File size: 3,541 Bytes
9ae5648
 
 
7c23da9
 
9ae5648
 
7c23da9
9ae5648
7c23da9
9ae5648
7c23da9
9ae5648
7c23da9
 
 
 
86d8a6b
 
 
 
 
 
 
 
7d400e6
7784c61
86d8a6b
 
7784c61
 
7d400e6
86d8a6b
 
 
 
 
7c23da9
 
 
 
 
9ae5648
 
7c23da9
 
9ae5648
 
 
 
e417aa0
 
7c23da9
e417aa0
9ae5648
e417aa0
9ae5648
e417aa0
9ae5648
e417aa0
9ae5648
e417aa0
9ae5648
e417aa0
7d400e6
9ae5648
 
 
 
 
 
 
 
 
 
 
 
 
7c23da9
9ae5648
 
 
 
 
 
f7e0826
9ae5648
f7e0826
9ae5648
f7e0826
9ae5648
f7e0826
7c23da9
 
9ae5648
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import json
import os
from random import shuffle, seed

import pandas as pd
from datasets import load_dataset

test = load_dataset("cardiffnlp/super_tweeteval", "tweet_nerd", split="test").shuffle(seed=42)
test = list(test.to_pandas().T.to_dict().values())
train = load_dataset("cardiffnlp/super_tweeteval", "tweet_nerd", split="train").shuffle(seed=42)
train = list(train.to_pandas().T.to_dict().values())
validation = load_dataset("cardiffnlp/super_tweeteval", "tweet_nerd", split="validation").shuffle(seed=42)
validation = list(validation.to_pandas().T.to_dict().values())
full = train + test + validation
df = pd.DataFrame(full)
df["date_dt"] = pd.to_datetime(df.date)
df = df.sort_values(by="date_dt")
dist_date = df.groupby("date_dt").size()
total_n = len(df)
n = 0
while True:
    n += 1
    if dist_date[:n].sum() > total_n/2:
        break
split_date = dist_date.index[n]
print(split_date)

train = df[df["date_dt"] <= split_date]
test = df[df["date_dt"] > split_date]
print(train.date_dt.min(), train.date_dt.max())
print(test.date_dt.min(), test.date_dt.max())

train.pop("date_dt")
test.pop("date_dt")
train = list(train.T.to_dict().values())
test = list(test.T.to_dict().values())

seed(42)
shuffle(train)
shuffle(test)
valid = train[:int(len(train)*0.2)]
train = train[len(valid):]

n_test = int(len(test)/4)
n_train = len(train)
n_validation = len(valid)
test_1 = test[:n_test]
test_2 = test[n_test:n_test*2]
test_3 = test[n_test*2:n_test*3]
test_4 = test[n_test*3:]
os.makedirs("data/tweet_nerd", exist_ok=True)
with open("data/tweet_nerd/test.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in test]))
with open("data/tweet_nerd/test_1.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in test_1]))
with open("data/tweet_nerd/test_2.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in test_2]))
with open("data/tweet_nerd/test_3.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in test_3]))
with open("data/tweet_nerd/test_4.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in test_4]))
with open("data/tweet_nerd/train.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in train]))
with open("data/tweet_nerd/validation.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in valid]))


def sampler(dataset_test, r_seed):
    seed(r_seed)
    shuffle(dataset_test)
    shuffle(train)
    shuffle(validation)
    test_tr = dataset_test[:int(n_train / 2)]
    test_vl = dataset_test[int(n_train / 2): int(n_train / 2) + int(n_validation / 2)]
    new_train = test_tr + train[:n_train - len(test_tr)]
    new_validation = test_vl + validation[:n_validation - len(test_vl)]
    return new_train, new_validation

id2test = {n: t for n, t in enumerate([test_1, test_2, test_3, test_4])}
for n, _test in enumerate([
        test_4 + test_2 + test_3,
        test_1 + test_4 + test_3,
        test_1 + test_2 + test_4,
        test_1 + test_2 + test_3]):
    for s in range(3):
        os.makedirs(f"data/tweet_nerd_new_test{n}_seed{s}", exist_ok=True)
        _train, _valid = sampler(_test, s)
        with open(f"data/tweet_nerd_new_test{n}_seed{s}/train.jsonl", "w") as f:
            f.write("\n".join([json.dumps(i) for i in _train]))
        with open(f"data/tweet_nerd_new_test{n}_seed{s}/validation.jsonl", "w") as f:
            f.write("\n".join([json.dumps(i) for i in _valid]))
        with open(f"data/tweet_nerd_new_test{n}_seed{s}/test.jsonl", "w") as f:
            f.write("\n".join([json.dumps(i) for i in id2test[n]]))