geoalgo commited on
Commit
878ef3a
·
verified ·
1 Parent(s): ccdcc3d

Upload blackbox yahpo-rbv2_aknn

Browse files
yahpo/rbv2_aknn/best_params_resnet.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"d": 384, "d_hidden_factor": 3.69525008092253, "hidden_dropout": 0.0027622969568990574, "lr": 0.001408431648712546, "mixup": false, "n_layers": 4, "opt_tfms_M": true, "opt_tfms_acc": true, "opt_tfms_auc": true, "opt_tfms_bac": false, "opt_tfms_brier": true, "opt_tfms_ef": false, "opt_tfms_ef_construction": true, "opt_tfms_f1": false, "opt_tfms_k": false, "opt_tfms_logloss": true, "opt_tfms_memory": false, "opt_tfms_repl": true, "opt_tfms_timepredict": true, "opt_tfms_timetrain": false, "opt_tfms_trainsize": false, "tfms_M": "tnexp", "tfms_acc": "tlog", "tfms_auc": "tlog", "tfms_brier": "tnexp", "tfms_ef_construction": "tlog", "tfms_logloss": "tlog", "tfms_repl": "tlog", "tfms_timepredict": "tnexp", "use_residual_dropout": false}
yahpo/rbv2_aknn/config_space.json ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "hyperparameters": [
3
+ {
4
+ "name": "M",
5
+ "type": "uniform_int",
6
+ "log": false,
7
+ "lower": 18,
8
+ "upper": 50,
9
+ "default": 34
10
+ },
11
+ {
12
+ "name": "distance",
13
+ "type": "categorical",
14
+ "choices": [
15
+ "l2",
16
+ "cosine",
17
+ "ip"
18
+ ],
19
+ "default": "l2",
20
+ "probabilities": null
21
+ },
22
+ {
23
+ "name": "ef",
24
+ "type": "uniform_int",
25
+ "log": true,
26
+ "lower": 7,
27
+ "upper": 403,
28
+ "default": 53
29
+ },
30
+ {
31
+ "name": "ef_construction",
32
+ "type": "uniform_int",
33
+ "log": true,
34
+ "lower": 7,
35
+ "upper": 1097,
36
+ "default": 88
37
+ },
38
+ {
39
+ "name": "k",
40
+ "type": "uniform_int",
41
+ "log": false,
42
+ "lower": 1,
43
+ "upper": 50,
44
+ "default": 26
45
+ },
46
+ {
47
+ "name": "num.impute.selected.cpo",
48
+ "type": "categorical",
49
+ "choices": [
50
+ "impute.mean",
51
+ "impute.median",
52
+ "impute.hist"
53
+ ],
54
+ "default": "impute.mean",
55
+ "probabilities": null
56
+ },
57
+ {
58
+ "name": "repl",
59
+ "type": "uniform_int",
60
+ "log": false,
61
+ "lower": 1,
62
+ "upper": 10,
63
+ "default": 6
64
+ },
65
+ {
66
+ "name": "task_id",
67
+ "type": "categorical",
68
+ "choices": [
69
+ "41138","40981","4134","40927","1220","4154","41163","40996","4538","40978","375","1111","40496","40966","41150","4534","40900","40536","41156","1590","1457","458","469","41157","11","1461","1462","1464","15","40975","41142","40701","40994","23","1468","40668","29","31","6332","37","4541","40670","23381","151","188","41164","1475","1476","41159","1478","41169","23512","1479","41212","1480","300","41168","41143","1053","41027","1067","1063","41162","3","6","1485","1056","12","14","16","18","40979","22","1515","554","334","24","1486","23517","41278","1493","28","1487","1068","1050","1049","32","1489","470","1494","41161","41165","182","312","40984","1501","40685","38","42","44","46","40982","1040","41146","377","40499","50","54","41216","41166","307","1497","60","1510","40983","40498","181","40923"
70
+ ],
71
+ "default": "1040",
72
+ "probabilities": null
73
+ },
74
+ {
75
+ "name": "trainsize",
76
+ "type": "uniform_float",
77
+ "log": false,
78
+ "lower": 0.03,
79
+ "upper": 1.0,
80
+ "default": 0.525
81
+ }
82
+ ],
83
+ "conditions": [],
84
+ "forbiddens": [],
85
+ "python_module_version": "0.4.18",
86
+ "json_format_version": 0.2
87
+ }
yahpo/rbv2_aknn/encoding.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"distance": {"#na#": 0, "cosine": 1, "ip": 2, "l2": 3}, "num.impute.selected.cpo": {"#na#": 0, "impute.hist": 1, "impute.mean": 2, "impute.median": 3}, "task_id": {"#na#": 0, "1040": 1, "1049": 2, "1050": 3, "1053": 4, "1056": 5, "1063": 6, "1067": 7, "1068": 8, "11": 9, "1111": 10, "12": 11, "1220": 12, "14": 13, "1457": 14, "1461": 15, "1462": 16, "1464": 17, "1468": 18, "1475": 19, "1476": 20, "1478": 21, "1479": 22, "1480": 23, "1485": 24, "1486": 25, "1487": 26, "1489": 27, "1493": 28, "1494": 29, "1497": 30, "15": 31, "1501": 32, "151": 33, "1510": 34, "1515": 35, "1590": 36, "16": 37, "18": 38, "181": 39, "182": 40, "188": 41, "22": 42, "23": 43, "23381": 44, "23512": 45, "23517": 46, "24": 47, "28": 48, "29": 49, "3": 50, "300": 51, "307": 52, "31": 53, "312": 54, "32": 55, "334": 56, "37": 57, "375": 58, "377": 59, "38": 60, "40496": 61, "40498": 62, "40499": 63, "40536": 64, "40668": 65, "40670": 66, "40685": 67, "40701": 68, "40900": 69, "40923": 70, "40927": 71, "40966": 72, "40975": 73, "40978": 74, "40979": 75, "40981": 76, "40982": 77, "40983": 78, "40984": 79, "40994": 80, "40996": 81, "41027": 82, "41138": 83, "41142": 84, "41143": 85, "41146": 86, "41150": 87, "41156": 88, "41157": 89, "41159": 90, "41161": 91, "41162": 92, "41163": 93, "41164": 94, "41165": 95, "41166": 96, "41168": 97, "41169": 98, "41212": 99, "41216": 100, "41278": 101, "4134": 102, "4154": 103, "42": 104, "44": 105, "4534": 106, "4538": 107, "4541": 108, "458": 109, "46": 110, "469": 111, "470": 112, "50": 113, "54": 114, "554": 115, "6": 116, "60": 117, "6332": 118}}
yahpo/rbv2_aknn/metadata.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
yahpo/rbv2_aknn/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29dcc200ea0472091729df6bd34a562ba4766e74cf12729182bb47000cfd599e
3
+ size 26370156
yahpo/rbv2_aknn/param_set.R ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ codomain = ps(
2
+ acc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
3
+ bac = p_dbl(lower = 0, upper = 1, tags = "maximize"),
4
+ f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
5
+ auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
6
+ brier = p_dbl(lower = 0, upper = 1, tags = "minimize"),
7
+ logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
8
+ timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
9
+ timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
10
+ memory = p_dbl(lower = 0, upper = Inf, tags = "minimize")
11
+ )
12
+
13
+ search_space = ps(
14
+ k = p_int(lower = 1L, upper = 50L),
15
+ distance = p_fct(levels = c("l2", "cosine", "ip")),
16
+ M = p_int(lower = 18L, upper = 50L),
17
+ ef = p_dbl(lower = 2, upper = 6, tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))),
18
+ ef_construction = p_dbl(lower = 2, upper = 7, tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))),
19
+ trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
20
+ repl = p_int(lower = 1L, upper = 10L, tags = "budget"),
21
+ num.impute.selected.cpo = p_fct(levels = c("impute.mean", "impute.median", "impute.hist")),
22
+ task_id = p_fct(levels =c("41138", "40981", "4134", "40927", "1220", "4154", "41163",
23
+ "40996", "4538", "40978", "375", "1111", "40496", "40966", "41150",
24
+ "4534", "40900", "40536", "41156", "1590", "1457", "458", "469",
25
+ "41157", "11", "1461", "1462", "1464", "15", "40975", "41142",
26
+ "40701", "40994", "23", "1468", "40668", "29", "31", "6332",
27
+ "37", "4541", "40670", "23381", "151", "188", "41164", "1475",
28
+ "1476", "41159", "1478", "41169", "23512", "1479", "41212", "1480",
29
+ "300", "41168", "41143", "1053", "41027", "1067", "1063", "41162",
30
+ "3", "6", "1485", "1056", "12", "14", "16", "18", "40979", "22",
31
+ "1515", "554", "334", "24", "1486", "23517", "41278", "1493",
32
+ "28", "1487", "1068", "1050", "1049", "32", "1489", "470", "1494",
33
+ "41161", "41165", "182", "312", "40984", "1501", "40685", "38",
34
+ "42", "44", "46", "40982", "1040", "41146", "377", "40499", "50",
35
+ "54", "41216", "41166", "307", "1497", "60", "1510", "40983",
36
+ "40498", "181", "40923"),
37
+ tags = "task_id"
38
+ )
39
+ )
40
+
41
+ domain = ps(
42
+ k = p_int(lower = 1L, upper = 50L),
43
+ distance = p_fct(levels = c("l2", "cosine", "ip")),
44
+ M = p_int(lower = 18L, upper = 50L),
45
+ ef = p_int(lower = 7L, upper = 403L),
46
+ ef_construction = p_int(lower = 7L, upper = 403L),
47
+ trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
48
+ repl = p_int(lower = 1L, upper = 10L, tags = "budget"),
49
+ num.impute.selected.cpo = p_fct(levels = c("impute.mean", "impute.median", "impute.hist")),
50
+ task_id = p_fct(levels = c("41138", "40981", "4134", "40927", "1220", "4154", "41163",
51
+ "40996", "4538", "40978", "375", "1111", "40496", "40966", "41150",
52
+ "4534", "40900", "40536", "41156", "1590", "1457", "458", "469",
53
+ "41157", "11", "1461", "1462", "1464", "15", "40975", "41142",
54
+ "40701", "40994", "23", "1468", "40668", "29", "31", "6332",
55
+ "37", "4541", "40670", "23381", "151", "188", "41164", "1475",
56
+ "1476", "41159", "1478", "41169", "23512", "1479", "41212", "1480",
57
+ "300", "41168", "41143", "1053", "41027", "1067", "1063", "41162",
58
+ "3", "6", "1485", "1056", "12", "14", "16", "18", "40979", "22",
59
+ "1515", "554", "334", "24", "1486", "23517", "41278", "1493",
60
+ "28", "1487", "1068", "1050", "1049", "32", "1489", "470", "1494",
61
+ "41161", "41165", "182", "312", "40984", "1501", "40685", "38",
62
+ "42", "44", "46", "40982", "1040", "41146", "377", "40499", "50",
63
+ "54", "41216", "41166", "307", "1497", "60", "1510", "40983",
64
+ "40498", "181", "40923"),
65
+ tags = "task_id"
66
+ )
67
+ )