File size: 19,512 Bytes
e85f125 693843a e85f125 3e15616 e85f125 062ef7b e85f125 062ef7b e85f125 062ef7b e85f125 062ef7b e85f125 062ef7b e85f125 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import datetime
import os
import sys
import numpy as np
import pandas as pd
from pathlib import Path
from tqdm import tqdm
import importlib
import disease_cohort
importlib.reload(disease_cohort)
import disease_cohort
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + './../..')
if not os.path.exists("./data/cohort"):
os.makedirs("./data/cohort")
if not os.path.exists("./data/summary"):
os.makedirs("./data/summary")
def get_visit_pts(mimic4_path:str, group_col:str, visit_col:str, admit_col:str, disch_col:str, adm_visit_col:str, use_mort:bool, use_los:bool, los:int, use_admn:bool, disease_label:str,use_ICU:bool):
"""Combines the MIMIC-IV core/patients table information with either the icu/icustays or core/admissions data.
Parameters:
mimic4_path: path to mimic-iv folder containing MIMIC-IV data
group_col: patient identifier to group patients (normally subject_id)
visit_col: visit identifier for individual patient visits (normally hadm_id or stay_id)
admit_col: column for visit start date information (normally admittime or intime)
disch_col: column for visit end date information (normally dischtime or outtime)
use_ICU: describes whether to speficially look at ICU visits in icu/icustays OR look at general admissions from core/admissions
"""
visit = None # df containing visit information depending on using ICU or not
if use_ICU:
visit = pd.read_csv(mimic4_path + "icu/icustays.csv.gz", compression='gzip', header=0, index_col=None, parse_dates=[admit_col, disch_col])
if use_admn:
# icustays doesn't have a way to identify if patient died during visit; must
# use core/patients to remove such stay_ids for readmission labels
pts = pd.read_csv(mimic4_path + "hosp/patients.csv.gz", compression='gzip', header=0, index_col=None, usecols=['subject_id', 'dod'], parse_dates=['dod'])
visit = visit.merge(pts, how='inner', left_on='subject_id', right_on='subject_id')
visit = visit.loc[(visit.dod.isna()) | (visit.dod >= visit[disch_col])]
if len(disease_label):
hids=disease_cohort.extract_diag_cohort(visit['hadm_id'],disease_label,mimic4_path)
visit=visit[visit['hadm_id'].isin(hids['hadm_id'])]
print("[ READMISSION DUE TO "+disease_label+" ]")
else:
visit = pd.read_csv(mimic4_path + "hosp/admissions.csv.gz", compression='gzip', header=0, index_col=None, parse_dates=[admit_col, disch_col])
visit['los']=visit[disch_col]-visit[admit_col]
visit[admit_col] = pd.to_datetime(visit[admit_col])
visit[disch_col] = pd.to_datetime(visit[disch_col])
visit['los']=pd.to_timedelta(visit[disch_col]-visit[admit_col],unit='h')
visit['los']=visit['los'].astype(str)
visit[['days', 'dummy','hours']] = visit['los'].str.split(' ', -1, expand=True)
visit['los']=pd.to_numeric(visit['days'])
visit=visit.drop(columns=['days', 'dummy','hours'])
if use_admn:
# remove hospitalizations with a death; impossible for readmission for such visits
visit = visit.loc[visit.hospital_expire_flag == 0]
if len(disease_label):
hids=disease_cohort.extract_diag_cohort(visit['hadm_id'],disease_label,mimic4_path)
visit=visit[visit['hadm_id'].isin(hids['hadm_id'])]
print("[ READMISSION DUE TO "+disease_label+" ]")
pts = pd.read_csv(
mimic4_path + "hosp/patients.csv.gz", compression='gzip', header=0, index_col = None, usecols=[group_col, 'anchor_year', 'anchor_age', 'anchor_year_group', 'dod','gender']
)
pts['yob']= pts['anchor_year'] - pts['anchor_age'] # get yob to ensure a given visit is from an adult
pts['min_valid_year'] = pts['anchor_year'] + (2019 - pts['anchor_year_group'].str.slice(start=-4).astype(int))
# Define anchor_year corresponding to the anchor_year_group 2017-2019. This is later used to prevent consideration
# of visits with prediction windows outside the dataset's time range (2008-2019)
#[[group_col, visit_col, admit_col, disch_col]]
if use_ICU:
visit_pts = visit[[group_col, visit_col, adm_visit_col, admit_col, disch_col,'los']].merge(
pts[[group_col, 'anchor_year', 'anchor_age', 'yob', 'min_valid_year', 'dod','gender']], how='inner', left_on=group_col, right_on=group_col
)
else:
visit_pts = visit[[group_col, visit_col, admit_col, disch_col,'los']].merge(
pts[[group_col, 'anchor_year', 'anchor_age', 'yob', 'min_valid_year', 'dod','gender']], how='inner', left_on=group_col, right_on=group_col
)
# only take adult patients
# visit_pts['Age']=visit_pts[admit_col].dt.year - visit_pts['yob']
# visit_pts = visit_pts.loc[visit_pts['Age'] >= 18]
visit_pts['Age']=visit_pts['anchor_age']
visit_pts = visit_pts.loc[visit_pts['Age'] >= 18]
##Add Demo data
eth = pd.read_csv(mimic4_path + "hosp/admissions.csv.gz", compression='gzip', header=0, usecols=['hadm_id', 'insurance','race'], index_col=None)
visit_pts= visit_pts.merge(eth, how='inner', left_on='hadm_id', right_on='hadm_id')
if use_ICU:
return visit_pts[[group_col, visit_col, adm_visit_col, admit_col, disch_col,'los', 'min_valid_year', 'dod','Age','gender','race', 'insurance']]
else:
return visit_pts.dropna(subset=['min_valid_year'])[[group_col, visit_col, admit_col, disch_col,'los', 'min_valid_year', 'dod','Age','gender','race', 'insurance']]
def validate_row(row, ctrl, invalid, max_year, disch_col, valid_col, gap):
"""Checks if visit's prediction window potentially extends beyond the dataset range (2008-2019).
An 'invalid row' is NOT guaranteed to be outside the range, only potentially outside due to
de-identification of MIMIC-IV being done through 3-year time ranges.
To be invalid, the end of the prediction window's year must both extend beyond the maximum seen year
for a patient AND beyond the year that corresponds to the 2017-2019 anchor year range for a patient"""
print("disch_col",row[disch_col])
print(gap)
pred_year = (row[disch_col] + gap).year
if max_year < pred_year and pred_year > row[valid_col]:
invalid = invalid.append(row)
else:
ctrl = ctrl.append(row)
return ctrl, invalid
def partition_by_los(df:pd.DataFrame, los:int, group_col:str, visit_col:str, admit_col:str, disch_col:str, valid_col:str):
invalid = df.loc[(df[admit_col].isna()) | (df[disch_col].isna()) | (df['los'].isna())]
cohort = df.loc[(~df[admit_col].isna()) & (~df[disch_col].isna()) & (~df['los'].isna())]
#cohort=cohort.fillna(0)
pos_cohort=cohort[cohort['los']>los]
neg_cohort=cohort[cohort['los']<=los]
neg_cohort=neg_cohort.fillna(0)
pos_cohort=pos_cohort.fillna(0)
pos_cohort['label']=1
neg_cohort['label']=0
cohort=pd.concat([pos_cohort,neg_cohort], axis=0)
cohort=cohort.sort_values(by=[group_col,admit_col])
#print("cohort",cohort.shape)
print("[ LOS LABELS FINISHED ]")
return cohort, invalid
def partition_by_readmit(df:pd.DataFrame, gap:datetime.timedelta, group_col:str, visit_col:str, admit_col:str, disch_col:str, valid_col:str):
"""Applies labels to individual visits according to whether or not a readmission has occurred within the specified `gap` days.
For a given visit, another visit must occur within the gap window for a positive readmission label.
The gap window starts from the disch_col time and the admit_col of subsequent visits are considered."""
case = pd.DataFrame() # hadm_ids with readmission within the gap period
ctrl = pd.DataFrame() # hadm_ids without readmission within the gap period
invalid = pd.DataFrame() # hadm_ids that are not considered in the cohort
# Iterate through groupbys based on group_col (subject_id). Data is sorted by subject_id and admit_col (admittime)
# to ensure that the most current hadm_id is last in a group.
#grouped= df[[group_col, visit_col, admit_col, disch_col, valid_col]].sort_values(by=[group_col, admit_col]).groupby(group_col)
grouped= df.sort_values(by=[group_col, admit_col]).groupby(group_col)
for subject, group in tqdm(grouped):
max_year = group.max()[disch_col].year
if group.shape[0] <= 1:
#ctrl, invalid = validate_row(group.iloc[0], ctrl, invalid, max_year, disch_col, valid_col, gap) # A group with 1 row has no readmission; goes to ctrl
ctrl = ctrl.append(group.iloc[0])
else:
for idx in range(group.shape[0]-1):
visit_time = group.iloc[idx][disch_col] # For each index (a unique hadm_id), get its timestamp
if group.loc[
(group[admit_col] > visit_time) & # Readmissions must come AFTER the current timestamp
(group[admit_col] - visit_time <= gap) # Distance between a timestamp and readmission must be within gap
].shape[0] >= 1: # If ANY rows meet above requirements, a readmission has occurred after that visit
case = case.append(group.iloc[idx])
else:
# If no readmission is found, only add to ctrl if prediction window is guaranteed to be within the
# time range of the dataset (2008-2019). Visits with prediction windows existing in potentially out-of-range
# dates (like 2018-2020) are excluded UNLESS the prediction window takes place the same year as the visit,
# in which case it is guaranteed to be within 2008-2019
ctrl = ctrl.append(group.iloc[idx])
#ctrl, invalid = validate_row(group.iloc[-1], ctrl, invalid, max_year, disch_col, valid_col, gap) # The last hadm_id datewise is guaranteed to have no readmission logically
ctrl = ctrl.append(group.iloc[-1])
#print(f"[ {gap.days} DAYS ] {case.shape[0] + ctrl.shape[0]}/{df.shape[0]} {visit_col}s processed")
print("[ READMISSION LABELS FINISHED ]")
return case, ctrl, invalid
def partition_by_mort(df:pd.DataFrame, group_col:str, visit_col:str, admit_col:str, disch_col:str, death_col:str):
"""Applies labels to individual visits according to whether or not a death has occurred within
the times of the specified admit_col and disch_col"""
invalid = df.loc[(df[admit_col].isna()) | (df[disch_col].isna())]
cohort = df.loc[(~df[admit_col].isna()) & (~df[disch_col].isna())]
# cohort["label"] = (
# (~cohort[death_col].isna())
# & (cohort[death_col] >= cohort[admit_col])
# & (cohort[death_col] <= cohort[disch_col])
# )
# cohort["label"] = cohort["label"].astype("Int32")
#print("cohort",cohort.shape)
#print(np.where(~cohort[death_col].isna(),1,0))
#print(np.where(cohort.loc[death_col] >= cohort.loc[admit_col],1,0))
#print(np.where(cohort.loc[death_col] <= cohort.loc[disch_col],1,0))
cohort['label']=0
#cohort=cohort.fillna(0)
pos_cohort=cohort[~cohort[death_col].isna()]
neg_cohort=cohort[cohort[death_col].isna()]
neg_cohort=neg_cohort.fillna(0)
pos_cohort=pos_cohort.fillna(0)
pos_cohort[death_col] = pd.to_datetime(pos_cohort[death_col])
pos_cohort['label'] = np.where((pos_cohort[death_col] >= pos_cohort[admit_col]) & (pos_cohort[death_col] <= pos_cohort[disch_col]),1,0)
pos_cohort['label'] = pos_cohort['label'].astype("Int32")
cohort=pd.concat([pos_cohort,neg_cohort], axis=0)
cohort=cohort.sort_values(by=[group_col,admit_col])
#print("cohort",cohort.shape)
print("[ MORTALITY LABELS FINISHED ]")
return cohort, invalid
def get_case_ctrls(df:pd.DataFrame, gap:int, group_col:str, visit_col:str, admit_col:str, disch_col:str, valid_col:str, death_col:str, use_mort=False,use_admn=False,use_los=False) -> pd.DataFrame:
"""Handles logic for creating the labelled cohort based on arguments passed to extract().
Parameters:
df: dataframe with patient data
gap: specified time interval gap for readmissions
group_col: patient identifier to group patients (normally subject_id)
visit_col: visit identifier for individual patient visits (normally hadm_id or stay_id)
admit_col: column for visit start date information (normally admittime or intime)
disch_col: column for visit end date information (normally dischtime or outtime)
valid_col: generated column containing a patient's year that corresponds to the 2017-2019 anchor time range
dod_col: Date of death column
"""
case = None # hadm_ids with readmission within the gap period
ctrl = None # hadm_ids without readmission within the gap period
invalid = None # hadm_ids that are not considered in the cohort
if use_mort:
return partition_by_mort(df, group_col, visit_col, admit_col, disch_col, death_col)
elif use_admn:
gap = datetime.timedelta(days=gap)
# transform gap into a timedelta to compare with datetime columns
case, ctrl, invalid = partition_by_readmit(df, gap, group_col, visit_col, admit_col, disch_col, valid_col)
# case hadm_ids are labelled 1 for readmission, ctrls have a 0 label
case['label'] = np.ones(case.shape[0]).astype(int)
ctrl['label'] = np.zeros(ctrl.shape[0]).astype(int)
return pd.concat([case, ctrl], axis=0), invalid
elif use_los:
return partition_by_los(df, gap, group_col, visit_col, admit_col, disch_col, death_col)
# print(f"[ {gap.days} DAYS ] {invalid.shape[0]} hadm_ids are invalid")
def extract_data(use_ICU:str, label:str, time:int, icd_code:str, root_dir,mimic_path, disease_label, cohort_output=None, summary_output=None):
"""Extracts cohort data and summary from MIMIC-IV data based on provided parameters.
Parameters:
cohort_output: name of labelled cohort output file
summary_output: name of summary output file
use_ICU: state whether to use ICU patient data or not
label: Can either be '{day} day Readmission' or 'Mortality', decides what binary data label signifies"""
print("===========MIMIC-IV v2============")
if not cohort_output:
cohort_output="cohort_" + use_ICU.lower() + "_" + label.lower().replace(" ", "_") + "_" + str(time) + "_" + disease_label
if not summary_output:
summary_output="summary_" + use_ICU.lower() + "_" + label.lower().replace(" ", "_") + "_" + str(time) + "_" + disease_label
if icd_code=="No Disease Filter":
if len(disease_label):
print(f"EXTRACTING FOR: | {use_ICU.upper()} | {label.upper()} DUE TO {disease_label.upper()} | {str(time)} | ")
else:
print(f"EXTRACTING FOR: | {use_ICU.upper()} | {label.upper()} | {str(time)} |")
else:
if len(disease_label):
print(f"EXTRACTING FOR: | {use_ICU.upper()} | {label.upper()} DUE TO {disease_label.upper()} | ADMITTED DUE TO {icd_code.upper()} | {str(time)} |")
else:
print(f"EXTRACTING FOR: | {use_ICU.upper()} | {label.upper()} | ADMITTED DUE TO {icd_code.upper()} | {str(time)} |")
#print(label)
cohort, invalid = None, None # final labelled output and df of invalid records, respectively
pts = None # valid patients generated by get_visit_pts based on use_ICU and label
ICU=use_ICU
group_col, visit_col, admit_col, disch_col, death_col, adm_visit_col = "", "", "", "", "", ""
#print(label)
use_mort = label == "Mortality" # change to boolean value
use_admn=label=='Readmission'
los=0
use_los= label=='Length of Stay'
#print(use_mort)
#print(use_admn)
#print(use_los)
if use_los:
los=time
use_ICU = use_ICU == "ICU" # change to boolean value
use_disease=icd_code!="No Disease Filter"
if use_ICU:
group_col='subject_id'
visit_col='stay_id'
admit_col='intime'
disch_col='outtime'
death_col='dod'
adm_visit_col='hadm_id'
else:
group_col='subject_id'
visit_col='hadm_id'
admit_col='admittime'
disch_col='dischtime'
death_col='dod'
pts = get_visit_pts(
mimic4_path=mimic_path,
group_col=group_col,
visit_col=visit_col,
admit_col=admit_col,
disch_col=disch_col,
adm_visit_col=adm_visit_col,
use_mort=use_mort,
use_los=use_los,
los=los,
use_admn=use_admn,
disease_label=disease_label,
use_ICU=use_ICU
)
#print("pts",pts.head())
# cols to be extracted from get_case_ctrls
cols = [group_col, visit_col, admit_col, disch_col, 'Age','gender','ethnicity','insurance','label']
if use_mort:
cols.append(death_col)
cohort, invalid = get_case_ctrls(pts, None, group_col, visit_col, admit_col, disch_col,'min_valid_year', death_col, use_mort=True,use_admn=False,use_los=False)
elif use_admn:
interval = time
cohort, invalid = get_case_ctrls(pts, interval, group_col, visit_col, admit_col, disch_col,'min_valid_year', death_col, use_mort=False,use_admn=True,use_los=False)
elif use_los:
cohort, invalid = get_case_ctrls(pts, los, group_col, visit_col, admit_col, disch_col,'min_valid_year', death_col, use_mort=False,use_admn=False,use_los=True)
#print(cohort.head())
if use_ICU:
cols.append(adm_visit_col)
#print(cohort.head())
if use_disease:
hids=disease_cohort.extract_diag_cohort(cohort['hadm_id'],icd_code,mimic_path)
#print(hids.shape)
#print(cohort.shape)
#print(len(list(set(hids['hadm_id'].unique()).intersection(set(cohort['hadm_id'].unique())))))
cohort=cohort[cohort['hadm_id'].isin(hids['hadm_id'])]
cohort_output=cohort_output+"_"+icd_code
summary_output=summary_output+"_"+icd_code
#print(cohort[cols].head())
# save output
cohort=cohort.rename(columns={"race":"ethnicity"})
cohort[cols].to_csv("./data/cohort/"+cohort_output+".csv.gz", index=False, compression='gzip')
print("[ COHORT SUCCESSFULLY SAVED ]")
summary = "\n".join([
f"{label} FOR {ICU} DATA",
f"# Admission Records: {cohort.shape[0]}",
f"# Patients: {cohort[group_col].nunique()}",
f"# Positive cases: {cohort[cohort['label']==1].shape[0]}",
f"# Negative cases: {cohort[cohort['label']==0].shape[0]}"
])
# save basic summary of data
with open(f"./data/cohort/{summary_output}.txt", "w") as f:
f.write(summary)
print("[ SUMMARY SUCCESSFULLY SAVED ]")
print(summary)
return cohort_output
if __name__ == '__main__':
# use_ICU = input("Use ICU Data? (ICU/Non_ICU)\n").strip()
# label = input("Please input the intended label:\n").strip()
# extract(use_ICU, label)
response = input('Extra all datasets? (y/n)').strip().lower()
if response == 'y':
extract_data("ICU", "Mortality")
extract_data("Non-ICU", "Mortality")
extract_data("ICU", "30 Day Readmission")
extract_data("Non-ICU", "30 Day Readmission")
extract_data("ICU", "60 Day Readmission")
extract_data("Non-ICU", "60 Day Readmission")
extract_data("ICU", "120 Day Readmission")
extract_data("Non-ICU", "120 Day Readmission") |