File size: 4,759 Bytes
1e87191
73c56fb
1e87191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c56fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e87191
de69ac0
 
 
73c56fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6840268
73c56fb
 
 
6840268
73c56fb
 
 
 
 
 
 
 
 
 
 
 
 
6840268
 
 
73c56fb
 
 
6840268
 
 
 
 
 
 
 
 
73c56fb
 
 
 
 
 
 
6840268
73c56fb
6840268
73c56fb
6840268
73c56fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e87191
73c56fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
---
pretty_name: Tarteel AI - EveryAyah Dataset
dataset_info:
  features:
  - name: audio
    dtype: audio
  - name: duration
    dtype: float64
  - name: text
    dtype: string
  - name: reciter
    dtype: string
  splits:
  - name: train
    num_bytes: 262627688145.3
    num_examples: 187785
  - name: test
    num_bytes: 25156009734.72
    num_examples: 23473
  - name: validation
    num_bytes: 23426886730.218
    num_examples: 23474
  download_size: 117190597305
  dataset_size: 311210584610.23804
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- ar
license:
- mit
multilinguality:
- monolingual
paperswithcode_id: tarteel-everyayah
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
train-eval-index:
- config: clean
  task: automatic-speech-recognition
  task_id: speech_recognition
  splits:
    train_split: train
    eval_split: test
    validation_split: validation
  col_mapping:
    audio: audio
    text: text
    reciter: text
  metrics:
  - type: wer
    name: WER
  - type: cer
    name: CER
---
# Dataset Card for Tarteel AI's EveryAyah Dataset

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Tarteel AI](https://www.tarteel.ai/)
- **Repository:** [Needs More Information]
- **Point of Contact:** [Mohamed Saad Ibn Seddik](mailto:ms.ibnseddik@tarteel.ai)

### Dataset Summary

This dataset is a collection of Quranic verses and their transcriptions, with diacritization, by different reciters.

### Supported Tasks and Leaderboards

[Needs More Information]

### Languages

The audio is in Arabic.

## Dataset Structure

### Data Instances

A typical data point comprises the audio file `audio`, and its transcription called `text`.
The `duration` is in seconds, and the author is `reciter`.

An example from the dataset is:
```
{
  'audio': {
    'path': None,
    'array': array([ 0.        ,  0.        ,  0.        , ..., -0.00057983,
       -0.00085449, -0.00061035]),
    'sampling_rate': 16000
  },
  'duration': 6.478375,
  'text': 'بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ',
  'reciter': 'abdulsamad'
}
```

### Data Fields

- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.

- text: The transcription of the audio file.

- duration: The duration of the audio file. 

- reciter: The reciter of the verses. 

### Data Splits

|       | Train | Test | Validation |
| ----- | ----- | ---- | ---------- |
| dataset | 187785 | 23473 | 23474 |



## Dataset Creation

### Curation Rationale


### Source Data

#### Initial Data Collection and Normalization


#### Who are the source language producers?


### Annotations

#### Annotation process


#### Who are the annotators?



### Personal and Sensitive Information



## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators



### Licensing Information

[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)

### Citation Information

```
```

### Contributions

This dataset was created by: