layer_id
int64 0
223
| name
stringlengths 26
32
| D
float64 0.03
0.12
| M
int64 1.02k
4.1k
| N
int64 4.1k
14.3k
| Q
float64 1
4
| alpha
float64 2.98
23.9
| alpha_weighted
float64 -65.71
-6.41
| entropy
float64 1.11
1.57
| has_esd
bool 1
class | lambda_max
float32 0
0.02
| layer_type
stringclasses 1
value | log_alpha_norm
float64 -64.96
-5.95
| log_norm
float32 -1.43
-0.48
| log_spectral_norm
float32 -2.81
-1.77
| matrix_rank
int64 64
64
| norm
float32 0.04
0.33
| num_evals
int64 1.02k
4.1k
| num_pl_spikes
int64 10
64
| rank_loss
int64 960
4.03k
| rf
int64 1
1
| sigma
float64 0.25
5.88
| spectral_norm
float32 0
0.02
| stable_rank
float32 7.52
56.2
| status
stringclasses 1
value | sv_max
float64 0.04
0.13
| sv_min
float64 0
0
| warning
stringclasses 2
values | weak_rank_loss
int64 960
4.03k
| xmax
float64 0
0.02
| xmin
float64 0
0
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | model.layers.0.mlp.down_proj | 0.044372 | 4,096 | 14,336 | 3.5 | 8.365172 | -19.331526 | 1.565136 | true | 0.004887 | dense | -18.927617 | -0.749923 | -2.310954 | 64 | 0.17786 | 4,096 | 64 | 4,032 | 1 | 0.920646 | 0.004887 | 36.394131 | success | 0.069907 | 0.000001 | under-trained | 4,032 | 0.004887 | 0.002397 |
1 | model.layers.0.mlp.gate_proj | 0.044792 | 4,096 | 14,336 | 3.5 | 4.921705 | -11.727318 | 1.558989 | true | 0.004142 | dense | -11.388952 | -0.983228 | -2.382775 | 64 | 0.103937 | 4,096 | 27 | 4,032 | 1 | 0.754733 | 0.004142 | 25.092697 | success | 0.064359 | 0.000001 | 4,032 | 0.004142 | 0.001486 |
|
2 | model.layers.0.mlp.up_proj | 0.05879 | 4,096 | 14,336 | 3.5 | 5.270882 | -12.216789 | 1.559112 | true | 0.004811 | dense | -12.024244 | -0.950149 | -2.317788 | 64 | 0.112163 | 4,096 | 32 | 4,032 | 1 | 0.754992 | 0.004811 | 23.315189 | success | 0.069359 | 0.000001 | 4,032 | 0.004811 | 0.001558 |
|
3 | model.layers.0.self_attn.k_proj | 0.044862 | 1,024 | 4,096 | 4 | 3.967196 | -10.618157 | 1.116284 | true | 0.002106 | dense | -10.36955 | -1.432019 | -2.676489 | 64 | 0.036981 | 1,024 | 40 | 960 | 1 | 0.469155 | 0.002106 | 17.557785 | success | 0.045894 | 0.000001 | 960 | 0.002106 | 0.000457 |
|
4 | model.layers.0.self_attn.o_proj | 0.071946 | 4,096 | 4,096 | 1 | 3.15045 | -6.414638 | 1.531436 | true | 0.009202 | dense | -5.951533 | -0.820385 | -2.036102 | 64 | 0.151222 | 4,096 | 45 | 4,032 | 1 | 0.32057 | 0.009202 | 16.43302 | success | 0.095929 | 0 | 4,032 | 0.009202 | 0.001521 |
|
5 | model.layers.0.self_attn.q_proj | 0.035535 | 4,096 | 4,096 | 1 | 2.977482 | -6.897628 | 1.521928 | true | 0.004824 | dense | -6.518055 | -1.191919 | -2.316598 | 64 | 0.064281 | 4,096 | 64 | 4,032 | 1 | 0.247185 | 0.004824 | 13.325367 | success | 0.069455 | 0 | 4,032 | 0.004824 | 0.000518 |
|
6 | model.layers.0.self_attn.v_proj | 0.045686 | 1,024 | 4,096 | 4 | 3.300158 | -8.03369 | 1.105158 | true | 0.003678 | dense | -7.724496 | -1.274459 | -2.434335 | 64 | 0.053155 | 1,024 | 24 | 960 | 1 | 0.469518 | 0.003678 | 14.450284 | success | 0.06065 | 0.000001 | 960 | 0.003678 | 0.000702 |
|
7 | model.layers.1.mlp.down_proj | 0.075648 | 4,096 | 14,336 | 3.5 | 7.65575 | -16.933677 | 1.565563 | true | 0.006139 | dense | -16.84096 | -0.733272 | -2.21189 | 64 | 0.184811 | 4,096 | 13 | 4,032 | 1 | 1.845973 | 0.006139 | 30.103548 | success | 0.078353 | 0.000001 | under-trained | 4,032 | 0.006139 | 0.002963 |
8 | model.layers.1.mlp.gate_proj | 0.112535 | 4,096 | 14,336 | 3.5 | 3.981704 | -8.683508 | 1.556923 | true | 0.006594 | dense | -8.361143 | -0.866137 | -2.180852 | 64 | 0.136102 | 4,096 | 11 | 4,032 | 1 | 0.899018 | 0.006594 | 20.640265 | success | 0.081203 | 0.000001 | 4,032 | 0.006594 | 0.002157 |
|
9 | model.layers.1.mlp.up_proj | 0.058219 | 4,096 | 14,336 | 3.5 | 5.127727 | -11.404952 | 1.561835 | true | 0.005968 | dense | -11.187414 | -0.83321 | -2.224173 | 64 | 0.146822 | 4,096 | 13 | 4,032 | 1 | 1.144825 | 0.005968 | 24.601585 | success | 0.077253 | 0.000001 | 4,032 | 0.005968 | 0.002357 |
|
10 | model.layers.1.self_attn.k_proj | 0.043356 | 1,024 | 4,096 | 4 | 4.768239 | -12.602271 | 1.124037 | true | 0.002275 | dense | -12.498928 | -1.378174 | -2.642962 | 64 | 0.041863 | 1,024 | 56 | 960 | 1 | 0.503552 | 0.002275 | 18.398703 | success | 0.0477 | 0.000001 | 960 | 0.002275 | 0.000498 |
|
11 | model.layers.1.self_attn.o_proj | 0.053403 | 4,096 | 4,096 | 1 | 3.869334 | -7.790337 | 1.546909 | true | 0.009697 | dense | -7.571464 | -0.793234 | -2.013354 | 64 | 0.160978 | 4,096 | 32 | 4,032 | 1 | 0.507231 | 0.009697 | 16.600451 | success | 0.098474 | 0 | 4,032 | 0.009697 | 0.00206 |
|
12 | model.layers.1.self_attn.q_proj | 0.040165 | 4,096 | 4,096 | 1 | 4.360187 | -10.607257 | 1.54881 | true | 0.003692 | dense | -10.532897 | -1.257076 | -2.432753 | 64 | 0.055325 | 4,096 | 62 | 4,032 | 1 | 0.426744 | 0.003692 | 14.985688 | success | 0.060761 | 0 | 4,032 | 0.003692 | 0.000609 |
|
13 | model.layers.1.self_attn.v_proj | 0.029854 | 1,024 | 4,096 | 4 | 5.583189 | -15.041438 | 1.130228 | true | 0.002023 | dense | -14.569543 | -1.219971 | -2.694058 | 64 | 0.06026 | 1,024 | 53 | 960 | 1 | 0.629549 | 0.002023 | 29.791128 | success | 0.044975 | 0.000001 | 960 | 0.002023 | 0.000769 |
|
14 | model.layers.2.mlp.down_proj | 0.055346 | 4,096 | 14,336 | 3.5 | 15.095443 | -34.764815 | 1.567153 | true | 0.004977 | dense | -34.647397 | -0.697174 | -2.303001 | 64 | 0.200829 | 4,096 | 64 | 4,032 | 1 | 1.76193 | 0.004977 | 40.348392 | success | 0.07055 | 0.000001 | under-trained | 4,032 | 0.004977 | 0.002909 |
15 | model.layers.2.mlp.gate_proj | 0.069836 | 4,096 | 14,336 | 3.5 | 7.014292 | -15.802 | 1.564927 | true | 0.005587 | dense | -15.72346 | -0.811401 | -2.252829 | 64 | 0.154383 | 4,096 | 13 | 4,032 | 1 | 1.668065 | 0.005587 | 27.63302 | success | 0.074746 | 0.000001 | under-trained | 4,032 | 0.005587 | 0.002453 |
16 | model.layers.2.mlp.up_proj | 0.058174 | 4,096 | 14,336 | 3.5 | 6.622721 | -14.627589 | 1.564325 | true | 0.006184 | dense | -14.520681 | -0.773311 | -2.208698 | 64 | 0.168535 | 4,096 | 15 | 4,032 | 1 | 1.45178 | 0.006184 | 27.251282 | success | 0.078641 | 0.000001 | under-trained | 4,032 | 0.006184 | 0.002648 |
17 | model.layers.2.self_attn.k_proj | 0.059239 | 1,024 | 4,096 | 4 | 8.314302 | -22.293065 | 1.133351 | true | 0.002083 | dense | -22.094893 | -1.15985 | -2.681291 | 64 | 0.069207 | 1,024 | 15 | 960 | 1 | 1.888545 | 0.002083 | 33.223221 | success | 0.045641 | 0.000001 | under-trained | 960 | 0.002083 | 0.001193 |
18 | model.layers.2.self_attn.o_proj | 0.043211 | 4,096 | 4,096 | 1 | 4.301974 | -9.517501 | 1.553272 | true | 0.006133 | dense | -9.028854 | -0.828736 | -2.212357 | 64 | 0.148342 | 4,096 | 58 | 4,032 | 1 | 0.43357 | 0.006133 | 24.189142 | success | 0.078311 | 0 | 4,032 | 0.006133 | 0.001669 |
|
19 | model.layers.2.self_attn.q_proj | 0.036099 | 4,096 | 4,096 | 1 | 7.774757 | -19.31455 | 1.563217 | true | 0.003279 | dense | -19.277754 | -1.073739 | -2.484264 | 64 | 0.084384 | 4,096 | 43 | 4,032 | 1 | 1.033141 | 0.003279 | 25.735031 | success | 0.057262 | 0 | under-trained | 4,032 | 0.003279 | 0.001195 |
20 | model.layers.2.self_attn.v_proj | 0.039486 | 1,024 | 4,096 | 4 | 5.728909 | -15.094938 | 1.131631 | true | 0.002318 | dense | -14.438458 | -1.097779 | -2.634871 | 64 | 0.07984 | 1,024 | 62 | 960 | 1 | 0.600572 | 0.002318 | 34.442307 | success | 0.048146 | 0.000001 | 960 | 0.002318 | 0.000994 |
|
21 | model.layers.3.mlp.down_proj | 0.079373 | 4,096 | 14,336 | 3.5 | 15.131404 | -33.785049 | 1.566826 | true | 0.005851 | dense | -33.759555 | -0.672238 | -2.232777 | 64 | 0.212697 | 4,096 | 64 | 4,032 | 1 | 1.766426 | 0.005851 | 36.352871 | success | 0.076491 | 0.000001 | under-trained | 4,032 | 0.005851 | 0.003079 |
22 | model.layers.3.mlp.gate_proj | 0.089666 | 4,096 | 14,336 | 3.5 | 6.122937 | -13.159611 | 1.563872 | true | 0.007092 | dense | -13.073512 | -0.752022 | -2.149232 | 64 | 0.177002 | 4,096 | 10 | 4,032 | 1 | 1.620015 | 0.007092 | 24.958031 | success | 0.084214 | 0.000001 | under-trained | 4,032 | 0.007092 | 0.002905 |
23 | model.layers.3.mlp.up_proj | 0.097207 | 4,096 | 14,336 | 3.5 | 7.223045 | -15.33708 | 1.56381 | true | 0.007527 | dense | -15.292052 | -0.716858 | -2.123354 | 64 | 0.191929 | 4,096 | 19 | 4,032 | 1 | 1.427664 | 0.007527 | 25.497366 | success | 0.086761 | 0.000001 | under-trained | 4,032 | 0.007527 | 0.002949 |
24 | model.layers.3.self_attn.k_proj | 0.053499 | 1,024 | 4,096 | 4 | 6.338608 | -17.415424 | 1.130776 | true | 0.001788 | dense | -17.103588 | -1.292547 | -2.747516 | 64 | 0.050986 | 1,024 | 64 | 960 | 1 | 0.667326 | 0.001788 | 28.508137 | success | 0.04229 | 0.000001 | under-trained | 960 | 0.001788 | 0.000645 |
25 | model.layers.3.self_attn.o_proj | 0.031086 | 4,096 | 4,096 | 1 | 5.812814 | -13.425333 | 1.561421 | true | 0.004902 | dense | -13.015641 | -0.83379 | -2.30961 | 64 | 0.146626 | 4,096 | 62 | 4,032 | 1 | 0.611228 | 0.004902 | 29.910252 | success | 0.070016 | 0 | 4,032 | 0.004902 | 0.001826 |
|
26 | model.layers.3.self_attn.q_proj | 0.033947 | 4,096 | 4,096 | 1 | 5.52264 | -13.971607 | 1.559661 | true | 0.002952 | dense | -13.88557 | -1.195202 | -2.529878 | 64 | 0.063797 | 4,096 | 62 | 4,032 | 1 | 0.574376 | 0.002952 | 21.61108 | success | 0.054333 | 0 | 4,032 | 0.002952 | 0.000781 |
|
27 | model.layers.3.self_attn.v_proj | 0.031332 | 1,024 | 4,096 | 4 | 8.437461 | -21.783879 | 1.1343 | true | 0.002619 | dense | -21.660868 | -1.074053 | -2.581805 | 64 | 0.084323 | 1,024 | 43 | 960 | 1 | 1.134202 | 0.002619 | 32.192299 | success | 0.05118 | 0.000001 | under-trained | 960 | 0.002619 | 0.001206 |
28 | model.layers.4.mlp.down_proj | 0.076604 | 4,096 | 14,336 | 3.5 | 14.993147 | -33.140575 | 1.566824 | true | 0.006161 | dense | -33.082934 | -0.636412 | -2.210382 | 64 | 0.230987 | 4,096 | 64 | 4,032 | 1 | 1.749143 | 0.006161 | 37.494659 | success | 0.078489 | 0.000001 | under-trained | 4,032 | 0.006161 | 0.003341 |
29 | model.layers.4.mlp.gate_proj | 0.071158 | 4,096 | 14,336 | 3.5 | 5.423075 | -11.23735 | 1.562094 | true | 0.00847 | dense | -11.120026 | -0.70997 | -2.072136 | 64 | 0.194998 | 4,096 | 12 | 4,032 | 1 | 1.276832 | 0.00847 | 23.02322 | success | 0.092031 | 0.000001 | 4,032 | 0.00847 | 0.003126 |
|
30 | model.layers.4.mlp.up_proj | 0.058521 | 4,096 | 14,336 | 3.5 | 6.87642 | -14.190751 | 1.562732 | true | 0.008636 | dense | -14.10596 | -0.656931 | -2.063683 | 64 | 0.220328 | 4,096 | 29 | 4,032 | 1 | 1.091224 | 0.008636 | 25.512463 | success | 0.092931 | 0.000001 | under-trained | 4,032 | 0.008636 | 0.003203 |
31 | model.layers.4.self_attn.k_proj | 0.07151 | 1,024 | 4,096 | 4 | 8.27638 | -22.574322 | 1.132434 | true | 0.001873 | dense | -22.013693 | -1.143497 | -2.72756 | 64 | 0.071863 | 1,024 | 22 | 960 | 1 | 1.55133 | 0.001873 | 38.37632 | success | 0.043273 | 0.000001 | under-trained | 960 | 0.001873 | 0.001211 |
32 | model.layers.4.self_attn.o_proj | 0.039916 | 4,096 | 4,096 | 1 | 5.481292 | -12.934991 | 1.561933 | true | 0.004367 | dense | -12.256102 | -0.825011 | -2.359844 | 64 | 0.14962 | 4,096 | 62 | 4,032 | 1 | 0.569125 | 0.004367 | 34.263561 | success | 0.066081 | 0 | 4,032 | 0.004367 | 0.001837 |
|
33 | model.layers.4.self_attn.q_proj | 0.043186 | 4,096 | 4,096 | 1 | 7.05384 | -17.32022 | 1.56158 | true | 0.003504 | dense | -17.280596 | -1.078193 | -2.455431 | 64 | 0.083523 | 4,096 | 22 | 4,032 | 1 | 1.290683 | 0.003504 | 23.83625 | success | 0.059195 | 0 | under-trained | 4,032 | 0.003504 | 0.001334 |
34 | model.layers.4.self_attn.v_proj | 0.051123 | 1,024 | 4,096 | 4 | 8.01902 | -21.363418 | 1.13487 | true | 0.002167 | dense | -20.8389 | -1.065824 | -2.664093 | 64 | 0.085936 | 1,024 | 41 | 960 | 1 | 1.096187 | 0.002167 | 39.652363 | success | 0.046554 | 0.000001 | under-trained | 960 | 0.002167 | 0.001234 |
35 | model.layers.5.mlp.down_proj | 0.064079 | 4,096 | 14,336 | 3.5 | 15.944951 | -34.872978 | 1.567136 | true | 0.0065 | dense | -34.853326 | -0.608785 | -2.187086 | 64 | 0.246158 | 4,096 | 64 | 4,032 | 1 | 1.868119 | 0.0065 | 37.870461 | success | 0.080623 | 0.000001 | under-trained | 4,032 | 0.0065 | 0.003581 |
36 | model.layers.5.mlp.gate_proj | 0.096163 | 4,096 | 14,336 | 3.5 | 5.903078 | -12.108724 | 1.562384 | true | 0.008887 | dense | -12.002394 | -0.671732 | -2.051256 | 64 | 0.212945 | 4,096 | 16 | 4,032 | 1 | 1.225769 | 0.008887 | 23.96207 | success | 0.09427 | 0.000001 | 4,032 | 0.008887 | 0.003285 |
|
37 | model.layers.5.mlp.up_proj | 0.060143 | 4,096 | 14,336 | 3.5 | 6.366293 | -12.982274 | 1.56298 | true | 0.009136 | dense | -12.837507 | -0.616751 | -2.03922 | 64 | 0.241685 | 4,096 | 20 | 4,032 | 1 | 1.19994 | 0.009136 | 26.452679 | success | 0.095585 | 0.000001 | under-trained | 4,032 | 0.009136 | 0.003693 |
38 | model.layers.5.self_attn.k_proj | 0.042857 | 1,024 | 4,096 | 4 | 6.45947 | -17.316833 | 1.133314 | true | 0.002085 | dense | -16.710907 | -1.118405 | -2.680844 | 64 | 0.076137 | 1,024 | 59 | 960 | 1 | 0.710762 | 0.002085 | 36.512318 | success | 0.045664 | 0.000001 | under-trained | 960 | 0.002085 | 0.00099 |
39 | model.layers.5.self_attn.o_proj | 0.03663 | 4,096 | 4,096 | 1 | 7.81447 | -19.20972 | 1.565988 | true | 0.003482 | dense | -18.370583 | -0.812658 | -2.458224 | 64 | 0.153937 | 4,096 | 51 | 4,032 | 1 | 0.954217 | 0.003482 | 44.214661 | success | 0.059005 | 0 | under-trained | 4,032 | 0.003482 | 0.00213 |
40 | model.layers.5.self_attn.q_proj | 0.039347 | 4,096 | 4,096 | 1 | 7.181912 | -17.746361 | 1.563375 | true | 0.003381 | dense | -17.677551 | -1.044679 | -2.47098 | 64 | 0.090224 | 4,096 | 38 | 4,032 | 1 | 1.002839 | 0.003381 | 26.687077 | success | 0.058145 | 0 | under-trained | 4,032 | 0.003381 | 0.001293 |
41 | model.layers.5.self_attn.v_proj | 0.074037 | 1,024 | 4,096 | 4 | 9.685775 | -26.449586 | 1.13634 | true | 0.001859 | dense | -25.600858 | -1.046485 | -2.730766 | 64 | 0.089849 | 1,024 | 56 | 960 | 1 | 1.160686 | 0.001859 | 48.337158 | success | 0.043114 | 0.000001 | under-trained | 960 | 0.001859 | 0.001266 |
42 | model.layers.6.mlp.down_proj | 0.095639 | 4,096 | 14,336 | 3.5 | 14.635101 | -31.146394 | 1.566578 | true | 0.007444 | dense | -31.129475 | -0.582811 | -2.128198 | 64 | 0.26133 | 4,096 | 64 | 4,032 | 1 | 1.704388 | 0.007444 | 35.10651 | success | 0.086278 | 0.000001 | under-trained | 4,032 | 0.007444 | 0.00377 |
43 | model.layers.6.mlp.gate_proj | 0.069643 | 4,096 | 14,336 | 3.5 | 5.839907 | -11.692018 | 1.561022 | true | 0.009952 | dense | -11.543849 | -0.621106 | -2.00209 | 64 | 0.239273 | 4,096 | 26 | 4,032 | 1 | 0.949184 | 0.009952 | 24.042736 | success | 0.09976 | 0.000001 | 4,032 | 0.009952 | 0.003457 |
|
44 | model.layers.6.mlp.up_proj | 0.071441 | 4,096 | 14,336 | 3.5 | 5.83869 | -11.695706 | 1.56181 | true | 0.009928 | dense | -11.448427 | -0.575978 | -2.003139 | 64 | 0.265474 | 4,096 | 23 | 4,032 | 1 | 1.008937 | 0.009928 | 26.739985 | success | 0.099639 | 0.000001 | 4,032 | 0.009928 | 0.003958 |
|
45 | model.layers.6.self_attn.k_proj | 0.053588 | 1,024 | 4,096 | 4 | 6.589289 | -17.636502 | 1.133221 | true | 0.002106 | dense | -17.076734 | -1.121298 | -2.676541 | 64 | 0.075631 | 1,024 | 64 | 960 | 1 | 0.698661 | 0.002106 | 35.912281 | success | 0.045891 | 0.000001 | under-trained | 960 | 0.002106 | 0.000972 |
46 | model.layers.6.self_attn.o_proj | 0.028815 | 4,096 | 4,096 | 1 | 6.851371 | -16.127938 | 1.564554 | true | 0.004426 | dense | -15.613682 | -0.798362 | -2.353972 | 64 | 0.159088 | 4,096 | 64 | 4,032 | 1 | 0.731421 | 0.004426 | 35.942707 | success | 0.066529 | 0 | under-trained | 4,032 | 0.004426 | 0.002065 |
47 | model.layers.6.self_attn.q_proj | 0.045633 | 4,096 | 4,096 | 1 | 6.070915 | -14.817944 | 1.562566 | true | 0.003624 | dense | -14.683584 | -1.024928 | -2.440809 | 64 | 0.094422 | 4,096 | 64 | 4,032 | 1 | 0.633864 | 0.003624 | 26.054392 | success | 0.0602 | 0 | under-trained | 4,032 | 0.003624 | 0.001186 |
48 | model.layers.6.self_attn.v_proj | 0.04742 | 1,024 | 4,096 | 4 | 10.374022 | -27.161139 | 1.135434 | true | 0.002409 | dense | -26.936849 | -1.031026 | -2.618188 | 64 | 0.093105 | 1,024 | 20 | 960 | 1 | 2.096095 | 0.002409 | 38.65107 | success | 0.04908 | 0.000001 | under-trained | 960 | 0.002409 | 0.001501 |
49 | model.layers.7.mlp.down_proj | 0.063456 | 4,096 | 14,336 | 3.5 | 15.614345 | -33.627184 | 1.567221 | true | 0.007021 | dense | -33.590977 | -0.559208 | -2.153608 | 64 | 0.275926 | 4,096 | 64 | 4,032 | 1 | 1.826793 | 0.007021 | 39.300701 | success | 0.083791 | 0.000001 | under-trained | 4,032 | 0.007021 | 0.004009 |
50 | model.layers.7.mlp.gate_proj | 0.054805 | 4,096 | 14,336 | 3.5 | 5.579458 | -11.013746 | 1.561041 | true | 0.010617 | dense | -10.847327 | -0.592793 | -1.973981 | 64 | 0.255392 | 4,096 | 21 | 4,032 | 1 | 0.99932 | 0.010617 | 24.05406 | success | 0.103041 | 0.000001 | 4,032 | 0.010617 | 0.003834 |
|
51 | model.layers.7.mlp.up_proj | 0.063687 | 4,096 | 14,336 | 3.5 | 5.60456 | -11.151875 | 1.562231 | true | 0.010238 | dense | -10.824994 | -0.543541 | -1.989786 | 64 | 0.286062 | 4,096 | 19 | 4,032 | 1 | 1.056359 | 0.010238 | 27.941221 | success | 0.101183 | 0.000001 | 4,032 | 0.010238 | 0.004375 |
|
52 | model.layers.7.self_attn.k_proj | 0.095712 | 1,024 | 4,096 | 4 | 10.705249 | -27.8816 | 1.133918 | true | 0.002486 | dense | -27.546094 | -1.011718 | -2.604479 | 64 | 0.097338 | 1,024 | 18 | 960 | 1 | 2.287549 | 0.002486 | 39.152649 | success | 0.049861 | 0.000001 | under-trained | 960 | 0.002486 | 0.001678 |
53 | model.layers.7.self_attn.o_proj | 0.065757 | 4,096 | 4,096 | 1 | 11.30707 | -27.335589 | 1.566889 | true | 0.003823 | dense | -26.685796 | -0.751225 | -2.417566 | 64 | 0.177327 | 4,096 | 25 | 4,032 | 1 | 2.061414 | 0.003823 | 46.381084 | success | 0.061833 | 0 | under-trained | 4,032 | 0.003823 | 0.002786 |
54 | model.layers.7.self_attn.q_proj | 0.025897 | 4,096 | 4,096 | 1 | 7.524983 | -17.814964 | 1.563334 | true | 0.004291 | dense | -17.77534 | -0.956906 | -2.367442 | 64 | 0.110432 | 4,096 | 39 | 4,032 | 1 | 1.044834 | 0.004291 | 25.73575 | success | 0.065506 | 0 | under-trained | 4,032 | 0.004291 | 0.001579 |
55 | model.layers.7.self_attn.v_proj | 0.073396 | 1,024 | 4,096 | 4 | 15.267755 | -41.123873 | 1.13667 | true | 0.002025 | dense | -40.442663 | -0.988075 | -2.693511 | 64 | 0.102784 | 1,024 | 26 | 960 | 1 | 2.798137 | 0.002025 | 50.750072 | success | 0.045003 | 0.000001 | under-trained | 960 | 0.002025 | 0.001623 |
56 | model.layers.8.mlp.down_proj | 0.066821 | 4,096 | 14,336 | 3.5 | 14.244871 | -30.541354 | 1.567048 | true | 0.007178 | dense | -30.44064 | -0.543448 | -2.144025 | 64 | 0.286123 | 4,096 | 64 | 4,032 | 1 | 1.655609 | 0.007178 | 39.863625 | success | 0.08472 | 0.000001 | under-trained | 4,032 | 0.007178 | 0.004125 |
57 | model.layers.8.mlp.gate_proj | 0.057102 | 4,096 | 14,336 | 3.5 | 5.478192 | -10.632148 | 1.56052 | true | 0.01146 | dense | -10.447779 | -0.562441 | -1.940813 | 64 | 0.273879 | 4,096 | 22 | 4,032 | 1 | 0.954754 | 0.01146 | 23.898603 | success | 0.107052 | 0.000001 | 4,032 | 0.01146 | 0.00408 |
|
58 | model.layers.8.mlp.up_proj | 0.052789 | 4,096 | 14,336 | 3.5 | 5.877397 | -11.587908 | 1.562137 | true | 0.010676 | dense | -11.257199 | -0.517431 | -1.971605 | 64 | 0.303787 | 4,096 | 25 | 4,032 | 1 | 0.975479 | 0.010676 | 28.456011 | success | 0.103323 | 0.000001 | 4,032 | 0.010676 | 0.004476 |
|
59 | model.layers.8.self_attn.k_proj | 0.064081 | 1,024 | 4,096 | 4 | 6.659156 | -17.477803 | 1.132918 | true | 0.002373 | dense | -16.862688 | -1.065404 | -2.624627 | 64 | 0.086019 | 1,024 | 64 | 960 | 1 | 0.707395 | 0.002373 | 36.242973 | success | 0.048718 | 0.000001 | under-trained | 960 | 0.002373 | 0.001107 |
60 | model.layers.8.self_attn.o_proj | 0.050797 | 4,096 | 4,096 | 1 | 9.906003 | -23.957714 | 1.566807 | true | 0.003815 | dense | -23.247362 | -0.75672 | -2.418505 | 64 | 0.175098 | 4,096 | 39 | 4,032 | 1 | 1.426102 | 0.003815 | 45.897057 | success | 0.061766 | 0 | under-trained | 4,032 | 0.003815 | 0.002583 |
61 | model.layers.8.self_attn.q_proj | 0.064969 | 4,096 | 4,096 | 1 | 6.653043 | -16.193501 | 1.563653 | true | 0.003681 | dense | -16.003354 | -0.962644 | -2.433999 | 64 | 0.108982 | 4,096 | 40 | 4,032 | 1 | 0.893825 | 0.003681 | 29.604328 | success | 0.060674 | 0 | under-trained | 4,032 | 0.003681 | 0.001538 |
62 | model.layers.8.self_attn.v_proj | 0.035499 | 1,024 | 4,096 | 4 | 12.053037 | -31.042204 | 1.135992 | true | 0.002658 | dense | -30.961366 | -0.991929 | -2.575467 | 64 | 0.101876 | 1,024 | 28 | 960 | 1 | 2.088828 | 0.002658 | 38.329998 | success | 0.051554 | 0.000001 | under-trained | 960 | 0.002658 | 0.001577 |
63 | model.layers.9.mlp.down_proj | 0.044913 | 4,096 | 14,336 | 3.5 | 15.129803 | -32.638446 | 1.567325 | true | 0.006963 | dense | -32.531992 | -0.537594 | -2.157229 | 64 | 0.290005 | 4,096 | 64 | 4,032 | 1 | 1.766225 | 0.006963 | 41.651878 | success | 0.083442 | 0.000001 | under-trained | 4,032 | 0.006963 | 0.004205 |
64 | model.layers.9.mlp.gate_proj | 0.05434 | 4,096 | 14,336 | 3.5 | 5.696961 | -11.08356 | 1.561272 | true | 0.011336 | dense | -10.893989 | -0.545201 | -1.945521 | 64 | 0.28497 | 4,096 | 24 | 4,032 | 1 | 0.958763 | 0.011336 | 25.137403 | success | 0.106473 | 0.000001 | 4,032 | 0.011336 | 0.004224 |
|
65 | model.layers.9.mlp.up_proj | 0.043738 | 4,096 | 14,336 | 3.5 | 6.431358 | -12.675255 | 1.562701 | true | 0.010694 | dense | -12.390135 | -0.503689 | -1.970852 | 64 | 0.313553 | 4,096 | 37 | 4,032 | 1 | 0.89291 | 0.010694 | 29.319954 | success | 0.103413 | 0.000001 | under-trained | 4,032 | 0.010694 | 0.00438 |
66 | model.layers.9.self_attn.k_proj | 0.064809 | 1,024 | 4,096 | 4 | 6.66346 | -16.885243 | 1.134151 | true | 0.002924 | dense | -16.205545 | -0.939375 | -2.534005 | 64 | 0.114981 | 1,024 | 46 | 960 | 1 | 0.835032 | 0.002924 | 39.32151 | success | 0.054075 | 0.000001 | under-trained | 960 | 0.002924 | 0.001582 |
67 | model.layers.9.self_attn.o_proj | 0.044989 | 4,096 | 4,096 | 1 | 11.027726 | -26.397476 | 1.567061 | true | 0.004039 | dense | -25.734566 | -0.722971 | -2.393737 | 64 | 0.189247 | 4,096 | 37 | 4,032 | 1 | 1.648548 | 0.004039 | 46.85614 | success | 0.063552 | 0 | under-trained | 4,032 | 0.004039 | 0.002835 |
68 | model.layers.9.self_attn.q_proj | 0.041058 | 4,096 | 4,096 | 1 | 8.645273 | -20.432758 | 1.564777 | true | 0.004331 | dense | -20.36518 | -0.882691 | -2.36346 | 64 | 0.131011 | 4,096 | 27 | 4,032 | 1 | 1.471333 | 0.004331 | 30.253063 | success | 0.065807 | 0 | under-trained | 4,032 | 0.004331 | 0.002014 |
69 | model.layers.9.self_attn.v_proj | 0.048063 | 1,024 | 4,096 | 4 | 17.18794 | -45.376271 | 1.136577 | true | 0.002291 | dense | -45.223033 | -0.980125 | -2.640006 | 64 | 0.104683 | 1,024 | 18 | 960 | 1 | 3.815534 | 0.002291 | 45.696308 | success | 0.047863 | 0.000001 | under-trained | 960 | 0.002291 | 0.001711 |
70 | model.layers.10.mlp.down_proj | 0.057979 | 4,096 | 14,336 | 3.5 | 13.5763 | -29.123454 | 1.56707 | true | 0.007159 | dense | -28.963528 | -0.534644 | -2.145169 | 64 | 0.291982 | 4,096 | 64 | 4,032 | 1 | 1.572037 | 0.007159 | 40.787243 | success | 0.084609 | 0.000001 | under-trained | 4,032 | 0.007159 | 0.004192 |
71 | model.layers.10.mlp.gate_proj | 0.047552 | 4,096 | 14,336 | 3.5 | 5.482743 | -10.2929 | 1.558314 | true | 0.013264 | dense | -10.129917 | -0.529934 | -1.877327 | 64 | 0.295166 | 4,096 | 38 | 4,032 | 1 | 0.727197 | 0.013264 | 22.253223 | success | 0.115169 | 0.000001 | 4,032 | 0.013264 | 0.00397 |
|
72 | model.layers.10.mlp.up_proj | 0.054996 | 4,096 | 14,336 | 3.5 | 6.165837 | -11.655581 | 1.559779 | true | 0.012872 | dense | -11.462149 | -0.498474 | -1.890349 | 64 | 0.317341 | 4,096 | 51 | 4,032 | 1 | 0.723362 | 0.012872 | 24.653248 | success | 0.113456 | 0.000001 | under-trained | 4,032 | 0.012872 | 0.004137 |
73 | model.layers.10.self_attn.k_proj | 0.050952 | 1,024 | 4,096 | 4 | 6.928386 | -17.629741 | 1.133472 | true | 0.002854 | dense | -17.102107 | -0.987223 | -2.544567 | 64 | 0.102986 | 1,024 | 63 | 960 | 1 | 0.746906 | 0.002854 | 36.08643 | success | 0.053422 | 0.000001 | under-trained | 960 | 0.002854 | 0.001342 |
74 | model.layers.10.self_attn.o_proj | 0.039311 | 4,096 | 4,096 | 1 | 8.08292 | -17.884937 | 1.564299 | true | 0.006128 | dense | -17.605788 | -0.702513 | -2.212683 | 64 | 0.198375 | 4,096 | 60 | 4,032 | 1 | 0.914401 | 0.006128 | 32.37204 | success | 0.078281 | 0 | under-trained | 4,032 | 0.006128 | 0.002677 |
75 | model.layers.10.self_attn.q_proj | 0.060079 | 4,096 | 4,096 | 1 | 8.799813 | -21.045494 | 1.564504 | true | 0.004059 | dense | -20.972091 | -0.900797 | -2.391584 | 64 | 0.125662 | 4,096 | 23 | 4,032 | 1 | 1.626373 | 0.004059 | 30.95904 | success | 0.06371 | 0 | under-trained | 4,032 | 0.004059 | 0.002024 |
76 | model.layers.10.self_attn.v_proj | 0.044839 | 1,024 | 4,096 | 4 | 11.125341 | -28.627597 | 1.135937 | true | 0.002672 | dense | -28.327318 | -0.957065 | -2.573188 | 64 | 0.110391 | 1,024 | 38 | 960 | 1 | 1.642547 | 0.002672 | 41.316521 | success | 0.05169 | 0.000001 | under-trained | 960 | 0.002672 | 0.001649 |
77 | model.layers.11.mlp.down_proj | 0.056991 | 4,096 | 14,336 | 3.5 | 12.935681 | -27.08163 | 1.566674 | true | 0.008062 | dense | -27.024306 | -0.530032 | -2.09356 | 64 | 0.2951 | 4,096 | 64 | 4,032 | 1 | 1.49196 | 0.008062 | 36.604042 | success | 0.089788 | 0.000001 | under-trained | 4,032 | 0.008062 | 0.004213 |
78 | model.layers.11.mlp.gate_proj | 0.050258 | 4,096 | 14,336 | 3.5 | 5.273043 | -10.023329 | 1.559382 | true | 0.012564 | dense | -9.778413 | -0.518389 | -1.900863 | 64 | 0.303117 | 4,096 | 24 | 4,032 | 1 | 0.872231 | 0.012564 | 24.125341 | success | 0.11209 | 0.000001 | 4,032 | 0.012564 | 0.004489 |
|
79 | model.layers.11.mlp.up_proj | 0.044841 | 4,096 | 14,336 | 3.5 | 6.025806 | -11.473937 | 1.560522 | true | 0.01247 | dense | -11.245172 | -0.493493 | -1.904133 | 64 | 0.321001 | 4,096 | 43 | 4,032 | 1 | 0.766428 | 0.01247 | 25.741854 | success | 0.111669 | 0.000001 | under-trained | 4,032 | 0.01247 | 0.004309 |
80 | model.layers.11.self_attn.k_proj | 0.060456 | 1,024 | 4,096 | 4 | 6.757037 | -17.235079 | 1.134413 | true | 0.002814 | dense | -16.415399 | -0.930107 | -2.550686 | 64 | 0.117461 | 1,024 | 53 | 960 | 1 | 0.79079 | 0.002814 | 41.742561 | success | 0.053047 | 0.000001 | under-trained | 960 | 0.002814 | 0.001579 |
81 | model.layers.11.self_attn.o_proj | 0.032158 | 4,096 | 4,096 | 1 | 11.158902 | -26.44295 | 1.567071 | true | 0.004269 | dense | -26.008332 | -0.724837 | -2.369673 | 64 | 0.188435 | 4,096 | 41 | 4,032 | 1 | 1.586554 | 0.004269 | 44.140343 | success | 0.065338 | 0 | under-trained | 4,032 | 0.004269 | 0.002785 |
82 | model.layers.11.self_attn.q_proj | 0.045011 | 4,096 | 4,096 | 1 | 9.484317 | -22.596014 | 1.565531 | true | 0.004145 | dense | -22.532848 | -0.872075 | -2.382461 | 64 | 0.134253 | 4,096 | 24 | 4,032 | 1 | 1.731854 | 0.004145 | 32.388157 | success | 0.064383 | 0 | under-trained | 4,032 | 0.004145 | 0.002107 |
83 | model.layers.11.self_attn.v_proj | 0.101216 | 1,024 | 4,096 | 4 | 15.683077 | -41.547668 | 1.136782 | true | 0.002243 | dense | -40.842064 | -0.936095 | -2.649204 | 64 | 0.115852 | 1,024 | 26 | 960 | 1 | 2.879588 | 0.002243 | 51.654556 | success | 0.047359 | 0.000001 | under-trained | 960 | 0.002243 | 0.001827 |
84 | model.layers.12.mlp.down_proj | 0.032652 | 4,096 | 14,336 | 3.5 | 14.15541 | -30.704631 | 1.567403 | true | 0.006775 | dense | -30.458001 | -0.529252 | -2.169109 | 64 | 0.295629 | 4,096 | 64 | 4,032 | 1 | 1.644426 | 0.006775 | 43.637211 | success | 0.082309 | 0.000001 | under-trained | 4,032 | 0.006775 | 0.004265 |
85 | model.layers.12.mlp.gate_proj | 0.03655 | 4,096 | 14,336 | 3.5 | 5.6251 | -10.731252 | 1.560177 | true | 0.012367 | dense | -10.539884 | -0.521513 | -1.907744 | 64 | 0.300945 | 4,096 | 33 | 4,032 | 1 | 0.805127 | 0.012367 | 24.334984 | success | 0.111206 | 0.000001 | 4,032 | 0.012367 | 0.004206 |
|
86 | model.layers.12.mlp.up_proj | 0.043853 | 4,096 | 14,336 | 3.5 | 5.902476 | -11.456355 | 1.562021 | true | 0.011457 | dense | -11.172447 | -0.496813 | -1.94094 | 64 | 0.318557 | 4,096 | 29 | 4,032 | 1 | 0.910367 | 0.011457 | 27.805277 | success | 0.107036 | 0.000001 | 4,032 | 0.011457 | 0.004585 |
|
87 | model.layers.12.self_attn.k_proj | 0.090697 | 1,024 | 4,096 | 4 | 5.803976 | -14.697743 | 1.134736 | true | 0.002935 | dense | -13.539768 | -0.862901 | -2.532357 | 64 | 0.13712 | 1,024 | 64 | 960 | 1 | 0.600497 | 0.002935 | 46.715065 | success | 0.054178 | 0.000001 | 960 | 0.002935 | 0.00172 |
|
88 | model.layers.12.self_attn.o_proj | 0.072164 | 4,096 | 4,096 | 1 | 12.682624 | -30.576485 | 1.567453 | true | 0.003882 | dense | -29.915394 | -0.720165 | -2.410896 | 64 | 0.190474 | 4,096 | 37 | 4,032 | 1 | 1.920612 | 0.003882 | 49.060402 | success | 0.062309 | 0 | under-trained | 4,032 | 0.003882 | 0.002876 |
89 | model.layers.12.self_attn.q_proj | 0.055156 | 4,096 | 4,096 | 1 | 10.762409 | -25.686382 | 1.566173 | true | 0.004105 | dense | -25.603435 | -0.833243 | -2.386676 | 64 | 0.146811 | 4,096 | 19 | 4,032 | 1 | 2.23965 | 0.004105 | 35.762928 | success | 0.064071 | 0 | under-trained | 4,032 | 0.004105 | 0.00238 |
90 | model.layers.12.self_attn.v_proj | 0.11485 | 1,024 | 4,096 | 4 | 11.876877 | -31.77564 | 1.13691 | true | 0.002111 | dense | -30.658707 | -0.940515 | -2.675421 | 64 | 0.114679 | 1,024 | 52 | 960 | 1 | 1.508351 | 0.002111 | 54.313255 | success | 0.04595 | 0.000001 | under-trained | 960 | 0.002111 | 0.001665 |
91 | model.layers.13.mlp.down_proj | 0.036343 | 4,096 | 14,336 | 3.5 | 12.125812 | -25.628331 | 1.566873 | true | 0.0077 | dense | -25.49984 | -0.521349 | -2.113535 | 64 | 0.301058 | 4,096 | 64 | 4,032 | 1 | 1.390727 | 0.0077 | 39.100815 | success | 0.087747 | 0.000001 | under-trained | 4,032 | 0.0077 | 0.004275 |
92 | model.layers.13.mlp.gate_proj | 0.032849 | 4,096 | 14,336 | 3.5 | 5.366135 | -10.105797 | 1.559179 | true | 0.013084 | dense | -9.888976 | -0.506566 | -1.883254 | 64 | 0.311483 | 4,096 | 36 | 4,032 | 1 | 0.727689 | 0.013084 | 23.80612 | success | 0.114386 | 0.000001 | 4,032 | 0.013084 | 0.004238 |
|
93 | model.layers.13.mlp.up_proj | 0.037365 | 4,096 | 14,336 | 3.5 | 5.362235 | -10.155244 | 1.560663 | true | 0.012769 | dense | -9.899726 | -0.488475 | -1.893845 | 64 | 0.324732 | 4,096 | 26 | 4,032 | 1 | 0.855505 | 0.012769 | 25.431419 | success | 0.113 | 0.000001 | 4,032 | 0.012769 | 0.00471 |
|
94 | model.layers.13.self_attn.k_proj | 0.055607 | 1,024 | 4,096 | 4 | 7.153452 | -18.283749 | 1.133874 | true | 0.00278 | dense | -17.556995 | -0.957891 | -2.555934 | 64 | 0.110182 | 1,024 | 59 | 960 | 1 | 0.801111 | 0.00278 | 39.631744 | success | 0.052727 | 0.000001 | under-trained | 960 | 0.00278 | 0.001462 |
95 | model.layers.13.self_attn.o_proj | 0.040657 | 4,096 | 4,096 | 1 | 10.363712 | -23.618383 | 1.566533 | true | 0.005261 | dense | -23.320876 | -0.681243 | -2.27895 | 64 | 0.208332 | 4,096 | 46 | 4,032 | 1 | 1.380604 | 0.005261 | 39.601051 | success | 0.072531 | 0 | under-trained | 4,032 | 0.005261 | 0.003017 |
96 | model.layers.13.self_attn.q_proj | 0.046576 | 4,096 | 4,096 | 1 | 9.668471 | -22.784899 | 1.565295 | true | 0.004399 | dense | -22.73273 | -0.851471 | -2.356619 | 64 | 0.140776 | 4,096 | 20 | 4,032 | 1 | 1.938329 | 0.004399 | 31.999794 | success | 0.066327 | 0 | under-trained | 4,032 | 0.004399 | 0.002285 |
97 | model.layers.13.self_attn.v_proj | 0.069671 | 1,024 | 4,096 | 4 | 20.504022 | -53.933001 | 1.136864 | true | 0.002342 | dense | -53.52314 | -0.922778 | -2.630362 | 64 | 0.11946 | 1,024 | 19 | 960 | 1 | 4.47453 | 0.002342 | 51.001656 | success | 0.048397 | 0.000001 | under-trained | 960 | 0.002342 | 0.001942 |
98 | model.layers.14.mlp.down_proj | 0.032288 | 4,096 | 14,336 | 3.5 | 10.464349 | -21.796519 | 1.566664 | true | 0.008262 | dense | -21.630572 | -0.50299 | -2.082931 | 64 | 0.314058 | 4,096 | 34 | 4,032 | 1 | 1.623122 | 0.008262 | 38.013767 | success | 0.090894 | 0.000001 | under-trained | 4,032 | 0.008262 | 0.004672 |
99 | model.layers.14.mlp.gate_proj | 0.039619 | 4,096 | 14,336 | 3.5 | 5.266263 | -9.813683 | 1.55907 | true | 0.013693 | dense | -9.606431 | -0.497325 | -1.8635 | 64 | 0.318182 | 4,096 | 31 | 4,032 | 1 | 0.766243 | 0.013693 | 23.236776 | success | 0.117017 | 0.000001 | 4,032 | 0.013693 | 0.004443 |
End of preview. Expand
in Dataset Viewer.
No dataset card yet
New: Create and edit this dataset card directly on the website!
Contribute a Dataset Card- Downloads last month
- 12