tanganke/clip-vit-base-patch32_eurosat
Feature Extraction
•
Updated
•
3.43k
image
imagewidth (px) 64
64
| label
class label 10
classes |
---|---|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
|
0annual crop land
|
from datasets import load_dataset
dataset = load_dataset('tranganke/eurosat')
The dataset contains the following fields:
image
: An image in RGB format.label
: The label for the image, which is one of 10 classes:The dataset contains the following splits:
train
: 21,600 examplestest
: 2,700 examplescontrast
: 2,700 examplesgaussian_noise
: 2,700 exampleimpulse_noise
: 2,700 examplesjpeg_compression
: 2,700 examplesmotion_blur
: 2,700 examplespixelate
: 2,700 examplesspatter
: 2,700 examplesYou can use any of the provided BibTeX entries for your reference list:
@article{helber2019eurosat,
title={Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification},
author={Helber, Patrick and Bischke, Benjamin and Dengel, Andreas and Borth, Damian},
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
volume={12},
number={7},
pages={2217--2226},
year={2019},
publisher={IEEE}
}
@misc{yangAdaMergingAdaptiveModel2023,
title = {{{AdaMerging}}: {{Adaptive Model Merging}} for {{Multi-Task Learning}}},
shorttitle = {{{AdaMerging}}},
author = {Yang, Enneng and Wang, Zhenyi and Shen, Li and Liu, Shiwei and Guo, Guibing and Wang, Xingwei and Tao, Dacheng},
year = {2023},
month = oct,
number = {arXiv:2310.02575},
eprint = {2310.02575},
primaryclass = {cs},
publisher = {arXiv},
doi = {10.48550/arXiv.2310.02575},
url = {http://arxiv.org/abs/2310.02575},
archiveprefix = {arxiv},
keywords = {Computer Science - Computer Vision and Pattern Recognition,Computer Science - Machine Learning}
}
@misc{tangConcreteSubspaceLearning2023,
title = {Concrete {{Subspace Learning}} Based {{Interference Elimination}} for {{Multi-task Model Fusion}}},
author = {Tang, Anke and Shen, Li and Luo, Yong and Ding, Liang and Hu, Han and Du, Bo and Tao, Dacheng},
year = {2023},
month = dec,
number = {arXiv:2312.06173},
eprint = {2312.06173},
publisher = {arXiv},
url = {http://arxiv.org/abs/2312.06173},
archiveprefix = {arxiv},
copyright = {All rights reserved},
keywords = {Computer Science - Machine Learning}
}
@misc{tangMergingMultiTaskModels2024,
title = {Merging {{Multi-Task Models}} via {{Weight-Ensembling Mixture}} of {{Experts}}},
author = {Tang, Anke and Shen, Li and Luo, Yong and Yin, Nan and Zhang, Lefei and Tao, Dacheng},
year = {2024},
month = feb,
number = {arXiv:2402.00433},
eprint = {2402.00433},
primaryclass = {cs},
publisher = {arXiv},
doi = {10.48550/arXiv.2402.00433},
url = {http://arxiv.org/abs/2402.00433},
archiveprefix = {arxiv},
copyright = {All rights reserved},
keywords = {Computer Science - Computer Vision and Pattern Recognition,Computer Science - Machine Learning}
}