Datasets:
license: other
task_categories:
- text-classification
language:
- en
- ja
tags:
- code
size_categories:
- 1K<n<10K
Dataset overview
This dataset identifies whether a GitHub repository description pertains to Japanese natural language processing (NLP). The labels are categorized as "Relevant (1)" and "Not Relevant (0)".
Problem Setting:
- Training Data: Repository descriptions from before 2022
- Test Data: Repository descriptions from 2023
- Objective: To detect repositories related to Japanese NLP
Data Collection:
- Positive Examples: Repositories listed in "awesome-japanese-nlp-resources" as of September 9, 2023
- Negative Examples: Collected from the GitHub API and visually confirmed
- Note: The annotation process is subjective
Dataset Features:
- Subjective labeling
- Mixed English and Japanese descriptions
- Imbalanced label distribution
These dataset features mirror real-world challenges and are ideal for evaluating models. Based on GitHub's terms of service, please use this dataset for research purposes only.
How to use this dataset
How to load in Python.
from datasets import load_dataset
dataset = load_dataset("taishi-i/awesome-japanese-nlp-classification-dataset")
Details of the dataset.
DatasetDict({
train: Dataset({
features: ['label', 'text', 'url', 'created_at'],
num_rows: 5496
})
validation: Dataset({
features: ['label', 'text', 'url', 'created_at'],
num_rows: 400
})
test: Dataset({
features: ['label', 'text', 'url', 'created_at'],
num_rows: 856
})
})
Baseline
Baseline trained with bert-base-multilingual-cased. Please use the baseline model from here. The F1-score for label 1 is important for this task.
Label | Precision | Recall | F1-Score | Support |
---|---|---|---|---|
0 | 0.98 | 0.99 | 0.98 | 796 |
1 | 0.79 | 0.70 | 0.74 | 60 |
Accuracy | 0.97 | 856 | ||
Macro Avg | 0.89 | 0.84 | 0.86 | 856 |
Weighted Avg | 0.96 | 0.97 | 0.97 | 856 |
Dataset stats
Label distribution:
Dataset | Label 0 (%) | Label 1 (%) |
---|---|---|
Train | 92.59 | 7.41 |
Validation | 95.75 | 4.25 |
Test | 92.99 | 7.01 |
Relevant sample:
{
"label": 1,
"text": "JGLUE: Japanese General Language Understanding Evaluation for huggingface datasets",
"url": "https://github.com/shunk031/huggingface-datasets_JGLUE",
"created_at": "2023-02-25T04:33:03Z"
}
Not Relevant sample:
{
"label": 0,
"text": "Official repository of FaceLit: Neural 3D Relightable Faces (CVPR 2023)",
"url": "https://github.com/apple/ml-facelit",
"created_at": "2023-04-03T22:47:29Z"
}
Number of texts, average number of characters per text, minimum number of characters, maximum number of characters:
Dataset | Text Count | Average Length | Min Length | Max Length |
---|---|---|---|---|
Train | 5496 | 58.05 | 2.0 | 609.0 |
Validation | 400 | 54.33 | 8.0 | 226.0 |
Test | 856 | 58.85 | 3.0 | 341.0 |
Proportion of text languages:
Dataset | English (%) | Japanese (%) |
---|---|---|
Train | 89.34 | 10.66 |
Validation | 82.00 | 18.00 |
Test | 83.18 | 16.82 |
Time range:
Dataset | Start Date | End Date |
---|---|---|
Train | 2008-02-11 22:55:26+00:00 | 2022-09-30 19:45:09+00:00 |
Validation | 2022-10-01 06:02:56+00:00 | 2022-12-31 12:12:41+00:00 |
Test | 2023-01-01 06:15:03+00:00 | 2023-08-21 15:30:53+00:00 |
License
We collect and publish this dataset under GitHub Acceptable Use Policies - 7. Information Usage Restrictions and GitHub Terms of Service - H. API Terms for research purposes. This dataset should be used solely for research verification purposes. Adhering to GitHub's regulations is mandatory.