geoalgo commited on
Commit
328a1a9
·
verified ·
1 Parent(s): a2a8ae0

Upload blackbox yahpo-iaml_xgboost

Browse files
yahpo/iaml_xgboost/best_params_resnet.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"d": 384, "d_hidden_factor": 2.7930060842224904, "hidden_dropout": 0.09343650341288146, "lr": 0.0007388150356328408, "mixup": false, "n_layers": 6, "opt_tfms_alpha": true, "opt_tfms_auc": true, "opt_tfms_colsample_bylevel": true, "opt_tfms_colsample_bytree": true, "opt_tfms_eta": false, "opt_tfms_f1": false, "opt_tfms_gamma": false, "opt_tfms_ias": false, "opt_tfms_lambda": true, "opt_tfms_logloss": false, "opt_tfms_max_depth": false, "opt_tfms_mec": false, "opt_tfms_min_child_weight": true, "opt_tfms_mmce": true, "opt_tfms_nrounds": true, "opt_tfms_rammodel": false, "opt_tfms_rampredict": true, "opt_tfms_ramtrain": true, "opt_tfms_rate_drop": false, "opt_tfms_skip_drop": true, "opt_tfms_subsample": true, "opt_tfms_timepredict": false, "opt_tfms_timetrain": false, "opt_tfms_trainsize": false, "tfms_alpha": "tlog", "tfms_auc": "tnexp", "tfms_colsample_bylevel": "tnexp", "tfms_colsample_bytree": "tnexp", "tfms_lambda": "tlog", "tfms_min_child_weight": "tnexp", "tfms_mmce": "tlog", "tfms_nrounds": "tlog", "tfms_rampredict": "tnexp", "tfms_ramtrain": "tnexp", "tfms_skip_drop": "tnexp", "tfms_subsample": "tlog", "use_residual_dropout": false}
yahpo/iaml_xgboost/config_space.json ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "hyperparameters": [
3
+ {
4
+ "name": "alpha",
5
+ "type": "uniform_float",
6
+ "log": true,
7
+ "lower": 0.00010000000000000009,
8
+ "upper": 999.9999999999998,
9
+ "default": 0.316227766
10
+ },
11
+ {
12
+ "name": "booster",
13
+ "type": "categorical",
14
+ "choices": [
15
+ "gblinear",
16
+ "gbtree",
17
+ "dart"
18
+ ],
19
+ "default": "gblinear",
20
+ "probabilities": null
21
+ },
22
+ {
23
+ "name": "lambda",
24
+ "type": "uniform_float",
25
+ "log": true,
26
+ "lower": 0.00010000000000000009,
27
+ "upper": 999.9999999999998,
28
+ "default": 0.316227766
29
+ },
30
+ {
31
+ "name": "nrounds",
32
+ "type": "uniform_int",
33
+ "log": true,
34
+ "lower": 3,
35
+ "upper": 2000,
36
+ "default": 77
37
+ },
38
+ {
39
+ "name": "subsample",
40
+ "type": "uniform_float",
41
+ "log": false,
42
+ "lower": 0.1,
43
+ "upper": 1.0,
44
+ "default": 0.55
45
+ },
46
+ {
47
+ "name": "task_id",
48
+ "type": "categorical",
49
+ "choices": [
50
+ "40981",
51
+ "41146",
52
+ "1489",
53
+ "1067"
54
+ ],
55
+ "default": "40981",
56
+ "probabilities": null
57
+ },
58
+ {
59
+ "name": "trainsize",
60
+ "type": "uniform_float",
61
+ "log": false,
62
+ "lower": 0.03,
63
+ "upper": 1.0,
64
+ "default": 0.525
65
+ },
66
+ {
67
+ "name": "colsample_bylevel",
68
+ "type": "uniform_float",
69
+ "log": false,
70
+ "lower": 0.01,
71
+ "upper": 1.0,
72
+ "default": 0.505
73
+ },
74
+ {
75
+ "name": "colsample_bytree",
76
+ "type": "uniform_float",
77
+ "log": false,
78
+ "lower": 0.01,
79
+ "upper": 1.0,
80
+ "default": 0.505
81
+ },
82
+ {
83
+ "name": "eta",
84
+ "type": "uniform_float",
85
+ "log": true,
86
+ "lower": 0.00010000000000000009,
87
+ "upper": 1.0,
88
+ "default": 0.01
89
+ },
90
+ {
91
+ "name": "gamma",
92
+ "type": "uniform_float",
93
+ "log": true,
94
+ "lower": 0.00010000000000000009,
95
+ "upper": 6.999999999999999,
96
+ "default": 0.0264575131
97
+ },
98
+ {
99
+ "name": "max_depth",
100
+ "type": "uniform_int",
101
+ "log": false,
102
+ "lower": 1,
103
+ "upper": 15,
104
+ "default": 8
105
+ },
106
+ {
107
+ "name": "min_child_weight",
108
+ "type": "uniform_float",
109
+ "log": true,
110
+ "lower": 2.718281828459045,
111
+ "upper": 149.99999999999997,
112
+ "default": 20.1926292064
113
+ },
114
+ {
115
+ "name": "rate_drop",
116
+ "type": "uniform_float",
117
+ "log": false,
118
+ "lower": 0.0,
119
+ "upper": 1.0,
120
+ "default": 0.5
121
+ },
122
+ {
123
+ "name": "skip_drop",
124
+ "type": "uniform_float",
125
+ "log": false,
126
+ "lower": 0.0,
127
+ "upper": 1.0,
128
+ "default": 0.5
129
+ }
130
+ ],
131
+ "conditions": [
132
+ {
133
+ "child": "colsample_bylevel",
134
+ "parent": "booster",
135
+ "type": "IN",
136
+ "values": [
137
+ "dart",
138
+ "gbtree"
139
+ ]
140
+ },
141
+ {
142
+ "child": "colsample_bytree",
143
+ "parent": "booster",
144
+ "type": "IN",
145
+ "values": [
146
+ "dart",
147
+ "gbtree"
148
+ ]
149
+ },
150
+ {
151
+ "child": "eta",
152
+ "parent": "booster",
153
+ "type": "IN",
154
+ "values": [
155
+ "dart",
156
+ "gbtree"
157
+ ]
158
+ },
159
+ {
160
+ "child": "gamma",
161
+ "parent": "booster",
162
+ "type": "IN",
163
+ "values": [
164
+ "dart",
165
+ "gbtree"
166
+ ]
167
+ },
168
+ {
169
+ "child": "max_depth",
170
+ "parent": "booster",
171
+ "type": "IN",
172
+ "values": [
173
+ "dart",
174
+ "gbtree"
175
+ ]
176
+ },
177
+ {
178
+ "child": "min_child_weight",
179
+ "parent": "booster",
180
+ "type": "IN",
181
+ "values": [
182
+ "dart",
183
+ "gbtree"
184
+ ]
185
+ },
186
+ {
187
+ "child": "rate_drop",
188
+ "parent": "booster",
189
+ "type": "EQ",
190
+ "value": "dart"
191
+ },
192
+ {
193
+ "child": "skip_drop",
194
+ "parent": "booster",
195
+ "type": "EQ",
196
+ "value": "dart"
197
+ }
198
+ ],
199
+ "forbiddens": [],
200
+ "python_module_version": "0.4.19",
201
+ "json_format_version": 0.2
202
+ }
yahpo/iaml_xgboost/encoding.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"booster": {"#na#": 0, "dart": 1, "gblinear": 2, "gbtree": 3}, "task_id": {"#na#": 0, "1067": 1, "1489": 2, "40981": 3, "41146": 4}}
yahpo/iaml_xgboost/metadata.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
yahpo/iaml_xgboost/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd51307d61b7cd746f5cee82b174aeecf05f9459da07e36ca8bf267d8d2d4d94
3
+ size 29827930
yahpo/iaml_xgboost/param_set.R ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ search_space = ps(
2
+ booster = p_fct(levels = c("gblinear", "gbtree", "dart")),
3
+ nrounds = p_dbl(lower = 1, upper = log(2000), tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))),
4
+ eta = p_dbl(lower = log(1e-4), upper = log(1), tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")),
5
+ gamma = p_dbl(lower = log(1e-4), upper = log(7), tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")),
6
+ lambda = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x)),
7
+ alpha = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x)),
8
+ subsample = p_dbl(lower = 0.1, upper = 1),
9
+ max_depth = p_int(lower = 1L, upper = 15L, depends = booster %in% c("dart", "gbtree")),
10
+ min_child_weight = p_dbl(lower = 1, upper = log(150), tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")),
11
+ colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
12
+ colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
13
+ rate_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
14
+ skip_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
15
+ trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
16
+ task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
17
+ )
18
+
19
+ domain = ps(
20
+ booster = p_fct(levels = c("gblinear", "gbtree", "dart")),
21
+ nrounds = p_int(lower = 3, upper = 2000),
22
+ eta = p_dbl(lower = 1e-4, upper = 1, depends = booster %in% c("dart", "gbtree")),
23
+ gamma = p_dbl(lower = 1e-4, upper = 7, depends = booster %in% c("dart", "gbtree")),
24
+ lambda = p_dbl(lower = 1e-4, upper = 1000),
25
+ alpha = p_dbl(lower = 1e-4, upper = 1000),
26
+ subsample = p_dbl(lower = 0.1, upper = 1),
27
+ max_depth = p_int(lower = 1L, upper = 15L, depends = booster %in% c("dart", "gbtree")),
28
+ min_child_weight = p_dbl(lower = exp(1), upper = 150, depends = booster %in% c("dart", "gbtree")),
29
+ colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
30
+ colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
31
+ rate_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
32
+ skip_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
33
+ trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
34
+ task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
35
+ )
36
+
37
+ codomain = ps(
38
+ mmce = p_dbl(lower = 0, upper = 1, tags = "minimize"),
39
+ f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
40
+ auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
41
+ logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
42
+ ramtrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
43
+ rammodel = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
44
+ rampredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
45
+ timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
46
+ timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
47
+ mec = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
48
+ ias = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
49
+ nf = p_dbl(lower = 0, upper = Inf, tags = "minimize")
50
+ )