Upload blackbox yahpo-iaml_glmnet
Browse files
yahpo-iaml_glmnet/best_params_resnet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"d": 128, "d_hidden_factor": 1.0503156355832801, "hidden_dropout": 0.03915074913174817, "lr": 0.008140322329476278, "mixup": true, "n_layers": 2, "opt_tfms_alpha": false, "opt_tfms_auc": true, "opt_tfms_f1": false, "opt_tfms_ias": true, "opt_tfms_logloss": true, "opt_tfms_mec": false, "opt_tfms_mmce": false, "opt_tfms_rammodel": true, "opt_tfms_rampredict": false, "opt_tfms_ramtrain": false, "opt_tfms_s": true, "opt_tfms_timepredict": false, "opt_tfms_timetrain": true, "opt_tfms_trainsize": true, "tfms_auc": "tlog", "tfms_ias": "tlog", "tfms_logloss": "tlog", "tfms_rammodel": "tnexp", "tfms_s": "tlog", "tfms_timetrain": "tlog", "tfms_trainsize": "tlog", "use_residual_dropout": false}
|
yahpo-iaml_glmnet/config_space.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"hyperparameters": [
|
3 |
+
{
|
4 |
+
"name": "alpha",
|
5 |
+
"type": "uniform_float",
|
6 |
+
"log": false,
|
7 |
+
"lower": 0.0,
|
8 |
+
"upper": 1.0,
|
9 |
+
"default": 0.5
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"name": "s",
|
13 |
+
"type": "uniform_float",
|
14 |
+
"log": true,
|
15 |
+
"lower": 0.00010000000000000009,
|
16 |
+
"upper": 999.9999999999998,
|
17 |
+
"default": 0.316227766
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"name": "task_id",
|
21 |
+
"type": "categorical",
|
22 |
+
"choices": [
|
23 |
+
"40981",
|
24 |
+
"41146",
|
25 |
+
"1489",
|
26 |
+
"1067"
|
27 |
+
],
|
28 |
+
"default": "40981",
|
29 |
+
"probabilities": null
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"name": "trainsize",
|
33 |
+
"type": "uniform_float",
|
34 |
+
"log": false,
|
35 |
+
"lower": 0.03,
|
36 |
+
"upper": 1.0,
|
37 |
+
"default": 0.525
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"conditions": [],
|
41 |
+
"forbiddens": [],
|
42 |
+
"python_module_version": "0.4.19",
|
43 |
+
"json_format_version": 0.2
|
44 |
+
}
|
yahpo-iaml_glmnet/encoding.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"task_id": {"#na#": 0, "1067": 1, "1489": 2, "40981": 3, "41146": 4}}
|
yahpo-iaml_glmnet/metadata.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
|
yahpo-iaml_glmnet/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c9b1541e37604993098ba23b04695bfe38d009108e9de0a26c3f161265b5a7a
|
3 |
+
size 867133
|
yahpo-iaml_glmnet/param_set.R
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
search_space = ps(
|
2 |
+
alpha = p_dbl(lower = 0, upper = 1),
|
3 |
+
s = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x)),
|
4 |
+
trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
|
5 |
+
task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
|
6 |
+
)
|
7 |
+
|
8 |
+
domain = ps(
|
9 |
+
alpha = p_dbl(lower = 0, upper = 1),
|
10 |
+
s = p_dbl(lower = 1e-4, upper = 1000),
|
11 |
+
trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
|
12 |
+
task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
|
13 |
+
)
|
14 |
+
|
15 |
+
codomain = ps(
|
16 |
+
mmce = p_dbl(lower = 0, upper = 1, tags = "minimize"),
|
17 |
+
f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
18 |
+
auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
19 |
+
logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
20 |
+
ramtrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
21 |
+
rammodel = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
22 |
+
rampredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
23 |
+
timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
24 |
+
timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
25 |
+
mec = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
26 |
+
ias = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
27 |
+
nf = p_dbl(lower = 0, upper = Inf, tags = "minimize")
|
28 |
+
)
|