file_path
stringlengths 11
79
| full_name
stringlengths 2
100
| traced_tactics
list | end
sequence | commit
stringclasses 4
values | url
stringclasses 4
values | start
sequence |
---|---|---|---|---|---|---|
Mathlib/Algebra/Module/Torsion.lean | Submodule.torsionBySet_le_torsionBySet_of_subset | [] | [
277,
49
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
275,
1
] |
Mathlib/Data/Num/Lemmas.lean | ZNum.add_one | [
{
"state_after": "no goals",
"state_before": "α : Type ?u.723974\np : PosNum\n⊢ neg p + 1 = succ (neg p)",
"tactic": "cases p <;> rfl"
}
] | [
1173,
32
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1170,
1
] |
Mathlib/Algebra/Order/Floor.lean | Int.floor_lt | [] | [
657,
34
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
656,
1
] |
Mathlib/Algebra/Module/Submodule/Basic.lean | SMulMemClass.coeSubtype | [] | [
202,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
201,
11
] |
Mathlib/MeasureTheory/Function/SimpleFunc.lean | MeasureTheory.SimpleFunc.monotone_eapprox | [] | [
909,
22
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
908,
1
] |
Mathlib/Data/Fintype/Card.lean | Fintype.card_of_isEmpty | [] | [
232,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
231,
1
] |
Mathlib/MeasureTheory/Measure/MeasureSpace.lean | MeasureTheory.Measure.map_toOuterMeasure | [
{
"state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.213751\nδ : Type ?u.213754\nι : Type ?u.213757\nR : Type ?u.213760\nR' : Type ?u.213763\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\nf : α → β\nhf : AEMeasurable f\n⊢ ∀ (s : Set β), MeasurableSet s → ↑↑(map f μ) s = ↑(↑(OuterMeasure.map f) ↑μ) s",
"state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.213751\nδ : Type ?u.213754\nι : Type ?u.213757\nR : Type ?u.213760\nR' : Type ?u.213763\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\nf : α → β\nhf : AEMeasurable f\n⊢ ↑(map f μ) = OuterMeasure.trim (↑(OuterMeasure.map f) ↑μ)",
"tactic": "rw [← trimmed, OuterMeasure.trim_eq_trim_iff]"
},
{
"state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.213751\nδ : Type ?u.213754\nι : Type ?u.213757\nR : Type ?u.213760\nR' : Type ?u.213763\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\nf : α → β\nhf : AEMeasurable f\ns : Set β\nhs : MeasurableSet s\n⊢ ↑↑(map f μ) s = ↑(↑(OuterMeasure.map f) ↑μ) s",
"state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.213751\nδ : Type ?u.213754\nι : Type ?u.213757\nR : Type ?u.213760\nR' : Type ?u.213763\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\nf : α → β\nhf : AEMeasurable f\n⊢ ∀ (s : Set β), MeasurableSet s → ↑↑(map f μ) s = ↑(↑(OuterMeasure.map f) ↑μ) s",
"tactic": "intro s hs"
},
{
"state_after": "no goals",
"state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.213751\nδ : Type ?u.213754\nι : Type ?u.213757\nR : Type ?u.213760\nR' : Type ?u.213763\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\nf : α → β\nhf : AEMeasurable f\ns : Set β\nhs : MeasurableSet s\n⊢ ↑↑(map f μ) s = ↑(↑(OuterMeasure.map f) ↑μ) s",
"tactic": "rw [map_apply_of_aemeasurable hf hs, OuterMeasure.map_apply]"
}
] | [
1238,
63
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1234,
1
] |
Mathlib/Data/Bool/Basic.lean | Bool.true_eq_decide_iff | [] | [
55,
30
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
54,
1
] |
Mathlib/Data/Nat/Set.lean | Nat.range_casesOn | [] | [
54,
25
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
52,
1
] |
Mathlib/RingTheory/Valuation/Basic.lean | Valuation.isEquiv_iff_val_eq_one | [
{
"state_after": "case mp\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\n⊢ IsEquiv v v' → ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\n\ncase mpr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\n⊢ (∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1) → IsEquiv v v'",
"state_before": "K : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\n⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1",
"tactic": "constructor"
},
{
"state_after": "case mp\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : IsEquiv v v'\nx : K\n⊢ ↑v x = 1 ↔ ↑v' x = 1",
"state_before": "case mp\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\n⊢ IsEquiv v v' → ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1",
"tactic": "intro h x"
},
{
"state_after": "no goals",
"state_before": "case mp\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : IsEquiv v v'\nx : K\n⊢ ↑v x = 1 ↔ ↑v' x = 1",
"tactic": "simpa using @IsEquiv.val_eq _ _ _ _ _ _ v v' h x 1"
},
{
"state_after": "case mpr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\n⊢ IsEquiv v v'",
"state_before": "case mpr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\n⊢ (∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1) → IsEquiv v v'",
"tactic": "intro h"
},
{
"state_after": "case mpr.h\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\n⊢ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1",
"state_before": "case mpr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\n⊢ IsEquiv v v'",
"tactic": "apply isEquiv_of_val_le_one"
},
{
"state_after": "case mpr.h\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\n⊢ ↑v x ≤ 1 ↔ ↑v' x ≤ 1",
"state_before": "case mpr.h\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\n⊢ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1",
"tactic": "intro x"
},
{
"state_after": "case mpr.h.mp\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\n⊢ ↑v x ≤ 1 → ↑v' x ≤ 1\n\ncase mpr.h.mpr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\n⊢ ↑v' x ≤ 1 → ↑v x ≤ 1",
"state_before": "case mpr.h\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\n⊢ ↑v x ≤ 1 ↔ ↑v' x ≤ 1",
"tactic": "constructor"
},
{
"state_after": "case mpr.h.mp\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\n⊢ ↑v' x ≤ 1",
"state_before": "case mpr.h.mp\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\n⊢ ↑v x ≤ 1 → ↑v' x ≤ 1",
"tactic": "intro hx"
},
{
"state_after": "case mpr.h.mp.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\n⊢ ↑v' x ≤ 1\n\ncase mpr.h.mp.inr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x = 1\n⊢ ↑v' x ≤ 1",
"state_before": "case mpr.h.mp\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\n⊢ ↑v' x ≤ 1",
"tactic": "cases' lt_or_eq_of_le hx with hx' hx'"
},
{
"state_after": "case mpr.h.mp.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\nthis : ↑v (1 + x) = 1\n⊢ ↑v' x ≤ 1",
"state_before": "case mpr.h.mp.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\n⊢ ↑v' x ≤ 1",
"tactic": "have : v (1 + x) = 1 := by\n rw [← v.map_one]\n apply map_add_eq_of_lt_left\n simpa"
},
{
"state_after": "case mpr.h.mp.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\nthis : ↑v' (1 + x) = 1\n⊢ ↑v' x ≤ 1",
"state_before": "case mpr.h.mp.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\nthis : ↑v (1 + x) = 1\n⊢ ↑v' x ≤ 1",
"tactic": "rw [h] at this"
},
{
"state_after": "case mpr.h.mp.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\nthis : ↑v' (1 + x) = 1\n⊢ ↑v' (-1 + (1 + x)) ≤ 1",
"state_before": "case mpr.h.mp.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\nthis : ↑v' (1 + x) = 1\n⊢ ↑v' x ≤ 1",
"tactic": "rw [show x = -1 + (1 + x) by simp]"
},
{
"state_after": "case mpr.h.mp.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\nthis : ↑v' (1 + x) = 1\n⊢ max (↑v' (-1)) (↑v' (1 + x)) ≤ 1",
"state_before": "case mpr.h.mp.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\nthis : ↑v' (1 + x) = 1\n⊢ ↑v' (-1 + (1 + x)) ≤ 1",
"tactic": "refine' le_trans (v'.map_add _ _) _"
},
{
"state_after": "no goals",
"state_before": "case mpr.h.mp.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\nthis : ↑v' (1 + x) = 1\n⊢ max (↑v' (-1)) (↑v' (1 + x)) ≤ 1",
"tactic": "simp [this]"
},
{
"state_after": "K : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\n⊢ ↑v (1 + x) = ↑v 1",
"state_before": "K : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\n⊢ ↑v (1 + x) = 1",
"tactic": "rw [← v.map_one]"
},
{
"state_after": "case h\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\n⊢ ↑v x < ↑v 1",
"state_before": "K : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\n⊢ ↑v (1 + x) = ↑v 1",
"tactic": "apply map_add_eq_of_lt_left"
},
{
"state_after": "no goals",
"state_before": "case h\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\n⊢ ↑v x < ↑v 1",
"tactic": "simpa"
},
{
"state_after": "no goals",
"state_before": "K : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x < 1\nthis : ↑v' (1 + x) = 1\n⊢ x = -1 + (1 + x)",
"tactic": "simp"
},
{
"state_after": "case mpr.h.mp.inr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v' x = 1\n⊢ ↑v' x ≤ 1",
"state_before": "case mpr.h.mp.inr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v x = 1\n⊢ ↑v' x ≤ 1",
"tactic": "rw [h] at hx'"
},
{
"state_after": "no goals",
"state_before": "case mpr.h.mp.inr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v x ≤ 1\nhx' : ↑v' x = 1\n⊢ ↑v' x ≤ 1",
"tactic": "exact le_of_eq hx'"
},
{
"state_after": "case mpr.h.mpr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\n⊢ ↑v x ≤ 1",
"state_before": "case mpr.h.mpr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\n⊢ ↑v' x ≤ 1 → ↑v x ≤ 1",
"tactic": "intro hx"
},
{
"state_after": "case mpr.h.mpr.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\n⊢ ↑v x ≤ 1\n\ncase mpr.h.mpr.inr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x = 1\n⊢ ↑v x ≤ 1",
"state_before": "case mpr.h.mpr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\n⊢ ↑v x ≤ 1",
"tactic": "cases' lt_or_eq_of_le hx with hx' hx'"
},
{
"state_after": "case mpr.h.mpr.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\nthis : ↑v' (1 + x) = 1\n⊢ ↑v x ≤ 1",
"state_before": "case mpr.h.mpr.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\n⊢ ↑v x ≤ 1",
"tactic": "have : v' (1 + x) = 1 := by\n rw [← v'.map_one]\n apply map_add_eq_of_lt_left\n simpa"
},
{
"state_after": "case mpr.h.mpr.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\nthis : ↑v (1 + x) = 1\n⊢ ↑v x ≤ 1",
"state_before": "case mpr.h.mpr.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\nthis : ↑v' (1 + x) = 1\n⊢ ↑v x ≤ 1",
"tactic": "rw [← h] at this"
},
{
"state_after": "case mpr.h.mpr.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\nthis : ↑v (1 + x) = 1\n⊢ ↑v (-1 + (1 + x)) ≤ 1",
"state_before": "case mpr.h.mpr.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\nthis : ↑v (1 + x) = 1\n⊢ ↑v x ≤ 1",
"tactic": "rw [show x = -1 + (1 + x) by simp]"
},
{
"state_after": "case mpr.h.mpr.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\nthis : ↑v (1 + x) = 1\n⊢ max (↑v (-1)) (↑v (1 + x)) ≤ 1",
"state_before": "case mpr.h.mpr.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\nthis : ↑v (1 + x) = 1\n⊢ ↑v (-1 + (1 + x)) ≤ 1",
"tactic": "refine' le_trans (v.map_add _ _) _"
},
{
"state_after": "no goals",
"state_before": "case mpr.h.mpr.inl\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\nthis : ↑v (1 + x) = 1\n⊢ max (↑v (-1)) (↑v (1 + x)) ≤ 1",
"tactic": "simp [this]"
},
{
"state_after": "K : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\n⊢ ↑v' (1 + x) = ↑v' 1",
"state_before": "K : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\n⊢ ↑v' (1 + x) = 1",
"tactic": "rw [← v'.map_one]"
},
{
"state_after": "case h\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\n⊢ ↑v' x < ↑v' 1",
"state_before": "K : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\n⊢ ↑v' (1 + x) = ↑v' 1",
"tactic": "apply map_add_eq_of_lt_left"
},
{
"state_after": "no goals",
"state_before": "case h\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\n⊢ ↑v' x < ↑v' 1",
"tactic": "simpa"
},
{
"state_after": "no goals",
"state_before": "K : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x < 1\nthis : ↑v (1 + x) = 1\n⊢ x = -1 + (1 + x)",
"tactic": "simp"
},
{
"state_after": "case mpr.h.mpr.inr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v x = 1\n⊢ ↑v x ≤ 1",
"state_before": "case mpr.h.mpr.inr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v' x = 1\n⊢ ↑v x ≤ 1",
"tactic": "rw [← h] at hx'"
},
{
"state_after": "no goals",
"state_before": "case mpr.h.mpr.inr\nK : Type u_3\nF : Type ?u.3253919\nR : Type ?u.3253922\ninst✝³ : DivisionRing K\nΓ₀ : Type u_1\nΓ'₀ : Type u_2\nΓ''₀ : Type ?u.3253934\ninst✝² : LinearOrderedCommMonoidWithZero Γ''₀\ninst✝¹ : LinearOrderedCommGroupWithZero Γ₀\ninst✝ : LinearOrderedCommGroupWithZero Γ'₀\nv : Valuation K Γ₀\nv' : Valuation K Γ'₀\nh : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1\nx : K\nhx : ↑v' x ≤ 1\nhx' : ↑v x = 1\n⊢ ↑v x ≤ 1",
"tactic": "exact le_of_eq hx'"
}
] | [
483,
27
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
450,
1
] |
Mathlib/Topology/Algebra/OpenSubgroup.lean | OpenSubgroup.toOpens_inf | [] | [
234,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
233,
1
] |
Mathlib/Order/Hom/Basic.lean | OrderIso.map_top' | [] | [
1179,
24
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1177,
1
] |
Mathlib/CategoryTheory/Limits/HasLimits.lean | CategoryTheory.Limits.HasLimit.isoOfEquivalence_inv_π | [
{
"state_after": "J : Type u₁\ninst✝⁴ : Category J\nK : Type u₂\ninst✝³ : Category K\nC : Type u\ninst✝² : Category C\nF✝ F : J ⥤ C\ninst✝¹ : HasLimit F\nG : K ⥤ C\ninst✝ : HasLimit G\ne : J ≌ K\nw : e.functor ⋙ G ≅ F\nj : J\n⊢ (IsLimit.conePointsIsoOfEquivalence (limit.isLimit F) (limit.isLimit G) e w).inv ≫ limit.π F j =\n limit.π G (e.functor.obj j) ≫ w.hom.app j",
"state_before": "J : Type u₁\ninst✝⁴ : Category J\nK : Type u₂\ninst✝³ : Category K\nC : Type u\ninst✝² : Category C\nF✝ F : J ⥤ C\ninst✝¹ : HasLimit F\nG : K ⥤ C\ninst✝ : HasLimit G\ne : J ≌ K\nw : e.functor ⋙ G ≅ F\nj : J\n⊢ (isoOfEquivalence e w).inv ≫ limit.π F j = limit.π G (e.functor.obj j) ≫ w.hom.app j",
"tactic": "simp only [HasLimit.isoOfEquivalence, IsLimit.conePointsIsoOfEquivalence_hom]"
},
{
"state_after": "J : Type u₁\ninst✝⁴ : Category J\nK : Type u₂\ninst✝³ : Category K\nC : Type u\ninst✝² : Category C\nF✝ F : J ⥤ C\ninst✝¹ : HasLimit F\nG : K ⥤ C\ninst✝ : HasLimit G\ne : J ≌ K\nw : e.functor ⋙ G ≅ F\nj : J\n⊢ limit.lift F ((Cones.postcompose w.hom).obj (Cone.whisker e.functor (limit.cone G))) ≫ limit.π F j =\n limit.π G (e.functor.obj j) ≫ w.hom.app j",
"state_before": "J : Type u₁\ninst✝⁴ : Category J\nK : Type u₂\ninst✝³ : Category K\nC : Type u\ninst✝² : Category C\nF✝ F : J ⥤ C\ninst✝¹ : HasLimit F\nG : K ⥤ C\ninst✝ : HasLimit G\ne : J ≌ K\nw : e.functor ⋙ G ≅ F\nj : J\n⊢ (IsLimit.conePointsIsoOfEquivalence (limit.isLimit F) (limit.isLimit G) e w).inv ≫ limit.π F j =\n limit.π G (e.functor.obj j) ≫ w.hom.app j",
"tactic": "dsimp"
},
{
"state_after": "no goals",
"state_before": "J : Type u₁\ninst✝⁴ : Category J\nK : Type u₂\ninst✝³ : Category K\nC : Type u\ninst✝² : Category C\nF✝ F : J ⥤ C\ninst✝¹ : HasLimit F\nG : K ⥤ C\ninst✝ : HasLimit G\ne : J ≌ K\nw : e.functor ⋙ G ≅ F\nj : J\n⊢ limit.lift F ((Cones.postcompose w.hom).obj (Cone.whisker e.functor (limit.cone G))) ≫ limit.π F j =\n limit.π G (e.functor.obj j) ≫ w.hom.app j",
"tactic": "simp"
}
] | [
402,
7
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
396,
1
] |
Mathlib/Analysis/Calculus/ContDiffDef.lean | iteratedFDerivWithin_univ | [
{
"state_after": "case zero\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\n⊢ iteratedFDerivWithin 𝕜 Nat.zero f univ = iteratedFDeriv 𝕜 Nat.zero f\n\ncase succ\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\nIH : iteratedFDerivWithin 𝕜 n f univ = iteratedFDeriv 𝕜 n f\n⊢ iteratedFDerivWithin 𝕜 (Nat.succ n) f univ = iteratedFDeriv 𝕜 (Nat.succ n) f",
"state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\n⊢ iteratedFDerivWithin 𝕜 n f univ = iteratedFDeriv 𝕜 n f",
"tactic": "induction' n with n IH"
},
{
"state_after": "case zero.h.H\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝¹ x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nx : E\nx✝ : Fin Nat.zero → E\n⊢ ↑(iteratedFDerivWithin 𝕜 Nat.zero f univ x) x✝ = ↑(iteratedFDeriv 𝕜 Nat.zero f x) x✝",
"state_before": "case zero\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\n⊢ iteratedFDerivWithin 𝕜 Nat.zero f univ = iteratedFDeriv 𝕜 Nat.zero f",
"tactic": "ext x"
},
{
"state_after": "no goals",
"state_before": "case zero.h.H\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝¹ x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nx : E\nx✝ : Fin Nat.zero → E\n⊢ ↑(iteratedFDerivWithin 𝕜 Nat.zero f univ x) x✝ = ↑(iteratedFDeriv 𝕜 Nat.zero f x) x✝",
"tactic": "simp"
},
{
"state_after": "case succ.h.H\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\nIH : iteratedFDerivWithin 𝕜 n f univ = iteratedFDeriv 𝕜 n f\nx : E\nm : Fin (Nat.succ n) → E\n⊢ ↑(iteratedFDerivWithin 𝕜 (Nat.succ n) f univ x) m = ↑(iteratedFDeriv 𝕜 (Nat.succ n) f x) m",
"state_before": "case succ\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\nIH : iteratedFDerivWithin 𝕜 n f univ = iteratedFDeriv 𝕜 n f\n⊢ iteratedFDerivWithin 𝕜 (Nat.succ n) f univ = iteratedFDeriv 𝕜 (Nat.succ n) f",
"tactic": "ext (x m)"
},
{
"state_after": "no goals",
"state_before": "case succ.h.H\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\nIH : iteratedFDerivWithin 𝕜 n f univ = iteratedFDeriv 𝕜 n f\nx : E\nm : Fin (Nat.succ n) → E\n⊢ ↑(iteratedFDerivWithin 𝕜 (Nat.succ n) f univ x) m = ↑(iteratedFDeriv 𝕜 (Nat.succ n) f x) m",
"tactic": "rw [iteratedFDeriv_succ_apply_left, iteratedFDerivWithin_succ_apply_left, IH, fderivWithin_univ]"
}
] | [
1578,
101
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1573,
1
] |
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean | CategoryTheory.Limits.PushoutCocone.mk_inl | [] | [
855,
37
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
854,
1
] |
Mathlib/Order/LiminfLimsup.lean | Filter.IsBoundedUnder.mono_ge | [] | [
114,
42
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
112,
1
] |
Mathlib/Analysis/Normed/Group/Seminorm.lean | NonarchAddGroupSeminorm.le_def | [] | [
538,
10
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
537,
1
] |
Mathlib/CategoryTheory/Sites/SheafOfTypes.lean | CategoryTheory.Presieve.IsSeparatedFor.ext | [] | [
418,
78
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
416,
1
] |
Mathlib/CategoryTheory/Preadditive/HomOrthogonal.lean | CategoryTheory.HomOrthogonal.matrixDecomposition_id | [
{
"state_after": "case a.mk.refl.h.mk\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\n⊢ ↑(matrixDecomposition o) (𝟙 (⨁ fun a => s (f a))) ((fun b => f b) b)\n { val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) } { val := a, property := j_property } =\n OfNat.ofNat 1 { val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) }\n { val := a, property := j_property }",
"state_before": "C : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\ni : ι\n⊢ ↑(matrixDecomposition o) (𝟙 (⨁ fun a => s (f a))) i = 1",
"tactic": "ext (⟨b, ⟨⟩⟩⟨a, j_property⟩)"
},
{
"state_after": "case a.mk.refl.h.mk\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\n⊢ ↑(matrixDecomposition o) (𝟙 (⨁ fun a => s (f a))) ((fun b => f b) b)\n { val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) } { val := a, property := j_property✝ } =\n OfNat.ofNat 1 { val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) }\n { val := a, property := j_property✝ }",
"state_before": "case a.mk.refl.h.mk\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\n⊢ ↑(matrixDecomposition o) (𝟙 (⨁ fun a => s (f a))) ((fun b => f b) b)\n { val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) } { val := a, property := j_property } =\n OfNat.ofNat 1 { val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) }\n { val := a, property := j_property }",
"tactic": "simp only [Set.mem_preimage, Set.mem_singleton_iff] at j_property"
},
{
"state_after": "case a.mk.refl.h.mk\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\n⊢ eqToHom (_ : s (f b) = s (f ↑{ val := a, property := j_property✝ })) ≫\n biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b =\n if { val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) } = { val := a, property := j_property✝ } then\n 𝟙 (s (f b))\n else 0",
"state_before": "case a.mk.refl.h.mk\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\n⊢ ↑(matrixDecomposition o) (𝟙 (⨁ fun a => s (f a))) ((fun b => f b) b)\n { val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) } { val := a, property := j_property✝ } =\n OfNat.ofNat 1 { val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) }\n { val := a, property := j_property✝ }",
"tactic": "simp only [Category.comp_id, Category.id_comp, Category.assoc, End.one_def, eqToHom_refl,\n Matrix.one_apply, HomOrthogonal.matrixDecomposition_apply, biproduct.components]"
},
{
"state_after": "case a.mk.refl.h.mk.inl\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\nh : { val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) } = { val := a, property := j_property✝ }\n⊢ eqToHom (_ : s (f b) = s (f ↑{ val := a, property := j_property✝ })) ≫\n biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b =\n 𝟙 (s (f b))\n\ncase a.mk.refl.h.mk.inr\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\nh : ¬{ val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) } = { val := a, property := j_property✝ }\n⊢ eqToHom (_ : s (f b) = s (f ↑{ val := a, property := j_property✝ })) ≫\n biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b =\n 0",
"state_before": "case a.mk.refl.h.mk\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\n⊢ eqToHom (_ : s (f b) = s (f ↑{ val := a, property := j_property✝ })) ≫\n biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b =\n if { val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) } = { val := a, property := j_property✝ } then\n 𝟙 (s (f b))\n else 0",
"tactic": "split_ifs with h"
},
{
"state_after": "case a.mk.refl.h.mk.inl.refl\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb : α\nj_property✝ : b ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f b = f b\n⊢ eqToHom (_ : s (f b) = s (f ↑{ val := b, property := j_property✝ })) ≫\n biproduct.ι (fun a => s (f a)) b ≫ biproduct.π (fun b => s (f b)) b =\n 𝟙 (s (f b))",
"state_before": "case a.mk.refl.h.mk.inl\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\nh : { val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) } = { val := a, property := j_property✝ }\n⊢ eqToHom (_ : s (f b) = s (f ↑{ val := a, property := j_property✝ })) ≫\n biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b =\n 𝟙 (s (f b))",
"tactic": "cases h"
},
{
"state_after": "no goals",
"state_before": "case a.mk.refl.h.mk.inl.refl\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb : α\nj_property✝ : b ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f b = f b\n⊢ eqToHom (_ : s (f b) = s (f ↑{ val := b, property := j_property✝ })) ≫\n biproduct.ι (fun a => s (f a)) b ≫ biproduct.π (fun b => s (f b)) b =\n 𝟙 (s (f b))",
"tactic": "simp"
},
{
"state_after": "case a.mk.refl.h.mk.inr\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\nh : ¬b = a\n⊢ eqToHom (_ : s (f b) = s (f ↑{ val := a, property := j_property✝ })) ≫\n biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b =\n 0",
"state_before": "case a.mk.refl.h.mk.inr\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\nh : ¬{ val := b, property := (_ : (fun b => f b) b = (fun b => f b) b) } = { val := a, property := j_property✝ }\n⊢ eqToHom (_ : s (f b) = s (f ↑{ val := a, property := j_property✝ })) ≫\n biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b =\n 0",
"tactic": "simp at h"
},
{
"state_after": "case a.mk.refl.h.mk.inr\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\nh : ¬b = a\nthis : biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b = 0\n⊢ eqToHom (_ : s (f b) = s (f ↑{ val := a, property := j_property✝ })) ≫\n biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b =\n 0",
"state_before": "case a.mk.refl.h.mk.inr\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\nh : ¬b = a\n⊢ eqToHom (_ : s (f b) = s (f ↑{ val := a, property := j_property✝ })) ≫\n biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b =\n 0",
"tactic": "have : biproduct.ι (fun a ↦ s (f a)) a ≫ biproduct.π (fun b ↦ s (f b)) b = 0 := by\n simpa using biproduct.ι_π_ne _ (Ne.symm h)"
},
{
"state_after": "no goals",
"state_before": "case a.mk.refl.h.mk.inr\nC : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\nh : ¬b = a\nthis : biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b = 0\n⊢ eqToHom (_ : s (f b) = s (f ↑{ val := a, property := j_property✝ })) ≫\n biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b =\n 0",
"tactic": "rw [this, comp_zero]"
},
{
"state_after": "no goals",
"state_before": "C : Type u\ninst✝³ : Category C\nι : Type u_1\ns : ι → C\ninst✝² : Preadditive C\ninst✝¹ : HasFiniteBiproducts C\no : HomOrthogonal s\nα : Type\ninst✝ : Fintype α\nf : α → ι\nb a : α\nj_property✝ : a ∈ (fun a => f a) ⁻¹' {(fun b => f b) b}\nj_property : f a = f b\nh : ¬b = a\n⊢ biproduct.ι (fun a => s (f a)) a ≫ biproduct.π (fun b => s (f b)) b = 0",
"tactic": "simpa using biproduct.ι_π_ne _ (Ne.symm h)"
}
] | [
151,
25
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
138,
1
] |
Mathlib/Analysis/Calculus/ContDiffDef.lean | ContDiffWithinAt.differentiableWithinAt_iteratedFDerivWithin | [
{
"state_after": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f (insert x s ∩ u)\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"tactic": "rcases h.contDiffOn' (ENat.add_one_le_of_lt hmn) with ⟨u, uo, xu, hu⟩"
},
{
"state_after": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"state_before": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f (insert x s ∩ u)\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"tactic": "set t := insert x s ∩ u"
},
{
"state_after": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\nA : t =ᶠ[𝓝[{x}ᶜ] x] s\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"state_before": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"tactic": "have A : t =ᶠ[𝓝[≠] x] s := by\n simp only [set_eventuallyEq_iff_inf_principal, ← nhdsWithin_inter']\n rw [← inter_assoc, nhdsWithin_inter_of_mem', ← diff_eq_compl_inter, insert_diff_of_mem,\n diff_eq_compl_inter]\n exacts [rfl, mem_nhdsWithin_of_mem_nhds (uo.mem_nhds xu)]"
},
{
"state_after": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\nA : t =ᶠ[𝓝[{x}ᶜ] x] s\nB : iteratedFDerivWithin 𝕜 m f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 m f t\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"state_before": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\nA : t =ᶠ[𝓝[{x}ᶜ] x] s\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"tactic": "have B : iteratedFDerivWithin 𝕜 m f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 m f t :=\n iteratedFDerivWithin_eventually_congr_set' _ A.symm _"
},
{
"state_after": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\nA : t =ᶠ[𝓝[{x}ᶜ] x] s\nB : iteratedFDerivWithin 𝕜 m f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 m f t\nC : DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f t) t x\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"state_before": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\nA : t =ᶠ[𝓝[{x}ᶜ] x] s\nB : iteratedFDerivWithin 𝕜 m f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 m f t\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"tactic": "have C : DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f t) t x :=\n hu.differentiableOn_iteratedFDerivWithin (Nat.cast_lt.2 m.lt_succ_self) (hs.inter uo) x\n ⟨mem_insert _ _, xu⟩"
},
{
"state_after": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\nA : t =ᶠ[𝓝[{x}ᶜ] x] s\nB : iteratedFDerivWithin 𝕜 m f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 m f t\nC : DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f t) s x\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"state_before": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\nA : t =ᶠ[𝓝[{x}ᶜ] x] s\nB : iteratedFDerivWithin 𝕜 m f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 m f t\nC : DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f t) t x\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"tactic": "rw [differentiableWithinAt_congr_set' _ A] at C"
},
{
"state_after": "no goals",
"state_before": "case intro.intro.intro\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\nA : t =ᶠ[𝓝[{x}ᶜ] x] s\nB : iteratedFDerivWithin 𝕜 m f s =ᶠ[𝓝 x] iteratedFDerivWithin 𝕜 m f t\nC : DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f t) s x\n⊢ DifferentiableWithinAt 𝕜 (iteratedFDerivWithin 𝕜 m f s) s x",
"tactic": "exact C.congr_of_eventuallyEq (B.filter_mono inf_le_left) B.self_of_nhds"
},
{
"state_after": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\n⊢ 𝓝[{x}ᶜ ∩ (insert x s ∩ u)] x = 𝓝[{x}ᶜ ∩ s] x",
"state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\n⊢ t =ᶠ[𝓝[{x}ᶜ] x] s",
"tactic": "simp only [set_eventuallyEq_iff_inf_principal, ← nhdsWithin_inter']"
},
{
"state_after": "case h\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\n⊢ x ∈ {x}\n\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\n⊢ u ∈ 𝓝[{x}ᶜ ∩ insert x s] x",
"state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\n⊢ 𝓝[{x}ᶜ ∩ (insert x s ∩ u)] x = 𝓝[{x}ᶜ ∩ s] x",
"tactic": "rw [← inter_assoc, nhdsWithin_inter_of_mem', ← diff_eq_compl_inter, insert_diff_of_mem,\n diff_eq_compl_inter]"
},
{
"state_after": "no goals",
"state_before": "case h\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\n⊢ x ∈ {x}\n\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u✝ : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nm : ℕ\nh : ContDiffWithinAt 𝕜 n f s x\nhmn : ↑m < n\nhs : UniqueDiffOn 𝕜 (insert x s)\nu : Set E\nuo : IsOpen u\nxu : x ∈ u\nt : Set E := insert x s ∩ u\nhu : ContDiffOn 𝕜 (↑(Add.add (↑m) 1)) f t\n⊢ u ∈ 𝓝[{x}ᶜ ∩ insert x s] x",
"tactic": "exacts [rfl, mem_nhdsWithin_of_mem_nhds (uo.mem_nhds xu)]"
}
] | [
1097,
75
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1081,
1
] |
Mathlib/Dynamics/Circle/RotationNumber/TranslationNumber.lean | CircleDeg1Lift.translate_zpow | [
{
"state_after": "no goals",
"state_before": "f g : CircleDeg1Lift\nx : ℝ\nn : ℤ\n⊢ ↑translate (↑Multiplicative.ofAdd x) ^ n = ↑translate (↑Multiplicative.ofAdd (↑n * x))",
"tactic": "simp only [← zsmul_eq_mul, ofAdd_zsmul, MonoidHom.map_zpow]"
}
] | [
310,
62
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
308,
1
] |
Mathlib/Data/Polynomial/Degree/Definitions.lean | Polynomial.leadingCoeff_eq_zero | [] | [
665,
41
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
661,
1
] |
Mathlib/Topology/ExtendFrom.lean | tendsto_extendFrom | [] | [
50,
26
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
48,
1
] |
Mathlib/Topology/MetricSpace/Basic.lean | dist_comm | [] | [
192,
34
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
191,
1
] |
Mathlib/Analysis/Complex/OperatorNorm.lean | Complex.linearEquiv_det_conjLie | [] | [
37,
25
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
36,
1
] |
Mathlib/Order/CountableDenseLinearOrder.lean | Order.iso_of_countable_dense | [
{
"state_after": "case intro.intro\nα : Type u_1\nβ : Type u_2\ninst✝¹¹ : LinearOrder α\ninst✝¹⁰ : LinearOrder β\ninst✝⁹ : Encodable α\ninst✝⁸ : DenselyOrdered α\ninst✝⁷ : NoMinOrder α\ninst✝⁶ : NoMaxOrder α\ninst✝⁵ : Nonempty α\ninst✝⁴ : Encodable β\ninst✝³ : DenselyOrdered β\ninst✝² : NoMinOrder β\ninst✝¹ : NoMaxOrder β\ninst✝ : Nonempty β\nto_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α)\nour_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal\nF : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal)\nG : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal)\na : α\nb : β\nf : PartialIso α β\nhf : f ∈ our_ideal\nha : (a, ↑(F a)) ∈ ↑f\n⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b",
"state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹¹ : LinearOrder α\ninst✝¹⁰ : LinearOrder β\ninst✝⁹ : Encodable α\ninst✝⁸ : DenselyOrdered α\ninst✝⁷ : NoMinOrder α\ninst✝⁶ : NoMaxOrder α\ninst✝⁵ : Nonempty α\ninst✝⁴ : Encodable β\ninst✝³ : DenselyOrdered β\ninst✝² : NoMinOrder β\ninst✝¹ : NoMaxOrder β\ninst✝ : Nonempty β\nto_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α)\nour_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal\nF : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal)\nG : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal)\na : α\nb : β\n⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b",
"tactic": "rcases(F a).prop with ⟨f, hf, ha⟩"
},
{
"state_after": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ninst✝¹¹ : LinearOrder α\ninst✝¹⁰ : LinearOrder β\ninst✝⁹ : Encodable α\ninst✝⁸ : DenselyOrdered α\ninst✝⁷ : NoMinOrder α\ninst✝⁶ : NoMaxOrder α\ninst✝⁵ : Nonempty α\ninst✝⁴ : Encodable β\ninst✝³ : DenselyOrdered β\ninst✝² : NoMinOrder β\ninst✝¹ : NoMaxOrder β\ninst✝ : Nonempty β\nto_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α)\nour_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal\nF : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal)\nG : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal)\na : α\nb : β\nf : PartialIso α β\nhf : f ∈ our_ideal\nha : (a, ↑(F a)) ∈ ↑f\ng : PartialIso α β\nhg : g ∈ our_ideal\nhb : (↑(G b), b) ∈ ↑g\n⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b",
"state_before": "case intro.intro\nα : Type u_1\nβ : Type u_2\ninst✝¹¹ : LinearOrder α\ninst✝¹⁰ : LinearOrder β\ninst✝⁹ : Encodable α\ninst✝⁸ : DenselyOrdered α\ninst✝⁷ : NoMinOrder α\ninst✝⁶ : NoMaxOrder α\ninst✝⁵ : Nonempty α\ninst✝⁴ : Encodable β\ninst✝³ : DenselyOrdered β\ninst✝² : NoMinOrder β\ninst✝¹ : NoMaxOrder β\ninst✝ : Nonempty β\nto_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α)\nour_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal\nF : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal)\nG : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal)\na : α\nb : β\nf : PartialIso α β\nhf : f ∈ our_ideal\nha : (a, ↑(F a)) ∈ ↑f\n⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b",
"tactic": "rcases(G b).prop with ⟨g, hg, hb⟩"
},
{
"state_after": "case intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ninst✝¹¹ : LinearOrder α\ninst✝¹⁰ : LinearOrder β\ninst✝⁹ : Encodable α\ninst✝⁸ : DenselyOrdered α\ninst✝⁷ : NoMinOrder α\ninst✝⁶ : NoMaxOrder α\ninst✝⁵ : Nonempty α\ninst✝⁴ : Encodable β\ninst✝³ : DenselyOrdered β\ninst✝² : NoMinOrder β\ninst✝¹ : NoMaxOrder β\ninst✝ : Nonempty β\nto_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α)\nour_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal\nF : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal)\nG : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal)\na : α\nb : β\nf : PartialIso α β\nhf : f ∈ our_ideal\nha : (a, ↑(F a)) ∈ ↑f\ng : PartialIso α β\nhg : g ∈ our_ideal\nhb : (↑(G b), b) ∈ ↑g\nm : PartialIso α β\nleft✝ : m ∈ ↑our_ideal\nfm : f ≤ m\ngm : g ≤ m\n⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b",
"state_before": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ninst✝¹¹ : LinearOrder α\ninst✝¹⁰ : LinearOrder β\ninst✝⁹ : Encodable α\ninst✝⁸ : DenselyOrdered α\ninst✝⁷ : NoMinOrder α\ninst✝⁶ : NoMaxOrder α\ninst✝⁵ : Nonempty α\ninst✝⁴ : Encodable β\ninst✝³ : DenselyOrdered β\ninst✝² : NoMinOrder β\ninst✝¹ : NoMaxOrder β\ninst✝ : Nonempty β\nto_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α)\nour_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal\nF : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal)\nG : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal)\na : α\nb : β\nf : PartialIso α β\nhf : f ∈ our_ideal\nha : (a, ↑(F a)) ∈ ↑f\ng : PartialIso α β\nhg : g ∈ our_ideal\nhb : (↑(G b), b) ∈ ↑g\n⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b",
"tactic": "rcases our_ideal.directed _ hf _ hg with ⟨m, _, fm, gm⟩"
},
{
"state_after": "no goals",
"state_before": "case intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ninst✝¹¹ : LinearOrder α\ninst✝¹⁰ : LinearOrder β\ninst✝⁹ : Encodable α\ninst✝⁸ : DenselyOrdered α\ninst✝⁷ : NoMinOrder α\ninst✝⁶ : NoMaxOrder α\ninst✝⁵ : Nonempty α\ninst✝⁴ : Encodable β\ninst✝³ : DenselyOrdered β\ninst✝² : NoMinOrder β\ninst✝¹ : NoMaxOrder β\ninst✝ : Nonempty β\nto_cofinal : α ⊕ β → Cofinal (PartialIso α β) := fun p => Sum.recOn p (definedAtLeft β) (definedAtRight α)\nour_ideal : Ideal (PartialIso α β) := idealOfCofinals default to_cofinal\nF : (a : α) → { b // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun a => funOfIdeal a our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inl a) ∧ x ∈ idealOfCofinals default to_cofinal)\nG : (b : β) → { a // ∃ f, f ∈ our_ideal ∧ (a, b) ∈ ↑f } :=\n fun b => invOfIdeal b our_ideal (_ : ∃ x, x ∈ to_cofinal (Sum.inr b) ∧ x ∈ idealOfCofinals default to_cofinal)\na : α\nb : β\nf : PartialIso α β\nhf : f ∈ our_ideal\nha : (a, ↑(F a)) ∈ ↑f\ng : PartialIso α β\nhg : g ∈ our_ideal\nhb : (↑(G b), b) ∈ ↑g\nm : PartialIso α β\nleft✝ : m ∈ ↑our_ideal\nfm : f ≤ m\ngm : g ≤ m\n⊢ cmp a ((fun b => ↑(G b)) b) = cmp ((fun a => ↑(F a)) a) b",
"tactic": "exact m.prop (a, _) (fm ha) (_, b) (gm hb)"
}
] | [
235,
50
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
223,
1
] |
Mathlib/Analysis/BoxIntegral/Partition/Split.lean | BoxIntegral.Prepartition.compl_congr | [
{
"state_after": "ι : Type u_1\nM : Type ?u.58340\nn : ℕ\nI J : Box ι\ni : ι\nx : ℝ\ninst✝ : Finite ι\nπ₁ π₂ : Prepartition I\nh : Prepartition.iUnion π₁ = Prepartition.iUnion π₂\n⊢ Exists.choose (_ : ∃ π', Prepartition.iUnion π' = ↑I \\ Prepartition.iUnion π₁) =\n Exists.choose (_ : ∃ π', Prepartition.iUnion π' = ↑I \\ Prepartition.iUnion π₂)",
"state_before": "ι : Type u_1\nM : Type ?u.58340\nn : ℕ\nI J : Box ι\ni : ι\nx : ℝ\ninst✝ : Finite ι\nπ₁ π₂ : Prepartition I\nh : Prepartition.iUnion π₁ = Prepartition.iUnion π₂\n⊢ compl π₁ = compl π₂",
"tactic": "dsimp only [compl]"
},
{
"state_after": "case e_p\nι : Type u_1\nM : Type ?u.58340\nn : ℕ\nI J : Box ι\ni : ι\nx : ℝ\ninst✝ : Finite ι\nπ₁ π₂ : Prepartition I\nh : Prepartition.iUnion π₁ = Prepartition.iUnion π₂\n⊢ (fun π' => Prepartition.iUnion π' = ↑I \\ Prepartition.iUnion π₁) = fun π' =>\n Prepartition.iUnion π' = ↑I \\ Prepartition.iUnion π₂",
"state_before": "ι : Type u_1\nM : Type ?u.58340\nn : ℕ\nI J : Box ι\ni : ι\nx : ℝ\ninst✝ : Finite ι\nπ₁ π₂ : Prepartition I\nh : Prepartition.iUnion π₁ = Prepartition.iUnion π₂\n⊢ Exists.choose (_ : ∃ π', Prepartition.iUnion π' = ↑I \\ Prepartition.iUnion π₁) =\n Exists.choose (_ : ∃ π', Prepartition.iUnion π' = ↑I \\ Prepartition.iUnion π₂)",
"tactic": "congr 1"
},
{
"state_after": "no goals",
"state_before": "case e_p\nι : Type u_1\nM : Type ?u.58340\nn : ℕ\nI J : Box ι\ni : ι\nx : ℝ\ninst✝ : Finite ι\nπ₁ π₂ : Prepartition I\nh : Prepartition.iUnion π₁ = Prepartition.iUnion π₂\n⊢ (fun π' => Prepartition.iUnion π' = ↑I \\ Prepartition.iUnion π₁) = fun π' =>\n Prepartition.iUnion π' = ↑I \\ Prepartition.iUnion π₂",
"tactic": "rw [h]"
}
] | [
378,
9
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
375,
1
] |
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean | ContinuousMap.measurable | [] | [
939,
26
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
938,
1
] |
Mathlib/ModelTheory/Substructures.lean | FirstOrder.Language.Substructure.comap_comap | [] | [
430,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
428,
1
] |
Mathlib/SetTheory/Ordinal/Basic.lean | Ordinal.sInf_empty | [] | [
1019,
33
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1018,
1
] |
Mathlib/Data/Real/ENNReal.lean | ENNReal.iUnion_Ioc_coe_nat | [
{
"state_after": "no goals",
"state_before": "α : Type ?u.133965\nβ : Type ?u.133968\na b c d : ℝ≥0∞\nr p q : ℝ≥0\n⊢ (⋃ (n : ℕ), Ioc a ↑n) = Ioi a \\ {⊤}",
"tactic": "simp only [← Ioi_inter_Iic, ← inter_iUnion, iUnion_Iic_coe_nat, diff_eq]"
}
] | [
874,
75
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
873,
1
] |
Mathlib/MeasureTheory/Function/LpSeminorm.lean | MeasureTheory.Memℒp.smul | [] | [
1525,
60
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1521,
1
] |
Mathlib/Data/Finset/Basic.lean | Finset.not_mem_sdiff_of_not_mem_left | [
{
"state_after": "no goals",
"state_before": "α : Type u_1\nβ : Type ?u.223921\nγ : Type ?u.223924\ninst✝ : DecidableEq α\ns t u v : Finset α\na b : α\nh : ¬a ∈ s\n⊢ ¬a ∈ s \\ t",
"tactic": "simp [h]"
}
] | [
2064,
77
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
2064,
1
] |
Mathlib/Algebra/Hom/Group.lean | MulHom.map_mul | [] | [
923,
17
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
922,
11
] |
Mathlib/Topology/MetricSpace/HausdorffDistance.lean | Metric.mem_cthickening_of_dist_le | [
{
"state_after": "ι : Sort ?u.98897\nα✝ : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α✝\nδ✝ ε : ℝ\ns t : Set α✝\nx✝ : α✝\nα : Type u_1\ninst✝ : PseudoMetricSpace α\nx y : α\nδ : ℝ\nE : Set α\nh : y ∈ E\nh' : dist x y ≤ δ\n⊢ edist x y ≤ ENNReal.ofReal δ",
"state_before": "ι : Sort ?u.98897\nα✝ : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α✝\nδ✝ ε : ℝ\ns t : Set α✝\nx✝ : α✝\nα : Type u_1\ninst✝ : PseudoMetricSpace α\nx y : α\nδ : ℝ\nE : Set α\nh : y ∈ E\nh' : dist x y ≤ δ\n⊢ x ∈ cthickening δ E",
"tactic": "apply mem_cthickening_of_edist_le x y δ E h"
},
{
"state_after": "ι : Sort ?u.98897\nα✝ : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α✝\nδ✝ ε : ℝ\ns t : Set α✝\nx✝ : α✝\nα : Type u_1\ninst✝ : PseudoMetricSpace α\nx y : α\nδ : ℝ\nE : Set α\nh : y ∈ E\nh' : dist x y ≤ δ\n⊢ ENNReal.ofReal (dist x y) ≤ ENNReal.ofReal δ",
"state_before": "ι : Sort ?u.98897\nα✝ : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α✝\nδ✝ ε : ℝ\ns t : Set α✝\nx✝ : α✝\nα : Type u_1\ninst✝ : PseudoMetricSpace α\nx y : α\nδ : ℝ\nE : Set α\nh : y ∈ E\nh' : dist x y ≤ δ\n⊢ edist x y ≤ ENNReal.ofReal δ",
"tactic": "rw [edist_dist]"
},
{
"state_after": "no goals",
"state_before": "ι : Sort ?u.98897\nα✝ : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α✝\nδ✝ ε : ℝ\ns t : Set α✝\nx✝ : α✝\nα : Type u_1\ninst✝ : PseudoMetricSpace α\nx y : α\nδ : ℝ\nE : Set α\nh : y ∈ E\nh' : dist x y ≤ δ\n⊢ ENNReal.ofReal (dist x y) ≤ ENNReal.ofReal δ",
"tactic": "exact ENNReal.ofReal_le_ofReal h'"
}
] | [
1041,
36
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1037,
1
] |
Mathlib/Order/Filter/Basic.lean | Filter.NeBot.map | [] | [
2457,
25
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
2456,
1
] |
Mathlib/Analysis/Convex/SimplicialComplex/Basic.lean | Geometry.SimplicialComplex.facets_bot | [] | [
263,
41
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
262,
1
] |
Mathlib/MeasureTheory/Measure/Haar/Basic.lean | MeasureTheory.Measure.haar.chaar_mem_haarProduct | [] | [
415,
59
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
414,
1
] |
Mathlib/LinearAlgebra/Matrix/BilinearForm.lean | BilinForm.mul_toMatrix_mul | [
{
"state_after": "no goals",
"state_before": "R : Type ?u.1640706\nM✝ : Type ?u.1640709\ninst✝²⁰ : Semiring R\ninst✝¹⁹ : AddCommMonoid M✝\ninst✝¹⁸ : Module R M✝\nR₁ : Type ?u.1640745\nM₁ : Type ?u.1640748\ninst✝¹⁷ : Ring R₁\ninst✝¹⁶ : AddCommGroup M₁\ninst✝¹⁵ : Module R₁ M₁\nR₂ : Type u_1\nM₂ : Type u_2\ninst✝¹⁴ : CommSemiring R₂\ninst✝¹³ : AddCommMonoid M₂\ninst✝¹² : Module R₂ M₂\nR₃ : Type ?u.1641547\nM₃ : Type ?u.1641550\ninst✝¹¹ : CommRing R₃\ninst✝¹⁰ : AddCommGroup M₃\ninst✝⁹ : Module R₃ M₃\nV : Type ?u.1642138\nK : Type ?u.1642141\ninst✝⁸ : Field K\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module K V\nB✝ : BilinForm R M✝\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_4\no : Type u_3\ninst✝⁵ : Fintype n\ninst✝⁴ : Fintype o\ninst✝³ : DecidableEq n\nb : Basis n R₂ M₂\nM₂' : Type u_5\ninst✝² : AddCommMonoid M₂'\ninst✝¹ : Module R₂ M₂'\nc : Basis o R₂ M₂'\ninst✝ : DecidableEq o\nB : BilinForm R₂ M₂\nM : Matrix o n R₂\nN : Matrix n o R₂\n⊢ M ⬝ ↑(toMatrix b) B ⬝ N = ↑(toMatrix c) (comp B (↑(Matrix.toLin c b) Mᵀ) (↑(Matrix.toLin c b) N))",
"tactic": "simp only [B.toMatrix_comp b c, toMatrix_toLin, transpose_transpose]"
}
] | [
407,
74
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
404,
1
] |
Mathlib/GroupTheory/Submonoid/Membership.lean | Submonoid.coe_multiset_prod | [] | [
121,
32
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
119,
1
] |
Mathlib/Topology/MetricSpace/Infsep.lean | Set.Nontrivial.infsep_exists_of_finite | [
{
"state_after": "no goals",
"state_before": "α : Type u_1\nβ : Type ?u.77742\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns t : Set α\ninst✝ : Finite ↑s\nhs : Set.Nontrivial s\n⊢ ∃ x x_1 y x_2 _hxy, infsep s = dist x y",
"tactic": "classical\n cases nonempty_fintype s\n simp_rw [hs.infsep_of_fintype]\n rcases@Finset.exists_mem_eq_inf' _ _ _ s.offDiag.toFinset (by simpa) (uncurry dist) with\n ⟨w, hxy, hed⟩\n simp_rw [mem_toFinset] at hxy\n exact ⟨w.fst, hxy.1, w.snd, hxy.2.1, hxy.2.2, hed⟩"
},
{
"state_after": "case intro\nα : Type u_1\nβ : Type ?u.77742\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns t : Set α\ninst✝ : Finite ↑s\nhs : Set.Nontrivial s\nval✝ : Fintype ↑s\n⊢ ∃ x x_1 y x_2 _hxy, infsep s = dist x y",
"state_before": "α : Type u_1\nβ : Type ?u.77742\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns t : Set α\ninst✝ : Finite ↑s\nhs : Set.Nontrivial s\n⊢ ∃ x x_1 y x_2 _hxy, infsep s = dist x y",
"tactic": "cases nonempty_fintype s"
},
{
"state_after": "case intro\nα : Type u_1\nβ : Type ?u.77742\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns t : Set α\ninst✝ : Finite ↑s\nhs : Set.Nontrivial s\nval✝ : Fintype ↑s\n⊢ ∃ x h y h h, Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) = dist x y",
"state_before": "case intro\nα : Type u_1\nβ : Type ?u.77742\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns t : Set α\ninst✝ : Finite ↑s\nhs : Set.Nontrivial s\nval✝ : Fintype ↑s\n⊢ ∃ x x_1 y x_2 _hxy, infsep s = dist x y",
"tactic": "simp_rw [hs.infsep_of_fintype]"
},
{
"state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.77742\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns t : Set α\ninst✝ : Finite ↑s\nhs : Set.Nontrivial s\nval✝ : Fintype ↑s\nw : α × α\nhxy : w ∈ toFinset (offDiag s)\nhed : Finset.inf' (toFinset (offDiag s)) ?m.80020 (uncurry dist) = uncurry dist w\n⊢ ∃ x h y h h, Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) = dist x y",
"state_before": "case intro\nα : Type u_1\nβ : Type ?u.77742\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns t : Set α\ninst✝ : Finite ↑s\nhs : Set.Nontrivial s\nval✝ : Fintype ↑s\n⊢ ∃ x h y h h, Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) = dist x y",
"tactic": "rcases@Finset.exists_mem_eq_inf' _ _ _ s.offDiag.toFinset (by simpa) (uncurry dist) with\n ⟨w, hxy, hed⟩"
},
{
"state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.77742\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns t : Set α\ninst✝ : Finite ↑s\nhs : Set.Nontrivial s\nval✝ : Fintype ↑s\nw : α × α\nhed : Finset.inf' (toFinset (offDiag s)) ?m.80020 (uncurry dist) = uncurry dist w\nhxy : w ∈ offDiag s\n⊢ ∃ x h y h h, Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) = dist x y",
"state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.77742\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns t : Set α\ninst✝ : Finite ↑s\nhs : Set.Nontrivial s\nval✝ : Fintype ↑s\nw : α × α\nhxy : w ∈ toFinset (offDiag s)\nhed : Finset.inf' (toFinset (offDiag s)) ?m.80020 (uncurry dist) = uncurry dist w\n⊢ ∃ x h y h h, Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) = dist x y",
"tactic": "simp_rw [mem_toFinset] at hxy"
},
{
"state_after": "no goals",
"state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.77742\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns t : Set α\ninst✝ : Finite ↑s\nhs : Set.Nontrivial s\nval✝ : Fintype ↑s\nw : α × α\nhed : Finset.inf' (toFinset (offDiag s)) ?m.80020 (uncurry dist) = uncurry dist w\nhxy : w ∈ offDiag s\n⊢ ∃ x h y h h, Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) = dist x y",
"tactic": "exact ⟨w.fst, hxy.1, w.snd, hxy.2.1, hxy.2.2, hed⟩"
},
{
"state_after": "no goals",
"state_before": "α : Type u_1\nβ : Type ?u.77742\ninst✝¹ : PseudoMetricSpace α\nx y z : α\ns t : Set α\ninst✝ : Finite ↑s\nhs : Set.Nontrivial s\nval✝ : Fintype ↑s\n⊢ Finset.Nonempty (toFinset (offDiag s))",
"tactic": "simpa"
}
] | [
528,
55
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
520,
1
] |
Mathlib/Topology/Bornology/Basic.lean | Bornology.isCobounded_compl_iff | [] | [
162,
10
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
161,
1
] |
Mathlib/Analysis/Normed/Group/Basic.lean | norm_ne_zero_iff' | [] | [
1972,
21
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1971,
1
] |
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean | Real.mapsTo_cos | [] | [
638,
91
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
638,
1
] |
Mathlib/Data/Matrix/Basic.lean | Matrix.one_apply_ne | [] | [
546,
22
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
545,
1
] |
Mathlib/Algebra/Order/Ring/Lemmas.lean | posMulStrictMono_iff_mulPosStrictMono | [
{
"state_after": "no goals",
"state_before": "α : Type u_1\na b c d : α\ninst✝² : CommSemigroup α\ninst✝¹ : Zero α\ninst✝ : Preorder α\n⊢ PosMulStrictMono α ↔ MulPosStrictMono α",
"tactic": "simp only [PosMulStrictMono, MulPosStrictMono, mul_comm]"
}
] | [
1031,
59
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1030,
1
] |
Mathlib/LinearAlgebra/Matrix/ToLin.lean | LinearMap.toMatrixAlgEquiv_transpose_apply' | [] | [
763,
52
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
761,
1
] |
Mathlib/Analysis/Calculus/FDeriv/Linear.lean | IsBoundedLinearMap.hasFDerivAt | [] | [
122,
22
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
120,
1
] |
Mathlib/Topology/Basic.lean | DenseRange.comp | [
{
"state_after": "α : Type ?u.176030\nβ : Type u_2\nγ : Type u_1\nδ : Type ?u.176039\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nκ : Type u_3\nι : Type ?u.176054\nf✝ : κ → β\ng✝ g : β → γ\nf : κ → β\nhg : DenseRange g\nhf : DenseRange f\ncg : Continuous g\n⊢ Dense (g '' range f)",
"state_before": "α : Type ?u.176030\nβ : Type u_2\nγ : Type u_1\nδ : Type ?u.176039\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nκ : Type u_3\nι : Type ?u.176054\nf✝ : κ → β\ng✝ g : β → γ\nf : κ → β\nhg : DenseRange g\nhf : DenseRange f\ncg : Continuous g\n⊢ DenseRange (g ∘ f)",
"tactic": "rw [DenseRange, range_comp]"
},
{
"state_after": "no goals",
"state_before": "α : Type ?u.176030\nβ : Type u_2\nγ : Type u_1\nδ : Type ?u.176039\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nκ : Type u_3\nι : Type ?u.176054\nf✝ : κ → β\ng✝ g : β → γ\nf : κ → β\nhg : DenseRange g\nhf : DenseRange f\ncg : Continuous g\n⊢ Dense (g '' range f)",
"tactic": "exact hg.dense_image cg hf"
}
] | [
1850,
29
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1847,
1
] |
Mathlib/Analysis/Normed/Group/Seminorm.lean | AddGroupSeminorm.coe_smul | [] | [
483,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
482,
1
] |
Std/Data/Int/Lemmas.lean | Int.le_max_right | [] | [
716,
97
] | e68aa8f5fe47aad78987df45f99094afbcb5e936 | https://github.com/leanprover/std4 | [
716,
11
] |
Mathlib/Data/Set/Pointwise/Basic.lean | Set.singleton_div_singleton | [] | [
678,
19
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
677,
1
] |
Mathlib/Algebra/Lie/Abelian.lean | LieSubmodule.lie_abelian_iff_lie_self_eq_bot | [
{
"state_after": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\n⊢ IsLieAbelian { x // x ∈ ↑I } ↔ ∀ (y : L) (x : { x // x ∈ I }) (x_1 : { x // x ∈ I }), ⁅↑x, ↑x_1⁆ = y → y = 0",
"state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\n⊢ IsLieAbelian { x // x ∈ ↑I } ↔ ⁅I, I⁆ = ⊥",
"tactic": "simp only [_root_.eq_bot_iff, lieIdeal_oper_eq_span, LieSubmodule.lieSpan_le,\n LieSubmodule.bot_coe, Set.subset_singleton_iff, Set.mem_setOf_eq, exists_imp]"
},
{
"state_after": "no goals",
"state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\n⊢ IsLieAbelian { x // x ∈ ↑I } ↔ ∀ (y : L) (x : { x // x ∈ I }) (x_1 : { x // x ∈ I }), ⁅↑x, ↑x_1⁆ = y → y = 0",
"tactic": "refine'\n ⟨fun h z x y hz =>\n hz.symm.trans\n (((I : LieSubalgebra R L).coe_bracket x y).symm.trans\n ((coe_zero_iff_zero _ _).mpr (by apply h.trivial))),\n fun h => ⟨fun x y => ((I : LieSubalgebra R L).coe_zero_iff_zero _).mp (h _ x y rfl)⟩⟩"
},
{
"state_after": "no goals",
"state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nh : IsLieAbelian { x // x ∈ ↑I }\nz : L\nx : { x // x ∈ I }\ny : { x // x ∈ I }\nhz : ⁅↑x, ↑y⁆ = z\n⊢ ⁅x, y⁆ = 0",
"tactic": "apply h.trivial"
}
] | [
316,
92
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
308,
1
] |
Mathlib/Data/Setoid/Partition.lean | IndexedPartition.equivQuotient_index | [] | [
444,
38
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
443,
1
] |
Mathlib/Analysis/InnerProductSpace/PiL2.lean | Complex.map_isometryOfOrthonormal | [
{
"state_after": "ι : Type ?u.1334907\nι' : Type ?u.1334910\n𝕜 : Type ?u.1334913\ninst✝⁹ : IsROrC 𝕜\nE : Type ?u.1334919\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace 𝕜 E\nE' : Type ?u.1334939\ninst✝⁶ : NormedAddCommGroup E'\ninst✝⁵ : InnerProductSpace 𝕜 E'\nF : Type u_1\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\nF' : Type u_2\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : InnerProductSpace ℝ F'\ninst✝ : Fintype ι\nv : OrthonormalBasis (Fin 2) ℝ F\nf : F ≃ₗᵢ[ℝ] F'\n⊢ LinearIsometryEquiv.trans orthonormalBasisOneI.repr (LinearIsometryEquiv.trans (LinearIsometryEquiv.symm v.repr) f) =\n LinearIsometryEquiv.trans (LinearIsometryEquiv.trans orthonormalBasisOneI.repr (LinearIsometryEquiv.symm v.repr)) f",
"state_before": "ι : Type ?u.1334907\nι' : Type ?u.1334910\n𝕜 : Type ?u.1334913\ninst✝⁹ : IsROrC 𝕜\nE : Type ?u.1334919\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace 𝕜 E\nE' : Type ?u.1334939\ninst✝⁶ : NormedAddCommGroup E'\ninst✝⁵ : InnerProductSpace 𝕜 E'\nF : Type u_1\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\nF' : Type u_2\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : InnerProductSpace ℝ F'\ninst✝ : Fintype ι\nv : OrthonormalBasis (Fin 2) ℝ F\nf : F ≃ₗᵢ[ℝ] F'\n⊢ isometryOfOrthonormal (OrthonormalBasis.map v f) = LinearIsometryEquiv.trans (isometryOfOrthonormal v) f",
"tactic": "simp [Complex.isometryOfOrthonormal, LinearIsometryEquiv.trans_assoc, OrthonormalBasis.map]"
},
{
"state_after": "no goals",
"state_before": "ι : Type ?u.1334907\nι' : Type ?u.1334910\n𝕜 : Type ?u.1334913\ninst✝⁹ : IsROrC 𝕜\nE : Type ?u.1334919\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : InnerProductSpace 𝕜 E\nE' : Type ?u.1334939\ninst✝⁶ : NormedAddCommGroup E'\ninst✝⁵ : InnerProductSpace 𝕜 E'\nF : Type u_1\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace ℝ F\nF' : Type u_2\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : InnerProductSpace ℝ F'\ninst✝ : Fintype ι\nv : OrthonormalBasis (Fin 2) ℝ F\nf : F ≃ₗᵢ[ℝ] F'\n⊢ LinearIsometryEquiv.trans orthonormalBasisOneI.repr (LinearIsometryEquiv.trans (LinearIsometryEquiv.symm v.repr) f) =\n LinearIsometryEquiv.trans (LinearIsometryEquiv.trans orthonormalBasisOneI.repr (LinearIsometryEquiv.symm v.repr)) f",
"tactic": "rw [LinearIsometryEquiv.trans_assoc]"
}
] | [
663,
39
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
659,
1
] |
Mathlib/Order/UpperLower/Basic.lean | UpperSet.coe_eq_univ | [
{
"state_after": "no goals",
"state_before": "α : Type u_1\nβ : Type ?u.45708\nγ : Type ?u.45711\nι : Sort ?u.45714\nκ : ι → Sort ?u.45719\ninst✝ : LE α\nS : Set (UpperSet α)\ns t : UpperSet α\na : α\n⊢ ↑s = univ ↔ s = ⊥",
"tactic": "simp [SetLike.ext'_iff]"
}
] | [
525,
79
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
525,
1
] |
Mathlib/Analysis/Calculus/Deriv/Inv.lean | HasDerivWithinAt.inv | [
{
"state_after": "case h.e'_7\n𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL : Filter 𝕜\nc : 𝕜 → 𝕜\nh : E → 𝕜\nc' : 𝕜\nz : E\nS : Set E\nhc : HasDerivWithinAt c c' s x\nhx : c x ≠ 0\n⊢ -c' / c x ^ 2 = -(c x ^ 2)⁻¹ * c'",
"state_before": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL : Filter 𝕜\nc : 𝕜 → 𝕜\nh : E → 𝕜\nc' : 𝕜\nz : E\nS : Set E\nhc : HasDerivWithinAt c c' s x\nhx : c x ≠ 0\n⊢ HasDerivWithinAt (fun y => (c y)⁻¹) (-c' / c x ^ 2) s x",
"tactic": "convert (hasDerivAt_inv hx).comp_hasDerivWithinAt x hc using 1"
},
{
"state_after": "no goals",
"state_before": "case h.e'_7\n𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL : Filter 𝕜\nc : 𝕜 → 𝕜\nh : E → 𝕜\nc' : 𝕜\nz : E\nS : Set E\nhc : HasDerivWithinAt c c' s x\nhx : c x ≠ 0\n⊢ -c' / c x ^ 2 = -(c x ^ 2)⁻¹ * c'",
"tactic": "field_simp"
}
] | [
138,
13
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
135,
1
] |
Mathlib/Algebra/Order/Ring/Defs.lean | mul_lt_mul'' | [
{
"state_after": "no goals",
"state_before": "α : Type u\nβ : Type ?u.60876\ninst✝ : StrictOrderedSemiring α\na b c d : α\n⊢ a < c → b < d → 0 ≤ a → 0 ≤ b → a * b < c * d",
"tactic": "classical\nexact Decidable.mul_lt_mul''"
},
{
"state_after": "no goals",
"state_before": "α : Type u\nβ : Type ?u.60876\ninst✝ : StrictOrderedSemiring α\na b c d : α\n⊢ a < c → b < d → 0 ≤ a → 0 ≤ b → a * b < c * d",
"tactic": "exact Decidable.mul_lt_mul''"
}
] | [
560,
31
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
559,
1
] |
Mathlib/Topology/LocallyConstant/Basic.lean | IsLocallyConstant.desc | [
{
"state_after": "X : Type u_3\nY : Type ?u.7897\nZ : Type ?u.7900\nα✝ : Type ?u.7903\ninst✝ : TopologicalSpace X\nα : Type u_1\nβ : Type u_2\nf : X → α\ng : α → β\nh : IsLocallyConstant (g ∘ f)\ninj : Function.Injective g\ns : Set α\n⊢ IsOpen ((fun x => g (f x)) ⁻¹' (g '' s))",
"state_before": "X : Type u_3\nY : Type ?u.7897\nZ : Type ?u.7900\nα✝ : Type ?u.7903\ninst✝ : TopologicalSpace X\nα : Type u_1\nβ : Type u_2\nf : X → α\ng : α → β\nh : IsLocallyConstant (g ∘ f)\ninj : Function.Injective g\ns : Set α\n⊢ IsOpen (f ⁻¹' s)",
"tactic": "rw [← preimage_image_eq s inj, preimage_preimage]"
},
{
"state_after": "no goals",
"state_before": "X : Type u_3\nY : Type ?u.7897\nZ : Type ?u.7900\nα✝ : Type ?u.7903\ninst✝ : TopologicalSpace X\nα : Type u_1\nβ : Type u_2\nf : X → α\ng : α → β\nh : IsLocallyConstant (g ∘ f)\ninj : Function.Injective g\ns : Set α\n⊢ IsOpen ((fun x => g (f x)) ⁻¹' (g '' s))",
"tactic": "exact h (g '' s)"
}
] | [
222,
19
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
219,
1
] |
Mathlib/Order/SuccPred/Basic.lean | Order.Ioo_pred_left_of_not_isMin | [
{
"state_after": "no goals",
"state_before": "α : Type u_1\ninst✝¹ : Preorder α\ninst✝ : PredOrder α\na b : α\nha : ¬IsMin a\n⊢ Ioo (pred a) b = Ico a b",
"tactic": "rw [← Ioi_inter_Iio, Ioi_pred_of_not_isMin ha, Ici_inter_Iio]"
}
] | [
680,
64
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
679,
1
] |
Mathlib/MeasureTheory/Lattice.lean | Measurable.sup_const | [] | [
127,
35
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
126,
1
] |
src/lean/Init/Data/List/Basic.lean | List.append_nil | [
{
"state_after": "no goals",
"state_before": "α : Type u\nβ : Type v\nγ : Type w\nas : List α\n⊢ as ++ nil = as",
"tactic": "induction as with\n| nil => rfl\n| cons a as ih =>\n simp_all [HAppend.hAppend, Append.append, List.append]"
},
{
"state_after": "no goals",
"state_before": "case nil\nα : Type u\nβ : Type v\nγ : Type w\n⊢ nil ++ nil = nil",
"tactic": "rfl"
},
{
"state_after": "no goals",
"state_before": "case cons\nα : Type u\nβ : Type v\nγ : Type w\na : α\nas : List α\nih : as ++ nil = as\n⊢ a :: as ++ nil = a :: as",
"tactic": "simp_all [HAppend.hAppend, Append.append, List.append]"
}
] | [
97,
59
] | d5348dfac847a56a4595fb6230fd0708dcb4e7e9 | https://github.com/leanprover/lean4 | [
93,
9
] |
Mathlib/GroupTheory/Perm/Cycle/Concrete.lean | Equiv.Perm.toList_one | [
{
"state_after": "no goals",
"state_before": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\np : Perm α\nx : α\n⊢ toList 1 x = []",
"tactic": "simp [toList, cycleOf_one]"
}
] | [
225,
81
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
225,
1
] |
Mathlib/GroupTheory/Torsion.lean | Monoid.IsTorsion.torsionMulEquiv_apply | [] | [
284,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
282,
1
] |
src/lean/Init/Data/List/BasicAux.lean | List.le_antisymm | [
{
"state_after": "case inl\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁ : a :: as ≤ b :: bs\nh₂ : b :: bs ≤ a :: as\nhab : a < b\n⊢ a :: as = b :: bs\n\ncase inr\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁ : a :: as ≤ b :: bs\nh₂ : b :: bs ≤ a :: as\nhab : ¬a < b\n⊢ a :: as = b :: bs",
"state_before": "α : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁ : a :: as ≤ b :: bs\nh₂ : b :: bs ≤ a :: as\n⊢ a :: as = b :: bs",
"tactic": "by_cases hab : a < b"
},
{
"state_after": "no goals",
"state_before": "case inl\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁ : a :: as ≤ b :: bs\nh₂ : b :: bs ≤ a :: as\nhab : a < b\n⊢ a :: as = b :: bs",
"tactic": "exact False.elim <| h₂ (List.lt.head _ _ hab)"
},
{
"state_after": "case inr.inl\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁ : a :: as ≤ b :: bs\nh₂ : b :: bs ≤ a :: as\nhab : ¬a < b\nhba : b < a\n⊢ a :: as = b :: bs\n\ncase inr.inr\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁ : a :: as ≤ b :: bs\nh₂ : b :: bs ≤ a :: as\nhab : ¬a < b\nhba : ¬b < a\n⊢ a :: as = b :: bs",
"state_before": "case inr\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁ : a :: as ≤ b :: bs\nh₂ : b :: bs ≤ a :: as\nhab : ¬a < b\n⊢ a :: as = b :: bs",
"tactic": "by_cases hba : b < a"
},
{
"state_after": "no goals",
"state_before": "case inr.inl\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁ : a :: as ≤ b :: bs\nh₂ : b :: bs ≤ a :: as\nhab : ¬a < b\nhba : b < a\n⊢ a :: as = b :: bs",
"tactic": "exact False.elim <| h₁ (List.lt.head _ _ hba)"
},
{
"state_after": "case inr.inr\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁✝ : a :: as ≤ b :: bs\nh₂ : b :: bs ≤ a :: as\nhab : ¬a < b\nhba : ¬b < a\nh₁ : as ≤ bs\n⊢ a :: as = b :: bs",
"state_before": "case inr.inr\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁ : a :: as ≤ b :: bs\nh₂ : b :: bs ≤ a :: as\nhab : ¬a < b\nhba : ¬b < a\n⊢ a :: as = b :: bs",
"tactic": "have h₁ : as ≤ bs := fun h => h₁ (List.lt.tail hba hab h)"
},
{
"state_after": "case inr.inr\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁✝ : a :: as ≤ b :: bs\nh₂✝ : b :: bs ≤ a :: as\nhab : ¬a < b\nhba : ¬b < a\nh₁ : as ≤ bs\nh₂ : bs ≤ as\n⊢ a :: as = b :: bs",
"state_before": "case inr.inr\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁✝ : a :: as ≤ b :: bs\nh₂ : b :: bs ≤ a :: as\nhab : ¬a < b\nhba : ¬b < a\nh₁ : as ≤ bs\n⊢ a :: as = b :: bs",
"tactic": "have h₂ : bs ≤ as := fun h => h₂ (List.lt.tail hab hba h)"
},
{
"state_after": "case inr.inr\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁✝ : a :: as ≤ b :: bs\nh₂✝ : b :: bs ≤ a :: as\nhab : ¬a < b\nhba : ¬b < a\nh₁ : as ≤ bs\nh₂ : bs ≤ as\nih : as = bs\n⊢ a :: as = b :: bs",
"state_before": "case inr.inr\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁✝ : a :: as ≤ b :: bs\nh₂✝ : b :: bs ≤ a :: as\nhab : ¬a < b\nhba : ¬b < a\nh₁ : as ≤ bs\nh₂ : bs ≤ as\n⊢ a :: as = b :: bs",
"tactic": "have ih : as = bs := le_antisymm h₁ h₂"
},
{
"state_after": "case inr.inr\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁✝ : a :: as ≤ b :: bs\nh₂✝ : b :: bs ≤ a :: as\nhab : ¬a < b\nhba : ¬b < a\nh₁ : as ≤ bs\nh₂ : bs ≤ as\nih : as = bs\nthis : a = b\n⊢ a :: as = b :: bs",
"state_before": "case inr.inr\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁✝ : a :: as ≤ b :: bs\nh₂✝ : b :: bs ≤ a :: as\nhab : ¬a < b\nhba : ¬b < a\nh₁ : as ≤ bs\nh₂ : bs ≤ as\nih : as = bs\n⊢ a :: as = b :: bs",
"tactic": "have : a = b := s.antisymm hab hba"
},
{
"state_after": "no goals",
"state_before": "case inr.inr\nα : Type u_1\ninst✝ : LT α\ns : Antisymm fun x x_1 => ¬x < x_1\nas✝ bs✝ : List α\na : α\nas : List α\nb : α\nbs : List α\nh₁✝ : a :: as ≤ b :: bs\nh₂✝ : b :: bs ≤ a :: as\nhab : ¬a < b\nhba : ¬b < a\nh₁ : as ≤ bs\nh₂ : bs ≤ as\nih : as = bs\nthis : a = b\n⊢ a :: as = b :: bs",
"tactic": "simp [this, ih]"
}
] | [
182,
24
] | d5348dfac847a56a4595fb6230fd0708dcb4e7e9 | https://github.com/leanprover/lean4 | [
168,
1
] |
Mathlib/Algebra/GroupWithZero/Power.lean | Commute.zpow_zpow₀ | [] | [
132,
33
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
131,
1
] |