Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowNotImplementedError
Message:      Cannot write struct type 'sampler_kwargs' with no child field to Parquet. Consider adding a dummy child field.
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 583, in write_table
                  self._build_writer(inferred_schema=pa_table.schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 404, in _build_writer
                  self.pa_writer = self._WRITER_CLASS(self.stream, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 1010, in __init__
                  self.writer = _parquet.ParquetWriter(
                File "pyarrow/_parquet.pyx", line 2157, in pyarrow._parquet.ParquetWriter.__cinit__
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowNotImplementedError: Cannot write struct type 'sampler_kwargs' with no child field to Parquet. Consider adding a dummy child field.
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2027, in _prepare_split_single
                  num_examples, num_bytes = writer.finalize()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 602, in finalize
                  self._build_writer(self.schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 404, in _build_writer
                  self.pa_writer = self._WRITER_CLASS(self.stream, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 1010, in __init__
                  self.writer = _parquet.ParquetWriter(
                File "pyarrow/_parquet.pyx", line 2157, in pyarrow._parquet.ParquetWriter.__cinit__
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowNotImplementedError: Cannot write struct type 'sampler_kwargs' with no child field to Parquet. Consider adding a dummy child field.
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

hp_activation_fn_1
dict
hp_activation_fn_2
dict
hp_batch_size
dict
hp_dropout_1
dict
hp_dropout_2
dict
hp_init_lr
dict
hp_lr_schedule
dict
hp_n_units_1
dict
hp_n_units_2
dict
hp_epoch
dict
metric_elapsed_time
string
metric_default
string
resource_attr
string
objectives_names
sequence
task_names
sequence
hp_num_layers
dict
hp_num_cells
dict
hp_dropout_rate
dict
hp_learning_rate
dict
hp_context_length_ratio
dict
seed_col
null
categorical_cols
sequence
{ "domain_cls": "Categorical", "domain_kwargs": { "categories": [ "tanh", "relu" ] }, "sampler_cls": "Uniform", "sampler_kwargs": {} }
{ "domain_cls": "Categorical", "domain_kwargs": { "categories": [ "tanh", "relu" ] }, "sampler_cls": "Uniform", "sampler_kwargs": {} }
{ "domain_cls": "FiniteRange", "domain_kwargs": { "lower": 8, "upper": 64, "log_scale": true, "cast_int": true, "size": 4 } }
{ "domain_cls": "FiniteRange", "domain_kwargs": { "lower": 0, "upper": 0.6, "log_scale": false, "cast_int": false, "size": 3 } }
{ "domain_cls": "FiniteRange", "domain_kwargs": { "lower": 0, "upper": 0.6, "log_scale": false, "cast_int": false, "size": 3 } }
{ "domain_cls": "Categorical", "domain_kwargs": { "categories": [ 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 ] }, "sampler_cls": "Uniform", "sampler_kwargs": {} }
{ "domain_cls": "Categorical", "domain_kwargs": { "categories": [ "cosine", "const" ] }, "sampler_cls": "Uniform", "sampler_kwargs": {} }
{ "domain_cls": "FiniteRange", "domain_kwargs": { "lower": 16, "upper": 512, "log_scale": true, "cast_int": true, "size": 6 } }
{ "domain_cls": "FiniteRange", "domain_kwargs": { "lower": 16, "upper": 512, "log_scale": true, "cast_int": true, "size": 6 } }
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
{ "domain_cls": "Integer", "domain_kwargs": { "lower": 1, "upper": 100 }, "sampler_cls": "Uniform", "sampler_kwargs": {} }
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
metric_elapsed_time
metric_valid_loss
hp_epoch
[ "metric_valid_loss", "metric_train_loss", "metric_final_test_error", "metric_n_params", "metric_elapsed_time" ]
[ "protein_structure", "naval_propulsion", "parkinsons_telemonitoring", "slice_localization" ]
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
{ "domain_cls": "Integer", "domain_kwargs": { "lower": 2, "upper": 4 }, "sampler_cls": "Uniform", "sampler_kwargs": {} }
{ "domain_cls": "Integer", "domain_kwargs": { "lower": 10, "upper": 10000 }, "sampler_cls": "LogUniform", "sampler_kwargs": { "base": 2.718281828459045 } }
{ "domain_cls": "Float", "domain_kwargs": { "lower": 0.01, "upper": 0.51 }, "sampler_cls": "Uniform", "sampler_kwargs": {} }
{ "domain_cls": "Float", "domain_kwargs": { "lower": 0.0001, "upper": 0.01 }, "sampler_cls": "LogUniform", "sampler_kwargs": { "base": 2.718281828459045 } }
{ "domain_cls": "Float", "domain_kwargs": { "lower": 0.05, "upper": 4 }, "sampler_cls": "LogUniform", "sampler_kwargs": { "base": 2.718281828459045 } }
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
[ "metric_CRPS", "metric_train_loss", "metric_throughput", "metric_RMSE", "metric_time" ]
[ "m4-Daily", "exchange-rate", "m4-Yearly", "solar", "m4-Monthly", "electricity", "traffic", "m4-Quarterly", "m4-Weekly", "m4-Hourly", "wiki-rolling" ]
null
null
null
null
null
null
[]
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
[ "metric_error" ]
[ "heart", "w6a", "skin_nonskin", "svmguide1", "spambase", "australian", "madelon", "german.numer", "ijcnn1", "a6a" ]
null
null
null
null
null
null
[]
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
time
val_accuracy
epoch
[ "val_accuracy", "val_balanced_accuracy", "val_cross_entropy", "test_accuracy", "test_balanced_accuracy", "test_cross_entropy", "time" ]
[ "APSFailure", "Amazon_employee_access", "Australian", "Fashion-MNIST", "KDDCup09_appetency", "MiniBooNE", "adult", "airlines", "albert", "bank-marketing", "blood-transfusion-service-center", "car", "christine", "cnae-9", "connect-4", "covertype", "credit-g", "dionis", "fabert", "helena", "higgs", "jannis", "jasmine", "jungle_chess_2pcs_raw_endgame_complete", "kc1", "kr-vs-kp", "mfeat-factors", "nomao", "numerai28.6", "phoneme", "segment", "shuttle", "sylvine", "vehicle", "volkert" ]
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
{ "domain_cls": "Integer", "domain_kwargs": { "lower": 1, "upper": 201 }, "sampler_cls": "Uniform", "sampler_kwargs": {} }
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
metric_elapsed_time
metric_valid_error
hp_epoch
[ "metric_valid_error", "metric_train_error", "metric_runtime", "metric_elapsed_time", "metric_latency", "metric_flops", "metric_params" ]
[ "cifar10", "cifar100", "ImageNet16-120" ]
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
metric_elapsed_time
metric_valid_error_rate
global_step
[ "metric_valid_error_rate", "metric_valid_ce_loss", "metric_elapsed_time" ]
[ "imagenet_resnet_batch_size_512", "uniref50_transformer_batch_size_128", "translate_wmt_xformer_translate_batch_size_64", "lm1b_transformer_batch_size_2048", "imagenet_resnet_batch_size_256", "mnist_max_pooling_cnn_tanh_batch_size_2048", "mnist_max_pooling_cnn_tanh_batch_size_256", "mnist_max_pooling_cnn_relu_batch_size_2048", "mnist_max_pooling_cnn_relu_batch_size_256", "mnist_simple_cnn_batch_size_2048", "mnist_simple_cnn_batch_size_256", "fashion_mnist_max_pooling_cnn_tanh_batch_size_2048", "fashion_mnist_max_pooling_cnn_tanh_batch_size_256", "fashion_mnist_max_pooling_cnn_relu_batch_size_2048", "fashion_mnist_max_pooling_cnn_relu_batch_size_256", "fashion_mnist_simple_cnn_batch_size_2048", "fashion_mnist_simple_cnn_batch_size_256", "svhn_no_extra_wide_resnet_batch_size_1024", "svhn_no_extra_wide_resnet_batch_size_256", "cifar100_wide_resnet_batch_size_2048", "cifar100_wide_resnet_batch_size_256", "cifar10_wide_resnet_batch_size_2048", "cifar10_wide_resnet_batch_size_256" ]
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
End of preview.
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Blackbox Repository

This dataset contains hyperparameter optimization (HPO) evaluations from several paper:

  • fcnet: Tabular benchmarks for joint architecture and hyperparameter optimization. Klein, A. and Hutter, F. 2019.
  • icml-deepar, icml-xgboost: A quantile-based approach for hyperparameter transfer learning. Salinas, D., Shen, H., and Perrone, V. 2021.
  • lcbench: Auto-PyTorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL. Lucas Zimmer, Marius Lindauer, Frank Hutter. 2020.
  • nasbench201: NAS-Bench-201: Extending the scope of reproducible neural architecture search. Dong, X. and Yang, Y. 2020.
  • pd1: Pre-trained Gaussian processes for Bayesian optimization. Wang, Z. and Dahl G. and Swersky K. and Lee C. and Mariet Z. and Nado Z. and Gilmer J. and Snoek J. and Ghahramani Z. 2021.
  • yahpo: YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter Optimization. Pfisterer F., Schneider S., Moosbauer J., Binder M., Bischl B., 2022

The evaluations can be accessed through Syne Tune HPO library by calling the following:

from syne_tune.blackbox_repository import load_blackbox

blackbox = load_blackbox("nasbench201")["cifar10"]
blackbox_hyperparameter = next(iter(blackbox.hyperparameters.to_dict(orient="records")))
print(f"First hyperparameter: {blackbox_hyperparameter}")
print(
    f"Objectives for first hyperparameters: {blackbox(configuration=blackbox_hyperparameter, fidelity=100)}"
)

# > First hyperparameter: {'hp_x0': 'avg_pool_3x3', 'hp_x1': 'nor_conv_1x1', 'hp_x2': 'skip_connect', 'hp_x3': 'nor_conv_1x1', 'hp_x4': 'skip_connect', 'hp_x5': 'skip_connect'}
# > Objective for first hyperparameters: {'metric_valid_error': 0.4177, 'metric_train_error': 0.2246, 'metric_runtime': 15.461778, 'metric_elapsed_time': 1546.179, 'metric_latency': 0.013935976, 'metric_flops': 15.64737, 'metric_params': 0.129306}

In addition, the blackboxes can be used to simulate HPO methods such as ASHA or Bayesian Optimization very fast while keeping identical results with non-simulated tuning.

The files can also be accessed directly from here.

If you are interested in having other blackboxes feel free to create an issue on Syne Tune project, we aim to grow the set over time.

Downloads last month
45