geoalgo commited on
Commit
64a5eed
·
verified ·
1 Parent(s): 36d600d

Upload blackbox yahpo-nb301

Browse files
yahpo/nb301/LICENSE-2.0.txt ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
yahpo/nb301/README.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ data.csv and data.rds are preprocessed versions of the following dataset released under the Apache 2.0 license:
2
+ https://doi.org/10.6084/m9.figshare.11662422.v1
3
+ See LICENSE-2.0.txt
yahpo/nb301/best_params_resnet.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"d": 512, "d_hidden_factor": 1.548201511416969, "hidden_dropout": 0.37412629237004996, "lr": 0.007735302602100844, "mixup": false, "n_layers": 7, "use_residual_dropout": false}
yahpo/nb301/config_space.json ADDED
@@ -0,0 +1,767 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "hyperparameters": [
3
+ {
4
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_0",
5
+ "type": "categorical",
6
+ "choices": [
7
+ "max_pool_3x3",
8
+ "avg_pool_3x3",
9
+ "skip_connect",
10
+ "sep_conv_3x3",
11
+ "sep_conv_5x5",
12
+ "dil_conv_3x3",
13
+ "dil_conv_5x5"
14
+ ],
15
+ "default": "max_pool_3x3",
16
+ "probabilities": null
17
+ },
18
+ {
19
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_1",
20
+ "type": "categorical",
21
+ "choices": [
22
+ "max_pool_3x3",
23
+ "avg_pool_3x3",
24
+ "skip_connect",
25
+ "sep_conv_3x3",
26
+ "sep_conv_5x5",
27
+ "dil_conv_3x3",
28
+ "dil_conv_5x5"
29
+ ],
30
+ "default": "max_pool_3x3",
31
+ "probabilities": null
32
+ },
33
+ {
34
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_0",
35
+ "type": "categorical",
36
+ "choices": [
37
+ "max_pool_3x3",
38
+ "avg_pool_3x3",
39
+ "skip_connect",
40
+ "sep_conv_3x3",
41
+ "sep_conv_5x5",
42
+ "dil_conv_3x3",
43
+ "dil_conv_5x5"
44
+ ],
45
+ "default": "max_pool_3x3",
46
+ "probabilities": null
47
+ },
48
+ {
49
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_1",
50
+ "type": "categorical",
51
+ "choices": [
52
+ "max_pool_3x3",
53
+ "avg_pool_3x3",
54
+ "skip_connect",
55
+ "sep_conv_3x3",
56
+ "sep_conv_5x5",
57
+ "dil_conv_3x3",
58
+ "dil_conv_5x5"
59
+ ],
60
+ "default": "max_pool_3x3",
61
+ "probabilities": null
62
+ },
63
+ {
64
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_3",
65
+ "type": "categorical",
66
+ "choices": [
67
+ "0_1",
68
+ "0_2",
69
+ "1_2"
70
+ ],
71
+ "default": "0_1",
72
+ "probabilities": null
73
+ },
74
+ {
75
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_4",
76
+ "type": "categorical",
77
+ "choices": [
78
+ "0_1",
79
+ "0_2",
80
+ "0_3",
81
+ "1_2",
82
+ "1_3",
83
+ "2_3"
84
+ ],
85
+ "default": "0_1",
86
+ "probabilities": null
87
+ },
88
+ {
89
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5",
90
+ "type": "categorical",
91
+ "choices": [
92
+ "0_1",
93
+ "0_2",
94
+ "0_3",
95
+ "0_4",
96
+ "1_2",
97
+ "1_3",
98
+ "1_4",
99
+ "2_3",
100
+ "2_4",
101
+ "3_4"
102
+ ],
103
+ "default": "0_1",
104
+ "probabilities": null
105
+ },
106
+ {
107
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_3",
108
+ "type": "categorical",
109
+ "choices": [
110
+ "0_1",
111
+ "0_2",
112
+ "1_2"
113
+ ],
114
+ "default": "0_1",
115
+ "probabilities": null
116
+ },
117
+ {
118
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_4",
119
+ "type": "categorical",
120
+ "choices": [
121
+ "0_1",
122
+ "0_2",
123
+ "0_3",
124
+ "1_2",
125
+ "1_3",
126
+ "2_3"
127
+ ],
128
+ "default": "0_1",
129
+ "probabilities": null
130
+ },
131
+ {
132
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5",
133
+ "type": "categorical",
134
+ "choices": [
135
+ "0_1",
136
+ "0_2",
137
+ "0_3",
138
+ "0_4",
139
+ "1_2",
140
+ "1_3",
141
+ "1_4",
142
+ "2_3",
143
+ "2_4",
144
+ "3_4"
145
+ ],
146
+ "default": "0_1",
147
+ "probabilities": null
148
+ },
149
+ {
150
+ "name": "epoch",
151
+ "type": "uniform_int",
152
+ "log": false,
153
+ "lower": 1,
154
+ "upper": 98,
155
+ "default": 1
156
+ },
157
+ {
158
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_10",
159
+ "type": "categorical",
160
+ "choices": [
161
+ "max_pool_3x3",
162
+ "avg_pool_3x3",
163
+ "skip_connect",
164
+ "sep_conv_3x3",
165
+ "sep_conv_5x5",
166
+ "dil_conv_3x3",
167
+ "dil_conv_5x5"
168
+ ],
169
+ "default": "max_pool_3x3",
170
+ "probabilities": null
171
+ },
172
+ {
173
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_11",
174
+ "type": "categorical",
175
+ "choices": [
176
+ "max_pool_3x3",
177
+ "avg_pool_3x3",
178
+ "skip_connect",
179
+ "sep_conv_3x3",
180
+ "sep_conv_5x5",
181
+ "dil_conv_3x3",
182
+ "dil_conv_5x5"
183
+ ],
184
+ "default": "max_pool_3x3",
185
+ "probabilities": null
186
+ },
187
+ {
188
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_12",
189
+ "type": "categorical",
190
+ "choices": [
191
+ "max_pool_3x3",
192
+ "avg_pool_3x3",
193
+ "skip_connect",
194
+ "sep_conv_3x3",
195
+ "sep_conv_5x5",
196
+ "dil_conv_3x3",
197
+ "dil_conv_5x5"
198
+ ],
199
+ "default": "max_pool_3x3",
200
+ "probabilities": null
201
+ },
202
+ {
203
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_13",
204
+ "type": "categorical",
205
+ "choices": [
206
+ "max_pool_3x3",
207
+ "avg_pool_3x3",
208
+ "skip_connect",
209
+ "sep_conv_3x3",
210
+ "sep_conv_5x5",
211
+ "dil_conv_3x3",
212
+ "dil_conv_5x5"
213
+ ],
214
+ "default": "max_pool_3x3",
215
+ "probabilities": null
216
+ },
217
+ {
218
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_2",
219
+ "type": "categorical",
220
+ "choices": [
221
+ "max_pool_3x3",
222
+ "avg_pool_3x3",
223
+ "skip_connect",
224
+ "sep_conv_3x3",
225
+ "sep_conv_5x5",
226
+ "dil_conv_3x3",
227
+ "dil_conv_5x5"
228
+ ],
229
+ "default": "max_pool_3x3",
230
+ "probabilities": null
231
+ },
232
+ {
233
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_3",
234
+ "type": "categorical",
235
+ "choices": [
236
+ "max_pool_3x3",
237
+ "avg_pool_3x3",
238
+ "skip_connect",
239
+ "sep_conv_3x3",
240
+ "sep_conv_5x5",
241
+ "dil_conv_3x3",
242
+ "dil_conv_5x5"
243
+ ],
244
+ "default": "max_pool_3x3",
245
+ "probabilities": null
246
+ },
247
+ {
248
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_4",
249
+ "type": "categorical",
250
+ "choices": [
251
+ "max_pool_3x3",
252
+ "avg_pool_3x3",
253
+ "skip_connect",
254
+ "sep_conv_3x3",
255
+ "sep_conv_5x5",
256
+ "dil_conv_3x3",
257
+ "dil_conv_5x5"
258
+ ],
259
+ "default": "max_pool_3x3",
260
+ "probabilities": null
261
+ },
262
+ {
263
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_5",
264
+ "type": "categorical",
265
+ "choices": [
266
+ "max_pool_3x3",
267
+ "avg_pool_3x3",
268
+ "skip_connect",
269
+ "sep_conv_3x3",
270
+ "sep_conv_5x5",
271
+ "dil_conv_3x3",
272
+ "dil_conv_5x5"
273
+ ],
274
+ "default": "max_pool_3x3",
275
+ "probabilities": null
276
+ },
277
+ {
278
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_6",
279
+ "type": "categorical",
280
+ "choices": [
281
+ "max_pool_3x3",
282
+ "avg_pool_3x3",
283
+ "skip_connect",
284
+ "sep_conv_3x3",
285
+ "sep_conv_5x5",
286
+ "dil_conv_3x3",
287
+ "dil_conv_5x5"
288
+ ],
289
+ "default": "max_pool_3x3",
290
+ "probabilities": null
291
+ },
292
+ {
293
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_7",
294
+ "type": "categorical",
295
+ "choices": [
296
+ "max_pool_3x3",
297
+ "avg_pool_3x3",
298
+ "skip_connect",
299
+ "sep_conv_3x3",
300
+ "sep_conv_5x5",
301
+ "dil_conv_3x3",
302
+ "dil_conv_5x5"
303
+ ],
304
+ "default": "max_pool_3x3",
305
+ "probabilities": null
306
+ },
307
+ {
308
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_8",
309
+ "type": "categorical",
310
+ "choices": [
311
+ "max_pool_3x3",
312
+ "avg_pool_3x3",
313
+ "skip_connect",
314
+ "sep_conv_3x3",
315
+ "sep_conv_5x5",
316
+ "dil_conv_3x3",
317
+ "dil_conv_5x5"
318
+ ],
319
+ "default": "max_pool_3x3",
320
+ "probabilities": null
321
+ },
322
+ {
323
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_9",
324
+ "type": "categorical",
325
+ "choices": [
326
+ "max_pool_3x3",
327
+ "avg_pool_3x3",
328
+ "skip_connect",
329
+ "sep_conv_3x3",
330
+ "sep_conv_5x5",
331
+ "dil_conv_3x3",
332
+ "dil_conv_5x5"
333
+ ],
334
+ "default": "max_pool_3x3",
335
+ "probabilities": null
336
+ },
337
+ {
338
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_10",
339
+ "type": "categorical",
340
+ "choices": [
341
+ "max_pool_3x3",
342
+ "avg_pool_3x3",
343
+ "skip_connect",
344
+ "sep_conv_3x3",
345
+ "sep_conv_5x5",
346
+ "dil_conv_3x3",
347
+ "dil_conv_5x5"
348
+ ],
349
+ "default": "max_pool_3x3",
350
+ "probabilities": null
351
+ },
352
+ {
353
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_11",
354
+ "type": "categorical",
355
+ "choices": [
356
+ "max_pool_3x3",
357
+ "avg_pool_3x3",
358
+ "skip_connect",
359
+ "sep_conv_3x3",
360
+ "sep_conv_5x5",
361
+ "dil_conv_3x3",
362
+ "dil_conv_5x5"
363
+ ],
364
+ "default": "max_pool_3x3",
365
+ "probabilities": null
366
+ },
367
+ {
368
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_12",
369
+ "type": "categorical",
370
+ "choices": [
371
+ "max_pool_3x3",
372
+ "avg_pool_3x3",
373
+ "skip_connect",
374
+ "sep_conv_3x3",
375
+ "sep_conv_5x5",
376
+ "dil_conv_3x3",
377
+ "dil_conv_5x5"
378
+ ],
379
+ "default": "max_pool_3x3",
380
+ "probabilities": null
381
+ },
382
+ {
383
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_13",
384
+ "type": "categorical",
385
+ "choices": [
386
+ "max_pool_3x3",
387
+ "avg_pool_3x3",
388
+ "skip_connect",
389
+ "sep_conv_3x3",
390
+ "sep_conv_5x5",
391
+ "dil_conv_3x3",
392
+ "dil_conv_5x5"
393
+ ],
394
+ "default": "max_pool_3x3",
395
+ "probabilities": null
396
+ },
397
+ {
398
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_2",
399
+ "type": "categorical",
400
+ "choices": [
401
+ "max_pool_3x3",
402
+ "avg_pool_3x3",
403
+ "skip_connect",
404
+ "sep_conv_3x3",
405
+ "sep_conv_5x5",
406
+ "dil_conv_3x3",
407
+ "dil_conv_5x5"
408
+ ],
409
+ "default": "max_pool_3x3",
410
+ "probabilities": null
411
+ },
412
+ {
413
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_3",
414
+ "type": "categorical",
415
+ "choices": [
416
+ "max_pool_3x3",
417
+ "avg_pool_3x3",
418
+ "skip_connect",
419
+ "sep_conv_3x3",
420
+ "sep_conv_5x5",
421
+ "dil_conv_3x3",
422
+ "dil_conv_5x5"
423
+ ],
424
+ "default": "max_pool_3x3",
425
+ "probabilities": null
426
+ },
427
+ {
428
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_4",
429
+ "type": "categorical",
430
+ "choices": [
431
+ "max_pool_3x3",
432
+ "avg_pool_3x3",
433
+ "skip_connect",
434
+ "sep_conv_3x3",
435
+ "sep_conv_5x5",
436
+ "dil_conv_3x3",
437
+ "dil_conv_5x5"
438
+ ],
439
+ "default": "max_pool_3x3",
440
+ "probabilities": null
441
+ },
442
+ {
443
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_5",
444
+ "type": "categorical",
445
+ "choices": [
446
+ "max_pool_3x3",
447
+ "avg_pool_3x3",
448
+ "skip_connect",
449
+ "sep_conv_3x3",
450
+ "sep_conv_5x5",
451
+ "dil_conv_3x3",
452
+ "dil_conv_5x5"
453
+ ],
454
+ "default": "max_pool_3x3",
455
+ "probabilities": null
456
+ },
457
+ {
458
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_6",
459
+ "type": "categorical",
460
+ "choices": [
461
+ "max_pool_3x3",
462
+ "avg_pool_3x3",
463
+ "skip_connect",
464
+ "sep_conv_3x3",
465
+ "sep_conv_5x5",
466
+ "dil_conv_3x3",
467
+ "dil_conv_5x5"
468
+ ],
469
+ "default": "max_pool_3x3",
470
+ "probabilities": null
471
+ },
472
+ {
473
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_7",
474
+ "type": "categorical",
475
+ "choices": [
476
+ "max_pool_3x3",
477
+ "avg_pool_3x3",
478
+ "skip_connect",
479
+ "sep_conv_3x3",
480
+ "sep_conv_5x5",
481
+ "dil_conv_3x3",
482
+ "dil_conv_5x5"
483
+ ],
484
+ "default": "max_pool_3x3",
485
+ "probabilities": null
486
+ },
487
+ {
488
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_8",
489
+ "type": "categorical",
490
+ "choices": [
491
+ "max_pool_3x3",
492
+ "avg_pool_3x3",
493
+ "skip_connect",
494
+ "sep_conv_3x3",
495
+ "sep_conv_5x5",
496
+ "dil_conv_3x3",
497
+ "dil_conv_5x5"
498
+ ],
499
+ "default": "max_pool_3x3",
500
+ "probabilities": null
501
+ },
502
+ {
503
+ "name": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_9",
504
+ "type": "categorical",
505
+ "choices": [
506
+ "max_pool_3x3",
507
+ "avg_pool_3x3",
508
+ "skip_connect",
509
+ "sep_conv_3x3",
510
+ "sep_conv_5x5",
511
+ "dil_conv_3x3",
512
+ "dil_conv_5x5"
513
+ ],
514
+ "default": "max_pool_3x3",
515
+ "probabilities": null
516
+ }
517
+ ],
518
+ "conditions": [
519
+ {
520
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_2",
521
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_3",
522
+ "type": "IN",
523
+ "values": [
524
+ "0_1",
525
+ "0_2"
526
+ ]
527
+ },
528
+ {
529
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_3",
530
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_3",
531
+ "type": "IN",
532
+ "values": [
533
+ "0_1",
534
+ "1_2"
535
+ ]
536
+ },
537
+ {
538
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_4",
539
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_3",
540
+ "type": "IN",
541
+ "values": [
542
+ "0_2",
543
+ "1_2"
544
+ ]
545
+ },
546
+ {
547
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_5",
548
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_4",
549
+ "type": "IN",
550
+ "values": [
551
+ "0_1",
552
+ "0_2",
553
+ "0_3"
554
+ ]
555
+ },
556
+ {
557
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_6",
558
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_4",
559
+ "type": "IN",
560
+ "values": [
561
+ "0_1",
562
+ "1_2",
563
+ "1_3"
564
+ ]
565
+ },
566
+ {
567
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_7",
568
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_4",
569
+ "type": "IN",
570
+ "values": [
571
+ "0_2",
572
+ "1_2",
573
+ "2_3"
574
+ ]
575
+ },
576
+ {
577
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_8",
578
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_4",
579
+ "type": "IN",
580
+ "values": [
581
+ "0_3",
582
+ "1_3",
583
+ "2_3"
584
+ ]
585
+ },
586
+ {
587
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_10",
588
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5",
589
+ "type": "IN",
590
+ "values": [
591
+ "0_1",
592
+ "1_2",
593
+ "1_3",
594
+ "1_4"
595
+ ]
596
+ },
597
+ {
598
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_11",
599
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5",
600
+ "type": "IN",
601
+ "values": [
602
+ "0_2",
603
+ "1_2",
604
+ "2_3",
605
+ "2_4"
606
+ ]
607
+ },
608
+ {
609
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_12",
610
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5",
611
+ "type": "IN",
612
+ "values": [
613
+ "0_3",
614
+ "1_3",
615
+ "2_3",
616
+ "3_4"
617
+ ]
618
+ },
619
+ {
620
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_13",
621
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5",
622
+ "type": "IN",
623
+ "values": [
624
+ "0_4",
625
+ "1_4",
626
+ "2_4",
627
+ "3_4"
628
+ ]
629
+ },
630
+ {
631
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_9",
632
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5",
633
+ "type": "IN",
634
+ "values": [
635
+ "0_1",
636
+ "0_2",
637
+ "0_3",
638
+ "0_4"
639
+ ]
640
+ },
641
+ {
642
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_2",
643
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_3",
644
+ "type": "IN",
645
+ "values": [
646
+ "0_1",
647
+ "0_2"
648
+ ]
649
+ },
650
+ {
651
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_3",
652
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_3",
653
+ "type": "IN",
654
+ "values": [
655
+ "0_1",
656
+ "1_2"
657
+ ]
658
+ },
659
+ {
660
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_4",
661
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_3",
662
+ "type": "IN",
663
+ "values": [
664
+ "0_2",
665
+ "1_2"
666
+ ]
667
+ },
668
+ {
669
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_5",
670
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_4",
671
+ "type": "IN",
672
+ "values": [
673
+ "0_1",
674
+ "0_2",
675
+ "0_3"
676
+ ]
677
+ },
678
+ {
679
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_6",
680
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_4",
681
+ "type": "IN",
682
+ "values": [
683
+ "0_1",
684
+ "1_2",
685
+ "1_3"
686
+ ]
687
+ },
688
+ {
689
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_7",
690
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_4",
691
+ "type": "IN",
692
+ "values": [
693
+ "0_2",
694
+ "1_2",
695
+ "2_3"
696
+ ]
697
+ },
698
+ {
699
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_8",
700
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_4",
701
+ "type": "IN",
702
+ "values": [
703
+ "0_3",
704
+ "1_3",
705
+ "2_3"
706
+ ]
707
+ },
708
+ {
709
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_10",
710
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5",
711
+ "type": "IN",
712
+ "values": [
713
+ "0_1",
714
+ "1_2",
715
+ "1_3",
716
+ "1_4"
717
+ ]
718
+ },
719
+ {
720
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_11",
721
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5",
722
+ "type": "IN",
723
+ "values": [
724
+ "0_2",
725
+ "1_2",
726
+ "2_3",
727
+ "2_4"
728
+ ]
729
+ },
730
+ {
731
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_12",
732
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5",
733
+ "type": "IN",
734
+ "values": [
735
+ "0_3",
736
+ "1_3",
737
+ "2_3",
738
+ "3_4"
739
+ ]
740
+ },
741
+ {
742
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_13",
743
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5",
744
+ "type": "IN",
745
+ "values": [
746
+ "0_4",
747
+ "1_4",
748
+ "2_4",
749
+ "3_4"
750
+ ]
751
+ },
752
+ {
753
+ "child": "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_9",
754
+ "parent": "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5",
755
+ "type": "IN",
756
+ "values": [
757
+ "0_1",
758
+ "0_2",
759
+ "0_3",
760
+ "0_4"
761
+ ]
762
+ }
763
+ ],
764
+ "forbiddens": [],
765
+ "python_module_version": "0.4.18",
766
+ "json_format_version": 0.2
767
+ }
yahpo/nb301/encoding.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_0": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_1": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_10": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_11": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_12": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_13": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_2": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_3": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_4": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_5": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_6": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_7": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_8": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_9": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_0": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_1": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_10": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_11": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_12": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_13": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_2": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_3": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_4": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_5": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_6": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_7": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_8": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_9": {"#na#": 0, "avg_pool_3x3": 1, "dil_conv_3x3": 2, "dil_conv_5x5": 3, "max_pool_3x3": 4, "sep_conv_3x3": 5, "sep_conv_5x5": 6, "skip_connect": 7}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_3": {"#na#": 0, "0_1": 1, "0_2": 2, "1_2": 3}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_4": {"#na#": 0, "0_1": 1, "0_2": 2, "0_3": 3, "1_2": 4, "1_3": 5, "2_3": 6}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5": {"#na#": 0, "0_1": 1, "0_2": 2, "0_3": 3, "0_4": 4, "1_2": 5, "1_3": 6, "1_4": 7, "2_3": 8, "2_4": 9, "3_4": 10}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_3": {"#na#": 0, "0_1": 1, "0_2": 2, "1_2": 3}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_4": {"#na#": 0, "0_1": 1, "0_2": 2, "0_3": 3, "1_2": 4, "1_3": 5, "2_3": 6}, "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5": {"#na#": 0, "0_1": 1, "0_2": 2, "0_3": 3, "0_4": 4, "1_2": 5, "1_3": 6, "1_4": 7, "2_3": 8, "2_4": 9, "3_4": 10}}
yahpo/nb301/metadata.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
yahpo/nb301/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0679a0f389188732b774019106a23c3aef2b2b24f156bffc6d1be85f70bec1f
3
+ size 34912809
yahpo/nb301/param_set.R ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ps = ParamSet$new(list(
2
+ ParamFct$new("dataset", levels = c("CIFAR10"), tags = "task_id"),
3
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_0",
4
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
5
+ default = "max_pool_3x3"),
6
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_1",
7
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
8
+ default = "max_pool_3x3"),
9
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_2",
10
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
11
+ default = "max_pool_3x3"),
12
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_3",
13
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
14
+ default = "max_pool_3x3"),
15
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_4",
16
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
17
+ default = "max_pool_3x3"),
18
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_5",
19
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
20
+ default = "max_pool_3x3"),
21
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_6",
22
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
23
+ default = "max_pool_3x3"),
24
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_7",
25
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
26
+ default = "max_pool_3x3"),
27
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_8",
28
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
29
+ default = "max_pool_3x3"),
30
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_9",
31
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
32
+ default = "max_pool_3x3"),
33
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_10",
34
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
35
+ default = "max_pool_3x3"),
36
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_11",
37
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
38
+ default = "max_pool_3x3"),
39
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_12",
40
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
41
+ default = "max_pool_3x3"),
42
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_13",
43
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
44
+ default = "max_pool_3x3"),
45
+
46
+
47
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_0",
48
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
49
+ default = "max_pool_3x3"),
50
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_1",
51
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
52
+ default = "max_pool_3x3"),
53
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_2",
54
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
55
+ default = "max_pool_3x3"),
56
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_3",
57
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
58
+ default = "max_pool_3x3"),
59
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_4",
60
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
61
+ default = "max_pool_3x3"),
62
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_5",
63
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
64
+ default = "max_pool_3x3"),
65
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_6",
66
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
67
+ default = "max_pool_3x3"),
68
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_7",
69
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
70
+ default = "max_pool_3x3"),
71
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_8",
72
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
73
+ default = "max_pool_3x3"),
74
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_9",
75
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
76
+ default = "max_pool_3x3"),
77
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_10",
78
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
79
+ default = "max_pool_3x3"),
80
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_11",
81
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
82
+ default = "max_pool_3x3"),
83
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_12",
84
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
85
+ default = "max_pool_3x3"),
86
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_13",
87
+ levels = c("max_pool_3x3", "avg_pool_3x3", "skip_connect", "sep_conv_3x3", "sep_conv_5x5", "dil_conv_3x3", "dil_conv_5x5"),
88
+ default = "max_pool_3x3"),
89
+
90
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_3",
91
+ levels = c("0_1", "0_2", "1_2"),
92
+ default = "0_1"),
93
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_4",
94
+ levels = c("0_1", "0_2", "0_3", "1_2", "1_3", "2_3"),
95
+ default = "0_1"),
96
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5",
97
+ levels = c("0_1", "0_2", "0_3", "0_4", "1_2", "1_3", "1_4", "2_3", "2_4", "3_4"),
98
+ default = "0_1"),
99
+
100
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_3",
101
+ levels = c("0_1", "0_2", "1_2"),
102
+ default = "0_1"),
103
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_4",
104
+ levels = c("0_1", "0_2", "0_3", "1_2", "1_3", "2_3"),
105
+ default = "0_1"),
106
+ ParamFct$new("NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5",
107
+ levels = c("0_1", "0_2", "0_3", "0_4", "1_2", "1_3", "1_4", "2_3", "2_4", "3_4"),
108
+ default = "0_1"),
109
+
110
+ ParamInt$new("epoch", lower = 1L, upper = 98L, default = 1L, tags = "budget"))
111
+ )
112
+
113
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_2", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_3", cond = CondAnyOf$new(c("0_1", "0_2")))
114
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_3", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_3", cond = CondAnyOf$new(c("0_1", "1_2")))
115
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_4", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_3", cond = CondAnyOf$new(c("0_2", "1_2")))
116
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_5", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_4", cond = CondAnyOf$new(c("0_1", "0_2", "0_3")))
117
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_6", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_4", cond = CondAnyOf$new(c("0_1", "1_2", "1_3")))
118
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_7", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_4", cond = CondAnyOf$new(c("0_2", "1_2", "2_3")))
119
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_8", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_4", cond = CondAnyOf$new(c("0_3", "1_3", "2_3")))
120
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_10", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5", cond = CondAnyOf$new(c("0_1", "1_2", "1_3", "1_4")))
121
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_11", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5", cond = CondAnyOf$new(c("0_2", "1_2", "2_3", "2_4")))
122
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_12", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5", cond = CondAnyOf$new(c("0_3", "1_3", "2_3", "3_4")))
123
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_13", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5", cond = CondAnyOf$new(c("0_4", "1_4", "2_4", "3_4")))
124
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_9", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_5", cond = CondAnyOf$new(c("0_1", "0_2", "0_3", "0_4")))
125
+
126
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_2", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_3", cond = CondAnyOf$new(c("0_1", "0_2")))
127
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_3", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_3", cond = CondAnyOf$new(c("0_1", "1_2")))
128
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_4", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_3", cond = CondAnyOf$new(c("0_2", "1_2")))
129
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_5", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_4", cond = CondAnyOf$new(c("0_1", "0_2", "0_3")))
130
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_6", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_4", cond = CondAnyOf$new(c("0_1", "1_2", "1_3")))
131
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_7", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_4", cond = CondAnyOf$new(c("0_2", "1_2", "2_3")))
132
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_8", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_4", cond = CondAnyOf$new(c("0_3", "1_3", "2_3")))
133
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_10", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5", cond = CondAnyOf$new(c("0_1", "1_2", "1_3", "1_4")))
134
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_11", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5", cond = CondAnyOf$new(c("0_2", "1_2", "2_3", "2_4")))
135
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_12", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5", cond = CondAnyOf$new(c("0_3", "1_3", "2_3", "3_4")))
136
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_13", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5", cond = CondAnyOf$new(c("0_4", "1_4", "2_4", "3_4")))
137
+ ps$add_dep("NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_9", on = "NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_5", cond = CondAnyOf$new(c("0_1", "0_2", "0_3", "0_4")))
138
+
139
+ search_space = ps$clone(deep = TRUE)
140
+
141
+ domain = ps$clone(deep = TRUE)
142
+
143
+ codomain = ps(
144
+ val_accuracy = p_dbl(lower = 0, upper = 100, tags = "maximize"),
145
+ runtime = p_dbl(lower = 0, upper = Inf, tags = "minimize")
146
+ )