Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
language: | |
- en | |
license: | |
- other | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 10K<n<100K | |
task_categories: | |
- token-classification | |
task_ids: | |
- named-entity-recognition | |
pretty_name: MIT Restaurant | |
# Dataset Card for "tner/mit_restaurant" | |
## Dataset Description | |
- **Repository:** [T-NER](https://github.com/asahi417/tner) | |
- **Paper:** [https://aclanthology.org/U15-1010.pdf](https://aclanthology.org/U15-1010.pdf) | |
- **Dataset:** MIT restaurant | |
- **Domain:** Restaurant | |
- **Number of Entity:** 8 | |
### Dataset Summary | |
MIT Restaurant NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project. | |
- Entity Types: `Rating`, `Amenity`, `Location`, `Restaurant_Name`, `Price`, `Hours`, `Dish`, `Cuisine`. | |
## Dataset Structure | |
### Data Instances | |
An example of `train` looks as follows. | |
``` | |
{ | |
"tags": [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
"tokens": ["1", ".", "1", ".", "4", "Borrower", "engages", "in", "criminal", "conduct", "or", "is", "involved", "in", "criminal", "activities", ";"] | |
} | |
``` | |
### Label ID | |
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/mit_restaurant/raw/main/dataset/label.json). | |
```python | |
{ | |
"O": 0, | |
"B-Rating": 1, | |
"I-Rating": 2, | |
"B-Amenity": 3, | |
"I-Amenity": 4, | |
"B-Location": 5, | |
"I-Location": 6, | |
"B-Restaurant_Name": 7, | |
"I-Restaurant_Name": 8, | |
"B-Price": 9, | |
"B-Hours": 10, | |
"I-Hours": 11, | |
"B-Dish": 12, | |
"I-Dish": 13, | |
"B-Cuisine": 14, | |
"I-Price": 15, | |
"I-Cuisine": 16 | |
} | |
``` | |
### Data Splits | |
| name |train|validation|test| | |
|---------|----:|---------:|---:| | |
|mit_restaurant |6899 | 759| 1520| | |