uuid
stringlengths 36
36
| subject
stringclasses 6
values | has_image
bool 2
classes | image
stringclasses 160
values | problem_statement
stringlengths 32
784
| golden_answer
stringlengths 7
1.13k
|
---|---|---|---|---|---|
00143e2e-2d9f-4fc3-a9c5-9d2e6aba5cba | multivariable_calculus | false | null | Determine the coordinates, if any, for which $f(x,y) = 6 \cdot x^2 - 3 \cdot x^2 \cdot y + y^3 + 12$ has
1. a Relative Minimum(s)
2. a Relative Maximum(s)
3. a Saddle Point(s)
If a Relative Minimum or Maximum, find the Minimum or Maximum value. If none, enter None. | 1. The function $f(x,y)$ has Relative Minimum(s) at None with the value(s) None
2. The function $f(x,y)$ has Relative Maximum(s) at None with the value(s) None
3. The function $f(x,y)$ has a Saddle Point(s) at $P(-2,2)$, $P(2,2)$ |
00282b7b-1bf6-415d-9f17-d04e9c9700e2 | precalculus_review | true |  | Estimate the average rate of change from $x=2$ to $x=6$ for the following function $f(x)$ whose graph is given below:
Note that the average rate of change of a function from $x=a$ to $x=b$ is $\frac{ f(b)-f(a) }{ b-a }$. | The final answer: $0.5$ |
0075433c-0afb-41a9-a18a-986d8a81a653 | multivariable_calculus | false | null | Evaluate the integral by choosing the order of integration:
$$
\int_{0}^1 \int_{1}^2 \left(\frac{ y }{ x+y^2 }\right) \, dy \, dx
$$ | $\int_{0}^1 \int_{1}^2 \left(\frac{ y }{ x+y^2 }\right) \, dy \, dx$ = $\ln\left(\frac{25\cdot\sqrt{5}}{32}\right)$ |
00f6affb-905a-4109-a78e-2dde7a0b83ac | integral_calc | false | null | Solve the integral:
$$
\int \frac{ 1 }{ \sin(x)^7 \cdot \cos(x) } \, dx
$$ | $\int \frac{ 1 }{ \sin(x)^7 \cdot \cos(x) } \, dx$ = $C+\ln\left(\left|\tan(x)\right|\right)-\frac{3}{2\cdot\left(\tan(x)\right)^2}-\frac{3}{4\cdot\left(\tan(x)\right)^4}-\frac{1}{6\cdot\left(\tan(x)\right)^6}$ |
0118dbbc-db0e-4ab9-a2ed-ddb2edd0eefc | sequences_series | false | null | Find the Fourier series of the periodic function $f(x) = x^2$ in the interval $-2 \cdot \pi \leq x < 2 \cdot \pi$ if $f(x) = f(x + 4 \cdot \pi)$. | The Fourier series is: $\frac{4\cdot\pi^2}{3}+\sum_{n=1}^\infty\left(\frac{16\cdot(-1)^n}{n^2}\cdot\cos\left(\frac{n\cdot x}{2}\right)\right)$ |
0146d63a-d9e9-4910-9267-10f87812aff4 | multivariable_calculus | false | null | If $z = x \cdot y \cdot e^{\frac{ x }{ y }}$, $x = r \cdot \cos\left(\theta\right)$, $y = r \cdot \sin\left(\theta\right)$, find $\frac{ d z }{d r}$ and $\frac{ d z }{d \theta}$ when $r = 2$ and $\theta = \frac{ \pi }{ 6 }$. | The final answer:
$\frac{ d z }{d r}$: $\sqrt{3}\cdot e^{\left(\sqrt{3}\right)}$
$\frac{ d z }{d \theta}$: $2\cdot e^{\left(\sqrt{3}\right)}-4\cdot\sqrt{3}\cdot e^{\left(\sqrt{3}\right)}$ |
014e9af5-759a-4711-aa22-0f9c76acb502 | sequences_series | false | null | Consider the function $y = \left| \cos\left( \frac{ x }{ 8 } \right) \right|$.
1. Find the Fourier series of the function.
2. Using this decomposition, calculate the sum of the series $\sum_{n=1}^\infty \frac{ (-1)^n }{ 4 \cdot n^2 - 1 }$.
3. Using this decomposition, calculate the sum of the series $\sum_{n=1}^\infty \frac{ 1 }{ 4 \cdot n^2 - 1 }$. | 1. The Fourier series is $\frac{2}{\pi}-\frac{4}{\pi}\cdot\sum_{n=1}^\infty\left(\frac{(-1)^n}{\left(4\cdot n^2-1\right)}\cdot\cos\left(\frac{n\cdot x}{4}\right)\right)$
2. The sum of the series $\sum_{n=1}^\infty \frac{ (-1)^n }{ 4 \cdot n^2 - 1 }$ is $\frac{(2-\pi)}{4}$
3. The sum of the series $\sum_{n=1}^\infty \frac{ 1 }{ 4 \cdot n^2 - 1 }$ is $\frac{1}{2}$ |
01683c2c-a5b7-4bff-8e4f-d8fdad3cac45 | differential_calc | false | null | For the function $r = \arctan\left(\frac{ m }{ \varphi }\right) + \arccot\left(m \cdot \cot(\varphi)\right)$, find the derivative $r'(0)$ and $r'(2 \cdot \pi)$. Submit as your final answer:
1. $r'(0)$
2. $r'(2 \cdot \pi)$ | 1. $0$
2. $\frac{1}{m}-\frac{m}{m^2+4\cdot\pi^2}$ |
01961276-06fd-4869-8e58-eb15a4eb4034 | algebra | false | null | Rewrite the quadratic expression $x^2 + \frac{ 2 }{ 3 } \cdot x - \frac{ 1 }{ 3 }$ by completing the square. | $x^2 + \frac{ 2 }{ 3 } \cdot x - \frac{ 1 }{ 3 }$ = $\left(x+\frac{1}{3}\right)^2-\frac{4}{9}$ |
01c011c6-2528-46de-aa90-9a86ace5747a | sequences_series | false | null | Using the Taylor formula, decompose the function $f(x) = \ln(1+4 \cdot x)$ in powers of the variable $x$ on the segment $[0,1]$. Use the first nine terms.
Then estimate the accuracy obtained by dropping an additional term after the first nine terms. | 1. $\ln(1+4 \cdot x)$ = $4\cdot x-\frac{(4\cdot x)^2}{2}+\frac{(4\cdot x)^3}{3}-\frac{(4\cdot x)^4}{4}+\frac{(4\cdot x)^5}{5}-\frac{(4\cdot x)^6}{6}+\frac{(4\cdot x)^7}{7}-\frac{(4\cdot x)^8}{8}+\frac{(4\cdot x)^9}{9}$
2. Accuracy is not more than $\frac{4^{10}}{10}$ |
01e4ed04-1ed3-4cda-af81-35686c0a16d0 | differential_calc | false | null | Compute the limit:
$$
\lim_{x \to 0}\left(\frac{ x-x \cdot \cos(x) }{ x-\sin(x) }\right)
$$ | $\lim_{x \to 0}\left(\frac{ x-x \cdot \cos(x) }{ x-\sin(x) }\right)$ = $3$ |
023674a7-236e-4771-9662-77157e370160 | differential_calc | true |  | Determine where the local and absolute maxima and minima occur on the graph given. Assume domains are closed intervals unless otherwise specified. | Absolute minimum at: $x=3$
Absolute maximum at: $x=-2.4$
Local minimum at: $x=-2$, $x=1$
Local maximum at: $-1, 2$ |
0296afc7-857a-46e2-8497-63653d268ac8 | differential_calc | false | null | Compute the derivative of the function $y = \sqrt{\frac{ x^5 \cdot \left(2 \cdot x^6+3\right) }{ \sqrt[3]{1-2 \cdot x} }}$ by taking the natural log of both sides of the equation. | Derivative: $y'=\frac{-128\cdot x^7+66\cdot x^6-84\cdot x+45}{-24\cdot x^8+12\cdot x^7-36\cdot x^2+18\cdot x}\cdot\sqrt{\frac{x^5\cdot\left(2\cdot x^6+3\right)}{\sqrt[3]{1-2\cdot x}}}$ |
029deb6d-6866-4e2d-9d92-3a555ec4de2c | algebra | false | null | 1. On a map, the scale is 1/2 inch : 25 miles. What is the actual distance between two cities that are 3 inches apart?
2. What are the dimensions of a 15 foot by 10 foot room on a blueprint with a scale of 1.5 inches : 2 feet?
3. The distance between Newark, NJ and San Francisco, CA is 2,888 miles. How far would that measure on a map with a scale of 3 cm to 1,000 miles?
4. If the scale for a model train is 1 inch for every 10 feet of a real train, how big is the model for an 83-foot train? | 1. $150$ miles
2. $11.25$ feet by $7.5$ feet
3. $8.664$ cm
4. $8.3$ inches |
02a70481-c574-417a-bf03-50e5080f4d19 | differential_calc | true |  | List all intervals where $f$ is increasing or decreasing and the minima and maxima are located. | The function is increasing at: $(-1,0)\cup(0,1)\cup(1,\infty)$
The function is decreasing at: $(-\infty,-1)$
The minimum is at: $x=-1$
The maximum is at: None |
02c57487-7f56-412a-8aeb-b1abc78ac85b | sequences_series | false | null | Find the radius of convergence $R$ and interval of convergence for the power series $\sum_{n=0}^\infty a_{n} \cdot x^n$:
$$
\sum_{n=1}^\infty (-1)^n \cdot \frac{ x^n }{ \ln(2 \cdot n) }
$$ | * $R$ = $1$
* $I$ = $(-1,1]$ |
02d22949-d7a2-46ca-8af8-4bda85bc8e0e | differential_calc | false | null | Sketch the curve:
$$
y = 16 \cdot x^2 \cdot e^{\frac{ 1 }{ 4 \cdot x }}
$$
Submit as your final answer:
1. The domain (in interval notation)
2. Vertical asymptotes
3. Horizontal asymptotes
4. Slant asymptotes
5. Intervals where the function is increasing
6. Intervals where the function is decreasing
7. Intervals where the function is concave up
8. Intervals where the function is concave down
9. Points of inflection | 1. The domain (in interval notation): $(-\infty,0)\cup(0,\infty)$
2. Vertical asymptotes: $x=0$
3. Horizontal asymptotes: None
4. Slant asymptotes: None
5. Intervals where the function is increasing: $\left(\frac{1}{8},\infty\right)$
6. Intervals where the function is decreasing: $\left(0,\frac{1}{8}\right)$, $(-\infty,0)$
7. Intervals where the function is concave up: $(0,\infty)$, $(-\infty,0)$
8. Intervals where the function is concave down: None
9. Points of inflection: None |
02d80ab4-c222-493c-a91d-448fba115380 | multivariable_calculus | false | null | Evaluate $L=\lim_{P(x,y) \to P\left(1,\frac{ 1 }{ 2 }\right)}\left(f(x,y)\right)$ given $f(x,y) = \frac{ x^2 - 2 \cdot x^3 \cdot y - 2 \cdot x \cdot y^3 + y^2 }{ 1 + x + y - 2 \cdot x \cdot y - 2 \cdot x^2 \cdot y - 2 \cdot x \cdot y^2 }$. | The final answer: $L=\frac{1}{2}$ |
032cf885-c1e2-49f9-8584-c99b0161c08c | precalculus_review | false | null | Form the compositions $f\left(g(x)\right)$ and $g\left(f(x)\right)$ if $f(x) = \sin(3 \cdot x)$ and $g(x) = \frac{ 1 }{ \sqrt{2-x^2} }$.
1. Find $f\left(g(x)\right)$ and $g\left(f(x)\right)$.
2. Find the domain and range of $f\left(g(x)\right)$ and $g\left(f(x)\right)$. | 1. $f\left(g(x)\right)$ = $\sin\left(\frac{3}{\sqrt{2-x^2}}\right)$
$g\left(f(x)\right)$ = $\frac{1}{\sqrt{2-\sin(3\cdot x)^2}}$
2. Domain of $f\left(g(x)\right)$ is $\left(-\sqrt{2},\sqrt{2}\right)$
Range of $f\left(g(x)\right)$ is $[-1,1]$
Domain of $g\left(f(x)\right)$ is $(-\infty,\infty)$
Range of $g\left(f(x)\right)$ is $\left[\frac{1}{\sqrt{2}},1\right]$ |
03b87419-fe7c-481a-9396-1d0723fc2b15 | differential_calc | false | null | Sketch the curve:
$y = 5 \cdot x \cdot \sqrt{4-x^2}$.
Submit as your final answer:
1. The domain (in interval notation)
2. Vertical asymptotes
3. Horizontal asymptotes
4. Slant asymptotes
5. Intervals where the function is increasing
6. Intervals where the function is decreasing
7. Intervals where the function is concave up
8. Intervals where the function is concave down
9. Points of inflection | 1. The domain (in interval notation): $[-2,2]$
2. Vertical asymptotes: None
3. Horizontal asymptotes: None
4. Slant asymptotes: None
5. Intervals where the function is increasing: $\left(-\sqrt{2},\sqrt{2}\right)$
6. Intervals where the function is decreasing: $\left(-2,-\sqrt{2}\right)$, $\left(\sqrt{2},2\right)$
7. Intervals where the function is concave up: $(-2,0)$
8. Intervals where the function is concave down: $(0,2)$
9. Points of inflection: $P(0,0)$ |
03c28ad4-cfe4-430f-ab38-cb3e56091616 | precalculus_review | false | null | Solve the following equation:
$$
x^2 - x + 1 = \frac{ 1 }{ 2 } + \sqrt{x - \frac{ 3 }{ 4 }}
$$ | The final answer: $x=1$ |
040dbb94-2747-4799-89f8-dd544c248a9c | integral_calc | false | null | Consider the function $f(x) = x^2$ on $[-1,1]$ and the partition $\left\{-1, -\frac{ 1 }{ 2 }, \frac{ 1 }{ 4 }, 1\right\}$. Find the upper and lower sums. | The upper sum is: $\frac{23}{16}$
The lower sum is: $\frac{11}{64}$ |
0429a27b-d694-4e42-a60c-d446ae515ed2 | differential_calc | true |  | The graph of $g'$ is given.
Let $g$ be a differentiable function with $g(1)=-4$. The graph of $g'(x)$, the derivative of $g$, is shown. Write an equation for the line tangent to the graph of $g$ at $x=1$. | The equation for the tangent line is $y+4=-3\cdot(x-1)$ |
04960c86-a731-4641-a3a8-fd0529de5a51 | multivariable_calculus | false | null | Evaluate $\int\int\int_{E}{(x+2 \cdot y \cdot z) \, dV}$, where $E = \left\{(x,y,z) | 0 \le x \le 1, 0 \le y \le x, 0 \le z \le 5-x-y \right\}$. | $I$ = $\frac{439}{120}$ |
U-MATH is a comprehensive benchmark of 1,100 unpublished university-level problems sourced from real teaching materials.
It is designed to evaluate the mathematical reasoning capabilities of Large Language Models (LLMs).
The dataset is balanced across six core mathematical topics and includes 20% of multimodal problems (involving visual elements such as graphs and diagrams).
For fine-grained performance evaluation results and detailed discussion, check out our paper.
- 📊 U-MATH benchmark at Huggingface
- 🔎 μ-MATH benchmark at Huggingface
- 🗞️ Paper
- 👾 Evaluation Code at GitHub
Key Features
- Topics Covered: Precalculus, Algebra, Differential Calculus, Integral Calculus, Multivariable Calculus, Sequences & Series.
- Problem Format: Free-form answer with LLM judgement
- Evaluation Metrics: Accuracy; splits by subject and text-only vs multimodal problem type.
- Curation: Original problems composed by math professors and used in university curricula, samples validated by math experts at Toloka AI, Gradarius
Use it
from datasets import load_dataset
ds = load_dataset('toloka/u-math', split='test')
Dataset Fields
uuid
: problem id has_image
: a boolean flag on whether the problem is multimodal or not image
: binary data encoding the accompanying image, empty for text-only problems subject
: subject tag marking the topic that the problem belongs to problem_statement
: problem formulation, written in natural language golden_answer
: a correct solution for the problem, written in natural language \
For meta-evaluation (evaluating the quality of LLM judges), refer to the µ-MATH dataset.
Evaluation Results
The prompt used for inference:
{problem_statement}
Please reason step by step, and put your final answer within \boxed{}
Licensing Information
All the dataset contents are available under the MIT license.
Citation
If you use U-MATH or μ-MATH in your research, please cite the paper:
@inproceedings{umath2024,
title={U-MATH: A University-Level Benchmark for Evaluating Mathematical Skills in LLMs},
author={Konstantin Chernyshev, Vitaliy Polshkov, Ekaterina Artemova, Alex Myasnikov, Vlad Stepanov, Alexei Miasnikov and Sergei Tilga},
year={2024}
}
Contact
For inquiries, please contact kchernyshev@toloka.ai
- Downloads last month
- 126