[0.]],[[1.],[5.]]]]), b:ivy.array([[[[4.],[0.],[0.]],[[1.],[6.],[0.]],[[0.],[1.],[5.]]]]) } """ return ContainerBase.cont_multi_map_in_function( "conv2d", x, filters, strides, padding, data_format=data_format, filter_format=filter_format, x_dilations=x_dilations, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, bias=bias, out=out, ) def conv2d( self: ivy.Container, filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[int, Tuple[int, int], ivy.Container], padding: Union[str, ivy.Container], /, *, data_format: str = "NHWC", filter_format: str = "channel_last", x_dilations: Union[int, Tuple[int, int]] = 1, dilations: Union[int, Tuple[int, int]] = 1, key_chains: Optional[Union[List[str], Dict[str, str]]] = None, to_apply: bool = True, prune_unapplied: bool = False, map_sequences: bool = False, bias: Optional[ivy.Container] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of `ivy.conv2d`. This method simply wraps the function, and so the docstring for `ivy.conv2d` also applies to this method with minimal changes. Parameters ---------- self Input image *[batch_size,h,w,d_in]*. filters Convolution filters *[fh,fw,d_in,d_out]*. strides The stride of the sliding window for each dimension of input. padding "SAME" or "VALID" indicating the algorithm, or list indicating the per-dimension paddings. data_format "NHWC" or "NCHW". Defaults to "NHWC". dilations The dilation factor for each dimension of input. (Default value = 1) key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the convolution operation. Examples -------- >>> x = ivy.Container(a = ivy.eye(3, 3).reshape((1, 3, 3, 1)), ... b = ivy.eye(5, 5).reshape((1, 5, 5, 1))) >>> filters = ivy.array([[2, 0, 1], ... [1, 3, 1], ... [0, 1, 1]], dtype=ivy.float32).reshape((3, 3, 1, 1)) >>> result = x.conv2d(filters, 2, 'SAME') >>> print(result) { a:ivy.array([[[[4.],[0.]],[[1.],[5.]]]]), b:ivy.array([[[[4.],[0.],[0.]],[[1.],[6.],[0.]],[[0.],[1.],[5.]]]]) } """ return self._static_conv2d( self, filters, strides, padding, data_format=data_format, dilations=dilations, filter_format=filter_format, x_dilations=x_dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, bias=bias, out=out, ) @staticmethod def _static_conv1d_transpose( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[int, Tuple[int], ivy.Container], padding: Union[str, ivy.Container], /, *, output_shape: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, filter_format: str = "channel_last", data_format: str = "NWC", dilations: Union[int, Tuple[int]] = 1, key_chains: Optional[Union[List[str], Dict[str, str]]] = None, to_apply: bool = True, prune_unapplied: bool = False, map_sequences: bool = False, bias: Optional[ivy.Container] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.conv1d_transpose. This method simply wraps the function, and so the docstring for ivy.conv1d_transpose also applies to this method with minimal changes. Parameters ---------- x Input image *[batch_size,w,d_in]* or *[batch_size,d_in,w]*. filters Convolution filters *[fw,d_out,d_in]*. strides The stride of the sliding window for each dimension of input. padding either the string ‘SAME’ (padding with zeros evenly), the string ‘VALID’ (no padding), or a sequence of n (low, high) integer pairs that give the padding to apply before and after each spatial dimension. output_shape Shape of the output (Default value = None) filter_format Either "channel_first" or "channel_last". "channel_first" corresponds to "IOW",input data formats, while "channel_last" corresponds to "WOI". data_format The ordering of the dimensions in the input, one of "NWC" or "NCW". "NWC" corresponds to input with shape (batch_size, width, channels), while "NCW" corresponds to input with shape (batch_size, channels, width). dilations The dilation factor for each dimension of input. (Default value = 1) key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. bias Bias array of shape *[d_out]*. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the transpose convolution operation. Examples -------- >>> x = ivy.Container(a=ivy.random_normal(mean=0, std=1, shape=[1, 28, 3]), ... b=ivy.random_normal(mean=0, std=1, shape=[1, 56, 3])) >>> filters = ivy.random_normal(mean=0, std=1, shape=[3, 6, 3]) >>> y = ivy.Container.static_conv1d_transpose(x, filters, 2, 'SAME') >>> print(y.shape) { a: [1,56,6], b: [1,112,6] } """ return ContainerBase.cont_multi_map_in_function( "conv1d_transpose", x, filters, strides, padding, output_shape=output_shape, filter_format=filter_format, data_format=data_format, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, bias=bias, out=out, ) def conv1d_transpose( self: ivy.Container, filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[int, ivy.Container], padding: Union[str, ivy.Container], /, *, output_shape: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, filter_format: str = "channel_last", data_format: str = "NWC", dilations: int = 1, key_chains: Optional[Union[List[str], Dict[str, str]]] = None, to_apply: bool = True, prune_unapplied: bool = False, map_sequences: bool = False, bias: Optional[ivy.Container] = None, out: Optional[Union[ivy.Array, ivy.Container]] = None, ) -> Union[ivy.Array, ivy.NativeArray, ivy.Container]: """ivy.Container instance method variant of ivy.conv1d_transpose. This method simply wraps the function, and so the docstring for ivy.conv1d_transpose also applies to this method with minimal changes. Parameters ---------- self Input image *[batch_size,w,d_in]* or *[batch_size,d_in,w]*. filters Convolution filters *[fw,d_out,d_in]*. strides The stride of the sliding window for each dimension of input. padding either the string ‘SAME’ (padding with zeros evenly), the string ‘VALID’ (no padding), or a sequence of n (low, high) integer pairs that give the padding to apply before and after each spatial dimension. output_shape Shape of the output (Default value = None) filter_format Either "channel_first" or "channel_last". "channel_first" corresponds to "IOW",input data formats, while "channel_last" corresponds to "WOI". data_format The ordering of the dimensions in the input, one of "NWC" or "NCW". "NWC" corresponds to input with shape (batch_size, width, channels), while "NCW" corresponds to input with shape (batch_size, channels, width). dilations The dilation factor for each dimension of input. (Default value = 1) key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. bias Bias array of shape *[d_out]*. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the transpose convolution operation. Examples -------- >>> x = ivy.Container(a=ivy.random_normal(mean=0, std=1, shape=[1, 28, 3]), ... b=ivy.random_normal(mean=0, std=1, shape=[1, 56, 3])) >>> filters = ivy.random_normal(mean=0, std=1, shape=[3, 6, 3]) >>> y = x.conv1d_transpose(filters, 2, 'SAME') >>> print(y.shape) { a: ivy.Shape(1, 56, 6), b: ivy.Shape(1, 112, 6) } """ return self._static_conv1d_transpose( self, filters, strides, padding, output_shape=output_shape, filter_format=filter_format, data_format=data_format, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, bias=bias, out=out, ) @staticmethod def _static_conv2d_transpose( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[int, Tuple[int, int], ivy.Container], padding: Union[str, ivy.Container], /, *, output_shape: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, filter_format: str = "channel_last", data_format: str = "NHWC", dilations: Union[int, Tuple[int, int]] = 1, key_chains: Optional[Union[List[str], Dict[str, str]]] = None, to_apply: bool = True, prune_unapplied: bool = False, map_sequences: bool = False, bias: Optional[ivy.Container] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.conv2d_transpose. This method simply wraps the function, and so the docstring for ivy.conv2d also applies to this method with minimal changes. Parameters ---------- x Input image *[batch_size,h,w,d_in]*. filters Convolution filters *[fh,fw,d_out,d_in]*. strides The stride of the sliding window for each dimension of input. padding "SAME" or "VALID" indicating the algorithm, or list indicating the per-dimension paddings. output_shape Shape of the output (Default value = None) filter_format Either "channel_first" or "channel_last". "channel_first" corresponds to "IOHW",input data formats, while "channel_last" corresponds to "HWOI". data_format "NHWC" or "NCHW". Defaults to "NHWC". dilations The dilation factor for each dimension of input. (Default value = 1) key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. bias Bias array of shape *[d_out]*. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the convolution operation. Examples -------- >>> a = ivy.random_normal(mean=0, std=1, shape=[1, 14, 14, 3]) >>> b = ivy.random_normal(mean=0, std=1, shape=[1, 28, 28, 3]) >>> c = ivy.random_normal(mean=0, std=1, shape=[3, 3, 6, 3]) >>> d = ivy.random_normal(mean=0, std=1, shape=[3, 3, 6, 3]) >>> x = ivy.Container(a=a, b=b) >>> filters = ivy.Container(c=c, d=d) >>> y = ivy.Container.static_conv2d_transpose(x, filters, 2, 'SAME') >>> print(y.shape) { a: { c: [1,28,28,6], d: [1,28,28,6] }, b: { c: [1,56,56,6], d: [1,56,56,6] } } """ return ContainerBase.cont_multi_map_in_function( "conv2d_transpose", x, filters, strides, padding, output_shape=output_shape, filter_format=filter_format, data_format=data_format, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, bias=bias, out=out, ) def conv2d_transpose( self: ivy.Container, filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[int, Tuple[int, int], ivy.Container], padding: Union[str, ivy.Container], /, *, output_shape: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, filter_format: str = "channel_last", data_format: str = "NHWC", dilations: Union[int, Tuple[int, int]] = 1, key_chains: Optional[Union[List[str], Dict[str, str]]] = None, to_apply: bool = True, prune_unapplied: bool = False, map_sequences: bool = False, bias: Optional[ivy.Container] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.conv2d_transpose. This method simply wraps the function, and so the docstring for ivy.conv2d also applies to this method with minimal changes. Parameters ---------- self Input image *[batch_size,h,w,d_in]*. filters Convolution filters *[fh,fw,d_out,d_in]*. strides The stride of the sliding window for each dimension of input. padding "SAME" or "VALID" indicating the algorithm, or list indicating the per-dimension paddings. output_shape Shape of the output (Default value = None) filter_format Either "channel_first" or "channel_last". "channel_first" corresponds to "IOHW",input data formats, while "channel_last" corresponds to "HWOI". data_format "NHWC" or "NCHW". Defaults to "NHWC". dilations The dilation factor for each dimension of input. (Default value = 1) key_chains The key-chains to apply or not apply the method to. Default is ``None``. to_apply If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is ``True``. prune_unapplied Whether to prune key_chains for which the function was not applied. Default is ``False``. map_sequences Whether to also map method to sequences (lists, tuples). Default is ``False``. bias Bias array of shape *[d_out]*. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the convolution operation. Examples -------- >>> a = ivy.random_normal(mean=0, std=1, shape=[1, 14, 14, 3]) >>> b = ivy.random_normal(mean=0, std=1, shape=[1, 28, 28, 3]) >>> c = ivy.random_normal(mean=0, std=1, shape=[6, 3, 3, 3]) >>> d = ivy.random_normal(mean=0, std=1, shape=[6, 3, 3, 3]) >>> x = ivy.Container(a=a, b=b) >>> filters = ivy.Container(c=c, d=d) >>> y = x.conv2d_transpose(filters,2,'SAME') >>> print(y.shape) { a: { c: ivy.Shape(1, 28, 28, 3), d: ivy.Shape(1, 28, 28, 3) }, b: { c: ivy.Shape(1, 56, 56, 3), d: ivy.Shape(1, 56, 56, 3) }, c: { c: ivy.Shape(6, 6, 6, 3), d: ivy.Shape(6, 6, 6, 3) }, d: { c: ivy.Shape(6, 6, 6, 3), d: ivy.Shape(6, 6, 6, 3) } } """ return self._static_conv2d_transpose( self, filters, strides, padding, output_shape=output_shape, filter_format=filter_format, data_format=data_format, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, bias=bias, out=out, ) @staticmethod def _static_depthwise_conv2d( x: ivy.Container, filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[int, Tuple[int], Tuple[int, int], ivy.Container], padding: Union[str, List[int], ivy.Container], /, *, data_format: Union[str, ivy.Container] = "NHWC", dilations: Union[int, Tuple[int], Tuple[int, int], ivy.Container] = 1, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.depthwise_conv2d. This method simply wraps the function, and so the docstring for ivy.depthwise_conv2d also applies to this method with minimal changes. Parameters ---------- x Input image *[batch_size,h,w,d]*. filters Convolution filters *[fh,fw,d_in]*. (d_in must be the same as d from x) strides The stride of the sliding window for each dimension of input. padding "SAME" or "VALID" indicating the algorithm, or list indicating the per-dimension paddings. data_format "NHWC" or "NCHW". Defaults to "NHWC". dilations The dilation factor for each dimension of input. (Default value = 1) out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the convolution operation. Examples -------- >>> a = ivy.randint(0, 255, shape=(1, 128, 128, 3)).astype(ivy.float32) / 255.0 >>> b = ivy.randint(0, 255, shape=(1, 128, 128, 3)).astype(ivy.float32) / 255.0 >>> inp = ivy.Container(a=a, b=b) >>> filters = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3]) >>> y = ivy.Container.static_depthwise_conv2d( ... inp, ... filters, ... strides=2, ... padding='SAME') >>> print(y.shape) [1, 64, 64, 3] """ return ContainerBase.cont_multi_map_in_function( "depthwise_conv2d", x, filters, strides, padding, data_format=data_format, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) def depthwise_conv2d( self: ivy.Container, filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[int, Tuple[int], Tuple[int, int], ivy.Container], padding: Union[str, List[int], ivy.Container], /, *, data_format: Union[str, ivy.Container] = "NHWC", dilations: Union[int, Tuple[int], Tuple[int, int], ivy.Container] = 1, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.depthwise_conv2d. This method simply wraps the function, and so the docstring for ivy.depthwise_conv2d also applies to this method with minimal changes. Parameters ---------- self Input image *[batch_size,h,w,d]*. filters Convolution filters *[fh,fw,d_in]*. (d_in must be the same as d from self) strides The stride of the sliding window for each dimension of input. padding "SAME" or "VALID" indicating the algorithm, or list indicating the per-dimension paddings. data_format "NHWC" or "NCHW". Defaults to "NHWC". dilations The dilation factor for each dimension of input. (Default value = 1) out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the convolution operation. Examples -------- >>> a = ivy.randint(0, 255, shape=(1, 128, 128, 3)).astype(ivy.float32) / 255.0 >>> b = ivy.randint(0, 255, shape=(1, 128, 128, 3)).astype(ivy.float32) / 255.0 >>> inp = ivy.Container(a=a, b=b) >>> filters = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3]) >>> y = inp.depthwise_conv2d(filters, 2, 'SAME') >>> print(y.shape) [1, 64, 64, 3] """ return self._static_depthwise_conv2d( self, filters, strides, padding, data_format=data_format, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, out=out, ) @staticmethod def _static_conv3d( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[int, Tuple[int, int, int], ivy.Container], padding: Union[str, ivy.Container], /, *, data_format: str = "NDHWC", filter_format: str = "channel_last", x_dilations: Union[int, Tuple[int, int, int]] = 1, dilations: Union[int, Tuple[int, int, int]] = 1, key_chains: Optional[Union[List[str], Dict[str, str]]] = None, to_apply: bool = True, prune_unapplied: bool = False, map_sequences: bool = False, bias: Optional[ivy.Container] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.conv3d. This method simply wraps the function, and so the docstring for ivy.conv3d also applies to this method with minimal changes. Parameters ---------- x Input volume *[batch_size,d,h,w,d_in]*. filters Convolution filters *[fdfh,fw,d_in,d_out]*. strides The stride of the sliding window for each dimension of input. padding "SAME" or "VALID" indicating the algorithm, or list indicating the per-dimension paddings. data_format "NDHWC" or "NCDHW". Defaults to "NDHWC". filter_format Either "channel_first" or "channel_last". Defaults to "channel_last". x_dilations The dilation factor for each dimension of input. (Default value = 1) dilations The dilation factor for each dimension of input. (Default value = 1) bias Bias array of shape *[d_out]*. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the convolution operation. Examples -------- >>> x = ivy.Container(a = ivy.full((1, 2, 3, 3, 1),0.5),\ b = ivy.full((1, 2, 5, 5, 1),1.)) >>> filters = ivy.ones((3, 3, 3, 1, 1)) >>> result = ivy.Container.static_conv3d(x, filters, 2, 'SAME') >>> print(result) { a: ivy.array([[[[[4.],[4.]],[[4.],[4.]]]]]), b: ivy.array([[[[[8.],[12.],[8.]],[[12.],[18.],[12.]],[[8.],[12.],[8.]]]]]) } """ return ContainerBase.cont_multi_map_in_function( "conv3d", x, filters, strides, padding, data_format=data_format, filter_format=filter_format, x_dilations=x_dilations, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, bias=bias, out=out, ) def conv3d( self: ivy.Container, filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[int, Tuple[int, int, int], ivy.Container], padding: Union[str, ivy.Container], /, *, data_format: str = "NDHWC", filter_format: str = "channel_last", x_dilations: Union[int, Tuple[int, int, int]] = 1, dilations: Union[int, Tuple[int, int, int]] = 1, key_chains: Optional[Union[List[str], Dict[str, str]]] = None, to_apply: bool = True, prune_unapplied: bool = False, map_sequences: bool = False, bias: Optional[ivy.Container] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.conv3d. This method simply wraps the function, and so the docstring for ivy.conv3d also applies to this method with minimal changes. Parameters ---------- x Input volume *[batch_size,d,h,w,d_in]*. filters Convolution filters *[fdfh,fw,d_in,d_out]*. strides The stride of the sliding window for each dimension of input. padding "SAME" or "VALID" indicating the algorithm, or list indicating the per-dimension paddings. data_format "NDHWC" or "NCDHW". Defaults to "NDHWC". filter_format Either "channel_first" or "channel_last". Defaults to "channel_last". x_dilations The dilation factor for each dimension of input. (Default value = 1) dilations The dilation factor for each dimension of input. (Default value = 1) bias Bias array of shape *[d_out]*. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the convolution operation. Examples -------- >>> x = ivy.Container(a = ivy.full((1, 2, 3, 3, 1),0.5),\ b = ivy.full((1, 2, 5, 5, 1),1.)) >>> filters = ivy.ones((3, 3, 3, 1, 1)) >>> result = x.conv3d(filters, 2, 'SAME') >>> print(result) { a: ivy.array([[[[[4.],[4.]],[[4.],[4.]]]]]), b: ivy.array([[[[[8.],[12.],[8.]],[[12.],[18.],[12.]],[[8.],[12.],[8.]]]]]) } """ return self._static_conv3d( self, filters, strides, padding, data_format=data_format, filter_format=filter_format, x_dilations=x_dilations, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, bias=bias, out=out, ) @staticmethod def _static_conv3d_transpose( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[ int, Tuple[int], Tuple[int, int], Tuple[int, int, int], ivy.Container ], padding: Union[str, List[int], ivy.Container], /, *, output_shape: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, filter_format: str = "channel_last", data_format: str = "NDHWC", dilations: Union[int, Tuple[int], Tuple[int, int], Tuple[int, int, int]] = 1, key_chains: Optional[Union[List[str], Dict[str, str]]] = None, to_apply: bool = True, prune_unapplied: bool = False, map_sequences: bool = False, bias: Optional[ivy.Container] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container static method variant of ivy.conv3d_transpose. This method simply wraps the function, and so the docstring for ivy.conv3d_transpose also applies to this method with minimal changes. Parameters ---------- x Input container with leaves of volume *[batch_size,d,h,w,d_in]* or *[batch_size,d_in,d,h,w]*. filters Convolution filters *[fd,fh,fw,d_out,d_in]*. strides The stride of the sliding window for each dimension of input. padding "SAME" or "VALID" indicating the algorithm, or list indicating the per-dimension paddings. output_shape Shape of the output (Default value = None) filter_format Either "channel_first" or "channel_last". "channel_first" corresponds to "IODHW",input data formats, while "channel_last" corresponds to "DHWOI". data_format The ordering of the dimensions in the input, one of "NDHWC" or "NCDHW". "NDHWC" corresponds to inputs with shape (batch_size, depth, height, width, channels), while "NCDHW" corresponds to input with shape (batch_size, channels, depth, height, width). dilations The dilation factor for each dimension of input. (Default value = 1) bias Bias array of shape *[d_out]*. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the transpose convolution operation in a container. >>> a = ivy.random_normal(mean=0, std=1, shape=[1, 3, 14, 14, 3]) >>> b = ivy.random_normal(mean=0, std=1, shape=[1, 3, 28, 28, 3])) >>> c = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 6, 3]) >>> d = ivy.random_normal(mean=0, std=1, shape=[3, 3, 3, 6, 3])) >>> x = ivy.Container(a=a, b=b) >>> filters = ivy.Container(c=c, d=d) >>> y = ivy.Container.static_conv3d_transpose(x, filters, 2, 'SAME') >>> print(y.shape) { a: { c: [1, 6, 28, 28, 6], d: [1, 6, 28, 28, 6] }, b: { c: [1, 6, 56, 56, 6], d: [1, 6, 56, 56, 6] } } """ return ContainerBase.cont_multi_map_in_function( "conv3d_transpose", x, filters, strides, padding, output_shape=output_shape, filter_format=filter_format, data_format=data_format, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, bias=bias, out=out, ) def conv3d_transpose( self: ivy.Container, filters: Union[ivy.Array, ivy.NativeArray, ivy.Container], strides: Union[ int, Tuple[int], Tuple[int, int], Tuple[int, int, int], ivy.Container ], padding: Union[str, List[int], ivy.Container], /, *, output_shape: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, filter_format: str = "channel_last", data_format: str = "NDHWC", dilations: Union[int, Tuple[int], Tuple[int, int], Tuple[int, int, int]] = 1, key_chains: Optional[Union[List[str], Dict[str, str]]] = None, to_apply: bool = True, prune_unapplied: bool = False, map_sequences: bool = False, bias: Optional[ivy.Container] = None, out: Optional[ivy.Container] = None, ) -> ivy.Container: """ivy.Container instance method variant of ivy.conv3d_transpose. This method simply wraps the function, and so the docstring for ivy.conv3d_transpose also applies to this method with minimal changes. Parameters ---------- self Input container with leaves of volume *[batch_size,d,h,w,d_in]* or *[batch_size,d_in,d,h,w]*. filters Convolution filters *[fd,fh,fw,d_out,d_in]*. strides The stride of the sliding window for each dimension of input. padding "SAME" or "VALID" indicating the algorithm, or list indicating the per-dimension paddings. output_shape Shape of the output (Default value = None) filter_format Either "channel_first" or "channel_last". "channel_first" corresponds to "IODHW",input data formats, while "channel_last" corresponds to "DHWOI". data_format The ordering of the dimensions in the input, one of "NDHWC" or "NCDHW". "NDHWC" corresponds to inputs with shape (batch_size, depth, height, width, channels), while "NCDHW" corresponds to input with shape (batch_size, channels, depth, height, width). dilations The dilation factor for each dimension of input. (Default value = 1) bias Bias array of shape *[d_out]*. out optional output container, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret The result of the transpose convolution operation in a container. Examples -------- >>> x = ivy.Container(a = ivy.ones((1, 3, 3, 3, 1)).astype(ivy.float32) ) >>> filters = ivy.ones((3, 3, 3, 1, 1)).astype(ivy.float32) >>> result = x.conv3d(filters, 2, 'SAME') >>> print(result) { a: ivy.array([[[[[8.], [8.]], [[8.], [8.]]], [[[8.], [8.]], [[8.], [8.]]]]]) } """ return self._static_conv3d_transpose( self, filters, strides, padding, output_shape=output_shape, filter_format=filter_format, data_format=data_format, dilations=dilations, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, bias=bias, out=out, ) @staticmethod def _static_lstm_update( x: Union[ivy.Array, ivy.NativeArray, ivy.Container], init_h: Union[ivy.Array, ivy.NativeArray, ivy.Container], init_c: Union[ivy.Array, ivy.NativeArray, ivy.Container], kernel: Union[ivy.Array, ivy.NativeArray, ivy.Container], recurrent_kernel: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, bias: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, recurrent_bias: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, ) -> Tuple[ivy.Container, ivy.Container]: return ContainerBase.cont_multi_map_in_function( "lstm_update", x, init_h, init_c, kernel, recurrent_kernel, bias=bias, recurrent_bias=recurrent_bias, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, ) def lstm_update( self: ivy.Container, init_h: Union[ivy.Array, ivy.NativeArray, ivy.Container], init_c: Union[ivy.Array, ivy.NativeArray, ivy.Container], kernel: Union[ivy.Array, ivy.NativeArray, ivy.Container], recurrent_kernel: Union[ivy.Array, ivy.NativeArray, ivy.Container], /, *, bias: Optional[Union[ivy.Array, ivy.NativeArray, ivy.Container]] = None, recurrent_bias: Optional[ Union[ivy.Array, ivy.NativeArray, ivy.Container] ] = None, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, ) -> Tuple[ivy.Container, ivy.Container]: """ivy.Container instance method variant of ivy.lstm_update. This method simply wraps the function, and so the docstring for ivy.lstm_update also applies to this method with minimal changes. Parameters ---------- init_h initial state tensor for the cell output *[batch_shape, out]*. init_c initial state tensor for the cell hidden state *[batch_shape, out]*. kernel weights for cell kernel *[in, 4 x out]*. recurrent_kernel weights for cell recurrent kernel *[out, 4 x out]*. bias bias for cell kernel *[4 x out]*. (Default value = None) recurrent_bias bias for cell recurrent kernel *[4 x out]*. (Default value = None) Returns ------- ret hidden state for all timesteps *[batch_shape,t,out]* and cell state for last timestep *[batch_shape,out]* Examples -------- >>> x = ivy.Container( ... a=ivy.random_normal(shape=(5, 20, 3)), ... b=ivy.random_normal(shape=(5, 20, 3)) ... ) >>> h_i = ivy.random_normal(shape=(5, 6)) >>> c_i = ivy.random_normal(shape=(5, 6)) >>> kernel = ivy.random_normal(shape=(3, 4 * 6)) >>> rc = ivy.random_normal(shape=(6, 4 * 6)) >>> x.lstm_update(h_i, c_i, kernel, rc) { a: (tuple(2), <class ivy.array.array.Array>, shape=[5, 20, 6]), b: (tuple(2), <class ivy.array.array.Array>, shape=[5, 20, 6]) } """ return self._static_lstm_update( self, init_h, init_c, kernel, recurrent_kernel, bias=bias, recurrent_bias=recurrent_bias, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, ) @staticmethod def _static_reduce_window( operand: Union[ivy.Array, ivy.NativeArray, ivy.Container], init_value: Union[int, float, ivy.Container], computation: Union[Callable, ivy.Container], window_dimensions: Union[int, Sequence[int], ivy.Container], /, *, window_strides: Union[int, Sequence[int], ivy.Container] = 1, padding: Union[str, int, Sequence[Tuple[int, int]], ivy.Container] = "VALID", base_dilation: Union[int, Sequence[int], ivy.Container] = 1, window_dilation: Union[int, Sequence[int], ivy.Container] = 1, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, ) -> ivy.Container: return ContainerBase.cont_multi_map_in_function( "reduce_window", operand, init_value, computation, window_dimensions, window_strides=window_strides, padding=padding, base_dilation=base_dilation, window_dilation=window_dilation, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, ) def reduce_window( self: ivy.Container, init_value: Union[int, float, ivy.Container], computation: Union[Callable, ivy.Container], window_dimensions: Union[int, Sequence[int], ivy.Container], /, *, window_strides: Union[int, Sequence[int], ivy.Container] = 1, padding: Union[str, int, Sequence[Tuple[int, int]], ivy.Container] = "VALID", base_dilation: Union[int, Sequence[int], ivy.Container] = 1, window_dilation: Union[int, Sequence[int], ivy.Container] = 1, key_chains: Optional[Union[List[str], Dict[str, str], ivy.Container]] = None, to_apply: Union[bool, ivy.Container] = True, prune_unapplied: Union[bool, ivy.Container] = False, map_sequences: Union[bool, ivy.Container] = False, ) -> ivy.Container: """ivy.Container instance method variant of ivy.reduce_window. This method simply wraps the function, and so the docstring for ivy.reduce_window also applies to this method with minimal changes. Parameters ---------- self A container representing the base areas on which the window is going to slide over. init_value The starting value for the reduction. computation The reduction function to apply to elements in each window. window_dimensions A sequence containing the window dimensions. window_strides A sequence containing the window strides. padding Either the string ‘SAME’ (padding with zeros evenly), the string ‘VALID’ (no padding), or a sequence of n (low, high) integer pairs that give the padding to apply before and after each spatial dimension. base_dilation A sequence containing the base dilation values. window_dilation A sequence containing the window dilation values. Returns ------- ret The result of the pooling-like operation. Examples -------- >>> x = ivy.Container( ... a=ivy.array([[1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12]]), ... b=ivy.array([[13, 14, 15, 16], ... [17, 18, 19, 20], ... [21, 22, 23, 24]]) ... ) >>> x.reduce_window(0, ivy.sum, (2, 2)) { a: ivy.array([[21 25 29] [33 37 41] [45 49 53]]), b: ivy.array([[63 67 71] [75 79 83] [87 91 95]]) } """ return self._static_reduce_window( self, init_value, computation, window_dimensions, window_strides=window_strides, padding=padding, base_dilation=base_dilation, window_dilation=window_dilation, key_chains=key_chains, to_apply=to_apply, prune_unapplied=prune_unapplied, map_sequences=map_sequences, )
ivy/ivy/data_classes/container/layers.py/0
{ "file_path": "ivy/ivy/data_classes/container/layers.py", "repo_id": "ivy", "token_count": 51957 }
12
# local from .base import FactorizedTensor import ivy # global import warnings class TRTensor(FactorizedTensor): def __init__(self, factors): super().__init__() shape, rank = TRTensor.validate_tr_tensor(factors) self.shape = tuple(shape) self.rank = tuple(rank) self.factors = factors # Built-ins # # ----------# def __getitem__(self, index): return self.factors[index] def __setitem__(self, index, value): self.factors[index] = value def __iter__(self): for index in range(len(self)): yield self[index] def __len__(self): return len(self.factors) def __repr__(self): message = ( f"factors list : rank-{self.rank} tensor ring tensor of shape {self.shape}" ) return message # Public Methods # # ---------------# def to_tensor(self): return TRTensor.tr_to_tensor(self.factors) def to_unfolded(self, mode): return TRTensor.tr_to_unfolded(self.factors, mode) def to_vec(self): return TRTensor.tr_to_vec(self.factors) # Properties # # ---------------# @property def n_param(self): factors = self.factors total_params = sum(int(ivy.prod(tensor.shape)) for tensor in factors) return total_params # Class Methods # # ---------------# @staticmethod def validate_tr_tensor(factors): n_factors = len(factors) if n_factors < 2: raise ValueError( "A Tensor Ring tensor should be composed of at least two factors." f"However, {n_factors} factor was given." ) rank = [] shape = [] next_rank = None for index, factor in enumerate(factors): current_rank, current_shape, next_rank = ivy.shape(factor) # Check that factors are third order tensors if len(factor.shape) != 3: raise ValueError( "TR expresses a tensor as third order factors (tr-cores).\n" f"However, ivy.ndim(factors[{index}]) = {len(factor.shape)}" ) # Consecutive factors should have matching ranks if ivy.shape(factors[index - 1])[2] != current_rank: raise ValueError( "Consecutive factors should have matching ranks\n -- e.g." " ivy.shape(factors[0])[2]) == ivy.shape(factors[1])[0])\nHowever," f" ivy.shape(factor[{index-1}])[2] ==" f" {ivy.shape(factors[index-1])[2]} but" f" ivy.shape(factor[{index}])[0] == {current_rank}" ) shape.append(current_shape) rank.append(current_rank) # Add last rank (boundary condition) rank.append(next_rank) return tuple(shape), tuple(rank) @staticmethod def tr_to_tensor(factors): full_shape = [f.shape[1] for f in factors] full_tensor = ivy.reshape(factors[0], (-1, factors[0].shape[2])) for factor in factors[1:-1]: rank_prev, _, rank_next = factor.shape factor = ivy.reshape(factor, (rank_prev, -1)) full_tensor = ivy.dot(full_tensor, factor) full_tensor = ivy.reshape(full_tensor, (-1, rank_next)) full_tensor = ivy.reshape( full_tensor, (factors[-1].shape[2], -1, factors[-1].shape[0]) ) full_tensor = ivy.moveaxis(full_tensor, 0, -1) full_tensor = ivy.reshape( full_tensor, (-1, factors[-1].shape[0] * factors[-1].shape[2]) ) factor = ivy.moveaxis(factors[-1], -1, 1) factor = ivy.reshape(factor, (-1, full_shape[-1])) full_tensor = ivy.dot(full_tensor, factor) return ivy.reshape(full_tensor, full_shape) @staticmethod def tr_to_unfolded(factors, mode): return ivy.unfold(TRTensor.tr_to_tensor(factors), mode) @staticmethod def tr_to_vec(factors): return ivy.reshape( TRTensor.tr_to_tensor(factors), (-1,), ) @staticmethod def validate_tr_rank(tensor_shape, rank="same", rounding="round"): if rounding == "ceil": rounding_fun = ivy.ceil elif rounding == "floor": rounding_fun = ivy.floor elif rounding == "round": rounding_fun = ivy.round else: raise ValueError( f"Rounding should be round, floor or ceil, but got {rounding}" ) if rank == "same": rank = float(1) n_dim = len(tensor_shape) if n_dim == 2: warnings.warn( "Determining the TR-rank for the trivial case of a matrix" f" (order 2 tensor) of shape {tensor_shape}, not a higher-order tensor." ) if isinstance(rank, float): # Choose the *same* rank for each mode n_param_tensor = ivy.prod(tensor_shape) * rank # R_k I_k R_{k+1} = R^2 I_k solution = int( rounding_fun(ivy.sqrt(n_param_tensor / ivy.sum(tensor_shape))) ) rank = (solution,) * (n_dim + 1) else: # Check user input for potential errors n_dim = len(tensor_shape) if isinstance(rank, int): rank = (rank,) * (n_dim + 1) elif n_dim + 1 != len(rank): message = ( "Provided incorrect number of ranks. Should verify len(rank) ==" f" len(tensor.shape)+1, but len(rank) = {len(rank)} while" f" len(tensor.shape)+1 = {n_dim + 1}" ) raise ValueError(message) # Check first and last rank if rank[0] != rank[-1]: message = ( f"Provided rank[0] == {rank[0]} and rank[-1] == {rank[-1]}" " but boundary conditions dictate rank[0] == rank[-1]" ) raise ValueError(message) return list(rank) @staticmethod def tr_n_param(tensor_shape, rank): factor_params = [] for i, s in enumerate(tensor_shape): factor_params.append(rank[i] * s * rank[i + 1]) return ivy.sum(factor_params)
ivy/ivy/data_classes/factorized_tensor/tr_tensor.py/0
{ "file_path": "ivy/ivy/data_classes/factorized_tensor/tr_tensor.py", "repo_id": "ivy", "token_count": 3207 }
13
//! A view on a memory slice hosted on a device. use super::{ArrayElement, ArrayShape, Literal, PjRtDevice, Shape}; use crate::{c_lib, Error, Result}; use pyo3::prelude::*; /// A buffer represents a view on a memory slice hosted on a device. #[derive(Clone)] #[pyclass(unsendable)] pub struct PjRtBuffer { pub(super) buffer: c_lib::pjrt_buffer, pub(super) client: super::PjRtClient, } impl PjRtBuffer { /// The client that owns this buffer. pub fn client(&self) -> &super::PjRtClient { &self.client } /// Copy the buffer to a different device. pub fn copy_to_device(&self, device: PjRtDevice) -> Result<PjRtBuffer> { let mut buffer: c_lib::pjrt_buffer = std::ptr::null_mut(); let status = unsafe { c_lib::pjrt_buffer_copy_to_device(self.buffer, device.device, &mut buffer) }; super::handle_status(status)?; Ok(Self { buffer, client: self.client.clone() }) } /// Copy the buffer back to the host as a literal. pub fn to_literal_sync(&self) -> Result<Literal> { let mut result: c_lib::literal = std::ptr::null_mut(); let status = unsafe { c_lib::pjrt_buffer_to_literal_sync(self.buffer, &mut result) }; super::handle_status(status)?; Ok(Literal(result)) } /// Retrieve the shape used by this buffer. pub fn on_device_shape(&self) -> Result<Shape> { let shape = unsafe { c_lib::pjrt_buffer_on_device_shape(self.buffer) }; let c_shape = super::shape::CShape::from_ptr(shape); c_shape.shape() } /// Copy the data stored in a buffer to host memory in a blocking way. pub fn copy_raw_to_host_sync<T: ArrayElement>( &self, dst: &mut [T], offset: usize, ) -> Result<()> { let shape = ArrayShape::try_from(&self.on_device_shape()?)?; let on_host = T::TY; let on_device = shape.primitive_type().element_type()?; if on_device != on_host { Err(Error::ElementTypeMismatch { on_device, on_host })? } if offset + dst.len() > shape.element_count() { Err(Error::TargetBufferIsTooLarge { offset, shape, buffer_len: dst.len() })? } let status = unsafe { c_lib::pjrt_buffer_copy_raw_to_host_sync( self.buffer, dst.as_mut_ptr() as *mut libc::c_void, offset, dst.len() * T::ELEMENT_SIZE_IN_BYTES, ) }; super::handle_status(status)?; Ok(()) } } impl Drop for PjRtBuffer { fn drop(&mut self) { unsafe { c_lib::pjrt_buffer_free(self.buffer) } } }
ivy/ivy/engines/XLA/rust_api/src/wrappers/pjrt_buffer.rs/0
{ "file_path": "ivy/ivy/engines/XLA/rust_api/src/wrappers/pjrt_buffer.rs", "repo_id": "ivy", "token_count": 1187 }
14
import jax def if_else(cond, body_fn, orelse_fn, vars): cond_vars = list(vars.values()) pred = cond(**vars) with jax.disable_jit(): final_vars = jax.lax.cond(pred, body_fn, orelse_fn, *cond_vars) return final_vars def while_loop(test_fn, body_fn, vars): def body_fn_wrapper(loop_vars): return body_fn(*loop_vars) def test_fn_wrapper(loop_vars): return test_fn(*loop_vars) if isinstance(vars, dict): vars = list(vars.values()) with jax.disable_jit(): final_loop_vars = jax.lax.while_loop(test_fn_wrapper, body_fn_wrapper, vars) return final_loop_vars
ivy/ivy/functional/backends/jax/control_flow_ops.py/0
{ "file_path": "ivy/ivy/functional/backends/jax/control_flow_ops.py", "repo_id": "ivy", "token_count": 294 }
15