Search is not available for this dataset
text
string
meta
dict
module Structure.Function.Proofs where import Lvl open import Functional open import Structure.Function open import Structure.Operator open import Structure.Operator.Properties open import Structure.Setoid open import Syntax.Transitivity open import Type private variable ℓ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ : Lvl.Level private variable T A B C D : Type{ℓ} module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ ⦃ equiv-C : Equiv{ℓₑ₃}(C) ⦄ ⦃ equiv-D : Equiv{ℓₑ₄}(D) ⦄ {f : C → D} ⦃ func : Function(f) ⦄ {_▫_ : A → B → C} ⦃ oper : BinaryOperator(_▫_) ⦄ where [∘₂]-function : BinaryOperator(f ∘₂ (_▫_)) BinaryOperator.congruence [∘₂]-function = congruence₁(f) ∘₂ congruence₂(_▫_) module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ ⦃ equiv-C : Equiv{ℓₑ₃}(C) ⦄ {_▫_ : A → B → C} ⦃ funcₗ : ∀{x} → Function(x ▫_) ⦄ ⦃ funcᵣ : ∀{y} → Function(_▫ y) ⦄ where binaryOperator-from-function : BinaryOperator(_▫_) BinaryOperator.congruence binaryOperator-from-function xy1 xy2 = congruence₁(_▫ _) xy1 🝖 congruence₁(_ ▫_) xy2 module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {_▫_ : A → A → B} ⦃ funcᵣ : ∀{y} → Function(_▫ y) ⦄ ⦃ comm : Commutativity(_▫_) ⦄ where functionₗ-from-commutative-functionᵣ : ∀{x} → Function(x ▫_) Function.congruence (functionₗ-from-commutative-functionᵣ{a}) {x}{y} xy = commutativity(_▫_) {a}{x} 🝖 congruence₁(_▫ a) xy 🝖 commutativity(_▫_) {y}{a} module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {_▫_ : A → A → B} ⦃ funcᵣ : ∀{x} → Function(x ▫_) ⦄ ⦃ comm : Commutativity(_▫_) ⦄ where functionᵣ-from-commutative-functionₗ : ∀{y} → Function(_▫ y) Function.congruence (functionᵣ-from-commutative-functionₗ{a}) {x}{y} xy = commutativity(_▫_) {x}{a} 🝖 congruence₁(a ▫_) xy 🝖 commutativity(_▫_) {a}{y}
{ "alphanum_fraction": 0.637704918, "avg_line_length": 30.5, "ext": "agda", "hexsha": "e37c0f5064a99ad87891fad6bb08d5aa9cf98ad2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Function/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Function/Proofs.agda", "max_line_length": 152, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Function/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 852, "size": 1830 }
module PredicateLifting where import Level open import Data.Empty open import Data.Unit as Unit open import Data.Nat open import Data.List as List renaming ([] to Ø; [_] to [_]L) open import NonEmptyList as NList open import Data.Fin hiding (_+_) open import Data.Vec as Vec renaming ([_] to [_]V; _++_ to _++V_) open import Data.Product as Prod open import Function open import Relation.Binary.PropositionalEquality as PE hiding ([_]) open import Relation.Binary open ≡-Reasoning open import Common.Context as Context open import Algebra open Monoid {{ ... }} hiding (refl) open import SyntaxRaw open import Syntax -- | Extend the parameter context of each type variable in the given -- type context by one extra variable. We need this to specify the new -- type variable context, in which the predicate lifting of a type lives. -- See predL below for the correspond typing rule. liftTyCtx : ∀ {Θ} → TyCtxMorP Ø Θ → TyCtx liftTyCtx {Ø} f = Ø liftTyCtx {Γ ∷ Θ} (A , f) = (∗ ∷ Γ) ∷ liftTyCtx f -- | Extend a parameter context by a variable of the given type. extTyVarParams : (Γ₂ : RawCtx) → PreType Ø Ø Γ₂ → RawCtx extTyVarParams Γ₂ A = ∗ ∷ Γ₂ -- | Get the Yᵢ : (Γᵢ, xᵢ : Bᵢ) ⊸ ∗ corresponding to Xᵢ : Γᵢ ⊸ ∗ in -- the lifted context, c.f. the typing rule for predL below. liftTyVar : ∀{Θ Γ₂} → (f : TyCtxMorP Ø Θ) (X : TyVar Θ Γ₂) → TyVar (liftTyCtx f) (extTyVarParams Γ₂ (getTy f X)) liftTyVar f zero = zero liftTyVar (A , f) (succ Γ X) = succ (extTyVarParams Γ (getTy f X)) (liftTyVar f X) -- | Turn an instantiation into a substitution. instToSubst : ∀{Γ₁} (A : U) (Γ₂ : RawCtx) → PreTerm Γ₁ Ø → CtxMorP (∗ ∷ Γ₂ ++ Γ₁) (∗ ∷ (Γ₂ ↑ A) ++ Γ₁) instToSubst {Γ₁} A Γ₂ t = let f = weakenPO' (∗ ∷ Γ₂) t ∷ ctxProjP Γ₁ (∗ ∷ Γ₂) in subst (CtxMorP (∗ ∷ Γ₂ ++ Γ₁)) (PE.sym (cong (_∷_ ∗ ) (assoc Γ₂ (A ∷ Ø) Γ₁))) (extendProj (∗ ∷ Γ₂) Ø f) -- | Auxiliary function to define predL below. predL₀ : ∀ {Θ Γ₁ Γ₂} → (A : Raw Θ Γ₁ Γ₂) → DecentType A → (f : TyCtxMorP Ø Θ) → liftTyCtx f ∣ ∗ ∷ Γ₂ ++ Γ₁ / Ø ⊸Ty predL₀ ._ (DT-⊤ Θ Γ) f = ⊤-PT (liftTyCtx f) (∗ ∷ Ø ++ Γ) predL₀ ._ (DT-tyVar Γ₁ X) f = tyVarPT _ (liftTyVar f X) §ₜ ctxProjP' Ø _ Γ₁ predL₀ ._ (DT-inst {Γ₂ = Γ₂} B t B-dec t-dec) f = let B' = predL₀ B B-dec f in substPT B' (instToSubst _ Γ₂ (mkPreTerm t-dec)) predL₀ ._ (DT-paramAbstr {Γ₂ = Γ₂} {B = B} Γ₁ A-dec) f = subst (λ u → PreType (liftTyCtx f) u Ø) (cong (_∷_ ∗) (PE.sym (assoc Γ₂ (B ∷ Ø) Γ₁))) (predL₀ _ A-dec f) predL₀ {Θ} {.Γ₁} {Γ₂} ._ (DT-fp Γ₁ ρ D p) f = fpPT (∗ ∷ Γ₂ ++ Γ₁) ρ (mkD' D p 0) §ₜ f' where f' : CtxMorP (∗ ∷ Γ₂ ++ Γ₁) (∗ ∷ Γ₂) f' = extendP ∗ (ctxProjP' Ø Γ₂ Γ₁) mkD' : (D : FpData Raw Θ Γ₂) → DecentFpData D → ℕ → FpDataP (liftTyCtx f) (∗ ∷ Γ₂) mkD' [ Γ , g , A ] (g-dec , A-dec) k = let A' = predL₀ A A-dec (substTy (fpPT Ø ρ (mkFpDataP {D = D} p)) f , f) in [ ( (∗ ∷ Γ) , (α (∗ ∷ Γ) Γ ∗ k §ₘ ctxidP (∗ ∷ Γ)) ∷ (mkCtxMorP {Γ} {Γ₂} {g} g-dec • ctxProjP Γ (∗ ∷ Ø)) , A' ) ] mkD' ((Γ , g , A) ∷ D₁) ((g-dec , A-dec) , q) k = let A' = predL₀ A A-dec (substTy (fpPT Ø ρ (mkFpDataP {D = D} p)) f , f) in ( ∗ ∷ Γ , (α (∗ ∷ Γ) Γ ∗ k §ₘ ctxidP (∗ ∷ Γ)) ∷ (mkCtxMorP {Γ} {Γ₂} {g} g-dec • ctxProjP Γ (∗ ∷ Ø)) , A' ) ∷ mkD' D₁ q (suc k) -- | Lift an open type A to predicates. More specifically, predL -- implements the following rule, in which we write Ā for predL A. -- X₁ : Δ₁ ⊸ Ty, ..., Xₙ : Δₙ ⊸ Ty | Γ₁ ⊢ A : Γ₂ ⊸ Ty -- B₁ : Δ₁ ⊸ Ty -- ... -- Bₙ : Δ₁ ⊸ Ty -- ================================================================= (predL) -- Y₁ : (Δ₁, x₁ : B₁ ⊙ id) ⊸ Ty, ..., (Yₙ : Δₙ, xₙ : Bₙ ⊙ id) ⊸ Ty -- | Γ₁, Γ₂, z : A[B₁/X₁, ..., Bₙ/Xₙ] ⊙ id -- ⊢ Ā : Ty predL : ∀ {Θ Γ₁ Γ₂} → PreType Θ Γ₁ Γ₂ → (f : TyCtxMorP Ø Θ) → -- =========================================================== liftTyCtx f ∣ ∗ ∷ Γ₂ ++ Γ₁ / Ø ⊸Ty predL (A , A-dec) = predL₀ A A-dec -- | Special instance of the predicate lifting for types with one -- free variable and no parameters. -- X : Δ ⊸ Ty | Γ ⊢ A : Ty B : Δ ⊸ Ty -- =============================================================== (predL₁) -- Y : (Δ, x : B ⊙ id) ⊸ ∗ | Γ, z : A[B/X] ⊢ Ā : Ty predL₁ : ∀ {Δ Γ} → ((Δ ∷ Ø) ∣ Γ / Ø ⊸Ty) → (Ø ∣ Ø / Δ ⊸Ty) → -- =========================================================== ((∗ ∷ Δ) ∷ Ø) ∣ ∗ ∷ Γ / Ø ⊸Ty predL₁ A B = predL A (B , tt)
{ "alphanum_fraction": 0.5020399399, "avg_line_length": 38.8083333333, "ext": "agda", "hexsha": "4efca6a30c542ca6d9e849822196401523d9c25f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-07-24T10:54:38.000Z", "max_forks_repo_forks_event_min_datetime": "2020-07-24T10:54:38.000Z", "max_forks_repo_head_hexsha": "480ee27c2c0c20fb35f371177a68721cbc6668c3", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "StillerHarpo/CoindDepTypes", "max_forks_repo_path": "Syntax/PredicateLifting.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "480ee27c2c0c20fb35f371177a68721cbc6668c3", "max_issues_repo_issues_event_max_datetime": "2020-07-24T12:53:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-07-24T12:53:30.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "StillerHarpo/CoindDepTypes", "max_issues_repo_path": "Syntax/PredicateLifting.agda", "max_line_length": 78, "max_stars_count": 2, "max_stars_repo_head_hexsha": "480ee27c2c0c20fb35f371177a68721cbc6668c3", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "StillerHarpo/CoindDepTypes", "max_stars_repo_path": "Syntax/PredicateLifting.agda", "max_stars_repo_stars_event_max_datetime": "2018-04-06T02:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-27T14:45:11.000Z", "num_tokens": 1854, "size": 4657 }
{-# OPTIONS --without-K #-} -- Universes open import Agda.Primitive module main where -- I don't really understand exactly which equality gets imported in agda if -- I try to import the builtin, so define the sane MLTT one here. infixl 4 _≡_ data _≡_ {n : Level} {A : Set n} : A → A → Set n where refl : {a : A} → a ≡ a {-# BUILTIN EQUALITY _≡_ #-} -- Lemma 2.1.1 all paths have inverses inv : ∀ {n} {A : Set n} {a b : A} → a ≡ b → b ≡ a inv refl = refl -- This is painful to type so I'll just stick with inv most of the time _⁻¹ = inv -- Lemma 2.1.2 any two paths with connecting endpoint compose trans : ∀ {n} {A : Set n} {a b c : A} → a ≡ b → b ≡ c → a ≡ c trans refl p = p _∙_ = trans infixl 50 _∙_ -- Lemma 2.1.4 types are groupoids -- (i) left and right identity laws left-id : ∀ {n} {A : Set n} {a b : A} → (p : a ≡ b) → refl ∙ p ≡ p left-id refl = refl right-id : ∀ {n} {A : Set n} {a b : A} → (p : a ≡ b) → p ∙ refl ≡ p right-id refl = refl -- (ii) inverses compose to identity left-inv : ∀ {n} {A : Set n} {a b : A} → (p : a ≡ b) → (inv p) ∙ p ≡ refl left-inv refl = refl right-inv : ∀ {n} {A : Set n} {a b : A} → (p : a ≡ b) → p ∙ (inv p) ≡ refl right-inv refl = refl -- (iii) inverse of inverse gives an equal path inv-inv : ∀ {n} {A : Set n} {a b : A} → (p : a ≡ b) → inv (inv p) ≡ p inv-inv refl = refl -- (iv) associativity of path composition assoc : ∀ {n} {A : Set n} {a b c d : A} → (p : a ≡ b) (q : b ≡ c) (r : c ≡ d) → p ∙ (q ∙ r) ≡ (p ∙ q) ∙ r assoc refl q r = refl -- Theorem 2.1.6 Eckmann-Hilton loop-space : (A : Set) (a : A) → Set loop-space A a = a ≡ a Ω = loop-space loop-space-2d : (A : Set) (a : A) → Set loop-space-2d A a = loop-space (a ≡ a) (refl {a = a}) Ω² = loop-space-2d _∙ᵣ_ : ∀ {n} {A : Set n} {a b c : A} {p q : a ≡ b} → (α : p ≡ q) (r : b ≡ c) → (p ∙ r ≡ q ∙ r) α ∙ᵣ refl = (right-id _) ∙ α ∙ (inv (right-id _)) -- My emacs setup doesn't show subscript l for some reason, or I typed it wrong _∙ₗ_ : ∀ {n} {A : Set n} {a b c : A} {r s : b ≡ c} → (q : a ≡ b) (β : r ≡ s) → (q ∙ r ≡ q ∙ s) refl ∙ₗ β = β horizontal-comp : ∀ {n} {A : Set n} {a b c : A} → {p q : a ≡ b} {r s : b ≡ c} → (α : p ≡ q) (β : r ≡ s) → (p ∙ r ≡ q ∙ s) horizontal-comp {q = q} {r = r} α β = (α ∙ᵣ r) ∙ (q ∙ₗ β) _⋆_ = horizontal-comp horizontal-comp' : ∀ {n} {A : Set n} {a b c : A} {p q : a ≡ b} {r s : b ≡ c} → (α : p ≡ q) (β : r ≡ s) → (p ∙ r ≡ q ∙ s) horizontal-comp' {p = p} {s = s} α β = (p ∙ₗ β) ∙ (α ∙ᵣ s) _⋆'_ = horizontal-comp' -- two compositions agree comp-agree : {A : Set} {a : A} → (α β : loop-space-2d A a) → α ⋆ β ≡ α ⋆' β comp-agree α β = comp-agree' α β where -- (more generally at two free endpoints, or we won't get path induction) comp-agree' : {A : Set} {a : A} {p r : a ≡ a} → (α : p ≡ refl) (β : refl ≡ r) → α ⋆ β ≡ α ⋆' β comp-agree' refl refl = refl eckmann-hilton : {A : Set} {a : A} → (α β : loop-space-2d A a) → α ∙ β ≡ β ∙ α eckmann-hilton α β = (inv horizontal-comp-simp) ∙ (comp-agree α β) ∙ horizontal-comp-simp' where horizontal-comp-simp : α ⋆ β ≡ α ∙ β horizontal-comp-simp = remove α β where -- not hard, just annoying to do directly. remove : {A : Set} {a b c : A} (p : a ≡ b) (q : b ≡ c) → (p ∙ refl) ∙ q ≡ p ∙ q remove refl refl = refl horizontal-comp-simp' : α ⋆' β ≡ β ∙ α horizontal-comp-simp' = remove β α where remove : {A : Set} {a b c : A} (p : a ≡ b) (q : b ≡ c) → p ∙ (q ∙ refl) ≡ p ∙ q remove refl refl = refl -- Lemma 2.2.1 action on paths preserve path equality ap : ∀ {n m} {A : Set n} {B : Set m} {x y : A} → (f : A → B) (p : x ≡ y) → f x ≡ f y ap f refl = refl -- Lemma 2.2.2 functions are functors -- (i) functions preserves composition ap-preserves-composition : ∀ {n m} {A : Set n} {B : Set m} {x y z : A} {f : A → B} → (p : x ≡ y) (q : y ≡ z) → ap f (p ∙ q) ≡ (ap f p) ∙ (ap f q) ap-preserves-composition refl q = refl -- (ii) functions preserves inverses ap-preserves-inverses : ∀ {n m} {A : Set n} {B : Set m} {x y z : A} {f : A → B} → (p : x ≡ y) → ap f (inv p) ≡ inv (ap f p) ap-preserves-inverses refl = refl -- (iii) functors compose _∘_ : ∀ {n m p} {A : Set n} {B : A → Set m} {C : (x : A) → B x → Set p} → (g : {x : A} → (y : B x) → C x y) (f : (x : A) → B x) → (x : A) → C x (f x) (g ∘ f) x = g (f x) ap-preserves-function-composition : ∀ {n} {A B C : Set n} {x y z : A} {f : A → B} {g : B → C} → (p : x ≡ y) → ap g (ap f p) ≡ ap (g ∘ f) p ap-preserves-function-composition refl = refl -- (iv) identity maps to identity ap-identity-map : ∀ {n} {A : Set n} {x y : A} → (p : x ≡ y) → ap (λ x → x) p ≡ p ap-identity-map refl = refl -- Lemma 2.3.1 transport transport : ∀ {n m} {A : Set n} {x y : A} → (P : A → Set m) (p : x ≡ y) → P x → P y transport _ refl x = x -- Lemma 2.3.4 dependent action on paths apd : ∀ {n m} {A : Set n} {B : A → Set m} {x y : A} → (f : (x : A) → B x) → (p : x ≡ y) → transport B p (f x) ≡ f y apd f refl = refl -- Lemma 2.3.5 non-dependent transport moves around ap path transport-const : ∀ {n} {A B : Set n} {x y : A} → (p : x ≡ y) (b : B) → transport (λ _ → B) p b ≡ b transport-const refl b = refl -- Lemma 2.3.8 relation between dependent and nondependent transport apd-ap : ∀ {n} {A B : Set n} {x y : A} → (f : A → B) (p : x ≡ y) → apd f p ≡ (transport-const p (f x)) ∙ (ap f p) apd-ap f refl = refl -- Lemma 2.3.9 transport unrolling transport-unroll : ∀ {n m} {A : Set n} {P : A → Set m} {x y z : A} → (p : x ≡ y) (q : y ≡ z) → {u : P x} → transport P q (transport P p u) ≡ transport P (p ∙ q) u transport-unroll refl refl = refl -- Lemma 2.3.10 transport over ap transport-ap : ∀ {n m} {A B : Set n} {P : B → Set m} {x y : A} → (f : A → B) (p : x ≡ y) → {u : P (f x)} → transport (P ∘ f) p u ≡ transport P (ap f p) u transport-ap f refl = refl -- Lemma 2.3.11 transport naturality transport-natural : ∀ {n m} {A : Set n} {P Q : A → Set m} {x y : A} → (f : (x : A) → P x → Q x) (p : x ≡ y) → {u : P x} → transport Q p (f x u) ≡ f y (transport P p u) transport-natural f refl = refl -- Definition 2.4.1 homotopy between functions homotopy : ∀ {n m} {A : Set n} {P : A → Set m} → (f g : (x : A) → P x) → Set (n ⊔ m) homotopy {A = A} f g = (x : A) → f x ≡ g x _~_ = homotopy infixl 10 _~_ -- Lemma 2.4.2 homotopy is an equivalence relation homotopy-refl : ∀ {n m} {A : Set n} {P : A → Set m} → (f : (x : A) → P x) → f ~ f homotopy-refl f x = refl homotopy-sym : ∀ {n m} {A : Set n} {P : A → Set m} → (f g : (x : A) → P x) → f ~ g → g ~ f homotopy-sym f g f-g-hom x = inv (f-g-hom x) homotopy-trans : ∀ {n m} {A : Set n} {P : A → Set m} → (f g h : (x : A) → P x) → f ~ g → g ~ h → f ~ h homotopy-trans f g h f-g-hom g-h-hom x = (f-g-hom x) ∙ (g-h-hom x) -- Lemma 2.4.3 homotopies are natural transformations between functions homotopy-natural : ∀ {n} {A B : Set n} {x y : A} {p : x ≡ y} → (f g : A → B) (H : f ~ g) → (H x) ∙ (ap g p) ≡ (ap f p) ∙ (H y) homotopy-natural {x = x} {p = refl} f g h = right-id (h x) -- Corollary 2.4.4 naturality over identity homotopy-natural-id : ∀ {n} {A : Set n} → (f : A → A) (H : f ~ (λ x → x)) → {x : A} → H (f x) ≡ ap f (H x) homotopy-natural-id f H {x = x} = remove-ends (H x) (inv commute-square) where f-x-path : f x ≡ x f-x-path = H x -- annoying to reason about, not hard replace-inline : ∀ {n} {A : Set n} {x y z : A} → {p : x ≡ y} {q q' : y ≡ z} {r : x ≡ z} → p ∙ q ≡ r → q ≡ q' → p ∙ q' ≡ r replace-inline {p = refl} q-r q-q' = (inv q-q') ∙ q-r commute-square : (ap f (H x)) ∙ (H x) ≡ (H (f x)) ∙ (H x) commute-square = inv (replace-inline (homotopy-natural {p = f-x-path} f (λ x → x) H) (ap-identity-map (H x))) -- annoying to reason about, not hard remove-ends : ∀ {n} {A : Set n} {x y z : A} → {p p' : x ≡ y} → (q : y ≡ z) → p ∙ q ≡ p' ∙ q → p ≡ p' remove-ends {p = p} {p' = p'} refl p-q-eq-p'-eq = (inv (right-id p)) ∙ p-q-eq-p'-eq ∙ (right-id p') -- Definition 2.4.6 quasi-inverse record qinv {n m : Level} {A : Set n} {B : Set m} (f : A → B) : Set (n ⊔ m) where constructor _st_and_ field g : B → A α : f ∘ g ~ λ x → x β : g ∘ f ~ λ x → x -- Example 2.4.7 the identity function is a quasi-inverse id-qinv : ∀ {n} {A : Set n} → qinv {A = A} {B = A} (λ x → x) id-qinv = (λ x → x) st (λ x → refl) and (λ x → refl) -- Example 2.4.8 path concats are quasi-inverses preconcat-qinv : ∀ {n} {A : Set n} {x y z : A} → (p : x ≡ y) → qinv (λ (q : y ≡ z) → p ∙ q) preconcat-qinv {x = x} {y = y} {z = z} p = g st α and β where f : y ≡ z → x ≡ z f q = p ∙ q g : x ≡ z → y ≡ z g pq = (inv p) ∙ pq α : (f ∘ g) ~ λ x → x α refl = simpl p where simpl : ∀ {n} {A : Set n} {x y : A} → (p : x ≡ y) → p ∙ ((inv p) ∙ refl) ≡ refl simpl refl = refl β : (g ∘ f) ~ λ x → x β refl = simpl p where simpl : ∀ {n} {A : Set n} {x y : A} → (p : x ≡ y) → (inv p) ∙ (p ∙ refl) ≡ refl simpl refl = refl postconcat-qinv : ∀ {n} {A : Set n} {x y z : A} → (p : x ≡ y) → qinv (λ (q : z ≡ x) → q ∙ p) postconcat-qinv {x = x} {y = y} {z = z} p = g st α and β where f : z ≡ x → z ≡ y f q = q ∙ p g : z ≡ y → z ≡ x g qp = qp ∙ (inv p) α : (f ∘ g) ~ λ x → x α refl = left-inv p β : (g ∘ f) ~ λ x → x β refl = right-inv p -- Example 2.4.9 transport over paths induces a quasi-inverse over the inverse path transport-qinv : ∀ {n m} {A : Set n} {x y : A} → (P : A → Set m) (p : x ≡ y) → qinv (transport P p) transport-qinv {x = x} {y = y} P p = g st α and β where f : P x → P y f = transport P p g : P y → P x g = transport P (inv p) transport-equiv-paths : ∀ {n m} {A : Set n} {x y : A} → (P : A → Set m) (p q : x ≡ y) → p ≡ q → {n : P x} → transport P p n ≡ transport P q n transport-equiv-paths P p .p refl = refl transport-refl-paths : ∀ {n m} {A : Set n} {x : A} → (P : A → Set m) (p : x ≡ x) → p ≡ refl → {n : P x} → transport P p n ≡ n transport-refl-paths P p p-refl {n = n} = transport-equiv-paths P p refl p-refl {n = n} α : (f ∘ g) ~ λ x → x α x = (transport-unroll {P = P} (inv p) p) ∙ (transport-refl-paths P ((inv p) ∙ p) (left-inv p) {n = x}) β : (g ∘ f) ~ λ x → x β x = (transport-unroll {P = P} p (inv p)) ∙ (transport-refl-paths P _ (right-inv p)) -- 2.4.10 a specific definition of equivalence record isequiv {n m : Level} {A : Set n} {B : Set m} (f : A → B) : Set (n ⊔ m) where constructor _st_also_st_ field g : B → A α : f ∘ g ~ λ x → x h : B → A β : h ∘ f ~ λ x → x -- (i) quasi-inverses induce equivalences qinv-to-isequiv : ∀ {n m} {A : Set n} {B : Set m} → (f : A → B) → qinv f → isequiv f qinv-to-isequiv f (g st α and β) = g st α also g st β -- (ii) equivalences induce quasi-inverses isequiv-to-qinv : ∀ {n m} {A : Set n} {B : Set m} → (f : A → B) → isequiv f → qinv f isequiv-to-qinv {A} {B} f (g st α also h st β) = g st α and β' where g~h∘f∘g : g ~ (h ∘ (f ∘ g)) g~h∘f∘g x = inv (β (g x)) h∘f∘g~h : (h ∘ (f ∘ g)) ~ h h∘f∘g~h x = ap h (α x) g~h : g ~ h g~h = homotopy-trans _ _ _ g~h∘f∘g h∘f∘g~h β' : g ∘ f ~ λ x → x β' x = g~h (f x) ∙ (β x) -- Definition 2.4.11 equivalence between types record _≃_ {n : Level} (A B : Set n) : Set n where constructor _withequiv_ field f : A → B e : isequiv f -- Lemma 2.4.12 type equivalence is a equivalence relation equiv-refl : ∀ {n} {A : Set n} → A ≃ A equiv-refl = (λ x → x) withequiv (qinv-to-isequiv (λ x → x) ((λ x → x) st (λ x → refl) and (λ x → refl))) equiv-sym : ∀ {n} {A B : Set n} → A ≃ B → B ≃ A equiv-sym (f withequiv equiv) with (isequiv-to-qinv f equiv) ... | g st α and β = g withequiv qinv-to-isequiv g (f st β and α) equiv-trans : ∀ {n} {A B C : Set n} → A ≃ B → B ≃ C → A ≃ C equiv-trans (fab withequiv equivab) (fbc withequiv equivbc) with (isequiv-to-qinv fab equivab) | (isequiv-to-qinv fbc equivbc) ... | gab st αab and βab | gbc st αbc and βbc = (fbc ∘ fab) withequiv (qinv-to-isequiv (fbc ∘ fab) ((gab ∘ gbc) st (λ x → ap fbc (αab (gbc x)) ∙ (αbc x)) and λ x → ap gab (βbc (fab x)) ∙ (βab x))) record _×_ {n m : Level} (A : Set n) (B : Set m) : Set (n ⊔ m) where constructor _,,_ field fst : A snd : B fst : ∀ {n m} {A : Set n} {B : Set m} → A × B → A fst (fst ,, snd) = fst snd : ∀ {n m} {A : Set n} {B : Set m} → A × B → B snd (fst ,, snd) = snd -- Function 2.6.1 a path between products induces a pair of paths between elements product-path-to-elem-path : ∀ {n m} {A : Set n} {B : Set m} {x y : A × B} → x ≡ y → (fst x ≡ fst y) × (snd x ≡ snd y) product-path-to-elem-path refl = refl ,, refl -- Theorem 2.6.2 product path to element paths is an equivalence product-path-to-elem-path-equiv : ∀ {n m} {A : Set n} {B : Set m} {x y : A × B} → isequiv (product-path-to-elem-path {A = A} {B = B} {x = x} {y = y}) product-path-to-elem-path-equiv {A = A} {B = B} {x = x} {y = y} = qinv-to-isequiv product-path-to-elem-path (g st α and β) where f = product-path-to-elem-path g : (fst x ≡ fst y) × (snd x ≡ snd y) → x ≡ y g = g' x y where g' : (x y : A × B) → (fst x ≡ fst y) × (snd x ≡ snd y) → x ≡ y g' (fst₁ ,, snd₁) (.fst₁ ,, .snd₁) (refl ,, refl) = refl α : f ∘ g ~ λ x → x α (refl ,, refl) = refl β : g ∘ f ~ λ x → x β refl = refl -- Theorem 2.6.4 transport over a path to a product fiber is a product of fibers over a path product-transport : ∀ {n m} {Z : Set n} {A B : Z → Set m} {z w : Z} → (p : z ≡ w) (x : (A z) × (B z)) → transport (λ z → (A z) × (B z)) p x ≡ (transport A p (fst x) ,, transport B p (snd x)) product-transport refl (fst ,, snd) = refl -- Definition of pair⁼ pair⁼ : ∀ {n m} {A : Set n} {B : Set m} {x y : A × B} → (fst x ≡ fst y) × (snd x ≡ snd y) → x ≡ y pair⁼ {A = A} {B = B} {x = x} {y = y} = isequiv.g (product-path-to-elem-path-equiv {A = A} {B = B} {x = x} {y = y}) -- Theorem 2.6.5 functions are functors over products function-functor-pair : {A B A' B' : Set} → (g : A → A') (h : B → B') → {x y : A × B} {p : fst x ≡ fst y} {q : snd x ≡ snd y} → ap (λ x → (g (fst x) ,, h (snd x))) (pair⁼ (p ,, q)) ≡ pair⁼ (ap g p ,, ap h q) function-functor-pair g h {x = fstx ,, sndx} {y = .fstx ,, .sndx} {p = refl} {q = refl} = refl -- Theorem 2.7.2 dependent functions are fibrations over Σ-types record Sigma (A : Set) (B : A → Set) : Set where constructor _,,_ field pr1 : A pr2 : B pr1 syntax Sigma A (λ x → y) = Σ x of A , y pr1 : {A : Set} {B : A → Set} → Σ x of A , B x → A pr1 (left ,, right) = left pr2 : {A : Set} {B : A → Set} → (v : Σ x of A , B x) → B (pr1 {A} {B} v) pr2 (left ,, right) = right -- Theorem 2.7.2 dependent functions are functors over fibrations function-fibration-product : {A : Set} {P : A → Set} {w w' : Σ x of A , P x} → (w ≡ w') ≃ (Σ p of (pr1 w ≡ pr1 w') , (transport P p (pr2 w) ≡ pr2 w')) function-fibration-product {A = A} {P = P} {w = w} {w' = w'} = f withequiv qinv-to-isequiv f (g st α and β) where f : {w w' : Σ x of A , P x} → (w ≡ w') → (Σ p of (pr1 w ≡ pr1 w') , (transport P p (pr2 w) ≡ pr2 w')) f refl = refl ,, refl g : {w w' : Σ x of A , P x} → (Σ p of (pr1 w ≡ pr1 w') , (transport P p (pr2 w) ≡ pr2 w')) → (w ≡ w') g {w = w1 ,, w2} {w' = .w1 ,, .w2} (refl ,, refl) = refl α : f ∘ g ~ λ x → x α (refl ,, refl) = refl β : g ∘ f ~ λ x → x β refl = refl -- Corollary 2.7.3 computation rule for Σ types computation-sigma : {A : Set} {P : A → Set} → (z : Σ x of A , P x) → z ≡ (pr1 z ,, pr2 z) computation-sigma z = isequiv.g (_≃_.e function-fibration-product) (refl ,, refl) -- Theorem 2.8.1 : only one path between unit elements record Unit : Set where constructor unit single-path-between-unit : {x y : Unit} → (x ≡ y) ≃ Unit single-path-between-unit {x = x} {y = y} = f withequiv qinv-to-isequiv f (g st α and β) where f : x ≡ y → Unit f _ = unit g : {x y : Unit} → Unit → x ≡ y g {x = unit} {y = unit} _ = refl α : f ∘ g ~ λ x → x α unit = refl β : g ∘ f ~ λ x → x β refl = refl -- Theorem 2.9.2 path between functions are homotopies happly : ∀ {n m} {A : Set n} {B : A → Set m} {f g : (x : A) → B x} → (f ≡ g) → f ~ g happly refl x = refl -- Axiom 2.9.3 function extensionality postulate funext-equiv : ∀ {n m} {A : Set n} {B : A → Set m} {f g : (x : A) → B x} → isequiv (happly {A = A} {B = B} {f = f} {g = g}) funext : ∀ {n m} {A : Set n} {B : A → Set m} {f g : (x : A) → B x} → f ~ g → f ≡ g funext = isequiv.g funext-equiv -- Lemma 2.9.6 function-path-transport-equiv : ∀ {n m} {X : Set n} {A B : X → Set m} {x y : X} → {p : x ≡ y} (f : A x → B x) (g : A y → B y) → (transport (λ x → A x → B x) p f ≡ g) ≃ ((a : A x) → (transport B p (f a) ≡ g (transport A p a))) function-path-transport-equiv {p = refl} f g = happly withequiv funext-equiv -- Lemma 2.10.1 paths between types are equivalences. id-to-equiv : ∀ {n} {A B : Set n} → A ≡ B → A ≃ B id-to-equiv refl = equiv-refl -- Axiom 2.10.3 univalence axiom. postulate univalence-equiv : ∀ {n} {A B : Set n} → isequiv (id-to-equiv {A = A} {B = B})
{ "alphanum_fraction": 0.5004855755, "avg_line_length": 30.0773195876, "ext": "agda", "hexsha": "b1fdd275a5eedd766ee45e56d7ddd7cd38e95191", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d1c69d43b685b28d7ad63cfef890e500facb3ac8", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haoxuany/hott-practice", "max_forks_repo_path": "main.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d1c69d43b685b28d7ad63cfef890e500facb3ac8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haoxuany/hott-practice", "max_issues_repo_path": "main.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "d1c69d43b685b28d7ad63cfef890e500facb3ac8", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haoxuany/hott-practice", "max_stars_repo_path": "main.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7602, "size": 17505 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module stash.modalities.FiberedPushout {i j k} {X : Type i} {Y : Type j} where {- X ---glue-left--- P ---glue-right--- Y -} module _ (P : X → Y → Type k) where fibered-pushout-span : Span fibered-pushout-span = record { A = Σ X λ x → Σ Y λ y → P x y ; B = Coprod X Y ; C = Coprod (Σ X λ x → Σ Y λ y → P x y) (Σ X λ x → Σ Y λ y → P x y) ; f = λ{ (inl p) → p ; (inr p) → p} ; g = λ{ (inl p) → inl (fst p) ; (inr p) → inr (fst (snd p))} } FiberedPushout : Type (lmax (lmax i j) k) FiberedPushout = Pushout fibered-pushout-span module _ {P : X → Y → Type k} where in-left : X → FiberedPushout P in-left = right ∘ inl in-right : Y → FiberedPushout P in-right = right ∘ inr in-mid : ∀ {x y} → P x y → FiberedPushout P in-mid p = left (_ , _ , p) glue-left : ∀ {x y} (p : P x y) → in-mid p == in-left x glue-left p = glue (inl (_ , _ , p)) glue-right : ∀ {x y} (p : P x y) → in-mid p == in-right y glue-right p = glue (inr (_ , _ , p)) module FiberedPushoutElim {l} (C : FiberedPushout P → Type l) (b1 : (x : X) → C (in-left x)) (b2 : (x : X) (y : Y) (p : P x y) → C (in-mid p)) (b3 : (y : Y) → C (in-right y)) (glue-left' : (x : X) (y : Y) (p : P x y) → b2 x y p == b1 x [ C ↓ glue-left p ]) (glue-right' : (x : X) (y : Y) (p : P x y) → b2 x y p == b3 y [ C ↓ glue-right p ]) where private module PElim = PushoutElim {d = fibered-pushout-span P} {P = C} (λ{(x , y , p) → b2 x y p}) (λ{(inl x) → b1 x ; (inr y) → b3 y}) (λ{(inl (_ , _ , p)) → glue-left' _ _ p ; (inr (_ , _ , p)) → glue-right' _ _ p}) f = PElim.f glue-left-β : ∀ {x y} (p : P x y) → apd f (glue-left p) == glue-left' x y p glue-left-β p = PElim.glue-β (inl (_ , _ , p)) glue-right-β : ∀ {x y} (p : P x y) → apd f (glue-right p) == glue-right' x y p glue-right-β p = PElim.glue-β (inr (_ , _ , p))
{ "alphanum_fraction": 0.4733785092, "avg_line_length": 32.7936507937, "ext": "agda", "hexsha": "fabb99a97bf9101073af66a8d5833444ced98370", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/modalities/FiberedPushout.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/modalities/FiberedPushout.agda", "max_line_length": 89, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/modalities/FiberedPushout.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 830, "size": 2066 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A Categorical view of the Sum type (Right-biased) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Level module Data.Sum.Categorical.Right (a : Level) {b} (B : Set b) where open import Data.Sum.Base open import Category.Functor open import Category.Applicative open import Category.Monad open import Function import Function.Identity.Categorical as Id Sumᵣ : Set (a ⊔ b) → Set (a ⊔ b) Sumᵣ A = A ⊎ B functor : RawFunctor Sumᵣ functor = record { _<$>_ = map₁ } applicative : RawApplicative Sumᵣ applicative = record { pure = inj₁ ; _⊛_ = [ map₁ , const ∘ inj₂ ]′ } monadT : RawMonadT (_∘′ Sumᵣ) monadT M = record { return = M.pure ∘′ inj₁ ; _>>=_ = λ ma f → ma M.>>= [ f , M.pure ∘′ inj₂ ]′ } where module M = RawMonad M monad : RawMonad Sumᵣ monad = monadT Id.monad ------------------------------------------------------------------------ -- Get access to other monadic functions module TraversableA {F} (App : RawApplicative {a ⊔ b} F) where open RawApplicative App sequenceA : ∀ {A} → Sumᵣ (F A) → F (Sumᵣ A) sequenceA (inj₂ a) = pure (inj₂ a) sequenceA (inj₁ x) = inj₁ <$> x mapA : ∀ {A B} → (A → F B) → Sumᵣ A → F (Sumᵣ B) mapA f = sequenceA ∘ map₁ f forA : ∀ {A B} → Sumᵣ A → (A → F B) → F (Sumᵣ B) forA = flip mapA module TraversableM {M} (Mon : RawMonad {a ⊔ b} M) where open RawMonad Mon open TraversableA rawIApplicative public renaming ( sequenceA to sequenceM ; mapA to mapM ; forA to forM )
{ "alphanum_fraction": 0.5510817308, "avg_line_length": 24.115942029, "ext": "agda", "hexsha": "a991c490dd22069eac0daea06049f24555a61d9b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Sum/Categorical/Right.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Sum/Categorical/Right.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Sum/Categorical/Right.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 544, "size": 1664 }
module MJ.Syntax.Scoped where open import Prelude open import Data.Maybe as Maybe using (Maybe; just) open import Data.Maybe.All as MayAll open import Data.Vec as Vec hiding (_∈_) open import Data.Star.Indexed open import Data.List open import Data.List.Properties.Extra open import Data.List.Prefix open import Data.List.Any open import Data.List.All as List∀ hiding (lookup) open import Data.List.All.Properties.Extra open import Relation.Binary.PropositionalEquality import Data.Vec.All as Vec∀ open Membership-≡ open import MJ.Types NativeBinOp = ℕ → ℕ → ℕ data Expr {n : ℕ} (Γ : Ctx c n) : Ty c → Set where new : (C : Fin c) → All (Expr Γ) (Class.constr (clookup C)) → Expr Γ (ref C) unit : Expr Γ void num : ℕ → Expr Γ int iop : NativeBinOp → (l r : Expr Γ int) → Expr Γ int call : ∀ {cid as b} → Expr Γ (ref cid) → Member Σ cid MTH (as , b) → All (Expr Γ) as → Expr Γ b var : (i : Fin n) → Expr Γ (lookup i Γ) get : ∀ {cid ty} → Expr Γ (ref cid) → Member Σ cid FLD ty → Expr Γ ty upcast : ∀ {c c'} → Σ ⊢ c <: c' → Expr Γ (ref c) → Expr Γ (ref c') data Cmd {n}(I : Ctx c n)(r : Ty c) : ∀ {m} → (O : Ctx c m) → Set where loc : ∀ a → Expr I a → Cmd I r (a ∷ I) asgn : ∀ (i : Fin n) → Expr I (lookup i I) → Cmd I r I set : ∀ {C a} → Expr I (ref C) → Member Σ C FLD a → Expr I a → Cmd I r I do : ∀ {a} → Expr I a → Cmd I r I ret : Expr I r → Cmd I r I Stmts : ∀ {n m}→ (Ctx c n) → Ty c → (Ctx c m) → Set Stmts I r O = Star ℕ (λ n m (I : Ctx c n) (O : Ctx c m) → Cmd I r O) I O data Body {n}(I : Ctx c n) : Ty c → Set where body : ∀ {m r}{O : Ctx c m} → Stmts I r O → Expr O r → Body I r -- mapping of namespace typings to the type of their implementation Def : ∀ {ns} → Fin c → typing ns c → Set -- methods have bodies Def {MTH} C (as , b) = Body (ref C ∷ (fromList as)) b -- fields have initializers Def {FLD} C a = Body (fromList (Class.constr (clookup C))) a record Implementation (cid : Fin c) : Set where constructor impl open Class (clookup cid) public field -- mapping construct arguments to super constructor arguments super-args : Maybe.All (λ p → All (Expr (fromList constr)) (Class.constr (clookup p))) parent -- definitions for all local members defs : ∀ ns → All (Def cid) (decls ns) -- implementation of a classtable record Impl : Set where field bodies : ∀ (cid : Fin c) → Implementation cid -- get member definition from a class getDef : ∀ {ns ty}→ (cid : Fin c) → (m : Member Σ cid ns ty) → Impl → Def (proj₁ m) ty getDef {ns = ns} cid (_ , refl , def) I with clookup cid | inspect clookup cid ... | C@(class parent constr decls) | [ refl ] with Impl.bodies I cid ... | impl _ defs = ∈-all def (defs ns) getDef cid (P' , super {pid = pid} p P<:P' , def) I = getDef pid (P' , P<:P' , def) I Prog : Ty c → Set Prog a = Impl × (Body [] a)
{ "alphanum_fraction": 0.6101283385, "avg_line_length": 34.734939759, "ext": "agda", "hexsha": "8bf2952c7fdf2de79c4a0ba3844fe0f455a88335", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Syntax/Scoped.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Syntax/Scoped.agda", "max_line_length": 86, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Syntax/Scoped.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 995, "size": 2883 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} import LibraBFT.Base.KVMap as Map open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.Prelude open import Optics.All module LibraBFT.Impl.Consensus.TestUtils.MockSharedStorage where new : ValidatorSet → MockSharedStorage new = mkMockSharedStorage Map.empty Map.empty Map.empty nothing nothing newObmWithLIWS : ValidatorSet → LedgerInfoWithSignatures → MockSharedStorage newObmWithLIWS vs obmLIWS = new vs & mssLis ∙~ Map.singleton (obmLIWS ^∙ liwsVersion) obmLIWS
{ "alphanum_fraction": 0.7613488975, "avg_line_length": 30.84, "ext": "agda", "hexsha": "577fea15f745447d2e424edd31d7c4261e96afda", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z", "max_forks_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "oracle/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Consensus/TestUtils/MockSharedStorage.agda", "max_issues_count": 72, "max_issues_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z", "max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z", "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "oracle/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Consensus/TestUtils/MockSharedStorage.agda", "max_line_length": 111, "max_stars_count": 4, "max_stars_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "oracle/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Consensus/TestUtils/MockSharedStorage.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z", "num_tokens": 216, "size": 771 }
{-# OPTIONS --allow-unsolved-metas #-} -- FIXME open import Everything module Test.Test1 where test-functor-transextensionality : ∀ {𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂} ⦃ functor : Functor 𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂ ⦄ (open Functor functor) → {!Transextensionality!.type _∼₁_ _∼̇₁_!} test-functor-transextensionality = transextensionality -- test-functor-transextensionality ⦃ functor ⦄ = let open Functor ⦃ … ⦄ in transextensionality1
{ "alphanum_fraction": 0.7057471264, "avg_line_length": 31.0714285714, "ext": "agda", "hexsha": "dcde433233e311310d93d0affaa71e0bb31849fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/Test1.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/Test1.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/Test1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 179, "size": 435 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Ways to give instances of certain structures where some fields can -- be given in terms of others ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Rel; Setoid; IsEquivalence) module Algebra.Structures.Biased {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality relation where open import Algebra.Core open import Algebra.Definitions _≈_ open import Algebra.Structures _≈_ import Algebra.Consequences.Setoid as Consequences open import Data.Product using (_,_; proj₁; proj₂) open import Level using (_⊔_) ------------------------------------------------------------------------ -- IsCommutativeMonoid record IsCommutativeMonoidˡ (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isSemigroup : IsSemigroup ∙ identityˡ : LeftIdentity ε ∙ comm : Commutative ∙ open IsSemigroup isSemigroup private identityʳ : RightIdentity ε ∙ identityʳ = Consequences.comm+idˡ⇒idʳ setoid comm identityˡ identity : Identity ε ∙ identity = (identityˡ , identityʳ) isCommutativeMonoid : IsCommutativeMonoid ∙ ε isCommutativeMonoid = record { isMonoid = record { isSemigroup = isSemigroup ; identity = identity } ; comm = comm } open IsCommutativeMonoidˡ public using () renaming (isCommutativeMonoid to isCommutativeMonoidˡ) record IsCommutativeMonoidʳ (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isSemigroup : IsSemigroup ∙ identityʳ : RightIdentity ε ∙ comm : Commutative ∙ open IsSemigroup isSemigroup private identityˡ : LeftIdentity ε ∙ identityˡ = Consequences.comm+idʳ⇒idˡ setoid comm identityʳ identity : Identity ε ∙ identity = (identityˡ , identityʳ) isCommutativeMonoid : IsCommutativeMonoid ∙ ε isCommutativeMonoid = record { isMonoid = record { isSemigroup = isSemigroup ; identity = identity } ; comm = comm } open IsCommutativeMonoidʳ public using () renaming (isCommutativeMonoid to isCommutativeMonoidʳ) ------------------------------------------------------------------------ -- IsCommutativeSemiring record IsCommutativeSemiringˡ (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field +-isCommutativeMonoid : IsCommutativeMonoid + 0# *-isCommutativeMonoid : IsCommutativeMonoid * 1# distribʳ : * DistributesOverʳ + zeroˡ : LeftZero 0# * private module +-CM = IsCommutativeMonoid +-isCommutativeMonoid open module *-CM = IsCommutativeMonoid *-isCommutativeMonoid public using () renaming (comm to *-comm) distribˡ : * DistributesOverˡ + distribˡ = Consequences.comm+distrʳ⇒distrˡ +-CM.setoid +-CM.∙-cong *-comm distribʳ distrib : * DistributesOver + distrib = (distribˡ , distribʳ) zeroʳ : RightZero 0# * zeroʳ = Consequences.comm+zeˡ⇒zeʳ +-CM.setoid *-comm zeroˡ zero : Zero 0# * zero = (zeroˡ , zeroʳ) isCommutativeSemiring : IsCommutativeSemiring + * 0# 1# isCommutativeSemiring = record { isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isMonoid = *-CM.isMonoid ; distrib = distrib } ; zero = zero } ; *-comm = *-comm } open IsCommutativeSemiringˡ public using () renaming (isCommutativeSemiring to isCommutativeSemiringˡ) record IsCommutativeSemiringʳ (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field +-isCommutativeMonoid : IsCommutativeMonoid + 0# *-isCommutativeMonoid : IsCommutativeMonoid * 1# distribˡ : * DistributesOverˡ + zeroʳ : RightZero 0# * private module +-CM = IsCommutativeMonoid +-isCommutativeMonoid open module *-CM = IsCommutativeMonoid *-isCommutativeMonoid public using () renaming (comm to *-comm) distribʳ : * DistributesOverʳ + distribʳ = Consequences.comm+distrˡ⇒distrʳ +-CM.setoid +-CM.∙-cong *-comm distribˡ distrib : * DistributesOver + distrib = (distribˡ , distribʳ) zeroˡ : LeftZero 0# * zeroˡ = Consequences.comm+zeʳ⇒zeˡ +-CM.setoid *-comm zeroʳ zero : Zero 0# * zero = (zeroˡ , zeroʳ) isCommutativeSemiring : IsCommutativeSemiring + * 0# 1# isCommutativeSemiring = record { isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isMonoid = *-CM.isMonoid ; distrib = distrib } ; zero = zero } ; *-comm = *-comm } open IsCommutativeSemiringʳ public using () renaming (isCommutativeSemiring to isCommutativeSemiringʳ) ------------------------------------------------------------------------ -- IsRing -- We can recover a ring without proving that 0# annihilates *. record IsRingWithoutAnnihilatingZero (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field +-isAbelianGroup : IsAbelianGroup + 0# -_ *-isMonoid : IsMonoid * 1# distrib : * DistributesOver + private module + = IsAbelianGroup +-isAbelianGroup module * = IsMonoid *-isMonoid open + using (setoid) renaming (∙-cong to +-cong) open * using () renaming (∙-cong to *-cong) zeroˡ : LeftZero 0# * zeroˡ = Consequences.assoc+distribʳ+idʳ+invʳ⇒zeˡ setoid +-cong *-cong +.assoc (proj₂ distrib) +.identityʳ +.inverseʳ zeroʳ : RightZero 0# * zeroʳ = Consequences.assoc+distribˡ+idʳ+invʳ⇒zeʳ setoid +-cong *-cong +.assoc (proj₁ distrib) +.identityʳ +.inverseʳ zero : Zero 0# * zero = (zeroˡ , zeroʳ) isRing : IsRing + * -_ 0# 1# isRing = record { +-isAbelianGroup = +-isAbelianGroup ; *-isMonoid = *-isMonoid ; distrib = distrib ; zero = zero } open IsRingWithoutAnnihilatingZero public using () renaming (isRing to isRingWithoutAnnihilatingZero)
{ "alphanum_fraction": 0.610100682, "avg_line_length": 29.0471698113, "ext": "agda", "hexsha": "fe3f5b88774a207da90f77901a265895e06cefda", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Structures/Biased.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Structures/Biased.agda", "max_line_length": 75, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Structures/Biased.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1941, "size": 6158 }
{-# OPTIONS --cubical --safe #-} module Data.Unit.Properties where open import Data.Unit open import Level open import HLevels isProp⊤ : isProp ⊤ isProp⊤ _ _ i = tt
{ "alphanum_fraction": 0.7142857143, "avg_line_length": 15.2727272727, "ext": "agda", "hexsha": "0aaf2fdd00b02a0f79497715692038ccf10ac19f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Unit/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Unit/Properties.agda", "max_line_length": 33, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Unit/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 51, "size": 168 }
module ExtendedLambdaCase where data Bool : Set where true false : Bool data Void : Set where foo : Bool -> Bool -> Bool -> Bool foo = λ { x → λ { y z → {!!} } } data Bar : (Bool -> Bool) -> Set where baz : (t : Void) -> Bar λ { x → {!!} } -- with hidden argument data Bar' : (Bool -> Bool) -> Set where baz' : {t : Void} -> Bar' λ { x' → {!!} }
{ "alphanum_fraction": 0.5350140056, "avg_line_length": 21, "ext": "agda", "hexsha": "039d72ce7f277b712e438b482e50bddf24ac0b3d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/interaction/ExtendedLambdaCase.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/interaction/ExtendedLambdaCase.agda", "max_line_length": 43, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/interaction/ExtendedLambdaCase.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 116, "size": 357 }
{-# OPTIONS --without-K #-} -- Expose all the core types and theorems. module hott.core.theorems where open import hott.core public open import hott.core.equality.theorems public
{ "alphanum_fraction": 0.69, "avg_line_length": 22.2222222222, "ext": "agda", "hexsha": "c8b8b5b413f9376e5247d1b29741a8d77d23a566", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "piyush-kurur/hott", "max_forks_repo_path": "agda/hott/core/theorems.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "piyush-kurur/hott", "max_issues_repo_path": "agda/hott/core/theorems.agda", "max_line_length": 46, "max_stars_count": null, "max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "piyush-kurur/hott", "max_stars_repo_path": "agda/hott/core/theorems.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 44, "size": 200 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Bounded vectors, basic types and operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Bounded.Base where open import Level using (Level) open import Data.Nat.Base import Data.Nat.Properties as ℕₚ open import Data.List.Base as List using (List) open import Data.List.Extrema ℕₚ.≤-totalOrder open import Data.List.Relation.Unary.All as All using (All) import Data.List.Relation.Unary.All.Properties as Allₚ open import Data.List.Membership.Propositional using (mapWith∈) open import Data.Product using (∃; _×_; _,_; proj₁; proj₂) open import Data.Vec.Base as Vec using (Vec) open import Data.These.Base as These using (These) open import Function open import Relation.Nullary open import Relation.Unary open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) private variable a b c p : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- Types infix 4 _,_ record Vec≤ (A : Set a) (n : ℕ) : Set a where constructor _,_ field {length} : ℕ vec : Vec A length .bound : length ≤ n ------------------------------------------------------------------------ -- Conversion functions fromVec : ∀ {n} → Vec A n → Vec≤ A n fromVec v = v , ℕₚ.≤-refl padRight : ∀ {n} → A → Vec≤ A n → Vec A n padRight a (vs , m≤n) with recompute (_ ℕₚ.≤″? _) (ℕₚ.≤⇒≤″ m≤n) ... | less-than-or-equal refl = vs Vec.++ Vec.replicate a padLeft : ∀ {n} → A → Vec≤ A n → Vec A n padLeft a as@(vs , m≤n) with recompute (_ ℕₚ.≤″? _) (ℕₚ.≤⇒≤″ m≤n) ... | less-than-or-equal {k} ∣as∣+k≡n with P.trans (ℕₚ.+-comm k (Vec≤.length as)) ∣as∣+k≡n ... | refl = Vec.replicate a Vec.++ vs private split : ∀ {m n} k → m + k ≡ n → ⌊ k /2⌋ + (m + ⌈ k /2⌉) ≡ n split {m} {n} k eq = begin ⌊ k /2⌋ + (m + ⌈ k /2⌉) ≡⟨ ℕₚ.+-comm ⌊ k /2⌋ _ ⟩ m + ⌈ k /2⌉ + ⌊ k /2⌋ ≡⟨ ℕₚ.+-assoc m ⌈ k /2⌉ ⌊ k /2⌋ ⟩ m + (⌈ k /2⌉ + ⌊ k /2⌋) ≡⟨ P.cong (m +_) (ℕₚ.+-comm ⌈ k /2⌉ ⌊ k /2⌋) ⟩ m + (⌊ k /2⌋ + ⌈ k /2⌉) ≡⟨ P.cong (m +_) (ℕₚ.⌊n/2⌋+⌈n/2⌉≡n k) ⟩ m + k ≡⟨ eq ⟩ n ∎ where open P.≡-Reasoning padBoth : ∀ {n} → A → A → Vec≤ A n → Vec A n padBoth aₗ aᵣ as@(vs , m≤n) with recompute (_ ℕₚ.≤″? _) (ℕₚ.≤⇒≤″ m≤n) ... | less-than-or-equal {k} ∣as∣+k≡n with split k ∣as∣+k≡n ... | refl = Vec.replicate {n = ⌊ k /2⌋} aₗ Vec.++ vs Vec.++ Vec.replicate {n = ⌈ k /2⌉} aᵣ fromList : (as : List A) → Vec≤ A (List.length as) fromList = fromVec ∘ Vec.fromList toList : ∀ {n} → Vec≤ A n → List A toList = Vec.toList ∘ Vec≤.vec ------------------------------------------------------------------------ -- Creating new Vec≤ vectors replicate : ∀ {m n} .(m≤n : m ≤ n) → A → Vec≤ A n replicate m≤n a = Vec.replicate a , m≤n [] : ∀ {n} → Vec≤ A n [] = Vec.[] , z≤n infixr 5 _∷_ _∷_ : ∀ {n} → A → Vec≤ A n → Vec≤ A (suc n) a ∷ (as , p) = a Vec.∷ as , s≤s p ------------------------------------------------------------------------ -- Modifying Vec≤ vectors ≤-cast : ∀ {m n} → .(m≤n : m ≤ n) → Vec≤ A m → Vec≤ A n ≤-cast m≤n (v , p) = v , ℕₚ.≤-trans p m≤n ≡-cast : ∀ {m n} → .(eq : m ≡ n) → Vec≤ A m → Vec≤ A n ≡-cast m≡n = ≤-cast (ℕₚ.≤-reflexive m≡n) map : (A → B) → ∀ {n} → Vec≤ A n → Vec≤ B n map f (v , p) = Vec.map f v , p reverse : ∀ {n} → Vec≤ A n → Vec≤ A n reverse (v , p) = Vec.reverse v , p -- Align and Zip. alignWith : (These A B → C) → ∀ {n} → Vec≤ A n → Vec≤ B n → Vec≤ C n alignWith f (as , p) (bs , q) = Vec.alignWith f as bs , ℕₚ.⊔-least p q zipWith : (A → B → C) → ∀ {n} → Vec≤ A n → Vec≤ B n → Vec≤ C n zipWith f (as , p) (bs , q) = Vec.restrictWith f as bs , ℕₚ.m≤n⇒m⊓o≤n _ p zip : ∀ {n} → Vec≤ A n → Vec≤ B n → Vec≤ (A × B) n zip = zipWith _,_ align : ∀ {n} → Vec≤ A n → Vec≤ B n → Vec≤ (These A B) n align = alignWith id -- take and drop take : ∀ {m} n → Vec≤ A m → Vec≤ A (n ⊓ m) take zero _ = [] take (suc n) (Vec.[] , p) = [] take {m = suc m} (suc n) (a Vec.∷ as , p) = a ∷ take n (as , ℕₚ.≤-pred p) drop : ∀ {m} n → Vec≤ A m → Vec≤ A (m ∸ n) drop zero v = v drop (suc n) (Vec.[] , p) = [] drop {m = suc m} (suc n) (a Vec.∷ as , p) = drop n (as , ℕₚ.≤-pred p) ------------------------------------------------------------------------ -- Lifting a collection of bounded vectors to the same size rectangle : List (∃ (Vec≤ A)) → ∃ (List ∘ Vec≤ A) rectangle {A = A} rows = width , padded where sizes = List.map proj₁ rows width = max 0 sizes all≤ : All (λ v → proj₁ v ≤ width) rows all≤ = Allₚ.map⁻ (xs≤max 0 sizes) padded : List (Vec≤ A width) padded = mapWith∈ rows $ λ {x} x∈rows → ≤-cast (All.lookup all≤ x∈rows) (proj₂ x)
{ "alphanum_fraction": 0.4773098937, "avg_line_length": 31.1592356688, "ext": "agda", "hexsha": "53e046c8cfbc7fad846d417ebbca8e6d60d67f7f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Vec/Bounded/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Vec/Bounded/Base.agda", "max_line_length": 74, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Vec/Bounded/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2005, "size": 4892 }
{-# OPTIONS --erased-cubical --no-main --save-metas #-} open import Agda.Builtin.Bool open import Erased-cubical-Cubical postulate f : Not-compiled → Bool -- It is at the time of writing not possible to give a COMPILE GHC -- pragma for f, because Not-compiled is not compiled. {-# COMPILE GHC f = \_ -> True #-}
{ "alphanum_fraction": 0.6959247649, "avg_line_length": 22.7857142857, "ext": "agda", "hexsha": "a3306463f9ac2074479601c4690e6a81d254ac13", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/Compiler/simple/Erased-cubical-FFI.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/Compiler/simple/Erased-cubical-FFI.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Compiler/simple/Erased-cubical-FFI.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 88, "size": 319 }
{-# OPTIONS --copatterns --sized-types --without-K #-} module PolyFinalCoalg where open import Data.Product open import Data.Nat open import Data.Fin open import Data.Unit as Unit open import Data.Empty open import Data.Vec hiding (_∈_; [_]) open import Relation.Binary.PropositionalEquality open import Function open import Data.Sum as Sum open import Size open import Poly -- | Indexed product _×ᵢ_ : {I : Set} → Fam I → Fam I → Fam I (A ×ᵢ B) i = A i × B i -- | Product of indexed functors _×ᵢ'_ : {I J K : Set} → (Fam K → Fam I) → (Fam J → Fam I) → (Fam K × Fam J → Fam I) (F ×ᵢ' G) (X , Y) = F X ×ᵢ G Y record Isomorphic (A B : Set) : Set where -- constructor isIso field f : A → B f⃖ : B → A is-invˡ : (a : A) → f⃖ (f a) ≡ a is-invʳ : (b : B) → f (f⃖ b) ≡ b _≃_ = Isomorphic _≃'_ : {I : Set} → Fam I → Fam I → Set _≃'_ {I} A B = (i : I) → A i ≃ B i -- | Avoid setoids for now postulate Π'-ext : {I J : Set} {u : I → J} {P : Fam I} → (j : J) (f g : Π' u P j) → ((i : I) → (p : u i ≡ j) → f (i , p) ≡ g (i , p)) → f ≡ g Π'-ext' : {I J : Set} {u : I → J} {P : Fam I} → (f g : (i : I) → Π' u P (u i)) → ((i : I) → app i (f i) ≡ app i (g i)) → (i : I) → f i ≡ g i -- | Dependent polynomials record ParamPoly {I J : Set} : Set₁ where constructor ppoly field -- J ←t- B -p→ A -s→ I A : Set -- ^ Labels s : A → I B : Set p₁ p₂ : B → A t₁ : B → J t₂ : B → I first : {I J : Set} → ParamPoly {I} {J} → DPoly {I} {J} first (ppoly A s B p₁ p₂ t₁ t₂) = dpoly A s B p₁ t₁ second : {I J : Set} → ParamPoly {I} {J} → DPoly {I} {I} second (ppoly A s B p₁ p₂ t₁ t₂) = dpoly A s B p₂ t₂ R : {I J : Set} → ParamPoly {I} {J} → (X : Fam J) → (Y : Fam I) → Fam I R (ppoly A s B p₁ p₂ t₁ t₂) X Y = Σ' s (Π' p₁ ((t₁ *) X) ×ᵢ Π' p₂ ((t₂ *) Y)) data ⊤' (I : Set) : I → Set where tt : (i : I) → ⊤' I i ⊤'-unique : {I : Set} {i : I} → (x y : ⊤' I i) → x ≡ y ⊤'-unique (tt i) (tt .i) = refl triv-param : {I J : Set} → (P : ParamPoly {I} {J}) → (Y : Fam I) → R P (⊤' J) Y ≃' T (second P) Y triv-param {I} {J} (ppoly A s B p₁ p₂ t₁ t₂) Y i = record { f = f i ; f⃖ = g i ; is-invˡ = is-invˡ i ; is-invʳ = is-invʳ i } where P = ppoly A s B p₁ p₂ t₁ t₂ f : (i : I) → R P (⊤' J) Y i → T (second P) Y i f ._ (ins a (v₁ , v₂)) = ins a v₂ triv : (a : A) → Π' p₁ ((t₁ *) (⊤' J)) a triv a = abs (λ b → tt (t₁ b)) a g : (i : I) → T (second P) Y i → R P (⊤' J) Y i g ._ (ins a v) = ins a (triv a , v) is-invˡ : (i : I) → (x : R P (⊤' J) Y i) → g i (f i x) ≡ x is-invˡ ._ (ins a (v₁ , v₂)) = Σ'-eq a a (triv a , v₂) (v₁ , v₂) refl (×-eq (triv a) v₁ v₂ v₂ (Π'-ext a (triv a) v₁ (lem a v₁)) refl) where lem : (a : A) (v₁ : Π' p₁ ((t₁ *) (⊤' J)) a) (i₁ : B) (p : p₁ i₁ ≡ a) → triv a (i₁ , p) ≡ v₁ (i₁ , p) lem ._ v₁ i₁ refl = ⊤'-unique (tt (t₁ i₁)) (app i₁ v₁) is-invʳ : (i : I) → (x : T (second P) Y i) → f i (g i x) ≡ x is-invʳ ._ (ins a x) = refl triv : {I J : Set} (P : DPoly {I} {J}) → T P (⊤' J) ≃' toFam (DPoly.s P) triv {I} {J} (dpoly A s E p t) i = record { f = f i ; f⃖ = g i ; is-invˡ = p₁ i ; is-invʳ = p₂ i } where P = dpoly A s E p t f : (i : I) → T P (⊤' J) i → toFam s i f ._ (ins a v) = (a , refl) g : (i : I) → toFam s i → T P (⊤' J) i g ._ (a , refl) = ins a (abs'' a v) where v : (b : E) → p b ≡ a → ⊤' J (t b) v b _ = tt (t b) p₁ : (i : I) → (x : T (dpoly A s E p t) (⊤' J) i) → g i (f i x) ≡ x p₁ ._ (ins a v) = Σ'-eq a a (abs'' a (λ b _ → tt (t b))) v refl (Π'-ext a (abs'' a (λ b _ → tt (t b))) v (λ b p₂ → ⊤'-unique (tt (t b)) (v (b , p₂)))) p₂ : (i : I) (b : toFam s i) → f i (g i b) ≡ b p₂ ._ (a , refl) = refl foo : {A C P : Set} (B : Fam A) (D : Fam C) (Q : Fam P) (X : Set) → Σ (A × C) (λ {(a , c) → (B a → X) × (D c → Σ P (λ p → Q p → X)) }) ≃ Σ (A × Σ C (λ c → D c → P)) (λ {(a , c , t) → ((B a → X) × ((Σ (D c) ((t *) Q)) → X))}) foo {A} {C} {P} B D Q X = record { f = f ; f⃖ = g ; is-invˡ = {!!} ; is-invʳ = {!!} } where f : Σ (A × C) (λ {(a , c) → (B a → X) × (D c → Σ P (λ p → Q p → X)) }) → Σ (A × Σ C (λ c → D c → P)) (λ {(a , c , t) → ((B a → X) × ((Σ (D c) ((t *) Q)) → X))}) f ((a , c) , t) = ((a , c , (λ d → proj₁ (proj₂ t d) )) , ((proj₁ t) , (λ { (d , q) → proj₂ (proj₂ t d) q}))) g : Σ (A × Σ C (λ c → D c → P)) (λ {(a , c , t) → ((B a → X) × ((Σ (D c) ((t *) Q)) → X))}) → Σ (A × C) (λ {(a , c) → (B a → X) × (D c → Σ P (λ p → Q p → X)) }) g ((a , c , t₁) , t₂) = ((a , c) , (proj₁ t₂) , (λ d → (t₁ d , (λ q → proj₂ t₂ (d , q))))) δ : {I : Set} → I → I × I δ i = (i , i) bar : {I K L : Set} (t : K → I) (v : L → I) (A : Fam K) (B : Fam L) → (Σ' t A ×ᵢ Σ' v B) ≃' (δ *) (Σ' (t ⊗ v) ((proj₁ *) A ×ᵢ (proj₂ *) B)) bar {I} {K} {L} t v A B i = record { f = f i ; f⃖ = g i ; is-invˡ = {!!} ; is-invʳ = {!!} } where f : (i : I) → (Σ' t A ×ᵢ Σ' v B) i → (Σ' (t ⊗ v) ((proj₁ *) A ×ᵢ (proj₂ *) B)) (i , i) f .(t k) (ins k x , y) = h k x (t k) refl y where h : (k : K) (x : A k) (i : I) (p : t k ≡ i) → (Σ' v B) i → (Σ' (t ⊗ v) ((proj₁ *) A ×ᵢ (proj₂ *) B)) (i , i) h k x ._ p (ins l y) = ins' (k , l) ((v l) , (v l)) (⊗-eq {f = t} {v} k l p) (x , y) g : (i : I) → (Σ' (t ⊗ v) ((proj₁ *) A ×ᵢ (proj₂ *) B)) (i , i) → (Σ' t A ×ᵢ Σ' v B) i g i x = let k = proj₁ (p₁' x) l = proj₂ (p₁' x) q₁ : t k ≡ i q₁ = ×-eqˡ (p₌' x) q₂ : v l ≡ i q₂ = ×-eqʳ (p₌' x) u : A k × B l u = p₂' x in (ins' k i q₁ (proj₁ u) , ins' l i q₂ (proj₂ u)) _∣_ : {I J : Set} → Fam I → Fam J → Fam (I ⊎ J) X ∣ Y = [ X , Y ]′ PB : {A₁ A₂ I : Set} → (A₁ → I) → (A₂ → I) → Set PB {A₁} {A₂} f g = Σ[ x ∈ A₁ × A₂ ] (f (proj₁ x) ≡ g (proj₂ x)) PB-idx : {A₁ A₂ I : Set} → (f : A₁ → I) → (g : A₂ → I) → (PB f g → I) PB-idx f _ ((x₁ , x₂) , _) = f x₁ _⊎'_ : {I J K : Set} → DPoly {I} {J} → DPoly {I} {K} → DPoly {I} {J ⊎ K} (dpoly A₁ s₁ B₁ p₁ t₁) ⊎' (dpoly A₂ s₂ B₂ p₂ t₂) = dpoly A (PB-idx s₁ s₂) (U₁ ⊎ U₂) [ q₁ , q₂ ]′ (Sum.map (t₁ ∘ r₁) (t₂ ∘ r₂)) where A = PB s₁ s₂ U₁ = PB {A} (proj₁ ∘ proj₁) p₁ U₂ = PB {A} (proj₂ ∘ proj₁) p₂ q₁ : U₁ → A q₁ = proj₁ ∘ proj₁ q₂ : U₂ → A q₂ = proj₁ ∘ proj₁ r₁ : U₁ → B₁ r₁ = proj₂ ∘ proj₁ r₂ : U₂ → B₂ r₂ = proj₂ ∘ proj₁ parametric-poly-by-sum : {I J K : Set} → (P : DPoly {I} {J}) → (Q : DPoly {I} {K}) → ∀ X Y → (T P ×ᵢ' T Q)(X , Y) ≃' T (P ⊎' Q) (X ∣ Y) parametric-poly-by-sum {I} {J} P Q X Y i = record { f = f i ; f⃖ = g i ; is-invˡ = {!!} ; is-invʳ = {!!} } where f : (i : I) → (T P ×ᵢ' T Q) (X , Y) i → T (P ⊎' Q) (X ∣ Y) i f ._ (ins a v , y) = h a v (DPoly.s P a) refl y where h : (a : DPoly.A P) (v : Π' (DPoly.p P) (λ e → X (DPoly.t P e)) a) (i : I) (p : DPoly.s P a ≡ i) → T Q Y i → T (P ⊎' Q) (X ∣ Y) i h a₁ v₁ ._ p (ins a₂ v₂) = ins' a₃ (DPoly.s Q a₂) p₃ v₃ where a₃ : DPoly.A (P ⊎' Q) a₃ = (a₁ , a₂) , p p₃ : DPoly.s (P ⊎' Q) a₃ ≡ DPoly.s Q a₂ p₃ = trans refl p v₃ : Π' (DPoly.p (P ⊎' Q)) (λ e → (X ∣ Y) (DPoly.t (P ⊎' Q) e)) a₃ v₃ = abs'' a₃ (v' a₃ refl) where v' : (u : DPoly.A (P ⊎' Q)) → (a₁ , a₂) ≡ proj₁ u → (i₁ : DPoly.E (P ⊎' Q)) → DPoly.p (P ⊎' Q) i₁ ≡ u → ((X ∣ Y) (DPoly.t (P ⊎' Q) i₁)) v' u r (inj₁ ((.u , b) , q)) refl = v₁ (b , sym (trans (×-eqˡ r) q)) v' u r (inj₂ ((.u , b) , q)) refl = v₂ (b , sym (trans (×-eqʳ r) q)) g : (i : I) → T (P ⊎' Q) (X ∣ Y) i → (T P ×ᵢ' T Q) (X , Y) i g ._ (ins x v) = (ins (proj₁ (proj₁ x)) v₁ , ins' a₂ (DPoly.s P a₁) (sym (proj₂ x)) v₂) where a₁ = proj₁ (proj₁ x) a₂ = proj₂ (proj₁ x) v₁ : Π' (DPoly.p P) (((DPoly.t P) *) X) a₁ v₁ = abs'' a₁ (v₁' a₁ refl) where v₁' : (a : DPoly.A P) (p : a₁ ≡ a) (b : DPoly.E P) → DPoly.p P b ≡ a → X (DPoly.t P b) v₁' ._ p b refl = v ((inj₁ ((x , b) , p)) , refl) v₂ : Π' (DPoly.p Q) (((DPoly.t Q) *) Y) a₂ v₂ = abs'' a₂ (v₂' a₂ refl) where v₂' : (a : DPoly.A Q) (p : a₂ ≡ a) (b : DPoly.E Q) → DPoly.p Q b ≡ a → Y (DPoly.t Q b) v₂' ._ p b refl = v ((inj₂ ((x , b) , p)) , refl) {- : {I J : Set} → (P : DPoly {I} {J}) → (Q : DPoly {I} {J}) → let H = λ X Y → ⟦ P ⟧ X ×ᵢ ⟦ Q ⟧ in -}
{ "alphanum_fraction": 0.3837352776, "avg_line_length": 28.9448051948, "ext": "agda", "hexsha": "aa298aad9f1aa907f2afeee9a232940635229b23", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "TypeTheory/Container/PolyFinalCoalg.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "TypeTheory/Container/PolyFinalCoalg.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "TypeTheory/Container/PolyFinalCoalg.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4375, "size": 8915 }
------------------------------------------------------------------------------ -- Properties related with lists (using induction on the FOTC lists type) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.List.PropertiesByInductionI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.List open import FOTC.Base.List.PropertiesI open import FOTC.Data.List open import FOTC.Data.Nat.Type ------------------------------------------------------------------------------ -- Congruence properties ++-leftCong : ∀ {xs ys zs} → xs ≡ ys → xs ++ zs ≡ ys ++ zs ++-leftCong refl = refl ------------------------------------------------------------------------------ -- Totality properties lengthList-N : ∀ {xs} → List xs → N (length xs) lengthList-N = List-ind A A[] h where A : D → Set A ds = N (length ds) A[] : A [] A[] = subst N (sym length-[]) nzero h : ∀ a {as} → A as → A (a ∷ as) h a {as} Aas = subst N (sym (length-∷ a as)) (nsucc Aas) ------------------------------------------------------------------------------ ++-leftIdentity : ∀ xs → [] ++ xs ≡ xs ++-leftIdentity = ++-[] ++-assoc : ∀ {xs} → List xs → ∀ ys zs → (xs ++ ys) ++ zs ≡ xs ++ ys ++ zs ++-assoc Lxs ys zs = List-ind A A[] h Lxs where A : D → Set A as = (as ++ ys) ++ zs ≡ as ++ ys ++ zs A[] : A [] A[] = ([] ++ ys) ++ zs ≡⟨ ++-leftCong (++-leftIdentity ys) ⟩ ys ++ zs ≡⟨ sym (++-leftIdentity (ys ++ zs)) ⟩ [] ++ ys ++ zs ∎ h : ∀ a {as} → A as → A (a ∷ as) h a {as} Aas = ((a ∷ as) ++ ys) ++ zs ≡⟨ ++-leftCong (++-∷ a as ys) ⟩ (a ∷ (as ++ ys)) ++ zs ≡⟨ ++-∷ a (as ++ ys) zs ⟩ a ∷ ((as ++ ys) ++ zs) ≡⟨ ∷-rightCong Aas ⟩ a ∷ (as ++ ys ++ zs) ≡⟨ sym (++-∷ a as (ys ++ zs)) ⟩ (a ∷ as) ++ ys ++ zs ∎
{ "alphanum_fraction": 0.4092261905, "avg_line_length": 31.5, "ext": "agda", "hexsha": "850fddcb61c93c2d8e4b8c17cd3414b284566cfd", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/List/PropertiesByInductionI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/List/PropertiesByInductionI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/List/PropertiesByInductionI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 613, "size": 2016 }
module Thesis.BigStepSILR2 where open import Data.Empty open import Data.Unit.Base hiding (_≤_) open import Data.Product open import Relation.Binary.PropositionalEquality open import Relation.Binary hiding (_⇒_) open import Data.Nat -- using (ℕ; zero; suc; decTotalOrder; _<_; _≤_) open import Data.Nat.Properties open import Thesis.FunBigStepSILR2 -- Standard relational big-step semantics, with step-indexes matching a small-step semantics. -- Protip: doing this on ANF terms would be much easier. data _⊢_↓[_]_ {Γ} (ρ : ⟦ Γ ⟧Context) : ∀ {τ} → Term Γ τ → ℕ → Val τ → Set where abs : ∀ {τ₁ τ₂} {t : Term (τ₁ • Γ) τ₂} → ρ ⊢ abs t ↓[ 0 ] closure t ρ app : ∀ n1 n2 n3 {Γ′ τ₁ τ₂ ρ′ v₂ v′} {t₁ : Term Γ (τ₁ ⇒ τ₂)} {t₂ : Term Γ τ₁} {t′ : Term (τ₁ • Γ′) τ₂} → ρ ⊢ t₁ ↓[ n1 ] closure t′ ρ′ → ρ ⊢ t₂ ↓[ n2 ] v₂ → (v₂ • ρ′) ⊢ t′ ↓[ n3 ] v′ → ρ ⊢ app t₁ t₂ ↓[ suc n1 + n2 + n3 ] v′ var : ∀ {τ} (x : Var Γ τ) → ρ ⊢ var x ↓[ 0 ] (⟦ x ⟧Var ρ) lit : ∀ n → ρ ⊢ const (lit n) ↓[ 0 ] intV n -- Silly lemmas for eval-dec-sound module _ where Done-inj : ∀ {τ} m n {v1 v2 : Val τ} → Done v1 m ≡ Done v2 n → m ≡ n Done-inj _ _ refl = refl lem1 : ∀ n d → d ≢ suc (n + d) lem1 n d eq rewrite +-comm n d = m≢1+m+n d eq subd : ∀ n d → n + d ≡ d → n ≡ 0 subd zero d eq = refl subd (suc n) d eq = ⊥-elim (lem1 n d (sym eq)) comp∸ : ∀ a b → b ≤ a → suc a ∸ b ≡ suc (a ∸ b) comp∸ a zero le = refl comp∸ zero (suc b) () comp∸ (suc a) (suc b) (s≤s le) = comp∸ a b le rearr∸ : ∀ a b c → c ≤ b → a + (b ∸ c) ≡ (a + b) ∸ c rearr∸ a b zero c≤b = refl rearr∸ a zero (suc c) () rearr∸ a (suc b) (suc c) (s≤s c≤b) rewrite +-suc a b = rearr∸ a b c c≤b cancel∸ : ∀ a b → b ≤ a → a ∸ b + b ≡ a cancel∸ a zero b≤a = +-identityʳ a cancel∸ zero (suc b) () cancel∸ (suc a) (suc b) (s≤s b≤a) rewrite +-suc (a ∸ b) b = cong suc (cancel∸ a b b≤a) lemR : ∀ {τ} n m {v1 v2 : Val τ} → Done v1 m ≡ Done v2 n → m ≡ n lemR n .n refl = refl lem2 : ∀ n n3 r → n3 ≤ n → n + n3 ≡ suc r → ∃ λ s → (n ≡ suc s) lem2 zero .0 r z≤n () lem2 (suc n) n3 .(n + n3) le refl = n , refl {-# TERMINATING #-} eval-dec-sound : ∀ {Γ τ} → (t : Term Γ τ) → ∀ ρ v m n → eval t ρ m ≡ Done v n → ρ ⊢ t ↓[ m ∸ n ] v eval-dec-sound (const (lit x)) ρ (intV v) m n eq with lemR n m eq eval-dec-sound (const (lit x)) ρ (intV .x) m .m refl | refl rewrite n∸n≡0 m = lit x eval-dec-sound (var x) ρ v m n eq with lemR n m eq eval-dec-sound (var x) ρ .(⟦ x ⟧Var ρ) m .m refl | refl rewrite n∸n≡0 m = var x eval-dec-sound (abs t) ρ v m n eq with lemR n m eq eval-dec-sound (abs t) ρ .(closure t ρ) m .m refl | refl rewrite n∸n≡0 m = abs eval-dec-sound (app s t) ρ v zero n () eval-dec-sound (app s t) ρ v (suc r) n eq with eval s ρ r | inspect (eval s ρ) r eval-dec-sound (app s t) ρ v (suc r) n eq | (Done sv n1) | [ seq ] with eval t ρ n1 | inspect (eval t ρ) n1 eval-dec-sound (app s t) ρ v (suc r) n eq | (Done (closure st sρ) n1) | [ seq ] | (Done tv n2) | [ teq ] with eval st (tv • sρ) n2 | inspect (eval st (tv • sρ)) n2 eval-dec-sound (app s t) ρ .v (suc r) .n3 refl | (Done sv@(closure st sρ) n1) | [ seq ] | (Done tv n2) | [ teq ] | (Done v n3) | [ veq ] = body where n1≤r : n1 ≤ r n1≤r = eval-dec s ρ sv r n1 seq n2≤n1 : n2 ≤ n1 n2≤n1 = eval-dec t ρ tv n1 n2 teq n3≤n2 : n3 ≤ n2 n3≤n2 = eval-dec st (tv • sρ) v n2 n3 veq eval1 = eval-dec-sound s ρ sv r n1 seq eval2 = eval-dec-sound t ρ tv n1 n2 teq eval3 = eval-dec-sound st (tv • sρ) v n2 n3 veq l1 : suc r ∸ n3 ≡ suc (r ∸ n3) l1 = comp∸ r n3 (≤-trans n3≤n2 (≤-trans n2≤n1 n1≤r)) l2 : suc r ∸ n3 ≡ suc (((r ∸ n1) + (n1 ∸ n2)) + (n2 ∸ n3)) l2 rewrite rearr∸ (r ∸ n1) n1 n2 n2≤n1 | cancel∸ r n1 n1≤r | rearr∸ (r ∸ n2) n2 n3 n3≤n2 | cancel∸ r n2 (≤-trans n2≤n1 n1≤r) = l1 foo : ρ ⊢ app s t ↓[ suc (r ∸ n1 + (n1 ∸ n2) + (n2 ∸ n3)) ] v foo = app (r ∸ n1) (n1 ∸ n2) (n2 ∸ n3) {t₁ = s} {t₂ = t} {t′ = st} eval1 eval2 eval3 body : ρ ⊢ app s t ↓[ suc r ∸ n3 ] v body rewrite l2 = foo eval-dec-sound (app s t) ρ v (suc r) n () | (Done (closure st sρ) n1) | [ seq ] | (Done tv n2) | [ teq ] | Error | [ veq ] eval-dec-sound (app s t) ρ v (suc r) n () | (Done (closure st sρ) n1) | [ seq ] | (Done tv n2) | [ teq ] | TimeOut | [ veq ] eval-dec-sound (app s t) ρ v (suc r) n () | (Done sv n1) | [ seq ] | Error | [ teq ] eval-dec-sound (app s t) ρ v (suc r) n () | (Done sv n1) | [ seq ] | TimeOut | [ teq ] eval-dec-sound (app s t) ρ v (suc r) n () | Error | [ seq ] eval-dec-sound (app s t) ρ v (suc r) n () | TimeOut | [ seq ] -- ↦-sound : ∀ {Γ τ} ρ (x : Var Γ τ) → -- ((Den.⟦ x ⟧Var) (⟦ ρ ⟧Context)) ≡ (⟦ (⟦ x ⟧Var) ρ ⟧Val) -- ↦-sound (px • ρ) this = refl -- ↦-sound (px • ρ) (that x) = ↦-sound ρ x -- ↓-sound : ∀ {Γ τ ρ v} {t : Term Γ τ} → -- ρ ⊢ t ↓ v → -- ⟦ t ⟧Term ⟦ ρ ⟧Env ≡ ⟦ v ⟧Val -- ↓-sound abs = refl -- ↓-sound (app ↓₁ ↓₂ ↓′) rewrite ↓-sound ↓₁ | ↓-sound ↓₂ | ↓-sound ↓′ = refl -- ↓-sound (var x) = ↦-sound _ x -- ↓-sound (lit n) = refl import Data.Integer as I open I using (ℤ) -- The extra "r" stands for "relational", because unlike relT and relV, rrelV -- and rrelT are based on a *relational* big-step semantics. mutual rrelT : ∀ {τ Γ} (t1 : Term Γ τ) (t2 : Term Γ τ) (ρ1 : ⟦ Γ ⟧Context) (ρ2 : ⟦ Γ ⟧Context) → ℕ → Set rrelT {τ} t1 t2 ρ1 ρ2 k = (v1 : Val τ) → ∀ j (j<k : j < k) → (ρ1⊢t1↓[j]v1 : ρ1 ⊢ t1 ↓[ j ] v1) → Σ[ v2 ∈ Val τ ] Σ[ n2 ∈ ℕ ] ρ2 ⊢ t2 ↓[ n2 ] v2 × rrelV τ v1 v2 (k ∸ j) rrelV : ∀ τ (v1 v2 : Val τ) → ℕ → Set rrelV nat (intV v1) (intV v2) n = Σ[ dv ∈ ℤ ] dv I.+ (I.+ v1) ≡ (I.+ v2) rrelV (σ ⇒ τ) (closure {Γ1} t1 ρ1) (closure {Γ2} t2 ρ2) n = Σ (Γ1 ≡ Γ2) λ { refl → ∀ (k : ℕ) (k<n : k < n) v1 v2 → (vv : rrelV σ v1 v2 k) → rrelT t1 t2 (v1 • ρ1) (v2 • ρ2) k } rrelρ : ∀ Γ (ρ1 ρ2 : ⟦ Γ ⟧Context) → ℕ → Set rrelρ ∅ ∅ ∅ n = ⊤ rrelρ (τ • Γ) (v1 • ρ1) (v2 • ρ2) n = rrelV τ v1 v2 n × rrelρ Γ ρ1 ρ2 n ⟦_⟧RelVar : ∀ {Γ τ n} (x : Var Γ τ) {ρ1 ρ2 : ⟦ Γ ⟧Context} → rrelρ Γ ρ1 ρ2 n → rrelV τ (⟦ x ⟧Var ρ1) (⟦ x ⟧Var ρ2) n ⟦ this ⟧RelVar {v1 • ρ1} {v2 • ρ2} (vv , ρρ) = vv ⟦ that x ⟧RelVar {v1 • ρ1} {v2 • ρ2} (vv , ρρ) = ⟦ x ⟧RelVar ρρ rrelV-mono : ∀ m n → m ≤ n → ∀ τ v1 v2 → rrelV τ v1 v2 n → rrelV τ v1 v2 m rrelV-mono m n m≤n nat (intV v1) (intV v2) vv = vv rrelV-mono m n m≤n (σ ⇒ τ) (closure t1 ρ1) (closure t2 ρ2) (refl , ff) = refl , λ k k≤m → ff k (≤-trans k≤m m≤n) rrelρ-mono : ∀ m n → m ≤ n → ∀ Γ ρ1 ρ2 → rrelρ Γ ρ1 ρ2 n → rrelρ Γ ρ1 ρ2 m rrelρ-mono m n m≤n ∅ ∅ ∅ tt = tt rrelρ-mono m n m≤n (τ • Γ) (v1 • ρ1) (v2 • ρ2) (vv , ρρ) = rrelV-mono m n m≤n _ v1 v2 vv , rrelρ-mono m n m≤n Γ ρ1 ρ2 ρρ rfundamentalV : ∀ {Γ τ} (x : Var Γ τ) → (n : ℕ) → (ρ1 ρ2 : ⟦ Γ ⟧Context) (ρρ : rrelρ Γ ρ1 ρ2 n) → rrelT (var x) (var x) ρ1 ρ2 n rfundamentalV x n ρ1 ρ2 ρρ .(⟦ x ⟧Var ρ1) .0 j<n (var .x) = ⟦ x ⟧Var ρ2 , 0 , (var x) , ⟦ x ⟧RelVar ρρ bar : ∀ m {n o} → o ≤ n → m ≤ (m + n) ∸ o bar m {n} {o} o≤n rewrite +-∸-assoc m o≤n = m≤m+n m (n ∸ o) suc∸ : ∀ m n → n ≤ m → suc (m ∸ n) ≡ suc m ∸ n suc∸ m zero z≤n = refl suc∸ (suc m) (suc n) (s≤s n≤m) = suc∸ m n n≤m suc∸suc : ∀ m n → n < m → suc (m ∸ suc n) ≡ m ∸ n suc∸suc (suc m) zero (s≤s n<m) = refl suc∸suc (suc m) (suc n) (s≤s n<m) = suc∸suc m n n<m m≡m∸1+1 : ∀ m {n} → n < m → m ≡ suc (m ∸ 1) m≡m∸1+1 (suc m) (s≤s n<m) = refl m∸[n+1]<m : ∀ m n → n < m → m ∸ suc n < m m∸[n+1]<m (suc m) zero (s≤s n<m) = s≤s ≤-refl m∸[n+1]<m (suc m) (suc n) (s≤s n<m) rewrite sym (suc∸suc m n n<m) = ≤-step (m∸[n+1]<m m n n<m) sub∸ : ∀ m n o → m + n ≤ o → n ≤ o ∸ m sub∸ m n o n+m≤o rewrite +-comm m n | cong (_≤ o ∸ m) (sym (m+n∸n≡m n m)) = ∸-mono n+m≤o (≤-refl {m}) rfundamental : ∀ {Γ τ} (t : Term Γ τ) → (n : ℕ) → (ρ1 ρ2 : ⟦ Γ ⟧Context) (ρρ : rrelρ Γ ρ1 ρ2 n) → rrelT t t ρ1 ρ2 n rfundamental (var x) n ρ1 ρ2 ρρ = rfundamentalV x n ρ1 ρ2 ρρ rfundamental (const (lit x)) n ρ1 ρ2 ρρ .(intV x) .0 j<n (lit .x) = intV x , 0 , lit x , I.+ 0 , refl rfundamental (abs t) n ρ1 ρ2 ρρ .(closure t ρ1) .0 j<n abs = closure t ρ2 , 0 , abs , refl , (λ k k<n v1 v2 vv v3 j j<k ρ1⊢t1↓[j]v1 → rfundamental t k (v1 • ρ1) (v2 • ρ2) (vv , rrelρ-mono k n (lt1 k<n) _ _ _ ρρ) v3 j j<k ρ1⊢t1↓[j]v1 ) rfundamental (app s t) n ρ1 ρ2 ρρ v1 .(suc (n1 + n2 + n3)) 1+n1+n2+n3<n (app n1 n2 n3 ρ1⊢t1↓[j]v1 ρ1⊢t1↓[j]v2 ρ1⊢t1↓[j]v3) = body where open ≤-Reasoning n1≤sum : n1 ≤ n1 + n2 + n3 n1≤sum rewrite +-assoc n1 n2 n3 = m≤m+n n1 (n2 + n3) n1<n : n1 < n n1<n = ≤-trans (s≤s (≤-step n1≤sum)) 1+n1+n2+n3<n n2≤sum : n2 ≤ n1 + n2 + n3 n2≤sum rewrite +-assoc n1 n2 n3 = ≤-steps {n2} {n2 + n3} n1 (m≤m+n n2 n3) n2<n : n2 < n n2<n = ≤-trans (s≤s (≤-step n2≤sum)) 1+n1+n2+n3<n n1+n2<n : n1 + n2 < n n1+n2<n = ≤-trans (s≤s (≤-step (m≤m+n (n1 + n2) n3))) 1+n1+n2+n3<n n2+n1<n : n2 + n1 < n n2+n1<n rewrite +-comm n2 n1 = n1+n2<n n1+n3≤sum : n1 + n3 ≤ (n1 + n2) + n3 n1+n3≤sum = m≤m+n n1 n2 +-mono (≤-refl {n3}) foo : suc n2 ≡ suc (n1 + n2 + n3) ∸ (n1 + n3) foo rewrite cong suc (sym (m+n∸n≡m n2 (n1 + n3))) | sym (+-assoc n2 n1 n3) | +-comm n2 n1 = suc∸ (n1 + n2 + n3) (n1 + n3) n1+n3≤sum n2<n∸n1 : n2 < n ∸ n1 n2<n∸n1 rewrite foo = ∸-mono {suc (n1 + n2 + n3)} {n} {n1 + n3} {n1} (lt1 1+n1+n2+n3<n) (m≤m+n n1 n3) n-[1+n1+n2]<n-n1 : n ∸ n1 ∸ suc n2 < n ∸ n1 n-[1+n1+n2]<n-n1 = m∸[n+1]<m (n ∸ n1) n2 n2<n∸n1 n-[1+n1+n2]<n-n2 : n ∸ n1 ∸ suc n2 < n ∸ n2 n-[1+n1+n2]<n-n2 rewrite ∸-+-assoc n n1 (suc n2) | +-suc n1 n2 | +-comm n1 n2 | suc∸suc n (n2 + n1) n2+n1<n | sym (∸-+-assoc n n2 n1) = n∸m≤n n1 (n ∸ n2) baz : n1 + suc (n2 + suc n3) ≤ n baz rewrite +-suc n2 n3 | +-suc n1 (suc (n2 + n3)) | +-suc n1 (n2 + n3) | +-assoc n1 n2 n3 = 1+n1+n2+n3<n n3<n-n1-[1+n2] : n3 < n ∸ n1 ∸ suc n2 n3<n-n1-[1+n2] = sub∸ (suc n2) (suc n3) (n ∸ n1) (sub∸ n1 (suc (n2 + suc n3)) n baz) l1 : suc (n1 + n2 + n3) ≡ n1 + suc n2 + n3 l1 = cong (_+ n3) (sym (+-suc n1 n2)) n-1+sum≡alt : n ∸ suc (n1 + n2 + n3) ≡ n ∸ n1 ∸ suc n2 ∸ n3 n-1+sum≡alt rewrite l1 | sym (∸-+-assoc n (n1 + suc n2) n3) | sym (∸-+-assoc n n1 (suc n2)) = refl body : Σ[ v2 ∈ Val _ ] Σ[ tn ∈ ℕ ] ρ2 ⊢ app s t ↓[ tn ] v2 × rrelV _ v1 v2 (n ∸ suc (n1 + n2 + n3)) body with rfundamental s n ρ1 ρ2 ρρ _ n1 n1<n ρ1⊢t1↓[j]v1 | rfundamental t n ρ1 ρ2 ρρ _ n2 n2<n ρ1⊢t1↓[j]v2 ... | sv2@(closure st2 sρ2) , sn2 , ρ2⊢s↓ , refl , sv1v2 | tv2 , tn2 , ρ2⊢t↓ , tv1v2 with sv1v2 (n ∸ n1 ∸ suc n2) n-[1+n1+n2]<n-n1 _ tv2 (rrelV-mono (n ∸ n1 ∸ suc n2) (n ∸ n2) (lt1 n-[1+n1+n2]<n-n2) _ _ tv2 tv1v2) v1 n3 n3<n-n1-[1+n2] ρ1⊢t1↓[j]v3 ... | v2 , stn , ρ2⊢st2↓ , vv rewrite n-1+sum≡alt = v2 , suc (sn2 + tn2 + stn) , app _ _ _ ρ2⊢s↓ ρ2⊢t↓ ρ2⊢st2↓ , vv mutual rrelT3 : ∀ {τ Γ ΔΓ} (t1 : Term Γ τ) (dt : Term ΔΓ (Δτ τ)) (t2 : Term Γ τ) (ρ1 : ⟦ Γ ⟧Context) (dρ : ⟦ ΔΓ ⟧Context) (ρ2 : ⟦ Γ ⟧Context) → ℕ → Set rrelT3 {τ} t1 dt t2 ρ1 dρ ρ2 k = (v1 v2 : Val τ) → ∀ j n2 (j<k : j < k) → (ρ1⊢t1↓[j]v1 : ρ1 ⊢ t1 ↓[ j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 ⊢ t2 ↓[ n2 ] v2) → Σ[ dv ∈ Val (Δτ τ) ] Σ[ dn ∈ ℕ ] dρ ⊢ dt ↓[ dn ] dv × rrelV3 τ v1 dv v2 (k ∸ j) rrelV3 : ∀ τ (v1 : Val τ) (dv : Val (Δτ τ)) (v2 : Val τ) → ℕ → Set rrelV3 nat (intV v1) (intV dv) (intV v2) n = dv + v1 ≡ v2 -- XXX What we want for rrelV3: -- rrelV3 (σ ⇒ τ) (closure {Γ1} t1 ρ1) (dclosure dt dρ) (closure {Γ2} t2 ρ2) n = -- Σ (Γ1 ≡ Γ2) λ { refl → -- ∀ (k : ℕ) (k<n : k < n) v1 dv v2 → -- rrelV3 σ v1 dv v2 k → -- rrelT3 -- t1 -- dt -- t2 -- (v1 • ρ1) -- (dv • v1 • dρ) -- (v2 • ρ2) k -- } -- However, we don't have separate change values, so we write: rrelV3 (σ ⇒ τ) (closure {Γ1} t1 ρ1) (closure dt' dρ) (closure {Γ2} t2 ρ2) n = -- Require a proof that the two contexts match: Σ (Γ1 ≡ Γ2) λ { refl → ∀ (k : ℕ) (k<n : k < n) v1 dv v2 → rrelV3 σ v1 dv v2 k → rrelT3 t1 -- XXX The next expression is wrong. -- rrelV3 should require dv to be a change closure, -- (λ x dx . dt , dρ) or (dclosure dt dρ). -- Then, here we could write as conclusion. -- rrelT3 t1 dt t2 (v1 • ρ1) (dv • v1 • dρ) (v2 • ρ2) k -- Instead, with this syntax I can just match dv as a normal closure, -- closure dt' dρ or (λ x . dt', dρ), where we hope that dt' evaluates -- to λ dx. dt. So, instead of writing dt, I must write dt' dx where -- dx is a newly bound variable (hence, var this), and dt' must be -- weakened once. Hence, we write instead: (app (weaken (drop (Δτ σ) • ≼-refl) dt') (var this)) t2 (v1 • ρ1) (dv • v1 • dρ) (v2 • ρ2) k } ΔΓ : Context → Context ΔΓ ∅ = ∅ ΔΓ (τ • Γ) = Δτ τ • ΔΓ Γ rrelρ3 : ∀ Γ (ρ1 : ⟦ Γ ⟧Context) (dρ : ⟦ ΔΓ Γ ⟧Context) (ρ2 : ⟦ Γ ⟧Context) → ℕ → Set rrelρ3 ∅ ∅ ∅ ∅ n = ⊤ rrelρ3 (τ • Γ) (v1 • ρ1) (dv • dρ) (v2 • ρ2) n = rrelV3 τ v1 dv v2 n × rrelρ3 Γ ρ1 dρ ρ2 n derive-var : ∀ {Γ τ} → Var Γ τ → Var (ΔΓ Γ) (Δτ τ) derive-var this = this derive-var (that x) = that (derive-var x) ⟦_⟧RelVar3 : ∀ {Γ τ n} (x : Var Γ τ) {ρ1 : ⟦ Γ ⟧Context} {dρ : ⟦ ΔΓ Γ ⟧Context} {ρ2 : ⟦ Γ ⟧Context} → rrelρ3 Γ ρ1 dρ ρ2 n → rrelV3 τ (⟦ x ⟧Var ρ1) (⟦ derive-var x ⟧Var dρ) (⟦ x ⟧Var ρ2) n ⟦ this ⟧RelVar3 {v1 • ρ1} {dv • dρ} {v2 • ρ2} (vv , ρρ) = vv ⟦ that x ⟧RelVar3 {v1 • ρ1} {dv • dρ} {v2 • ρ2} (vv , ρρ) = ⟦ x ⟧RelVar3 ρρ rfundamentalV3 : ∀ {Γ τ} (x : Var Γ τ) → (n : ℕ) → (ρ1 : ⟦ Γ ⟧Context) (dρ : ⟦ ΔΓ Γ ⟧Context) (ρ2 : ⟦ Γ ⟧Context) (ρρ : rrelρ3 Γ ρ1 dρ ρ2 n) → rrelT3 (var x) (var (derive-var x)) (var x) ρ1 dρ ρ2 n rfundamentalV3 x n ρ1 dρ ρ2 ρρ .(⟦ x ⟧Var ρ1) .(⟦ x ⟧Var ρ2) .0 .0 j<n (var .x) (var .x) = ⟦ derive-var x ⟧Var dρ , 0 , (var (derive-var x)) , ⟦ x ⟧RelVar3 ρρ
{ "alphanum_fraction": 0.5082644628, "avg_line_length": 45.6754966887, "ext": "agda", "hexsha": "620997825cd0e676e23345fdb9058507ca035ea0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/BigStepSILR2.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/BigStepSILR2.agda", "max_line_length": 251, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/BigStepSILR2.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 7282, "size": 13794 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Homomorphisms.Definition open import Groups.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas open import Groups.Subgroups.Definition open import Rings.Cosets open import Groups.Lemmas open import Setoids.Functions.Lemmas open import Rings.Ideals.Definition module Rings.Ideals.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open import Rings.Divisible.Definition R idealPredForKernel : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C → C → C} (R2 : Ring T _+2_ _*2_) {f : A → C} (fHom : RingHom R R2 f) → A → Set d idealPredForKernel {T = T} R2 {f} fHom a = Setoid._∼_ T (f a) (Ring.0R R2) idealPredForKernelWellDefined : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C → C → C} (R2 : Ring T _+2_ _*2_) {f : A → C} (fHom : RingHom R R2 f) → {x y : A} → (Setoid._∼_ S x y) → (idealPredForKernel R2 fHom x → idealPredForKernel R2 fHom y) idealPredForKernelWellDefined {T = T} R2 {f} fHom a x=0 = Equivalence.transitive (Setoid.eq T) (GroupHom.wellDefined (RingHom.groupHom fHom) (Equivalence.symmetric (Setoid.eq S) a)) x=0 kernelIdealIsIdeal : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C → C → C} {R2 : Ring T _+2_ _*2_} {f : A → C} (fHom : RingHom R R2 f) → Ideal R (idealPredForKernel R2 fHom) Subgroup.isSubset (Ideal.isSubgroup (kernelIdealIsIdeal {R2 = R2} fHom)) = idealPredForKernelWellDefined R2 fHom Subgroup.closedUnderPlus (Ideal.isSubgroup (kernelIdealIsIdeal {T = T} {R2 = R2} fHom)) {x} {y} fx=0 fy=0 = transitive (transitive (GroupHom.groupHom (RingHom.groupHom fHom)) (+WellDefined fx=0 fy=0)) identLeft where open Ring R2 open Group (Ring.additiveGroup R2) open Setoid T open Equivalence eq Subgroup.containsIdentity (Ideal.isSubgroup (kernelIdealIsIdeal fHom)) = imageOfIdentityIsIdentity (RingHom.groupHom fHom) Subgroup.closedUnderInverse (Ideal.isSubgroup (kernelIdealIsIdeal {T = T} {R2 = R2} fHom)) {x} fx=0 = zeroImpliesInverseZero (RingHom.groupHom fHom) fx=0 where open Ring R2 open Group (Ring.additiveGroup R2) open Setoid T open Equivalence eq Ideal.accumulatesTimes (kernelIdealIsIdeal {T = T} {R2 = R2} {f = f} fHom) {x} {y} fx=0 = transitive (RingHom.ringHom fHom) (transitive (Ring.*WellDefined R2 fx=0 reflexive) (transitive (Ring.*Commutative R2) (Ring.timesZero R2 {f y}))) where open Setoid T open Equivalence eq open Ring R open Group additiveGroup open Setoid S open Equivalence eq translate : {c : _} {pred : A → Set c} → (i : Ideal R pred) → {a : A} → pred a → pred (inverse (Ring.0R (cosetRing R i)) + a) translate {a} i predA = Ideal.isSubset i (transitive (symmetric identLeft) (+WellDefined (symmetric (invIdent additiveGroup)) reflexive)) predA translate' : {c : _} {pred : A → Set c} → (i : Ideal R pred) → {a : A} → pred (inverse (Ring.0R (cosetRing R i)) + a) → pred a translate' i = Ideal.isSubset i (transitive (+WellDefined (invIdent additiveGroup) reflexive) identLeft) inverseImageIsIdeal : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C → C → C} {R2 : Ring T _+2_ _*2_} {f : C → A} (fHom : RingHom R2 R f) → {e : _} {pred : A → Set e} → (i : Ideal R pred) → Ideal R2 (inverseImagePred {S = T} {S} {f} (GroupHom.wellDefined (RingHom.groupHom fHom)) (Ideal.isSubset i)) Subgroup.isSubset (Ideal.isSubgroup (inverseImageIsIdeal {T = T} fHom i)) = inverseImageWellDefined {S = T} {S} (GroupHom.wellDefined (RingHom.groupHom fHom)) (Ideal.isSubset i) Subgroup.closedUnderPlus (Ideal.isSubgroup (inverseImageIsIdeal fHom i)) {g} {h} (c , (prC ,, fg=c)) (d , (prD ,, fh=d)) = (c + d) , (Ideal.closedUnderPlus i prC prD ,, transitive (GroupHom.groupHom (RingHom.groupHom fHom)) (+WellDefined fg=c fh=d)) Subgroup.containsIdentity (Ideal.isSubgroup (inverseImageIsIdeal fHom i)) = 0G , (Ideal.containsIdentity i ,, imageOfIdentityIsIdentity (RingHom.groupHom fHom)) Subgroup.closedUnderInverse (Ideal.isSubgroup (inverseImageIsIdeal fHom i)) (a , (prA ,, fg=a)) = inverse a , (Ideal.closedUnderInverse i prA ,, transitive (homRespectsInverse (RingHom.groupHom fHom)) (inverseWellDefined additiveGroup fg=a)) Ideal.accumulatesTimes (inverseImageIsIdeal {_*2_ = _*2_} {f = f} fHom i) {g} {h} (a , (prA ,, fg=a)) = (a * f h) , (Ideal.accumulatesTimes i prA ,, transitive (RingHom.ringHom fHom) (*WellDefined fg=a reflexive)) memberDividesImpliesMember : {a b : A} → {c : _} → {pred : A → Set c} → (i : Ideal R pred) → pred a → a ∣ b → pred b memberDividesImpliesMember {a} {b} i pA (s , as=b) = Ideal.isSubset i as=b (Ideal.accumulatesTimes i pA) generatorZeroImpliesMembersZero : {x : A} → generatedIdealPred R 0R x → x ∼ 0R generatorZeroImpliesMembersZero {x} (a , b) = transitive (symmetric b) (transitive *Commutative timesZero)
{ "alphanum_fraction": 0.6962635597, "avg_line_length": 71.1142857143, "ext": "agda", "hexsha": "e4cb81569055fb728bdeb42f78a01842a02381f1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Ideals/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Ideals/Lemmas.agda", "max_line_length": 312, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Ideals/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1748, "size": 4978 }
------------------------------------------------------------------------------ -- Propositional equality ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Tested with the development version of Agda on 15 June 2012. module FOT.Agsy.NoStd.MyPropositionalEquality where -- We add 3 to the fixities of the Agda standard library 0.8.1 (see -- Relation/Binary/Core.agda). infix 7 _≡_ ------------------------------------------------------------------------------ data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x -- Identity properties sym : ∀ {A} → {x y : A} → x ≡ y → y ≡ x sym refl = refl trans : ∀ {A} → {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl y≡z = y≡z cong : {A B : Set} (f : A → B) → ∀ {x y} → x ≡ y → f x ≡ f y cong f refl = refl module ≡-Reasoning where -- We add 3 to the fixities of the Agda standard library 0.8.1 (see -- Relation/Binary/PreorderReasoning.agda). infix 7 _≃_ infix 4 begin_ infixr 5 _≡⟨_⟩_ infix 6 _∎ ---------------------------------------------------------------------------- -- Adapted from the Agda standard library 0.8.1 (see -- Relation/Binary/PreorderReasoning.agda). private data _≃_ {A : Set}(x y : A) : Set where prf : x ≡ y → x ≃ y begin_ : {A : Set}{x y : A} → x ≃ y → x ≡ y begin prf x≡y = x≡y _≡⟨_⟩_ : {A : Set}(x : A){y z : A} → x ≡ y → y ≃ z → x ≃ z _ ≡⟨ x≡y ⟩ prf y≡z = prf (trans x≡y y≡z) _∎ : {A : Set}(x : A) → x ≃ x _∎ _ = prf refl
{ "alphanum_fraction": 0.4467956469, "avg_line_length": 29.0175438596, "ext": "agda", "hexsha": "40474964409be21fdda7f556a396e0a38fc75f83", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/Agsy/NoStd/MyPropositionalEquality.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/Agsy/NoStd/MyPropositionalEquality.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/Agsy/NoStd/MyPropositionalEquality.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 556, "size": 1654 }
{- Importing and re-exporting this module allows for (constrained) natural number and negative integer literals for any type (e.g. Int, ℕ₋₁, ℕ₋₂, ℕ₊₁). -} {-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.Nat.Literals where open import Agda.Builtin.FromNat public renaming (Number to HasFromNat) open import Agda.Builtin.FromNeg public renaming (Negative to HasFromNeg) open import Cubical.Data.Unit.Base public -- Natural number literals for ℕ open import Agda.Builtin.Nat renaming (Nat to ℕ) instance fromNatℕ : HasFromNat ℕ fromNatℕ = record { Constraint = λ _ → Unit ; fromNat = λ n → n }
{ "alphanum_fraction": 0.7323076923, "avg_line_length": 28.2608695652, "ext": "agda", "hexsha": "edb52ea0ef8846a7b1dddaf0fe08035e5c65810d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Nat/Literals.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Nat/Literals.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Nat/Literals.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 184, "size": 650 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.LoopSpaceCircle -- This file is temporarily put in the cw/ directory for -- development, but it actually belongs to somewhere else. module homotopy.SphereEndomorphism where ⊙SphereS-endo-out : ∀ n → Trunc 0 (⊙Sphere (S n) ⊙→ ⊙Sphere (S n)) → Trunc 0 ( Sphere (S n) → Sphere (S n)) ⊙SphereS-endo-out n = Trunc-rec Trunc-level ([_] ∘ fst) -- For [S¹], the pointedness is free because of the commutativity of its loop space. -- favonia: maybe one can simplify the proofs through -- an intermediate type [Σ S¹ (λ x → x == x)]? private ⊙S¹-endo-in'' : (base* : S¹) (loop* : base* == base*) → (⊙S¹ ⊙→ ⊙S¹) ⊙S¹-endo-in'' = S¹-elim (λ loop* → S¹-rec base loop* , idp) (↓-app→cst-in λ r → ap (λ loop* → (S¹-rec base loop* , idp)) (lemma₀ r)) where abstract lemma₀ : ∀ {loop₁ loop₂} → loop₁ == loop₂ [ (λ x → x == x) ↓ loop ] → loop₁ == loop₂ lemma₀ {loop₁} {loop₂} p = anti-whisker-right loop $ loop₁ ∙ loop =⟨ ↓-idf=idf-out' p ⟩ loop ∙' loop₂ =⟨ ∙'=∙ loop loop₂ ⟩ loop ∙ loop₂ =⟨ ΩS¹-is-abelian loop loop₂ ⟩ loop₂ ∙ loop =∎ ⊙S¹-endo-in' : (S¹ → S¹) → (⊙S¹ ⊙→ ⊙S¹) ⊙S¹-endo-in' f = ⊙S¹-endo-in'' (f base) (ap f loop) ⊙S¹-endo-in : Trunc 0 (S¹ → S¹) → Trunc 0 (⊙S¹ ⊙→ ⊙S¹) ⊙S¹-endo-in = Trunc-fmap ⊙S¹-endo-in' abstract ⊙S¹-endo-in-η : ∀ f → ⊙S¹-endo-in (⊙SphereS-endo-out 0 f) == f ⊙S¹-endo-in-η = Trunc-elim (λ _ → =-preserves-set Trunc-level) λ{(f , pt) → ap [_] $ ⊙S¹-endo-in''-shifted pt (ap f loop) ∙ ⊙λ= (S¹-rec-η f) idp} where -- free one end to apply identification elimination ⊙S¹-endo-in''-shifted : {base* : S¹} (shift : base* == base) (loop* : base* == base*) → ⊙S¹-endo-in'' base* loop* == (S¹-rec base* loop* , shift) ⊙S¹-endo-in''-shifted idp _ = idp ⊙S¹-endo-out-β : ∀ f → ⊙SphereS-endo-out 0 (⊙S¹-endo-in f) == f ⊙S¹-endo-out-β = Trunc-elim (λ _ → =-preserves-level Trunc-level) λ f → ! (ap (λ f → [ fst (⊙S¹-endo-in' f) ]) (λ= $ S¹-rec-η f)) ∙ ⊙S¹-endo-out'-β (f base) (ap f loop) ∙ ap [_] (λ= $ S¹-rec-η f) where -- free [base*] to apply circle elimination ⊙S¹-endo-out'-β : (base* : S¹) (loop* : base* == base*) → [ fst (⊙S¹-endo-in' (S¹-rec base* loop*)) ] == [ S¹-rec base* loop* ] :> Trunc 0 (S¹ → S¹) ⊙S¹-endo-out'-β = S¹-elim (λ loop* → ap (λ loop* → [ S¹-rec base loop* ]) (S¹Rec.loop-β base loop*)) (prop-has-all-paths-↓ $ Π-is-prop λ loop* → Trunc-level {n = 0} _ _) ⊙S¹-endo-out-is-equiv : is-equiv (⊙SphereS-endo-out 0) ⊙S¹-endo-out-is-equiv = is-eq _ ⊙S¹-endo-in ⊙S¹-endo-out-β ⊙S¹-endo-in-η -- For [Sphere (S (S n))], the pointedness is free because of its connectivity. private SphereSS-conn : ∀ n → is-connected 1 (Sphere (S (S n))) SphereSS-conn n = connected-≤T (≤T-+2+-l 1 (-2≤T ⟨ n ⟩₋₂)) (Sphere-conn (S (S n))) SphereSS-conn-path : ∀ n (x y : Sphere (S (S n))) → is-connected 0 (x == y) SphereSS-conn-path n x y = path-conn (SphereSS-conn n) SphereSS-has-all-trunc-paths : ∀ n (x y : Sphere (S (S n))) → Trunc 0 (x == y) SphereSS-has-all-trunc-paths n x y = –> (Trunc=-equiv [ x ] [ y ]) (contr-has-all-paths (SphereSS-conn n) [ x ] [ y ]) ⊙SphereSS-endo-in : ∀ n → Trunc 0 ( Sphere (S (S n)) → Sphere (S (S n))) → Trunc 0 (⊙Sphere (S (S n)) ⊙→ ⊙Sphere (S (S n))) ⊙SphereSS-endo-in n = Trunc-rec Trunc-level λ f → Trunc-rec Trunc-level (λ pt → [ f , pt ]) (SphereSS-has-all-trunc-paths n (f north) north) abstract ⊙SphereSS-endo-in-η : ∀ n f → ⊙SphereSS-endo-in n (⊙SphereS-endo-out (S n) f) == f ⊙SphereSS-endo-in-η n = Trunc-elim (λ _ → =-preserves-set Trunc-level) λ{(f , pt) → ap (Trunc-rec Trunc-level (λ pt → [ f , pt ])) (contr-has-all-paths (SphereSS-conn-path n (f north) north) (SphereSS-has-all-trunc-paths n (f north) north) [ pt ])} ⊙SphereSS-endo-out-β : ∀ n f → ⊙SphereS-endo-out (S n) (⊙SphereSS-endo-in n f) == f ⊙SphereSS-endo-out-β n = Trunc-elim (λ _ → =-preserves-set Trunc-level) λ f → Trunc-elim {P = λ pt → ⊙SphereS-endo-out (S n) (Trunc-rec Trunc-level (λ pt → [ f , pt ]) pt) == [ f ]} (λ _ → =-preserves-set Trunc-level) (λ pt → idp) (SphereSS-has-all-trunc-paths n (f north) north) ⊙SphereSS-endo-out-is-equiv : ∀ n → is-equiv (⊙SphereS-endo-out (S n)) ⊙SphereSS-endo-out-is-equiv n = is-eq (⊙SphereS-endo-out (S n)) (⊙SphereSS-endo-in n) (⊙SphereSS-endo-out-β n) (⊙SphereSS-endo-in-η n) -- the unified interface ⊙SphereS-endo-out-is-equiv : ∀ n → is-equiv (⊙SphereS-endo-out n) ⊙SphereS-endo-out-is-equiv 0 = ⊙S¹-endo-out-is-equiv ⊙SphereS-endo-out-is-equiv (S n) = ⊙SphereSS-endo-out-is-equiv n ⊙SphereS-endo-in : ∀ n → Trunc 0 ( Sphere (S n) → Sphere (S n)) → Trunc 0 (⊙Sphere (S n) ⊙→ ⊙Sphere (S n)) ⊙SphereS-endo-in n = is-equiv.g (⊙SphereS-endo-out-is-equiv n)
{ "alphanum_fraction": 0.5513964313, "avg_line_length": 41.5806451613, "ext": "agda", "hexsha": "484ad9246d90244762c62e7b986f834c9e143bf1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/SphereEndomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/SphereEndomorphism.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/SphereEndomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2050, "size": 5156 }
open import Common.Prelude open import Common.Reflect open import Common.Equality postulate trustme : ∀ {a} {A : Set a} {x y : A} → x ≡ y magic : Term → Term magic _ = def (quote trustme) [] id : ∀ {a} {A : Set a} → A → A id x = x science : Term → Term science _ = def (quote id) [] by-magic : ∀ n → n + 4 ≡ 3 by-magic n = tactic magic by-science : ∀ n → 0 + n ≡ n by-science n = tactic science | refl
{ "alphanum_fraction": 0.603406326, "avg_line_length": 17.8695652174, "ext": "agda", "hexsha": "b0ef95df0c954d277ca2f6a48953ff37a26cf746", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/succeed/Tactic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/succeed/Tactic.agda", "max_line_length": 47, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Tactic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 150, "size": 411 }
-- 2010-09-06 Andreas module IrrelevantApplication where -- an unknown function that does not use its second argument postulate f : {A B : Set} -> A -> .B -> A data _==_ {A : Set}(a : A) : A -> Set where refl : a == a -- the second argument is irrelevant for equality proofIrr : {A : Set}{x y z : A} -> f x y == f x z proofIrr = refl -- irrelevant arguments (like x) may appear as arguments to irrelevant func.s id : {A B : Set} -> (.A -> B) -> .A -> B id g x = g x pId : {A : Set} -> A -> A pId x = x -- t = pId id record Prod (A B : Set) : Set where constructor _,_ field fst : A snd : B -- matching an irrelevant record is ok as long as fields are use irrelevantly irrElim : {A B C : Set} → .(Prod A B) → (.A → .B → C) → C irrElim (a , b) f = f a b lemma : {A B C : Set}(a : A)(b : B)(f : .A -> .B -> C) -> irrElim (a , b) f == f a b lemma a b f = refl
{ "alphanum_fraction": 0.5683615819, "avg_line_length": 22.125, "ext": "agda", "hexsha": "6d16bf9ee6f6679b862b1fe5db4d70fb0e70d299", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/IrrelevantApplication.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/IrrelevantApplication.agda", "max_line_length": 84, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/IrrelevantApplication.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 319, "size": 885 }
-- Andreas, 2017-10-08, issue #2594, reported by gallais -- Incomplete pattern matching should be reported as such, -- rather than crashing on a split error. -- {-# OPTIONS -v tc.cover:10 #-} open import Agda.Builtin.Bool dispatch : Bool → Set dispatch true = Bool dispatch false = Bool argh : (b : Bool) → dispatch b → Bool argh false false = true argh false true = false -- Error was: Cannot split on non-datatype -- Expected error: -- Incomplete pattern matching
{ "alphanum_fraction": 0.7094736842, "avg_line_length": 21.5909090909, "ext": "agda", "hexsha": "b62a7ad71021576ff7a0c9fb17a652287d4432e7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2594.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2594.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2594.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 127, "size": 475 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.Pi {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening using (_∷_⊆_) open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Weakening open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Weakening open import Definition.LogicalRelation.Substitution.Properties import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Tools.Nat open import Tools.Product import Tools.PropositionalEquality as PE -- Validity of Π. Πᵛ : ∀ {F G Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) → Γ ∙ F ⊩ᵛ⟨ l ⟩ G / ([Γ] ∙″ [F]) → Γ ⊩ᵛ⟨ l ⟩ Π F ▹ G / [Γ] Πᵛ {F} {G} {Γ} {l} [Γ] [F] [G] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [F]σ {σ′} [σ′] = [F] {σ = σ′} ⊢Δ [σ′] [σF] = proj₁ ([F]σ [σ]) ⊢F {σ′} [σ′] = escape (proj₁ ([F]σ {σ′} [σ′])) ⊢F≡F = escapeEq [σF] (reflEq [σF]) [G]σ {σ′} [σ′] = [G] {σ = liftSubst σ′} (⊢Δ ∙ ⊢F [σ′]) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′]) ⊢G {σ′} [σ′] = escape (proj₁ ([G]σ {σ′} [σ′])) ⊢G≡G = escapeEq (proj₁ ([G]σ [σ])) (reflEq (proj₁ ([G]σ [σ]))) ⊢ΠF▹G = Πⱼ ⊢F [σ] ▹ ⊢G [σ] [G]a : ∀ {ρ Δ₁} a ([ρ] : ρ ∷ Δ₁ ⊆ Δ) (⊢Δ₁ : ⊢ Δ₁) ([a] : Δ₁ ⊩⟨ l ⟩ a ∷ subst (ρ •ₛ σ) F / proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))) → Σω₀ (Δ₁ ⊩⟨ l ⟩ subst (consSubst (ρ •ₛ σ) a) G) (λ [Aσ] → {σ′ : Nat → Term} → (Σω₂ (Δ₁ ⊩ˢ tail σ′ ∷ Γ / [Γ] / ⊢Δ₁) (λ [tailσ] → Δ₁ ⊩⟨ l ⟩ head σ′ ∷ subst (tail σ′) F / proj₁ ([F] ⊢Δ₁ [tailσ]))) → Δ₁ ⊩ˢ consSubst (ρ •ₛ σ) a ≡ σ′ ∷ Γ ∙ F / [Γ] ∙″ [F] / ⊢Δ₁ / consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]) [F] [a] → Δ₁ ⊩⟨ l ⟩ subst (consSubst (ρ •ₛ σ) a) G ≡ subst σ′ G / [Aσ]) [G]a {ρ} a [ρ] ⊢Δ₁ [a] = ([G] {σ = consSubst (ρ •ₛ σ) a} ⊢Δ₁ (consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]) [F] [a])) [G]a′ : ∀ {ρ Δ₁} a ([ρ] : ρ ∷ Δ₁ ⊆ Δ) (⊢Δ₁ : ⊢ Δ₁) → Δ₁ ⊩⟨ l ⟩ a ∷ subst (ρ •ₛ σ) F / proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])) → Δ₁ ⊩⟨ l ⟩ U.wk (lift ρ) (subst (liftSubst σ) G) [ a ] [G]a′ a ρ ⊢Δ₁ [a] = irrelevance′ (PE.sym (singleSubstWkComp a σ G)) (proj₁ ([G]a a ρ ⊢Δ₁ [a])) in Πᵣ′ (subst σ F) (subst (liftSubst σ) G) (idRed:*: ⊢ΠF▹G) (⊢F [σ]) (⊢G [σ]) (≅-Π-cong (⊢F [σ]) ⊢F≡F ⊢G≡G) (λ ρ ⊢Δ₁ → wk ρ ⊢Δ₁ [σF]) (λ {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] → let [a]′ = irrelevanceTerm′ (wk-subst F) (wk [ρ] ⊢Δ₁ [σF]) (proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))) [a] in [G]a′ a [ρ] ⊢Δ₁ [a]′) (λ {ρ} {Δ₁} {a} {b} [ρ] ⊢Δ₁ [a] [b] [a≡b] → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [a]′ = irrelevanceTerm′ (wk-subst F) (wk [ρ] ⊢Δ₁ [σF]) (proj₁ ([F] ⊢Δ₁ [ρσ])) [a] [b]′ = irrelevanceTerm′ (wk-subst F) (wk [ρ] ⊢Δ₁ [σF]) (proj₁ ([F] ⊢Δ₁ [ρσ])) [b] [a≡b]′ = irrelevanceEqTerm′ (wk-subst F) (wk [ρ] ⊢Δ₁ [σF]) (proj₁ ([F] ⊢Δ₁ [ρσ])) [a≡b] in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G)) (PE.sym (singleSubstWkComp b σ G)) (proj₁ ([G]a a [ρ] ⊢Δ₁ [a]′)) ([G]a′ a [ρ] ⊢Δ₁ [a]′) (proj₂ ([G]a a [ρ] ⊢Δ₁ [a]′) ([ρσ] , [b]′) (reflSubst [Γ] ⊢Δ₁ [ρσ] , [a≡b]′))) , (λ {σ′} [σ′] [σ≡σ′] → let var0 = var (⊢Δ ∙ ⊢F [σ]) (PE.subst (λ x → 0 ∷ x ∈ (Δ ∙ subst σ F)) (wk-subst F) here) [wk1σ] = wk1SubstS [Γ] ⊢Δ (⊢F [σ]) [σ] [wk1σ′] = wk1SubstS [Γ] ⊢Δ (⊢F [σ]) [σ′] [wk1σ≡wk1σ′] = wk1SubstSEq [Γ] ⊢Δ (⊢F [σ]) [σ] [σ≡σ′] [F][wk1σ] = proj₁ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ]) [F][wk1σ′] = proj₁ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ′]) var0′ = conv var0 (≅-eq (escapeEq [F][wk1σ] (proj₂ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ]) [wk1σ′] [wk1σ≡wk1σ′]))) in Π₌ _ _ (id (Πⱼ ⊢F [σ′] ▹ ⊢G [σ′])) (≅-Π-cong (⊢F [σ]) (escapeEq (proj₁ ([F] ⊢Δ [σ])) (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′])) (escapeEq (proj₁ ([G]σ [σ])) (proj₂ ([G]σ [σ]) ([wk1σ′] , neuTerm [F][wk1σ′] (var 0) var0′ (~-var var0′)) ([wk1σ≡wk1σ′] , neuEqTerm [F][wk1σ] (var 0) (var 0) var0 var0 (~-var var0))))) (λ ρ ⊢Δ₁ → wkEq ρ ⊢Δ₁ [σF] (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′])) (λ {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′] [a]′ = irrelevanceTerm′ (wk-subst F) (wk [ρ] ⊢Δ₁ [σF]) (proj₁ ([F] ⊢Δ₁ [ρσ])) [a] [a]″ = convTerm₁ (proj₁ ([F] ⊢Δ₁ [ρσ])) (proj₁ ([F] ⊢Δ₁ [ρσ′])) (proj₂ ([F] ⊢Δ₁ [ρσ]) [ρσ′] (wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′])) [a]′ [ρσa≡ρσ′a] = consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]) (wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′]) [F] [a]′ in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G)) (PE.sym (singleSubstWkComp a σ′ G)) (proj₁ ([G]a a [ρ] ⊢Δ₁ [a]′)) ([G]a′ a [ρ] ⊢Δ₁ [a]′) (proj₂ ([G]a a [ρ] ⊢Δ₁ [a]′) (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′] , [a]″) [ρσa≡ρσ′a]))) -- Validity of Π-congurence. Π-congᵛ : ∀ {F G H E Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / ([Γ] ∙″ [F])) ([H] : Γ ⊩ᵛ⟨ l ⟩ H / [Γ]) ([E] : Γ ∙ H ⊩ᵛ⟨ l ⟩ E / ([Γ] ∙″ [H])) ([F≡H] : Γ ⊩ᵛ⟨ l ⟩ F ≡ H / [Γ] / [F]) ([G≡E] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G ≡ E / [Γ] ∙″ [F] / [G]) → Γ ⊩ᵛ⟨ l ⟩ Π F ▹ G ≡ Π H ▹ E / [Γ] / Πᵛ {F} {G} [Γ] [F] [G] Π-congᵛ {F} {G} {H} {E} [Γ] [F] [G] [H] [E] [F≡H] [G≡E] {σ = σ} ⊢Δ [σ] = let [ΠFG] = Πᵛ {F} {G} [Γ] [F] [G] [σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ]) Πᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmbΠ (Π-elim [σΠFG]) [σF] = proj₁ ([F] ⊢Δ [σ]) ⊢σF = escape [σF] [σG] = proj₁ ([G] (⊢Δ ∙ ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ])) ⊢σH = escape (proj₁ ([H] ⊢Δ [σ])) ⊢σE = escape (proj₁ ([E] (⊢Δ ∙ ⊢σH) (liftSubstS {F = H} [Γ] ⊢Δ [H] [σ]))) ⊢σF≡σH = escapeEq [σF] ([F≡H] ⊢Δ [σ]) ⊢σG≡σE = escapeEq [σG] ([G≡E] (⊢Δ ∙ ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ])) in Π₌ (subst σ H) (subst (liftSubst σ) E) (id (Πⱼ ⊢σH ▹ ⊢σE)) (≅-Π-cong ⊢σF ⊢σF≡σH ⊢σG≡σE) (λ ρ ⊢Δ₁ → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ ρ [σ] in irrelevanceEq″ (PE.sym (wk-subst F)) (PE.sym (wk-subst H)) (proj₁ ([F] ⊢Δ₁ [ρσ])) ([F]′ ρ ⊢Δ₁) ([F≡H] ⊢Δ₁ [ρσ])) (λ {ρ} {Δ} {a} [ρ] ⊢Δ₁ [a] → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [a]′ = irrelevanceTerm′ (wk-subst F) ([F]′ [ρ] ⊢Δ₁) (proj₁ ([F] ⊢Δ₁ [ρσ])) [a] [aρσ] = consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ [ρσ] [F] [a]′ in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G)) (PE.sym (singleSubstWkComp a σ E)) (proj₁ ([G] ⊢Δ₁ [aρσ])) ([G]′ [ρ] ⊢Δ₁ [a]) ([G≡E] ⊢Δ₁ [aρσ])) -- Validity of Π as a term. Πᵗᵛ : ∀ {F G Γ} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ ¹ ⟩ F / [Γ]) ([U] : Γ ∙ F ⊩ᵛ⟨ ¹ ⟩ U / ([Γ] ∙″ [F])) → Γ ⊩ᵛ⟨ ¹ ⟩ F ∷ U / [Γ] / Uᵛ [Γ] → Γ ∙ F ⊩ᵛ⟨ ¹ ⟩ G ∷ U / [Γ] ∙″ [F] / (λ {Δ} {σ} → [U] {Δ} {σ}) → Γ ⊩ᵛ⟨ ¹ ⟩ Π F ▹ G ∷ U / [Γ] / Uᵛ [Γ] Πᵗᵛ {F} {G} {Γ} [Γ] [F] [U] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ] ⊢F = escape (proj₁ ([F] ⊢Δ [σ])) ⊢Fₜ = escapeTerm (Uᵣ′ ⁰ 0<1 ⊢Δ) (proj₁ ([Fₜ] ⊢Δ [σ])) ⊢F≡Fₜ = escapeTermEq (Uᵣ′ ⁰ 0<1 ⊢Δ) (reflEqTerm (Uᵣ′ ⁰ 0<1 ⊢Δ) (proj₁ ([Fₜ] ⊢Δ [σ]))) ⊢Gₜ = escapeTerm (proj₁ ([U] (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ])) ⊢G≡Gₜ = escapeTermEq (proj₁ ([U] (⊢Δ ∙ ⊢F) [liftσ])) (reflEqTerm (proj₁ ([U] (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]))) [F]₀ = univᵛ {F} [Γ] (Uᵛ [Γ]) [Fₜ] [Gₜ]′ = S.irrelevanceTerm {A = U} {t = G} (_∙″_ {A = F} [Γ] [F]) (_∙″_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [U] {Δ} {σ}) (λ {Δ} {σ} → Uᵛ (_∙″_ {A = F} [Γ] [F]₀) {Δ} {σ}) [Gₜ] [G]₀ = univᵛ {G} (_∙″_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → Uᵛ (_∙″_ {A = F} [Γ] [F]₀) {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ}) [ΠFG] = (Πᵛ {F} {G} [Γ] [F]₀ [G]₀) ⊢Δ [σ] in Uₜ (Π subst σ F ▹ subst (liftSubst σ) G) (idRedTerm:*: (Πⱼ ⊢Fₜ ▹ ⊢Gₜ)) Πₙ (≅ₜ-Π-cong ⊢F ⊢F≡Fₜ ⊢G≡Gₜ) (proj₁ [ΠFG]) , (λ {σ′} [σ′] [σ≡σ′] → let [liftσ′] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′] [wk1σ] = wk1SubstS [Γ] ⊢Δ ⊢F [σ] [wk1σ′] = wk1SubstS [Γ] ⊢Δ ⊢F [σ′] var0 = conv (var (⊢Δ ∙ ⊢F) (PE.subst (λ x → 0 ∷ x ∈ (Δ ∙ subst σ F)) (wk-subst F) here)) (≅-eq (escapeEq (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ])) (proj₂ ([F] (⊢Δ ∙ ⊢F) [wk1σ]) [wk1σ′] (wk1SubstSEq [Γ] ⊢Δ ⊢F [σ] [σ≡σ′])))) [liftσ′]′ = [wk1σ′] , neuTerm (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ′])) (var 0) var0 (~-var var0) ⊢F′ = escape (proj₁ ([F] ⊢Δ [σ′])) ⊢Fₜ′ = escapeTerm (Uᵣ′ ⁰ 0<1 ⊢Δ) (proj₁ ([Fₜ] ⊢Δ [σ′])) ⊢Gₜ′ = escapeTerm (proj₁ ([U] (⊢Δ ∙ ⊢F′) [liftσ′])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F′) [liftσ′])) ⊢F≡F′ = escapeTermEq (Uᵣ′ ⁰ 0<1 ⊢Δ) (proj₂ ([Fₜ] ⊢Δ [σ]) [σ′] [σ≡σ′]) ⊢G≡G′ = escapeTermEq (proj₁ ([U] (⊢Δ ∙ ⊢F) [liftσ])) (proj₂ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]) [liftσ′]′ (liftSubstSEq {F = F} [Γ] ⊢Δ [F] [σ] [σ≡σ′])) [ΠFG]′ = (Πᵛ {F} {G} [Γ] [F]₀ [G]₀) ⊢Δ [σ′] in Uₜ₌ (Π subst σ F ▹ subst (liftSubst σ) G) (Π subst σ′ F ▹ subst (liftSubst σ′) G) (idRedTerm:*: (Πⱼ ⊢Fₜ ▹ ⊢Gₜ)) (idRedTerm:*: (Πⱼ ⊢Fₜ′ ▹ ⊢Gₜ′)) Πₙ Πₙ (≅ₜ-Π-cong ⊢F ⊢F≡F′ ⊢G≡G′) (proj₁ [ΠFG]) (proj₁ [ΠFG]′) (proj₂ [ΠFG] [σ′] [σ≡σ′])) -- Validity of Π-congurence as a term equality. Π-congᵗᵛ : ∀ {F G H E Γ} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ ¹ ⟩ F / [Γ]) ([H] : Γ ⊩ᵛ⟨ ¹ ⟩ H / [Γ]) ([UF] : Γ ∙ F ⊩ᵛ⟨ ¹ ⟩ U / ([Γ] ∙″ [F])) ([UH] : Γ ∙ H ⊩ᵛ⟨ ¹ ⟩ U / ([Γ] ∙″ [H])) ([F]ₜ : Γ ⊩ᵛ⟨ ¹ ⟩ F ∷ U / [Γ] / Uᵛ [Γ]) ([G]ₜ : Γ ∙ F ⊩ᵛ⟨ ¹ ⟩ G ∷ U / [Γ] ∙″ [F] / (λ {Δ} {σ} → [UF] {Δ} {σ})) ([H]ₜ : Γ ⊩ᵛ⟨ ¹ ⟩ H ∷ U / [Γ] / Uᵛ [Γ]) ([E]ₜ : Γ ∙ H ⊩ᵛ⟨ ¹ ⟩ E ∷ U / [Γ] ∙″ [H] / (λ {Δ} {σ} → [UH] {Δ} {σ})) ([F≡H]ₜ : Γ ⊩ᵛ⟨ ¹ ⟩ F ≡ H ∷ U / [Γ] / Uᵛ [Γ]) ([G≡E]ₜ : Γ ∙ F ⊩ᵛ⟨ ¹ ⟩ G ≡ E ∷ U / [Γ] ∙″ [F] / (λ {Δ} {σ} → [UF] {Δ} {σ})) → Γ ⊩ᵛ⟨ ¹ ⟩ Π F ▹ G ≡ Π H ▹ E ∷ U / [Γ] / Uᵛ [Γ] Π-congᵗᵛ {F} {G} {H} {E} [Γ] [F] [H] [UF] [UH] [F]ₜ [G]ₜ [H]ₜ [E]ₜ [F≡H]ₜ [G≡E]ₜ {Δ} {σ} ⊢Δ [σ] = let ⊢F = escape (proj₁ ([F] ⊢Δ [σ])) ⊢H = escape (proj₁ ([H] ⊢Δ [σ])) [liftFσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ] [liftHσ] = liftSubstS {F = H} [Γ] ⊢Δ [H] [σ] [F]ᵤ = univᵛ {F} [Γ] (Uᵛ [Γ]) [F]ₜ [G]ᵤ₁ = univᵛ {G} {l′ = ⁰} (_∙″_ {A = F} [Γ] [F]) (λ {Δ} {σ} → [UF] {Δ} {σ}) [G]ₜ [G]ᵤ = S.irrelevance {A = G} (_∙″_ {A = F} [Γ] [F]) (_∙″_ {A = F} [Γ] [F]ᵤ) [G]ᵤ₁ [H]ᵤ = univᵛ {H} [Γ] (Uᵛ [Γ]) [H]ₜ [E]ᵤ = S.irrelevance {A = E} (_∙″_ {A = H} [Γ] [H]) (_∙″_ {A = H} [Γ] [H]ᵤ) (univᵛ {E} {l′ = ⁰} (_∙″_ {A = H} [Γ] [H]) (λ {Δ} {σ} → [UH] {Δ} {σ}) [E]ₜ) [F≡H]ᵤ = univEqᵛ {F} {H} [Γ] (Uᵛ [Γ]) [F]ᵤ [F≡H]ₜ [G≡E]ᵤ = S.irrelevanceEq {A = G} {B = E} (_∙″_ {A = F} [Γ] [F]) (_∙″_ {A = F} [Γ] [F]ᵤ) [G]ᵤ₁ [G]ᵤ (univEqᵛ {G} {E} (_∙″_ {A = F} [Γ] [F]) (λ {Δ} {σ} → [UF] {Δ} {σ}) [G]ᵤ₁ [G≡E]ₜ) ΠFGₜ = Πⱼ escapeTerm {l = ¹} (Uᵣ′ ⁰ 0<1 ⊢Δ) (proj₁ ([F]ₜ ⊢Δ [σ])) ▹ escapeTerm (proj₁ ([UF] (⊢Δ ∙ ⊢F) [liftFσ])) (proj₁ ([G]ₜ (⊢Δ ∙ ⊢F) [liftFσ])) ΠHEₜ = Πⱼ escapeTerm {l = ¹} (Uᵣ′ ⁰ 0<1 ⊢Δ) (proj₁ ([H]ₜ ⊢Δ [σ])) ▹ escapeTerm (proj₁ ([UH] (⊢Δ ∙ ⊢H) [liftHσ])) (proj₁ ([E]ₜ (⊢Δ ∙ ⊢H) [liftHσ])) in Uₜ₌ (Π subst σ F ▹ subst (liftSubst σ) G) (Π subst σ H ▹ subst (liftSubst σ) E) (idRedTerm:*: ΠFGₜ) (idRedTerm:*: ΠHEₜ) Πₙ Πₙ (≅ₜ-Π-cong ⊢F (escapeTermEq (Uᵣ′ ⁰ 0<1 ⊢Δ) ([F≡H]ₜ ⊢Δ [σ])) (escapeTermEq (proj₁ ([UF] (⊢Δ ∙ ⊢F) [liftFσ])) ([G≡E]ₜ (⊢Δ ∙ ⊢F) [liftFσ]))) (proj₁ (Πᵛ {F} {G} [Γ] [F]ᵤ [G]ᵤ ⊢Δ [σ])) (proj₁ (Πᵛ {H} {E} [Γ] [H]ᵤ [E]ᵤ ⊢Δ [σ])) (Π-congᵛ {F} {G} {H} {E} [Γ] [F]ᵤ [G]ᵤ [H]ᵤ [E]ᵤ [F≡H]ᵤ [G≡E]ᵤ ⊢Δ [σ]) -- Validity of non-dependent function types. ▹▹ᵛ : ∀ {F G Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ G / [Γ] → Γ ⊩ᵛ⟨ l ⟩ F ▹▹ G / [Γ] ▹▹ᵛ {F} {G} [Γ] [F] [G] = Πᵛ {F} {wk1 G} [Γ] [F] (wk1ᵛ {G} {F} [Γ] [F] [G]) -- Validity of non-dependent function type congurence. ▹▹-congᵛ : ∀ {F F′ G G′ Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ / [Γ]) ([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ / [Γ] / [F]) ([G] : Γ ⊩ᵛ⟨ l ⟩ G / [Γ]) ([G′] : Γ ⊩ᵛ⟨ l ⟩ G′ / [Γ]) ([G≡G′] : Γ ⊩ᵛ⟨ l ⟩ G ≡ G′ / [Γ] / [G]) → Γ ⊩ᵛ⟨ l ⟩ F ▹▹ G ≡ F′ ▹▹ G′ / [Γ] / ▹▹ᵛ {F} {G} [Γ] [F] [G] ▹▹-congᵛ {F} {F′} {G} {G′} [Γ] [F] [F′] [F≡F′] [G] [G′] [G≡G′] = Π-congᵛ {F} {wk1 G} {F′} {wk1 G′} [Γ] [F] (wk1ᵛ {G} {F} [Γ] [F] [G]) [F′] (wk1ᵛ {G′} {F′} [Γ] [F′] [G′]) [F≡F′] (wk1Eqᵛ {G} {G′} {F} [Γ] [F] [G] [G≡G′])
{ "alphanum_fraction": 0.3318716122, "avg_line_length": 50.9906832298, "ext": "agda", "hexsha": "513406669c7c216af5921a52c57623e671f18c47", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Pi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Pi.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Pi.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8180, "size": 16419 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Groups.Abelian.Definition open import Groups.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations open import Lists.Lists module Groups.Polynomials.Group {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) where open import Groups.Polynomials.Definition G open import Groups.Polynomials.Addition G public open Setoid S open Equivalence eq polyGroup : Group naivePolySetoid _+P_ Group.+WellDefined polyGroup = +PwellDefined Group.0G polyGroup = [] Group.inverse polyGroup = inverse' Group.+Associative polyGroup {a} {b} {c} = assoc {a} {b} {c} Group.identRight polyGroup = PidentRight Group.identLeft polyGroup = PidentLeft Group.invLeft polyGroup {a} = invLeft' {a} Group.invRight polyGroup {a} = invRight' {a} abelian : AbelianGroup G → AbelianGroup polyGroup AbelianGroup.commutative (abelian ab) {x} {y} = comm ab {x} {y}
{ "alphanum_fraction": 0.742344245, "avg_line_length": 32.6551724138, "ext": "agda", "hexsha": "2b8a4ff547b3ce9ea788e2c5d7d9910cf6429bca", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Polynomials/Group.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Polynomials/Group.agda", "max_line_length": 118, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Polynomials/Group.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 284, "size": 947 }
{-# OPTIONS --two-level #-} open import Agda.Primitive data Unit : Set where tt : Unit data Unitω : Setω where tt : Unitω data SUnit : SSet where tt : SUnit data SUnitω : SSetω where tt : SUnitω -- Cannot eliminate fibrant type Unit -- unless target type is also fibrant -- f1 : Unit → SUnit -- f1 tt = tt -- Cannot eliminate fibrant type Unit -- unless target type is also fibrant -- f2 : Unit → SUnitω -- f2 tt = tt --f3 : Unitω → SUnit --f3 tt = tt f4 : Unitω → SUnitω f4 tt = tt
{ "alphanum_fraction": 0.6707566462, "avg_line_length": 19.56, "ext": "agda", "hexsha": "e506cd0de2584691fbabe8b1ae1311a66795cd30", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue4951b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue4951b.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue4951b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 161, "size": 489 }
open import Common.Prelude infixr 9 _∘_ _∘_ : {A B C : Set} → (B → C) → (A → B) → (A → C) f ∘ g = λ x → f (g x) test : Nat → Nat test = _* 5 ∘ 6 +_ ∘ 2 ∸_
{ "alphanum_fraction": 0.4620253165, "avg_line_length": 15.8, "ext": "agda", "hexsha": "c68e50903237513c663fa2660478636109e31dfd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Sections-1.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Sections-1.agda", "max_line_length": 49, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Sections-1.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 83, "size": 158 }
{-# OPTIONS --erased-cubical --no-subtyping #-} module Agda.Primitive.Cubical where {-# BUILTIN CUBEINTERVALUNIV IUniv #-} -- IUniv : SSet₁ {-# BUILTIN INTERVAL I #-} -- I : IUniv {-# BUILTIN IZERO i0 #-} {-# BUILTIN IONE i1 #-} -- I is treated as the type of booleans. {-# COMPILE JS i0 = false #-} {-# COMPILE JS i1 = true #-} infix 30 primINeg infixr 20 primIMin primIMax primitive primIMin : I → I → I primIMax : I → I → I primINeg : I → I {-# BUILTIN ISONE IsOne #-} -- IsOne : I → Setω postulate itIsOne : IsOne i1 IsOne1 : ∀ i j → IsOne i → IsOne (primIMax i j) IsOne2 : ∀ i j → IsOne j → IsOne (primIMax i j) {-# BUILTIN ITISONE itIsOne #-} {-# BUILTIN ISONE1 IsOne1 #-} {-# BUILTIN ISONE2 IsOne2 #-} -- IsOne i is treated as the unit type. {-# COMPILE JS itIsOne = { "tt" : a => a["tt"]() } #-} {-# COMPILE JS IsOne1 = _ => _ => _ => { return { "tt" : a => a["tt"]() } } #-} {-# COMPILE JS IsOne2 = _ => _ => _ => { return { "tt" : a => a["tt"]() } } #-} -- Partial : ∀{ℓ} (i : I) (A : Set ℓ) → Set ℓ -- Partial i A = IsOne i → A {-# BUILTIN PARTIAL Partial #-} {-# BUILTIN PARTIALP PartialP #-} postulate isOneEmpty : ∀ {ℓ} {A : Partial i0 (Set ℓ)} → PartialP i0 A {-# BUILTIN ISONEEMPTY isOneEmpty #-} -- Partial i A and PartialP i A are treated as IsOne i → A. {-# COMPILE JS isOneEmpty = _ => x => _ => x({ "tt" : a => a["tt"]() }) #-} primitive primPOr : ∀ {ℓ} (i j : I) {A : Partial (primIMax i j) (Set ℓ)} → (u : PartialP i (λ z → A (IsOne1 i j z))) → (v : PartialP j (λ z → A (IsOne2 i j z))) → PartialP (primIMax i j) A -- Computes in terms of primHComp and primTransp primComp : ∀ {ℓ} (A : (i : I) → Set (ℓ i)) {φ : I} (u : ∀ i → Partial φ (A i)) (a : A i0) → A i1 syntax primPOr p q u t = [ p ↦ u , q ↦ t ] primitive primTransp : ∀ {ℓ} (A : (i : I) → Set (ℓ i)) (φ : I) (a : A i0) → A i1 primHComp : ∀ {ℓ} {A : Set ℓ} {φ : I} (u : ∀ i → Partial φ A) (a : A) → A postulate PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-}
{ "alphanum_fraction": 0.5219443134, "avg_line_length": 26.8227848101, "ext": "agda", "hexsha": "55ad06996dc6e2eb2c3e3b6fd61d0fec251c53a5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Primitive/Cubical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Primitive/Cubical.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Primitive/Cubical.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 841, "size": 2119 }
module *-example where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) open import Naturals using (_*_) *-example : 3 * 4 ≡ 12 *-example = begin 3 * 4 ≡⟨⟩ 4 + (2 * 4) ≡⟨⟩ 4 + (4 + (1 * 4)) ≡⟨⟩ 4 + (4 + (4 + (0 * 4))) ≡⟨⟩ 4 + (4 + (4 + 0)) ≡⟨⟩ 12 ∎
{ "alphanum_fraction": 0.4862637363, "avg_line_length": 15.1666666667, "ext": "agda", "hexsha": "f47fac7692139c77f00c58ce19bd592f103aee05", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/naturals/*-example.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/naturals/*-example.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/naturals/*-example.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 177, "size": 364 }
open import x1-Base module x3-PropositionalEquality where data _≡_ {X} : Rel X where refl : ∀ {x} → x ≡ x {- What propositional equality means. DEFINITIONAL EQUALITY To decide if two types/terms are "the same", it reduces them to their normal form, then compares them syntactically, plus some additional laws. Every term terminates, so refl : ((λ x → x) 1) ≡ 1 is acceptable PROPOSITIONAL EQUALITY User-level equality expressed by the inductive family defined. Having a propositional equality in scope does not imply definitional equality for the related terms, unless the propositional equality is a closed term. That is the reason ≡ is not used from the beginning. Instead, chose to parametrise the equality relation: - sometimes propositional equality does not work, for example when working with functions. In general there might be propositional equalities in scope that do not necessarily hold or involve abstracted variables, think of λ (p : 3 ≡ 1) → .... -} -- prove ≡ is an equivalence relation sym : ∀ {X} {x y : X} → x ≡ y → y ≡ x sym refl = refl trans : ∀ {X} {x y z : X} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl equivalence : ∀ {X} → Equivalence {X} _≡_ equivalence = record { refl = refl; sym = sym; trans = trans } -- useful cong : ∀ {X} {x y : X} → (f : X → X) → x ≡ y → f x ≡ f y cong _ refl = refl {- Above uses pattern matching in a new way: Since value of indices of ≡ depends on constructors, matching on constructor refines context with new information. E.g., sym matching refl will unify y and x, turning them into the same variable in the context for the body of sym, therefore letting refl be invoked again. DEPENDENT PATTERN MATCHING Pattern matching in Agda can change the context AND constraint possible constructors of other parameters, if they are a type with indices and those indices have been refined. -}
{ "alphanum_fraction": 0.729468599, "avg_line_length": 32.6842105263, "ext": "agda", "hexsha": "c3da61d49503fd4b8ff450cf7dc33cb6c1bbd20d", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/topic/order/2013-04-01-sorting-francesco-mazzo/x3-PropositionalEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/topic/order/2013-04-01-sorting-francesco-mazzo/x3-PropositionalEquality.agda", "max_line_length": 92, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/topic/order/2013-04-01-sorting-francesco-mazzo/x3-PropositionalEquality.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 497, "size": 1863 }
------------------------------------------------------------------------ -- A library of parser combinators ------------------------------------------------------------------------ -- This module also provides examples of parsers for which the indices -- cannot be inferred. module StructurallyRecursiveDescentParsing.Lib where open import StructurallyRecursiveDescentParsing.Grammar open import StructurallyRecursiveDescentParsing.Index open import Data.Nat hiding (_≟_) open import Data.Vec as Vec using (Vec; []; _∷_) open import Data.List using (List; []; _∷_; foldr; foldl; reverse) open import Data.Product open import Data.Bool using (Bool; true; false; _∧_; _∨_) open import Function open import Data.Maybe hiding (_>>=_) open import Data.Unit using (⊤) open import Data.Char using (Char; _==_) import Data.Char.Properties as Char open import Codata.Musical.Notation open import Algebra import Data.Bool.Properties as Bool private module BCS = CommutativeSemiring Bool.∨-∧-commutativeSemiring open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality import Level ------------------------------------------------------------------------ -- Some important derived combinators infixl 10 _>>=_ _>>=_ : ∀ {NT Tok e₁ c₁ i₂ R₁ R₂} → let i₁ = e₁ ◇ c₁ in Parser NT Tok i₁ R₁ → (R₁ → Parser NT Tok i₂ R₂) → Parser NT Tok (i₁ · i₂) R₂ _>>=_ {e₁ = true } p₁ p₂ = p₁ ?>>= p₂ _>>=_ {e₁ = false} p₁ p₂ = p₁ !>>= λ x → ♯ p₂ x cast : ∀ {NT Tok e₁ e₂ c₁ c₂ R} → e₁ ≡ e₂ → c₁ ≡ c₂ → Parser NT Tok (e₁ ◇ c₁) R → Parser NT Tok (e₂ ◇ c₂) R cast refl refl p = p ------------------------------------------------------------------------ -- Applicative functor parsers -- We could get these for free with better library support. infixl 50 _⊛_ _⊛!_ _<⊛_ _⊛>_ _<$>_ _<$_ _⊗_ _⊗!_ _⊛_ : ∀ {NT Tok i₁ i₂ R₁ R₂} → Parser NT Tok i₁ (R₁ → R₂) → Parser NT Tok i₂ R₁ → Parser NT Tok _ R₂ p₁ ⊛ p₂ = p₁ >>= λ f → p₂ >>= λ x → return (f x) -- A variant: If the second parser does not accept the empty string, -- then neither does the combination. (This is immediate for the first -- parser, but for the second one a small lemma is needed, hence this -- variant.) _⊛!_ : ∀ {NT Tok i₁ c₂ R₁ R₂} → Parser NT Tok i₁ (R₁ → R₂) → Parser NT Tok (false ◇ c₂) R₁ → Parser NT Tok (false ◇ _) R₂ _⊛!_ {i₁ = i₁} p₁ p₂ = cast (BCS.*-comm (empty i₁) false) refl (p₁ ⊛ p₂) _<$>_ : ∀ {NT Tok i R₁ R₂} → (R₁ → R₂) → Parser NT Tok i R₁ → Parser NT Tok _ R₂ f <$> p = return f ⊛ p _<⊛_ : ∀ {NT Tok i₁ i₂ R₁ R₂} → Parser NT Tok i₁ R₁ → Parser NT Tok i₂ R₂ → Parser NT Tok _ R₁ p₁ <⊛ p₂ = const <$> p₁ ⊛ p₂ _⊛>_ : ∀ {NT Tok i₁ i₂ R₁ R₂} → Parser NT Tok i₁ R₁ → Parser NT Tok i₂ R₂ → Parser NT Tok _ R₂ p₁ ⊛> p₂ = flip const <$> p₁ ⊛ p₂ _<$_ : ∀ {NT Tok i R₁ R₂} → R₁ → Parser NT Tok i R₂ → Parser NT Tok _ R₁ x <$ p = const x <$> p _⊗_ : ∀ {NT Tok i₁ i₂ R₁ R₂} → Parser NT Tok i₁ R₁ → Parser NT Tok i₂ R₂ → Parser NT Tok _ (R₁ × R₂) p₁ ⊗ p₂ = (_,_) <$> p₁ ⊛ p₂ _⊗!_ : ∀ {NT Tok i₁ c₂ R₁ R₂} → Parser NT Tok i₁ R₁ → Parser NT Tok (false ◇ c₂) R₂ → Parser NT Tok (false ◇ _) (R₁ × R₂) p₁ ⊗! p₂ = (_,_) <$> p₁ ⊛! p₂ ------------------------------------------------------------------------ -- Parsing sequences infix 55 _⋆ _+ -- Not accepted by the productivity checker: -- mutual -- _⋆ : ∀ {NT Tok R c} → -- Parser NT Tok (false ◇ c) R → -- Parser NT Tok _ (List R) -- p ⋆ = return [] ∣ p + -- _+ : ∀ {NT Tok R c} → -- Parser NT Tok (false ◇ c) R → -- Parser NT Tok _ (List R) -- p + = _∷_ <$> p ⊛ p ⋆ -- In fact the code above risks leading to infinite loops in the -- current version of Agda (Mar 2009), since it does not contain any -- coinductive constructors. The following code is OK, though: mutual _⋆ : ∀ {NT Tok R c} → Parser NT Tok (false ◇ c) R → Parser NT Tok _ (List R) p ⋆ = return [] ∣ p + _+ : ∀ {NT Tok R c} → Parser NT Tok (false ◇ c) R → Parser NT Tok _ (List R) p + = p !>>= λ x → ♯ (p ⋆ ?>>= λ xs → return (x ∷ xs)) -- p sepBy⟨ ne ⟩ sep and p sepBy sep parse one or more ps separated by -- seps. _sepBy⟨_⟩_ : ∀ {NT Tok i i′ R R′} → Parser NT Tok i R → (empty i′ ∧ true) ∧ (empty i ∧ true) ≡ false → Parser NT Tok i′ R′ → Parser NT Tok _ (List R) p sepBy⟨ non-empty ⟩ sep = _∷_ <$> p ⊛ cast₁ (sep ⊛> p) ⋆ where cast₁ = cast non-empty refl -- _sepBy_ could be implemented by using _sepBy⟨_⟩_, but the following -- definition is handled more efficiently by the current version of -- Agda (Dec 2008). _sepBy_ : ∀ {NT Tok i c R R′} → Parser NT Tok i R → Parser NT Tok (false ◇ c) R′ → Parser NT Tok _ (List R) p sepBy sep = _∷_ <$> p ⊛ (sep ⊛> p) ⋆ mutual -- Note that the index of atLeast is only partly inferred; the -- recursive structure of atLeast-index is given manually. atLeast-index : Corners → ℕ → Index atLeast-index c zero = _ atLeast-index c (suc n) = _ -- At least n occurrences of p. atLeast : ∀ {NT Tok c R} (n : ℕ) → Parser NT Tok (false ◇ c) R → Parser NT Tok (atLeast-index c n) (List R) atLeast zero p = p ⋆ atLeast (suc n) p = _∷_ <$> p ⊛ atLeast n p -- exactly n p parses n occurrences of p. -- -- (Note that, unlike what is written in "Structurally Recursive -- Descent Parsing", Agda as of 2012-03-16 can no longer infer -- exactly-index's second right-hand side.) exactly-index : Index → ℕ → Index exactly-index i zero = 1I exactly-index i (suc n) = (1I · i · 1I) · exactly-index i n · 1I exactly : ∀ {NT Tok i R} n → Parser NT Tok i R → Parser NT Tok (exactly-index i n) (Vec R n) exactly zero p = return [] exactly (suc n) p = _∷_ <$> p ⊛ exactly n p -- A function with a similar type: sequence : ∀ {NT Tok i R n} → Vec (Parser NT Tok i R) n → Parser NT Tok (exactly-index i n) (Vec R n) sequence [] = return [] sequence (p ∷ ps) = _∷_ <$> p ⊛ sequence ps mutual -- p between ps parses p repeatedly, between the elements of ps: -- ∙ between (x ∷ y ∷ z ∷ []) ≈ x ∙ y ∙ z. between-corners : Corners → ℕ → Corners between-corners c′ zero = _ between-corners c′ (suc n) = _ _between_ : ∀ {NT Tok i R c′ R′ n} → Parser NT Tok i R → Vec (Parser NT Tok (false ◇ c′) R′) (suc n) → Parser NT Tok (false ◇ between-corners c′ n) (Vec R n) p between (x ∷ []) = [] <$ x p between (x ∷ y ∷ xs) = _∷_ <$> (x ⊛> p) ⊛ (p between (y ∷ xs)) ------------------------------------------------------------------------ -- Chaining -- Associativity. Used to specify how chain≥ should apply the parsed -- operators: left or right associatively. data Assoc : Set where left : Assoc right : Assoc -- Application. appʳ : {R : Set} → R × (R → R → R) → R → R appʳ (x , _•_) y = x • y appˡ : {R : Set} → R → (R → R → R) × R → R appˡ x (_•_ , y) = x • y -- Shifting. See Examples below for an illuminating example. shiftʳ : {A B : Set} → A → List (B × A) → List (A × B) × A shiftʳ x [] = ([] , x) shiftʳ x₁ ((x₂ , x₃) ∷ xs₄) = ((x₁ , x₂) ∷ proj₁ xs₃x₄ , proj₂ xs₃x₄) where xs₃x₄ = shiftʳ x₃ xs₄ -- Post-processing for the chain≥ parser. chain≥-combine : {R : Set} → Assoc → R → List ((R → R → R) × R) → R chain≥-combine left x ys = foldl appˡ x ys chain≥-combine right x ys with shiftʳ x ys ... | (xs , y) = foldr appʳ y xs -- Chains at least n occurrences of op, in an a-associative -- manner. The ops are surrounded by ps. chain≥ : ∀ {NT Tok c₁ i₂ R} (n : ℕ) → Assoc → Parser NT Tok (false ◇ c₁) R → Parser NT Tok i₂ (R → R → R) → Parser NT Tok _ R chain≥ n a p op = chain≥-combine a <$> p ⊛ atLeast n (op ⊗! p) private module Examples {R S : Set} (x y z : R) (a b : S) (_+_ _*_ : R → R → R) where ex : shiftʳ x ((a , y) ∷ (b , z) ∷ []) ≡ ((x , a) ∷ (y , b) ∷ [] , z) ex = refl exʳ : chain≥-combine right x ((_+_ , y) ∷ (_*_ , z) ∷ []) ≡ (x + (y * z)) exʳ = refl exˡ : chain≥-combine left x ((_+_ , y) ∷ (_*_ , z) ∷ []) ≡ ((x + y) * z) exˡ = refl ------------------------------------------------------------------------ -- N-ary variants of _∣_ -- choice ps parses one of the elements in ps. choice-corners : Corners → ℕ → Corners choice-corners c zero = ε choice-corners c (suc n) = c ∪ choice-corners c n choice : ∀ {NT Tok c R n} → Vec (Parser NT Tok (false ◇ c) R) n → Parser NT Tok (false ◇ choice-corners c n) R choice [] = fail choice (p ∷ ps) = p ∣ choice ps -- choiceMap f xs ≈ choice (map f xs), but avoids use of Vec and -- fromList. choiceMap-corners : {A : Set} → (A → Corners) → List A → Corners choiceMap-corners c [] = ε choiceMap-corners c (x ∷ xs) = c x ∪ choiceMap-corners c xs choiceMap : ∀ {NT Tok R} {A : Set} {c : A → Corners} → ((x : A) → Parser NT Tok (false ◇ c x) R) → (xs : List A) → Parser NT Tok (false ◇ choiceMap-corners c xs) R choiceMap f [] = fail choiceMap f (x ∷ xs) = f x ∣ choiceMap f xs ------------------------------------------------------------------------ -- sat and friends sat : ∀ {NT Tok R} → (Tok → Maybe R) → Parser NT Tok (0I · 1I) R sat {NT} {Tok} {R} p = token !>>= λ c → ♯ ok (p c) where mutual okIndex : Maybe R → Index okIndex nothing = _ okIndex (just _) = _ ok : (x : Maybe R) → Parser NT Tok (okIndex x) R ok nothing = fail ok (just x) = return x sat' : ∀ {NT Tok} → (Tok → Bool) → Parser NT Tok _ ⊤ sat' p = sat (boolToMaybe ∘ p) any : ∀ {NT Tok} → Parser NT Tok _ Tok any = sat just ------------------------------------------------------------------------ -- Token parsers module Token (A : DecSetoid Level.zero Level.zero) where open DecSetoid A using (_≟_) renaming (Carrier to Tok) -- Parses a given token (or, really, a given equivalence class of -- tokens). tok : ∀ {NT} → Tok → Parser NT Tok _ Tok tok tok = sat p where p : Tok → Maybe Tok p tok′ with tok ≟ tok′ ... | yes _ = just tok′ ... | no _ = nothing -- Parses a sequence of tokens. theString : ∀ {NT n} → Vec Tok n → Parser NT Tok _ (Vec Tok n) theString cs = sequence (Vec.map tok cs) ------------------------------------------------------------------------ -- Character parsers digit : ∀ {NT} → Parser NT Char _ ℕ digit = 0 <$ tok '0' ∣ 1 <$ tok '1' ∣ 2 <$ tok '2' ∣ 3 <$ tok '3' ∣ 4 <$ tok '4' ∣ 5 <$ tok '5' ∣ 6 <$ tok '6' ∣ 7 <$ tok '7' ∣ 8 <$ tok '8' ∣ 9 <$ tok '9' where open Token Char.decSetoid number : ∀ {NT} → Parser NT Char _ ℕ number = toNum <$> digit + where toNum = foldr (λ n x → 10 * x + n) 0 ∘ reverse -- whitespace recognises an incomplete but useful list of whitespace -- characters. whitespace : ∀ {NT} → Parser NT Char _ ⊤ whitespace = sat' isSpace where isSpace = λ c → (c == ' ') ∨ (c == '\t') ∨ (c == '\n') ∨ (c == '\r')
{ "alphanum_fraction": 0.5216625572, "avg_line_length": 29.4961038961, "ext": "agda", "hexsha": "fc73f72245d29e293bec4e32e1f32c999656a307", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "StructurallyRecursiveDescentParsing/Lib.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "StructurallyRecursiveDescentParsing/Lib.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "StructurallyRecursiveDescentParsing/Lib.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 3848, "size": 11356 }
{-# OPTIONS --without-K --safe #-} open import Axiom.Extensionality.Propositional using (Extensionality) module Cats.Category.Sets.Facts.Exponential (funext : ∀ {a b} → Extensionality a b) where open import Data.Product using (_×_ ; _,_ ; proj₁ ; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym) open import Cats.Category open import Cats.Category.Sets using (Sets) open import Cats.Category.Sets.Facts.Product using (hasBinaryProducts) instance hasExponentials : ∀ {l} → HasExponentials (Sets l) hasExponentials .HasExponentials.hasBinaryProducts = hasBinaryProducts hasExponentials .HasExponentials._↝′_ B C = record { Cᴮ = B → C ; eval = λ { (f , x) → f x } ; curry′ = λ f → record { arr = λ a b → f (a , b) ; prop = λ x → refl ; unique = λ eq a → funext λ b → sym (eq _) } }
{ "alphanum_fraction": 0.6689734717, "avg_line_length": 30.9642857143, "ext": "agda", "hexsha": "ce0cb9533e25768652825d2222a454caa166bd97", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Sets/Facts/Exponential.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Sets/Facts/Exponential.agda", "max_line_length": 74, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Sets/Facts/Exponential.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 258, "size": 867 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics hiding (take; drop; take-drop-split) open import lib.types.Pointed open import lib.types.Paths module lib.types.FunctionSeq where infixr 80 _◃∘_ data FunctionSeq {i} : Type i → Type i → Type (lsucc i) where idf-seq : {A : Type i} → FunctionSeq A A _◃∘_ : {A B C : Type i} (g : B → C) (fs : FunctionSeq A B) → FunctionSeq A C infix 30 _–→_ _–→_ = FunctionSeq infix 90 _◃idf _◃idf : ∀ {i} {A B : Type i} → (A → B) → A –→ B _◃idf fs = fs ◃∘ idf-seq compose : ∀ {i} {A B : Type i} → (A –→ B) → A → B compose idf-seq = idf _ compose (g ◃∘ fs) = g ∘ compose fs de⊙-seq : ∀ {i} {X Y : Ptd i} → (X ⊙–→ Y) → (de⊙ X –→ de⊙ Y) de⊙-seq ⊙idf-seq = idf-seq de⊙-seq (f ◃⊙∘ fs) = fst f ◃∘ de⊙-seq fs de⊙-seq-⊙compose : ∀ {i} {X Y : Ptd i} (fs : X ⊙–→ Y) → compose (de⊙-seq fs) == fst (⊙compose fs) de⊙-seq-⊙compose ⊙idf-seq = idp de⊙-seq-⊙compose (f ◃⊙∘ fs) = ap (fst f ∘_) (de⊙-seq-⊙compose fs) private pt-seq' : ∀ {i} {j} {X Y : Ptd i} {C : Type j} (g : de⊙ Y → C) (fs : X ⊙–→ Y) → g (compose (de⊙-seq fs) (pt X)) =-= g (pt Y) pt-seq' g ⊙idf-seq = [] pt-seq' g (f ◃⊙∘ fs) = pt-seq' (g ∘ fst f) fs ∙∙ ap g (snd f) ◃∎ pt-seq : ∀ {i} {X Y : Ptd i} (fs : X ⊙–→ Y) → compose (de⊙-seq fs) (pt X) =-= pt Y pt-seq ⊙idf-seq = [] pt-seq (f ◃⊙∘ fs) = pt-seq' (fst f) fs ∙▹ snd f private ⊙compose-pt' : ∀ {i} {j} {X Y : Ptd i} {C : Type j} (g : de⊙ Y → C) (fs : X ⊙–→ Y) → ap g (app= (de⊙-seq-⊙compose fs) (pt X)) ◃∙ ap g (snd (⊙compose fs)) ◃∎ =ₛ ↯ (pt-seq' g fs) ◃∎ ⊙compose-pt' g ⊙idf-seq = =ₛ-in idp ⊙compose-pt' {_} {_} {X} g (f ◃⊙∘ fs) = ap g (app= (ap (fst f ∘_) (de⊙-seq-⊙compose fs)) (pt X)) ◃∙ ap g (snd (⊙compose (f ◃⊙∘ fs))) ◃∎ =ₛ₁⟨ 0 & 1 & ∘-ap g (_$ pt X) (ap (fst f ∘_) (de⊙-seq-⊙compose fs)) ∙ ∘-ap (λ h → g (h (pt X))) (fst f ∘_) (de⊙-seq-⊙compose fs) ∙ ap-∘ (g ∘ fst f) (_$ pt X) (de⊙-seq-⊙compose fs) ⟩ ap (g ∘ fst f) (app= (de⊙-seq-⊙compose fs) (pt X)) ◃∙ ap g (snd (⊙compose (f ◃⊙∘ fs))) ◃∎ =ₛ⟨ 1 & 1 & ap-seq-∙ g (ap (fst f) (snd (⊙compose fs)) ◃∙ snd f ◃∎) ⟩ ap (g ∘ fst f) (app= (de⊙-seq-⊙compose fs) (pt X)) ◃∙ ap g (ap (fst f) (snd (⊙compose fs))) ◃∙ ap g (snd f) ◃∎ =ₛ₁⟨ 1 & 1 & ∘-ap g (fst f) (snd (⊙compose fs)) ⟩ ap (g ∘ fst f) (app= (de⊙-seq-⊙compose fs) (pt X)) ◃∙ ap (g ∘ fst f) (snd (⊙compose fs)) ◃∙ ap g (snd f) ◃∎ =ₛ⟨ 0 & 2 & ⊙compose-pt' (g ∘ fst f) fs ⟩ ↯ (pt-seq' (g ∘ fst f) fs) ◃∙ ap g (snd f) ◃∎ =ₛ₁⟨ ! (↯-∙∙ (pt-seq' (g ∘ fst f) fs) (ap g (snd f) ◃∎)) ⟩ ↯ (pt-seq' (g ∘ fst f) fs ∙▹ ap g (snd f)) ◃∎ ∎ₛ ⊙compose-pt : ∀ {i} {X Y : Ptd i} (fs : X ⊙–→ Y) → app= (de⊙-seq-⊙compose fs) (pt X) ◃∙ snd (⊙compose fs) ◃∎ =ₛ ↯ (pt-seq fs) ◃∎ ⊙compose-pt ⊙idf-seq = =ₛ-in idp ⊙compose-pt {_} {X} {Y} (f ◃⊙∘ fs) = app= (de⊙-seq-⊙compose (f ◃⊙∘ fs)) (pt X) ◃∙ snd (f ⊙∘ ⊙compose fs) ◃∎ =ₛ⟨ 1 & 1 & expand (ap (fst f) (snd (⊙compose fs)) ◃∙ snd f ◃∎) ⟩ app= (de⊙-seq-⊙compose (f ◃⊙∘ fs)) (pt X) ◃∙ ap (fst f) (snd (⊙compose fs)) ◃∙ snd f ◃∎ =ₛ₁⟨ 0 & 1 & ∘-ap (_$ pt X) (fst f ∘_) (de⊙-seq-⊙compose fs) ∙ ap-∘ (fst f) (_$ pt X) (de⊙-seq-⊙compose fs) ⟩ ap (fst f) (app= (de⊙-seq-⊙compose fs) (pt X)) ◃∙ ap (fst f) (snd (⊙compose fs)) ◃∙ snd f ◃∎ =ₛ⟨ 0 & 2 & ⊙compose-pt' (fst f) fs ⟩ ↯ (pt-seq' (fst f) fs) ◃∙ snd f ◃∎ =ₛ₁⟨ ! (↯-∙∙ (pt-seq' (fst f) fs) (snd f ◃∎)) ⟩ ↯ (pt-seq' (fst f) fs ∙∙ snd f ◃∎) ◃∎ ∎ₛ record _=∘_ {i} {A B : Type i} (fs gs : A –→ B) : Type i where constructor =∘-in field =∘-out : compose fs == compose gs open _=∘_ public abstract de⊙-seq-=⊙∘ : ∀ {i} {X Y : Ptd i} {fs gs : X ⊙–→ Y} → fs =⊙∘ gs → de⊙-seq fs =∘ de⊙-seq gs de⊙-seq-=⊙∘ {fs = fs} {gs = gs} p = =∘-in $ compose (de⊙-seq fs) =⟨ de⊙-seq-⊙compose fs ⟩ fst (⊙compose fs) =⟨ ap fst (=⊙∘-out p) ⟩ fst (⊙compose gs) =⟨ ! (de⊙-seq-⊙compose gs) ⟩ compose (de⊙-seq gs) =∎ ⊙seq-λ= : ∀ {i} {X Y : Ptd i} {fs gs : X ⊙–→ Y} → (p : compose (de⊙-seq fs) ∼ compose (de⊙-seq gs)) → pt-seq fs =ₛ p (pt X) ◃∙ pt-seq gs → fs =⊙∘ gs ⊙seq-λ= {_} {X} {Y} {fs} {gs} p q = =⊙∘-in $ pair= (! (de⊙-seq-⊙compose fs) ∙ λ= p ∙ de⊙-seq-⊙compose gs) $ ↓-app=cst-in $ =ₛ-out $ snd (⊙compose fs) ◃∎ =ₛ⟨ pre-rotate-in (⊙compose-pt fs) ⟩ ! (app= (de⊙-seq-⊙compose fs) (pt X)) ◃∙ ↯ (pt-seq fs) ◃∎ =ₛ₁⟨ 1 & 1 & =ₛ-out q ⟩ ! (app= (de⊙-seq-⊙compose fs) (pt X)) ◃∙ ↯ (p (pt X) ◃∙ pt-seq gs) ◃∎ =ₛ⟨ 1 & 1 & =ₛ-in {t = p (pt X) ◃∙ ↯ (pt-seq gs) ◃∎} $ ↯-∙∙ (p (pt X) ◃∎) (pt-seq gs) ⟩ ! (app= (de⊙-seq-⊙compose fs) (pt X)) ◃∙ p (pt X) ◃∙ ↯ (pt-seq gs) ◃∎ =ₛ⟨ 2 & 1 & !ₛ (⊙compose-pt gs) ⟩ ! (app= (de⊙-seq-⊙compose fs) (pt X)) ◃∙ p (pt X) ◃∙ app= (de⊙-seq-⊙compose gs) (pt X) ◃∙ snd (⊙compose gs) ◃∎ =ₛ₁⟨ 0 & 1 & !-ap (_$ pt X) (de⊙-seq-⊙compose fs) ⟩ app= (! (de⊙-seq-⊙compose fs)) (pt X) ◃∙ p (pt X) ◃∙ app= (de⊙-seq-⊙compose gs) (pt X) ◃∙ snd (⊙compose gs) ◃∎ =ₛ₁⟨ 1 & 1 & ! (app=-β p (pt X)) ⟩ app= (! (de⊙-seq-⊙compose fs)) (pt X) ◃∙ app= (λ= p) (pt X) ◃∙ app= (de⊙-seq-⊙compose gs) (pt X) ◃∙ snd (⊙compose gs) ◃∎ =ₛ⟨ 0 & 3 & ∙-ap-seq (_$ pt X) (_ ◃∙ _ ◃∙ _ ◃∎) ⟩ app= (! (de⊙-seq-⊙compose fs) ∙ λ= p ∙ de⊙-seq-⊙compose gs) (pt X) ◃∙ snd (⊙compose gs) ◃∎ ∎ₛ abstract !⊙∘ : ∀ {i} {X Y : Ptd i} {fs gs : X ⊙–→ Y} → fs =⊙∘ gs → gs =⊙∘ fs !⊙∘ (=⊙∘-in p) = =⊙∘-in (! p) ⊙expand : ∀ {i} {X Y : Ptd i} (fs : X ⊙–→ Y) → (⊙compose fs ◃⊙idf) =⊙∘ fs ⊙expand fs = =⊙∘-in idp ⊙contract : ∀ {i} {X Y : Ptd i} {fs : X ⊙–→ Y} → fs =⊙∘ (⊙compose fs ◃⊙idf) ⊙contract = =⊙∘-in idp private _∙⊙∘_ : ∀ {i} {X Y : Ptd i} {fs gs hs : X ⊙–→ Y} → fs =⊙∘ gs → gs =⊙∘ hs → fs =⊙∘ hs _∙⊙∘_ (=⊙∘-in p) (=⊙∘-in q) = =⊙∘-in (p ∙ q) point-from-target : ∀ {i} {X Y : Ptd i} → ℕ → (X ⊙–→ Y) → Ptd i point-from-target {Y = Y} O fs = Y point-from-target {Y = Y} (S n) ⊙idf-seq = Y point-from-target (S n) (f ◃⊙∘ fs) = point-from-target n fs take : ∀ {i} (n : ℕ) {X Y : Ptd i} (fs : X ⊙–→ Y) → point-from-target n fs ⊙–→ Y take O s = ⊙idf-seq take (S n) ⊙idf-seq = ⊙idf-seq take (S n) (f ◃⊙∘ fs) = f ◃⊙∘ take n fs drop : ∀ {i} (n : ℕ) {X Y : Ptd i} (fs : X ⊙–→ Y) → X ⊙–→ point-from-target n fs drop 0 fs = fs drop (S n) ⊙idf-seq = ⊙idf-seq drop (S n) (f ◃⊙∘ fs) = drop n fs infixr 80 _⊙∘∘_ _⊙∘∘_ : ∀ {i} {X Y Z : Ptd i} (gs : Y ⊙–→ Z) (fs : X ⊙–→ Y) → (X ⊙–→ Z) ⊙idf-seq ⊙∘∘ fs = fs (g ◃⊙∘ gs) ⊙∘∘ fs = g ◃⊙∘ (gs ⊙∘∘ fs) ⊙compose-⊙∘∘ : ∀ {i} {X Y Z : Ptd i} (gs : Y ⊙–→ Z) (fs : X ⊙–→ Y) → ⊙compose (gs ⊙∘∘ fs) == ⊙compose gs ⊙∘ ⊙compose fs ⊙compose-⊙∘∘ ⊙idf-seq fs = ! (⊙λ= (⊙∘-unit-l (⊙compose fs))) ⊙compose-⊙∘∘ (g ◃⊙∘ gs) fs = ap (g ⊙∘_) (⊙compose-⊙∘∘ gs fs) ∙ ! (⊙λ= (⊙∘-assoc g (⊙compose gs) (⊙compose fs))) take-drop-split' : ∀ {i} {X Y : Ptd i} (n : ℕ) (fs : X ⊙–→ Y) → fs == take n fs ⊙∘∘ drop n fs take-drop-split' O fs = idp take-drop-split' (S n) ⊙idf-seq = idp take-drop-split' (S n) (f ◃⊙∘ fs) = ap (f ◃⊙∘_) (take-drop-split' n fs) take-drop-split : ∀ {i} {X Y : Ptd i} (n : ℕ) (s : X ⊙–→ Y) → ⊙compose s ◃⊙idf =⊙∘ ⊙compose (take n s) ◃⊙∘ ⊙compose (drop n s) ◃⊙idf take-drop-split n fs = =⊙∘-in $ ⊙compose fs =⟨ ap ⊙compose (take-drop-split' n fs) ⟩ ⊙compose (take n fs ⊙∘∘ drop n fs) =⟨ ⊙compose-⊙∘∘ (take n fs) (drop n fs) ⟩ ⊙compose (take n fs) ⊙∘ ⊙compose (drop n fs) =∎ abstract private infixr 10 _⊙compose=⟨_&_&_&_⟩_ _⊙compose=⟨_&_&_&_⟩_ : ∀ {i} {X Y : Ptd i} {f : X ⊙→ Y} → (fs : X ⊙–→ Y) → (n : ℕ) (m : ℕ) → (gs : point-from-target m (drop n fs) ⊙–→ point-from-target n fs) → ⊙compose (take m (drop n fs)) == ⊙compose gs → ⊙compose (take n fs ⊙∘∘ gs ⊙∘∘ drop m (drop n fs)) == f → ⊙compose fs == f _⊙compose=⟨_&_&_&_⟩_ {f = f} fs n m gs p p' = ⊙compose fs =⟨ =⊙∘-out (take-drop-split n fs) ⟩ ⊙compose (take n fs) ⊙∘ ⊙compose (drop n fs) =⟨ ap (⊙compose (take n fs) ⊙∘_) (=⊙∘-out (take-drop-split m (drop n fs))) ⟩ ⊙compose (take n fs) ⊙∘ ⊙compose (take m (drop n fs)) ⊙∘ ⊙compose (drop m (drop n fs)) =⟨ ap (λ v → ⊙compose (take n fs) ⊙∘ v ⊙∘ ⊙compose (drop m (drop n fs))) p ⟩ ⊙compose (take n fs) ⊙∘ ⊙compose gs ⊙∘ ⊙compose (drop m (drop n fs)) =⟨ ap (⊙compose (take n fs) ⊙∘_) (! (⊙compose-⊙∘∘ gs (drop m (drop n fs)))) ⟩ ⊙compose (take n fs) ⊙∘ ⊙compose (gs ⊙∘∘ drop m (drop n fs)) =⟨ ! (⊙compose-⊙∘∘ (take n fs) (gs ⊙∘∘ drop m (drop n fs))) ⟩ ⊙compose (take n fs ⊙∘∘ gs ⊙∘∘ drop m (drop n fs)) =⟨ p' ⟩ f =∎ infixr 10 _=⊙∘⟨_⟩_ _=⊙∘⟨_⟩_ : ∀ {i} {X Y : Ptd i} (fs : X ⊙–→ Y) {gs hs : X ⊙–→ Y} → fs =⊙∘ gs → gs =⊙∘ hs → fs =⊙∘ hs _=⊙∘⟨_⟩_ _ p q = p ∙⊙∘ q infixr 10 _=⊙∘⟨_&_&_⟩_ _=⊙∘⟨_&_&_⟩_ : ∀ {i} {X Y : Ptd i} (fs : X ⊙–→ Y) {gs : X ⊙–→ Y} → (m n : ℕ) → {hs : point-from-target n (drop m fs) ⊙–→ point-from-target m fs} → take n (drop m fs) =⊙∘ hs → take m fs ⊙∘∘ hs ⊙∘∘ drop n (drop m fs) =⊙∘ gs → fs =⊙∘ gs _=⊙∘⟨_&_&_⟩_ fs m n {hs} p p' = =⊙∘-in (fs ⊙compose=⟨ m & n & hs & =⊙∘-out p ⟩ =⊙∘-out p') infixr 10 _=⊙∘₁⟨_⟩_ _=⊙∘₁⟨_⟩_ : ∀ {i} {X Y : Ptd i} (fs : X ⊙–→ Y) {gs : X ⊙–→ Y} → {h : X ⊙→ Y} → ⊙compose fs == h → h ◃⊙idf =⊙∘ gs → fs =⊙∘ gs _=⊙∘₁⟨_⟩_ fs p p' = =⊙∘-in p ∙⊙∘ p' infixr 10 _=⊙∘₁⟨_&_&_⟩_ _=⊙∘₁⟨_&_&_⟩_ : ∀ {i} {X Y : Ptd i} (fs : X ⊙–→ Y) {gs : X ⊙–→ Y} → (m n : ℕ) → {h : point-from-target n (drop m fs) ⊙→ point-from-target m fs} → ⊙compose (take n (drop m fs)) == h → take m fs ⊙∘∘ h ◃⊙∘ drop n (drop m fs) =⊙∘ gs → fs =⊙∘ gs _=⊙∘₁⟨_&_&_⟩_ fs m n {h} p p' = fs =⊙∘⟨ m & n & (=⊙∘-in {gs = h ◃⊙idf} p) ⟩ p' infix 15 _∎⊙∘ _∎⊙∘ : ∀ {i} {X Y : Ptd i} (fs : X ⊙–→ Y) → fs =⊙∘ fs _∎⊙∘ _ = =⊙∘-in idp ⊙coe-seq : ∀ {i} {X Y : Ptd i} → X =-= Y → X ⊙–→ Y ⊙coe-seq [] = ⊙idf-seq ⊙coe-seq (p ◃∙ ps) = ⊙coe-seq ps ⊙∘∘ ⊙coe p ◃⊙idf ⊙coe-seq-∙ : ∀ {i} {X Y : Ptd i} (ps : X =-= Y) → ⊙coe (↯ ps) ◃⊙idf =⊙∘ ⊙coe-seq ps ⊙coe-seq-∙ [] = =⊙∘-in idp ⊙coe-seq-∙ (p ◃∙ ps) = ⊙coe (↯ (p ◃∙ ps)) ◃⊙idf =⊙∘₁⟨ ap ⊙coe (↯-∙∙ (p ◃∎) ps) ⟩ ⊙coe (p ∙ ↯ ps) ◃⊙idf =⊙∘⟨ ⊙coe-∙ p (↯ ps) ⟩ ⊙coe (↯ ps) ◃⊙∘ ⊙coe p ◃⊙idf =⊙∘⟨ 0 & 1 & ⊙coe-seq-∙ ps ⟩ ⊙coe-seq ps ⊙∘∘ ⊙coe p ◃⊙idf ∎⊙∘ ⊙coe-seq-=ₛ : ∀ {i} {X Y : Ptd i} {ps qs : X =-= Y} → ps =ₛ qs → ⊙coe-seq ps =⊙∘ ⊙coe-seq qs ⊙coe-seq-=ₛ {ps = ps} {qs = qs} r = ⊙coe-seq ps =⊙∘⟨ !⊙∘ (⊙coe-seq-∙ ps) ⟩ ⊙coe (↯ ps) ◃⊙idf =⊙∘₁⟨ ap ⊙coe (=ₛ-out r) ⟩ ⊙coe (↯ qs) ◃⊙idf =⊙∘⟨ ⊙coe-seq-∙ qs ⟩ ⊙coe-seq qs ∎⊙∘
{ "alphanum_fraction": 0.4367719691, "avg_line_length": 35.068627451, "ext": "agda", "hexsha": "d20cdb5ec221ffeb308f621f247654f4b22485b5", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/types/FunctionSeq.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/types/FunctionSeq.agda", "max_line_length": 92, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/types/FunctionSeq.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 6344, "size": 10731 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The Colist type and some operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Colist where open import Size open import Data.Unit open import Data.Nat.Base open import Data.Product using (_×_ ; _,_) open import Data.These using (These; this; that; these) open import Data.Maybe using (Maybe; nothing; just) open import Data.List.Base using (List; []; _∷_) open import Data.List.NonEmpty using (List⁺; _∷_) open import Data.Vec as Vec using (Vec; []; _∷_) open import Data.BoundedVec as BVec using (BoundedVec) open import Function open import Codata.Thunk using (Thunk; force) open import Codata.Conat as Conat using (Conat ; zero ; suc) open import Codata.Cowriter as CW using (Cowriter; _∷_) open import Codata.Delay as Delay using (Delay ; now ; later) open import Codata.Stream using (Stream ; _∷_) data Colist {a} (A : Set a) (i : Size) : Set a where [] : Colist A i _∷_ : A → Thunk (Colist A) i → Colist A i module _ {w a} {W : Set w} {A : Set a} where ------------------------------------------------------------------------ -- Relationship to Cowriter. fromCowriter : ∀ {i} → Cowriter W A i → Colist W i fromCowriter CW.[ _ ] = [] fromCowriter (w ∷ ca) = w ∷ λ where .force → fromCowriter (ca .force) module _ {a} {A : Set a} where toCowriter : ∀ {i} → Colist A i → Cowriter A ⊤ i toCowriter [] = CW.[ _ ] toCowriter (a ∷ as) = a ∷ λ where .force → toCowriter (as .force) ------------------------------------------------------------------------ -- Basic functions. [_] : A → Colist A ∞ [ a ] = a ∷ λ where .force → [] length : ∀ {i} → Colist A i → Conat i length [] = zero length (x ∷ xs) = suc λ where .force → length (xs .force) replicate : ∀ {i} → Conat i → A → Colist A i replicate zero a = [] replicate (suc n) a = a ∷ λ where .force → replicate (n .force) a infixr 5 _++_ _⁺++_ _++_ : ∀ {i} → Colist A i → Colist A i → Colist A i [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ λ where .force → xs .force ++ ys lookup : ℕ → Colist A ∞ → Maybe A lookup n [] = nothing lookup zero (a ∷ as) = just a lookup (suc n) (a ∷ as) = lookup n (as .force) colookup : ∀ {i} → Conat i → Colist A i → Delay (Maybe A) i colookup n [] = now nothing colookup zero (a ∷ as) = now (just a) colookup (suc n) (a ∷ as) = later λ where .force → colookup (n .force) (as .force) take : ∀ (n : ℕ) → Colist A ∞ → BoundedVec A n take zero xs = BVec.[] take n [] = BVec.[] take (suc n) (x ∷ xs) = x BVec.∷ take n (xs .force) cotake : ∀ {i} → Conat i → Stream A i → Colist A i cotake zero xs = [] cotake (suc n) (x ∷ xs) = x ∷ λ where .force → cotake (n .force) (xs .force) fromList : List A → Colist A ∞ fromList [] = [] fromList (x ∷ xs) = x ∷ λ where .force → fromList xs _⁺++_ : ∀ {i} → List⁺ A → Thunk (Colist A) i → Colist A i (x ∷ xs) ⁺++ ys = x ∷ λ where .force → fromList xs ++ ys .force fromStream : ∀ {i} → Stream A i → Colist A i fromStream = cotake Conat.infinity module _ {ℓ} {A : Set ℓ} where chunksOf : (n : ℕ) → Colist A ∞ → Cowriter (Vec A n) (BoundedVec A n) ∞ chunksOf n = chunksOfAcc n id id module ChunksOf where chunksOfAcc : ∀ {i} m → -- We have two continuations but we are only ever going to use one. -- If we had linear types, we would write the type using the & conjunction here. (k≤ : BoundedVec A m → BoundedVec A n) → (k≡ : Vec A m → Vec A n) → -- Finally we chop up the input stream. Colist A ∞ → Cowriter (Vec A n) (BoundedVec A n) i chunksOfAcc zero k≤ k≡ as = k≡ [] ∷ λ where .force → chunksOfAcc n id id as chunksOfAcc (suc k) k≤ k≡ [] = CW.[ k≤ BVec.[] ] chunksOfAcc (suc k) k≤ k≡ (a ∷ as) = chunksOfAcc k (k≤ ∘ (a BVec.∷_)) (k≡ ∘ (a ∷_)) (as .force) module _ {a b} {A : Set a} {B : Set b} where map : ∀ {i} (f : A → B) → Colist A i → Colist B i map f [] = [] map f (a ∷ as) = f a ∷ λ where .force → map f (as .force) unfold : ∀ {i} → (A → Maybe (A × B)) → A → Colist B i unfold next seed with next seed ... | nothing = [] ... | just (seed′ , b) = b ∷ λ where .force → unfold next seed′ scanl : ∀ {i} → (B → A → B) → B → Colist A i → Colist B i scanl c n [] = n ∷ λ where .force → [] scanl c n (a ∷ as) = n ∷ λ where .force → scanl c (c n a) (as .force) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where alignWith : ∀ {i} → (These A B → C) → Colist A i → Colist B i → Colist C i alignWith f [] bs = map (f ∘′ that) bs alignWith f as@(_ ∷ _) [] = map (f ∘′ this) as alignWith f (a ∷ as) (b ∷ bs) = f (these a b) ∷ λ where .force → alignWith f (as .force) (bs .force) zipWith : ∀ {i} → (A → B → C) → Colist A i → Colist B i → Colist C i zipWith f [] bs = [] zipWith f as [] = [] zipWith f (a ∷ as) (b ∷ bs) = f a b ∷ λ where .force → zipWith f (as .force) (bs .force) module _ {a b} {A : Set a} {B : Set b} where align : ∀ {i} → Colist A i → Colist B i → Colist (These A B) i align = alignWith id zip : ∀ {i} → Colist A i → Colist B i → Colist (A × B) i zip = zipWith _,_ ap : ∀ {i} → Colist (A → B) i → Colist A i → Colist B i ap = zipWith _$′_
{ "alphanum_fraction": 0.5279912184, "avg_line_length": 35.4935064935, "ext": "agda", "hexsha": "a2b4346c0cddb8cd4b1ef57ed37bf7f207641608", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Colist.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Colist.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Colist.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1939, "size": 5466 }
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <esz@posteo.de> module Algebra.Group where open import Algebra.Group.Group public open import Algebra.Group.Monoid public open import Algebra.Group.Semigroup public
{ "alphanum_fraction": 0.7824427481, "avg_line_length": 26.2, "ext": "agda", "hexsha": "2f871417d2c65c970799fb154750787dae3bf5f2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "esoeylemez/agda-simple", "max_forks_repo_path": "Algebra/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "esoeylemez/agda-simple", "max_issues_repo_path": "Algebra/Group.agda", "max_line_length": 48, "max_stars_count": 1, "max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "esoeylemez/agda-simple", "max_stars_repo_path": "Algebra/Group.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z", "num_tokens": 76, "size": 262 }
{-# OPTIONS --without-K #-} module Agda.Builtin.Coinduction where infix 1000 ♯_ {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-}
{ "alphanum_fraction": 0.5808383234, "avg_line_length": 16.7, "ext": "agda", "hexsha": "3359341b69eb8f23e4ccdf635b97cbb18baeda84", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Coinduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Coinduction.agda", "max_line_length": 37, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Coinduction.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z", "num_tokens": 53, "size": 167 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category {- Various combinators for working with Isomorphisms in the context of morphism equalities both for Category (Switch) and IsGroupoid (GroupoidR) -} module Categories.Morphism.Reasoning.Iso {o ℓ e} (C : Category o ℓ e) where open import Level open import Function renaming (id to idᶠ; _∘_ to _∙_) open import Categories.Category.Groupoid using (IsGroupoid) open import Categories.Morphism C open import Categories.Morphism.Reasoning.Core C open import Relation.Binary hiding (_⇒_) open Category C private variable A B X Y : Obj f g h k : X ⇒ Y open HomReasoning module Switch (i : X ≅ Y) where open _≅_ i switch-fromtoˡ : from ∘ h ≈ k → h ≈ to ∘ k switch-fromtoˡ {h = h} {k = k} pf = begin h ≈˘⟨ cancelˡ isoˡ ⟩ to ∘ (from ∘ h) ≈⟨ refl⟩∘⟨ pf ⟩ to ∘ k ∎ switch-tofromˡ : to ∘ h ≈ k → h ≈ from ∘ k switch-tofromˡ {h = h} {k = k} pf = begin h ≈˘⟨ cancelˡ isoʳ ⟩ from ∘ (to ∘ h) ≈⟨ refl⟩∘⟨ pf ⟩ from ∘ k ∎ switch-fromtoʳ : h ∘ from ≈ k → h ≈ k ∘ to switch-fromtoʳ {h = h} {k = k} pf = begin h ≈˘⟨ cancelʳ isoʳ ⟩ (h ∘ from) ∘ to ≈⟨ pf ⟩∘⟨refl ⟩ k ∘ to ∎ switch-tofromʳ : h ∘ to ≈ k → h ≈ k ∘ from switch-tofromʳ {h = h} {k = k} pf = begin h ≈˘⟨ cancelʳ isoˡ ⟩ (h ∘ to) ∘ from ≈⟨ pf ⟩∘⟨refl ⟩ k ∘ from ∎ cancel-fromʳ : h ∘ from ≈ k ∘ from → h ≈ k cancel-fromʳ {h = h} {k = k} pf = begin h ≈˘⟨ cancelʳ isoʳ ⟩ (h ∘ from) ∘ to ≈⟨ pf ⟩∘⟨refl ⟩ (k ∘ from) ∘ to ≈⟨ cancelʳ isoʳ ⟩ k ∎ cancel-fromˡ : from ∘ h ≈ from ∘ k → h ≈ k cancel-fromˡ {h = h} {k = k} pf = begin h ≈˘⟨ cancelˡ isoˡ ⟩ to ∘ (from ∘ h) ≈⟨ refl⟩∘⟨ pf ⟩ to ∘ (from ∘ k) ≈⟨ cancelˡ isoˡ ⟩ k ∎ cancel-toʳ : h ∘ to ≈ k ∘ to → h ≈ k cancel-toʳ {h = h} {k = k} pf = begin h ≈˘⟨ cancelʳ isoˡ ⟩ (h ∘ to) ∘ from ≈⟨ pf ⟩∘⟨refl ⟩ (k ∘ to) ∘ from ≈⟨ cancelʳ isoˡ ⟩ k ∎ cancel-toˡ : to ∘ h ≈ to ∘ k → h ≈ k cancel-toˡ {h = h} {k = k} pf = begin h ≈˘⟨ cancelˡ isoʳ ⟩ from ∘ (to ∘ h) ≈⟨ refl⟩∘⟨ pf ⟩ from ∘ (to ∘ k) ≈⟨ cancelˡ isoʳ ⟩ k ∎ -- We can flip an iso i in a commuting triangle, like so: -- -- i i⁻¹ -- X --------> Y X <-------- Y -- \ ≃ / \ ≃ / -- \ / \ / -- g \ / h ===> g \ / h -- \ / \ / -- V V V V -- A A -- flip-iso : {g : X ⇒ A} {h : Y ⇒ A} → g ≈ h ∘ from → g ∘ to ≈ h flip-iso tr₁ = sym (switch-fromtoʳ (sym tr₁)) -- Consider two commuting squares -- -- f₁ f₂ -- X -------> A X -------> A -- | | | | -- | | | | -- ≃ | i | h ≃ | i | h -- | | | | -- V V V V -- Y -------> B Y -------> B -- g₁ g₂ -- -- with i an isomorphism. Then g₁ ≈ g₂ if f₁ ≈ f₂. push-eq : {f₁ f₂ : X ⇒ A} {g₁ g₂ : Y ⇒ B} {h : A ⇒ B} → CommutativeSquare f₁ from h g₁ → CommutativeSquare f₂ from h g₂ → f₁ ≈ f₂ → g₁ ≈ g₂ push-eq {f₁ = f₁} {f₂} {g₁} {g₂} {h₂} sq₁ sq₂ hyp = begin g₁ ≈˘⟨ flip-iso sq₁ ⟩ (h₂ ∘ f₁) ∘ to ≈⟨ ∘-resp-≈ˡ (∘-resp-≈ʳ hyp) ⟩ (h₂ ∘ f₂) ∘ to ≈⟨ flip-iso sq₂ ⟩ g₂ ∎ open Switch public -- conjugates module _ (i : A ≅ B) (j : X ≅ Y) where private module i = _≅_ i module j = _≅_ j conjugate-from : f ∘ i.from ≈ j.from ∘ g → j.to ∘ f ≈ g ∘ i.to conjugate-from {f = f} {g = g} eq = begin j.to ∘ f ≈⟨ introʳ i.isoʳ ⟩ (j.to ∘ f) ∘ i.from ∘ i.to ≈⟨ center eq ⟩ j.to ∘ (j.from ∘ g) ∘ i.to ≈⟨ center⁻¹ j.isoˡ refl ⟩ id ∘ g ∘ i.to ≈⟨ identityˡ ⟩ g ∘ i.to ∎ conjugate-to : j.to ∘ f ≈ g ∘ i.to → f ∘ i.from ≈ j.from ∘ g conjugate-to {f = f} {g = g} eq = begin f ∘ i.from ≈⟨ introˡ j.isoʳ ⟩ (j.from ∘ j.to) ∘ f ∘ i.from ≈⟨ center eq ⟩ j.from ∘ (g ∘ i.to) ∘ i.from ≈⟨ center⁻¹ refl i.isoˡ ⟩ (j.from ∘ g) ∘ id ≈⟨ identityʳ ⟩ j.from ∘ g ∎ module GroupoidR (G : IsGroupoid C) where open IsGroupoid G using (_⁻¹; iso; equiv-obj) switch-fromtoˡ′ : f ∘ h ≈ k → h ≈ f ⁻¹ ∘ k switch-fromtoˡ′ = switch-fromtoˡ (equiv-obj _) switch-tofromˡ′ : f ⁻¹ ∘ h ≈ k → h ≈ f ∘ k switch-tofromˡ′ = switch-tofromˡ (equiv-obj _) switch-fromtoʳ′ : h ∘ f ≈ k → h ≈ k ∘ f ⁻¹ switch-fromtoʳ′ = switch-fromtoʳ (equiv-obj _) switch-tofromʳ′ : h ∘ f ⁻¹ ≈ k → h ≈ k ∘ f switch-tofromʳ′ = switch-tofromʳ (equiv-obj _)
{ "alphanum_fraction": 0.4282025819, "avg_line_length": 31.46875, "ext": "agda", "hexsha": "f933717a76f02520299ff63c575f4090a8d4b4ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Morphism/Reasoning/Iso.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Morphism/Reasoning/Iso.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Morphism/Reasoning/Iso.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2123, "size": 5035 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of operations on floats ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Float.Properties where open import Data.Bool.Base as Bool using (Bool) open import Data.Float.Base import Data.Word.Base as Word import Data.Word.Properties as Wₚ open import Relation.Nullary.Decidable as RN using (map′) open import Relation.Binary import Relation.Binary.Construct.On as On open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Primitive properties open import Agda.Builtin.Float.Properties renaming (primFloatToWord64Injective to toWord-injective) public ------------------------------------------------------------------------ -- Properties of _≈_ ≈⇒≡ : _≈_ ⇒ _≡_ ≈⇒≡ eq = toWord-injective _ _ (Wₚ.≈⇒≡ eq) ≈-reflexive : _≡_ ⇒ _≈_ ≈-reflexive eq = Wₚ.≈-reflexive (cong toWord eq) ≈-refl : Reflexive _≈_ ≈-refl = refl ≈-sym : Symmetric _≈_ ≈-sym = sym ≈-trans : Transitive _≈_ ≈-trans = trans ≈-subst : ∀ {ℓ} → Substitutive _≈_ ℓ ≈-subst P x≈y p = subst P (≈⇒≡ x≈y) p infix 4 _≈?_ _≈?_ : Decidable _≈_ _≈?_ = On.decidable toWord Word._≈_ Wₚ._≈?_ ≈-isEquivalence : IsEquivalence _≈_ ≈-isEquivalence = record { refl = λ {i} → ≈-refl {i} ; sym = λ {i j} → ≈-sym {i} {j} ; trans = λ {i j k} → ≈-trans {i} {j} {k} } ≈-setoid : Setoid _ _ ≈-setoid = record { isEquivalence = ≈-isEquivalence } ≈-isDecEquivalence : IsDecEquivalence _≈_ ≈-isDecEquivalence = record { isEquivalence = ≈-isEquivalence ; _≟_ = _≈?_ } ≈-decSetoid : DecSetoid _ _ ≈-decSetoid = record { isDecEquivalence = ≈-isDecEquivalence } ------------------------------------------------------------------------ -- Properties of _≡_ infix 4 _≟_ _≟_ : DecidableEquality Float x ≟ y = map′ ≈⇒≡ ≈-reflexive (x ≈? y) ≡-setoid : Setoid _ _ ≡-setoid = setoid Float ≡-decSetoid : DecSetoid _ _ ≡-decSetoid = decSetoid _≟_ ------------------------------------------------------------------------ -- Boolean equality test. infix 4 _==_ _==_ : Float → Float → Bool w₁ == w₂ = RN.⌊ w₁ ≟ w₂ ⌋ ------------------------------------------------------------------------ -- Properties of _<_ infix 4 _<?_ _<?_ : Decidable _<_ _<?_ = On.decidable toWord Word._<_ Wₚ._<?_ <-strictTotalOrder-≈ : StrictTotalOrder _ _ _ <-strictTotalOrder-≈ = On.strictTotalOrder Wₚ.<-strictTotalOrder-≈ toWord
{ "alphanum_fraction": 0.5321821036, "avg_line_length": 24.7378640777, "ext": "agda", "hexsha": "3f4b5c7568497536b0f378c24ec85855721c71ce", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Float/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Float/Properties.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Float/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 824, "size": 2548 }
open import Agda.Builtin.Equality cong : ∀ {A B : Set} → (f : A → B) → ∀ {x y} → x ≡ y → f x ≡ f y cong f refl = refl data ⊥ : Set where data N : Set where ze : N su : (⊥ → N) → N foo : N foo = su (\ ()) postulate ext : ∀ {A : Set} → (f g : ⊥ → A) → f ≡ g foo-suc : foo ≡ su (\ _ → foo) foo-suc = cong su (ext (λ ()) (λ _ → foo)) -- bad! no-cycle : ∀ {n} → n ≡ su (\ _ → n) → ⊥ no-cycle () false : ⊥ false = no-cycle foo-suc
{ "alphanum_fraction": 0.4681818182, "avg_line_length": 15.7142857143, "ext": "agda", "hexsha": "87b0a3b9ad79f0946205b9ecedc02719634dbe6d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4995.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4995.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4995.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 193, "size": 440 }
module Automaton.Deterministic.Oper where open import Automaton.Deterministic open import Logic.Propositional import Lvl open import Data.Boolean import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Data.List renaming (∅ to []) open import Data.Tuple as Tuple using (_,_) renaming (_⨯_ to _⨯'_) open import Data.Tuple.Equivalence open import Functional open import Sets.ExtensionalPredicateSet as PredSet using (PredSet ; _∈_) open import Structure.Operator open import Structure.Relator.Proofs open import Structure.Setoid open import Type private variable ℓ ℓ₁ ℓ₂ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₚ ℓₚ₁ ℓₚ₂ : Lvl.Level private variable Q Q₁ Q₂ State : Type{ℓ} private variable Σ Σ₁ Σ₂ Alphabet : Type{ℓ} module _ ⦃ equiv₁ : Equiv{ℓₑ₁}(Q₁) ⦄ ⦃ equiv₂ : Equiv{ℓₑ₂}(Q₂) ⦄ ⦃ equivₑ : Equiv{ℓₑ₃}(Σ) ⦄ where -- Automaton that accepts words accepted by both of the specified automatons _⨯_ : Deterministic{ℓₚ = ℓₚ₁}(Q₁)(Σ) → Deterministic{ℓₚ = ℓₚ₂}(Q₂)(Σ) → Deterministic(Q₁ ⨯' Q₂)(Σ) _⨯_ (deterministic δ₁ q₀₁ F₁) (deterministic δ₂ q₀₂ F₂) = deterministic δ ⦃ δ-op ⦄ q₀ F where δ : (Q₁ ⨯' Q₂) → Σ → (Q₁ ⨯' Q₂) δ(q₁ , q₂)(word) = (δ₁(q₁)(word) , δ₂(q₂)(word)) instance δ-op : BinaryOperator(δ) BinaryOperator.congruence δ-op ([∧]-intro xyl xyr) cc = [∧]-intro (congruence₂(δ₁) xyl cc) (congruence₂(δ₂) xyr cc) q₀ : (Q₁ ⨯' Q₂) q₀ = (q₀₁ , q₀₂) F : PredSet(Q₁ ⨯' Q₂) F = PredSet.intro (\{(q₁ , q₂) → (q₁ ∈ F₁) ∧ (q₂ ∈ F₂)}) ⦃ [∧]-unaryRelator ⦃ rel-P = [∘]-unaryRelator ⦃ rel = PredSet.preserve-equiv F₁ ⦄ ⦄ ⦃ rel-Q = [∘]-unaryRelator ⦃ rel = PredSet.preserve-equiv F₂ ⦄ ⦄ ⦄ -- Automaton that accepts words accepted by any of the specified automatons _+_ : Deterministic{ℓₚ = ℓₚ₁}(Q₁)(Σ) → Deterministic{ℓₚ = ℓₚ₂}(Q₂)(Σ) → Deterministic(Q₁ ⨯' Q₂)(Σ) _+_ (deterministic δ₁ q₀₁ F₁) (deterministic δ₂ q₀₂ F₂) = deterministic δ q₀ F where δ : (Q₁ ⨯' Q₂) → Σ → (Q₁ ⨯' Q₂) δ(q₀₁ , q₀₂)(word) = (δ₁(q₀₁)(word) , δ₂(q₀₂)(word)) instance δ-op : BinaryOperator(δ) BinaryOperator.congruence δ-op ([∧]-intro xyl xyr) cc = [∧]-intro (congruence₂(δ₁) xyl cc) (congruence₂(δ₂) xyr cc) q₀ : (Q₁ ⨯' Q₂) q₀ = (q₀₁ , q₀₂) F : PredSet(Q₁ ⨯' Q₂) F = PredSet.intro (\{(q₁ , q₂) → (q₁ ∈ F₁) ∨ (q₂ ∈ F₂)}) ⦃ [∨]-unaryRelator ⦃ rel-P = [∘]-unaryRelator ⦃ rel = PredSet.preserve-equiv F₁ ⦄ ⦄ ⦃ rel-Q = [∘]-unaryRelator ⦃ rel = PredSet.preserve-equiv F₂ ⦄ ⦄ ⦄ module _ ⦃ equiv : Equiv{ℓₑ}(Q) ⦄ ⦃ equivₑ : Equiv{ℓₑ₃}(Σ) ⦄ where -- Automaton that accepts words not accepted by the specified automaton ∁_ : Deterministic{ℓₚ = ℓₚ}(Q)(Σ) → Deterministic(Q)(Σ) ∁_ (deterministic δ q₀ F) = deterministic δ q₀ (PredSet.∁ F)
{ "alphanum_fraction": 0.6390489914, "avg_line_length": 40.8235294118, "ext": "agda", "hexsha": "683467b7505872ed234f722a9c5c5dca4c927ced", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Automaton/Deterministic/Oper.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Automaton/Deterministic/Oper.agda", "max_line_length": 121, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Automaton/Deterministic/Oper.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1199, "size": 2776 }
open import Agda.Builtin.Equality postulate A : Set id : A → A id x = x mutual ?Y : A → A → A ?Y = _ ?X : A → A → A ?X = _ -- This tries to solve ?X x x := ?Y x y, which fails but prunes -- ?Y x y := ?Z x. Failing ?X := ?Y we then try the other direction -- without realising that ?Y has been instantiated and (re)solve -- ?Y x y := ?X x x, leaving ?Z hanging! -- The `id` call is to make sure we get into `compareAtom`. The -- corresponding code in `compareTerm` does the right thing. constr₁ : ∀ x y → id (?X x x) ≡ id (?Y x y) constr₁ x y = refl -- We can then solve ?X. constr₂ : ∀ x y → ?X x y ≡ x constr₂ x y = refl -- And check that they really are solved checkY : ?Y ≡ λ x y → x checkY = refl checkX : ?X ≡ λ x y → x checkX = refl -- ...but we still have ?Z unsolved.
{ "alphanum_fraction": 0.5860805861, "avg_line_length": 21, "ext": "agda", "hexsha": "3b3893980b28eabd4e0916884688dc0a5ee24ba0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2978.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2978.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2978.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 296, "size": 819 }
open import Prelude hiding (_<_) module Implicits.Resolution.GenericFinite.TerminationCondition where open import Induction.WellFounded open import Implicits.Syntax record TerminationCondition : Set₁ where field TCtx : Set _<_ : TCtx → TCtx → Set _<?_ : (x y : TCtx) → Dec (x < y) step : ∀ {ν} → TCtx → ICtx ν → Type ν → Type ν → SimpleType ν → TCtx wf-< : Well-founded _<_ T-Acc : TCtx → Set T-Acc Φ = Acc _<_ Φ
{ "alphanum_fraction": 0.6532438479, "avg_line_length": 23.5263157895, "ext": "agda", "hexsha": "bae74a677d06563b54cb2894ac874582c505648e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/GenericFinite/TerminationCondition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/GenericFinite/TerminationCondition.agda", "max_line_length": 72, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/GenericFinite/TerminationCondition.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 150, "size": 447 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Finite where open import Level open import Data.Product using (Σ; _,_; ∃₂) open import Function.Equality using (Π; _⟶_) open import Function.Inverse open import Data.Nat as ℕ hiding (_⊔_) import Data.Fin as Fin open import Data.Vec as Vec open import Relation.Binary using (Setoid) import Relation.Binary.PropositionalEquality as ≡ open import Categories.Category open Π FiniteSetoid : ∀ {c ℓ} n (S : Setoid c ℓ) → Set _ FiniteSetoid n S = Inverse (≡.setoid (Fin.Fin n)) S record Finite {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where open Category C field ∣Obj∣ : ℕ ∣_⇒_∣ : Obj → Obj → ℕ Obj-finite : FiniteSetoid ∣Obj∣ (≡.setoid Obj) ⇒-finite : ∀ A B → FiniteSetoid ∣ A ⇒ B ∣ (hom-setoid {A} {B}) module Obj-finite = Inverse Obj-finite module ⇒-finite A B = Inverse (⇒-finite A B) private Fins : ∀ n → Vec (Fin.Fin n) n Fins ℕ.zero = [] Fins (ℕ.suc n) = Fin.fromℕ n ∷ Vec.map (Fin.raise 1) (Fins n) -- enumeration of all objects Objs : Vec Obj ∣Obj∣ Objs = Vec.map (Obj-finite.to ⟨$⟩_) (Fins ∣Obj∣) private ObjPairs : ∀ {a} {A : Set a} → (Obj → Obj → A) → Vec A (∣Obj∣ * ∣Obj∣) ObjPairs {_} {A} f = Objs >>= ap where ap : Obj → Vec A ∣Obj∣ ap X = Vec.map (f X) Objs -- enumeration of all morphisms of a given pair of objects ⟦_⇒_⟧ : ∀ A B → Vec (A ⇒ B) ∣ A ⇒ B ∣ ⟦ A ⇒ B ⟧ = Vec.map (⇒-finite.to A B ⟨$⟩_) (Fins ∣ A ⇒ B ∣) -- number of all morphisms ∣-⇒-| : ℕ ∣-⇒-| = foldr (λ _ → ℕ) _+_ 0 (ObjPairs ∣_⇒_∣)
{ "alphanum_fraction": 0.5948166877, "avg_line_length": 28.25, "ext": "agda", "hexsha": "8efac41273f4576215209ec04e7bd5e81555df59", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/Finite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/Finite.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/Finite.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 620, "size": 1582 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some properties imply others ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Unary.Consequences where open import Relation.Unary open import Relation.Nullary using (recompute) dec⟶recomputable : {a ℓ : _} {A : Set a} {P : Pred A ℓ} → Decidable P → Recomputable P dec⟶recomputable P-dec = recompute (P-dec _)
{ "alphanum_fraction": 0.5040322581, "avg_line_length": 31, "ext": "agda", "hexsha": "23bf21b22da4fe31e4c13a7107fd068f89cd8b69", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Unary/Consequences.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Unary/Consequences.agda", "max_line_length": 86, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Unary/Consequences.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 107, "size": 496 }
{-# OPTIONS --without-K --safe #-} module Cats.Category.Presheaves where open import Level using (_⊔_ ; suc) open import Cats.Category open import Cats.Category.Fun using (Fun) open import Cats.Category.Op using (_ᵒᵖ) open import Cats.Category.Setoids using (Setoids) Presheaves : ∀ {lo la l≈} (C : Category lo la l≈) l l′ → Category (lo ⊔ la ⊔ l≈ ⊔ suc (l ⊔ l′)) (lo ⊔ la ⊔ l ⊔ l′) (lo ⊔ l ⊔ l′) Presheaves C l l′ = Fun (C ᵒᵖ) (Setoids l l′)
{ "alphanum_fraction": 0.6503340757, "avg_line_length": 29.9333333333, "ext": "agda", "hexsha": "03313b33e091d7e9d71327b418fcfa7a2425b354", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Presheaves.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Presheaves.agda", "max_line_length": 75, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Presheaves.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 166, "size": 449 }
{-# OPTIONS --without-K #-} infixr 1 _‘→’_ record ⊤ : Set where constructor tt data ⊥ : Set where mutual data Type : Set where _‘→’_ : Type → Type → Type ‘□’ : Type → Type ‘⊤’ : Type ‘⊥’ : Type data □ : Type → Set where Lӧb : ∀ {X} → □ (‘□’ X ‘→’ X) → □ X ‘tt’ : □ ‘⊤’ mutual ⌞_⌟ : Type → Set ⌞ A ‘→’ B ⌟ = ⌞ A ⌟ → ⌞ B ⌟ ⌞ ‘□’ T ⌟ = □ T ⌞ ‘⊤’ ⌟ = ⊤ ⌞ ‘⊥’ ⌟ = ⊥ ⌞_⌟t : ∀ {T : Type} → □ T → ⌞ T ⌟ ⌞ (Lӧb □‘X’→X) ⌟t = ⌞ □‘X’→X ⌟t (Lӧb □‘X’→X) ⌞ ‘tt’ ⌟t = tt ¬_ : Set → Set ¬ T = T → ⊥ ‘¬’_ : Type → Type ‘¬’ T = T ‘→’ ‘⊥’ lӧb : ∀ {‘X’} → □ (‘□’ ‘X’ ‘→’ ‘X’) → ⌞ ‘X’ ⌟ lӧb f = ⌞ Lӧb f ⌟t incompleteness : ¬ □ (‘¬’ (‘□’ ‘⊥’)) incompleteness = lӧb soundness : ¬ □ ‘⊥’ soundness x = ⌞ x ⌟t non-emptyness : □ ‘⊤’ non-emptyness = ‘tt’
{ "alphanum_fraction": 0.3803526448, "avg_line_length": 16.5416666667, "ext": "agda", "hexsha": "092aa5fc37103f66b6ddb36bbbc79968378f5a4c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JasonGross/lob", "max_forks_repo_path": "internal/mini-mini-lob.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JasonGross/lob", "max_issues_repo_path": "internal/mini-mini-lob.agda", "max_line_length": 46, "max_stars_count": 19, "max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JasonGross/lob", "max_stars_repo_path": "internal/mini-mini-lob.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z", "num_tokens": 499, "size": 794 }
------------------------------------------------------------------------ -- Truncation, defined as a HIT ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} -- The beginning of this module follows the HoTT book rather closely. -- The module is parametrised by a notion of equality. The higher -- constructor of the HIT defining the truncation uses path equality, -- but the supplied notion of equality is used for many other things. import Equality.Path as P module H-level.Truncation {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as TP using (∥_∥) open import Monad equality-with-J open import Nat equality-with-J as Nat using (_≤_; min) import Pointed-type equality-with-J as PT open import Sphere eq open import Suspension eq as Susp using (north) open import Univalence-axiom equality-with-J private variable a b ℓ p : Level A B C : Type a P : A → Type p e x y : A f g r : A → B m n : ℕ k : Isomorphism-kind -- A truncation operator for positive h-levels. data ∥_∥[1+_] (A : Type a) (n : ℕ) : Type a where ∣_∣ : A → ∥ A ∥[1+ n ] hub : (r : 𝕊 n → ∥ A ∥[1+ n ]) → ∥ A ∥[1+ n ] spokeᴾ : (r : 𝕊 n → ∥ A ∥[1+ n ]) (x : 𝕊 n) → r x P.≡ hub r -- Spoke equalities. spoke : (r : 𝕊 n → ∥ A ∥[1+ n ]) (x : 𝕊 n) → r x ≡ hub r spoke r x = _↔_.from ≡↔≡ (spokeᴾ r x) -- The truncation operator produces types of the right h-level. truncation-has-correct-h-level : ∀ n → H-level (1 + n) ∥ A ∥[1+ n ] truncation-has-correct-h-level {A = A} n = _↔_.from +↔∀contractible𝕊→ᴮ c where c : ∀ x → Contractible ((𝕊 n , north) PT.→ᴮ (∥ A ∥[1+ n ] , x)) c x = (const x , (const x (north {A = 𝕊 n}) ≡⟨⟩ x ∎)) , λ { (f , fn≡x) → Σ-≡,≡→≡ (⟨ext⟩ λ y → const x y ≡⟨⟩ x ≡⟨ sym fn≡x ⟩ f north ≡⟨ spoke f north ⟩ hub f ≡⟨ sym $ spoke f y ⟩∎ f y ∎) (subst (λ f → f north ≡ x) (⟨ext⟩ (λ y → trans (sym fn≡x) (trans (spoke f north) (sym (spoke f y))))) (refl x) ≡⟨ subst-ext _ _ ⟩ subst (_≡ x) (trans (sym fn≡x) (trans (spoke f north) (sym (spoke f north)))) (refl x) ≡⟨ cong (λ p → subst (_≡ x) (trans (sym fn≡x) p) (refl x)) $ trans-symʳ _ ⟩ subst (_≡ x) (trans (sym fn≡x) (refl (f north))) (refl x) ≡⟨ cong (λ p → subst (_≡ x) p (refl x)) $ trans-reflʳ _ ⟩ subst (_≡ x) (sym fn≡x) (refl x) ≡⟨ subst-trans _ ⟩ trans fn≡x (refl x) ≡⟨ trans-reflʳ _ ⟩∎ fn≡x ∎) } -- A dependent eliminator, expressed using paths. record Elimᴾ {A : Type a} (P : ∥ A ∥[1+ n ] → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : ∀ x → P ∣ x ∣ hubʳ : (r : 𝕊 n → ∥ A ∥[1+ n ]) → (∀ x → P (r x)) → P (hub r) spokeʳ : (r : 𝕊 n → ∥ A ∥[1+ n ]) (p : ∀ x → P (r x)) (x : 𝕊 n) → P.[ (λ i → P (spokeᴾ r x i)) ] p x ≡ hubʳ r p open Elimᴾ public elimᴾ : Elimᴾ P → ∀ x → P x elimᴾ {P = P} e = helper where module E = Elimᴾ e helper : ∀ x → P x helper ∣ x ∣ = E.∣∣ʳ x helper (hub r) = E.hubʳ r (λ x → helper (r x)) helper (spokeᴾ r x i) = E.spokeʳ r (λ x → helper (r x)) x i -- A non-dependent eliminator, expressed using paths. record Recᴾ (n : ℕ) (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field ∣∣ʳ : A → B hubʳ : (𝕊 n → ∥ A ∥[1+ n ]) → (𝕊 n → B) → B spokeʳ : (r : 𝕊 n → ∥ A ∥[1+ n ]) (p : 𝕊 n → B) (x : 𝕊 n) → p x P.≡ hubʳ r p open Recᴾ public recᴾ : Recᴾ n A B → ∥ A ∥[1+ n ] → B recᴾ r = elimᴾ eᴾ where module R = Recᴾ r eᴾ : Elimᴾ _ eᴾ .∣∣ʳ = r .∣∣ʳ eᴾ .hubʳ = r .hubʳ eᴾ .spokeʳ = r .spokeʳ -- A dependent eliminator. record Elim′ {A : Type a} (P : ∥ A ∥[1+ n ] → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : ∀ x → P ∣ x ∣ hubʳ : (r : 𝕊 n → ∥ A ∥[1+ n ]) → (∀ x → P (r x)) → P (hub r) spokeʳ : (r : 𝕊 n → ∥ A ∥[1+ n ]) (p : ∀ x → P (r x)) (x : 𝕊 n) → subst P (spoke r x) (p x) ≡ hubʳ r p open Elim′ public elim′ : Elim′ P → ∀ x → P x elim′ e′ = elimᴾ eᴾ where module E′ = Elim′ e′ eᴾ : Elimᴾ _ eᴾ .∣∣ʳ = E′.∣∣ʳ eᴾ .hubʳ = E′.hubʳ eᴾ .spokeʳ r p x = subst≡→[]≡ (E′.spokeʳ r p x) elim′-spoke : dcong (elim′ e) (spoke r x) ≡ Elim′.spokeʳ e r (λ x → elim′ e (r x)) x elim′-spoke = dcong-subst≡→[]≡ (refl _) -- A non-dependent eliminator. record Rec′ (n : ℕ) (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field ∣∣ʳ : A → B hubʳ : (𝕊 n → ∥ A ∥[1+ n ]) → (𝕊 n → B) → B spokeʳ : (r : 𝕊 n → ∥ A ∥[1+ n ]) (p : 𝕊 n → B) (x : 𝕊 n) → p x ≡ hubʳ r p open Rec′ public rec′ : Rec′ n A B → ∥ A ∥[1+ n ] → B rec′ r′ = recᴾ rᴾ where module R′ = Rec′ r′ rᴾ : Recᴾ _ _ _ rᴾ .∣∣ʳ = R′.∣∣ʳ rᴾ .hubʳ = R′.hubʳ rᴾ .spokeʳ r p x = _↔_.to ≡↔≡ (R′.spokeʳ r p x) rec′-spoke : cong (rec′ e) (spoke r x) ≡ Rec′.spokeʳ e r (λ x → rec′ e (r x)) x rec′-spoke = cong-≡↔≡ (refl _) -- A dependent eliminator that can be used when the motive is a family -- of types, all of a certain h-level. record Elim {A : Type a} (P : ∥ A ∥[1+ n ] → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : ∀ x → P ∣ x ∣ h-levelʳ : ∀ x → H-level (1 + n) (P x) open Elim public elim : Elim {n = n} {A = A} P → ∀ x → P x elim {n = n} {A = A} {P = P} e = elim′ e′ where module _ (r : 𝕊 n → ∥ A ∥[1+ n ]) (p : ∀ x → P (r x)) where h′ : 𝕊 n → P (hub r) h′ x = subst P (spoke r x) (p x) h = h′ north lemma = $⟨ e .h-levelʳ ⟩ (∀ x → H-level (1 + n) (P x)) ↝⟨ _$ _ ⟩ H-level (1 + n) (P (hub r)) ↔⟨ +↔∀contractible𝕊→ᴮ ⟩ (∀ h → Contractible ((𝕊 n , north) PT.→ᴮ (P (hub r) , h))) ↝⟨ _$ _ ⟩ Contractible ((𝕊 n , north) PT.→ᴮ (P (hub r) , h)) ↝⟨ mono₁ _ ⟩□ Is-proposition ((𝕊 n , north) PT.→ᴮ (P (hub r) , h)) □ s = λ x → subst P (spoke r x) (p x) ≡⟨⟩ h′ x ≡⟨ cong (λ f → proj₁ f x) $ lemma (h′ , refl _) (const h , refl _) ⟩ const h x ≡⟨⟩ h ∎ e′ : Elim′ _ e′ .∣∣ʳ = e .∣∣ʳ e′ .hubʳ = h e′ .spokeʳ = s -- A non-dependent eliminator that can be used when the motive is a -- type of a certain h-level. record Rec (n : ℕ) (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field ∣∣ʳ : A → B h-levelʳ : H-level (1 + n) B open Rec public rec : Rec n A B → ∥ A ∥[1+ n ] → B rec r = elim λ where .∣∣ʳ → r .∣∣ʳ .h-levelʳ _ → r .h-levelʳ -- Dependent functions into P that agree on the image of ∣_∣ agree -- everywhere, if P is a family of types that all have a certain -- h-level. uniqueness′ : {f g : (x : ∥ A ∥[1+ n ]) → P x} → (∀ x → H-level (2 + n) (P x)) → ((x : A) → f ∣ x ∣ ≡ g ∣ x ∣) → ((x : ∥ A ∥[1+ n ]) → f x ≡ g x) uniqueness′ {n = n} P-h f≡g = elim λ where .∣∣ʳ → f≡g .h-levelʳ _ → +⇒≡ {n = suc n} (P-h _) -- A special case of the previous property. uniqueness : {f g : ∥ A ∥[1+ n ] → B} → H-level (1 + n) B → ((x : A) → f ∣ x ∣ ≡ g ∣ x ∣) → ((x : ∥ A ∥[1+ n ]) → f x ≡ g x) uniqueness h = uniqueness′ (λ _ → mono₁ _ h) -- The truncation operator's universal property. universal-property : H-level (1 + n) B → (∥ A ∥[1+ n ] → B) ↔ (A → B) universal-property h = record { surjection = record { logical-equivalence = record { to = _∘ ∣_∣ ; from = λ f → rec λ where .∣∣ʳ → f .h-levelʳ → h } ; right-inverse-of = refl } ; left-inverse-of = λ f → ⟨ext⟩ $ uniqueness h (λ x → f ∣ x ∣ ∎) } -- The truncation operator ∥_∥[1+ n ] is a functor. ∥∥-map : (A → B) → ∥ A ∥[1+ n ] → ∥ B ∥[1+ n ] ∥∥-map f = rec λ where .∣∣ʳ x → ∣ f x ∣ .h-levelʳ → truncation-has-correct-h-level _ ∥∥-map-id : (x : ∥ A ∥[1+ n ]) → ∥∥-map id x ≡ x ∥∥-map-id = uniqueness (truncation-has-correct-h-level _) (λ x → ∣ x ∣ ∎) ∥∥-map-∘ : (x : ∥ A ∥[1+ n ]) → ∥∥-map (f ∘ g) x ≡ ∥∥-map f (∥∥-map g x) ∥∥-map-∘ {f = f} {g = g} = uniqueness (truncation-has-correct-h-level _) (λ x → ∣ f (g x) ∣ ∎) -- A zip function. ∥∥-zip : (A → B → C) → ∥ A ∥[1+ n ] → ∥ B ∥[1+ n ] → ∥ C ∥[1+ n ] ∥∥-zip f = rec λ where .∣∣ʳ x → ∥∥-map (f x) .h-levelʳ → Π-closure ext _ λ _ → truncation-has-correct-h-level _ -- A has h-level 1 + n if and only if it is isomorphic to -- ∥ A ∥[1+ n ]. +⇔∥∥↔ : H-level (1 + n) A ⇔ (∥ A ∥[1+ n ] ↔ A) +⇔∥∥↔ {n = n} {A = A} = record { to = λ h → record { surjection = record { logical-equivalence = record { from = ∣_∣ ; to = rec λ where .∣∣ʳ → id .h-levelʳ → h } ; right-inverse-of = refl } ; left-inverse-of = elim λ where .∣∣ʳ x → ∣ x ∣ ∎ .h-levelʳ _ → ⇒≡ _ $ truncation-has-correct-h-level _ } ; from = ∥ A ∥[1+ n ] ↔ A ↝⟨ H-level-cong ext _ ⟩ (H-level (1 + n) ∥ A ∥[1+ n ] ↔ H-level (1 + n) A) ↝⟨ (λ hyp → _↔_.to hyp (truncation-has-correct-h-level _)) ⟩□ H-level (1 + n) A □ } -- The (1 + n)-truncation of x ≡ y, where x and y have type A, is -- equivalent to the equality of ∣ x ∣ and ∣ y ∣ (as elements of the -- (2 + n)-truncation of A), assuming univalence. -- -- Along with the fact that this lemma computes in a certain way (see -- below) this is more or less Theorem 7.3.12 from the HoTT book. ∥≡∥≃∣∣≡∣∣ : {A : Type a} {x y : A} → Univalence a → ∥ x ≡ y ∥[1+ n ] ≃ _≡_ {A = ∥ A ∥[1+ suc n ]} ∣ x ∣ ∣ y ∣ ∥≡∥≃∣∣≡∣∣ {n = n} {A = A} univ = Eq.↔→≃ (decode ∣ _ ∣ ∣ _ ∣) (encode ∣ _ ∣ ∣ _ ∣) (decode-encode _) (encode-decode _ _) where Eq : (_ _ : ∥ A ∥[1+ suc n ]) → ∃ λ (B : Type _) → H-level (suc n) B Eq = rec λ where .h-levelʳ → Π-closure ext (2 + n) λ _ → ∃-H-level-H-level-1+ ext univ (1 + n) .∣∣ʳ x → rec λ where .h-levelʳ → ∃-H-level-H-level-1+ ext univ (1 + n) .∣∣ʳ y → ∥ x ≡ y ∥[1+ n ] , truncation-has-correct-h-level n Eq-refl : (x : ∥ A ∥[1+ suc n ]) → proj₁ (Eq x x) Eq-refl = elim λ where .∣∣ʳ x → ∣ refl x ∣ .h-levelʳ x → mono₁ (1 + n) $ proj₂ (Eq x x) decode : ∀ x y → proj₁ (Eq x y) → x ≡ y decode = elim λ where .h-levelʳ _ → Π-closure ext (2 + n) λ _ → Π-closure ext (2 + n) λ _ → mono₁ (2 + n) $ truncation-has-correct-h-level (1 + n) .∣∣ʳ x → elim λ where .h-levelʳ _ → Π-closure ext (2 + n) λ _ → mono₁ (2 + n) $ truncation-has-correct-h-level (1 + n) .∣∣ʳ y → rec λ where .h-levelʳ → truncation-has-correct-h-level (1 + n) .∣∣ʳ → cong ∣_∣ encode : ∀ x y → x ≡ y → proj₁ (Eq x y) encode x y x≡y = subst (λ y → proj₁ (Eq x y)) x≡y (Eq-refl x) decode-encode : ∀ x (x≡y : x ≡ y) → decode x y (encode x y x≡y) ≡ x≡y decode-encode = elim λ where .h-levelʳ _ → Π-closure ext (2 + n) λ _ → mono₁ (3 + n) $ mono₁ (2 + n) $ truncation-has-correct-h-level (1 + n) .∣∣ʳ x → elim¹ (λ x≡y → decode _ _ (encode _ _ x≡y) ≡ x≡y) (decode (∣ x ∣) (∣ x ∣) (encode ∣ x ∣ ∣ x ∣ (refl ∣ x ∣)) ≡⟨⟩ decode (∣ x ∣) (∣ x ∣) (subst (λ y → proj₁ (Eq ∣ x ∣ y)) (refl ∣ x ∣) ∣ refl x ∣) ≡⟨ cong (decode _ _) $ subst-refl _ _ ⟩ decode (∣ x ∣) (∣ x ∣) (∣ refl x ∣) ≡⟨⟩ cong ∣_∣ (refl x) ≡⟨ cong-refl _ ⟩∎ refl ∣ x ∣ ∎) encode-decode : ∀ x y (eq : proj₁ (Eq x y)) → encode x y (decode x y eq) ≡ eq encode-decode = elim λ where .h-levelʳ x → Π-closure ext (2 + n) λ y → Π-closure ext (2 + n) λ _ → mono₁ (2 + n) $ mono₁ (1 + n) $ proj₂ (Eq x y) .∣∣ʳ x → elim λ where .h-levelʳ y → Π-closure ext (2 + n) λ _ → mono₁ (2 + n) $ mono₁ (1 + n) $ proj₂ (Eq ∣ x ∣ y) .∣∣ʳ y → elim λ where .h-levelʳ _ → mono₁ (1 + n) $ truncation-has-correct-h-level n .∣∣ʳ eq → encode ∣ x ∣ ∣ y ∣ (decode (∣ x ∣) (∣ y ∣) (∣ eq ∣)) ≡⟨⟩ subst (λ y → proj₁ (Eq ∣ x ∣ y)) (cong ∣_∣ eq) (∣ refl x ∣) ≡⟨ sym $ subst-∘ _ _ _ ⟩ subst (λ y → proj₁ (Eq ∣ x ∣ ∣ y ∣)) eq (∣ refl x ∣) ≡⟨⟩ subst (λ y → ∥ x ≡ y ∥[1+ n ]) eq (∣ refl x ∣) ≡⟨ elim¹ (λ eq → subst (λ y → ∥ x ≡ y ∥[1+ n ]) eq (∣ refl x ∣) ≡ ∣ subst (x ≡_) eq (refl x) ∣) (trans (subst-refl _ _) $ cong ∣_∣ $ sym $ subst-refl _ _) _ ⟩ ∣ subst (x ≡_) eq (refl x) ∣ ≡⟨ cong ∣_∣ $ sym trans-subst ⟩ ∣ trans (refl x) eq ∣ ≡⟨ cong ∣_∣ $ trans-reflˡ _ ⟩∎ ∣ eq ∣ ∎ _ : {A : Type a} {x y : A} {univ : Univalence a} {x≡y : x ≡ y} → _≃_.to (∥≡∥≃∣∣≡∣∣ {n = n} univ) ∣ x≡y ∣ ≡ cong ∣_∣ x≡y _ = refl _ -- The truncation operator commutes with _×_. -- -- This result is similar to Theorem 7.3.8 from the HoTT book. ∥∥×∥∥≃∥×∥ : (∥ A ∥[1+ n ] × ∥ B ∥[1+ n ]) ≃ ∥ A × B ∥[1+ n ] ∥∥×∥∥≃∥×∥ {n = n} = Eq.↔→≃ (uncurry $ rec λ where .h-levelʳ → Π-closure ext _ λ _ → truncation-has-correct-h-level _ .∣∣ʳ x → rec λ where .h-levelʳ → truncation-has-correct-h-level _ .∣∣ʳ y → ∣ x , y ∣) (rec λ where .∣∣ʳ → Σ-map ∣_∣ ∣_∣ .h-levelʳ → s) (elim λ where .∣∣ʳ _ → refl _ .h-levelʳ _ → mono₁ (1 + n) $ truncation-has-correct-h-level n) (uncurry $ elim λ where .h-levelʳ _ → Π-closure ext (1 + n) λ _ → mono₁ (1 + n) s .∣∣ʳ _ → elim λ where .h-levelʳ _ → mono₁ (1 + n) s .∣∣ʳ _ → refl _) where s = ×-closure _ (truncation-has-correct-h-level _) (truncation-has-correct-h-level _) -- Nested truncations where the inner truncation's h-level is at least -- as large as the outer truncation's h-level can be flattened. flatten-≥ : m ≤ n → ∥ ∥ A ∥[1+ n ] ∥[1+ m ] ↔ ∥ A ∥[1+ m ] flatten-≥ m≤n = record { surjection = record { logical-equivalence = record { from = ∥∥-map ∣_∣ ; to = rec λ where .h-levelʳ → truncation-has-correct-h-level _ .∣∣ʳ → rec λ where .∣∣ʳ → ∣_∣ .h-levelʳ → mono (Nat.suc≤suc m≤n) (truncation-has-correct-h-level _) } ; right-inverse-of = uniqueness (truncation-has-correct-h-level _) (λ x → ∣ x ∣ ∎) } ; left-inverse-of = uniqueness (truncation-has-correct-h-level _) (uniqueness (mono (Nat.suc≤suc m≤n) (truncation-has-correct-h-level _)) (λ x → ∣ ∣ x ∣ ∣ ∎)) } -- The remainder of this module is not based on the HoTT book. -- Nested truncations where the inner truncation's h-level is at most -- as large as the outer truncation's h-level can be flattened. flatten-≤ : m ≤ n → ∥ ∥ A ∥[1+ m ] ∥[1+ n ] ↔ ∥ A ∥[1+ m ] flatten-≤ m≤n = record { surjection = record { logical-equivalence = record { from = ∣_∣ ; to = rec λ where .∣∣ʳ → id .h-levelʳ → mono (Nat.suc≤suc m≤n) (truncation-has-correct-h-level _) } ; right-inverse-of = refl } ; left-inverse-of = uniqueness (truncation-has-correct-h-level _) (λ x → ∣ x ∣ ∎) } -- Nested truncations can be flattened. flatten : ∥ ∥ A ∥[1+ m ] ∥[1+ n ] ↔ ∥ A ∥[1+ min m n ] flatten {A = A} {m = m} {n = n} = case Nat.total m n of λ where (inj₁ m≤n) → ∥ ∥ A ∥[1+ m ] ∥[1+ n ] ↝⟨ flatten-≤ m≤n ⟩ ∥ A ∥[1+ m ] ↝⟨ ≡⇒↝ _ $ cong ∥ A ∥[1+_] $ sym $ _⇔_.to Nat.≤⇔min≡ m≤n ⟩□ ∥ A ∥[1+ min m n ] □ (inj₂ m≥n) → ∥ ∥ A ∥[1+ m ] ∥[1+ n ] ↝⟨ flatten-≥ m≥n ⟩ ∥ A ∥[1+ n ] ↝⟨ ≡⇒↝ _ $ cong ∥ A ∥[1+_] $ sym $ _⇔_.to Nat.≤⇔min≡ m≥n ⟩ ∥ A ∥[1+ min n m ] ↝⟨ ≡⇒↝ _ $ cong ∥ A ∥[1+_] $ Nat.min-comm _ _ ⟩□ ∥ A ∥[1+ min m n ] □ -- The propositional truncation operator ∥_∥ is pointwise isomorphic -- to ∥_∥[1+ 0 ]. ∥∥↔∥∥ : ∥ A ∥ ↔ ∥ A ∥[1+ 0 ] ∥∥↔∥∥ = record { surjection = record { logical-equivalence = record { to = TP.rec (truncation-has-correct-h-level 0) ∣_∣ ; from = rec λ where .∣∣ʳ → TP.∣_∣ .h-levelʳ → TP.truncation-is-proposition } ; right-inverse-of = λ _ → truncation-has-correct-h-level 0 _ _ } ; left-inverse-of = λ _ → TP.truncation-is-proposition _ _ } -- A universe-polymorphic variant of bind. infixl 5 _>>=′_ _>>=′_ : ∥ A ∥[1+ n ] → (A → ∥ B ∥[1+ n ]) → ∥ B ∥[1+ n ] _>>=′_ {A = A} {n = n} {B = B} = curry ( ∥ A ∥[1+ n ] × (A → ∥ B ∥[1+ n ]) ↝⟨ uncurry (flip ∥∥-map) ⟩ ∥ ∥ B ∥[1+ n ] ∥[1+ n ] ↔⟨ flatten-≤ Nat.≤-refl ⟩□ ∥ B ∥[1+ n ] □) -- ∥_∥[1+ n ] is a monad. instance monad : Monad {c = ℓ} (∥_∥[1+ n ]) Raw-monad.return (Monad.raw-monad monad) = ∣_∣ Raw-monad._>>=_ (Monad.raw-monad monad) = _>>=′_ Monad.left-identity monad = λ _ _ → refl _ Monad.right-identity monad = uniqueness (truncation-has-correct-h-level _) (λ _ → refl _) Monad.associativity monad = flip λ f → flip λ g → uniqueness (truncation-has-correct-h-level _) (λ x → f x >>=′ g ∎) -- The truncation operator preserves logical equivalences. ∥∥-cong-⇔ : A ⇔ B → ∥ A ∥[1+ n ] ⇔ ∥ B ∥[1+ n ] ∥∥-cong-⇔ A⇔B = record { to = ∥∥-map (_⇔_.to A⇔B) ; from = ∥∥-map (_⇔_.from A⇔B) } -- The truncation operator preserves bijections. ∥∥-cong : A ↔[ k ] B → ∥ A ∥[1+ n ] ↔[ k ] ∥ B ∥[1+ n ] ∥∥-cong {n = n} A↝B = from-bijection (record { surjection = record { logical-equivalence = record { to = ∥∥-map (_↔_.to A↔B) ; from = ∥∥-map (_↔_.from A↔B) } ; right-inverse-of = lemma A↔B } ; left-inverse-of = lemma (inverse A↔B) }) where A↔B = from-isomorphism A↝B lemma : (A↔B : A ↔ B) (x : ∥ B ∥[1+ n ]) → ∥∥-map (_↔_.to A↔B) (∥∥-map (_↔_.from A↔B) x) ≡ x lemma A↔B x = ∥∥-map (_↔_.to A↔B) (∥∥-map (_↔_.from A↔B) x) ≡⟨ sym $ ∥∥-map-∘ x ⟩ ∥∥-map (_↔_.to A↔B ∘ _↔_.from A↔B) x ≡⟨ cong (λ f → ∥∥-map f x) $ ⟨ext⟩ $ _↔_.right-inverse-of A↔B ⟩ ∥∥-map id x ≡⟨ ∥∥-map-id x ⟩∎ x ∎ -- ∥ A ∥[1+_] is downwards closed. downwards-closed : m ≤ n → ∥ A ∥[1+ n ] → ∥ A ∥[1+ m ] downwards-closed {m = m} {n = n} {A = A} m≤n = ∥ A ∥[1+ n ] ↝⟨ ∥∥-map ∣_∣ ⟩ ∥ ∥ A ∥[1+ m ] ∥[1+ n ] ↔⟨ flatten-≤ m≤n ⟩□ ∥ A ∥[1+ m ] □
{ "alphanum_fraction": 0.4399154292, "avg_line_length": 32.1295418641, "ext": "agda", "hexsha": "bcd1702f64663ce4b9abbf568a5e2d5d7d89e43b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/H-level/Truncation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/H-level/Truncation.agda", "max_line_length": 147, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/H-level/Truncation.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 8590, "size": 20338 }
open import Prelude module Implicits.Resolution.Termination where open import Implicits.Resolution.Termination.SizeMeasures public open import Implicits.Resolution.Termination.Stack public open import Implicits.Resolution.Termination.Lemmas public
{ "alphanum_fraction": 0.876, "avg_line_length": 31.25, "ext": "agda", "hexsha": "52670f36d5cdc79183cf9030633df77598689685", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Termination.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Termination.agda", "max_line_length": 64, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Termination.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 58, "size": 250 }
-- This combination should not be allowed: {-# OPTIONS --guardedness --sized-types --safe #-}
{ "alphanum_fraction": 0.6842105263, "avg_line_length": 23.75, "ext": "agda", "hexsha": "c5801b130b04597d30f7f70bf1e73144cdd7e66b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "caryoscelus/agda", "max_forks_repo_path": "test/Fail/Issue1209-3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "caryoscelus/agda", "max_issues_repo_path": "test/Fail/Issue1209-3.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "caryoscelus/agda", "max_stars_repo_path": "test/Fail/Issue1209-3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 20, "size": 95 }
module Relation.Ternary.Separation.Morphisms where open import Level open import Function open import Relation.Unary open import Relation.Binary.PropositionalEquality open import Relation.Ternary.Separation open import Data.Product open import Function using (_∘_) record Morphism {a b} (A : Set a) (B : Set b) {{r : RawSep A}} {u} {{s₁ : IsUnitalSep r u}} {{rb : RawSep B}} : Set (a ⊔ suc b) where field j : A → B -- j "commutes" with _⊎_ j-⊎ : ∀ {Φ₁ Φ₂ Φ} → Φ₁ ⊎ Φ₂ ≣ Φ → j Φ₁ ⊎ j Φ₂ ≣ j Φ j-⊎⁻ : ∀ {Φ₁ Φ₂ Φ} → j Φ₁ ⊎ j Φ₂ ≣ Φ → ∃ λ Φ' → Φ ≡ j Φ' × Φ₁ ⊎ Φ₂ ≣ Φ' instance _ = s₁ infixr 8 _⇒ⱼ_ _⇒ⱼ_ : ∀ {p q} → Pred A p → Pred B q → Pred A _ P ⇒ⱼ Q = P ⇒ (Q ∘ j) infixr 8 _─✴ⱼ_ _─✴ⱼ_ : ∀ {p q} → Pred A p → Pred B q → Pred B _ P ─✴ⱼ Q = P ─✴[ j ] Q {- Such a morphism on SAs induces a functor on SA-predicates -} module _ where data J {p} (P : Pred A p) : Pred B (a ⊔ p) where inj : ∀ {Φ} → P Φ → J P (j Φ) jstar : ∀ {p q} {P : Pred A p} {Q : Pred A q} → ∀[ J (P ✴ Q) ⇒ J P ✴ J Q ] jstar (inj (p ×⟨ σ ⟩ q)) = inj p ×⟨ j-⊎ σ ⟩ inj q jmap : ∀ {p q} {P : Pred A p} {Q : Pred A q} → ∀[ (P ─✴ Q) ⇒ⱼ (J P ─✴ J Q) ] app (jmap f) (inj px) σ with j-⊎⁻ σ ... | _ , refl , σ' = inj (app f px σ') wanditⱼ : ∀ {p q} {P : Pred A p} {Q : Pred B q} → ∀[ P ⇒ⱼ Q ] → (P ─✴ⱼ Q) (j u) app (wanditⱼ f) px σ with j-⊎⁻ σ ... | _ , refl , σ' with ⊎-id⁻ˡ σ' ... | refl = f px {- identity morphism -} module _ {a} {A : Set a} {{r : RawSep A}} {u} {{s₁ : IsUnitalSep r u}} where instance id-morph : Morphism A A id-morph = record { j = id ; j-⊎ = id ; j-⊎⁻ = λ x → -, refl , x }
{ "alphanum_fraction": 0.5023894863, "avg_line_length": 28.3728813559, "ext": "agda", "hexsha": "c7c32ed14cc3e08e37fdf6b0b31c706d87eef14d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Relation/Ternary/Separation/Morphisms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Relation/Ternary/Separation/Morphisms.agda", "max_line_length": 81, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Relation/Ternary/Separation/Morphisms.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 812, "size": 1674 }
------------------------------------------------------------------------------ -- Common (interactive and automatic) properties using the induction principle ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PA.Inductive.PropertiesByInduction where open import PA.Inductive.Base ------------------------------------------------------------------------------ -- Congruence properties succCong : ∀ {m n} → m ≡ n → succ m ≡ succ n succCong refl = refl ------------------------------------------------------------------------------ +-leftIdentity : ∀ n → zero + n ≡ n +-leftIdentity n = refl +-rightIdentity : ∀ n → n + zero ≡ n +-rightIdentity n = ℕ-ind A A0 is n where A : ℕ → Set A i = i + zero ≡ i A0 : A zero A0 = refl is : ∀ i → A i → A (succ i) is i ih = succCong ih +-assoc : ∀ m n o → m + n + o ≡ m + (n + o) +-assoc m n o = ℕ-ind A A0 is m where A : ℕ → Set A i = i + n + o ≡ i + (n + o) A0 : A zero A0 = refl is : ∀ i → A i → A (succ i) is i ih = succCong ih x+Sy≡S[x+y] : ∀ m n → m + succ n ≡ succ (m + n) x+Sy≡S[x+y] m n = ℕ-ind A A0 is m where A : ℕ → Set A i = i + succ n ≡ succ (i + n) A0 : A zero A0 = refl is : ∀ i → A i → A (succ i) is i ih = succCong ih
{ "alphanum_fraction": 0.4164345404, "avg_line_length": 23.9333333333, "ext": "agda", "hexsha": "831f456210057310780fcf2d3dcbadf2cc35783a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/PA/Inductive/PropertiesByInduction.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/PA/Inductive/PropertiesByInduction.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/PA/Inductive/PropertiesByInduction.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 418, "size": 1436 }
module Proof where -- we give an example of a structure that satisfies the monad laws, but does not have a join operation. open import Relation.Binary.PropositionalEquality F : Set → Set₁ F x = Set → x return : ∀ {x} → x → F x return = λ z _ → z _>>=_ : ∀ {x y} -> F x → (x -> F y) → F y a >>= f = λ z → f (a z) z -- Notice that the structure (F,return,>>=) satisfies the monad laws: left-id : ∀ {S₁ S₂} → (f : S₁ → F S₂) → (a : S₁) → (return a >>= f) ≡ f a left-id f a = refl right-id : ∀ {S₁} → (m : F S₁) → (m >>= return) ≡ m right-id m = refl assoc : ∀ {S₁ S₂ S₃} → (f : S₁ → F S₂) → (g : S₂ → F S₃) → (m : F S₁) → (m >>= f) >>= g ≡ m >>= (λ x → f x >>= g) assoc f g m = refl -- One could try to define this monad as the structure (F,return,fmap,join). fmap : ∀ {S₁ S₂} → (S₁ → S₂) → F S₁ → F S₂ fmap f x = λ z → f (x z) -- However, a definition with signature ---- join : ∀ {x} → F (F x) → F x -- cannot typecheck, since ---- Set₁ != Set ---- when checking that the expression F x has type Set.
{ "alphanum_fraction": 0.5180055402, "avg_line_length": 25.7857142857, "ext": "agda", "hexsha": "ecb1674de2da46476ab5686d01492ecdc5d4d1da", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c04ae5dd5fab9b2d840c3bf8db6eca0d6c8cc681", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zaklogician/monads-are-not", "max_forks_repo_path": "Proof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c04ae5dd5fab9b2d840c3bf8db6eca0d6c8cc681", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zaklogician/monads-are-not", "max_issues_repo_path": "Proof.agda", "max_line_length": 103, "max_stars_count": 2, "max_stars_repo_head_hexsha": "c04ae5dd5fab9b2d840c3bf8db6eca0d6c8cc681", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zaklogician/monads-are-not", "max_stars_repo_path": "Proof.agda", "max_stars_repo_stars_event_max_datetime": "2018-05-19T17:52:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-14T18:34:55.000Z", "num_tokens": 395, "size": 1083 }
module ExplicitImplicitConversion where open import ExpressionChanging open import Data.Nat open import Data.List open import ParseTree open import ScopeState open import Data.Vec using (Vec ; _∷_) open import Data.Fin open import Data.List.NonEmpty open import AgdaHelperFunctions open import Data.Bool open import ParseTreeOperations -- is given types before conversion -- namedArgument for type, never just implicit!!!!!! conversionIns : {n : ℕ} -> Vec Expr n -> Fin n -> (List Expr -> List Expr) conversionIns Vec.[] () l conversionIns _ _ [] = [] conversionIns (namedArgument _ {false} ∷ x₁) zero (implicit y ∷ list) = y ∷ list -- expecting implicit and getting explicit, i.e. argument to be moved -- isn't specified. conversionIns (namedArgument _ {false} ∷ x₁) zero (y ∷ list) = newUnderscore ∷ y ∷ list conversionIns (x ∷ x₁) zero (x₂ ∷ list) = implicit x₂ ∷ list conversionIns (namedArgument _ {false} ∷ x₁) (suc n) (implicit x₂ ∷ list) = implicit x₂ ∷ conversionIns x₁ n list conversionIns (namedArgument _ {false} ∷ x₁) (suc n) (x₂ ∷ list) = let result = conversionIns x₁ n (x₂ ∷ list) in if headImplicit? result then (implicit newUnderscore) ∷ result else result where headImplicit? : List Expr -> Bool headImplicit? (implicit x ∷ l) = true headImplicit? _ = false conversionIns (x ∷ x₁) (suc n) (x₂ ∷ list) = x₂ ∷ conversionIns x₁ n list convertInExpr : TypeSignature -> ℕ -> ScopeState (List⁺ Expr -> List⁺ Expr) convertInExpr t n = makeInstruction t n conversionIns convertInSignature : {n : ℕ} -> Vec Expr (suc n) -> Fin n -> ScopeState (Vec Expr (suc n)) convertInSignature (namedArgument arg {isExplicit} {c}{c2} ∷ l) zero = return $ namedArgument arg {not isExplicit}{c}{c2} ∷ l convertInSignature (implicit x ∷ l) zero = return $ x ∷ l convertInSignature (x ∷ l) zero = do newName <- getUniqueIdentifier return $ namedArgument (typeSignature newName x) {false} {[]} {[]} ∷ l convertInSignature (x ∷ v) (suc f) = do rest <- convertInSignature v f return $ x ∷ rest convert : List ParseTree -> (funcID : ℕ) -> (whichArgument : ℕ) -> ScopeState (List ParseTree) convert code funcId whichArgument = doForArgument code funcId whichArgument convertInSignature convertInExpr
{ "alphanum_fraction": 0.7088888889, "avg_line_length": 44.1176470588, "ext": "agda", "hexsha": "ee0bba544cc1a4712fdd519ad4b00055e85d1e07", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/ExplicitImplicitConversion.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/ExplicitImplicitConversion.agda", "max_line_length": 108, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/ExplicitImplicitConversion.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 666, "size": 2250 }
{-# OPTIONS --with-K #-} open import Agda.Builtin.Equality open import Agda.Builtin.Nat single : {m n : Nat} → suc m ≡ suc n → n ≡ m single p with refl ← p = refl double : {m n p : Nat} → suc m ≡ n → suc n ≡ 2 + p → m ≡ p double p q with refl ← p | refl ← q = refl _∋_ : (A : Set) → A → A A ∋ a = a -- The second equality proof is only well-typed -- after the first one has been used tele : {m n : Nat} → suc m ≡ suc n → m ≡ n tele {m} {n} p with refl ← p | refl ← (n ≡ m) ∋ refl = refl tele' : {m n : Nat} → m ≡ n → m ≡ n tele' {m} {n} p with refl ← p with (n ≡ m) ∋ refl ... | q = refl -- Further splitting after a using & with tele'' : {m n : Nat} → m ≡ n → Nat → Nat tele'' {m} {n} p r with refl ← p | (n ≡ m) ∋ refl tele'' {m} {m} p zero | q = m tele'' {m} {m} p (suc r) | q = r data Vec {a} (A : Set a) : Nat → Set a where [] : Vec A 0 _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) module _ {a} {A : Set a} {n} (xs : Vec A (suc n)) where head : A head with (x ∷ _) ← xs = x tail : Vec A n tail with (_ ∷ xs) ← xs = xs -- pattern shadows variable with'd on castVec : ∀ {m n} → m ≡ n → Vec Nat m → Vec Nat n castVec eq ms with refl ← eq = ms data All (P : Nat → Set) : ∀ {n} → Vec Nat n → Set where [] : All P [] _∷_ : ∀ {n x xs} → P x → All P {n} xs → All P (x ∷ xs) open import Agda.Builtin.Sigma castAll : ∀ {P m n xs ys} → Σ (m ≡ n) (λ eq → castVec eq xs ≡ ys) → All P xs → All P ys castAll (refl , refl) all = all
{ "alphanum_fraction": 0.5158462576, "avg_line_length": 25.1355932203, "ext": "agda", "hexsha": "4348889aa1be552adbf61d0b495e0ab549e78f7b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Succeed/UsingEq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/UsingEq.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/UsingEq.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 611, "size": 1483 }
open import Prelude open import dynamics-core module lemmas-matching where -- arrow matching produces unique answers ▸arr-unicity : ∀{τ τ2 τ3} → τ ▸arr τ2 → τ ▸arr τ3 → τ2 == τ3 ▸arr-unicity MAHole MAHole = refl ▸arr-unicity MAArr MAArr = refl -- only consistent types arrow match ▸arr-consist : ∀{τ1 τ2} → τ1 ▸arr τ2 → (τ1 ~ τ2) ▸arr-consist MAHole = TCHole2 ▸arr-consist MAArr = TCRefl -- if an arrow matches, then it's consistent with the -- least restrictive function type ▸arr-consist-hole : ∀{t t'} → t ▸arr t' → t ~ (⦇-⦈ ==> ⦇-⦈) ▸arr-consist-hole MAHole = TCHole2 ▸arr-consist-hole MAArr = TCArr TCHole1 TCHole1 -- sum matching produces unique answers ▸sum-unicity : ∀{τ τ2 τ3} → τ ▸sum τ2 → τ ▸sum τ3 → τ2 == τ3 ▸sum-unicity MSHole MSHole = refl ▸sum-unicity MSSum MSSum = refl -- only consistent types sum match ▸sum-consist : ∀{τ1 τ2} → τ1 ▸sum τ2 → (τ1 ~ τ2) ▸sum-consist MSHole = TCHole2 ▸sum-consist MSSum = TCRefl -- if a sum matches, then it's consistent with the -- least restrictive function type ▸sum-consist-hole : ∀{t t'} → t ▸sum t' → t ~ (⦇-⦈ ⊕ ⦇-⦈) ▸sum-consist-hole MSHole = TCHole2 ▸sum-consist-hole MSSum = TCSum TCHole1 TCHole1 -- product matching produces unique answers ▸prod-unicity : ∀{τ τ2 τ3} → τ ▸prod τ2 → τ ▸prod τ3 → τ2 == τ3 ▸prod-unicity MPHole MPHole = refl ▸prod-unicity MPProd MPProd = refl -- only consistent types product match ▸prod-consist : ∀{τ1 τ2} → τ1 ▸prod τ2 → (τ1 ~ τ2) ▸prod-consist MPHole = TCHole2 ▸prod-consist MPProd = TCRefl -- if a sum matches, then it's consistent with the -- least restrictive function type ▸prod-consist-hole : ∀{t t'} → t ▸prod t' → t ~ (⦇-⦈ ⊠ ⦇-⦈) ▸prod-consist-hole MPHole = TCHole2 ▸prod-consist-hole MPProd = TCProd TCHole1 TCHole1
{ "alphanum_fraction": 0.5315315315, "avg_line_length": 30.4109589041, "ext": "agda", "hexsha": "057b5721ac008c0857e3d4ccbb43115378f12996", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "lemmas-matching.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "lemmas-matching.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "lemmas-matching.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 786, "size": 2220 }
module Haskell.Prim.Ord where open import Agda.Builtin.Nat as Nat hiding (_==_; _<_) open import Agda.Builtin.Char open import Haskell.Prim open import Haskell.Prim.Eq open import Haskell.Prim.Bool open import Haskell.Prim.Int open import Haskell.Prim.Word open import Haskell.Prim.Integer open import Haskell.Prim.Double open import Haskell.Prim.Tuple open import Haskell.Prim.Monoid open import Haskell.Prim.List open import Haskell.Prim.Maybe open import Haskell.Prim.Either -------------------------------------------------- -- Ordering data Ordering : Set where LT EQ GT : Ordering instance iEqOrdering : Eq Ordering iEqOrdering ._==_ LT LT = true iEqOrdering ._==_ EQ EQ = true iEqOrdering ._==_ GT GT = true iEqOrdering ._==_ _ _ = false iSemigroupOrdering : Semigroup Ordering iSemigroupOrdering ._<>_ LT _ = LT iSemigroupOrdering ._<>_ EQ o = o iSemigroupOrdering ._<>_ GT _ = GT iMonoidOrdering : Monoid Ordering iMonoidOrdering .mempty = EQ -------------------------------------------------- -- Ord record Ord (a : Set) : Set where field compare : a → a → Ordering _<_ : a → a → Bool _>_ : a → a → Bool _>=_ : a → a → Bool _<=_ : a → a → Bool max : a → a → a min : a → a → a overlap ⦃ super ⦄ : Eq a infix 4 _<_ _>_ _<=_ _>=_ open Ord ⦃ ... ⦄ public {-# COMPILE AGDA2HS Ord existing-class #-} ordFromCompare : ⦃ Eq a ⦄ → (a → a → Ordering) → Ord a ordFromCompare cmp .compare = cmp ordFromCompare cmp ._<_ x y = cmp x y == LT ordFromCompare cmp ._>_ x y = cmp x y == GT ordFromCompare cmp ._<=_ x y = cmp x y /= GT ordFromCompare cmp ._>=_ x y = cmp x y /= LT ordFromCompare cmp .max x y = if cmp x y == LT then y else x ordFromCompare cmp .min x y = if cmp x y == GT then y else x ordFromLessThan : ⦃ Eq a ⦄ → (a → a → Bool) → Ord a ordFromLessThan _<_ .compare x y = if x < y then LT else if x == y then EQ else GT ordFromLessThan _<_ ._<_ x y = x < y ordFromLessThan _<_ ._>_ x y = y < x ordFromLessThan _<_ ._<=_ x y = x < y || x == y ordFromLessThan _<_ ._>=_ x y = y < x || x == y ordFromLessThan _<_ .max x y = if x < y then y else x ordFromLessThan _<_ .min x y = if y < x then y else x ordFromLessEq : ⦃ Eq a ⦄ → (a → a → Bool) → Ord a ordFromLessEq _<=_ .compare x y = if x == y then EQ else if x <= y then LT else GT ordFromLessEq _<=_ ._<_ x y = x <= y && not (x == y) ordFromLessEq _<=_ ._>_ x y = y <= x && not (x == y) ordFromLessEq _<=_ ._<=_ x y = x <= y ordFromLessEq _<=_ ._>=_ x y = y <= x ordFromLessEq _<=_ .max x y = if y <= x then x else y ordFromLessEq _<=_ .min x y = if x <= y then x else y private compareFromLt : ⦃ Eq a ⦄ → (a → a → Bool) → a → a → Ordering compareFromLt _<_ x y = if x < y then LT else if x == y then EQ else GT instance iOrdNat : Ord Nat iOrdNat = ordFromLessThan Nat._<_ iOrdInteger : Ord Integer iOrdInteger = ordFromLessThan ltInteger iOrdInt : Ord Int iOrdInt = ordFromLessThan ltInt iOrdWord : Ord Word iOrdWord = ordFromLessThan ltWord iOrdDouble : Ord Double iOrdDouble = ordFromLessThan primFloatNumericalLess iOrdChar : Ord Char iOrdChar = ordFromLessThan λ x y → primCharToNat x < primCharToNat y iOrdBool : Ord Bool iOrdBool = ordFromCompare λ where false true → LT true false → GT _ _ → EQ iOrdTuple₀ : Ord (Tuple []) iOrdTuple₀ = ordFromCompare λ _ _ → EQ iOrdTuple : ∀ {as} → ⦃ Ord a ⦄ → ⦃ Ord (Tuple as) ⦄ → Ord (Tuple (a ∷ as)) iOrdTuple = ordFromCompare λ where (x ∷ xs) (y ∷ ys) → compare x y <> compare xs ys compareList : ⦃ Ord a ⦄ → List a → List a → Ordering compareList [] [] = EQ compareList [] (_ ∷ _) = LT compareList (_ ∷ _) [] = GT compareList (x ∷ xs) (y ∷ ys) = compare x y <> compareList xs ys instance iOrdList : ⦃ Ord a ⦄ → Ord (List a) iOrdList = ordFromCompare compareList iOrdMaybe : ⦃ Ord a ⦄ → Ord (Maybe a) iOrdMaybe = ordFromCompare λ where Nothing Nothing → EQ Nothing (Just _) → LT (Just _) Nothing → GT (Just x) (Just y) → compare x y iOrdEither : ⦃ Ord a ⦄ → ⦃ Ord b ⦄ → Ord (Either a b) iOrdEither = ordFromCompare λ where (Left x) (Left y) → compare x y (Left _) (Right _) → LT (Right _) (Left _) → GT (Right x) (Right y) → compare x y iOrdOrdering : Ord Ordering iOrdOrdering = ordFromCompare λ where LT LT → EQ LT _ → LT _ LT → GT EQ EQ → EQ EQ GT → LT GT EQ → GT GT GT → EQ
{ "alphanum_fraction": 0.6145576708, "avg_line_length": 28.6217948718, "ext": "agda", "hexsha": "cb67ab2d5ca8f23a3591394ad2f79b2037ddceac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dxts/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Ord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dxts/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Ord.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Ord.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1570, "size": 4465 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Polynomials.UnivariateHIT.Polyn-nPoly where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _·n_) open import Cubical.Data.Vec open import Cubical.Data.Sigma open import Cubical.Algebra.DirectSum.DirectSumHIT.Base open import Cubical.Algebra.Ring open import Cubical.Algebra.GradedRing.DirectSumFun open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyHIT open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.Poly0-A open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.An[Am[X]]-Anm[X] open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.AB-An[X]Bn[X] open CommRingEquivs renaming (compCommRingEquiv to _∘-ecr_ ; invCommRingEquiv to inv-ecr) private variable ℓ : Level ----------------------------------------------------------------------------- -- Definition module equiv1 (A'@(A , Astr) : CommRing ℓ) where private PA = PolyCommRing A' 1 PAstr = snd PA PA' = nUnivariatePolyHIT A' 1 PA'str = snd PA' open CommRingStr directSense : fst (PolyCommRing A' 1) → fst (nUnivariatePolyHIT A' 1) directSense = DS-Rec-Set.f _ _ _ _ (is-set PA'str) (0r PA'str) (λ { (n ∷ []) a → base n a}) (_+_ PA'str) (+Assoc PA'str) (+IdR PA'str) (+Comm PA'str) (λ { (n ∷ []) → base-neutral _ }) λ { (n ∷ []) a b → base-add _ _ _} convSense : fst (nUnivariatePolyHIT A' 1) → fst (PolyCommRing A' 1) convSense = DS-Rec-Set.f _ _ _ _ (is-set PAstr) (0r PAstr) (λ n a → base (n ∷ []) a) (_+_ PAstr) (+Assoc PAstr) (+IdR PAstr) (+Comm PAstr) (λ n → base-neutral _) λ _ _ _ → base-add _ _ _ retr : (x : fst (PolyCommRing A' 1)) → convSense (directSense x) ≡ x retr = DS-Ind-Prop.f _ _ _ _ (λ _ → is-set PAstr _ _) refl (λ { (n ∷ []) a → refl}) (λ {U V} ind-U ind-V → cong₂ (_+_ PAstr) ind-U ind-V) sect : (x : fst (nUnivariatePolyHIT A' 1)) → (directSense (convSense x) ≡ x) sect = DS-Ind-Prop.f _ _ _ _ (λ _ → is-set PA'str _ _) refl (λ n a → refl) (λ {U V} ind-U ind-V → cong₂ (_+_ PA'str) ind-U ind-V) converseSense-pres· : (x y : fst (PolyCommRing A' 1)) → directSense (_·_ PAstr x y) ≡ _·_ PA'str (directSense x) (directSense y) converseSense-pres· = DS-Ind-Prop.f _ _ _ _ (λ _ → isPropΠ λ _ → is-set PA'str _ _) (λ _ → refl) (λ { (n ∷ []) a → DS-Ind-Prop.f _ _ _ _ (λ _ → is-set PA'str _ _) refl (λ { (m ∷ []) b → refl}) λ {U V} ind-U ind-V → cong₂ (_+_ PA'str) ind-U ind-V}) λ {U V} ind-U ind-V y → cong₂ (_+_ PA'str) (ind-U y) (ind-V y) open Iso equivR : CommRingEquiv PA PA' fst equivR = isoToEquiv is where is : Iso (PA .fst) (PA' .fst) fun is = directSense inv is = convSense rightInv is = sect leftInv is = retr snd equivR = makeIsRingHom refl (λ _ _ → refl) converseSense-pres· open equiv1 Equiv-Polyn-nPolyHIT : (A' : CommRing ℓ) → (n : ℕ) → CommRingEquiv (PolyCommRing A' n) (nUnivariatePolyHIT A' n) Equiv-Polyn-nPolyHIT A' zero = CRE-Poly0-A A' Equiv-Polyn-nPolyHIT A' (suc n) = inv-ecr _ _ (CRE-PolyN∘M-PolyN+M A' 1 n) ∘-ecr (lift-equiv-poly _ _ 1 (Equiv-Polyn-nPolyHIT A' n) ∘-ecr equivR (nUnivariatePolyHIT A' n))
{ "alphanum_fraction": 0.5575460123, "avg_line_length": 36.7117117117, "ext": "agda", "hexsha": "1cf5da60ec79cb9546aaed682e02ca0cdd7e1490", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Polynomials/UnivariateHIT/Polyn-nPoly.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Polynomials/UnivariateHIT/Polyn-nPoly.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Polynomials/UnivariateHIT/Polyn-nPoly.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1267, "size": 4075 }
{-# OPTIONS --without-K --safe #-} module Data.Unit where open import Agda.Builtin.Unit public
{ "alphanum_fraction": 0.7113402062, "avg_line_length": 16.1666666667, "ext": "agda", "hexsha": "714ba9633cf5d70871590b2b19449e934bb5ec14", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Unit.agda", "max_line_length": 36, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 22, "size": 97 }
{-# OPTIONS --experimental-irrelevance #-} -- Andreas, 2011-04-15 -- {-# OPTIONS -v tc.data:20 #-} module IrrelevantDataParameter where postulate A : Set data K .(a : A) : Set where c : K a postulate a : A data K' .(b : A) : Set where c : K' a -- ok, since parameter irrelevant -- 2011-09-09 postulate _×_ : ..(A B : Set) -> Set Lst : ..(A : Set) -> Set nl : .(A : Set) -> Lst A cns : .(A : Set) -> A × Lst A -> Lst A -- cns' : .(A : Set) -> (a : A) -> (as : Lst A) -> Lst A -- not well-formed!
{ "alphanum_fraction": 0.5307692308, "avg_line_length": 20, "ext": "agda", "hexsha": "a848543a1397d5267ff2cc39dde33818af551249", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/IrrelevantDataParameter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/IrrelevantDataParameter.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/IrrelevantDataParameter.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 210, "size": 520 }
module Structure.Operator.Functions where import Lvl open import Logic open import Structure.Setoid open import Structure.Operator.Properties open import Type private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ : Lvl.Level module _ {A : Type{ℓ₁}} {X : Type{ℓ₂}} ⦃ equiv-X : Equiv{ℓₑ₁}(X) ⦄ {Y : Type{ℓ₃}} ⦃ equiv-Y : Equiv{ℓₑ₂}(Y) ⦄ where -- `a` is a element which yields the left identity element in the function `f`. -- (a ∈ kernelₗ(f)) means (f(a) = id). kernelₗ : ∀{_▫_ : X → Y → Y}{id : X} → ⦃ _ : Identityₗ(_▫_)(id) ⦄ → (A → X) → A → Stmt kernelₗ {_}{id} (f)(a) = (f(a) ≡ id) -- `a` is a element which yields the right identity element in the function `f`. -- (a ∈ kernelₗ(f)) means (f(a) = id). kernelᵣ : ∀{_▫_ : Y → X → Y}{id : X} → ⦃ _ : Identityᵣ(_▫_)(id) ⦄ → (A → X) → A → Stmt kernelᵣ {_}{id} (f)(a) = (f(a) ≡ id)
{ "alphanum_fraction": 0.5914489311, "avg_line_length": 40.0952380952, "ext": "agda", "hexsha": "9cc5234d69afe26a9743cceb2394b3eb3df9cc46", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Functions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Functions.agda", "max_line_length": 115, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Functions.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 368, "size": 842 }
open import Relation.Binary.Core module Heapsort.Impl1.Correctness.Order {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import Data.List open import Function using (_∘_) open import Heapsort.Impl1 _≤_ tot≤ trans≤ open import List.Sorted _≤_ open import OList _≤_ open import OList.Properties _≤_ theorem-heapsort-sorted : (xs : List A) → Sorted (forget (heapsort xs)) theorem-heapsort-sorted = lemma-olist-sorted ∘ heapsort
{ "alphanum_fraction": 0.6570881226, "avg_line_length": 30.7058823529, "ext": "agda", "hexsha": "29a1fb9b8ebfef25a537f091efa812a24ab33728", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Heapsort/Impl1/Correctness/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Heapsort/Impl1/Correctness/Order.agda", "max_line_length": 71, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Heapsort/Impl1/Correctness/Order.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 159, "size": 522 }
module Data.Option.Functions where import Lvl open import Data open import Data.Boolean open import Data.Either as Either using (_‖_) open import Data.Option open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Type private variable ℓ : Lvl.Level private variable T A B T₁ T₂ T₃ : Type{ℓ} -- Applies a function to the inner value of the option container. -- A functor map for options. map : (T₁ → T₂) → Option(T₁) → Option(T₂) map f(Some x) = Some(f(x)) map f(None) = None -- Either the value inside the option container or the default value when it is none. -- An option eliminator. _or_ : Option(T) → T → T _or_ (Some x) _ = x _or_ None def = def -- Either transforming the value inside the option container or the default value when it is none. -- An option eliminator. partialMap : B → (A → B) → (Option(A) → B) partialMap _ f (Some x) = f(x) partialMap def _ None = def -- If the option have a value (is Some). isSome : Option(T) → Bool isSome (Some _) = 𝑇 isSome None = 𝐹 -- If the option have no value (is None). isNone : Option(T) → Bool isNone (Some _) = 𝐹 isNone None = 𝑇 -- Passes the inner value of the option to an option-valued function. -- A monadic bind for options. _andThen_ : Option(T₁) → (T₁ → Option(T₂)) → Option(T₂) _andThen_ None _ = None _andThen_ (Some x) f = f(x) -- Combines options of different types by applying the specified binary operator when both options have a value, and none otherwise. and-combine : (T₁ → T₂ → T₃) → (Option(T₁) → Option(T₂) → Option(T₃)) and-combine (_▫_) (Some x) (Some y) = Some(x ▫ y) {-# CATCHALL #-} and-combine _ _ _ = None -- Combines options of different types by applying the specified binary operator when both options have a value, and the side functions when only the respective sides have a value. None otherwise. or-combine : (T₁ → T₂ → T₃) → (T₁ → T₃) → (T₂ → T₃) → (Option(T₁) → Option(T₂) → Option(T₃)) or-combine(_▫_) l r None None = None or-combine(_▫_) l r None (Some y) = Some(r(y)) or-combine(_▫_) l r (Some x) None = Some(l(x)) or-combine(_▫_) l r (Some x) (Some y) = Some(x ▫ y) module Same where _orₗ_ : Option(T) → Option(T) → Option(T) _orₗ_ = or-combine(\x y → x) (\x → x) (\x → x) _orᵣ_ : Option(T) → Option(T) → Option(T) _orᵣ_ = or-combine(\x y → y) (\x → x) (\x → x) _andₗ_ : Option(T) → Option(T) → Option(T) _andₗ_ = and-combine(\x y → x) _andᵣ_ : Option(T) → Option(T) → Option(T) _andᵣ_ = and-combine(\x y → y) module Different where _orₗ_ : Option(T₁) → Option(T₂) → Option(T₁ ‖ T₂) _orₗ_ = or-combine(\x y → Either.Left(x)) Either.Left Either.Right _orᵣ_ : Option(T₁) → Option(T₂) → Option(T₁ ‖ T₂) _orᵣ_ = or-combine(\x y → Either.Right(y)) Either.Left Either.Right _and_ : Option(T₁) → Option(T₂) → Option(T₁ ⨯ T₂) _and_ = and-combine(_,_)
{ "alphanum_fraction": 0.6557434813, "avg_line_length": 34.1927710843, "ext": "agda", "hexsha": "f59f602c6dea7491c1aa9efc6608d418ca4b2bc8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Option/Functions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Option/Functions.agda", "max_line_length": 196, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Option/Functions.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 964, "size": 2838 }
------------------------------------------------------------------------ -- Partiality algebra categories ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} module Partiality-algebra.Category where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude hiding (T) open import Bijection equality-with-J as Bijection using (_↔_) open import Category equality-with-J as Category open import Equality.Path.Isomorphisms.Univalence equality-with-paths open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import Structure-identity-principle equality-with-J open import Univalence-axiom equality-with-J open import Partiality-algebra as PA hiding (id; _∘_) ------------------------------------------------------------------------ -- Equality characterisation lemmas for Partiality-algebra-with abstract -- An equality characterisation lemma for Partiality-algebra-with. equality-characterisation-Partiality-algebra-with₁ : ∀ {a p q} {A : Type a} {T : Type p} {P₁ P₂ : Partiality-algebra-with T q A} → let module P₁ = Partiality-algebra-with P₁ module P₂ = Partiality-algebra-with P₂ in (∃ λ (⊑≡⊑ : ∀ x y → (x P₁.⊑ y) ≡ (x P₂.⊑ y)) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ (Σ-map id (≡⇒→ (⊑≡⊑ _ _) ∘_) s)) ↔ P₁ ≡ P₂ equality-characterisation-Partiality-algebra-with₁ {q = q} {A} {T} {P₁} {P₂} = (∃ λ (⊑≡⊑ : ∀ x y → (x P₁.⊑ y) ≡ (x P₂.⊑ y)) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ (Σ-map id (≡⇒→ (⊑≡⊑ _ _) ∘_) s)) ↝⟨ ∃-cong (λ ⊑≡⊑ → ∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ s → ≡⇒↝ _ $ cong (λ (p : {f : ℕ → T} → _) → P₁.⨆ s ≡ P₂.⨆ (Σ-map id p s)) $ (implicit-Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → P₂.⊑-propositional) (≡⇒→ (⊑≡⊑ _ _) ∘_) (λ {f} → ≡⇒→ (cong (λ _⊑_ → ∀ n → f n ⊑ f (suc n)) (⟨ext⟩ (⟨ext⟩ ∘ ⊑≡⊑))))) ⟩ (∃ λ (⊑≡⊑ : ∀ x y → (x P₁.⊑ y) ≡ (x P₂.⊑ y)) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ (Σ-map id (λ {f} → ≡⇒→ (cong (λ _⊑_ → ∀ n → f n ⊑ f (suc n)) (⟨ext⟩ (⟨ext⟩ ∘ ⊑≡⊑)))) s)) ↝⟨ Σ-cong (∀-cong ext λ _ → Eq.extensionality-isomorphism bad-ext) (λ _ → F.id) ⟩ (∃ λ (⊑≡⊑ : ∀ x → P₁._⊑_ x ≡ P₂._⊑_ x) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ (Σ-map id (λ {f} → ≡⇒→ (cong (λ _⊑_ → ∀ n → f n ⊑ f (suc n)) (⟨ext⟩ ⊑≡⊑))) s)) ↝⟨ Σ-cong (Eq.extensionality-isomorphism bad-ext) (λ _ → F.id) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ (Σ-map id (λ {f} → ≡⇒→ (cong (λ _⊑_ → ∀ n → f n ⊑ f (suc n)) ⊑≡⊑)) s)) ↔⟨⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ ( proj₁ s , ≡⇒→ (cong (λ _⊑_ → ∀ n → proj₁ s n ⊑ proj₁ s (suc n)) ⊑≡⊑) (proj₂ s) )) ↝⟨ ∃-cong (λ ⊑≡⊑ → ∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ eq → _ ≡ P₂.⨆ (_ , ≡⇒→ eq _)) $ sym $ cong-∘ _ _ ⊑≡⊑) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ ( proj₁ s , ≡⇒→ (cong (uncurry λ _⊑_ (f : ℕ → T) → ∀ n → f n ⊑ f (suc n)) (cong (_, _) ⊑≡⊑)) (proj₂ s) )) ↝⟨ ∃-cong (λ ⊑≡⊑ → ∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ inc → _ ≡ P₂.⨆ (_ , inc)) $ sym $ subst-in-terms-of-≡⇒↝ equivalence (cong (_, _) ⊑≡⊑) _ _) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ ( proj₁ s , subst (uncurry λ _⊑_ (f : ℕ → T) → ∀ n → f n ⊑ f (suc n)) (cong (_, _) ⊑≡⊑) (proj₂ s) )) ↝⟨ ∃-cong (λ ⊑≡⊑ → ∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ eq → _ ≡ P₂.⨆ (_ , subst (uncurry λ _⊑_ (f : ℕ → T) → ∀ n → f n ⊑ f (suc n)) eq _)) $ sym $ Σ-≡,≡→≡-subst-const ⊑≡⊑ refl) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ ( proj₁ s , subst (uncurry λ _⊑_ (f : ℕ → T) → ∀ n → f n ⊑ f (suc n)) (Σ-≡,≡→≡ ⊑≡⊑ (subst-const ⊑≡⊑)) (proj₂ s) )) ↝⟨ ∃-cong (λ ⊑≡⊑ → ∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ s → _ ≡ P₂.⨆ s) $ sym $ push-subst-pair′ {y≡z = ⊑≡⊑} _ _ (subst-const ⊑≡⊑)) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ (subst (λ _⊑_ → ∃ λ f → ∀ n → f n ⊑ f (suc n)) ⊑≡⊑ s)) ↝⟨ ∃-cong (λ ⊑≡⊑ → ∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ eq → _ ≡ P₂.⨆ (subst (λ _⊑_ → ∃ λ f → ∀ n → f n ⊑ f (suc n)) eq _)) $ sym $ sym-sym ⊑≡⊑) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ (subst (λ _⊑_ → ∃ λ f → ∀ n → f n ⊑ f (suc n)) (sym (sym ⊑≡⊑)) s)) ↝⟨ ∃-cong (λ ⊑≡⊑ → ∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (_ ≡_) $ sym $ subst-→-domain _ (sym ⊑≡⊑)) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ subst (λ _⊑_ → ∃ (λ f → ∀ n → f n ⊑ f (suc n)) → T) (sym ⊑≡⊑) P₂.⨆ s) ↔⟨ ∃-cong (λ _ → ∃-cong λ _ → Eq.extensionality-isomorphism ext ×-cong Eq.extensionality-isomorphism ext) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → P₁.never ≡ P₂.never × P₁.now ≡ P₂.now × P₁.⨆ ≡ subst _ (sym ⊑≡⊑) P₂.⨆) ↝⟨ ∃-cong (λ ⊑≡⊑ → ∃-cong λ _ → ∃-cong λ _ → ≡⇒↝ _ $ elim (λ ⊑≡⊑ → ∀ {⨆₁ ⨆₂} → (⨆₁ ≡ subst _ (sym ⊑≡⊑) ⨆₂) ≡ (subst _ ⊑≡⊑ ⨆₁ ≡ ⨆₂)) (λ _ → refl) ⊑≡⊑) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → P₁.never ≡ P₂.never × P₁.now ≡ P₂.now × subst _ ⊑≡⊑ P₁.⨆ ≡ P₂.⨆) ↝⟨ ∃-cong (λ ⊑≡⊑ → ≡⇒↝ _ (cong (_≡ _) $ sym $ subst-const ⊑≡⊑) ×-cong ≡⇒↝ _ (cong (_≡ _) $ sym $ subst-const ⊑≡⊑) ×-cong F.id) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → subst _ ⊑≡⊑ P₁.never ≡ P₂.never × subst _ ⊑≡⊑ P₁.now ≡ P₂.now × subst _ ⊑≡⊑ P₁.⨆ ≡ P₂.⨆) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → ≡×≡↔≡) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → subst _ ⊑≡⊑ P₁.never ≡ P₂.never × (subst _ ⊑≡⊑ P₁.now , subst _ ⊑≡⊑ P₁.⨆) ≡ (P₂.now , P₂.⨆)) ↝⟨ ∃-cong (λ _ → ≡×≡↔≡) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → (subst _ ⊑≡⊑ P₁.never , subst _ ⊑≡⊑ P₁.now , subst _ ⊑≡⊑ P₁.⨆) ≡ (P₂.never , P₂.now , P₂.⨆)) ↝⟨ ∃-cong (λ ⊑≡⊑ → ≡⇒↝ _ $ cong (λ x → (subst _ ⊑≡⊑ P₁.never , x) ≡ _) $ sym $ push-subst-, {y≡z = ⊑≡⊑} _ (λ _⊑_ → (∃ λ f → ∀ n → f n ⊑ f (suc n)) → _)) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → (subst _ ⊑≡⊑ P₁.never , subst _ ⊑≡⊑ (P₁.now , P₁.⨆)) ≡ (P₂.never , P₂.now , P₂.⨆)) ↝⟨ ∃-cong (λ ⊑≡⊑ → ≡⇒↝ _ $ cong (_≡ _) $ sym $ push-subst-, {y≡z = ⊑≡⊑} _ _) ⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → subst _ ⊑≡⊑ (P₁.never , P₁.now , P₁.⨆) ≡ (P₂.never , P₂.now , P₂.⨆)) ↔⟨⟩ (∃ λ (⊑≡⊑ : P₁._⊑_ ≡ P₂._⊑_) → subst _ ⊑≡⊑ (proj₂ (proj₁ (_↔_.to rearrange P₁))) ≡ proj₂ (proj₁ (_↔_.to rearrange P₂))) ↝⟨ Bijection.Σ-≡,≡↔≡ ⟩ proj₁ (_↔_.to rearrange P₁) ≡ proj₁ (_↔_.to rearrange P₂) ↝⟨ ignore-propositional-component (×-closure 1 (implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → P₂.T-is-set) $ ×-closure 1 (H-level-propositional ext 2) $ ×-closure 1 (Π-closure ext 1 λ _ → P₂.⊑-propositional) $ ×-closure 1 (implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → P₂.⊑-propositional) $ ×-closure 1 (Π-closure ext 1 λ _ → P₂.⊑-propositional) $ ×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → P₂.⊑-propositional) $ ×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → P₂.⊑-propositional) (implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → Is-proposition-propositional ext)) ⟩ _↔_.to rearrange P₁ ≡ _↔_.to rearrange P₂ ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩□ P₁ ≡ P₂ □ where module P₁ = Partiality-algebra-with P₁ module P₂ = Partiality-algebra-with P₂ rearrange : Partiality-algebra-with T q A ↔ ∃ λ ((_⊑_ , never , _ , ⨆) : ∃ λ (_⊑_ : T → T → Type q) → T × (A → T) × ((∃ λ (f : ℕ → T) → ∀ n → f n ⊑ f (suc n)) → T)) → (∀ {x y} → x ⊑ y → y ⊑ x → x ≡ y) × Is-set T × (∀ x → x ⊑ x) × (∀ {x y z} → x ⊑ y → y ⊑ z → x ⊑ z) × (∀ x → never ⊑ x) × (∀ s → ∀ n → proj₁ s n ⊑ ⨆ s) × (∀ s ub → (∀ n → proj₁ s n ⊑ ub) → ⨆ s ⊑ ub) × (∀ {x y} → Is-proposition (x ⊑ y)) rearrange = record { surjection = record { logical-equivalence = record { to = λ P → let open Partiality-algebra-with P in ( _⊑_ , never , now , ⨆ ) , antisymmetry , T-is-set-unused , ⊑-refl , ⊑-trans , never⊑ , upper-bound , least-upper-bound , ⊑-propositional ; from = λ where ((LE , ne , n , l) , a , u , r , t , le , ub , lub , p) → record { _⊑_ = LE ; never = ne ; now = n ; ⨆ = l ; antisymmetry = a ; T-is-set-unused = u ; ⊑-refl = r ; ⊑-trans = t ; never⊑ = le ; upper-bound = ub ; least-upper-bound = lub ; ⊑-propositional = p } } ; right-inverse-of = λ _ → refl } ; left-inverse-of = λ _ → refl } -- Another equality characterisation lemma for -- Partiality-algebra-with. equality-characterisation-Partiality-algebra-with₂ : ∀ {a p q} {A : Type a} {T : Type p} {P₁ P₂ : Partiality-algebra-with T q A} → let module P₁ = Partiality-algebra-with P₁ module P₂ = Partiality-algebra-with P₂ in (∃ λ (⊑⇔⊑ : ∀ x y → x P₁.⊑ y ⇔ x P₂.⊑ y) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ (Σ-map id (_⇔_.to (⊑⇔⊑ _ _) ∘_) s)) ↔ P₁ ≡ P₂ equality-characterisation-Partiality-algebra-with₂ {q = q} {A} {T} {P₁} {P₂} = (∃ λ (⊑⇔⊑ : ∀ x y → x P₁.⊑ y ⇔ x P₂.⊑ y) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ (Σ-map id (_⇔_.to (⊑⇔⊑ _ _) ∘_) s)) ↝⟨ Σ-cong (∀-cong ext λ _ → ∀-cong ext λ _ → Eq.⇔↔≃ ext P₁.⊑-propositional P₂.⊑-propositional) (λ _ → F.id) ⟩ (∃ λ (⊑≃⊑ : ∀ x y → (x P₁.⊑ y) ≃ (x P₂.⊑ y)) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ (Σ-map id (_≃_.to (⊑≃⊑ _ _) ∘_) s)) ↝⟨ inverse $ Σ-cong (∀-cong ext λ _ → ∀-cong ext λ _ → ≡≃≃ (_≃_.to (Propositional-extensionality-is-univalence-for-propositions ext) prop-ext P₁.⊑-propositional P₂.⊑-propositional)) (λ _ → F.id) ⟩ (∃ λ (⊑≡⊑ : ∀ x y → (x P₁.⊑ y) ≡ (x P₂.⊑ y)) → P₁.never ≡ P₂.never × (∀ x → P₁.now x ≡ P₂.now x) × ∀ s → P₁.⨆ s ≡ P₂.⨆ (Σ-map id (≡⇒→ (⊑≡⊑ _ _) ∘_) s)) ↝⟨ equality-characterisation-Partiality-algebra-with₁ ⟩□ P₁ ≡ P₂ □ where module P₁ = Partiality-algebra-with P₁ module P₂ = Partiality-algebra-with P₂ ------------------------------------------------------------------------ -- Partiality algebra categories -- Partiality algebras (with fixed levels and types) form -- precategories. precategory : ∀ {a} p q (A : Type a) → Precategory (a ⊔ lsuc (p ⊔ q)) (a ⊔ p ⊔ q) Precategory.precategory (precategory p q A) = Partiality-algebra p q A , (λ P Q → Morphism P Q , Morphism-set) , PA.id , PA._∘_ , _↔_.to equality-characterisation-Morphism refl , _↔_.to equality-characterisation-Morphism refl , _↔_.to equality-characterisation-Morphism refl -- A "standard notion of structure" built using -- Partiality-algebra-with. standard-notion-of-structure : ∀ {a} p q (A : Type a) → Standard-notion-of-structure _ _ (precategory-Set p ext) standard-notion-of-structure p q A = record { P = λ B → Partiality-algebra-with (proj₁ B) q A ; H = Is-morphism-with ; H-prop = λ { {p = P} {q = Q} _ → Is-morphism-with-propositional P Q } ; H-id = λ { {p = P} → proj₂ $ _↔_.to Morphism↔Morphism-as-Σ (PA.id {P = ⟨ P ⟩}) } ; H-∘ = λ { {p = P} {q = Q} {r = R} f-morphism g-morphism → proj₂ $ _↔_.to Morphism↔Morphism-as-Σ (_↔_.from (Morphism↔Morphism-as-Σ {P₁ = ⟨ Q ⟩} {P₂ = ⟨ R ⟩}) (_ , g-morphism) PA.∘ _↔_.from (Morphism↔Morphism-as-Σ {P₁ = ⟨ P ⟩}) (_ , f-morphism)) } ; H-antisymmetric = λ P Q id-morphism-P→Q id-morphism-Q→P → _↔_.to (equality-characterisation-Partiality-algebra-with₂) ( (λ x y → record { to = proj₁ id-morphism-P→Q ; from = proj₁ id-morphism-Q→P }) , proj₁ (proj₂ id-morphism-P→Q) , proj₁ (proj₂ (proj₂ id-morphism-P→Q)) , proj₂ (proj₂ (proj₂ id-morphism-P→Q)) ) } abstract -- The precategory obtained from the standard notion of structure is -- equal to the direct definition above. precategories-equal : ∀ {a p q} {A : Type a} → Standard-notion-of-structure.Str (standard-notion-of-structure p q A) ≡ precategory p q A precategories-equal {p = p} {q} {A} = _↔_.to (equality-characterisation-Precategory ext univ univ) ( ≃Partiality-algebra , (λ _ _ → Eq.↔⇒≃ $ inverse $ Morphism↔Morphism-as-Σ) , (λ _ → refl) , (λ _ _ _ _ _ → refl) ) where ≃Partiality-algebra : (∃ λ (T : Set p) → Partiality-algebra-with (proj₁ T) q A) ≃ Partiality-algebra p q A ≃Partiality-algebra = (∃ λ (T : Set p) → Partiality-algebra-with (proj₁ T) q A) ↔⟨ inverse Σ-assoc ⟩ (∃ λ (T : Type p) → Is-set T × Partiality-algebra-with T q A) ↔⟨ ∃-cong (λ _ → drop-⊤-left-× λ P → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible (H-level-propositional ext 2) (Partiality-algebra-with.T-is-set P)) ⟩ (∃ λ (T : Type p) → Partiality-algebra-with T q A) ↝⟨ Eq.↔⇒≃ record { surjection = record { logical-equivalence = record { to = uncurry λ _ P → ⟨ P ⟩ ; from = λ P → T P , partiality-algebra-with P } ; right-inverse-of = λ _ → refl } ; left-inverse-of = λ _ → refl } ⟩□ Partiality-algebra p q A □ where open Partiality-algebra -- Thus the precategory is a category. category : ∀ {a} p q (A : Type a) → Category (a ⊔ lsuc (p ⊔ q)) (a ⊔ p ⊔ q) Category.category (category p q A) = precategory _ _ A , subst (λ C → ∀ {P Q} → Eq.Is-equivalence (Precategory.≡→≅ C {P} {Q})) precategories-equal (structure-identity-principle ext (category-Set _ ext (λ _ _ → univ)) (standard-notion-of-structure p q A)) private precategory-category : ∀ {a p q} {A : Type a} → Category.precategory (category p q A) ≡ precategory p q A precategory-category = refl
{ "alphanum_fraction": 0.2806558387, "avg_line_length": 50.0616570328, "ext": "agda", "hexsha": "26cd63a3fdc5182351d01796474f026b4f97ab3d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-algebra/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-algebra/Category.agda", "max_line_length": 148, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-algebra/Category.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 7547, "size": 25982 }
module _ where open import Common.Prelude hiding (_>>=_) open import Common.Reflection open import Agda.Builtin.Sigma infix -100 This:_ this:_ data This:_ {a} {A : Set a} : A → Set where this:_ : ∀ x → This: x macro runT : Tactic → Tactic runT m = m evalT : ∀ {a} {A : Set a} → TC A → Tactic evalT m hole = m >>= quoteTC >>= unify hole -- The context on the rhs of each of the two functions below is the same, a single String Γ : Telescope Γ = ("s" , vArg (def (quote String) [])) ∷ [] context-Γ₀ : String → This: Γ context-Γ₀ s = this: evalT getContext module _ (S : String) where Γ' : Telescope Γ' = ("S" , vArg (def (quote String) [])) ∷ [] context-Γ₁ : This: Γ' context-Γ₁ = this: evalT getContext downMap : {A : Set} → (Nat → A) → Nat → List A downMap f zero = [] downMap f (suc n) = f n ∷ downMap f n f-type : Term f-type = def (quote String) [] f-tel : Nat → List (Σ String λ _ → Arg Type) f-tel n = downMap (λ _ → "_" , vArg unknown) n f-pats : Nat → List (Arg Pattern) f-pats n = downMap (λ x → vArg (var x)) n f-term : Nat → Term f-term n = var n [] defineFresh : Nat → Nat → TC QName defineFresh #pats #term = freshName "f" >>= λ f → define (vArg f) (funDef f-type (clause (f-tel #pats) (f-pats #pats) (f-term #term) ∷ [])) >>= λ _ → returnTC f freshFun : Nat → Nat → TC Bool freshFun #pats #term = catchTC (defineFresh #pats #term >>= λ _ → returnTC true) (returnTC false) -- Check that the pattern list must be of length 0 -- and the context features 1 available variable. define-Γ₀-0-0 : String → This: true define-Γ₀-0-0 s = this: evalT (freshFun 0 0) define-Γ₀-1-0 : String → This: false define-Γ₀-1-0 s = this: evalT (freshFun 1 0) define-Γ₀-1-1 : String → This: false define-Γ₀-1-1 s = this: evalT (freshFun 0 1) module _ (S : String) where define-Γ₁-0-0 : This: true define-Γ₁-0-0 = this: evalT (freshFun 0 0) define-Γ₁-0-1 : This: false define-Γ₁-0-1 = this: evalT (freshFun 0 1) define-Γ₁-1-0 : This: false define-Γ₁-1-0 = this: evalT (freshFun 1 0) f₀ : String → String f₀ s = runT λ hole → defineFresh 0 0 >>= λ f → unify hole (def f []) f₁ : String → String f₁ = λ s → runT λ hole → defineFresh 0 0 >>= λ f → unify hole (def f []) f₂ : String → String f₂ s = runT λ hole → defineFresh 0 0 >>= λ f → unify hole (def f []) where x = 0
{ "alphanum_fraction": 0.620453573, "avg_line_length": 25.402173913, "ext": "agda", "hexsha": "c5d3f6d008b8d44e74c85ea6d1e2d8948635f273", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue1833.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue1833.agda", "max_line_length": 101, "max_stars_count": 1, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue1833.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 881, "size": 2337 }
{-# OPTIONS --without-K --safe #-} -- The 'original' version of Lawvere Theory, based on -- Nat^op and IOO functors. Contrast with the weak version at -- https://ncatlab.org/nlab/show/Lawvere+theory -- Unfortunately, many results on the weak version are not in -- the literature, so doing that development would be new research. module Categories.Theory.Lawvere where open import Data.Nat using (ℕ) open import Level open import Categories.Category.Cartesian using (Cartesian) open import Categories.Category.Cartesian.Bundle using (CartesianCategory) import Categories.Category.Core as Cat open import Categories.Category.Instance.Nat using (Nat; Natop-Cartesian) open import Categories.Category.Instance.Setoids open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-CartesianCategory) open import Categories.Category.Unbundled using (Category) open import Categories.Category.Unbundled.Properties using (pack′; unpack′) open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.Functor.Cartesian open import Categories.Functor.Cartesian.Properties open import Categories.Functor.IdentityOnObjects private variable ℓ e o′ ℓ′ e′ ℓ″ e″ : Level record LawvereTheory (ℓ e : Level) : Set (suc (ℓ ⊔ e)) where private 𝒩 = Cat.Category.op Nat field L : Category ℕ ℓ e L′ : Cat.Category 0ℓ ℓ e L′ = pack′ L field T : Cartesian L′ CartT : CartesianCategory 0ℓ ℓ e CartT = record { U = L′ ; cartesian = T } field I : IdentityOnObjects (unpack′ 𝒩) L CartF : IsCartesianF Natop-Cartesian CartT (IOO⇒Functor I) record LT-Hom (T₁ : LawvereTheory ℓ e) (T₂ : LawvereTheory ℓ′ e′) : Set (ℓ ⊔ e ⊔ ℓ′ ⊔ e′) where private module T₁ = LawvereTheory T₁ module T₂ = LawvereTheory T₂ field cartF : CartesianF T₁.CartT T₂.CartT module cartF = CartesianF cartF using (F) LT-id : {A : LawvereTheory ℓ e} → LT-Hom A A LT-id = record { cartF = idF-CartesianF _ } LT-∘ : {A : LawvereTheory ℓ e} {B : LawvereTheory ℓ′ e′} {C : LawvereTheory ℓ″ e″} → LT-Hom B C → LT-Hom A B → LT-Hom A C LT-∘ G H = record { cartF = ∘-CartesianF (cartF G) (cartF H) } where open LT-Hom -- A 'Model' will be taken to be in Setoids. record Model (LT : LawvereTheory ℓ e) : Set (ℓ ⊔ e ⊔ suc (ℓ′ ⊔ e′)) where private module LT = LawvereTheory LT field cartF : CartesianF LT.CartT (Setoids-CartesianCategory ℓ′ e′) module cartF = CartesianF cartF mod : Functor LT.L′ (Setoids ℓ′ e′) mod = cartF.F -- But we can have more general models 'in' a cartesian category record ModelsOf_In_ (LT : LawvereTheory ℓ e) (𝒞 : CartesianCategory o′ ℓ′ e′) : Set (ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module LT = LawvereTheory LT using (L′; CartT) module CC = CartesianCategory 𝒞 using (U) field cartF : CartesianF LT.CartT 𝒞 mod : Functor LT.L′ CC.U mod = CartesianF.F cartF
{ "alphanum_fraction": 0.7057192374, "avg_line_length": 33.5465116279, "ext": "agda", "hexsha": "2852edc643596ca92420bb8e3d56ec49905ee299", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Theory/Lawvere.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Theory/Lawvere.agda", "max_line_length": 112, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Theory/Lawvere.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 927, "size": 2885 }
{-# OPTIONS --without-K --safe #-} module Magma where open import Magma.Bundles public open import Magma.Structures public open import Magma.Definitions public
{ "alphanum_fraction": 0.7777777778, "avg_line_length": 20.25, "ext": "agda", "hexsha": "e4db8a481466b1612ce686c6ce191ed9fcc8b297", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_forks_repo_path": "src/Magma.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_issues_repo_path": "src/Magma.agda", "max_line_length": 36, "max_stars_count": 2, "max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_stars_repo_path": "src/Magma.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z", "num_tokens": 38, "size": 162 }
-- Andreas, 2015-02-24, issue reported by g.x.allais -- {-# OPTIONS -v interaction.give:100 #-} record R : Set1 where field -v : Set goal : R goal = {!!} -- refine here -- WAS: error due to rendering or record as -- record {-v = ?}
{ "alphanum_fraction": 0.6049382716, "avg_line_length": 17.3571428571, "ext": "agda", "hexsha": "f2234b5a699b52adcea1e27f46485423798b50a3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1434.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1434.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1434.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 78, "size": 243 }
{- ℤ is a Commutative Ring (using QuoInt) -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Instances.QuoInt where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing open import Cubical.Data.Nat using (ℕ ; zero ; suc) open import Cubical.Data.Bool using (not) open import Cubical.Data.Int.MoreInts.QuoInt renaming (ℤ to ℤType ; _+_ to _+ℤ_; _·_ to _·ℤ_; -_ to -ℤ_) open CommRingStr -- The missing additive inversion +InvL' : ∀ n s → signed (not s) n +ℤ signed s n ≡ signed s zero +InvL' zero _ = refl +InvL' (suc n) spos = predℤ-+ʳ (neg n) (pos (suc n)) ∙ (λ i → neg n +ℤ predSucℤ (pos n) i) ∙ +InvL' n spos +InvL' (suc n) sneg = sucℤ-+ʳ (pos n) (neg (suc n)) ∙ (λ i → pos n +ℤ sucPredℤ (neg n) i) ∙ +InvL' n sneg +InvL : (n : ℤType) → (-ℤ n) +ℤ n ≡ 0 +InvL (signed spos n) = +InvL' n spos +InvL (signed sneg n) = +InvL' n sneg ∙ sym posneg +InvL (posneg i) j = hcomp (λ k → λ { (i = i0) → 0 ; (i = i1) → compPath-filler refl (sym posneg) k j ; (j = i0) → posneg i ; (j = i1) → posneg (i ∧ ~ k) }) (posneg i) +InvR : (n : ℤType) → n +ℤ (-ℤ n) ≡ 0 +InvR n = +-comm n (-ℤ n) ∙ +InvL n ℤCommRing : CommRing ℓ-zero ℤCommRing .fst = ℤType ℤCommRing .snd .0r = 0 ℤCommRing .snd .1r = 1 ℤCommRing .snd ._+_ = _+ℤ_ ℤCommRing .snd ._·_ = _·ℤ_ ℤCommRing .snd .-_ = -ℤ_ ℤCommRing .snd .isCommRing = isCommRingℤ where abstract isCommRingℤ : IsCommRing 0 1 _+ℤ_ _·ℤ_ -ℤ_ isCommRingℤ = makeIsCommRing isSetℤ +-assoc (+-zeroʳ _) +InvR +-comm ·-assoc ·-identityʳ (λ x y z → sym (·-distribˡ x y z)) ·-comm
{ "alphanum_fraction": 0.6139798489, "avg_line_length": 28.3571428571, "ext": "agda", "hexsha": "3da9aa5ebc152ee0fe46e891f2595730d9228fdc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "gmagaf/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/QuoInt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "gmagaf/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/QuoInt.agda", "max_line_length": 106, "max_stars_count": null, "max_stars_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "gmagaf/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/QuoInt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 705, "size": 1588 }
-- Intuitionistic propositional calculus. -- Common syntax. module IPC.Syntax.Common where open import Common.Context public -- Types, or propositions. infixl 9 _∧_ infixl 8 _∨_ infixr 7 _▻_ data Ty : Set where α_ : Atom → Ty _▻_ : Ty → Ty → Ty _∧_ : Ty → Ty → Ty ⊤ : Ty ⊥ : Ty _∨_ : Ty → Ty → Ty -- Additional useful types. ¬_ : Ty → Ty ¬ A = A ▻ ⊥ infix 7 _▻◅_ _▻◅_ : Ty → Ty → Ty A ▻◅ B = (A ▻ B) ∧ (B ▻ A) infixr 7 _▻⋯▻_ _▻⋯▻_ : Cx Ty → Ty → Ty ∅ ▻⋯▻ B = B (Ξ , A) ▻⋯▻ B = Ξ ▻⋯▻ (A ▻ B) infixr 7 _▻⋯▻⋆_ _▻⋯▻⋆_ : Cx Ty → Cx Ty → Ty Γ ▻⋯▻⋆ ∅ = ⊤ Γ ▻⋯▻⋆ (Ξ , A) = (Γ ▻⋯▻⋆ Ξ) ∧ (Γ ▻⋯▻ A) -- Inversion principles. invα : ∀ {P P′} → α P ≡ α P′ → P ≡ P′ invα refl = refl inv▻₁ : ∀ {A A′ B B′} → A ▻ B ≡ A′ ▻ B′ → A ≡ A′ inv▻₁ refl = refl inv▻₂ : ∀ {A A′ B B′} → A ▻ B ≡ A′ ▻ B′ → B ≡ B′ inv▻₂ refl = refl inv∧₁ : ∀ {A A′ B B′} → A ∧ B ≡ A′ ∧ B′ → A ≡ A′ inv∧₁ refl = refl inv∧₂ : ∀ {A A′ B B′} → A ∧ B ≡ A′ ∧ B′ → B ≡ B′ inv∧₂ refl = refl inv∨₁ : ∀ {A A′ B B′} → A ∨ B ≡ A′ ∨ B′ → A ≡ A′ inv∨₁ refl = refl inv∨₂ : ∀ {A A′ B B′} → A ∨ B ≡ A′ ∨ B′ → B ≡ B′ inv∨₂ refl = refl -- Decidable equality on types. _≟ᵀ_ : (A A′ : Ty) → Dec (A ≡ A′) (α P) ≟ᵀ (α P′) with P ≟ᵅ P′ (α P) ≟ᵀ (α .P) | yes refl = yes refl (α P) ≟ᵀ (α P′) | no P≢P′ = no (P≢P′ ∘ invα) (α P) ≟ᵀ (A′ ▻ B′) = no λ () (α P) ≟ᵀ (A′ ∧ B′) = no λ () (α P) ≟ᵀ ⊤ = no λ () (α P) ≟ᵀ ⊥ = no λ () (α P) ≟ᵀ (A′ ∨ B′) = no λ () (A ▻ B) ≟ᵀ (α P′) = no λ () (A ▻ B) ≟ᵀ (A′ ▻ B′) with A ≟ᵀ A′ | B ≟ᵀ B′ (A ▻ B) ≟ᵀ (.A ▻ .B) | yes refl | yes refl = yes refl (A ▻ B) ≟ᵀ (A′ ▻ B′) | no A≢A′ | _ = no (A≢A′ ∘ inv▻₁) (A ▻ B) ≟ᵀ (A′ ▻ B′) | _ | no B≢B′ = no (B≢B′ ∘ inv▻₂) (A ▻ B) ≟ᵀ (A′ ∧ B′) = no λ () (A ▻ B) ≟ᵀ ⊤ = no λ () (A ▻ B) ≟ᵀ ⊥ = no λ () (A ▻ B) ≟ᵀ (A′ ∨ B′) = no λ () (A ∧ B) ≟ᵀ (α P′) = no λ () (A ∧ B) ≟ᵀ (A′ ▻ B′) = no λ () (A ∧ B) ≟ᵀ (A′ ∧ B′) with A ≟ᵀ A′ | B ≟ᵀ B′ (A ∧ B) ≟ᵀ (.A ∧ .B) | yes refl | yes refl = yes refl (A ∧ B) ≟ᵀ (A′ ∧ B′) | no A≢A′ | _ = no (A≢A′ ∘ inv∧₁) (A ∧ B) ≟ᵀ (A′ ∧ B′) | _ | no B≢B′ = no (B≢B′ ∘ inv∧₂) (A ∧ B) ≟ᵀ ⊤ = no λ () (A ∧ B) ≟ᵀ ⊥ = no λ () (A ∧ B) ≟ᵀ (A′ ∨ B′) = no λ () ⊤ ≟ᵀ (α P′) = no λ () ⊤ ≟ᵀ (A′ ▻ B′) = no λ () ⊤ ≟ᵀ (A′ ∧ B′) = no λ () ⊤ ≟ᵀ ⊤ = yes refl ⊤ ≟ᵀ ⊥ = no λ () ⊤ ≟ᵀ (A′ ∨ B′) = no λ () ⊥ ≟ᵀ (α P′) = no λ () ⊥ ≟ᵀ (A′ ▻ B′) = no λ () ⊥ ≟ᵀ (A′ ∧ B′) = no λ () ⊥ ≟ᵀ ⊤ = no λ () ⊥ ≟ᵀ ⊥ = yes refl ⊥ ≟ᵀ (A′ ∨ B′) = no λ () (A ∨ B) ≟ᵀ (α P′) = no λ () (A ∨ B) ≟ᵀ (A′ ▻ B′) = no λ () (A ∨ B) ≟ᵀ (A′ ∧ B′) = no λ () (A ∨ B) ≟ᵀ ⊤ = no λ () (A ∨ B) ≟ᵀ ⊥ = no λ () (A ∨ B) ≟ᵀ (A′ ∨ B′) with A ≟ᵀ A′ | B ≟ᵀ B′ (A ∨ B) ≟ᵀ (.A ∨ .B) | yes refl | yes refl = yes refl (A ∨ B) ≟ᵀ (A′ ∨ B′) | no A≢A′ | _ = no (A≢A′ ∘ inv∨₁) (A ∨ B) ≟ᵀ (A′ ∨ B′) | _ | no B≢B′ = no (B≢B′ ∘ inv∨₂) open ContextEquality (_≟ᵀ_) public
{ "alphanum_fraction": 0.3549465241, "avg_line_length": 25.1428571429, "ext": "agda", "hexsha": "eee49f91e3581612d223f164ff330b49b9856db6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "IPC/Syntax/Common.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "IPC/Syntax/Common.agda", "max_line_length": 62, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "IPC/Syntax/Common.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 1841, "size": 2992 }
{-# OPTIONS --sized-types #-} module CoSig where open import Data.Product as Prod open import Data.Fin open import Data.Unit open import Data.Empty open import Data.Sum open import Data.Nat open import Size open import Function open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst) ---- We don't use dependencies for now. -- record CoSigDep (I : Set) : Set₁ where -- field -- ∥_∥ : I → Set -- coar : {i : I} → ∥_∥ i → Set -- sel : {i : I} (d : ∥_∥ i) → coar d → I -- open CoSigDep public -- Fam : Set → Set₁ -- Fam I = I → Set -- -- | Extension of co-signature Δ, on objects -- ⟪_⟫ : ∀{I} → CoSigDep I → Fam I → Fam I -- ⟪ Δ ⟫ X i = (d : ∥ Δ ∥ i) → Σ[ u ∈ coar Δ d ] (X (sel Δ d u)) record CoSig : Set₁ where field ∥_∥ : Set coar : ∥_∥ → Set open CoSig public -- | Extension of co-signature Δ, on objects ⟪_⟫ : CoSig → Set → Set --⟪ Δ ⟫ X = (d : ∥ Δ ∥) → Σ[ u ∈ coar Δ d ] X ⟪ Δ ⟫ X = (d : ∥ Δ ∥) → (coar Δ d) × X -- | Extension of signature Σ, on morphisms ⟪_⟫₁ : (Δ : CoSig) {A B : Set} → (A → B) → ⟪ Δ ⟫ A → ⟪ Δ ⟫ B ⟪ Δ ⟫₁ f o d = Prod.map id f (o d) -- | Lift ⟪ Δ ⟫ to relations cosig-lift : {Δ : CoSig} {X : Set} (R : X → X → Set) (o₁ o₂ : ⟪ Δ ⟫ X) → Set cosig-lift {Δ} _R_ o₁ o₂ = ∀ d → proj₁ (o₁ d) ≡ proj₁ (o₂ d) × proj₂ (o₁ d) R proj₂ (o₂ d) record CoSig-FP (Δ : CoSig) : Set where coinductive field destr : ⟪ Δ ⟫ (CoSig-FP Δ) open CoSig-FP public record Str {i : Size} (A : Set) : Set where coinductive constructor _∷_ field hd : A tl : ∀ {j : Size< i} → Str {j} A open Str public --- Example: Streams Str-CoSig : Set → CoSig Str-CoSig A = record { ∥_∥ = ⊤ ; coar = λ _ → A } Str' : Set → Set Str' A = CoSig-FP (Str-CoSig A) -- We can indeed extract a stream from stream implemented through cosignatures. Str'-Str : ∀{A} → Str' A → Str A hd (Str'-Str s) = proj₁ (destr s tt) tl (Str'-Str s) = Str'-Str (proj₂ (destr s tt)) -- Example: Mealy machines MM-CoSig : Set → Set → CoSig MM-CoSig I O = record { ∥_∥ = I ; coar = λ _ → O } MM : Set → Set → Set MM I O = CoSig-FP (MM-CoSig I O) -- Such a Mealy machine gives rise to a causal stream transformation. MM-Causal : ∀{I O} → MM I O → ∀{i} → Str {i} I → Str {i} O hd (MM-Causal m s) = proj₁ (destr m (hd s)) tl (MM-Causal m s) = MM-Causal (proj₂ (destr m (hd s))) (tl s) --- Not quite Example: Streams with stop button BStr-CoSig : Set → CoSig BStr-CoSig A = record { ∥_∥ = ⊥ ⊎ ⊤ ; coar = BStr-CoSig-coar } where BStr-CoSig-coar : ⊥ ⊎ ⊤ → Set BStr-CoSig-coar (inj₁ x) = ⊥-elim x BStr-CoSig-coar (inj₂ y) = A BStr : Set → Set BStr A = CoSig-FP (BStr-CoSig A) st-ones : BStr ℕ destr st-ones (inj₁ x) = ⊥-elim x destr st-ones (inj₂ x) = (1 , st-ones) -- Claim: This way of definining streams with a "stop button" renders -- the button unusable. Thus, we only get streams back. BStr-Str : ∀{A} → BStr A → Str A hd (BStr-Str s) = proj₁ (destr s (inj₂ tt)) tl (BStr-Str s) = BStr-Str (proj₂ (destr s (inj₂ tt))) Str-BStr : ∀{A} → Str A → BStr A destr (Str-BStr s) (inj₁ x) = ⊥-elim x destr (Str-BStr s) (inj₂ y) = (hd s , Str-BStr (tl s)) --- Example: Streams with stop button BStr'-CoSig : Set → CoSig BStr'-CoSig A = record { ∥_∥ = ⊤ ⊎ ⊤ ; coar = BStr-CoSig-coar } where BStr-CoSig-coar : ⊤ ⊎ ⊤ → Set BStr-CoSig-coar (inj₁ x) = ⊥ BStr-CoSig-coar (inj₂ y) = A BStr' : Set → Set BStr' A = CoSig-FP (BStr'-CoSig A) -- Claim: This way of defining streams with a stop button makes any -- such stream undefinable. Thus, the fixed point is trivial. BStr'-triv : ∀{A} → BStr' A → ⊥ BStr'-triv s = proj₁ (destr s (inj₁ tt)) -- An extension of cosignatures that allow us to give a continuation -- for the following states. This enables us to specify systems with, -- for example, termination. record CoSig₂ : Set₁ where field ∥_∥₂ : Set coar₂ : ∥_∥₂ → Set cont : ∥_∥₂ → Set open CoSig₂ public -- | Extension of co-signature Δ, on objects ⟪_⟫₂ : CoSig₂ → Set → Set ⟪ Δ ⟫₂ X = (d : ∥ Δ ∥₂) → (coar₂ Δ d) × (cont Δ d → X) record CoSig₂-FP (Δ : CoSig₂) : Set where coinductive field destr₂ : ⟪ Δ ⟫₂ (CoSig₂-FP Δ) open CoSig₂-FP public --- Example: Streams with stop button BStr-CoSig₂ : Set → CoSig₂ BStr-CoSig₂ A = record { ∥_∥₂ = ⊤ ⊎ ⊤ ; coar₂ = BStr-CoSig-coar ; cont = BStr-CoSig-cont } where BStr-CoSig-coar : ⊤ ⊎ ⊤ → Set BStr-CoSig-coar (inj₁ x) = ⊤ BStr-CoSig-coar (inj₂ y) = A BStr-CoSig-cont : ⊤ ⊎ ⊤ → Set BStr-CoSig-cont (inj₁ x) = ⊥ BStr-CoSig-cont (inj₂ y) = ⊤ BStr₂ : Set → Set BStr₂ A = CoSig₂-FP (BStr-CoSig₂ A) st-ones₂ : BStr₂ ℕ destr₂ st-ones₂ (inj₁ tt) = (tt , ⊥-elim) destr₂ st-ones₂ (inj₂ tt) = (1 , (λ _ → st-ones₂))
{ "alphanum_fraction": 0.5919846515, "avg_line_length": 25.6338797814, "ext": "agda", "hexsha": "84791aed28899a9a3bac8b7f8bbf44b0b31256ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "CoSig/CoSig.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "CoSig/CoSig.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "CoSig/CoSig.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1944, "size": 4691 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor.Bifunctor module Categories.Diagram.End {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where private module C = Category C module D = Category D open D open HomReasoning variable A B : Obj f g : A ⇒ B open import Level open import Data.Product using (Σ; _,_) open import Categories.Functor open import Categories.Functor.Construction.Constant open import Categories.NaturalTransformation.Dinatural open import Categories.Morphism.Reasoning D open Functor F record Wedge : Set (levelOfTerm F) where field E : Obj dinatural : DinaturalTransformation (const E) F module dinatural = DinaturalTransformation dinatural Wedge-∘ : (W : Wedge) → A ⇒ Wedge.E W → Wedge Wedge-∘ {A = A} W f = record { E = A ; dinatural = extranaturalʳ (λ X → dinatural.α X ∘ f) (⟺ assoc ○ ∘-resp-≈ˡ (extranatural-commʳ dinatural) ○ assoc ) } where open Wedge W record End : Set (levelOfTerm F) where field wedge : Wedge module wedge = Wedge wedge open wedge public open Wedge field factor : (W : Wedge) → E W ⇒ wedge.E universal : ∀ {W : Wedge} {A} → wedge.dinatural.α A ∘ factor W ≈ dinatural.α W A unique : ∀ {W : Wedge} {g : E W ⇒ wedge.E} → (∀ {A} → wedge.dinatural.α A ∘ g ≈ dinatural.α W A) → factor W ≈ g η-id : factor wedge ≈ D.id η-id = unique identityʳ unique′ :(∀ {A} → wedge.dinatural.α A ∘ f ≈ wedge.dinatural.α A ∘ g) → f ≈ g unique′ {f = f} {g = g} eq = ⟺ (unique {W = Wedge-∘ wedge f} refl) ○ unique (⟺ eq)
{ "alphanum_fraction": 0.6324228029, "avg_line_length": 27.606557377, "ext": "agda", "hexsha": "b88eb2cd58a5b439fa136d1eb229eda5d0eb0c86", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Diagram/End.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Diagram/End.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Diagram/End.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 581, "size": 1684 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Consensus.Types module LibraBFT.Impl.IO.OBM.ObmNeedFetch where {- The functions in this module are used when a node needs to catchup. TODO-3: model catchup request/response in Agda. In haskell, for each message received from the network (including messages to self), each message is processed in a single thread that completes the processing before then processing a subsequent message. However, a node detects that it needs to catchup "in the middle" of that processing. In Haskell we use unsafePerformIO to send a network request to other nodes asking for "catchup" data. The responses are received by a different thread that then feeds them to the waiting thread, which then proceeds. -} postulate -- TODO-3: writeRequestReadResponseUNSAFE writeRequestReadResponseUNSAFE : ObmNeedFetch → Author → Author → BlockRetrievalRequest → BlockRetrievalResponse
{ "alphanum_fraction": 0.7913043478, "avg_line_length": 33.8235294118, "ext": "agda", "hexsha": "722e0fbd924dd8848b8801873e0d7440a0235004", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z", "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/IO/OBM/ObmNeedFetch.agda", "max_issues_count": 72, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z", "max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z", "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/IO/OBM/ObmNeedFetch.agda", "max_line_length": 111, "max_stars_count": 4, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/IO/OBM/ObmNeedFetch.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z", "num_tokens": 274, "size": 1150 }
{- PROOF OF BOUNDING THEOREM -} open import Preliminaries open import Source open import Complexity open import Translation open import Bounding-Lemmas module Bounding where boundingRec : ∀ {τ} (v : [] Source.|- nat) (val-v : val v) (e0 : [] Source.|- τ) (e1 : (nat :: susp τ :: []) Source.|- τ) (E : [] Complexity.|- nat) (E0 : [] Complexity.|- || τ ||) (E1 : (nat :: || τ || :: []) Complexity.|- || τ ||) → valBound v val-v E → expBound e0 E0 → ((v' : [] Source.|- nat) (val-v' : val v') (E' : [] Complexity.|- nat) → valBound v' val-v' E' → (r : [] Source.|- susp τ) (val-r : val r) (R : [] Complexity.|- || τ ||) → valBound r val-r R → expBound (Source.subst e1 (Source.lem4 v' r)) (Complexity.subst E1 (Complexity.lem4 E' R))) → ((vbranch : [] Source.|- τ) (val-vbranch : val vbranch) (nbranch : Cost) → evals-rec-branch e0 e1 v vbranch nbranch → (plusC 1C (interp-Cost nbranch) ≤s l-proj (rec E (1C +C E0) (1C +C E1)) × (valBound vbranch val-vbranch (r-proj (rec E (1C +C E0) (1C +C E1)))))) boundingRec .z z-isval e0 e1 E E0 E1 vbound e0bound e1bound vbranch val-vbranch nbranch (evals-rec-z evals-branch) = (cong-+ refl-s (fst usee0bound ) trans l-proj-s) trans cong-lproj (rec-steps-z trans cong-rec vbound) , weakeningVal' val-vbranch (snd usee0bound) (r-proj-s trans cong-rproj (rec-steps-z trans (cong-rec (vbound)))) where usee0bound = (e0bound vbranch val-vbranch nbranch evals-branch) boundingRec .(suc v') (suc-isval v' val-v') e0 e1 E E0 E1 (E' , v'bound , sucE'≤E) e0bound e1bound vbranch val-vbranch nbranch (evals-rec-s evals-branch) = (cong-+ refl-s (fst usee1bound) trans l-proj-s) trans cong-lproj (rec-steps-s trans cong-rec sucE'≤E) , weakeningVal' val-vbranch (snd usee1bound) (r-proj-s trans cong-rproj (rec-steps-s trans cong-rec sucE'≤E)) where IH = boundingRec v' val-v' e0 e1 E' E0 E1 v'bound e0bound e1bound usee1bound = e1bound v' val-v' E' v'bound (delay (rec v' e0 e1)) (delay-isval _) (rec E' (1C +C E0) (1C +C E1) ) (λ { vr vvr ._ (rec-evals{n1 = n1} {n2 = n2} D D') → let useIH = IH vr vvr n2 (transport (λ H → evals-rec-branch e0 e1 H vr n2) (! (fst (val-evals-inversion val-v' D))) D') in (cong-+ (Eq0C-≤0 (snd (val-evals-inversion val-v' D))) refl-s trans +-unit-l) trans fst useIH , snd useIH } ) vbranch val-vbranch nbranch evals-branch boundingListRec : ∀ {τ τ'} (v : [] Source.|- list τ') (vv : val v) (e0 : [] Source.|- τ) (e1 : τ' :: list τ' :: susp τ :: [] Source.|- τ) (E : [] Complexity.|- list ⟨⟨ τ' ⟩⟩) (E0 : [] Complexity.|- || τ ||) (E1 : ⟨⟨ τ' ⟩⟩ :: list ⟨⟨ τ' ⟩⟩ :: || τ || :: [] Complexity.|- || τ ||) → valBound v vv E → expBound e0 E0 → ((h' : [] Source.|- τ') (vh' : val h') (H' : [] Complexity.|- ⟨⟨ τ' ⟩⟩) → valBound h' vh' H' → (v' : [] Source.|- list τ') (vv' : val v') (V' : [] Complexity.|- list ⟨⟨ τ' ⟩⟩) → valBound v' vv' V' → (r : [] Source.|- susp τ) (vr : val r) (R : [] Complexity.|- || τ ||) → valBound r vr R → expBound (Source.subst e1 (Source.lem5 h' v' r)) (Complexity.subst E1 (Complexity.lem5 H' V' R))) → (vbranch : [] Source.|- τ) (vvbranch : val vbranch) (nbranch : Cost) → evals-listrec-branch e0 e1 v vbranch nbranch → plusC 1C (interp-Cost nbranch) ≤s l-proj (listrec E (1C +C E0) (1C +C E1)) × valBound vbranch vvbranch (r-proj (listrec E (1C +C E0) (1C +C E1))) boundingListRec .nil nil-isval e0 e1 E E0 E1 vbv e0b e1b vbranch vvbranch n (evals-listrec-nil evals-branch) = ((cong-+ refl-s (fst usee0bound) trans l-proj-s) trans cong-lproj (listrec-steps-nil trans cong-listrec vbv)) , weakeningVal' vvbranch (snd usee0bound) (r-proj-s trans cong-rproj (listrec-steps-nil trans cong-listrec vbv)) where usee0bound = e0b vbranch vvbranch n evals-branch boundingListRec .(x ::s xs) (cons-isval x xs vv vv₁) e0 e1 E E0 E1 (h' , t' , (vbxh' , vbxst') , h'::t'≤sE) e0b e1b vbranch vvbranch nbranch (evals-listrec-cons evals-branch) = (cong-+ refl-s (fst usee1bound) trans l-proj-s) trans cong-lproj (listrec-steps-cons trans cong-listrec h'::t'≤sE) , weakeningVal' vvbranch (snd usee1bound) (r-proj-s trans cong-rproj (listrec-steps-cons trans cong-listrec h'::t'≤sE)) where IH = boundingListRec xs vv₁ e0 e1 t' E0 E1 vbxst' e0b e1b usee1bound = e1b x vv h' vbxh' xs vv₁ t' vbxst' (delay (listrec xs e0 e1)) (delay-isval _) (listrec t' (1C +C E0) (1C +C E1)) (λ { vr vvr ._ (listrec-evals {_} {n2} D D') → let useIH = IH vr vvr n2 (transport (λ H → evals-listrec-branch e0 e1 H vr n2) (! (fst (val-evals-inversion vv₁ D))) D') in (cong-+ (Eq0C-≤0 (snd (val-evals-inversion vv₁ D))) refl-s trans +-unit-l) trans fst useIH , snd useIH } ) vbranch vvbranch nbranch evals-branch bounding : ∀{Γ τ} → (e : Γ Source.|- τ) → (Θ : Source.sctx [] Γ) → (a : substVal Θ) → (Θ' : Complexity.sctx [] ⟨⟨ Γ ⟩⟩c) → substBound Θ a Θ' → expBound (Source.subst e Θ) (Complexity.subst || e ||e Θ') bounding unit Θ a Θ' sb unit unit-isval 0c unit-evals = l-proj-s , <> bounding (var x) Θ a Θ' sb v vv c evals = inv1 (a x) evals trans l-proj-s , weakeningVal' vv (transport-valBound (inv2 (a x) evals) (val-hprop (transport val (inv2 (a x) evals) (a x)) vv) _ (sb x)) r-proj-s bounding z Θ a Θ' sb .z z-isval .0c z-evals = l-proj-s , r-proj-s bounding (suc e) Θ a Θ' sb .(suc e₁) (suc-isval e₁ vv) n (s-evals evals) = fst IH trans l-proj-s , (r-proj (Complexity.subst || e ||e Θ')) , (snd IH) , r-proj-s where IH = (bounding e Θ a Θ' sb _ vv _ evals) bounding (rec e e₁ e₂) Θ a Θ' sb e' val-e' ._ (rec-evals {v = v} arg-evals branch-evals) = cong-+ (fst IH1) (fst lemma) trans l-proj-s , weakeningVal' val-e' (snd lemma) r-proj-s where IH1 = bounding e Θ a Θ' sb _ (evals-val arg-evals) _ arg-evals lemma = boundingRec v (evals-val arg-evals) _ (Source.subst e₂ (Source.s-extend (Source.s-extend Θ))) _ _ (Complexity.subst || e₂ ||e (Complexity.s-extend (Complexity.s-extend Θ'))) (snd IH1) (bounding e₁ Θ a Θ' sb ) (λ v' valv' E' valBoundv' r valr R valBoundR v'' valv'' c'' evals-rec → let IH3 = (bounding e₂ (Source.lem4' Θ v' r) (extend-substVal2 a valv' valr) (Complexity.lem4' Θ' E' R) (extend-substBound2 sb valBoundv' valBoundR) v'' valv'' c'' (transport (λ x → evals x v'' c'') (Source.subst-compose4 Θ v' r e₂) evals-rec)) in (fst IH3 trans cong-refl (ap l-proj (! (Complexity.subst-compose4 Θ' E' R || e₂ ||e))) , weakeningVal' valv'' (snd IH3) (cong-rproj (cong-refl (! (Complexity.subst-compose4 Θ' E' R || e₂ ||e)))))) e' val-e' _ branch-evals bounding {τ = ρ ->s τ} (lam e) Θ a Θ' sb .(lam (Source.subst e (Source.s-extend Θ))) (lam-isval .(Source.subst e (Source.s-extend Θ))) .0c lam-evals = l-proj-s , (λ v₁ vv₁ E1 valbound1 v vv n body-evals → let IH = bounding e (Source.lem3' Θ v₁) (extend-substVal a vv₁) (Complexity.lem3' Θ' E1) (extend-substBound sb valbound1) v vv n (transport (λ x → evals x v n) (Source.subst-compose Θ v₁ e) body-evals) in fst IH trans cong-lproj (cong-refl (! (Complexity.subst-compose Θ' E1 || e ||e)) trans lam-s trans cong-app r-proj-s) , weakeningVal' vv (snd IH) (cong-rproj (cong-refl (! (Complexity.subst-compose Θ' E1 || e ||e)) trans lam-s trans cong-app r-proj-s))) bounding (app e1 e2) Θ a Θ' sb v val-v .((n0 +c n1) +c n) (app-evals {n0} {n1} {n} {τ2} {τ} {.(Source.subst e1 Θ)} {e1'} {.(Source.subst e2 Θ)} {v2} e1-evals e2-evals subst-evals) = cong-+ (cong-+ (fst IH1) (fst IH2)) (fst IH1a) trans l-proj-s , weakeningVal' val-v (snd IH1a) r-proj-s where IH1 = (bounding e1 Θ a Θ' sb (lam e1') (lam-isval e1') n0 e1-evals) v2-val = evals-val e2-evals IH2 = (bounding e2 Θ a Θ' sb v2 v2-val n1 e2-evals) IH1a = snd IH1 v2 v2-val (r-proj (Complexity.subst || e2 ||e Θ')) (snd IH2) v val-v n subst-evals bounding {Γ} {τ1 ×s τ2} (prod e1 e2) Θ a Θ' sb .(prod e3 e4) (pair-isval e3 e4 val-e3 val-e4) .(n1 +c n2) (pair-evals {n1} {n2} evals-c1 evals-c2) = cong-+ (fst IH1) (fst IH2) trans l-proj-s , weakeningVal' val-e3 (snd IH1) (l-proj-s trans cong-lproj r-proj-s) , weakeningVal' val-e4 (snd IH2) (r-proj-s trans cong-rproj r-proj-s) where IH1 = (bounding e1 Θ a Θ' sb _ val-e3 _ evals-c1) IH2 = (bounding e2 Θ a Θ' sb _ val-e4 _ evals-c2) bounding (delay e) Θ a Θ' sb .(delay (Source.subst e Θ)) (delay-isval .(Source.subst e Θ)) .0c delay-evals = l-proj-s , (λ v₁ vv n x → let IH = bounding e Θ a Θ' sb v₁ vv n x in fst IH trans cong-lproj (r-proj-s trans refl-s) , weakeningVal' vv (snd IH) (cong-rproj r-proj-s)) bounding (force e) Θ a Θ' sb v vv ._ (force-evals {n1} {n2} {τ} {e'} {.v} {.(Source.subst e Θ)} evals evals₁) = (cong-+ (fst IH) (fst (snd IH v vv n2 evals₁)) trans l-proj-s) , weakeningVal' vv (snd (snd IH v vv n2 evals₁)) r-proj-s where IH = (bounding e Θ a Θ' sb _ (delay-isval e') n1 evals) bounding {Γ} {τ} (split e0 e1) Θ a Θ' sb e' val-e' .(n1 +c n2) (split-evals {n1} {n2} {.τ} {τ1} {τ2} {.(Source.subst e0 Θ)} {v1} {v2} evals-in-c0 evals-in-c1) with evals-val evals-in-c0 | (bounding e0 Θ a Θ' sb (prod v1 v2) (evals-val evals-in-c0) _ evals-in-c0) ... | pair-isval ._ ._ val-v1 val-v2 | (IH11 , vb1 , vb2) = cong-+ IH11 (fst IH2) trans cong-+ refl-s (cong-lproj (cong-refl (! (Complexity.subst-compose3 Θ' || e1 ||e (l-proj (r-proj || e0 ||e)) (r-proj (r-proj || e0 ||e)))))) trans l-proj-s , weakeningVal' val-e' (snd IH2) (cong-rproj (cong-refl (! (Complexity.subst-compose3 Θ' || e1 ||e (l-proj (r-proj || e0 ||e)) (r-proj (r-proj || e0 ||e))))) trans r-proj-s) where IH2 = bounding e1 (Source.lem4' Θ v1 v2) (extend-substVal2 a val-v1 val-v2) (Complexity.lem4' Θ' (l-proj (r-proj (Complexity.subst || e0 ||e Θ'))) (r-proj (r-proj (Complexity.subst || e0 ||e Θ')))) (extend-substBound2 sb vb1 vb2) e' val-e' n2 (transport (λ x → evals x e' n2) (Source.subst-compose3 Θ e1 v1 v2) evals-in-c1) bounding nil Θ a Θ' sb .nil nil-isval .0c nil-evals = l-proj-s , r-proj-s bounding (e ::s e₁) Θ a Θ' sb .(x ::s xs) (cons-isval x xs vv vv₁) ._ (cons-evals evals evals₁) = (cong-+ (fst IH1) (fst IH2) trans l-proj-s) , (r-proj (Complexity.subst || e ||e Θ')) , r-proj (Complexity.subst || e₁ ||e Θ') , ((snd IH1 , snd IH2) , r-proj-s) where IH1 = (bounding e Θ a Θ' sb _ vv _ evals) IH2 = (bounding e₁ Θ a Θ' sb _ vv₁ _ evals₁) bounding (listrec e e₁ e₂) Θ a Θ' sb v vv ._ (listrec-evals {v = k} arg-evals branch-evals) = (cong-+ (fst IH1) (fst lemma) trans l-proj-s) , weakeningVal' vv (snd lemma) r-proj-s where IH1 = bounding e Θ a Θ' sb _ (evals-val arg-evals) _ arg-evals lemma = boundingListRec k (evals-val arg-evals) _ (Source.subst e₂ (Source.s-extend (Source.s-extend (Source.s-extend Θ)))) _ _ (Complexity.subst || e₂ ||e (Complexity.s-extend (Complexity.s-extend (Complexity.s-extend Θ')))) (snd IH1) (bounding e₁ Θ a Θ' sb) (λ h' vh' H' vbh'H' v' vv' V' vbv'V' r vr R vbrR v₁ vv₁ n x₂ → let IH3 = bounding e₂ (Source.lem5' Θ h' v' r) (extend-substVal3 a vh' vv' vr) (Complexity.lem5' Θ' H' V' R) (extend-substBound3 sb vbh'H' vbv'V' vbrR) v₁ vv₁ n (transport (λ x → evals x v₁ n) (Source.subst-compose5 Θ e₂ h' v' r) x₂) in fst IH3 trans cong-refl (ap l-proj (! (Complexity.subst-compose5 Θ' || e₂ ||e H' V' R))) , weakeningVal' vv₁ (snd IH3) (cong-rproj (cong-refl (! (Complexity.subst-compose5 Θ' || e₂ ||e H' V' R))))) v vv _ branch-evals bounding true Θ a Θ' sb .true true-isval .0c true-evals = l-proj-s , r-proj-s bounding false Θ a Θ' sb .false false-isval .0c false-evals = l-proj-s , r-proj-s
{ "alphanum_fraction": 0.5399984863, "avg_line_length": 73.8156424581, "ext": "agda", "hexsha": "2f459349f165c31bc28425cb1a8661090ae603fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity/Bounding.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity/Bounding.agda", "max_line_length": 264, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity/Bounding.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 4770, "size": 13213 }
------------------------------------------------------------------------------ -- Properties related with lists of natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Nat.List.PropertiesATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Nat.List open import FOTC.Data.List ------------------------------------------------------------------------------ ++-ListN : ∀ {ms ns} → ListN ms → ListN ns → ListN (ms ++ ns) ++-ListN {ns = ns} lnnil nsL = prf where postulate prf : ListN ([] ++ ns) {-# ATP prove prf #-} ++-ListN {ns = ns} (lncons {m} {ms} Nd LNms) LNns = prf (++-ListN LNms LNns) where postulate prf : ListN (ms ++ ns) → ListN ((m ∷ ms) ++ ns) {-# ATP prove prf #-}
{ "alphanum_fraction": 0.4432882414, "avg_line_length": 35.5925925926, "ext": "agda", "hexsha": "d0b329fcabecd17bc34ba8716e8d5d687d1c2dbd", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Nat/List/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Nat/List/PropertiesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Nat/List/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 228, "size": 961 }
module Issue847 where data ⊥ : Set where bad : ⊥ bad = bad′ where abstract bad′ : ⊥ bad′ = bad
{ "alphanum_fraction": 0.5688073394, "avg_line_length": 9.9090909091, "ext": "agda", "hexsha": "e872b1983773cbcf3fba9089a78318ead12468fd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue847.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue847.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue847.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 41, "size": 109 }
open import Logic.Classical open import Structure.Real module Structure.Real.Abs {ℓ₁ ℓ₂ ℓₑ} {R} ⦃ R-equiv ⦄ (_+_) (_⋅_) (_≤_) ⦃ classical : ∀{ℓ}{P} → Classical{ℓ}(P) ⦄ ⦃ reals : RealTheory{ℓ₁}{ℓₑ}{ℓ₂} {R} ⦃ R-equiv ⦄ (_+_)(_⋅_)(_≤_) ⦄ where open RealTheory(reals) open import Data.Boolean import Lvl open import Functional open import Logic open import Logic.Classical open import Logic.Propositional open import Logic.Predicate open import Structure.Setoid open import Structure.Operator.Field open import Structure.Operator.Monoid open import Structure.Operator.Group open import Structure.Relator.Ordering open Structure.Relator.Ordering.Weak.Properties open import Structure.Relator.Properties open import Syntax.Type open import Type -- TODO: This file is probably redundant. Move this to Structure.Operator.OrderedField.Abs -- TODO: Prove somewhere that: (P → ([∨]-elim x y (_ :of: (P ∨ Q)) ≡ x)) ∧ (Q → ([∨]-elim x y (_ :of: (P ∨ Q)) ≡ y)) because this is neccessary when proving the properties of abs -- abs : R → R -- abs(x) = if(decide{P = x ≤ 𝟎}) then (− x) else x
{ "alphanum_fraction": 0.7129798903, "avg_line_length": 35.2903225806, "ext": "agda", "hexsha": "c914ec586866538c534247ea7bbf586cb48d9649", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Real/Abs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Real/Abs.agda", "max_line_length": 185, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Real/Abs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 346, "size": 1094 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Object.Zero module Categories.Object.Kernel.Properties {o ℓ e} {𝒞 : Category o ℓ e} (𝒞-Zero : Zero 𝒞) where open import Function using (_$_) open import Categories.Diagram.Equalizer 𝒞 open import Categories.Diagram.Pullback 𝒞 renaming (glue to glue-pullback; up-to-iso to pullback-up-to-iso) open import Categories.Diagram.Pullback.Properties 𝒞 open import Categories.Object.Kernel 𝒞-Zero open import Categories.Object.Terminal 𝒞 open import Categories.Morphism 𝒞 open import Categories.Morphism.Reasoning 𝒞 open Category 𝒞 open HomReasoning open Equiv open Zero 𝒞-Zero private variable A B : Obj f : A ⇒ B -- We can express kernels as pullbacks along the morphism '! : ⊥ ⇒ A'. Kernel⇒Pullback : Kernel f → Pullback f ! Kernel⇒Pullback {f = f} kernel = record { p₁ = kernel⇒ ; p₂ = ¡ ; isPullback = record { commute = commute ; universal = λ {C} {h₁} {h₂} eq → universal {h = h₁} $ begin f ∘ h₁ ≈⟨ eq ⟩ ! ∘ h₂ ≈˘⟨ refl⟩∘⟨ ¡-unique h₂ ⟩ zero⇒ ∎ ; unique = λ {C} {h₁} {h₂} {i} k-eq h-eq → unique $ begin h₁ ≈˘⟨ k-eq ⟩ kernel⇒ ∘ i ∎ ; p₁∘universal≈h₁ = ⟺ factors ; p₂∘universal≈h₂ = ¡-unique₂ _ _ } } where open Kernel kernel -- All pullbacks along the morphism '! : ⊥ ⇒ A' are also kernels. Pullback⇒Kernel : Pullback f ! → Kernel f Pullback⇒Kernel {f = f} pullback = record { kernel⇒ = p₁ ; isKernel = record { commute = begin f ∘ p₁ ≈⟨ commute ⟩ ! ∘ p₂ ≈˘⟨ refl⟩∘⟨ ¡-unique p₂ ⟩ zero⇒ ∎ ; universal = λ eq → universal eq ; factors = ⟺ p₁∘universal≈h₁ ; unique = λ eq → unique (⟺ eq) (⟺ (¡-unique _)) } } where open Pullback pullback -- We can also express kernels as the equalizer of 'f' and the zero morphism. Kernel⇒Equalizer : Kernel f → Equalizer f zero⇒ Kernel⇒Equalizer {f = f} kernel = record { arr = kernel⇒ ; isEqualizer = record { equality = begin f ∘ kernel⇒ ≈⟨ commute ⟩ zero⇒ ≈⟨ pushʳ (¡-unique (¡ ∘ kernel⇒)) ⟩ zero⇒ ∘ kernel⇒ ∎ ; equalize = λ {_} {h} eq → universal (eq ○ pullʳ (⟺ (¡-unique (¡ ∘ h)))) ; universal = factors ; unique = unique } } where open Kernel kernel -- Furthermore, all equalizers of 'f' and the zero morphism are equalizers Equalizer⇒Kernel : Equalizer f zero⇒ → Kernel f Equalizer⇒Kernel {f = f} equalizer = record { kernel⇒ = arr ; isKernel = record { commute = begin f ∘ arr ≈⟨ equality ⟩ zero⇒ ∘ arr ≈⟨ pullʳ (⟺ (¡-unique (¡ ∘ arr))) ⟩ zero⇒ ∎ ; universal = λ {_} {h} eq → equalize (eq ○ pushʳ (¡-unique (¡ ∘ h))) ; factors = universal ; unique = unique } } where open Equalizer equalizer module _ (K : Kernel f) where open Kernel K Kernel-Mono : Mono kernel⇒ Kernel-Mono g₁ g₂ eq = begin g₁ ≈⟨ unique refl ⟩ universal universal-∘ ≈˘⟨ unique eq ⟩ g₂ ∎ module _ (has-kernels : ∀ {A B} → (f : A ⇒ B) → Kernel f) where -- The kernel of a kernel is isomorphic to the zero object. kernel²-zero : ∀ {A B} {f : A ⇒ B} → Kernel.kernel (has-kernels (Kernel.kernel⇒ (has-kernels f))) ≅ zero kernel²-zero {B = B} {f = f} = pullback-up-to-iso kernel-pullback (pullback-mono-mono !-Mono) where K : Kernel f K = has-kernels f module K = Kernel K K′ : Kernel K.kernel⇒ K′ = has-kernels K.kernel⇒ kernel-pullback : Pullback ! ! kernel-pullback = Pullback-resp-≈ (glue-pullback (Kernel⇒Pullback K) (swap (Kernel⇒Pullback K′))) (!-unique (f ∘ !)) refl pullback-mono-mono : ∀ {A B} {f : A ⇒ B} → Mono f → Pullback f f pullback-mono-mono mono = record { p₁ = id ; p₂ = id ; isPullback = pullback-self-mono mono }
{ "alphanum_fraction": 0.6038978141, "avg_line_length": 28.3358208955, "ext": "agda", "hexsha": "9873cce57c5714074f80f8c1d5599287e272ebb5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FintanH/agda-categories", "max_forks_repo_path": "src/Categories/Object/Kernel/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FintanH/agda-categories", "max_issues_repo_path": "src/Categories/Object/Kernel/Properties.agda", "max_line_length": 127, "max_stars_count": null, "max_stars_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FintanH/agda-categories", "max_stars_repo_path": "src/Categories/Object/Kernel/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1387, "size": 3797 }
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇. -- Non-canonical model equipment for Kripke-style semantics. module BasicIS4.Equipment.KripkeDyadicNonCanonical where open import BasicIS4.Syntax.Common public module Syntax (_⊢_ : Cx² Ty Ty → Ty → Set) (mono²⊢ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ A → Π′ ⊢ A) (up : ∀ {A Π} → Π ⊢ (□ A) → Π ⊢ (□ □ A)) (down : ∀ {A Π} → Π ⊢ (□ A) → Π ⊢ A) (lift : ∀ {A Γ Δ} → (Γ ⁏ Δ) ⊢ A → (□⋆ Γ ⁏ Δ) ⊢ (□ A)) where -- Worlds. Worldᶜ : Set Worldᶜ = Cx² Ty Ty -- Intuitionistic accessibility. infix 3 _≤ᶜ_ _≤ᶜ_ : Worldᶜ → Worldᶜ → Set _≤ᶜ_ = _⊆²_ refl≤ᶜ : ∀ {w} → w ≤ᶜ w refl≤ᶜ = refl⊆² trans≤ᶜ : ∀ {w w′ w″} → w ≤ᶜ w′ → w′ ≤ᶜ w″ → w ≤ᶜ w″ trans≤ᶜ = trans⊆² bot≤ᶜ : ∀ {w} → ∅² ≤ᶜ w bot≤ᶜ = bot⊆² -- Not the canonical modal accessibility, based on the 4 axiom. infix 3 _Яᶜ_ _Яᶜ_ : Worldᶜ → Worldᶜ → Set w Яᶜ w′ = ∀ {A} → w ⊢ (□ A) → w′ ⊢ (□ □ A) reflЯᶜ : ∀ {w} → w Яᶜ w reflЯᶜ = up transЯᶜ : ∀ {w w′ w″} → w Яᶜ w′ → w′ Яᶜ w″ → w Яᶜ w″ transЯᶜ ζ ζ′ = down ∘ ζ′ ∘ ζ botЯᶜ : ∀ {w} → ∅² Яᶜ w botЯᶜ = mono²⊢ bot≤ᶜ ∘ up liftЯᶜ : ∀ {Γ Δ} → Γ ⁏ Δ Яᶜ □⋆ Γ ⁏ Δ liftЯᶜ = down ∘ lift ∘ up -- Composition of accessibility. infix 3 _≤⨾Яᶜ_ _≤⨾Яᶜ_ : Worldᶜ → Worldᶜ → Set _≤⨾Яᶜ_ = _≤ᶜ_ ⨾ _Яᶜ_ infix 3 _Я⨾≤ᶜ_ _Я⨾≤ᶜ_ : Worldᶜ → Worldᶜ → Set _Я⨾≤ᶜ_ = _Яᶜ_ ⨾ _≤ᶜ_ refl≤⨾Яᶜ : ∀ {w} → w ≤⨾Яᶜ w refl≤⨾Яᶜ {w} = w , (refl≤ᶜ , reflЯᶜ) reflЯ⨾≤ᶜ : ∀ {w} → w Я⨾≤ᶜ w reflЯ⨾≤ᶜ {w} = w , (reflЯᶜ , refl≤ᶜ) -- Persistence condition, after Iemhoff; included by Ono. -- -- w′ v′ → v′ -- ◌───Я───● → ● -- │ → ╱ -- ≤ ξ,ζ → Я -- │ → ╱ -- ● → ● -- w → w ≤⨾Я→Яᶜ : ∀ {v′ w} → w ≤⨾Яᶜ v′ → w Яᶜ v′ ≤⨾Я→Яᶜ (w′ , (ξ , ζ)) = ζ ∘ mono²⊢ ξ -- Brilliance condition, after Iemhoff. -- -- v′ → v′ -- ● → ● -- │ → ╱ -- ζ,ξ ≤ → Я -- │ → ╱ -- ●───Я───◌ → ● -- w v → w Я⨾≤→Яᶜ : ∀ {w v′} → w Я⨾≤ᶜ v′ → w Яᶜ v′ Я⨾≤→Яᶜ (v , (ζ , ξ)) = mono²⊢ ξ ∘ ζ -- Minor persistence condition, included by Božić and Došen. -- -- w′ v′ → v′ -- ◌───Я───● → ● -- │ → │ -- ≤ ξ,ζ → ≤ -- │ → │ -- ● → ●───Я───◌ -- w → w v -- -- w″ → w″ -- ● → ● -- │ → │ -- ξ′,ζ′ ≤ → │ -- │ → │ -- ●───R───◌ → ≤ -- │ v′ → │ -- ξ,ζ ≤ → │ -- │ → │ -- ●───R───◌ → ●───────R───────◌ -- w v → w v″ ≤⨾Я→Я⨾≤ᶜ : ∀ {v′ w} → w ≤⨾Яᶜ v′ → w Я⨾≤ᶜ v′ ≤⨾Я→Я⨾≤ᶜ {v′} ξ,ζ = v′ , (≤⨾Я→Яᶜ ξ,ζ , refl≤ᶜ) transЯ⨾≤ᶜ : ∀ {w′ w w″} → w Я⨾≤ᶜ w′ → w′ Я⨾≤ᶜ w″ → w Я⨾≤ᶜ w″ transЯ⨾≤ᶜ {w′} (v , (ζ , ξ)) (v′ , (ζ′ , ξ′)) = let v″ , (ζ″ , ξ″) = ≤⨾Я→Я⨾≤ᶜ (w′ , (ξ , ζ′)) in v″ , (transЯᶜ ζ ζ″ , trans≤ᶜ ξ″ ξ′) ≤→Яᶜ : ∀ {v′ w} → w ≤ᶜ v′ → w Яᶜ v′ ≤→Яᶜ {v′} ξ = ≤⨾Я→Яᶜ (v′ , (ξ , reflЯᶜ)) -- Minor brilliance condition, included by Ewald and Alechina et al. -- -- v′ → w′ v′ -- ● → ◌───Я───● -- │ → │ -- ζ,ξ ≤ → ≤ -- │ → │ -- ●───Я───◌ → ● -- w v → w -- -- v′ w″ → v″ w″ -- ◌───R───● → ◌───────R───────● -- │ → │ -- ≤ ξ′,ζ′ → │ -- v │ → │ -- ◌───R───● → ≤ -- │ w′ → │ -- ≤ ξ,ζ → │ -- │ → │ -- ● → ● -- w → w Я⨾≤→≤⨾Яᶜ : ∀ {w v′} → w Я⨾≤ᶜ v′ → w ≤⨾Яᶜ v′ Я⨾≤→≤⨾Яᶜ {w} ζ,ξ = w , (refl≤ᶜ , Я⨾≤→Яᶜ ζ,ξ) trans≤⨾Яᶜ : ∀ {w′ w w″} → w ≤⨾Яᶜ w′ → w′ ≤⨾Яᶜ w″ → w ≤⨾Яᶜ w″ trans≤⨾Яᶜ {w′} (v , (ξ , ζ)) (v′ , (ξ′ , ζ′)) = let v″ , (ξ″ , ζ″) = Я⨾≤→≤⨾Яᶜ (w′ , (ζ , ξ′)) in v″ , (trans≤ᶜ ξ ξ″ , transЯᶜ ζ″ ζ′) ≤→Яᶜ′ : ∀ {w v′} → w ≤ᶜ v′ → w Яᶜ v′ ≤→Яᶜ′ {w} ξ = Я⨾≤→Яᶜ (w , (reflЯᶜ , ξ)) -- Infimum (greatest lower bound) of accessibility. -- -- w′ -- ● -- │ -- ≤ ξ,ζ -- │ -- ◌───R───● -- w v infix 3 _≤⊓Яᶜ_ _≤⊓Яᶜ_ : Worldᶜ → Worldᶜ → Set _≤⊓Яᶜ_ = _≤ᶜ_ ⊓ _Яᶜ_ infix 3 _Я⊓≤ᶜ_ _Я⊓≤ᶜ_ : Worldᶜ → Worldᶜ → Set _Я⊓≤ᶜ_ = _Яᶜ_ ⊓ _≤ᶜ_ ≤⊓Я→Я⊓≤ᶜ : ∀ {w′ v} → w′ ≤⊓Яᶜ v → v Я⊓≤ᶜ w′ ≤⊓Я→Я⊓≤ᶜ (w , (ξ , ζ)) = w , (ζ , ξ) Я⊓≤→≤⊓Яᶜ : ∀ {w′ v} → v Я⊓≤ᶜ w′ → w′ ≤⊓Яᶜ v Я⊓≤→≤⊓Яᶜ (w , (ζ , ξ)) = w , (ξ , ζ) -- Supremum (least upper bound) of accessibility. -- -- w′ v′ -- ●───R───◌ -- │ -- ξ,ζ ≤ -- │ -- ● -- v infix 3 _≤⊔Яᶜ_ _≤⊔Яᶜ_ : Worldᶜ → Worldᶜ → Set _≤⊔Яᶜ_ = _≤ᶜ_ ⊔ _Яᶜ_ infix 3 _Я⊔≤ᶜ_ _Я⊔≤ᶜ_ : Worldᶜ → Worldᶜ → Set _Я⊔≤ᶜ_ = _Яᶜ_ ⊔ _≤ᶜ_ ≤⊔Я→Я⊔≤ᶜ : ∀ {w′ v} → w′ ≤⊔Яᶜ v → v Я⊔≤ᶜ w′ ≤⊔Я→Я⊔≤ᶜ (v′ , (ξ , ζ)) = v′ , (ζ , ξ) Я⊔≤→≤⊔Яᶜ : ∀ {w′ v} → v Я⊔≤ᶜ w′ → w′ ≤⊔Яᶜ v Я⊔≤→≤⊔Яᶜ (v′ , (ζ , ξ)) = v′ , (ξ , ζ) -- Infimum-to-supremum condition, included by Ewald. -- -- w′ → w′ v′ -- ● → ●───Я───◌ -- │ → │ -- ≤ ξ,ζ → ≤ -- │ → │ -- ◌───Я───● → ● -- w v → v -- NOTE: This could be more precise. ≤⊓Я→≤⊔Яᶜ : ∀ {v w′} → w′ ≤⊓Яᶜ v → v ≤⊔Яᶜ w′ ≤⊓Я→≤⊔Яᶜ {v} {w′} (w , (ξ , ζ)) = (w′ ⧺² v) , (weak⊆²⧺₂ , mono²⊢ (weak⊆²⧺₁ v) ∘ up) -- Supremum-to-infimum condition. -- -- w′ v′ → w′ -- ●───Я───◌ → ● -- │ → │ -- ξ,ζ ≤ → ≤ -- │ → │ -- ● → ◌───Я───● -- v → w v -- NOTE: This could be more precise. ≤⊔Я→≤⊓Яᶜ : ∀ {w′ v} → v ≤⊔Яᶜ w′ → w′ ≤⊓Яᶜ v ≤⊔Я→≤⊓Яᶜ (v′ , (ξ , ζ)) = ∅² , (bot≤ᶜ , botЯᶜ)
{ "alphanum_fraction": 0.2912182187, "avg_line_length": 25.5418326693, "ext": "agda", "hexsha": "678865a48df5f008bd1c2447150944b73d207691", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIS4/Equipment/KripkeDyadicNonCanonical.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIS4/Equipment/KripkeDyadicNonCanonical.agda", "max_line_length": 95, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIS4/Equipment/KripkeDyadicNonCanonical.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 3738, "size": 6411 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category {- Helper routines most often used in reasoning with commutative squares, at the level of arrows in categories. Basic : reasoning about identity Pulls : use a ∘ b ≈ c as left-to-right rewrite Pushes : use c ≈ a ∘ b as a left-to-right rewrite IntroElim : introduce/eliminate an equivalent-to-id arrow Extend : 'extends' a commutative square with an equality on left/right/both -} module Categories.Morphism.Reasoning.Core {o ℓ e} (C : Category o ℓ e) where open import Level open import Function renaming (id to idᶠ; _∘_ to _∙_) open import Relation.Binary hiding (_⇒_) open Category C private variable X Y : Obj a a′ a″ b b′ b″ c c′ c″ : X ⇒ Y f g h i : X ⇒ Y open HomReasoning module Basic where id-unique : ∀ {o} {f : o ⇒ o} → (∀ g → g ∘ f ≈ g) → f ≈ id id-unique g∘f≈g = trans (sym identityˡ) (g∘f≈g id) id-comm : ∀ {a b} {f : a ⇒ b} → f ∘ id ≈ id ∘ f id-comm = trans identityʳ (sym identityˡ) id-comm-sym : ∀ {a b} {f : a ⇒ b} → id ∘ f ≈ f ∘ id id-comm-sym = trans identityˡ (sym identityʳ) open Basic public module Utils where assoc² : ((i ∘ h) ∘ g) ∘ f ≈ i ∘ (h ∘ (g ∘ f)) assoc² = trans assoc assoc assoc²' : (i ∘ (h ∘ g)) ∘ f ≈ i ∘ (h ∘ (g ∘ f)) assoc²' = trans assoc (∘-resp-≈ʳ assoc) open Utils public module Pulls (ab≡c : a ∘ b ≈ c) where pullʳ : (f ∘ a) ∘ b ≈ f ∘ c pullʳ {f = f} = begin (f ∘ a) ∘ b ≈⟨ assoc ⟩ f ∘ (a ∘ b) ≈⟨ refl⟩∘⟨ ab≡c ⟩ f ∘ c ∎ pullˡ : a ∘ b ∘ f ≈ c ∘ f pullˡ {f = f} = begin a ∘ b ∘ f ≈⟨ sym assoc ⟩ (a ∘ b) ∘ f ≈⟨ ab≡c ⟩∘⟨refl ⟩ c ∘ f ∎ open Pulls public module Pushes (c≡ab : c ≈ a ∘ b) where pushʳ : f ∘ c ≈ (f ∘ a) ∘ b pushʳ {f = f} = begin f ∘ c ≈⟨ refl⟩∘⟨ c≡ab ⟩ f ∘ (a ∘ b) ≈˘⟨ assoc ⟩ (f ∘ a) ∘ b ∎ pushˡ : c ∘ f ≈ a ∘ (b ∘ f) pushˡ {f = f} = begin c ∘ f ≈⟨ c≡ab ⟩∘⟨refl ⟩ (a ∘ b) ∘ f ≈⟨ assoc ⟩ a ∘ (b ∘ f) ∎ open Pushes public module IntroElim (a≡id : a ≈ id) where elimʳ : f ∘ a ≈ f elimʳ {f = f} = begin f ∘ a ≈⟨ refl⟩∘⟨ a≡id ⟩ f ∘ id ≈⟨ identityʳ ⟩ f ∎ introʳ : f ≈ f ∘ a introʳ = Equiv.sym elimʳ elimˡ : (a ∘ f) ≈ f elimˡ {f = f} = begin a ∘ f ≈⟨ a≡id ⟩∘⟨refl ⟩ id ∘ f ≈⟨ identityˡ ⟩ f ∎ introˡ : f ≈ a ∘ f introˡ = Equiv.sym elimˡ open IntroElim public module Extends (s : CommutativeSquare f g h i) where extendˡ : CommutativeSquare f g (a ∘ h) (a ∘ i) extendˡ {a = a} = begin (a ∘ h) ∘ f ≈⟨ pullʳ s ⟩ a ∘ i ∘ g ≈˘⟨ assoc ⟩ (a ∘ i) ∘ g ∎ extendʳ : CommutativeSquare (f ∘ a) (g ∘ a) h i extendʳ {a = a} = begin h ∘ (f ∘ a) ≈⟨ pullˡ s ⟩ (i ∘ g) ∘ a ≈⟨ assoc ⟩ i ∘ (g ∘ a) ∎ extend² : CommutativeSquare (f ∘ b) (g ∘ b) (a ∘ h) (a ∘ i) extend² {b = b} {a = a } = begin (a ∘ h) ∘ (f ∘ b) ≈⟨ pullʳ extendʳ ⟩ a ∘ (i ∘ (g ∘ b)) ≈˘⟨ assoc ⟩ (a ∘ i) ∘ (g ∘ b) ∎ open Extends public -- essentially composition in the arrow category {- A₁ -- c --> B₁ | | b′ comm b | | V V A₂ -- c′ -> B₂ | | a′ comm a | | V V A₃ -- c″ -> B₃ then the whole diagram commutes -} glue : CommutativeSquare c′ a′ a c″ → CommutativeSquare c b′ b c′ → CommutativeSquare c (a′ ∘ b′) (a ∘ b) c″ glue {c′ = c′} {a′ = a′} {a = a} {c″ = c″} {c = c} {b′ = b′} {b = b} sq-a sq-b = begin (a ∘ b) ∘ c ≈⟨ pullʳ sq-b ⟩ a ∘ (c′ ∘ b′) ≈⟨ pullˡ sq-a ⟩ (c″ ∘ a′) ∘ b′ ≈⟨ assoc ⟩ c″ ∘ (a′ ∘ b′) ∎ glue◃◽ : a ∘ c′ ≈ c″ → CommutativeSquare c b′ b c′ → CommutativeSquare c b′ (a ∘ b) c″ glue◃◽ {a = a} {c′ = c′} {c″ = c″} {c = c} {b′ = b′} {b = b} tri-a sq-b = begin (a ∘ b) ∘ c ≈⟨ pullʳ sq-b ⟩ a ∘ (c′ ∘ b′) ≈⟨ pullˡ tri-a ⟩ c″ ∘ b′ ∎ glue◃◽′ : c ∘ c′ ≈ a′ → CommutativeSquare a b a′ b′ → CommutativeSquare (c′ ∘ a) b c b′ glue◃◽′ {c = c} {c′ = c′} {a′ = a′} {a = a} {b = b} {b′ = b′} tri sq = begin c ∘ c′ ∘ a ≈⟨ pullˡ tri ⟩ a′ ∘ a ≈⟨ sq ⟩ b′ ∘ b ∎ glue◽◃ : CommutativeSquare a b a′ b′ → b ∘ c ≈ c′ → CommutativeSquare (a ∘ c) c′ a′ b′ glue◽◃ {a = a} {b = b} {a′ = a′} {b′ = b′} {c = c} {c′ = c′} sq tri = begin a′ ∘ a ∘ c ≈⟨ pullˡ sq ⟩ (b′ ∘ b) ∘ c ≈⟨ pullʳ tri ⟩ b′ ∘ c′ ∎ glue▹◽ : b ∘ a″ ≈ c → CommutativeSquare a b a′ b′ → CommutativeSquare (a ∘ a″) c a′ b′ glue▹◽ {b = b} {a″ = a″} {c = c} {a = a} {a′ = a′} {b′ = b′} tri sq = begin a′ ∘ a ∘ a″ ≈⟨ pullˡ sq ⟩ (b′ ∘ b) ∘ a″ ≈⟨ pullʳ tri ⟩ b′ ∘ c ∎ -- essentially composition in the over category glueTrianglesʳ : a ∘ b ≈ a′ → a′ ∘ b′ ≈ a″ → a ∘ (b ∘ b′) ≈ a″ glueTrianglesʳ {a = a} {b = b} {a′ = a′} {b′ = b′} {a″ = a″} a∘b≡a′ a′∘b′≡a″ = begin a ∘ (b ∘ b′) ≈⟨ pullˡ a∘b≡a′ ⟩ a′ ∘ b′ ≈⟨ a′∘b′≡a″ ⟩ a″ ∎ -- essentially composition in the under category glueTrianglesˡ : a′ ∘ b′ ≈ b″ → a ∘ b ≈ b′ → (a′ ∘ a) ∘ b ≈ b″ glueTrianglesˡ {a′ = a′} {b′ = b′} {b″ = b″} {a = a} {b = b} a′∘b′≡b″ a∘b≡b′ = begin (a′ ∘ a) ∘ b ≈⟨ pullʳ a∘b≡b′ ⟩ a′ ∘ b′ ≈⟨ a′∘b′≡b″ ⟩ b″ ∎ module Cancellers (inv : h ∘ i ≈ id) where cancelʳ : (f ∘ h) ∘ i ≈ f cancelʳ {f = f} = begin (f ∘ h) ∘ i ≈⟨ pullʳ inv ⟩ f ∘ id ≈⟨ identityʳ ⟩ f ∎ cancelˡ : h ∘ (i ∘ f) ≈ f cancelˡ {f = f} = begin h ∘ (i ∘ f) ≈⟨ pullˡ inv ⟩ id ∘ f ≈⟨ identityˡ ⟩ f ∎ cancelInner : (f ∘ h) ∘ (i ∘ g) ≈ f ∘ g cancelInner {f = f} {g = g} = begin (f ∘ h) ∘ (i ∘ g) ≈⟨ pullˡ cancelʳ ⟩ f ∘ g ∎ open Cancellers public center : g ∘ h ≈ a → (f ∘ g) ∘ h ∘ i ≈ f ∘ a ∘ i center {g = g} {h = h} {a = a} {f = f} {i = i} eq = begin (f ∘ g) ∘ h ∘ i ≈⟨ assoc ⟩ f ∘ g ∘ h ∘ i ≈⟨ refl⟩∘⟨ pullˡ eq ⟩ f ∘ a ∘ i ∎ center⁻¹ : f ∘ g ≈ a → h ∘ i ≈ b → f ∘ (g ∘ h) ∘ i ≈ a ∘ b center⁻¹ {f = f} {g = g} {a = a} {h = h} {i = i} {b = b} eq eq′ = begin f ∘ (g ∘ h) ∘ i ≈⟨ refl⟩∘⟨ pullʳ eq′ ⟩ f ∘ g ∘ b ≈⟨ pullˡ eq ⟩ a ∘ b ∎ pull-last : h ∘ i ≈ a → (f ∘ g ∘ h) ∘ i ≈ f ∘ g ∘ a pull-last {h = h} {i = i} {a = a} {f = f} {g = g} eq = begin (f ∘ g ∘ h) ∘ i ≈⟨ assoc ⟩ f ∘ (g ∘ h) ∘ i ≈⟨ refl⟩∘⟨ pullʳ eq ⟩ f ∘ g ∘ a ∎ pull-first : f ∘ g ≈ a → f ∘ (g ∘ h) ∘ i ≈ a ∘ h ∘ i pull-first {f = f} {g = g} {a = a} {h = h} {i = i} eq = begin f ∘ (g ∘ h) ∘ i ≈⟨ refl⟩∘⟨ assoc ⟩ f ∘ g ∘ h ∘ i ≈⟨ pullˡ eq ⟩ a ∘ h ∘ i ∎
{ "alphanum_fraction": 0.4484213817, "avg_line_length": 27.5775862069, "ext": "agda", "hexsha": "8fb910c14f4c898f440613bfc6498b1068bef3ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Morphism/Reasoning/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Morphism/Reasoning/Core.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Morphism/Reasoning/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3382, "size": 6398 }
{-# OPTIONS --cubical --safe #-} module TreeFold.Indexed where open import Prelude open import Data.Binary using (𝔹; 0ᵇ; 1ᵇ_; 2ᵇ_; ⟦_⇓⟧; ⟦_⇑⟧; inc) open import Data.Binary.Isomorphism open import Data.Nat private variable n m : ℕ t : Level N : ℕ → Type t ns : 𝔹 double : ℕ → ℕ double n = n * 2 2^_*_ : ℕ → ℕ → ℕ 2^ zero * m = m 2^ suc n * m = double (2^ n * m) infixr 5 _1∷_ _2∷_ data Array (T : ℕ → Type a) : 𝔹 → Type a where [] : Array T 0ᵇ _1∷_ : T 1 → Array (T ∘ double) ns → Array T (1ᵇ ns) _2∷_ : T 2 → Array (T ∘ double) ns → Array T (2ᵇ ns) cons : (∀ n → N n → N n → N (double n)) → N 1 → Array N ns → Array N (inc ns) cons branch x [] = x 1∷ [] cons branch x (y 1∷ ys) = branch 1 x y 2∷ ys cons branch x (y 2∷ ys) = x 1∷ cons (branch ∘ double) y ys array-foldr : (N : ℕ → Type t) → (∀ n m → N (2^ n * 1) → N (2^ n * m) → N (2^ n * suc m)) → N 0 → Array N ns → N ⟦ ns ⇓⟧ array-foldr {ns = 0ᵇ} N c b [] = b array-foldr {ns = 2ᵇ ns} N c b (x 2∷ xs) = c 1 ⟦ ns ⇓⟧ x (array-foldr (N ∘ double) (c ∘ suc) b xs) array-foldr {ns = 1ᵇ ns} N c b (x 1∷ xs) = c 0 (⟦ ns ⇓⟧ * 2) x (array-foldr (N ∘ double) (c ∘ suc) b xs) open import Data.Vec import Data.Nat.Properties as ℕ double≡*2 : ∀ n → n + n ≡ n * 2 double≡*2 zero = refl double≡*2 (suc n) = cong suc (ℕ.+-suc n n ; cong suc (double≡*2 n)) module NonNorm {t} (N : ℕ → Type t) (f : ∀ p n m → N (2^ p * n) → N (2^ p * m) → N (2^ p * (n + m))) (z : N 0) where spine : Vec (N 1) n → Array (N ) ⟦ n ⇑⟧ spine [] = [] spine (x ∷ xs) = cons (λ n x y → subst N (double≡*2 n) (f 0 n n x y)) x (spine xs) unspine : Array N ns → N ⟦ ns ⇓⟧ unspine = array-foldr N (λ n → f n 1) z treeFold : Vec (N 1) n → N n treeFold xs = subst N (𝔹-rightInv _) (unspine (spine xs)) pow-suc : ∀ n m → (2^ n * 1) + (2^ n * m) ≡ (2^ n * suc m) pow-suc zero m = refl pow-suc (suc n) m = sym (ℕ.+-*-distrib (2^ n * 1) (2^ n * m) 2) ; cong (_* 2) (pow-suc n m) module _ {t} (N : ℕ → Type t) (f : ∀ {n m} → N n → N m → N (n + m)) (z : N 0) where spine : Vec (N 1) n → Array (N ) ⟦ n ⇑⟧ spine [] = [] spine (x ∷ xs) = cons (λ n x y → subst N (double≡*2 n) (f x y)) x (spine xs) unspine : Array N ns → N ⟦ ns ⇓⟧ unspine = array-foldr N (λ n m xs ys → subst N (pow-suc n m) (f xs ys)) z treeFold : Vec (N 1) n → N n treeFold xs = subst N (𝔹-rightInv _) (unspine (spine xs))
{ "alphanum_fraction": 0.5174443043, "avg_line_length": 33.0416666667, "ext": "agda", "hexsha": "314849a9fb11513db9ad60e9412ff38559778679", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "TreeFold/Indexed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "TreeFold/Indexed.agda", "max_line_length": 120, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "TreeFold/Indexed.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1134, "size": 2379 }
module Computability.Recursive where open import Data.Empty using (⊥; ⊥-elim) open import Data.Unit using (⊤) open import Data.Bool using (Bool; false; true) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; pred) open import Data.Product using (_×_) open import Data.Fin using (Fin; zero; suc; punchIn; punchOut) open import Data.Sum using (_⊎_) open import Data.Vec using (Vec; _∷_; []; lookup) renaming (map to map-Vec) open import Function using (Bijective) open import Relation.Binary.PropositionalEquality using (_≡_) open import Level renaming (zero to lzero; suc to lsuc) variable n m : ℕ b : Bool data RecFun : (use-mu : Bool) → ℕ → Set where Var : Fin n → RecFun b n Bind : Vec (RecFun b m) n → RecFun b n → RecFun b m Zero : RecFun b 0 Suc : RecFun b 1 Rec : RecFun b n → RecFun b (2 + n) → RecFun b (suc n) Mu : RecFun b (suc n) → RecFun true n mutual eval-no-mu : Vec ℕ n → RecFun false n → ℕ eval-no-mu v (Var i) = lookup v i eval-no-mu v (Bind xs r) = eval-no-mu (eval-bindings v xs) r eval-no-mu v Zero = zero eval-no-mu (x ∷ []) Suc = suc x eval-no-mu (x ∷ v) (Rec base rec) = eval-no-mu-rec x v base rec eval-bindings : ∀{n m} → Vec ℕ m → Vec (RecFun false m) n → Vec ℕ n eval-bindings v [] = [] eval-bindings v (x ∷ xs) = eval-no-mu v x ∷ eval-bindings v xs eval-no-mu-rec : ℕ → Vec ℕ n → RecFun false n → RecFun false (2 + n) → ℕ eval-no-mu-rec zero v base rec = eval-no-mu v base eval-no-mu-rec (suc k) v base rec = eval-no-mu (k ∷ result ∷ v) rec where result = eval-no-mu-rec k v base rec postulate enum-RecFun : ∀ vars → ℕ → RecFun true vars enum-RecFun-Surj : ∀ vars → ℕ → Bijective {A = ℕ} {B = RecFun true vars} _≡_ _≡_ (enum-RecFun vars)
{ "alphanum_fraction": 0.6477404403, "avg_line_length": 35.9583333333, "ext": "agda", "hexsha": "cae34b4ef5deaa9afd7742e64c083ac7963e7d7c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jesyspa/computability-in-agda", "max_forks_repo_path": "Computability/Recursive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jesyspa/computability-in-agda", "max_issues_repo_path": "Computability/Recursive.agda", "max_line_length": 101, "max_stars_count": 2, "max_stars_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jesyspa/computability-in-agda", "max_stars_repo_path": "Computability/Recursive.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-30T11:15:51.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-19T15:51:22.000Z", "num_tokens": 615, "size": 1726 }
module Experimental.Finite where data ℕ : Set where Z : ℕ S : ℕ → ℕ data Fin : ℕ → Set where Fin-S : ∀ {n} → Fin n → Fin (S n) Fin-Z : ∀ {n} → Fin (S n)
{ "alphanum_fraction": 0.5337423313, "avg_line_length": 16.3, "ext": "agda", "hexsha": "7ebee87f4ad7abb8c2cb6c32adf90053b28967ee", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/Experimental/Finite.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/Experimental/Finite.agda", "max_line_length": 35, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/Experimental/Finite.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 63, "size": 163 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters import LibraBFT.Concrete.Properties.Common as Common import LibraBFT.Concrete.Properties.VotesOnce as VO open import LibraBFT.Impl.Consensus.Network as Network open import LibraBFT.Impl.Consensus.Network.Properties as NetworkProps open import LibraBFT.Impl.Consensus.RoundManager import LibraBFT.Impl.Handle as Handle open import LibraBFT.Impl.IO.OBM.InputOutputHandlers open import LibraBFT.Impl.IO.OBM.Properties.InputOutputHandlers open import LibraBFT.Impl.Handle.Properties open import LibraBFT.Impl.Properties.Util open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochDep open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Lemmas open import Util.PKCS open import Util.Prelude open Invariants open RoundManagerTransProps open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open ParamsWithInitAndHandlers Handle.InitHandler.initAndHandlers open PeerCanSignForPK open import LibraBFT.ImplShared.Util.HashCollisions Handle.InitHandler.initAndHandlers open import Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms Handle.InitHandler.initAndHandlers PeerCanSignForPK PeerCanSignForPK-stable open import LibraBFT.Impl.Handle.InitProperties open initHandlerSpec -- This module contains definitions and lemmas used by proofs of the -- implementation obligations for VotesOnce and PreferredRoundRule. module LibraBFT.Impl.Properties.Common where postulate -- TODO-3: prove (note: advanced; waiting on: `handle`) -- This will require updates to the existing proofs for the peer handlers. We -- will need to show that honest peers sign things only for their only PK, and -- that they either resend messages signed before or if sending a new one, -- that signature hasn't been sent before impl-sps-avp : StepPeerState-AllValidParts open Structural impl-sps-avp -- We can prove this easily for the Agda model because (unlike the Haskell -- prototype) it does not yet do epoch changes, so only the initial EC is -- relevant. Later, this will require us to use the fact that epoch changes -- require proof of committing an epoch-changing transaction. availEpochsConsistent : ∀{pid pid' v v' pk}{st : SystemState} → (pkvpf : PeerCanSignForPK st v pid pk) → (pkvpf' : PeerCanSignForPK st v' pid' pk) → v ^∙ vEpoch ≡ v' ^∙ vEpoch → pcs4𝓔 pkvpf ≡ pcs4𝓔 pkvpf' availEpochsConsistent (mkPCS4PK _ (inBootstrapInfo refl) _) (mkPCS4PK _ (inBootstrapInfo refl) _) refl = refl postulate -- TODO-1: Prove (waiting on: complete definition of `initRM`) uninitQcs∈Bootstrap : ∀ {pid qc vs}{st : SystemState} → ReachableSystemState st → initialised st pid ≡ uninitd → qc QCProps.∈RoundManager (peerStates st pid) → vs ∈ qcVotes qc → ∈BootstrapInfo-impl fakeBootstrapInfo (proj₂ vs) module ∈BootstrapInfoProps where sameSig∉ : ∀ {pk} {v v' : Vote} → (sig : WithVerSig pk v) (sig' : WithVerSig pk v') → ¬ ∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature sig) → ver-signature sig' ≡ ver-signature sig → ¬ ∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature sig') sameSig∉ _ _ ¬bootstrap ≡sig rewrite ≡sig = ¬bootstrap -- Lemmas for `PeerCanSignForPK` module PeerCanSignForPKProps where msb4 -- NOTE: This proof requires updating when we model epoch changes. : ∀ {pid v pk}{pre post : SystemState} → ReachableSystemState pre → Step pre post → PeerCanSignForPK post v pid pk → Meta-Honest-PK pk → (sig : WithVerSig pk v) → MsgWithSig∈ pk (ver-signature sig) (msgPool pre) → PeerCanSignForPK pre v pid pk msb4 preach step (mkPCS4PK 𝓔@._ (inBootstrapInfo refl) (mkPCS4PKin𝓔 𝓔id≡ mbr nid≡ pk≡)) hpk sig mws∈pool = mkPCS4PK 𝓔 (inBootstrapInfo refl) (mkPCS4PKin𝓔 𝓔id≡ mbr nid≡ pk≡) msb4-eid≡ : ∀ {pre post : SystemState} {v v' pid pk} → ReachableSystemState pre → Step pre post → Meta-Honest-PK pk → PeerCanSignForPK post v pid pk → v ≡L v' at vEpoch → (sig' : WithVerSig pk v') → MsgWithSig∈ pk (ver-signature sig') (msgPool pre) → PeerCanSignForPK pre v pid pk msb4-eid≡ rss step hpk pcsfpk ≡eid sig' mws' = peerCanSignEp≡ (msb4 rss step (peerCanSignEp≡ pcsfpk ≡eid) hpk sig' mws') (sym ≡eid) pidInjective : ∀ {pid pid' pk v v'}{st : SystemState} → PeerCanSignForPK st v pid pk → PeerCanSignForPK st v' pid' pk → v ^∙ vEpoch ≡ v' ^∙ vEpoch → pid ≡ pid' pidInjective{pid}{pid'}{pk} pcsfpk₁ pcsfpk₂ ≡epoch = begin pid ≡⟨ sym (nid≡ (pcs4in𝓔 pcsfpk₁)) ⟩ pcsfpk₁∙pid ≡⟨ PK-inj-same-ECs{pcs4𝓔 pcsfpk₁}{pcs4𝓔 pcsfpk₂} (availEpochsConsistent pcsfpk₁ pcsfpk₂ ≡epoch) pcsfpk∙pk≡ ⟩ pcsfpk₂∙pid ≡⟨ nid≡ (pcs4in𝓔 pcsfpk₂) ⟩ pid' ∎ where open ≡-Reasoning open PeerCanSignForPKinEpoch open PeerCanSignForPK pcsfpk₁∙pid = EpochConfig.toNodeId (pcs4𝓔 pcsfpk₁) (mbr (pcs4in𝓔 pcsfpk₁)) pcsfpk₂∙pid = EpochConfig.toNodeId (pcs4𝓔 pcsfpk₂) (mbr (pcs4in𝓔 pcsfpk₂)) pcsfpk₁∙pk = EpochConfig.getPubKey (pcs4𝓔 pcsfpk₁) (mbr (pcs4in𝓔 pcsfpk₁)) pcsfpk₂∙pk = EpochConfig.getPubKey (pcs4𝓔 pcsfpk₂) (mbr (pcs4in𝓔 pcsfpk₂)) pcsfpk∙pk≡ : pcsfpk₁∙pk ≡ pcsfpk₂∙pk pcsfpk∙pk≡ = begin pcsfpk₁∙pk ≡⟨ pk≡ (pcs4in𝓔 pcsfpk₁) ⟩ pk ≡⟨ sym (pk≡ (pcs4in𝓔 pcsfpk₂)) ⟩ pcsfpk₂∙pk ∎ module ReachableSystemStateProps where mws∈pool⇒initd : ∀ {pid pk v}{st : SystemState} → ReachableSystemState st → PeerCanSignForPK st v pid pk → Meta-Honest-PK pk → (sig : WithVerSig pk v) → ¬ (∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature sig)) → MsgWithSig∈ pk (ver-signature sig) (msgPool st) → initialised st pid ≡ initd mws∈pool⇒initd{pk = pk}{v} (step-s{pre = pre} rss step@(step-peer sp@(step-cheat cmc))) pcsfpk hpk sig ¬bootstrap mws∈pool = peersRemainInitialized step (mws∈pool⇒initd rss (PeerCanSignForPKProps.msb4 rss step pcsfpk hpk sig mws∈poolPre) hpk sig ¬bootstrap mws∈poolPre) where ¬bootstrap' = ∈BootstrapInfoProps.sameSig∉ sig (msgSigned mws∈pool) ¬bootstrap (msgSameSig mws∈pool) mws∈poolPre : MsgWithSig∈ pk (ver-signature sig) (msgPool pre) mws∈poolPre = ¬cheatForgeNew sp refl unit hpk mws∈pool ¬bootstrap' mws∈pool⇒initd{pid₁}{pk = pk} (step-s{pre = pre} rss step@(step-peer sp@(step-honest{pid₂} sps@(step-init {rm} rm×acts uni)))) pcsfpk hpk sig ¬bootstrap mws∈pool with pid₁ ≟ pid₂ ...| yes refl = StepPeer-post-lemma2 {pre = pre} sps ...| no neq with newMsg⊎msgSentB4 rss sps hpk (msgSigned mws∈pool) ¬bootstrap' (msg⊆ mws∈pool) (msg∈pool mws∈pool) where ¬bootstrap' = ∈BootstrapInfoProps.sameSig∉ sig (msgSigned mws∈pool) ¬bootstrap (msgSameSig mws∈pool) ...| Right mws∈poolPre = peersRemainInitialized step (mws∈pool⇒initd rss (PeerCanSignForPKProps.msb4 rss step pcsfpk hpk sig mws∈poolPre') hpk sig ¬bootstrap mws∈poolPre') where mws∈poolPre' : MsgWithSig∈ pk (ver-signature sig) (msgPool pre) mws∈poolPre' rewrite msgSameSig mws∈pool = mws∈poolPre ...| Left (send∈acts , _ , _) with initHandlerSpec.contract pid₂ fakeBootstrapInfo rm×acts ...| init-contract with msg⊆ mws∈pool ...| vote∈vm = ⊥-elim (P≢V (sym (proj₁ (proj₂ (initHandlerSpec.ContractOk.isInitPM init-contract send∈acts))))) ...| vote∈qc vs∈qc _ qc∈pm with initHandlerSpec.ContractOk.isInitPM init-contract send∈acts ...| (_ , refl , noSigs) = ⊥-elim (noSigs vs∈qc qc∈pm) mws∈pool⇒initd{pid₁}{pk}{v} (step-s{pre = pre} rss step@(step-peer{pid₂} sp@(step-honest sps@(step-msg _ ini)))) pcsfpk hpk sig ¬bootstrap mws∈pool with newMsg⊎msgSentB4 rss sps hpk (msgSigned mws∈pool) ¬bootstrap' (msg⊆ mws∈pool) (msg∈pool mws∈pool) where ¬bootstrap' = ∈BootstrapInfoProps.sameSig∉ sig (msgSigned mws∈pool) ¬bootstrap (msgSameSig mws∈pool) ...| Left (m∈outs , pcsfpk' , ¬msb4) with pid≡ where vd₁≡vd₂ : v ≡L msgPart mws∈pool at vVoteData vd₁≡vd₂ = either (⊥-elim ∘ PerReachableState.meta-no-collision rss) id (sameSig⇒sameVoteData (msgSigned mws∈pool) sig (msgSameSig mws∈pool)) pid≡ : pid₁ ≡ pid₂ pid≡ = PeerCanSignForPKProps.pidInjective pcsfpk pcsfpk' (cong (_^∙ vdProposed ∙ biEpoch) vd₁≡vd₂) ...| refl rewrite StepPeer-post-lemma2{pid₂}{pre = pre} sps = refl mws∈pool⇒initd{pid₁}{pk} (step-s{pre = pre} rss step@(step-peer{pid₂} sp@(step-honest sps@(step-msg _ ini)))) pcsfpk hpk sig ¬bootstrap mws∈pool | Right mws∈poolPre = peersRemainInitialized step (mws∈pool⇒initd rss (PeerCanSignForPKProps.msb4 rss step pcsfpk hpk sig mws∈poolPre') hpk sig ¬bootstrap mws∈poolPre') where mws∈poolPre' : MsgWithSig∈ pk (ver-signature sig) (msgPool pre) mws∈poolPre' rewrite msgSameSig mws∈pool = mws∈poolPre mws∈pool⇒epoch≡ : ∀ {pid v s' outs pk}{st : SystemState} → ReachableSystemState st → (sps : StepPeerState pid (msgPool st) (initialised st) (peerStates st pid) (s' , outs)) → PeerCanSignForPK st v pid pk → Meta-Honest-PK pk → (sig : WithVerSig pk v) → ¬ (∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature sig)) → MsgWithSig∈ pk (ver-signature sig) (msgPool st) → s' ^∙ rmEpoch ≡ v ^∙ vEpoch → peerStates st pid ^∙ rmEpoch ≡ v ^∙ vEpoch mws∈pool⇒epoch≡ rss (step-init _ uni) pcsfpk hpk sig ¬bootstrap mws∈pool epoch≡ = absurd (uninitd ≡ initd) case (trans (sym uni) ini) of λ () where ini = mws∈pool⇒initd rss pcsfpk hpk sig ¬bootstrap mws∈pool mws∈pool⇒epoch≡{pid}{v}{st = st} rss (step-msg{_ , P pm} m∈pool ini) pcsfpk hpk sig ¬bootstrap mws∈pool epoch≡ = begin hpPre ^∙ rmEpoch ≡⟨ noEpochChange ⟩ hpPos ^∙ rmEpoch ≡⟨ epoch≡ ⟩ v ^∙ vEpoch ∎ where hpPool = msgPool st hpPre = peerStates st pid hpPos = LBFT-post (handleProposal 0 pm) hpPre open handleProposalSpec.Contract (handleProposalSpec.contract! 0 pm hpPool hpPre) open ≡-Reasoning mws∈pool⇒epoch≡{pid}{v}{st = st} rss (step-msg{sndr , V vm} _ _) pcsfpk hpk sig ¬bootstrap mws∈pool epoch≡ = begin hvPre ^∙ rmEpoch ≡⟨ noEpochChange ⟩ hvPos ^∙ rmEpoch ≡⟨ epoch≡ ⟩ v ^∙ vEpoch ∎ where hvPre = peerStates st pid hvPos = LBFT-post (handleVote 0 vm) hvPre open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm (msgPool st) hvPre) open ≡-Reasoning mws∈pool⇒epoch≡{pid}{v}{st = st} rss (step-msg{sndr , C cm} _ _) pcsfpk hpk sig ¬bootstrap mws∈pool epoch≡ = epoch≡
{ "alphanum_fraction": 0.6926281471, "avg_line_length": 45.6280991736, "ext": "agda", "hexsha": "00d6a0d4d1299e3e84e7d1fa876438eb1ddd20ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Properties/Common.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Properties/Common.agda", "max_line_length": 173, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Properties/Common.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3888, "size": 11042 }
open import Agda.Primitive using (lzero; lsuc; _⊔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; subst; setoid) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂; zip; map; <_,_>; swap) import Function.Equality open import Relation.Binary using (Setoid) import Relation.Binary.Reasoning.Setoid as SetoidR import Categories.Category import Categories.Functor import Categories.Category.Instance.Setoids import Categories.Monad.Relative import Categories.Category.Equivalence import Categories.Category.Cocartesian import Categories.Category.Construction.Functors import Categories.Category.Product import Categories.NaturalTransformation import Categories.NaturalTransformation.NaturalIsomorphism import SecondOrder.Arity import SecondOrder.Signature import SecondOrder.Metavariable import SecondOrder.VRenaming import SecondOrder.MRenaming import SecondOrder.Term import SecondOrder.Substitution import SecondOrder.RelativeMonadMorphism import SecondOrder.Instantiation import SecondOrder.IndexedCategory import SecondOrder.RelativeKleisli import SecondOrder.Mslot module SecondOrder.MRelativeMonad {ℓ} {𝔸 : SecondOrder.Arity.Arity} (Σ : SecondOrder.Signature.Signature ℓ 𝔸) where open SecondOrder.Signature.Signature Σ open SecondOrder.Metavariable Σ open SecondOrder.Term Σ open SecondOrder.VRenaming Σ open SecondOrder.MRenaming Σ open SecondOrder.Mslot Σ open SecondOrder.Substitution Σ open SecondOrder.Instantiation Σ open import SecondOrder.RelativeMonadMorphism open Categories.Category open Categories.Functor using (Functor) open Categories.NaturalTransformation renaming (id to idNt) open Categories.NaturalTransformation.NaturalIsomorphism renaming (refl to reflNt; sym to symNt; trans to transNt) open Categories.Category.Construction.Functors open Categories.Category.Instance.Setoids open Categories.Category.Product open Function.Equality using () renaming (setoid to Π-setoid) open SecondOrder.IndexedCategory -- open import SecondOrder.RelativeKleisli module MTerm {Γ : VContext} where open Category open NaturalTransformation open Functor open Categories.Monad.Relative open Function.Equality using () renaming (setoid to Π-setoid) open Categories.Category.Equivalence using (StrongEquivalence) open SecondOrder.RelativeKleisli MMonad : Monad Mslots MMonad = let open Function.Equality using (_⟨$⟩_) renaming (cong to func-cong) in record { F₀ = λ Θ A → record { F₀ = λ Ψ → record { F₀ = λ Δ → Term-setoid (Θ ,, Ψ) (Γ ,, Δ) A ; F₁ = λ {Δ} {Ξ} ρ → record { _⟨$⟩_ = [_]ᵛ_ (ʳ⇑ᵛ ρ) ; cong = λ t≈s → []ᵛ-resp-≈ t≈s } ; identity = λ t≈s → ≈-trans ([]ᵛ-resp-≡ᵛ idᵛ+idᵛ) (≈-trans [idᵛ] t≈s) ; homomorphism = λ t≈s → ≈-trans ([]ᵛ-resp-≈ t≈s) ∘ᵛ-resp-ʳ⇑ᵛ-term ; F-resp-≈ = λ ρ≈τ t≈s → {!!} } ; F₁ = λ ι → record { η = λ Δ → record { _⟨$⟩_ = [_]ᵐ_ (ᵐ⇑ᵐ ι) ; cong = λ t≈s → []ᵐ-resp-≈ t≈s } ; commute = λ ρ t≈s → ≈-trans ([]ᵐ-resp-≈ ([]ᵛ-resp-≈ t≈s)) vr-comm-mr ; sym-commute = λ ρ t≈s → ≈-trans (≈-sym vr-comm-mr) ([]ᵐ-resp-≈ ([]ᵛ-resp-≈ t≈s)) } ; identity = λ t≈s → ≈-trans ([]ᵐ-resp-≈ t≈s) (≈-trans ([]ᵐ-resp-≡ᵐ ᵐ⇑ᵐ-resp-idᵐ) [idᵐ]) ; homomorphism = λ t≈s → ≈-trans ([]ᵐ-resp-≈ t≈s) ∘ᵐ-resp-ᵐ⇑-term ; F-resp-≈ = λ ι≈μ t≈s → ≈-trans ([]ᵐ-resp-≈ t≈s) ([]ᵐ-resp-≡ᵐ (ᵐ⇑ᵐ-resp-≡ᵐ ι≈μ)) } ; unit = λ A → record { η = λ Θ → record { η = λ Δ → record { _⟨$⟩_ = [_]ᵛ_ inrᵛ ; cong = λ t≈s → []ᵛ-resp-≈ t≈s } ; commute = λ ρ t≈s → ≈-trans ([]ᵛ-resp-≈ ([]ᵛ-resp-≈ t≈s)) (≈-sym ʳ⇑ᵛ-comm-inrᵛ-term) ; sym-commute = λ ρ t≈s → ≈-trans ʳ⇑ᵛ-comm-inrᵛ-term ([]ᵛ-resp-≈ ([]ᵛ-resp-≈ t≈s)) } ; commute = λ f t≈s → ≈-trans ([]ᵛ-resp-≈ ([]ᵐ-resp-≈ t≈s)) mr-comm-vr ; sym-commute = λ f t≈s → ≈-trans ? ([]ᵛ-resp-≈ ([]ᵐ-resp-≈ t≈s)) } ; extend = λ I A → record { η = λ Θ → record { η = λ Ψ → record { _⟨$⟩_ = [_]ⁱ_ {!!} ; cong = {!!} } ; commute = {!!} ; sym-commute = {!!} } ; commute = {!!} ; sym-commute = {!!} } ; identityʳ = {!!} ; identityˡ = {!!} ; assoc = {!!} ; extend-≈ = {!!} }
{ "alphanum_fraction": 0.5647806478, "avg_line_length": 42.4173913043, "ext": "agda", "hexsha": "8132d615213278d861da8e78232fbe8541fbf60b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SecondOrder/MRelativeMonad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SecondOrder/MRelativeMonad.agda", "max_line_length": 116, "max_stars_count": 1, "max_stars_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejbauer/formal", "max_stars_repo_path": "src/SecondOrder/MRelativeMonad.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-18T18:21:00.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-18T18:21:00.000Z", "num_tokens": 1615, "size": 4878 }
module Tactic.Monoid.Exp where open import Prelude open import Tactic.Reflection.Quote open import Tactic.Deriving.Quotable data Exp : Set where var : Nat → Exp ε : Exp _⊕_ : Exp → Exp → Exp unquoteDecl QuoteExp = deriveQuotable QuoteExp (quote Exp) flatten : Exp → List Nat flatten (var x) = x ∷ [] flatten ε = [] flatten (e ⊕ e₁) = flatten e ++ flatten e₁
{ "alphanum_fraction": 0.6991869919, "avg_line_length": 19.4210526316, "ext": "agda", "hexsha": "2da81a23d806f69151a67cc6f4e7732c80ed5226", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Monoid/Exp.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Monoid/Exp.agda", "max_line_length": 58, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Monoid/Exp.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 116, "size": 369 }
module cry.gfp where -- open import Agda.Primitive using (lsuc; _⊔_) open import Level -- import Agda.Builtin.FromNat open import Agda.Builtin.Bool open import Agda.Builtin.Equality open import Algebra.FunctionProperties.Core using (Op₁; Op₂) open import Relation.Nullary -- open import Relation.Binary.Core using (Rel; Decidable; Substitutive) -- open import Relation.Binary.PropositionalEquality.Core using (subst) Rel : ∀ {a} → Set a → (ℓ : Level) → Set (a ⊔ suc ℓ) Rel A ℓ = A → A → Set ℓ Decidable : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Set _ Decidable _∼_ = ∀ x y → Dec (x ∼ y) _Respects_ : ∀ {a ℓ₁ ℓ₂} {A : Set a} → (A → Set ℓ₁) → Rel A ℓ₂ → Set _ P Respects _∼_ = ∀ {x y} → x ∼ y → P x → P y Substitutive : ∀ {a ℓ₁} {A : Set a} → Rel A ℓ₁ → (ℓ₂ : Level) → Set _ Substitutive {A = A} _∼_ p = (P : A → Set p) → P Respects _∼_ subst : ∀ {a p} {A : Set a} → Substitutive (_≡_ {A = A}) p subst P refl p = p record RawField c ℓ : Set (suc (c ⊔ ℓ)) where infix 10 _⁻¹ infix 9 -_ infixl 8 _² infixl 7 _*_ infixl 6 _+_ _-_ infix 4 _≈_ _≈?_ field Carrier : Set c _≈_ : Rel Carrier ℓ _≈?_ : Decidable _≈_ _?≈_ : Carrier → Carrier → Bool _+_ : Op₂ Carrier _-_ : Op₂ Carrier _*_ : Op₂ Carrier _² : Op₁ Carrier -_ : Op₁ Carrier _⁻¹ : Op₁ Carrier 0# : Carrier 1# : Carrier open import Agda.Builtin.Nat as N using () renaming (Nat to ℕ) _mod_ : (dividend divisor : ℕ) → ℕ (d mod 0) = 0 (d mod N.suc s) = N.mod-helper 0 s d s _div_ : (dividend divisor : ℕ) → ℕ (d div 0) = 0 (d div N.suc s) = N.div-helper 0 s d s {-# TERMINATING #-} times : ∀ {a} {A : Set a} → (one : A) (dbl : A → A) (add : A → A → A) → A → ℕ → A times {A = A} one dbl add = mul where mul : A → ℕ → A f : A → ℕ → A -- f u n = uⁿ g : A → A → ℕ → A -- g t u n = uⁿ t mul x 0 = one mul x n = f x n f u 1 = u f u n with n mod 2 ... | 0 = f (dbl u) (n div 2) ... | _ = g u (dbl u) ((n N.- 1) div 2) g t u 1 = add t u g t u n with n mod 2 ... | 0 = g t (dbl u) (n div 2) ... | _ = g (add t u) (dbl u) ((n N.- 1) div 2) module 𝔽ₚ (p : ℕ) where 𝔽 : Set 𝔽 = ℕ to𝔽 : ℕ → 𝔽 to𝔽 i = i mod p _==_ : 𝔽 → 𝔽 → Set x == y = x ≡ y open N using (zero; suc) pred : ℕ → ℕ pred zero = 0 pred (suc n) = n _≟_ : (x y : 𝔽) → Dec (x == y) zero ≟ zero = yes refl suc m ≟ suc n with m ≟ n suc m ≟ suc .m | yes refl = yes refl suc m ≟ suc n | no prf = no λ x → prf ((λ p → subst (λ x → m ≡ pred x) p refl) x) zero ≟ suc n = no λ() suc m ≟ zero = no λ() infix 10 _⁻¹ infix 9 -_ infixl 8 _² infixl 7 _*_ infixl 6 _+_ _-_ _+_ : 𝔽 → 𝔽 → 𝔽 n + m = to𝔽 (n N.+ m) _*_ : 𝔽 → 𝔽 → 𝔽 n * m = to𝔽 (n N.* m) _² : 𝔽 → 𝔽 x ² = x * x -_ : 𝔽 → 𝔽 - 0 = 0 - N.suc n = (p N.- N.suc n) _-_ : 𝔽 → 𝔽 → 𝔽 x - y = x + (- y) 0# : 𝔽 0# = 0 1# : 𝔽 1# = 1 _^_ : 𝔽 → ℕ → 𝔽 _^_ = times 1# _² _*_ _⁻¹ : 𝔽 → 𝔽 x ⁻¹ = x ^ (p N.- 2) gfp : ℕ → RawField _ _ gfp p = record { Carrier = 𝔽 ; _≈_ = _==_ ; _≈?_ = _≟_ ; _?≈_ = N._==_ ; _+_ = _+_ ; _-_ = _-_ ; _*_ = _*_ ; _² = _² ; -_ = -_ ; _⁻¹ = _⁻¹ ; 0# = 0# ; 1# = 1# } where open 𝔽ₚ p
{ "alphanum_fraction": 0.4827272727, "avg_line_length": 21.568627451, "ext": "agda", "hexsha": "89100d1ae5c6c8f24ea1f832a96b5a7a6fdbabdc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44297e5099d12dea7f3165c1f1d53924736ec058", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/cry-agda", "max_forks_repo_path": "src/cry/gfp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44297e5099d12dea7f3165c1f1d53924736ec058", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/cry-agda", "max_issues_repo_path": "src/cry/gfp.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "44297e5099d12dea7f3165c1f1d53924736ec058", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/cry-agda", "max_stars_repo_path": "src/cry/gfp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1542, "size": 3300 }
{-# OPTIONS --without-K --safe #-} module Fragment.Examples.Semigroup.Types where open import Fragment.Prelude open import Level using (zero) open import Function.Related open import Function.Related.TypeIsomorphisms using (×-isSemigroup; ⊎-isSemigroup) open import Function.Inverse using (_↔_) open import Data.Product using (_×_) open import Data.Sum using (_⊎_) ×-semigroup = semigroup→model (×-isSemigroup bijection zero) ⊎-semigroup = semigroup→model (⊎-isSemigroup bijection zero) ×-assoc₁ : ∀ {A B C : Set} → (A × (B × C)) ↔ ((A × B) × C) ×-assoc₁ = fragment SemigroupFrex ×-semigroup ×-assoc₂ : ∀ {A B C : Set} → ((A × B) × (B × C)) ↔ (A × (B × B) × C) ×-assoc₂ = fragment SemigroupFrex ×-semigroup ⊎-assoc₁ : ∀ {A B C : Set} → (A ⊎ (B ⊎ C)) ↔ ((A ⊎ B) ⊎ C) ⊎-assoc₁ = fragment SemigroupFrex ⊎-semigroup ⊎-assoc₂ : ∀ {A B C : Set} → ((A ⊎ B) ⊎ (B ⊎ C)) ↔ (A ⊎ (B ⊎ B) ⊎ C) ⊎-assoc₂ = fragment SemigroupFrex ⊎-semigroup
{ "alphanum_fraction": 0.6389776358, "avg_line_length": 30.2903225806, "ext": "agda", "hexsha": "f12adcaed9c1f56a99ffc9ae1dff94aa6b904cb4", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Examples/Semigroup/Types.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Examples/Semigroup/Types.agda", "max_line_length": 68, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Examples/Semigroup/Types.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 352, "size": 939 }
module QuoteTerm where open import Common.Reflection open import Common.Prelude renaming (Nat to ℕ; module Nat to ℕ) data _≡_ {a}{A : Set a}(x : A) : A → Set where refl : x ≡ x test₁ : quoteTerm (λ {A : Set} (x : A) → x) ≡ lam hidden (abs "A" (lam visible (abs "x" (var 0 [])))) test₁ = refl -- Local variables are de Bruijn indices, do not forget to shift test₂ : (λ {A : Set} (x : A) → quoteTerm x) ≡ (λ x → var 0 []) test₂ = refl -- Terms are not normalized before being unquoted test₃ : quoteTerm (1 + 1) ≡ lit (nat 2) → ⊥ test₃ () syntax id A x = x ∶ A id : (A : Set) → A → A id A x = x -- _∶_ from the Function module can help in case of ambiguities test₄ : quoteTerm (zero ∶ ℕ) ≡ def (quote id) (vArg (def (quote ℕ) []) ∷ vArg (con (quote zero) []) ∷ []) test₄ = refl -- Andreas, 2020-06-05, issue #4734 -- Test that primShowQName prints something reasonable -- for quoted names. issue4734 : primShowQName (quote ℕ) ≡ "Agda.Builtin.Nat.ℕ" issue4734 = refl -- Not sure this response is very reasonable, since -- it suggest a qualified name that does not exist.
{ "alphanum_fraction": 0.6176211454, "avg_line_length": 26.3953488372, "ext": "agda", "hexsha": "a54c4e3c7fc9fbbb819e91effa34f351202f9f91", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2c6241b2bf0cbd7bddbe2c2b56e6d6ce69d1e3a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pnlph/agda", "max_forks_repo_path": "test/Succeed/QuoteTerm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2c6241b2bf0cbd7bddbe2c2b56e6d6ce69d1e3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pnlph/agda", "max_issues_repo_path": "test/Succeed/QuoteTerm.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "e2c6241b2bf0cbd7bddbe2c2b56e6d6ce69d1e3a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pnlph/agda", "max_stars_repo_path": "test/Succeed/QuoteTerm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 382, "size": 1135 }
record ⊤ : Set where instance constructor tt data ⊥ : Set where data Inf : Set where -∞ ∞ : Inf Less : Inf → Inf → Set Less ∞ _ = ⊥ Less _ ∞ = ⊤ Less _ _ = ⊥ data Bounded : Inf → Set where bound : ∀ {b} {{lt : Less -∞ b}} → Bounded b -- The first time around the target type is Less -∞ _b which results in no -- candidates. Once _b gets solved candidates need to be recomputed. foo : Bounded ∞ foo = bound
{ "alphanum_fraction": 0.6315789474, "avg_line_length": 19, "ext": "agda", "hexsha": "fedeb9eacb4deb1e780d437e4b5f1e255f8989fa", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/RecomputeInstanceCandidates.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/RecomputeInstanceCandidates.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/RecomputeInstanceCandidates.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 142, "size": 418 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Instantiates indexed binary structures at an index to the equivalent -- non-indexed structures. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Indexed.Heterogeneous.Construct.At where open import Relation.Binary open import Relation.Binary.Indexed.Heterogeneous hiding (IsEquivalence; Setoid) ------------------------------------------------------------------------ -- Structures module _ {a i} {I : Set i} {A : I → Set a} where isEquivalence : ∀ {ℓ} {_≈_ : IRel A ℓ} → IsIndexedEquivalence A _≈_ → (index : I) → IsEquivalence (_≈_ {index}) isEquivalence isEq index = record { refl = refl ; sym = sym ; trans = trans } where open IsIndexedEquivalence isEq isPreorder : ∀ {ℓ₁ ℓ₂} {_≈_ : IRel A ℓ₁} {_∼_ : IRel A ℓ₂} → IsIndexedPreorder A _≈_ _∼_ → (index : I) → IsPreorder (_≈_ {index}) _∼_ isPreorder isPreorder index = record { isEquivalence = isEquivalence O.isEquivalence index ; reflexive = O.reflexive ; trans = O.trans } where module O = IsIndexedPreorder isPreorder ------------------------------------------------------------------------ -- Packages module _ {a i} {I : Set i} where setoid : ∀ {ℓ} → IndexedSetoid I a ℓ → I → Setoid a ℓ setoid S index = record { Carrier = S.Carrier index ; _≈_ = S._≈_ ; isEquivalence = isEquivalence S.isEquivalence index } where module S = IndexedSetoid S preorder : ∀ {ℓ₁ ℓ₂} → IndexedPreorder I a ℓ₁ ℓ₂ → I → Preorder a ℓ₁ ℓ₂ preorder O index = record { Carrier = O.Carrier index ; _≈_ = O._≈_ ; _∼_ = O._∼_ ; isPreorder = isPreorder O.isPreorder index } where module O = IndexedPreorder O ------------------------------------------------------------------------ -- Some useful shorthand infix notation module _ {a i} {I : Set i} where _atₛ_ : ∀ {ℓ} → IndexedSetoid I a ℓ → I → Setoid a ℓ _atₛ_ = setoid
{ "alphanum_fraction": 0.5148285449, "avg_line_length": 31.2753623188, "ext": "agda", "hexsha": "2eec4f5403ff7bf4eca32cfaf3a0db6d013442e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Heterogeneous/Construct/At.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Heterogeneous/Construct/At.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Heterogeneous/Construct/At.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 605, "size": 2158 }
{-# OPTIONS --cubical-compatible --safe #-} data E (@0 A : Set) : Set where c₁ c₂ : A → E A @0 c₃ : A → E A
{ "alphanum_fraction": 0.5221238938, "avg_line_length": 18.8333333333, "ext": "agda", "hexsha": "33963342e20d10bfffe0e12c3688452f529fdaf9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue4638-2.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue4638-2.agda", "max_line_length": 43, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue4638-2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 45, "size": 113 }
module Relation.Ternary.Separation.Monad.Update where open import Level hiding (Lift) open import Function using (_∘_; case_of_) open import Relation.Binary.PropositionalEquality using (refl) open import Relation.Unary open import Relation.Unary.PredicateTransformer hiding (_⊔_; [_]) open import Relation.Ternary.Separation open import Relation.Ternary.Separation.Monad open import Data.Unit open import Data.Product module _ {a} {A : Set a} {{s : RawSep A}} {u} {{s : IsUnitalSep s u}} where instance ⤇-monad : Monad {I = ⊤} (λ _ _ → ⤇ {p = a}) Monad.return ⤇-monad px = local λ σ → -, -, σ , px app (Monad.bind ⤇-monad f) p σₚ = local λ fr → let _ , σ₁ , σ₂ = ⊎-assoc (⊎-comm σₚ) fr Δ , Σ , σ₃ , px = update p σ₁ _ , σ₄ , σ₅ = ⊎-unassoc σ₃ σ₂ in update (app f px (⊎-comm σ₄)) σ₅
{ "alphanum_fraction": 0.6499402628, "avg_line_length": 34.875, "ext": "agda", "hexsha": "ab2c19a585af4a10c6ca651574e7cf4ccb3b9a73", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Relation/Ternary/Separation/Monad/Update.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Relation/Ternary/Separation/Monad/Update.agda", "max_line_length": 75, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Relation/Ternary/Separation/Monad/Update.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 293, "size": 837 }
module Scratch.Data.List.Relation.Helpers where open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Unary open import Relation.Binary hiding (Decidable) open import Data.Product open import Data.List.Base open import Data.List.Relation.Unary.All as All open import Data.List.Relation.Unary.All.Properties open import Data.List.Relation.Unary.AllPairs module _ {a ℓ ℓ₁ ℓ₂} {A : Set a} {R : Rel A ℓ₁} {S : Rel A ℓ₂} {P : Pred A ℓ} (P? : Decidable P) where filter⁺⁺ : ∀ {xs} → (∀ {x y} → P x → P y → R x y → S x y) → AllPairs R xs → AllPairs S (filter P? xs) filter⁺⁺ {[]} _ _ = [] filter⁺⁺ {x ∷ xs} Δ (h ∷ t) with (P? x) ... | yes p = let hf : All (R x) (filter P? xs) hf = filter⁺ P? h ap : All P (filter P? xs) ap = all-filter P? xs w : All (P ∩ R x) (filter P? xs) w = All.zip ( ap , hf ) y : P ∩ R x ⊆ S x y = λ z → Δ p (proj₁ z) (proj₂ z) z : All (S x) (filter P? xs) z = All.map y w in z ∷ filter⁺⁺ {xs} Δ t ... | no ¬p = filter⁺⁺ {xs} Δ t
{ "alphanum_fraction": 0.5053061224, "avg_line_length": 33.1081081081, "ext": "agda", "hexsha": "12f2036241a98554bd0b799c77b7a89afa2a09c6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zampino/ggt", "max_forks_repo_path": "src/scratch/Data/List/Relation/Helpers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zampino/ggt", "max_issues_repo_path": "src/scratch/Data/List/Relation/Helpers.agda", "max_line_length": 61, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zampino/ggt", "max_stars_repo_path": "src/scratch/Data/List/Relation/Helpers.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z", "num_tokens": 395, "size": 1225 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Functor.Base where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Categories.Category private variable ℓC ℓC' ℓD ℓD' : Level record Functor (C : Precategory ℓC ℓC') (D : Precategory ℓD ℓD') : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where no-eta-equality open Precategory field F-ob : C .ob → D .ob F-hom : {x y : C .ob} → C [ x , y ] → D [(F-ob x) , (F-ob y)] F-id : {x : C .ob} → F-hom (C .id x) ≡ D .id (F-ob x) F-seq : {x y z : C .ob} (f : C [ x , y ]) (g : C [ y , z ]) → F-hom (f ⋆⟨ C ⟩ g) ≡ (F-hom f) ⋆⟨ D ⟩ (F-hom g) isFull = (x y : _) (F[f] : D [(F-ob x) , (F-ob y)]) → ∃ (C [ x , y ]) (λ f → F-hom f ≡ F[f]) isFaithful = (x y : _) (f g : C [ x , y ]) → F-hom f ≡ F-hom g → f ≡ g isEssentiallySurj = ∀ (d : D .ob) → Σ[ c ∈ C .ob ] CatIso {C = D} (F-ob c) d private variable ℓ ℓ' : Level C D E : Precategory ℓ ℓ' open Precategory open Functor -- Helpful notation -- action on objects infix 30 _⟅_⟆ _⟅_⟆ : (F : Functor C D) → C .ob → D .ob _⟅_⟆ = F-ob -- action on morphisms infix 30 _⟪_⟫ -- same infix level as on objects since these will never be used in the same context _⟪_⟫ : (F : Functor C D) → ∀ {x y} → C [ x , y ] → D [(F ⟅ x ⟆) , (F ⟅ y ⟆)] _⟪_⟫ = F-hom -- Functor constructions 𝟙⟨_⟩ : ∀ (C : Precategory ℓ ℓ') → Functor C C 𝟙⟨ C ⟩ .F-ob x = x 𝟙⟨ C ⟩ .F-hom f = f 𝟙⟨ C ⟩ .F-id = refl 𝟙⟨ C ⟩ .F-seq _ _ = refl -- functor composition funcComp : ∀ (G : Functor D E) (F : Functor C D) → Functor C E (funcComp G F) .F-ob c = G ⟅ F ⟅ c ⟆ ⟆ (funcComp G F) .F-hom f = G ⟪ F ⟪ f ⟫ ⟫ (funcComp {D = D} {E = E} {C = C} G F) .F-id {c} = (G ⟪ F ⟪ C .id c ⟫ ⟫) ≡⟨ cong (G ⟪_⟫) (F .F-id) ⟩ G .F-id -- (G ⟪ D .id (F ⟅ c ⟆) ⟫) -- deleted this cause the extra refl composition was annoying -- ≡⟨ G .F-id ⟩ -- E .id (G ⟅ F ⟅ c ⟆ ⟆) -- ∎ (funcComp {D = D} {E = E} {C = C} G F) .F-seq {x} {y} {z} f g = (G ⟪ F ⟪ f ⋆⟨ C ⟩ g ⟫ ⟫) ≡⟨ cong (G ⟪_⟫) (F .F-seq _ _) ⟩ G .F-seq _ _ -- (G ⟪ (F ⟪ f ⟫) ⋆⟨ D ⟩ (F ⟪ g ⟫) ⟫) -- deleted for same reason as above -- ≡⟨ G .F-seq _ _ ⟩ -- (G ⟪ F ⟪ f ⟫ ⟫) ⋆⟨ E ⟩ (G ⟪ F ⟪ g ⟫ ⟫) -- ∎ infixr 30 funcComp syntax funcComp G F = G ∘F F _^opF : Functor C D → Functor (C ^op) (D ^op) (F ^opF) .F-ob = F .F-ob (F ^opF) .F-hom = F .F-hom (F ^opF) .F-id = F .F-id (F ^opF) .F-seq f g = F .F-seq g f
{ "alphanum_fraction": 0.4957438184, "avg_line_length": 27.4111111111, "ext": "agda", "hexsha": "cd7c612f4f4ee72552561977eefaec5e88df8531", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Categories/Functor/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Categories/Functor/Base.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Categories/Functor/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1198, "size": 2467 }
module 14-implicitConfigurations where postulate Integral : Set → Set add : ∀ {A} {{ intA : Integral A }} → A → A → A mul : ∀ {A} {{ intA : Integral A }} → A → A → A mod : ∀ {A} {{ intA : Integral A }} → A → A → A N : Set zero one two three : N nInt : Integral N private postulate Token : Set record Modulus (s : Token) (A : Set) : Set where field modulus : A data M (s : Token) (A : Set) : Set where MkM : A → M s A unMkM : ∀ {A s} → M s A → A unMkM (MkM a) = a private postulate theOnlyToken : Token withModulus : ∀ {A} → {{ intA : Integral A }} → (modulus : A) → (∀ {s} → {{ mod : Modulus s A }} → M s A) → A withModulus modulus f = unMkM (f {theOnlyToken} {{ record { modulus = modulus } }}) open Modulus {{...}} normalize : ∀ {s A} {{intA : Integral A}} {{mod : Modulus s A}} → A → M s A normalize a = MkM (mod modulus a) _+_ : ∀ {s A} {{intA : Integral A}} {{mod : Modulus s A}} → M s A → M s A → M s A (MkM a) + (MkM b) = normalize (add a b) _*_ : ∀ {s A} → {{intA : Integral A}} → {{mod : Modulus s A}} → M s A → M s A → M s A (MkM a) * (MkM b) = normalize (mul a b) test₁ : N test₁ = withModulus two (let o = MkM one in (o + o)*(o + o)) testExpr : ∀ {s} → {{mod : Modulus s N}} → M s N testExpr = let o = MkM one ; t = MkM two in (o + t) * t test₂ : N test₂ = withModulus three testExpr
{ "alphanum_fraction": 0.5357142857, "avg_line_length": 24.9454545455, "ext": "agda", "hexsha": "fd33c417f37e9717873344763dc8575cb733f816", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/instance-arguments/14-implicitConfigurations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/instance-arguments/14-implicitConfigurations.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/instance-arguments/14-implicitConfigurations.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 530, "size": 1372 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} ------------------------------------------------------------------------------ open import Haskell.Modules.RWS.RustAnyHow open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block import LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert as QuorumCert import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote import LibraBFT.Impl.Consensus.ConsensusTypes.VoteData as VoteData import LibraBFT.Impl.Consensus.SafetyRules.PersistentSafetyStorage as PersistentSafetyStorage import LibraBFT.Impl.OBM.Crypto as Crypto open import LibraBFT.Impl.OBM.Logging.Logging import LibraBFT.Impl.Types.BlockInfo as BlockInfo import LibraBFT.Impl.Types.EpochChangeProof as EpochChangeProof import LibraBFT.Impl.Types.ValidatorSigner as ValidatorSigner import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.Impl.Types.Verifier import LibraBFT.Impl.Types.Waypoint as Waypoint open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types import LibraBFT.ImplShared.Util.Crypto as Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.PKCS open import Util.Prelude ------------------------------------------------------------------------------ open import Data.String using (String) ------------------------------------------------------------------------------ module LibraBFT.Impl.Consensus.SafetyRules.SafetyRules where ------------------------------------------------------------------------------ new : PersistentSafetyStorage → Bool → Either ErrLog SafetyRules new persistentStorage exportConsensusKey = do pure $ mkSafetyRules persistentStorage exportConsensusKey nothing nothing ------------------------------------------------------------------------------ signer : SafetyRules → Either ErrLog ValidatorSigner signer self = maybeS (self ^∙ srValidatorSigner) (Left fakeErr {- error: signer not initialized -}) Right ------------------------------------------------------------------------------ extensionCheck : VoteProposal → Either ErrLog VoteData extensionCheck voteProposal = do let proposedBlock = voteProposal ^∙ vpBlock obmAEP = voteProposal ^∙ vpAccumulatorExtensionProof -- IMPL-TODO: verify .accumulator_extension_proof().verify ... in pure (VoteData.new (Block.genBlockInfo proposedBlock -- OBM-LBFT-DIFF: completely different (Crypto.obmHashVersion (obmAEP ^∙ aepObmNumLeaves)) (obmAEP ^∙ aepObmNumLeaves) (voteProposal ^∙ vpNextEpochState)) (proposedBlock ^∙ bQuorumCert ∙ qcCertifiedBlock)) ------------------------------------------------------------------------------ constructLedgerInfoM : Block → HashValue → LBFT (Either ErrLog LedgerInfo) constructLedgerInfoM proposedBlock consensusDataHash = do let block2 = proposedBlock ^∙ bRound block1 = proposedBlock ^∙ bQuorumCert ∙ qcCertifiedBlock ∙ biRound block0 = proposedBlock ^∙ bQuorumCert ∙ qcParentBlock ∙ biRound commit = (block0 + 1 == block1) ∧ (block1 + 1 == block2) commitInfo ← if commit then (do let c = proposedBlock ^∙ bQuorumCert ∙ qcParentBlock logInfo fakeInfo -- lSR (Info3ChainDetected proposedBlock c) pure c) else pure BlockInfo.empty ok (LedgerInfo∙new commitInfo consensusDataHash) ------------------------------------------------------------------------------ -- PREFERRED ROUND RULE (2nd VOTING RULE) : this avoids voting to commit a conflicting Block verifyAndUpdatePreferredRoundM : QuorumCert → SafetyData → LBFT (Either ErrLog SafetyData) verifyAndUpdatePreferredRoundM quorumCert safetyData = do let preferredRound = safetyData ^∙ sdPreferredRound oneChainRound = quorumCert ^∙ qcCertifiedBlock ∙ biRound twoChainRound = quorumCert ^∙ qcParentBlock ∙ biRound -- LBFT-ALGO v3:p6: "... votes in round k only if the QC inside the k proposal -- is at least" PreferredRound." ifD oneChainRound <? preferredRound then bail fakeErr -- error: incorrect preferred round, QC round does not match preferred round else do updated ← case (compare twoChainRound preferredRound) of λ where GT → do logInfo fakeInfo -- updated preferred round pure (safetyData & sdPreferredRound ∙~ twoChainRound) LT → do logInfo fakeInfo -- 2-chain round is lower than preferred round, but 1-chain is higher pure safetyData EQ → pure safetyData ok updated ------------------------------------------------------------------------------ verifyAuthorM : Maybe Author → LBFT (Either ErrLog Unit) verifyAuthorM author = do vs ← use (lSafetyRules ∙ srValidatorSigner) maybeS vs (bail fakeErr) {-(ErrL (here' ["srValidatorSigner", "Nothing"]))-} $ λ validatorSigner → maybeSD author (bail fakeErr) -- (ErrL (here' ["InvalidProposal", "No author found in the proposal"]))) (\a -> ifD validatorSigner ^∙ vsAuthor /= a then bail fakeErr -- (ErrL (here' ["InvalidProposal", "Proposal author is not validator signer"])) else ok unit) where here' : List String → List String here' t = "SafetyRules" ∷ "verifyAuthorM" ∷ t ------------------------------------------------------------------------------ verifyEpochM : Epoch → SafetyData → LBFT (Either ErrLog Unit) verifyEpochM epoch safetyData = ifD epoch /= safetyData ^∙ sdEpoch then bail fakeErr -- incorrect epoch else ok unit ------------------------------------------------------------------------------ -- INCREASING ROUND RULE (1st VOTING RULE) : ensures voting only ONCE per round verifyAndUpdateLastVoteRoundM : Round → SafetyData → LBFT (Either ErrLog SafetyData) verifyAndUpdateLastVoteRoundM round safetyData = -- LBFT-ALGO v3:p6 : "... votes in round k it if is higher than" LastVotedRound ifD round >? (safetyData ^∙ sdLastVotedRound) then ok (safetyData & sdLastVotedRound ∙~ round ) else bail fakeErr -- incorrect last vote round ------------------------------------------------------------------------------ verifyQcM : QuorumCert → LBFT (Either ErrLog Unit) verifyQcM qc = do validatorVerifier ← use (lRoundManager ∙ srValidatorVerifier) pure (QuorumCert.verify qc validatorVerifier) ∙^∙ withErrCtx ("InvalidQuorumCertificate" ∷ []) ------------------------------------------------------------------------------ consensusState : SafetyRules → ConsensusState consensusState self = ConsensusState∙new (self ^∙ srPersistentStorage ∙ pssSafetyData) (self ^∙ srPersistentStorage ∙ pssWaypoint) ------------------------------------------------------------------------------ -- ** NOTE: PAY PARTICULAR ATTENTION TO THIS FUNCTION ** -- ** Because : it is long with lots of branches, so easy to transcribe wrong. ** -- ** And if initialization is wrong, everything is wrong. ** -- TODO: convert to EitherD (and perhaps break into more steps?) initialize : SafetyRules → EpochChangeProof → Either ErrLog SafetyRules initialize self proof = do let waypoint = self ^∙ srPersistentStorage ∙ pssWaypoint lastLi ← withErrCtx' (here' ("EpochChangeProof.verify" ∷ [])) ( EpochChangeProof.verify proof waypoint) let ledgerInfo = lastLi ^∙ liwsLedgerInfo epochState ← maybeS (ledgerInfo ^∙ liNextEpochState) (Left fakeErr) -- ["last ledger info has no epoch state"] pure let currentEpoch = self ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdEpoch if-dec currentEpoch <? epochState ^∙ esEpoch then (do waypoint' ← withErrCtx' (here' ("Waypoint.newEpochBoundary" ∷ [])) ( Waypoint.newEpochBoundary ledgerInfo) continue1 (self & srPersistentStorage ∙ pssWaypoint ∙~ waypoint' & srPersistentStorage ∙ pssSafetyData ∙~ SafetyData∙new (epochState ^∙ esEpoch) {-Round-} 0 {-Round-} 0 nothing) epochState) else continue1 self epochState where continue2 : SafetyRules → EpochState → Either ErrLog SafetyRules here' : List String → List String continue1 : SafetyRules → EpochState → Either ErrLog SafetyRules continue1 self1 epochState = continue2 (self1 & srEpochState ?~ epochState) epochState continue2 self2 epochState = do let author = self2 ^∙ srPersistentStorage ∙ pssAuthor maybeS (ValidatorVerifier.getPublicKey (epochState ^∙ esVerifier) author) (Left fakeErr) -- ["ValidatorNotInSet", lsA author] $ λ expectedKey → do let currKey = eitherS (signer self2) (const nothing) (just ∘ ValidatorSigner.publicKey_USE_ONLY_AT_INIT) grd‖ currKey == just expectedKey ≔ Right self2 ‖ self2 ^∙ srExportConsensusKey ≔ (do consensusKey ← withErrCtx' (here' ("ValidatorKeyNotFound" ∷ [])) (PersistentSafetyStorage.consensusKeyForVersion (self2 ^∙ srPersistentStorage) expectedKey) Right (self2 & srValidatorSigner ?~ ValidatorSigner∙new author consensusKey)) ‖ otherwise≔ Left fakeErr -- ["srExportConsensusKey", "False", "NOT IMPLEMENTED"] here' t = "SafetyRules" ∷ "initialize" ∷ t abstract initialize-e-abs = initialize -- TODO: temporary until initialize is converted to EitherD initialize-ed-abs : SafetyRules → EpochChangeProof → EitherD ErrLog SafetyRules initialize-ed-abs sr ecp = fromEither $ initialize sr ecp initialize-ed-abs-≡ : ∀ {sr ecp} → EitherD-run (initialize-ed-abs sr ecp) ≡ initialize sr ecp initialize-ed-abs-≡ {sr} {ecp} with initialize sr ecp ... | Left x = refl ... | Right y = refl ------------------------------------------------------------------------------ constructAndSignVoteM-continue0 : VoteProposal → ValidatorSigner → LBFT (Either ErrLog Vote) constructAndSignVoteM-continue1 : VoteProposal → ValidatorSigner → Block → SafetyData → LBFT (Either ErrLog Vote) constructAndSignVoteM-continue2 : VoteProposal → ValidatorSigner → Block → SafetyData → LBFT (Either ErrLog Vote) constructAndSignVoteM : MaybeSignedVoteProposal → LBFT (Either ErrLog Vote) constructAndSignVoteM maybeSignedVoteProposal = do vs ← use (lSafetyRules ∙ srValidatorSigner) maybeS vs (bail fakeErr {- srValidatorSigner is nothing -}) λ validatorSigner → do let voteProposal = maybeSignedVoteProposal ^∙ msvpVoteProposal constructAndSignVoteM-continue0 voteProposal validatorSigner module constructAndSignVoteM-continue0 (voteProposal : VoteProposal) (validatorSigner : ValidatorSigner) where step₀ : LBFT (Either ErrLog Vote) step₁ : SafetyData → LBFT (Either ErrLog Vote) proposedBlock = voteProposal ^∙ vpBlock step₀ = do safetyData0 ← use (lPersistentSafetyStorage ∙ pssSafetyData) verifyEpochM (proposedBlock ^∙ bEpoch) safetyData0 ∙?∙ λ _ → step₁ safetyData0 step₁ safetyData0 = do caseMD (safetyData0 ^∙ sdLastVote) of λ where (just vote) → ifD vote ^∙ vVoteData ∙ vdProposed ∙ biRound == proposedBlock ^∙ bRound then ok vote else constructAndSignVoteM-continue1 voteProposal validatorSigner proposedBlock safetyData0 nothing → constructAndSignVoteM-continue1 voteProposal validatorSigner proposedBlock safetyData0 constructAndSignVoteM-continue0 = constructAndSignVoteM-continue0.step₀ module constructAndSignVoteM-continue1 (voteProposal : VoteProposal) (validatorSigner : ValidatorSigner) (proposedBlock : Block) (safetyData0 : SafetyData) where step₀ : LBFT (Either ErrLog Vote) step₁ : LBFT (Either ErrLog Vote) step₂ : ValidatorVerifier → LBFT (Either ErrLog Vote) step₃ : LBFT (Either ErrLog Vote) step₀ = verifyQcM (proposedBlock ^∙ bQuorumCert) ∙?∙ λ _ → step₁ step₁ = do validatorVerifier ← use (lRoundManager ∙ srValidatorVerifier) step₂ validatorVerifier step₂ validatorVerifier = pure (Block.validateSignature proposedBlock validatorVerifier) ∙?∙ λ _ → step₃ step₃ = verifyAndUpdatePreferredRoundM (proposedBlock ^∙ bQuorumCert) safetyData0 ∙?∙ constructAndSignVoteM-continue2 voteProposal validatorSigner proposedBlock constructAndSignVoteM-continue1 = constructAndSignVoteM-continue1.step₀ module constructAndSignVoteM-continue2 (voteProposal : VoteProposal) (validatorSigner : ValidatorSigner) (proposedBlock : Block) (safetyData : SafetyData) where step₀ : LBFT (Either ErrLog Vote) step₁ : SafetyData → LBFT (Either ErrLog Vote) step₂ : SafetyData → VoteData → LBFT (Either ErrLog Vote) step₃ : SafetyData → VoteData → Author → LedgerInfo → LBFT (Either ErrLog Vote) step₀ = verifyAndUpdateLastVoteRoundM (proposedBlock ^∙ bBlockData ∙ bdRound) safetyData ∙?∙ step₁ step₁ safetyData1 = do pssSafetyData-rm ∙= safetyData1 pure (extensionCheck voteProposal) ∙?∙ (step₂ safetyData1) step₂ safetyData1 voteData = do let author = validatorSigner ^∙ vsAuthor constructLedgerInfoM proposedBlock (Crypto.hashVD voteData) ∙^∙ withErrCtx ("" ∷ []) ∙?∙ (step₃ safetyData1 voteData author) step₃ safetyData1 voteData author ledgerInfo = do let signature = ValidatorSigner.sign validatorSigner ledgerInfo vote = Vote.newWithSignature voteData author ledgerInfo signature pssSafetyData-rm ∙= (safetyData1 & sdLastVote ?~ vote) logInfo fakeInfo -- InfoUpdateLastVotedRound ok vote constructAndSignVoteM-continue2 = constructAndSignVoteM-continue2.step₀ ------------------------------------------------------------------------------ signProposalM : BlockData → LBFT (Either ErrLog Block) signProposalM blockData = do vs ← use (lSafetyRules ∙ srValidatorSigner) maybeS vs (bail fakeErr) {-ErrL (here' ["srValidatorSigner", "Nothing"])-} $ λ validatorSigner → do safetyData ← use (lPersistentSafetyStorage ∙ pssSafetyData) verifyAuthorM (blockData ^∙ bdAuthor) ∙?∙ λ _ → verifyEpochM (blockData ^∙ bdEpoch) safetyData ∙?∙ λ _ → ifD blockData ^∙ bdRound ≤?ℕ safetyData ^∙ sdLastVotedRound then bail fakeErr -- {- ErrL (here' [ "InvalidProposal" -- , "Proposed round is not higher than last voted round " -- , lsR (blockData ^∙ bdRound), lsR (safetyData ^∙ sdLastVotedRound) ])-} else do verifyQcM (blockData ^∙ bdQuorumCert) ∙?∙ λ _ → verifyAndUpdatePreferredRoundM (blockData ^∙ bdQuorumCert) safetyData ∙?∙ λ safetyData1 → do pssSafetyData-rm ∙= safetyData1 let signature = ValidatorSigner.sign validatorSigner blockData ok (Block.newProposalFromBlockDataAndSignature blockData signature) where here' : List String → List String here' t = "SafetyRules" ∷ "signProposalM" ∷ t ------------------------------------------------------------------------------ signTimeoutM : Timeout → LBFT (Either ErrLog Signature) signTimeoutM timeout = do vs ← use (lSafetyRules ∙ srValidatorSigner) maybeS vs (bail fakeErr) {-"srValidatorSigner", "Nothing"-} $ λ validatorSigner → do safetyData ← use (lPersistentSafetyStorage ∙ pssSafetyData) verifyEpochM (timeout ^∙ toEpoch) safetyData ∙^∙ withErrCtx (here' []) ∙?∙ λ _ → do ifD‖ timeout ^∙ toRound ≤? safetyData ^∙ sdPreferredRound ≔ bail fakeErr --(ErrIncorrectPreferredRound (here []) (timeout ^∙ toRound) (safetyData ^∙ sdPreferredRound)) ‖ timeout ^∙ toRound <? safetyData ^∙ sdLastVotedRound ≔ bail fakeErr --(ErrIncorrectLastVotedRound (here []) (timeout ^∙ toRound) (safetyData ^∙ sdLastVotedRound)) ‖ timeout ^∙ toRound >? safetyData ^∙ sdLastVotedRound ≔ verifyAndUpdateLastVoteRoundM (timeout ^∙ toRound) safetyData ∙^∙ withErrCtx (here' []) ∙?∙ (λ safetyData1 → do pssSafetyData-rm ∙= safetyData1 logInfo fakeInfo -- (InfoUpdateLastVotedRound (timeout ^∙ toRound)) continue validatorSigner) ‖ otherwise≔ continue validatorSigner where continue : ValidatorSigner → LBFT (Either ErrLog Signature) continue validatorSigner = do let signature = ValidatorSigner.sign validatorSigner timeout ok signature here' : List String → List String here' t = "SafetyRules" ∷ "signTimeoutM" ∷ {-lsTO timeout ∷-} t
{ "alphanum_fraction": 0.6360827747, "avg_line_length": 46.6168478261, "ext": "agda", "hexsha": "6a8d526d0d6bf9b7ba45f52b37a23911dce1dbf7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/SafetyRules/SafetyRules.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/SafetyRules/SafetyRules.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/SafetyRules/SafetyRules.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4323, "size": 17155 }
module Base.Ascription where -- Encode infix ascription. as' : ∀ {ℓ} (A : Set ℓ) (a : A) → A as' _ a = a syntax as' A a = a as A
{ "alphanum_fraction": 0.5846153846, "avg_line_length": 18.5714285714, "ext": "agda", "hexsha": "bb40eeb2e75afa497eeb070e535c18613b79571b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Base/Ascription.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Base/Ascription.agda", "max_line_length": 35, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Base/Ascription.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 52, "size": 130 }
module UnifyTermL (A : Set) where open import Data.Fin using (Fin; suc; zero) open import Data.Nat using (ℕ; suc; zero) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong₂; cong; sym; trans) open import Function using (_∘_) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Product using (∃; _,_; _×_) open import Data.Empty using (⊥-elim) data Term (n : ℕ) : Set where i : (x : Fin n) -> Term n leaf : A → Term n _fork_ : (s t : Term n) -> Term n Term-leaf-inj : ∀ {n l₁ l₂} → leaf {n} l₁ ≡ leaf l₂ → l₁ ≡ l₂ Term-leaf-inj refl = refl _~>_ : (m n : ℕ) -> Set m ~> n = Fin m -> Term n ▹ : ∀ {m n} -> (r : Fin m -> Fin n) -> Fin m -> Term n ▹ r = i ∘ r _◃_ : ∀ {m n} -> (f : m ~> n) -> Term m -> Term n f ◃ i x = f x f ◃ (leaf l) = leaf l f ◃ (s fork t) = (f ◃ s) fork (f ◃ t) _≐_ : {m n : ℕ} -> (Fin m -> Term n) -> (Fin m -> Term n) -> Set f ≐ g = ∀ x -> f x ≡ g x ◃ext : ∀ {m n} {f g : Fin m -> Term n} -> f ≐ g -> ∀ t -> f ◃ t ≡ g ◃ t ◃ext p (i x) = p x ◃ext p (leaf l) = refl ◃ext p (s fork t) = cong₂ _fork_ (◃ext p s) (◃ext p t) _◇_ : ∀ {l m n : ℕ } -> (f : Fin m -> Term n) (g : Fin l -> Term m) -> Fin l -> Term n f ◇ g = (f ◃_) ∘ g ≐-cong : ∀ {m n o} {f : m ~> n} {g} (h : _ ~> o) -> f ≐ g -> (h ◇ f) ≐ (h ◇ g) ≐-cong h f≐g t = cong (h ◃_) (f≐g t) ≐-sym : ∀ {m n} {f : m ~> n} {g} -> f ≐ g -> g ≐ f ≐-sym f≐g = sym ∘ f≐g module Sub where fact1 : ∀ {n} -> (t : Term n) -> i ◃ t ≡ t fact1 (i x) = refl fact1 (leaf l) = refl fact1 (s fork t) = cong₂ _fork_ (fact1 s) (fact1 t) fact2 : ∀ {l m n} -> (f : Fin m -> Term n) (g : _) (t : Term l) -> (f ◇ g) ◃ t ≡ f ◃ (g ◃ t) fact2 f g (i x) = refl fact2 f g (leaf l) = refl fact2 f g (s fork t) = cong₂ _fork_ (fact2 f g s) (fact2 f g t) fact3 : ∀ {l m n} (f : Fin m -> Term n) (r : Fin l -> Fin m) -> (f ◇ (▹ r)) ≡ (f ∘ r) fact3 f r = refl -- ext (λ _ -> refl) ◃ext' : ∀ {m n o} {f : Fin m -> Term n}{g : Fin m -> Term o}{h} -> f ≐ (h ◇ g) -> ∀ t -> f ◃ t ≡ h ◃ (g ◃ t) ◃ext' p t = trans (◃ext p t) (Sub.fact2 _ _ t) open import Data.Maybe open import Category.Functor open import Category.Monad import Level open RawMonad (Data.Maybe.monad {Level.zero}) open import UnifyFin check : ∀{n} (x : Fin (suc n)) (t : Term (suc n)) -> Maybe (Term n) check x (i y) = i <$> thick x y check x (leaf l) = just (leaf l) check x (s fork t) = _fork_ <$> check x s ⊛ check x t _for_ : ∀ {n} (t' : Term n) (x : Fin (suc n)) -> Fin (suc n) -> Term n (t' for x) y = maybe′ i t' (thick x y) data AList : ℕ -> ℕ -> Set where anil : ∀ {n} -> AList n n _asnoc_/_ : ∀ {m n} (σ : AList m n) (t' : Term m) (x : Fin (suc m)) -> AList (suc m) n sub : ∀ {m n} (σ : AList m n) -> Fin m -> Term n sub anil = i sub (σ asnoc t' / x) = sub σ ◇ (t' for x) _++_ : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> AList l n ρ ++ anil = ρ ρ ++ (σ asnoc t' / x) = (ρ ++ σ) asnoc t' / x ++-assoc : ∀ {l m n o} (ρ : AList l m) (σ : AList n _) (τ : AList o _) -> ρ ++ (σ ++ τ) ≡ (ρ ++ σ) ++ τ ++-assoc ρ σ anil = refl ++-assoc ρ σ (τ asnoc t / x) = cong (λ s -> s asnoc t / x) (++-assoc ρ σ τ) module SubList where anil-id-l : ∀ {m n} (σ : AList m n) -> anil ++ σ ≡ σ anil-id-l anil = refl anil-id-l (σ asnoc t' / x) = cong (λ σ -> σ asnoc t' / x) (anil-id-l σ) fact1 : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> sub (ρ ++ σ) ≐ (sub ρ ◇ sub σ) fact1 ρ anil v = refl fact1 {suc l} {m} {n} r (s asnoc t' / x) v = trans hyp-on-terms ◃-assoc where t = (t' for x) v hyp-on-terms = ◃ext (fact1 r s) t ◃-assoc = Sub.fact2 (sub r) (sub s) t _∃asnoc_/_ : ∀ {m} (a : ∃ (AList m)) (t' : Term m) (x : Fin (suc m)) -> ∃ (AList (suc m)) (n , σ) ∃asnoc t' / x = n , σ asnoc t' / x flexFlex : ∀ {m} (x y : Fin m) -> ∃ (AList m) flexFlex {suc m} x y with thick x y ... | just y' = m , anil asnoc i y' / x ... | nothing = suc m , anil flexFlex {zero} () _ flexRigid : ∀ {m} (x : Fin m) (t : Term m) -> Maybe (∃(AList m)) flexRigid {suc m} x t with check x t ... | just t' = just (m , anil asnoc t' / x) ... | nothing = nothing flexRigid {zero} () _
{ "alphanum_fraction": 0.4899038462, "avg_line_length": 32.7559055118, "ext": "agda", "hexsha": "719934e3aab8f2a4974c20affdd73bc610968064", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/UnifyTermL.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/UnifyTermL.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/UnifyTermL.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1854, "size": 4160 }
module Numeral.Integer.Proofs where import Data.Either as Either open import Data.Tuple as Tuple using (_,_) open import Logic import Lvl open import Functional open import Numeral.Integer open import Numeral.Integer.Oper open import Numeral.Integer.Sign open import Numeral.Natural.Induction open import Numeral.Natural as ℕ using (ℕ) import Numeral.Natural.Oper as ℕ import Numeral.Natural.Oper.Proofs as ℕ import Numeral.Natural.Relation.Order as ℕ import Numeral.Sign as Sign import Numeral.Sign.Oper0 as Sign import Numeral.Sign.Proofs as Sign open import Lang.Inspect open import Logic.IntroInstances open import Logic.Propositional open import Logic.Predicate open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function open import Structure.Function.Domain open import Structure.Function.Domain.Proofs open import Structure.Function.Multi import Structure.Function.Names as Names open import Structure.Operator open import Structure.Operator.Group open import Structure.Operator.Monoid import Structure.Operator.Names as Names open import Structure.Operator.Properties open import Structure.Operator.Proofs open import Structure.Operator.Ring open import Structure.OrderedField open import Structure.Relator.Properties open import Syntax.Number open import Syntax.Transitivity open import Type private variable ℓ : Lvl.Level -- TODO: Prove the usual structures for ℤ instance [+ₙ][𝐒]-preserving : Preserving₁(+ₙ_) ℕ.𝐒 𝐒 [+ₙ][𝐒]-preserving = intro [≡]-intro instance [+ₙ][+]-preserving : Preserving₂(+ₙ_) (ℕ._+_) (_+_) [+ₙ][+]-preserving = intro [≡]-intro instance [+ₙ][⋅]-preserving : Preserving₂(+ₙ_) (ℕ._⋅_) (_⋅_) Preserving.proof [+ₙ][⋅]-preserving {ℕ.𝟎} {ℕ.𝟎} = [≡]-intro Preserving.proof [+ₙ][⋅]-preserving {ℕ.𝟎} {ℕ.𝐒 y} = [≡]-intro Preserving.proof [+ₙ][⋅]-preserving {ℕ.𝐒 x} {ℕ.𝟎} = [≡]-intro Preserving.proof [+ₙ][⋅]-preserving {ℕ.𝐒 x} {ℕ.𝐒 y} = [≡]-intro -- [−₀]-preserving : Preserving₂(+ₙ_) (_−₀ₙ_) (_−₀_) -- [/₀]-preserving : Preserving₂(+ₙ_) (_/₀ₙ_) (_/₀_) instance [−ₙ][𝐒][𝐏]-preserving : Preserving₁(−ₙ_) ℕ.𝐒 𝐏 Preserving.proof [−ₙ][𝐒][𝐏]-preserving {ℕ.𝟎} = [≡]-intro Preserving.proof [−ₙ][𝐒][𝐏]-preserving {ℕ.𝐒 x} = [≡]-intro instance [−ₙ][+]-preserving : Preserving₂(−ₙ_) (ℕ._+_) (_+_) Preserving.proof [−ₙ][+]-preserving {ℕ.𝟎} {ℕ.𝟎} = [≡]-intro Preserving.proof [−ₙ][+]-preserving {ℕ.𝟎} {ℕ.𝐒(_)} = [≡]-intro Preserving.proof [−ₙ][+]-preserving {ℕ.𝐒(_)} {ℕ.𝟎} = [≡]-intro Preserving.proof [−ₙ][+]-preserving {ℕ.𝐒(_)} {ℕ.𝐒(_)} = [≡]-intro instance [−][𝐒][𝐏]-preserving : Preserving₁(−_) 𝐒 𝐏 Preserving.proof [−][𝐒][𝐏]-preserving {+ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [−][𝐒][𝐏]-preserving {+ₙ ℕ.𝐒 x} = [≡]-intro Preserving.proof [−][𝐒][𝐏]-preserving {−𝐒ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [−][𝐒][𝐏]-preserving {−𝐒ₙ ℕ.𝐒 x} = [≡]-intro instance [−𝐒ₙ][𝐒][𝐏]-preserving : Preserving₁(−𝐒ₙ_) ℕ.𝐒 𝐏 Preserving.proof [−𝐒ₙ][𝐒][𝐏]-preserving = [≡]-intro instance [+𝐒ₙ][𝐒]-preserving : Preserving₁(+𝐒ₙ_) ℕ.𝐒 𝐒 Preserving.proof [+𝐒ₙ][𝐒]-preserving = [≡]-intro instance [−][+]-preserving : Preserving₂(−_) (_+_)(_+_) Preserving.proof [−][+]-preserving {x}{y} = p{x}{y} where [−ₙ]-distribute-[−] : ∀{x y} → (−(x −ₙ y) ≡ y −ₙ x) [−ₙ]-distribute-[−] {ℕ.𝟎} {ℕ.𝟎} = [≡]-intro [−ₙ]-distribute-[−] {ℕ.𝟎} {ℕ.𝐒 x} = [≡]-intro [−ₙ]-distribute-[−] {ℕ.𝐒 x} {ℕ.𝟎} = [≡]-intro [−ₙ]-distribute-[−] {ℕ.𝐒 x} {ℕ.𝐒 y} = [−ₙ]-distribute-[−] {x} {y} p : Names.Preserving₂(−_) (_+_)(_+_) p {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro p {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} = [≡]-intro p {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} = [≡]-intro p {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} = [≡]-intro p {+ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝟎} = [≡]-intro p {+ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro p {+ₙ ℕ.𝐒 x} {−𝐒ₙ y} = [−ₙ]-distribute-[−] {x}{y} p {−𝐒ₙ x} {+ₙ ℕ.𝐒 y} = [−ₙ]-distribute-[−] {y}{x} p {−𝐒ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro p {−𝐒ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝟎} = [≡]-intro p {−𝐒ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro p {−𝐒ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝟎} = [≡]-intro p {−𝐒ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro p {−𝐒ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} = [≡]-intro instance [absₙ][⋅]-preserving : Preserving₂(absₙ)(_⋅_)(ℕ._⋅_) Preserving.proof [absₙ][⋅]-preserving {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [absₙ][⋅]-preserving {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} = [≡]-intro Preserving.proof [absₙ][⋅]-preserving {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [absₙ][⋅]-preserving {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} = [≡]-intro Preserving.proof [absₙ][⋅]-preserving {−𝐒ₙ x} {−𝐒ₙ y} = [≡]-intro Preserving.proof [absₙ][⋅]-preserving {+ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [absₙ][⋅]-preserving {+ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro Preserving.proof [absₙ][⋅]-preserving {+ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [absₙ][⋅]-preserving {+ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro Preserving.proof [absₙ][⋅]-preserving {−𝐒ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [absₙ][⋅]-preserving {−𝐒ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} = [≡]-intro Preserving.proof [absₙ][⋅]-preserving {−𝐒ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [absₙ][⋅]-preserving {−𝐒ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} = [≡]-intro instance [sign0][⋅]-preserving : Preserving₂(sign0)(_⋅_)(Sign._⨯_) Preserving.proof [sign0][⋅]-preserving {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [sign0][⋅]-preserving {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} = [≡]-intro Preserving.proof [sign0][⋅]-preserving {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [sign0][⋅]-preserving {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} = [≡]-intro Preserving.proof [sign0][⋅]-preserving {−𝐒ₙ x} {−𝐒ₙ y} = [≡]-intro Preserving.proof [sign0][⋅]-preserving {+ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [sign0][⋅]-preserving {+ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro Preserving.proof [sign0][⋅]-preserving {+ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [sign0][⋅]-preserving {+ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro Preserving.proof [sign0][⋅]-preserving {−𝐒ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [sign0][⋅]-preserving {−𝐒ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} = [≡]-intro Preserving.proof [sign0][⋅]-preserving {−𝐒ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} = [≡]-intro Preserving.proof [sign0][⋅]-preserving {−𝐒ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} = [≡]-intro [ℤ]-non-negative-induction : ∀{P : ℤ → Type{ℓ}} → P(𝟎) → (∀(n) → P(+ₙ(n)) → P(+𝐒ₙ(n))) → (∀{n} → P(+ₙ n)) [ℤ]-non-negative-induction {P = P} = [ℕ]-induction {φ = P ∘ +ₙ_} [ℤ]-positive-induction : ∀{P : ℤ → Type{ℓ}} → P(+𝐒ₙ(ℕ.𝟎)) → (∀(n) → P(+𝐒ₙ(n)) → P(+𝐒ₙ(ℕ.𝐒(n)))) → (∀{n} → P(+𝐒ₙ n)) [ℤ]-positive-induction {P = P} [1] [+] {ℕ.𝟎} = [1] [ℤ]-positive-induction {P = P} [1] [+] {ℕ.𝐒 n} = [+] n ([ℤ]-positive-induction {P = P} [1] [+] {n}) [ℤ]-non-positive-induction : ∀{P : ℤ → Type{ℓ}} → P(𝟎) → (∀(n) → P(−ₙ(n)) → P(−𝐒ₙ(n))) → (∀{n} → P(−ₙ n)) [ℤ]-non-positive-induction {P = P} [0] [−] {ℕ.𝟎} = [0] [ℤ]-non-positive-induction {P = P} [0] [−] {ℕ.𝐒 n} = [−] n ([ℤ]-non-positive-induction {P = P} [0] [−] {n}) [ℤ]-negative-induction : ∀{P : ℤ → Type{ℓ}} → P(−𝐒ₙ(ℕ.𝟎)) → (∀(n) → P(−𝐒ₙ(n)) → P(−𝐒ₙ(ℕ.𝐒(n)))) → (∀{n} → P(−𝐒ₙ n)) [ℤ]-negative-induction {P = P} = [ℕ]-induction {φ = P ∘ −𝐒ₙ_} -- An intuitive induction proof method on integers [ℤ]-intuitive-induction : ∀{P : ℤ → Type{ℓ}} → (∀{n} → P(−ₙ n) → P(−𝐒ₙ(n))) → P(𝟎) → (∀{n} → P(+ₙ n) → P(+𝐒ₙ(n))) → (∀{n} → P(n)) [ℤ]-intuitive-induction {P = P} [−] [0] [+] {𝟎} = [0] [ℤ]-intuitive-induction {P = P} [−] [0] [+] {+𝐒ₙ(n)} = [+] ([ℤ]-intuitive-induction {P = P} [−] [0] [+] {+ₙ n}) [ℤ]-intuitive-induction {P = P} [−] [0] [+] {−𝐒ₙ(ℕ.𝟎)} = [−] ([0]) [ℤ]-intuitive-induction {P = P} [−] [0] [+] {−𝐒ₙ(ℕ.𝐒(n))} = [−] ([ℤ]-intuitive-induction {P = P} [−] [0] [+] {−𝐒ₙ(n)}) [−𝐒ₙ]-equality : ∀{n} → (−𝐒ₙ(n) ≡ −ₙ(ℕ.𝐒(n))) [−𝐒ₙ]-equality = [≡]-intro [+𝐒ₙ]-equality : ∀{n} → (+𝐒ₙ(n) ≡ +ₙ(ℕ.𝐒(n))) [+𝐒ₙ]-equality = [≡]-intro -- (−n)−1 = −(n+1) [𝐏]-negative : ∀{n} → (𝐏(−ₙ n) ≡ −𝐒ₙ(n)) [𝐏]-negative {ℕ.𝟎} = [≡]-intro [𝐏]-negative {ℕ.𝐒(n)} = [≡]-intro -- (−(n+1))+1 = −n [𝐒][−𝐒ₙ]-negative-identity : ∀{n} → (𝐒(−𝐒ₙ(n)) ≡ −ₙ n) [𝐒][−𝐒ₙ]-negative-identity {ℕ.𝟎} = [≡]-intro [𝐒][−𝐒ₙ]-negative-identity {ℕ.𝐒(n)} = [≡]-intro instance [𝐒][𝐏]-inverse : Inverse(𝐒)(𝐏) Inverseᵣ.proof (Tuple.left [𝐒][𝐏]-inverse) {+ₙ ℕ.𝟎} = [≡]-intro Inverseᵣ.proof (Tuple.left [𝐒][𝐏]-inverse) {+ₙ ℕ.𝐒 x} = [≡]-intro Inverseᵣ.proof (Tuple.left [𝐒][𝐏]-inverse) {−𝐒ₙ ℕ.𝟎} = [≡]-intro Inverseᵣ.proof (Tuple.left [𝐒][𝐏]-inverse) {−𝐒ₙ ℕ.𝐒 x} = [≡]-intro Inverseᵣ.proof (Tuple.right [𝐒][𝐏]-inverse) {+ₙ ℕ.𝟎} = [≡]-intro Inverseᵣ.proof (Tuple.right [𝐒][𝐏]-inverse) {+ₙ ℕ.𝐒 x} = [≡]-intro Inverseᵣ.proof (Tuple.right [𝐒][𝐏]-inverse) {−𝐒ₙ ℕ.𝟎} = [≡]-intro Inverseᵣ.proof (Tuple.right [𝐒][𝐏]-inverse) {−𝐒ₙ ℕ.𝐒 x} = [≡]-intro [−ₙ]-identityᵣ : ∀{x} → (x −ₙ ℕ.𝟎 ≡ +ₙ x) [−ₙ]-identityᵣ = [≡]-intro [−ₙ]-antiidentityₗ : ∀{x} → (ℕ.𝟎 −ₙ x ≡ −ₙ x) [−ₙ]-antiidentityₗ {ℕ.𝟎} = [≡]-intro [−ₙ]-antiidentityₗ {ℕ.𝐒(_)} = [≡]-intro [−ₙ][𝐒]-step : ∀{x y} → (ℕ.𝐒(x) −ₙ y ≡ 𝐒(x −ₙ y)) [−ₙ][𝐒]-step {ℕ.𝟎} {ℕ.𝟎} = [≡]-intro [−ₙ][𝐒]-step {ℕ.𝟎} {ℕ.𝐒(y)} = [−ₙ]-antiidentityₗ {y} 🝖 symmetry(_≡_) ([𝐒][−𝐒ₙ]-negative-identity{y}) [−ₙ][𝐒]-step {ℕ.𝐒(_)}{ℕ.𝟎} = [≡]-intro [−ₙ][𝐒]-step {ℕ.𝐒(x)}{ℕ.𝐒(y)} = [−ₙ][𝐒]-step {x}{y} [−][−ₙ] : ∀{x} → (−(+ₙ x) ≡ −ₙ x) [−][−ₙ] {ℕ.𝟎} = [≡]-intro [−][−ₙ] {ℕ.𝐒(_)} = [≡]-intro instance [+ₙ]-injectivity : Injective(+ₙ_) Injective.proof [+ₙ]-injectivity [≡]-intro = [≡]-intro instance [−𝐒ₙ]-injectivity : Injective(−𝐒ₙ_) Injective.proof [−𝐒ₙ]-injectivity [≡]-intro = [≡]-intro instance [−ₙ]-injectivity : Injective(−ₙ_) Injective.proof [−ₙ]-injectivity {ℕ.𝟎} {ℕ.𝟎} xy = [≡]-intro Injective.proof [−ₙ]-injectivity {ℕ.𝐒 x} {ℕ.𝐒 .x} [≡]-intro = [≡]-intro instance [+𝐒ₙ]-injectivity : Injective(+𝐒ₙ_) Injective.proof [+𝐒ₙ]-injectivity [≡]-intro = [≡]-intro [−ₙ]-self : ∀{x} → (x −ₙ x ≡ 𝟎) [−ₙ]-self {ℕ.𝟎} = [≡]-intro [−ₙ]-self {ℕ.𝐒(x)} = [−ₙ]-self {x} instance [+]-commutativity : Commutativity(_+_) [+]-commutativity = intro(\{x y} → p{x}{y}) where p : Names.Commutativity(_+_) p {+ₙ x} {+ₙ y} = congruence₁(+ₙ_) (commutativity(ℕ._+_) {x}{y}) p {+ₙ _} {−𝐒ₙ _} = [≡]-intro p {−𝐒ₙ _} {+ₙ _} = [≡]-intro p {−𝐒ₙ x} {−𝐒ₙ y} = congruence₁(−𝐒ₙ_ ∘ ℕ.𝐒) (commutativity(ℕ._+_) {x}{y}) instance [+]-identityₗ : Identityₗ(_+_)(𝟎) Identityₗ.proof [+]-identityₗ {+ₙ _} = [≡]-intro Identityₗ.proof [+]-identityₗ {−𝐒ₙ _} = [≡]-intro instance [+]-identityᵣ : Identityᵣ(_+_)(𝟎) Identityᵣ.proof [+]-identityᵣ {+ₙ _} = [≡]-intro Identityᵣ.proof [+]-identityᵣ {−𝐒ₙ _} = [≡]-intro instance [+]-identity : Identity(_+_)(𝟎) [+]-identity = intro instance [+]-inverseFunctionₗ : InverseFunctionₗ(_+_)(−_) InverseFunctionₗ.proof [+]-inverseFunctionₗ {+ₙ ℕ.𝟎} = [≡]-intro InverseFunctionₗ.proof [+]-inverseFunctionₗ {+ₙ ℕ.𝐒(x)} = [−ₙ]-self {x} InverseFunctionₗ.proof [+]-inverseFunctionₗ {−𝐒ₙ(x)} = [−ₙ]-self {x} instance [+]-inverseFunctionᵣ : InverseFunctionᵣ(_+_)(−_) InverseFunctionᵣ.proof [+]-inverseFunctionᵣ {+ₙ ℕ.𝟎} = [≡]-intro InverseFunctionᵣ.proof [+]-inverseFunctionᵣ {+ₙ ℕ.𝐒(x)} = [−ₙ]-self {x} InverseFunctionᵣ.proof [+]-inverseFunctionᵣ {−𝐒ₙ(x)} = [−ₙ]-self {x} instance [+]-inverseFunction : InverseFunction(_+_)(−_) [+]-inverseFunction = intro instance [−]-involution : Involution(−_) Involution.proof [−]-involution {+ₙ ℕ.𝟎} = [≡]-intro Involution.proof [−]-involution {+ₙ ℕ.𝐒(x)} = [≡]-intro Involution.proof [−]-involution {−𝐒ₙ x} = [≡]-intro instance [−]-injectivity : Injective(−_) Injective.proof [−]-injectivity {a}{b} p = a 🝖[ _≡_ ]-[ involution(−_) ]-sym −(− a) 🝖[ _≡_ ]-[ congruence₁(−_) p ] −(− b) 🝖[ _≡_ ]-[ involution(−_) ] b 🝖-end instance [−]-surjectivity : Surjective(−_) Surjective.proof [−]-surjectivity {y} = [∃]-intro (− y) ⦃ involution(−_) ⦄ instance [−]-bijectivity : Bijective(−_) [−]-bijectivity = injective-surjective-to-bijective(−_) instance abs-idempotent : Idempotent(abs) Idempotent.proof abs-idempotent {+ₙ x} = [≡]-intro Idempotent.proof abs-idempotent {−𝐒ₙ x} = [≡]-intro abs-injective-zero : ∀{n} → (abs(n) ≡ 𝟎) → (n ≡ 𝟎) abs-injective-zero {𝟎} [≡]-intro = [≡]-intro abs-[−] : ∀{n} → (abs(− n) ≡ abs(n)) abs-[−] {𝟎} = [≡]-intro abs-[−] {+𝐒ₙ(_)} = [≡]-intro abs-[−] {−𝐒ₙ(_)} = [≡]-intro abs-preserving : ∀{x} → (abs(x) ≡ +ₙ(absₙ(x))) abs-preserving {𝟎} = [≡]-intro abs-preserving {+𝐒ₙ(_)} = [≡]-intro abs-preserving {−𝐒ₙ(_)} = [≡]-intro absₙ-zero : ∀{n} → (absₙ(n) ≡ ℕ.𝟎) → (n ≡ 𝟎) absₙ-zero {𝟎} ([≡]-intro) = [≡]-intro [+][𝐒]-stepₗ : ∀{x y} → (𝐒(x) + y ≡ 𝐒(x + y)) [+][𝐒]-stepₗ {+ₙ x} {+ₙ y} = [≡]-intro [+][𝐒]-stepₗ {+ₙ ℕ.𝟎 } {−𝐒ₙ ℕ.𝟎 } = [≡]-intro [+][𝐒]-stepₗ {+ₙ ℕ.𝟎 } {−𝐒ₙ ℕ.𝐒(_)} = [≡]-intro [+][𝐒]-stepₗ {+ₙ ℕ.𝐒(_)} {−𝐒ₙ ℕ.𝟎 } = [≡]-intro [+][𝐒]-stepₗ {+ₙ ℕ.𝐒(x)} {−𝐒ₙ ℕ.𝐒(y)} = [−ₙ][𝐒]-step{x}{ℕ.𝐒(y)} [+][𝐒]-stepₗ {−𝐒ₙ ℕ.𝟎 } {+ₙ ℕ.𝟎 } = [≡]-intro [+][𝐒]-stepₗ {−𝐒ₙ ℕ.𝐒(_)} {+ₙ ℕ.𝟎 } = [≡]-intro [+][𝐒]-stepₗ {−𝐒ₙ ℕ.𝟎 } {+ₙ ℕ.𝐒(_)} = [≡]-intro [+][𝐒]-stepₗ {−𝐒ₙ ℕ.𝐒(y)} {+ₙ ℕ.𝐒(x)} = [−ₙ][𝐒]-step{x}{ℕ.𝐒(y)} [+][𝐒]-stepₗ {−𝐒ₙ ℕ.𝟎 } {−𝐒ₙ ℕ.𝟎 } = [≡]-intro [+][𝐒]-stepₗ {−𝐒ₙ ℕ.𝐒(_)} {−𝐒ₙ ℕ.𝟎 } = [≡]-intro [+][𝐒]-stepₗ {−𝐒ₙ ℕ.𝟎 } {−𝐒ₙ ℕ.𝐒(_)} = [≡]-intro [+][𝐒]-stepₗ {−𝐒ₙ ℕ.𝐒(y)} {−𝐒ₙ ℕ.𝐒(x)} = [≡]-intro instance [𝐒]-preserving-[+]ₗ : ∀{y} → Preserving₁(𝐒) (_+ y)(_+ y) Preserving.proof ([𝐒]-preserving-[+]ₗ {y}) {x} = symmetry(_≡_) ([+][𝐒]-stepₗ {x}{y}) [+][𝐒]-stepᵣ : ∀{x y} → (x + 𝐒(y) ≡ 𝐒(x + y)) [+][𝐒]-stepᵣ {+ₙ x} {+ₙ y} = [≡]-intro [+][𝐒]-stepᵣ {+ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝟎} = [≡]-intro [+][𝐒]-stepᵣ {+ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝐒 x} = [≡]-intro [+][𝐒]-stepᵣ {+ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝟎} = [≡]-intro [+][𝐒]-stepᵣ {+ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝐒 y} = [+][𝐒]-stepᵣ {−𝐒ₙ y}{+ₙ x} [+][𝐒]-stepᵣ {−𝐒ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro [+][𝐒]-stepᵣ {−𝐒ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} = [≡]-intro [+][𝐒]-stepᵣ {−𝐒ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} = [≡]-intro [+][𝐒]-stepᵣ {−𝐒ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} = [+][𝐒]-stepᵣ {−𝐒ₙ x}{+ₙ y} [+][𝐒]-stepᵣ {−𝐒ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝟎} = [≡]-intro [+][𝐒]-stepᵣ {−𝐒ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝟎} = [≡]-intro [+][𝐒]-stepᵣ {−𝐒ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro [+][𝐒]-stepᵣ {−𝐒ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro instance [𝐒]-preserving-[+]ᵣ : ∀{x} → Preserving₁(𝐒) (_+_ x)(_+_ x) Preserving.proof ([𝐒]-preserving-[+]ᵣ {x}) {y} = symmetry(_≡_) ([+][𝐒]-stepᵣ {x}{y}) [+][𝐏]-stepₗ : ∀{x y} → (𝐏(x) + y ≡ 𝐏(x + y)) [+][𝐏]-stepₗ {x}{y} = 𝐏(x) + y 🝖[ _≡_ ]-[ congruence₂(_+_) (congruence₁(𝐏) (involution(−_) {x})) (involution(−_) {y}) ]-sym 𝐏(−(− x)) + (−(− y)) 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(−(− y)) (preserving₁(−_)(𝐒)(𝐏) {− x}) ]-sym (− 𝐒(− x)) + (−(− y)) 🝖[ _≡_ ]-[ preserving₂(−_)(_+_)(_+_) {𝐒(− x)}{− y} ]-sym −(𝐒(− x) + (− y)) 🝖[ _≡_ ]-[ congruence₁(−_) ([+][𝐒]-stepₗ {− x}{− y}) ] −(𝐒((− x) + (− y))) 🝖[ _≡_ ]-[ preserving₁(−_)(𝐒)(𝐏) ] 𝐏(−((− x) + (− y))) 🝖[ _≡_ ]-[ congruence₁(𝐏) (preserving₂(−_)(_+_)(_+_) {− x}{− y}) ] 𝐏(((−(− x)) + (−(− y)))) 🝖[ _≡_ ]-[ congruence₁(𝐏) (congruence₂(_+_) (involution(−_) {x}) (involution(−_) {y})) ] 𝐏(x + y) 🝖-end instance [𝐏]-preserving-[+]ₗ : ∀{y} → Preserving₁(𝐏) (_+ y)(_+ y) Preserving.proof ([𝐏]-preserving-[+]ₗ {y}) {x} = symmetry(_≡_) ([+][𝐏]-stepₗ {x}{y}) [+][𝐏]-stepᵣ : ∀{x y} → (x + 𝐏(y) ≡ 𝐏(x + y)) [+][𝐏]-stepᵣ {x}{y} = x + 𝐏(y) 🝖[ _≡_ ]-[ congruence₂(_+_) (involution(−_) {x}) (congruence₁(𝐏) (involution(−_) {y})) ]-sym (−(− x)) + 𝐏(−(− y)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(−(− x)) (preserving₁(−_)(𝐒)(𝐏) {− y}) ]-sym (−(− x)) + (− 𝐒(− y)) 🝖[ _≡_ ]-[ preserving₂(−_)(_+_)(_+_) {− x}{𝐒(− y)} ]-sym −((− x) + 𝐒(− y)) 🝖[ _≡_ ]-[ congruence₁(−_) ([+][𝐒]-stepᵣ {− x}{− y}) ] −(𝐒((− x) + (− y))) 🝖[ _≡_ ]-[ preserving₁(−_)(𝐒)(𝐏) ] 𝐏(−((− x) + (− y))) 🝖[ _≡_ ]-[ congruence₁(𝐏) (preserving₂(−_)(_+_)(_+_) {− x}{− y}) ] 𝐏(((−(− x)) + (−(− y)))) 🝖[ _≡_ ]-[ congruence₁(𝐏) (congruence₂(_+_) (involution(−_) {x}) (involution(−_) {y})) ] 𝐏(x + y) 🝖-end instance [𝐏]-preserving-[+]ᵣ : ∀{x} → Preserving₁(𝐏) (_+_ x)(_+_ x) Preserving.proof ([𝐏]-preserving-[+]ᵣ {x}) {y} = symmetry(_≡_) ([+][𝐏]-stepᵣ {x}{y}) [−]-of-[+𝐒ₙ] : ∀{x y} → (+𝐒ₙ x) − (+𝐒ₙ y) ≡ (+ₙ x) − (+ₙ y) [−]-of-[+𝐒ₙ] {y = ℕ.𝟎} = [≡]-intro [−]-of-[+𝐒ₙ] {y = ℕ.𝐒 _} = [≡]-intro [+ₙ][−₀][−]-preserving : ∀{x y} → (x ℕ.≥ y) → ((+ₙ(x ℕ.−₀ y)) ≡ ((+ₙ x) − (+ₙ y))) [+ₙ][−₀][−]-preserving ℕ.min = [≡]-intro [+ₙ][−₀][−]-preserving {ℕ.𝐒 x}{ℕ.𝐒 y} (ℕ.succ p) = [+ₙ][−₀][−]-preserving {x}{y} p 🝖 symmetry(_≡_) ([−]-of-[+𝐒ₙ] {x}{y}) [−ₙ]-on-[+]ₗ-redundancy : ∀{a b c} → ((a ℕ.+ b) −ₙ (a ℕ.+ c) ≡ b −ₙ c) [−ₙ]-on-[+]ₗ-redundancy{ℕ.𝟎} {b}{c} = [≡]-intro [−ₙ]-on-[+]ₗ-redundancy{ℕ.𝐒 a}{b}{c} = [−ₙ]-on-[+]ₗ-redundancy{a}{b}{c} instance [+]-associativity : Associativity(_+_) [+]-associativity = intro(\{x y z} → p{x}{y}{z}) where postulate p : Names.Associativity(_+_) {-p {x} {y} {𝟎} = (x + y) + 𝟎 🝖[ _≡_ ]-[ identityᵣ(_+_)(𝟎) ] x + y 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(x) (identityᵣ(_+_)(𝟎)) ]-sym x + (y + 𝟎) 🝖-end p {x} {y} {+𝐒ₙ z} = (x + y) + (+𝐒ₙ(z)) 🝖[ _≡_ ]-[] (x + y) + 𝐒(+ₙ(z)) 🝖[ _≡_ ]-[ [+][𝐒]-stepᵣ {x + y}{+ₙ(z)} ] 𝐒((x + y) + (+ₙ(z))) 🝖[ _≡_ ]-[ congruence₁(𝐒) (p{x}{y}{+ₙ z}) ] 𝐒(x + (y + (+ₙ(z)))) 🝖[ _≡_ ]-[ [+][𝐒]-stepᵣ {x}{y + (+ₙ z)} ]-sym x + 𝐒(y + (+ₙ(z))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(x) ([+][𝐒]-stepᵣ {y}{+ₙ z}) ]-sym x + (y + 𝐒(+ₙ(z))) 🝖[ _≡_ ]-[] x + (y + (+𝐒ₙ(z))) 🝖-end p {x} {y} {−𝐒ₙ z} = (x + y) + (−𝐒ₙ(z)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(x + y) [𝐏]-negative ]-sym (x + y) + 𝐏(−ₙ(z)) 🝖[ _≡_ ]-[ [+][𝐏]-stepᵣ {x + y}{−ₙ(z)} ] 𝐏((x + y) + (−ₙ(z))) 🝖[ _≡_ ]-[ congruence₁(𝐏) (p{x}{y}{−ₙ z}) ] 𝐏(x + (y + (−ₙ(z)))) 🝖[ _≡_ ]-[ [+][𝐏]-stepᵣ {x}{y + (−ₙ z)} ]-sym x + 𝐏(y + (−ₙ(z))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(x) ([+][𝐏]-stepᵣ {y}{−ₙ z}) ]-sym x + (y + 𝐏(−ₙ(z))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(x) (congruence₂ᵣ(_+_)(y) [𝐏]-negative) ] x + (y + (−𝐒ₙ(z))) 🝖-end -} instance [+]-monoid : Monoid(_+_) [+]-monoid = intro instance [+]-group : Group(_+_) [+]-group = intro instance [+]-commutative-group : CommutativeGroup(_+_) [+]-commutative-group = intro absₙ-of-[⋅] : ∀{x y} → (absₙ(x ⋅ y) ≡ absₙ(x) ℕ.⋅ absₙ(y)) absₙ-of-[⋅] {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro absₙ-of-[⋅] {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} = [≡]-intro absₙ-of-[⋅] {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} = [≡]-intro absₙ-of-[⋅] {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} = [≡]-intro absₙ-of-[⋅] {−𝐒ₙ x} {−𝐒ₙ y} = [≡]-intro absₙ-of-[⋅] {+ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝟎} = [≡]-intro absₙ-of-[⋅] {+ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro absₙ-of-[⋅] {+ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝟎} = [≡]-intro absₙ-of-[⋅] {+ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro absₙ-of-[⋅] {−𝐒ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro absₙ-of-[⋅] {−𝐒ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} = [≡]-intro absₙ-of-[⋅] {−𝐒ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} = [≡]-intro absₙ-of-[⋅] {−𝐒ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} = [≡]-intro sign-of-[⋅] : ∀{x y} → (sign0(x ⋅ y) ≡ sign0(x) Sign.⨯ sign0(y)) sign-of-[⋅] {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro sign-of-[⋅] {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} = [≡]-intro sign-of-[⋅] {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} = [≡]-intro sign-of-[⋅] {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} = [≡]-intro sign-of-[⋅] {−𝐒ₙ x} {−𝐒ₙ y} = [≡]-intro sign-of-[⋅] {+ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝟎} = [≡]-intro sign-of-[⋅] {+ₙ ℕ.𝟎} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro sign-of-[⋅] {+ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝟎} = [≡]-intro sign-of-[⋅] {+ₙ ℕ.𝐒 x} {−𝐒ₙ ℕ.𝐒 y} = [≡]-intro sign-of-[⋅] {−𝐒ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro sign-of-[⋅] {−𝐒ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} = [≡]-intro sign-of-[⋅] {−𝐒ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} = [≡]-intro sign-of-[⋅] {−𝐒ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} = [≡]-intro signed-inverse : ∀{x} → (signed0 (sign0 x) (absₙ x) ≡ x) signed-inverse {+𝐒ₙ _} = [≡]-intro signed-inverse {𝟎} = [≡]-intro signed-inverse {−𝐒ₙ _} = [≡]-intro sign0-inverse : ∀{x}{y} → (sign0(signed0 x (ℕ.𝐒(y))) ≡ x) sign0-inverse {Sign.➕} {y} = [≡]-intro sign0-inverse {Sign.𝟎} {y} = [≡]-intro sign0-inverse {Sign.➖} {y} = [≡]-intro absₙ-inverse : ∀{x}{y} → (x ≢ Sign.𝟎) → (absₙ(signed0 x y) ≡ y) absₙ-inverse {Sign.➕} {ℕ.𝟎} _ = [≡]-intro absₙ-inverse {Sign.➕} {ℕ.𝐒 y} _ = [≡]-intro absₙ-inverse {Sign.➖} {ℕ.𝟎} _ = [≡]-intro absₙ-inverse {Sign.➖} {ℕ.𝐒 y} _ = [≡]-intro absₙ-inverse {Sign.𝟎} {ℕ.𝟎} _ = [≡]-intro absₙ-inverse {Sign.𝟎} {ℕ.𝐒 y} p with () ← p [≡]-intro absₙ-of-[−ₙ] : ∀{x} → (absₙ(−ₙ x) ≡ x) absₙ-of-[−ₙ] {ℕ.𝟎} = [≡]-intro absₙ-of-[−ₙ] {ℕ.𝐒 x} = [≡]-intro [⋅]-equality : ∀{x y z} → (x ⋅ y ≡ z) ↔ (sign0(x) Sign.⨯ sign0(y) ≡ sign0 z) ∧ (absₙ(x) ℕ.⋅ absₙ(y) ≡ absₙ(z)) [⋅]-equality {x}{y}{z} = [↔]-intro (Tuple.uncurry l) r where l : ∀{x y z} → (sign0(x) Sign.⨯ sign0(y) ≡ sign0 z) → (absₙ(x) ℕ.⋅ absₙ(y) ≡ absₙ(z)) → (x ⋅ y ≡ z) l{x}{y}{z} p q = congruence₂(signed0) p q 🝖 signed-inverse r : ∀{x y z} → (x ⋅ y ≡ z) → (sign0(x) Sign.⨯ sign0(y) ≡ sign0 z) ∧ (absₙ(x) ℕ.⋅ absₙ(y) ≡ absₙ(z)) r{x}{y}{z} p = [∧]-intro (symmetry(_≡_) (preserving₂(sign0)(_⋅_)(Sign._⨯_)) 🝖 congruence₁(sign0) p) (symmetry(_≡_) (preserving₂(absₙ)(_⋅_)(ℕ._⋅_) {x}{y}) 🝖 congruence₁(absₙ) p) instance [⋅]-identityₗ : Identityₗ(_⋅_)(𝟏) Identityₗ.proof [⋅]-identityₗ {x} with sign0 x | x ... | Sign.➕ | 𝟎 = [≡]-intro ... | Sign.➕ | +𝐒ₙ _ = [≡]-intro ... | Sign.➕ | −𝐒ₙ _ = [≡]-intro ... | Sign.𝟎 | 𝟎 = [≡]-intro ... | Sign.𝟎 | +𝐒ₙ _ = [≡]-intro ... | Sign.𝟎 | −𝐒ₙ _ = [≡]-intro ... | Sign.➖ | 𝟎 = [≡]-intro ... | Sign.➖ | +𝐒ₙ _ = [≡]-intro ... | Sign.➖ | −𝐒ₙ _ = [≡]-intro instance [⋅]-identityᵣ : Identityᵣ(_⋅_)(𝟏) Identityᵣ.proof [⋅]-identityᵣ {x} with sign0 x | x ... | Sign.➕ | 𝟎 = [≡]-intro ... | Sign.➕ | +𝐒ₙ _ = [≡]-intro ... | Sign.➕ | −𝐒ₙ _ = [≡]-intro ... | Sign.𝟎 | 𝟎 = [≡]-intro ... | Sign.𝟎 | +𝐒ₙ _ = [≡]-intro ... | Sign.𝟎 | −𝐒ₙ _ = [≡]-intro ... | Sign.➖ | 𝟎 = [≡]-intro ... | Sign.➖ | +𝐒ₙ _ = [≡]-intro ... | Sign.➖ | −𝐒ₙ _ = [≡]-intro instance [⋅]-commutativity : Commutativity(_⋅_) Commutativity.proof [⋅]-commutativity {x}{y} = congruence₂(signed0) (commutativity(Sign._⨯_)) (commutativity(ℕ._⋅_) {absₙ x}{absₙ y}) instance postulate [⋅]-associativity : Associativity(_⋅_) {-Associativity.proof [⋅]-associativity {x}{y}{z} = congruence₂(signed0) (congruence₂ₗ(Sign._⨯_)(sign0 z) sign0-inverse 🝖 associativity(Sign._⨯_) 🝖 symmetry(_≡_) (congruence₂ᵣ(Sign._⨯_)(sign0(x)) (sign-of-[⋅] {y}{z}))) (congruence₂ₗ(ℕ._⋅_) (absₙ(z)) (absₙ-inverse{sign0(x) Sign.⨯ sign0(y)}{absₙ(x) ℕ.⋅ absₙ(y)}) 🝖 associativity(ℕ._⋅_){absₙ x}{absₙ y}{absₙ z} 🝖 symmetry(_≡_) (congruence₂ᵣ(ℕ._⋅_) (absₙ (x)) (absₙ-of-[⋅] {y}{z}))) -} instance postulate [⋅][+]-distributivityₗ : Distributivityₗ(_⋅_)(_+_) {-[⋅][+]-distributivityₗ = intro p where p : Names.Distributivityₗ(_⋅_)(_+_) p {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro p {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 z} = [≡]-intro p {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} {+ₙ ℕ.𝟎} = [≡]-intro p {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} {+ₙ ℕ.𝐒 z} = [≡]-intro p {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro p {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 z} = [≡]-intro p {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} {+ₙ ℕ.𝟎} = [≡]-intro p {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} {+ₙ ℕ.𝐒 z} = {!!} p {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} {−𝐒ₙ z} = [≡]-intro p {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} {−𝐒ₙ z} = {!!} p {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} {−𝐒ₙ z} = [≡]-intro p {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} {−𝐒ₙ z} = {!!} p {+ₙ ℕ.𝟎} {−𝐒ₙ y} {+ₙ ℕ.𝟎} = [≡]-intro p {+ₙ ℕ.𝟎} {−𝐒ₙ y} {+ₙ ℕ.𝐒 z} = {!!} p {+ₙ ℕ.𝐒 x} {−𝐒ₙ y} {+ₙ ℕ.𝟎} = [≡]-intro p {+ₙ ℕ.𝐒 x} {−𝐒ₙ y} {+ₙ ℕ.𝐒 z} = {!!} p {+ₙ ℕ.𝟎} {−𝐒ₙ y} {−𝐒ₙ z} = [≡]-intro p {+ₙ ℕ.𝐒 x} {−𝐒ₙ y} {−𝐒ₙ z} = {!!} p {−𝐒ₙ x} {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} = [≡]-intro p {−𝐒ₙ x} {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 z} = [≡]-intro p {−𝐒ₙ x} {+ₙ ℕ.𝐒 y} {+ₙ ℕ.𝟎} = [≡]-intro p {−𝐒ₙ x} {+ₙ ℕ.𝐒 y} {+ₙ ℕ.𝐒 z} = {!!} p {−𝐒ₙ x} {+ₙ ℕ.𝟎} {−𝐒ₙ z} = [≡]-intro p {−𝐒ₙ x} {+ₙ ℕ.𝐒 y} {−𝐒ₙ z} = {!!} p {−𝐒ₙ x} {−𝐒ₙ y} {+ₙ ℕ.𝟎} = [≡]-intro p {−𝐒ₙ x} {−𝐒ₙ y} {+ₙ ℕ.𝐒 z} = {!!} p {−𝐒ₙ x} {−𝐒ₙ y} {−𝐒ₙ z} = {!!}-} {- x ⋅ (y + z) 🝖[ _≡_ ]-[] signed0 ((sign0 x) Sign.⨯ (sign0(y + z))) ((absₙ x) ℕ.⋅ (absₙ(y + z))) 🝖[ _≡_ ]-[ {!congruence₂(signed0) ? ?!} ] signed0 ((sign0 x) Sign.⨯ sign0(y + z)) ((absₙ x) ℕ.⋅ (absₙ(y + z))) 🝖[ _≡_ ]-[ {!!} ] (signed0 ((sign0 x) Sign.⨯ (sign0 y)) ((absₙ x) ℕ.⋅ (absₙ y))) + (signed0 ((sign0 x) Sign.⨯ (sign0 z)) ((absₙ x) ℕ.⋅ (absₙ z))) 🝖[ _≡_ ]-[] (x ⋅ y) + (x ⋅ z) 🝖-end where sign0-proof : ∀{x y z} → ((sign0 x) Sign.⨯ sign0(y + z) ≡ (sign0(x) + sign0(z)) Sign.⨯ (sign0(x) + sign0(z))) -} instance postulate [⋅][+]-distributivityᵣ : Distributivityᵣ(_⋅_)(_+_) instance postulate [⋅][−]-distributivityₗ : Distributivityₗ(_⋅_)(_−_) instance postulate [⋅][−]-distributivityᵣ : Distributivityᵣ(_⋅_)(_−_) instance [+][⋅]-rng : Rng(_+_)(_⋅_) [+][⋅]-rng = record{} instance [+][⋅]-ring-unity : Unity(_+_)(_⋅_) Unity.[⋅]-identity-existence [+][⋅]-ring-unity = [∃]-intro 𝟏 ⦃ intro ⦄ instance [+][⋅]-ring : Ring(_+_)(_⋅_) [+][⋅]-ring = record{} import Numeral.Natural.Relation.Order as ℕ import Numeral.Natural.Relation.Order.Proofs as ℕ import Structure.Relator.Ordering as Structure data _≤_ : ℤ → ℤ → Type{Lvl.𝟎} where pos : ∀{a b} → (a ℕ.≤ b) → ((+ₙ a) ≤ (+ₙ b)) neg : ∀{a b} → (a ℕ.≥ b) → ((−𝐒ₙ a) ≤ (−𝐒ₙ b)) mix : ∀{a b} → ((−𝐒ₙ a) ≤ (+ₙ b)) instance [≤]-reflexivity : Reflexivity(_≤_) Reflexivity.proof [≤]-reflexivity {+ₙ x} = pos (reflexivity(ℕ._≤_)) Reflexivity.proof [≤]-reflexivity {−𝐒ₙ x} = neg (reflexivity(ℕ._≤_)) instance [≤]-transitivity : Transitivity(_≤_) Transitivity.proof [≤]-transitivity (pos p) (pos q) = pos(transitivity(ℕ._≤_) p q) Transitivity.proof [≤]-transitivity (neg p) (neg q) = neg(transitivity(ℕ._≤_) q p) Transitivity.proof [≤]-transitivity (neg p) mix = mix Transitivity.proof [≤]-transitivity mix (pos q) = mix instance [≤]-antisymmetry : Antisymmetry(_≤_)(_≡_) Antisymmetry.proof [≤]-antisymmetry (pos {ℕ.𝟎} {ℕ.𝟎} p) (pos q) = [≡]-intro Antisymmetry.proof [≤]-antisymmetry (neg {ℕ.𝟎} {ℕ.𝟎} p) (neg q) = [≡]-intro Antisymmetry.proof [≤]-antisymmetry (pos {ℕ.𝐒 a} {ℕ.𝐒 b} p) (pos q) = congruence₁(+ₙ_) (antisymmetry(ℕ._≤_)(_≡_) p q) Antisymmetry.proof [≤]-antisymmetry (neg {ℕ.𝐒 a} {ℕ.𝐒 b} p) (neg q) = congruence₁(−𝐒ₙ_) (antisymmetry(ℕ._≤_)(_≡_) q p) instance [≤]-converseTotal : ConverseTotal(_≤_) ConverseTotal.proof [≤]-converseTotal {+ₙ x} {+ₙ y} = Either.map pos pos (converseTotal(ℕ._≤_)) ConverseTotal.proof [≤]-converseTotal {+ₙ x} {−𝐒ₙ y} = Either.Right mix ConverseTotal.proof [≤]-converseTotal {−𝐒ₙ x} {+ₙ y} = Either.Left mix ConverseTotal.proof [≤]-converseTotal {−𝐒ₙ x} {−𝐒ₙ y} = Either.map neg neg (converseTotal(ℕ._≤_)) instance [≤]-weakPartialOrder : Structure.Weak.PartialOrder(_≤_)(_≡_) [≤]-weakPartialOrder = record{} instance [≤]-totalOrder : Structure.Weak.TotalOrder(_≤_)(_≡_) [≤]-totalOrder = record{} instance [+][⋅][≤]-orderedRing : Ordered(_+_)(_⋅_)(_≤_) Ordered.[≤][+]ₗ-preserve [+][⋅][≤]-orderedRing = p where postulate p : ∀{x y z} → (x ≤ y) → ((x + z) ≤ (y + z)) {-p {+ₙ x} {+ₙ y} {+ₙ z} (pos xy) = pos {!!} p {−𝐒ₙ x} {−𝐒ₙ y} {−𝐒ₙ z} (neg xy) = neg {!!} p {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} {−𝐒ₙ z} (pos xy) = reflexivity(_≤_) p {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} {−𝐒ₙ z} (pos xy) = {!!} p {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y}{−𝐒ₙ z} (pos xy) = {!!} p {.(−𝐒ₙ _)} {.(+ₙ _)} {+ₙ z} mix = {!!} p {.(−𝐒ₙ _)} {.(+ₙ _)} {−𝐒ₙ z} mix = {!!}-} Ordered.[≤][⋅]-zero [+][⋅][≤]-orderedRing = p where p : ∀{x y} → (𝟎 ≤ x) → (𝟎 ≤ y) → (𝟎 ≤ (x ⋅ y)) p {+ₙ ℕ.𝟎} {+ₙ ℕ.𝟎} (pos px) (pos py) = pos py p {+ₙ ℕ.𝟎} {+ₙ ℕ.𝐒 y} (pos px) (pos py) = pos px p {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝟎} (pos px) (pos py) = pos py p {+ₙ ℕ.𝐒 x} {+ₙ ℕ.𝐒 y} (pos px) (pos py) = pos ℕ.[≤]-minimum
{ "alphanum_fraction": 0.4928006776, "avg_line_length": 41.9171597633, "ext": "agda", "hexsha": "03696a2bd01ea0c0b559682e2eb4b7ad8ff0e2a2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Integer/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Integer/Proofs.agda", "max_line_length": 221, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Integer/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 16332, "size": 28336 }