Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
metadata
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1k<10K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: WNUT 2017
Dataset Card for "tner/wnut2017"
Dataset Description
- Repository: T-NER
- Paper: https://aclanthology.org/W17-4418/
- Dataset: WNUT 2017
- Domain: Twitter, Reddit, YouTube, and StackExchange
- Number of Entity: 6
Dataset Summary
WNUT 2017 NER dataset formatted in a part of TNER project.
- Entity Types:
creative-work
,corporation
,group
,location
,person
,product
Dataset Structure
Data Instances
An example of train
looks as follows.
{
'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'],
'tags': [12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 3, 9, 9, 12, 3, 12, 12, 12, 12, 12, 12, 12, 12]
}
Label ID
The label2id dictionary can be found at here.
{
"B-corporation": 0,
"B-creative-work": 1,
"B-group": 2,
"B-location": 3,
"B-person": 4,
"B-product": 5,
"I-corporation": 6,
"I-creative-work": 7,
"I-group": 8,
"I-location": 9,
"I-person": 10,
"I-product": 11,
"O": 12
}
Data Splits
name | train | validation | test |
---|---|---|---|
wnut2017 | 2395 | 1009 | 1287 |
Citation Information
@inproceedings{derczynski-etal-2017-results,
title = "Results of the {WNUT}2017 Shared Task on Novel and Emerging Entity Recognition",
author = "Derczynski, Leon and
Nichols, Eric and
van Erp, Marieke and
Limsopatham, Nut",
booktitle = "Proceedings of the 3rd Workshop on Noisy User-generated Text",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4418",
doi = "10.18653/v1/W17-4418",
pages = "140--147",
abstract = "This shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions. Named entities form the basis of many modern approaches to other tasks (like event clustering and summarization), but recall on them is a real problem in noisy text - even among annotators. This drop tends to be due to novel entities and surface forms. Take for example the tweet {``}so.. kktny in 30 mins?!{''} {--} even human experts find the entity {`}kktny{'} hard to detect and resolve. The goal of this task is to provide a definition of emerging and of rare entities, and based on that, also datasets for detecting these entities. The task as described in this paper evaluated the ability of participating entries to detect and classify novel and emerging named entities in noisy text.",
}