Dataset Usage
Description
The load_dataset
function is a powerful tool to efficiently load and prepare the Mimic-IV dataset for various healthcare analysis tasks. It offers a wide range of options for encoding data and generating cohorts, allowing for seamless integration into your research or application.
Function Signature
load_dataset('thbndi/Mimic4Dataset', task, mimic_path=mimic_data, config_path=config_file, encoding=encod, generate_cohort=gen_cohort, val_size=size, cache_dir=cache)
Arguments
task
(string) :- Description: Specifies the task you want to perform with the dataset.
- Default: "Mortality"
- Note: Possible Values : 'Phenotype', 'Length of Stay', 'Readmission', 'Mortality'
mimic_path
(string) :- Description: Complete path to the Mimic-IV raw data on user's machine.
- Note: You need to provide the appropriate path where the Mimic-IV data is stored.
config_path
(string) optionnal :- Description: Path to the configuration file for the cohort generation choices (more infos in '/config/readme.md').
- Default: Configuration file provided in the 'config' folder.
encoding
(string) optionnal :- Description: Data encoding option for the features.
- Options: "concat", "aggreg", "tensor", "raw", "text"
- Default: "concat"
- Note: Choose one of the following options for data encoding:
- "concat": Concatenates the one-hot encoded diagnoses, demographic data vector, and dynamic features at each measured time instant, resulting in a high-dimensional feature vector.
- "aggreg": Concatenates the one-hot encoded diagnoses, demographic data vector, and dynamic features, where each item_id is replaced by the average of the measured time instants, resulting in a reduced-dimensional feature vector.
- "tensor": Represents each feature as an 2D array. There are separate arrays for labels, demographic data ('DEMO'), diagnosis ('COND'), medications ('MEDS'), procedures ('PROC'), chart/lab events ('CHART/LAB'), and output events data ('OUT'). Dynamic features are represented as 2D arrays where each row contains values at a specific time instant.
- "raw": Provide cohort from the pipeline without any encoding for custom data processing.
- "text": Represents diagnoses as text suitable for BERT or other similar text-based models.
generate_cohort
(bool) optionnal :- Description: Determines whether to generate a new cohort from Mimic-IV data.
- Default: True
- Note: Set it to True to generate a cohort, or False to skip cohort generation.
val_size
, 'test_size' (float) optionnal :- Description: Proportion of the dataset used for validation during training.
- Default: 0.1 for validation size and 0.2 for testing size.
- Note: Can be set to 0.
cache_dir
(string) optionnal :- Description: Directory where the processed dataset will be cached.
- Note: Providing a cache directory for each encoding type can avoid errors when changing the encoding type.
Example Usage
from your_module import load_dataset
# Example 1: Load dataset with default settings
dataset = load_dataset('thbndi/Mimic4Dataset', task="Mortality")
# Example 2: Load dataset with custom settings
dataset = load_dataset('thbndi/Mimic4Dataset', task="Phenotype", mimic_path="/path/to/mimic_data", config_path="/path/to/config_file", encoding="aggreg", generate_cohort=False, val_size=0.2, cache_dir="/path/to/cache_dir")
Please note that the provided examples are for illustrative purposes only, and you should adjust the paths and settings based on your actual dataset and specific use case.