File size: 15,229 Bytes
cb07198
 
 
 
bd9cea6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03fa0b9
 
bd9cea6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb07198
bd9cea6
56e4abf
cb07198
 
 
 
 
 
 
978f7e8
f069a5a
 
cb07198
 
 
 
 
 
 
 
 
 
 
6bd714d
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
978f7e8
cb07198
 
 
 
 
 
 
 
 
 
2b5a4f5
 
 
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f069a5a
cb07198
 
 
 
 
 
 
 
6e3b7ae
cb07198
f069a5a
cb07198
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
import sys
import yaml
import time
import yaml
import sys

def check_config_file(task,config_file):
    with open(config_file) as f:
        config = yaml.safe_load(f)

    if task=='Phenotype':
        disease_label =  config['disease_label']
    else :
        disease_label = ""
    time = config['timePrediction']
    label = task
    timeW = config['timeWindow']
    include=int(timeW.split()[1])
    bucket = config['timebucket']
    radimp = config['radimp']
    predW = config['predW']
    disease_filter = config['disease_filter']
    icu_no_icu = config['icu_no_icu']
    groupingDiag = config['groupingDiag']

    #assert( icu_no_icu in ['ICU','Non-ICU' ], "Chossen data should be one of the following: ICU, Non-ICU")
    assert( icu_no_icu =='ICU', "The dataset is only available for ICU data")
    data_icu = icu_no_icu=='ICU'
    
    if data_icu:
        chart_flag = config['chart']
        output_flag = config['output']
        select_chart = config['select_chart']
        lab_flag = False
        select_lab = False
    else:
        lab_flag =config['lab']
        select_lab = config['select_lab']
        groupingMed = config['groupingMed']
        groupingProc = config['groupingProc']
        chart_flag = False
        output_flag = False
        select_chart = False


    diag_flag= config['diagnosis']
    proc_flag = config['proc']
    meds_flag = config['meds']
    select_diag= config['select_diag']
    select_med= config['select_med']
    select_proc= config['select_proc']
    select_out = config['select_out']

    outlier_removal=config['outlier_removal']
    thresh=config['outlier']
    left_thresh=config['left_outlier']
    
    if data_icu:
        assert (isinstance(select_diag,bool) and isinstance(select_med,bool) and isinstance(select_proc,bool) and isinstance(select_out,bool) and isinstance(select_chart,bool), " select_diag, select_chart, select_med, select_proc, select_out should be boolean")
        assert (isinstance(chart_flag,bool) and isinstance(output_flag,bool) and isinstance(diag_flag,bool) and isinstance(proc_flag,bool) and isinstance(meds_flag,bool), "chart_flag, output_flag, diag_flag, proc_flag, meds_flag should be boolean")
    
    else:
        assert (isinstance(select_diag,bool) and isinstance(select_med,bool) and isinstance(select_proc,bool) and isinstance(select_out,bool) and isinstance(select_lab,bool), " select_diag, select_lab, select_med, select_proc, select_out should be boolean")
        assert (isinstance(lab_flag,bool) and isinstance(diag_flag,bool) and isinstance(proc_flag,bool) and isinstance(meds_flag,bool), "lab_flag, diag_flag, proc_flag, meds_flag should be boolean")
    
    if task=='Phenotype':
        if disease_label=='Heart Failure':
            label='Readmission'
            time=30
            disease_label='I50'
        elif disease_label=='CAD':
            label='Readmission'
            time=30
            disease_label='I25'
        elif disease_label=='CKD':
            label='Readmission'
            time=30
            disease_label='N18'
        elif disease_label=='COPD':
            label='Readmission'
            time=30
            disease_label='J44'
        else :
            raise ValueError('Disease label not correct provide one in the list: Heart Failure, CAD, CKD, COPD')
        predW=0
        assert (timeW[0]=='Last' and include<=72 and include>=24, "Time window should be between Last 24 and Last 72")
    
    elif task=='Mortality':
        time=0
        label= 'Mortality'
        assert (predW<=8 and predW>=2, "Prediction window should be between 2 and 8")
        assert (timeW[0]=='Fisrt' and include<=72 and include>=24, "Time window should be between First 24 and First 72")
    
    elif task=='Length_of_Stay':
        label= 'Length of Stay'
        assert (timeW[0]=='Fisrt' and include<=72 and include>=24, "Time window should be between Fisrt 24 and Fisrt 72")
        assert (time<=10 and time>=1, "Length of stay should be between 1 and 10")
        predW=0
    
    elif task=='Readmission':
        label= 'Readmission'
        assert (timeW[0]=='Last' and include<=72 and include>=24, "Time window should be between Last 24 and Last 72")
        assert (time<=150 and time>=10 and time%10==0, "Readmission window should be between 10 and 150 with a step of 10")
        predW=0
    
    else:
        raise ValueError('Task not correct')
    
    assert( disease_filter in ['Heart Failure','COPD','CKD','CAD',""], "Disease filter should be one of the following: Heart Failure, COPD, CKD, CAD or empty")
    assert( groupingDiag in ['Convert ICD-9 to ICD-10 and group ICD-10 codes','Keep both ICD-9 and ICD-10 codes','Convert ICD-9 to ICD-10 codes'], "Grouping ICD should be one of the following: Convert ICD-9 to ICD-10 and group ICD-10 codes, Keep both ICD-9 and ICD-10 codes, Convert ICD-9 to ICD-10 codes")
    assert (bucket<=6 and bucket>=1 and isinstance(bucket, int), "Time bucket should be between 1 and 6 and an integer")
    assert (radimp in ['No Imputation', 'forward fill and mean','forward fill and median'], "imputation should be one of the following: No Imputation, forward fill and mean, forward fill and median")
    if chart_flag:
        assert (left_thresh>=0 and left_thresh<=10 and isinstance(left_thresh, int), "Left outlier threshold should be between 0 and 10 and an integer")
        assert (thresh>=90 and thresh<=99 and isinstance(thresh, int), "Outlier threshold should be between 90 and 99 and an integer")
        assert (outlier_removal in ['No outlier detection','Impute Outlier (default:98)','Remove outliers (default:98)'], "Outlier removal should be one of the following: No outlier detection, Impute Outlier (default:98), Remove outliers (default:98)")
    if lab_flag:
        assert (left_thresh>=0 and left_thresh<=10 and isinstance(left_thresh, int), "Left outlier threshold should be between 0 and 10 and an integer")
        assert (thresh>=90 and thresh<=99 and isinstance(thresh, int), "Outlier threshold should be between 90 and 99 and an integer")
        assert (outlier_removal in ['No outlier detection','Impute Outlier (default:98)','Remove outliers (default:98)'], "Outlier removal should be one of the following: No outlier detection, Impute Outlier (default:98), Remove outliers (default:98)")
        assert (groupingProc in ['ICD-9 and ICD-10','ICD-10'], "Grouping procedure should be one of the following: ICD-9 and ICD-10, ICD-10")
        assert (groupingMed in ['Yes','No'], "Do you want to group Medication codes to use Non propietary names? : Grouping medication should be one of the following: Yes, No")

    return label, time, disease_label, predW

    
def create_cohort(task, mimic_path, config_path):
    sys.path.append('./preprocessing/day_intervals_preproc')
    sys.path.append('./utils')
    sys.path.append('./preprocessing/hosp_module_preproc')
    sys.path.append('./model')
    import day_intervals_cohort
    import feature_selection_icu
    import feature_selection_hosp
    import day_intervals_cohort_v22
    import data_generation_icu_modify
    import data_generation_modify

    
    root_dir = os.path.dirname(os.path.abspath('UserInterface.ipynb'))
    config_path='./config/'+config_path
    with open(config_path) as f:
        config = yaml.safe_load(f)
    version_path = mimic_path+'/'
    print(version_path)
    version = mimic_path.split('/')[-1][0]
    start = time.time()
    #----------------------------------------------config----------------------------------------------------
    label, tim, disease_label, predW = check_config_file(task,config_path)
    icu_no_icu = config['icu_no_icu']
    timeW = config['timeWindow']
    include=int(timeW.split()[1])
    bucket = config['timebucket']
    radimp = config['radimp']

    diag_flag = config['diagnosis'] 
    proc_flag= config['proc']
    med_flag = config['meds']
    disease_filter = config['disease_filter']
    groupingDiag = config['groupingDiag']
    select_diag= config['select_diag']
    select_med= config['select_med']
    select_proc=  config['select_proc']

    if icu_no_icu=='ICU':
        out_flag = config['output']
        chart_flag = config['chart']
        select_out= config['select_out']
        select_chart=  config['select_chart']
        lab_flag = False
        select_lab = False
    else:
        lab_flag = config['lab']
        groupingMed = config['groupingMed']
        groupingProc = config['groupingProc']
        select_lab= config['select_lab']
        out_flag = False
        chart_flag = False
        select_out= False
        select_chart=  False

    # -------------------------------------------------------------------------------------------------------------

    data_icu=icu_no_icu=="ICU"
    data_mort=label=="Mortality"
    data_admn=label=='Readmission'
    data_los=label=='Length of Stay'

    if (disease_filter=="Heart Failure"):
        icd_code='I50'
    elif (disease_filter=="CKD"):
        icd_code='N18'
    elif (disease_filter=="COPD"):
        icd_code='J44'
    elif (disease_filter=="CAD"):
        icd_code='I25'
    else:
        icd_code='No Disease Filter'

    #-----------------------------------------------EXTRACT MIMIC-----------------------------------------------------
    if version == '2':
        cohort_output = day_intervals_cohort_v22.extract_data(icu_no_icu,label,tim,icd_code, root_dir,version_path,disease_label)

    elif version == '1':
        cohort_output = day_intervals_cohort.extract_data(icu_no_icu,label,tim,icd_code, root_dir,version_path,disease_label)
    #----------------------------------------------FEATURES-------------------------------------------------------

    if data_icu :
        feature_selection_icu.feature_icu(cohort_output, version_path,diag_flag,out_flag,chart_flag,proc_flag,med_flag)
    else:
        feature_selection_hosp.feature_nonicu(cohort_output, version_path,diag_flag,lab_flag,proc_flag,med_flag)
    #----------------------------------------------GROUPING-------------------------------------------------------
    group_diag=False
    group_med=False
    group_proc=False
    if data_icu:
        if diag_flag:
            group_diag=groupingDiag
        feature_selection_icu.preprocess_features_icu(cohort_output, diag_flag, group_diag,False,False,False,0,0)
    
    else:
        if diag_flag:
            group_diag=groupingDiag
        if med_flag:
            group_med=groupingMed
        if proc_flag:
            group_proc=groupingProc
        feature_selection_hosp.preprocess_features_hosp(cohort_output, diag_flag,proc_flag,med_flag,False,group_diag,group_med,group_proc,False,False,0,0)
    #----------------------------------------------SUMMARY-------------------------------------------------------
    if data_icu:
        feature_selection_icu.generate_summary_icu(diag_flag,proc_flag,med_flag,out_flag,chart_flag)
    else:
        feature_selection_hosp.generate_summary_hosp(diag_flag,proc_flag,med_flag,lab_flag)
    #----------------------------------------------FEATURE SELECTION---------------------------------------------

    #----------------------------------------------FEATURE SELECTION---------------------------------------------
     
    if data_icu:
        if select_chart or select_out or select_diag or select_med or select_proc:
            if select_chart:
                input('Please edit list of codes in ./data/summary/chart_features.csv to select the chart items to keep and press enter to continue')
            if select_out:
                input('Please edit list of codes in ./data/summary/out_features.csv to select the output items to keep and press enter to continue')
            if select_diag:
                input('Please edit list of codes in ./data/summary/diag_features.csv to select the diagnosis ids to keep and press enter to continue')
            if select_med:
                input('Please edit list of codes in ./data/summary/med_features.csv to select the meds items to keep and press enter to continue')
            if select_proc:
                input('Please edit list of codes in ./data/summary/proc_features.csv to select the procedures ids to keep and press enter to continue')
        feature_selection_icu.features_selection_icu(cohort_output, diag_flag,proc_flag,med_flag,out_flag, chart_flag,select_diag,select_med,select_proc,select_out,select_chart)
    else:
        if select_diag or select_med or select_proc or select_lab:
            if select_diag:
                input('Please edit list of codes in ./data/summary/diag_features.csv to select the diagnosis ids to keep and press enter to continue')
            if select_med:
                input('Please edit list of codes in ./data/summary/med_features.csv to select the meds items to keep and press enter to continue')
            if select_proc:
                input('Please edit list of codes in ./data/summary/proc_features.csv to select the procedures ids to keep and press enter to continue')
            if select_lab:
                input('Please edit list of codes in ./data/summary/labs_features.csv to select the labs items to keep and press enter to continue')
        feature_selection_hosp.features_selection_hosp(cohort_output, diag_flag,proc_flag,med_flag,lab_flag,select_diag,select_med,select_proc,select_lab)

    #---------------------------------------CLEANING OF FEATURES-----------------------------------------------
    thresh=0
    if data_icu:
        if chart_flag:
            outlier_removal=config['outlier_removal']
            clean_chart=outlier_removal!='No outlier detection'
            impute_outlier_chart=outlier_removal=='Impute Outlier (default:98)'
            thresh=config['outlier']
            left_thresh=config['left_outlier']
        feature_selection_icu.preprocess_features_icu(cohort_output, False, False,chart_flag,clean_chart,impute_outlier_chart,thresh,left_thresh)
    else:
        if lab_flag:
            outlier_removal=config['outlier_removal']
            clean_chart=outlier_removal!='No outlier detection'
            impute_outlier_chart=outlier_removal=='Impute Outlier (default:98)'
            thresh=config['outlier']
            left_thresh=config['left_outlier']
        feature_selection_hosp.preprocess_features_hosp(cohort_output, False,False, False,lab_flag,False,False,False,clean_chart,impute_outlier_chart,thresh,left_thresh)
    # ---------------------------------------time-Series Representation--------------------------------------------
    if radimp == 'forward fill and mean' :
        impute='Mean'
    elif radimp =='forward fill and median':
        impute = 'Median'
    else :
        impute = False
    
    if data_icu:
        gen=data_generation_icu_modify.Generator(task,cohort_output,data_mort,data_admn,data_los,diag_flag,proc_flag,out_flag,chart_flag,med_flag,impute,include,bucket,predW)
    else:
        gen=data_generation_modify.Generator(cohort_output,data_mort,data_admn,data_los,diag_flag,lab_flag,proc_flag,med_flag,impute,include,bucket,predW)
    
    end = time.time()
    print("Time elapsed : ", round((end - start)/60,2),"mins")
    print("[============TASK COHORT SUCCESSFULLY CREATED============]")