Convert dataset to Parquet
#1
by
tanganke
- opened
- README.md +11 -4
- data/{test.zip → test-00000-of-00001.parquet} +2 -2
- data/{train.zip → train-00000-of-00001.parquet} +2 -2
- dtd.py +0 -94
README.md
CHANGED
@@ -56,13 +56,20 @@ dataset_info:
|
|
56 |
'46': zigzagged
|
57 |
splits:
|
58 |
- name: train
|
59 |
-
num_bytes:
|
60 |
num_examples: 3760
|
61 |
- name: test
|
62 |
-
num_bytes:
|
63 |
num_examples: 1880
|
64 |
-
download_size:
|
65 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
---
|
67 |
|
68 |
# [DTD: Describable Textures Dataset](https://www.robots.ox.ac.uk/~vgg/data/dtd/)
|
|
|
56 |
'46': zigzagged
|
57 |
splits:
|
58 |
- name: train
|
59 |
+
num_bytes: 463693721.28
|
60 |
num_examples: 3760
|
61 |
- name: test
|
62 |
+
num_bytes: 171623828.0
|
63 |
num_examples: 1880
|
64 |
+
download_size: 629499529
|
65 |
+
dataset_size: 635317549.28
|
66 |
+
configs:
|
67 |
+
- config_name: default
|
68 |
+
data_files:
|
69 |
+
- split: train
|
70 |
+
path: data/train-*
|
71 |
+
- split: test
|
72 |
+
path: data/test-*
|
73 |
---
|
74 |
|
75 |
# [DTD: Describable Textures Dataset](https://www.robots.ox.ac.uk/~vgg/data/dtd/)
|
data/{test.zip → test-00000-of-00001.parquet}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e137d5255ddd649a004f19e6b36f170572e2d6504b047f2f4fdb616180fdce3
|
3 |
+
size 179155504
|
data/{train.zip → train-00000-of-00001.parquet}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5d4146bc2770ff237b8c5eae693cc44ddfd1162db35de37e9a89b02fd6094eb
|
3 |
+
size 450344025
|
dtd.py
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
import datasets
|
2 |
-
from datasets.data_files import DataFilesDict
|
3 |
-
from datasets.packaged_modules.imagefolder.imagefolder import ImageFolder, ImageFolderConfig
|
4 |
-
|
5 |
-
logger = datasets.logging.get_logger(__name__)
|
6 |
-
|
7 |
-
|
8 |
-
class GTSRB(ImageFolder):
|
9 |
-
R"""
|
10 |
-
DTD dataset for image classification.
|
11 |
-
"""
|
12 |
-
|
13 |
-
BUILDER_CONFIG_CLASS = ImageFolderConfig
|
14 |
-
BUILDER_CONFIGS = [
|
15 |
-
ImageFolderConfig(
|
16 |
-
name="default",
|
17 |
-
features=("images", "labels"),
|
18 |
-
data_files=DataFilesDict({split: f"data/{split}.zip" for split in ["train", "test"]}),
|
19 |
-
)
|
20 |
-
]
|
21 |
-
|
22 |
-
classnames = [
|
23 |
-
"banded",
|
24 |
-
"blotchy",
|
25 |
-
"braided",
|
26 |
-
"bubbly",
|
27 |
-
"bumpy",
|
28 |
-
"chequered",
|
29 |
-
"cobwebbed",
|
30 |
-
"cracked",
|
31 |
-
"crosshatched",
|
32 |
-
"crystalline",
|
33 |
-
"dotted",
|
34 |
-
"fibrous",
|
35 |
-
"flecked",
|
36 |
-
"freckled",
|
37 |
-
"frilly",
|
38 |
-
"gauzy",
|
39 |
-
"grid",
|
40 |
-
"grooved",
|
41 |
-
"honeycombed",
|
42 |
-
"interlaced",
|
43 |
-
"knitted",
|
44 |
-
"lacelike",
|
45 |
-
"lined",
|
46 |
-
"marbled",
|
47 |
-
"matted",
|
48 |
-
"meshed",
|
49 |
-
"paisley",
|
50 |
-
"perforated",
|
51 |
-
"pitted",
|
52 |
-
"pleated",
|
53 |
-
"polka-dotted",
|
54 |
-
"porous",
|
55 |
-
"potholed",
|
56 |
-
"scaly",
|
57 |
-
"smeared",
|
58 |
-
"spiralled",
|
59 |
-
"sprinkled",
|
60 |
-
"stained",
|
61 |
-
"stratified",
|
62 |
-
"striped",
|
63 |
-
"studded",
|
64 |
-
"swirly",
|
65 |
-
"veined",
|
66 |
-
"waffled",
|
67 |
-
"woven",
|
68 |
-
"wrinkled",
|
69 |
-
"zigzagged",
|
70 |
-
]
|
71 |
-
|
72 |
-
clip_templates = [
|
73 |
-
lambda c: f"a photo of a {c} texture.",
|
74 |
-
lambda c: f"a photo of a {c} pattern.",
|
75 |
-
lambda c: f"a photo of a {c} thing.",
|
76 |
-
lambda c: f"a photo of a {c} object.",
|
77 |
-
lambda c: f"a photo of the {c} texture.",
|
78 |
-
lambda c: f"a photo of the {c} pattern.",
|
79 |
-
lambda c: f"a photo of the {c} thing.",
|
80 |
-
lambda c: f"a photo of the {c} object.",
|
81 |
-
]
|
82 |
-
|
83 |
-
def _info(self):
|
84 |
-
return datasets.DatasetInfo(
|
85 |
-
description="DTD dataset for image classification.",
|
86 |
-
features=datasets.Features(
|
87 |
-
{
|
88 |
-
"image": datasets.Image(),
|
89 |
-
"label": datasets.ClassLabel(names=self.classnames),
|
90 |
-
}
|
91 |
-
),
|
92 |
-
supervised_keys=("image", "label"),
|
93 |
-
task_templates=[datasets.ImageClassification(image_column="image", label_column="label")],
|
94 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|