layer_id
int64
0
223
name
stringlengths
26
32
D
float64
0.03
0.12
M
int64
1.02k
4.1k
N
int64
4.1k
14.3k
Q
float64
1
4
alpha
float64
2.98
23.9
alpha_weighted
float64
-65.71
-6.41
entropy
float64
1.11
1.57
has_esd
bool
1 class
lambda_max
float32
0
0.02
layer_type
stringclasses
1 value
log_alpha_norm
float64
-64.96
-5.95
log_norm
float32
-1.43
-0.48
log_spectral_norm
float32
-2.81
-1.77
matrix_rank
int64
64
64
norm
float32
0.04
0.33
num_evals
int64
1.02k
4.1k
num_pl_spikes
int64
10
64
rank_loss
int64
960
4.03k
rf
int64
1
1
sigma
float64
0.25
5.88
spectral_norm
float32
0
0.02
stable_rank
float32
7.52
56.2
status
stringclasses
1 value
sv_max
float64
0.04
0.13
sv_min
float64
0
0
warning
stringclasses
2 values
weak_rank_loss
int64
960
4.03k
xmax
float64
0
0.02
xmin
float64
0
0
0
model.layers.0.mlp.down_proj
0.044372
4,096
14,336
3.5
8.365172
-19.331526
1.565136
true
0.004887
dense
-18.927617
-0.749923
-2.310954
64
0.17786
4,096
64
4,032
1
0.920646
0.004887
36.394131
success
0.069907
0.000001
under-trained
4,032
0.004887
0.002397
1
model.layers.0.mlp.gate_proj
0.044792
4,096
14,336
3.5
4.921705
-11.727318
1.558989
true
0.004142
dense
-11.388952
-0.983228
-2.382775
64
0.103937
4,096
27
4,032
1
0.754733
0.004142
25.092697
success
0.064359
0.000001
4,032
0.004142
0.001486
2
model.layers.0.mlp.up_proj
0.05879
4,096
14,336
3.5
5.270882
-12.216789
1.559112
true
0.004811
dense
-12.024244
-0.950149
-2.317788
64
0.112163
4,096
32
4,032
1
0.754992
0.004811
23.315189
success
0.069359
0.000001
4,032
0.004811
0.001558
3
model.layers.0.self_attn.k_proj
0.044862
1,024
4,096
4
3.967196
-10.618157
1.116284
true
0.002106
dense
-10.36955
-1.432019
-2.676489
64
0.036981
1,024
40
960
1
0.469155
0.002106
17.557785
success
0.045894
0.000001
960
0.002106
0.000457
4
model.layers.0.self_attn.o_proj
0.071946
4,096
4,096
1
3.15045
-6.414638
1.531436
true
0.009202
dense
-5.951533
-0.820385
-2.036102
64
0.151222
4,096
45
4,032
1
0.32057
0.009202
16.43302
success
0.095929
0
4,032
0.009202
0.001521
5
model.layers.0.self_attn.q_proj
0.035535
4,096
4,096
1
2.977482
-6.897628
1.521928
true
0.004824
dense
-6.518055
-1.191919
-2.316598
64
0.064281
4,096
64
4,032
1
0.247185
0.004824
13.325367
success
0.069455
0
4,032
0.004824
0.000518
6
model.layers.0.self_attn.v_proj
0.045686
1,024
4,096
4
3.300158
-8.03369
1.105158
true
0.003678
dense
-7.724496
-1.274459
-2.434335
64
0.053155
1,024
24
960
1
0.469518
0.003678
14.450284
success
0.06065
0.000001
960
0.003678
0.000702
7
model.layers.1.mlp.down_proj
0.075648
4,096
14,336
3.5
7.65575
-16.933677
1.565563
true
0.006139
dense
-16.84096
-0.733272
-2.21189
64
0.184811
4,096
13
4,032
1
1.845973
0.006139
30.103548
success
0.078353
0.000001
under-trained
4,032
0.006139
0.002963
8
model.layers.1.mlp.gate_proj
0.112535
4,096
14,336
3.5
3.981704
-8.683508
1.556923
true
0.006594
dense
-8.361143
-0.866137
-2.180852
64
0.136102
4,096
11
4,032
1
0.899018
0.006594
20.640265
success
0.081203
0.000001
4,032
0.006594
0.002157
9
model.layers.1.mlp.up_proj
0.058219
4,096
14,336
3.5
5.127727
-11.404952
1.561835
true
0.005968
dense
-11.187414
-0.83321
-2.224173
64
0.146822
4,096
13
4,032
1
1.144825
0.005968
24.601585
success
0.077253
0.000001
4,032
0.005968
0.002357
10
model.layers.1.self_attn.k_proj
0.043356
1,024
4,096
4
4.768239
-12.602271
1.124037
true
0.002275
dense
-12.498928
-1.378174
-2.642962
64
0.041863
1,024
56
960
1
0.503552
0.002275
18.398703
success
0.0477
0.000001
960
0.002275
0.000498
11
model.layers.1.self_attn.o_proj
0.053403
4,096
4,096
1
3.869334
-7.790337
1.546909
true
0.009697
dense
-7.571464
-0.793234
-2.013354
64
0.160978
4,096
32
4,032
1
0.507231
0.009697
16.600451
success
0.098474
0
4,032
0.009697
0.00206
12
model.layers.1.self_attn.q_proj
0.040165
4,096
4,096
1
4.360187
-10.607257
1.54881
true
0.003692
dense
-10.532897
-1.257076
-2.432753
64
0.055325
4,096
62
4,032
1
0.426744
0.003692
14.985688
success
0.060761
0
4,032
0.003692
0.000609
13
model.layers.1.self_attn.v_proj
0.029854
1,024
4,096
4
5.583189
-15.041438
1.130228
true
0.002023
dense
-14.569543
-1.219971
-2.694058
64
0.06026
1,024
53
960
1
0.629549
0.002023
29.791128
success
0.044975
0.000001
960
0.002023
0.000769
14
model.layers.2.mlp.down_proj
0.055346
4,096
14,336
3.5
15.095443
-34.764815
1.567153
true
0.004977
dense
-34.647397
-0.697174
-2.303001
64
0.200829
4,096
64
4,032
1
1.76193
0.004977
40.348392
success
0.07055
0.000001
under-trained
4,032
0.004977
0.002909
15
model.layers.2.mlp.gate_proj
0.069836
4,096
14,336
3.5
7.014292
-15.802
1.564927
true
0.005587
dense
-15.72346
-0.811401
-2.252829
64
0.154383
4,096
13
4,032
1
1.668065
0.005587
27.63302
success
0.074746
0.000001
under-trained
4,032
0.005587
0.002453
16
model.layers.2.mlp.up_proj
0.058174
4,096
14,336
3.5
6.622721
-14.627589
1.564325
true
0.006184
dense
-14.520681
-0.773311
-2.208698
64
0.168535
4,096
15
4,032
1
1.45178
0.006184
27.251282
success
0.078641
0.000001
under-trained
4,032
0.006184
0.002648
17
model.layers.2.self_attn.k_proj
0.059239
1,024
4,096
4
8.314302
-22.293065
1.133351
true
0.002083
dense
-22.094893
-1.15985
-2.681291
64
0.069207
1,024
15
960
1
1.888545
0.002083
33.223221
success
0.045641
0.000001
under-trained
960
0.002083
0.001193
18
model.layers.2.self_attn.o_proj
0.043211
4,096
4,096
1
4.301974
-9.517501
1.553272
true
0.006133
dense
-9.028854
-0.828736
-2.212357
64
0.148342
4,096
58
4,032
1
0.43357
0.006133
24.189142
success
0.078311
0
4,032
0.006133
0.001669
19
model.layers.2.self_attn.q_proj
0.036099
4,096
4,096
1
7.774757
-19.31455
1.563217
true
0.003279
dense
-19.277754
-1.073739
-2.484264
64
0.084384
4,096
43
4,032
1
1.033141
0.003279
25.735031
success
0.057262
0
under-trained
4,032
0.003279
0.001195
20
model.layers.2.self_attn.v_proj
0.039486
1,024
4,096
4
5.728909
-15.094938
1.131631
true
0.002318
dense
-14.438458
-1.097779
-2.634871
64
0.07984
1,024
62
960
1
0.600572
0.002318
34.442307
success
0.048146
0.000001
960
0.002318
0.000994
21
model.layers.3.mlp.down_proj
0.079373
4,096
14,336
3.5
15.131404
-33.785049
1.566826
true
0.005851
dense
-33.759555
-0.672238
-2.232777
64
0.212697
4,096
64
4,032
1
1.766426
0.005851
36.352871
success
0.076491
0.000001
under-trained
4,032
0.005851
0.003079
22
model.layers.3.mlp.gate_proj
0.089666
4,096
14,336
3.5
6.122937
-13.159611
1.563872
true
0.007092
dense
-13.073512
-0.752022
-2.149232
64
0.177002
4,096
10
4,032
1
1.620015
0.007092
24.958031
success
0.084214
0.000001
under-trained
4,032
0.007092
0.002905
23
model.layers.3.mlp.up_proj
0.097207
4,096
14,336
3.5
7.223045
-15.33708
1.56381
true
0.007527
dense
-15.292052
-0.716858
-2.123354
64
0.191929
4,096
19
4,032
1
1.427664
0.007527
25.497366
success
0.086761
0.000001
under-trained
4,032
0.007527
0.002949
24
model.layers.3.self_attn.k_proj
0.053499
1,024
4,096
4
6.338608
-17.415424
1.130776
true
0.001788
dense
-17.103588
-1.292547
-2.747516
64
0.050986
1,024
64
960
1
0.667326
0.001788
28.508137
success
0.04229
0.000001
under-trained
960
0.001788
0.000645
25
model.layers.3.self_attn.o_proj
0.031086
4,096
4,096
1
5.812814
-13.425333
1.561421
true
0.004902
dense
-13.015641
-0.83379
-2.30961
64
0.146626
4,096
62
4,032
1
0.611228
0.004902
29.910252
success
0.070016
0
4,032
0.004902
0.001826
26
model.layers.3.self_attn.q_proj
0.033947
4,096
4,096
1
5.52264
-13.971607
1.559661
true
0.002952
dense
-13.88557
-1.195202
-2.529878
64
0.063797
4,096
62
4,032
1
0.574376
0.002952
21.61108
success
0.054333
0
4,032
0.002952
0.000781
27
model.layers.3.self_attn.v_proj
0.031332
1,024
4,096
4
8.437461
-21.783879
1.1343
true
0.002619
dense
-21.660868
-1.074053
-2.581805
64
0.084323
1,024
43
960
1
1.134202
0.002619
32.192299
success
0.05118
0.000001
under-trained
960
0.002619
0.001206
28
model.layers.4.mlp.down_proj
0.076604
4,096
14,336
3.5
14.993147
-33.140575
1.566824
true
0.006161
dense
-33.082934
-0.636412
-2.210382
64
0.230987
4,096
64
4,032
1
1.749143
0.006161
37.494659
success
0.078489
0.000001
under-trained
4,032
0.006161
0.003341
29
model.layers.4.mlp.gate_proj
0.071158
4,096
14,336
3.5
5.423075
-11.23735
1.562094
true
0.00847
dense
-11.120026
-0.70997
-2.072136
64
0.194998
4,096
12
4,032
1
1.276832
0.00847
23.02322
success
0.092031
0.000001
4,032
0.00847
0.003126
30
model.layers.4.mlp.up_proj
0.058521
4,096
14,336
3.5
6.87642
-14.190751
1.562732
true
0.008636
dense
-14.10596
-0.656931
-2.063683
64
0.220328
4,096
29
4,032
1
1.091224
0.008636
25.512463
success
0.092931
0.000001
under-trained
4,032
0.008636
0.003203
31
model.layers.4.self_attn.k_proj
0.07151
1,024
4,096
4
8.27638
-22.574322
1.132434
true
0.001873
dense
-22.013693
-1.143497
-2.72756
64
0.071863
1,024
22
960
1
1.55133
0.001873
38.37632
success
0.043273
0.000001
under-trained
960
0.001873
0.001211
32
model.layers.4.self_attn.o_proj
0.039916
4,096
4,096
1
5.481292
-12.934991
1.561933
true
0.004367
dense
-12.256102
-0.825011
-2.359844
64
0.14962
4,096
62
4,032
1
0.569125
0.004367
34.263561
success
0.066081
0
4,032
0.004367
0.001837
33
model.layers.4.self_attn.q_proj
0.043186
4,096
4,096
1
7.05384
-17.32022
1.56158
true
0.003504
dense
-17.280596
-1.078193
-2.455431
64
0.083523
4,096
22
4,032
1
1.290683
0.003504
23.83625
success
0.059195
0
under-trained
4,032
0.003504
0.001334
34
model.layers.4.self_attn.v_proj
0.051123
1,024
4,096
4
8.01902
-21.363418
1.13487
true
0.002167
dense
-20.8389
-1.065824
-2.664093
64
0.085936
1,024
41
960
1
1.096187
0.002167
39.652363
success
0.046554
0.000001
under-trained
960
0.002167
0.001234
35
model.layers.5.mlp.down_proj
0.064079
4,096
14,336
3.5
15.944951
-34.872978
1.567136
true
0.0065
dense
-34.853326
-0.608785
-2.187086
64
0.246158
4,096
64
4,032
1
1.868119
0.0065
37.870461
success
0.080623
0.000001
under-trained
4,032
0.0065
0.003581
36
model.layers.5.mlp.gate_proj
0.096163
4,096
14,336
3.5
5.903078
-12.108724
1.562384
true
0.008887
dense
-12.002394
-0.671732
-2.051256
64
0.212945
4,096
16
4,032
1
1.225769
0.008887
23.96207
success
0.09427
0.000001
4,032
0.008887
0.003285
37
model.layers.5.mlp.up_proj
0.060143
4,096
14,336
3.5
6.366293
-12.982274
1.56298
true
0.009136
dense
-12.837507
-0.616751
-2.03922
64
0.241685
4,096
20
4,032
1
1.19994
0.009136
26.452679
success
0.095585
0.000001
under-trained
4,032
0.009136
0.003693
38
model.layers.5.self_attn.k_proj
0.042857
1,024
4,096
4
6.45947
-17.316833
1.133314
true
0.002085
dense
-16.710907
-1.118405
-2.680844
64
0.076137
1,024
59
960
1
0.710762
0.002085
36.512318
success
0.045664
0.000001
under-trained
960
0.002085
0.00099
39
model.layers.5.self_attn.o_proj
0.03663
4,096
4,096
1
7.81447
-19.20972
1.565988
true
0.003482
dense
-18.370583
-0.812658
-2.458224
64
0.153937
4,096
51
4,032
1
0.954217
0.003482
44.214661
success
0.059005
0
under-trained
4,032
0.003482
0.00213
40
model.layers.5.self_attn.q_proj
0.039347
4,096
4,096
1
7.181912
-17.746361
1.563375
true
0.003381
dense
-17.677551
-1.044679
-2.47098
64
0.090224
4,096
38
4,032
1
1.002839
0.003381
26.687077
success
0.058145
0
under-trained
4,032
0.003381
0.001293
41
model.layers.5.self_attn.v_proj
0.074037
1,024
4,096
4
9.685775
-26.449586
1.13634
true
0.001859
dense
-25.600858
-1.046485
-2.730766
64
0.089849
1,024
56
960
1
1.160686
0.001859
48.337158
success
0.043114
0.000001
under-trained
960
0.001859
0.001266
42
model.layers.6.mlp.down_proj
0.095639
4,096
14,336
3.5
14.635101
-31.146394
1.566578
true
0.007444
dense
-31.129475
-0.582811
-2.128198
64
0.26133
4,096
64
4,032
1
1.704388
0.007444
35.10651
success
0.086278
0.000001
under-trained
4,032
0.007444
0.00377
43
model.layers.6.mlp.gate_proj
0.069643
4,096
14,336
3.5
5.839907
-11.692018
1.561022
true
0.009952
dense
-11.543849
-0.621106
-2.00209
64
0.239273
4,096
26
4,032
1
0.949184
0.009952
24.042736
success
0.09976
0.000001
4,032
0.009952
0.003457
44
model.layers.6.mlp.up_proj
0.071441
4,096
14,336
3.5
5.83869
-11.695706
1.56181
true
0.009928
dense
-11.448427
-0.575978
-2.003139
64
0.265474
4,096
23
4,032
1
1.008937
0.009928
26.739985
success
0.099639
0.000001
4,032
0.009928
0.003958
45
model.layers.6.self_attn.k_proj
0.053588
1,024
4,096
4
6.589289
-17.636502
1.133221
true
0.002106
dense
-17.076734
-1.121298
-2.676541
64
0.075631
1,024
64
960
1
0.698661
0.002106
35.912281
success
0.045891
0.000001
under-trained
960
0.002106
0.000972
46
model.layers.6.self_attn.o_proj
0.028815
4,096
4,096
1
6.851371
-16.127938
1.564554
true
0.004426
dense
-15.613682
-0.798362
-2.353972
64
0.159088
4,096
64
4,032
1
0.731421
0.004426
35.942707
success
0.066529
0
under-trained
4,032
0.004426
0.002065
47
model.layers.6.self_attn.q_proj
0.045633
4,096
4,096
1
6.070915
-14.817944
1.562566
true
0.003624
dense
-14.683584
-1.024928
-2.440809
64
0.094422
4,096
64
4,032
1
0.633864
0.003624
26.054392
success
0.0602
0
under-trained
4,032
0.003624
0.001186
48
model.layers.6.self_attn.v_proj
0.04742
1,024
4,096
4
10.374022
-27.161139
1.135434
true
0.002409
dense
-26.936849
-1.031026
-2.618188
64
0.093105
1,024
20
960
1
2.096095
0.002409
38.65107
success
0.04908
0.000001
under-trained
960
0.002409
0.001501
49
model.layers.7.mlp.down_proj
0.063456
4,096
14,336
3.5
15.614345
-33.627184
1.567221
true
0.007021
dense
-33.590977
-0.559208
-2.153608
64
0.275926
4,096
64
4,032
1
1.826793
0.007021
39.300701
success
0.083791
0.000001
under-trained
4,032
0.007021
0.004009
50
model.layers.7.mlp.gate_proj
0.054805
4,096
14,336
3.5
5.579458
-11.013746
1.561041
true
0.010617
dense
-10.847327
-0.592793
-1.973981
64
0.255392
4,096
21
4,032
1
0.99932
0.010617
24.05406
success
0.103041
0.000001
4,032
0.010617
0.003834
51
model.layers.7.mlp.up_proj
0.063687
4,096
14,336
3.5
5.60456
-11.151875
1.562231
true
0.010238
dense
-10.824994
-0.543541
-1.989786
64
0.286062
4,096
19
4,032
1
1.056359
0.010238
27.941221
success
0.101183
0.000001
4,032
0.010238
0.004375
52
model.layers.7.self_attn.k_proj
0.095712
1,024
4,096
4
10.705249
-27.8816
1.133918
true
0.002486
dense
-27.546094
-1.011718
-2.604479
64
0.097338
1,024
18
960
1
2.287549
0.002486
39.152649
success
0.049861
0.000001
under-trained
960
0.002486
0.001678
53
model.layers.7.self_attn.o_proj
0.065757
4,096
4,096
1
11.30707
-27.335589
1.566889
true
0.003823
dense
-26.685796
-0.751225
-2.417566
64
0.177327
4,096
25
4,032
1
2.061414
0.003823
46.381084
success
0.061833
0
under-trained
4,032
0.003823
0.002786
54
model.layers.7.self_attn.q_proj
0.025897
4,096
4,096
1
7.524983
-17.814964
1.563334
true
0.004291
dense
-17.77534
-0.956906
-2.367442
64
0.110432
4,096
39
4,032
1
1.044834
0.004291
25.73575
success
0.065506
0
under-trained
4,032
0.004291
0.001579
55
model.layers.7.self_attn.v_proj
0.073396
1,024
4,096
4
15.267755
-41.123873
1.13667
true
0.002025
dense
-40.442663
-0.988075
-2.693511
64
0.102784
1,024
26
960
1
2.798137
0.002025
50.750072
success
0.045003
0.000001
under-trained
960
0.002025
0.001623
56
model.layers.8.mlp.down_proj
0.066821
4,096
14,336
3.5
14.244871
-30.541354
1.567048
true
0.007178
dense
-30.44064
-0.543448
-2.144025
64
0.286123
4,096
64
4,032
1
1.655609
0.007178
39.863625
success
0.08472
0.000001
under-trained
4,032
0.007178
0.004125
57
model.layers.8.mlp.gate_proj
0.057102
4,096
14,336
3.5
5.478192
-10.632148
1.56052
true
0.01146
dense
-10.447779
-0.562441
-1.940813
64
0.273879
4,096
22
4,032
1
0.954754
0.01146
23.898603
success
0.107052
0.000001
4,032
0.01146
0.00408
58
model.layers.8.mlp.up_proj
0.052789
4,096
14,336
3.5
5.877397
-11.587908
1.562137
true
0.010676
dense
-11.257199
-0.517431
-1.971605
64
0.303787
4,096
25
4,032
1
0.975479
0.010676
28.456011
success
0.103323
0.000001
4,032
0.010676
0.004476
59
model.layers.8.self_attn.k_proj
0.064081
1,024
4,096
4
6.659156
-17.477803
1.132918
true
0.002373
dense
-16.862688
-1.065404
-2.624627
64
0.086019
1,024
64
960
1
0.707395
0.002373
36.242973
success
0.048718
0.000001
under-trained
960
0.002373
0.001107
60
model.layers.8.self_attn.o_proj
0.050797
4,096
4,096
1
9.906003
-23.957714
1.566807
true
0.003815
dense
-23.247362
-0.75672
-2.418505
64
0.175098
4,096
39
4,032
1
1.426102
0.003815
45.897057
success
0.061766
0
under-trained
4,032
0.003815
0.002583
61
model.layers.8.self_attn.q_proj
0.064969
4,096
4,096
1
6.653043
-16.193501
1.563653
true
0.003681
dense
-16.003354
-0.962644
-2.433999
64
0.108982
4,096
40
4,032
1
0.893825
0.003681
29.604328
success
0.060674
0
under-trained
4,032
0.003681
0.001538
62
model.layers.8.self_attn.v_proj
0.035499
1,024
4,096
4
12.053037
-31.042204
1.135992
true
0.002658
dense
-30.961366
-0.991929
-2.575467
64
0.101876
1,024
28
960
1
2.088828
0.002658
38.329998
success
0.051554
0.000001
under-trained
960
0.002658
0.001577
63
model.layers.9.mlp.down_proj
0.044913
4,096
14,336
3.5
15.129803
-32.638446
1.567325
true
0.006963
dense
-32.531992
-0.537594
-2.157229
64
0.290005
4,096
64
4,032
1
1.766225
0.006963
41.651878
success
0.083442
0.000001
under-trained
4,032
0.006963
0.004205
64
model.layers.9.mlp.gate_proj
0.05434
4,096
14,336
3.5
5.696961
-11.08356
1.561272
true
0.011336
dense
-10.893989
-0.545201
-1.945521
64
0.28497
4,096
24
4,032
1
0.958763
0.011336
25.137403
success
0.106473
0.000001
4,032
0.011336
0.004224
65
model.layers.9.mlp.up_proj
0.043738
4,096
14,336
3.5
6.431358
-12.675255
1.562701
true
0.010694
dense
-12.390135
-0.503689
-1.970852
64
0.313553
4,096
37
4,032
1
0.89291
0.010694
29.319954
success
0.103413
0.000001
under-trained
4,032
0.010694
0.00438
66
model.layers.9.self_attn.k_proj
0.064809
1,024
4,096
4
6.66346
-16.885243
1.134151
true
0.002924
dense
-16.205545
-0.939375
-2.534005
64
0.114981
1,024
46
960
1
0.835032
0.002924
39.32151
success
0.054075
0.000001
under-trained
960
0.002924
0.001582
67
model.layers.9.self_attn.o_proj
0.044989
4,096
4,096
1
11.027726
-26.397476
1.567061
true
0.004039
dense
-25.734566
-0.722971
-2.393737
64
0.189247
4,096
37
4,032
1
1.648548
0.004039
46.85614
success
0.063552
0
under-trained
4,032
0.004039
0.002835
68
model.layers.9.self_attn.q_proj
0.041058
4,096
4,096
1
8.645273
-20.432758
1.564777
true
0.004331
dense
-20.36518
-0.882691
-2.36346
64
0.131011
4,096
27
4,032
1
1.471333
0.004331
30.253063
success
0.065807
0
under-trained
4,032
0.004331
0.002014
69
model.layers.9.self_attn.v_proj
0.048063
1,024
4,096
4
17.18794
-45.376271
1.136577
true
0.002291
dense
-45.223033
-0.980125
-2.640006
64
0.104683
1,024
18
960
1
3.815534
0.002291
45.696308
success
0.047863
0.000001
under-trained
960
0.002291
0.001711
70
model.layers.10.mlp.down_proj
0.057979
4,096
14,336
3.5
13.5763
-29.123454
1.56707
true
0.007159
dense
-28.963528
-0.534644
-2.145169
64
0.291982
4,096
64
4,032
1
1.572037
0.007159
40.787243
success
0.084609
0.000001
under-trained
4,032
0.007159
0.004192
71
model.layers.10.mlp.gate_proj
0.047552
4,096
14,336
3.5
5.482743
-10.2929
1.558314
true
0.013264
dense
-10.129917
-0.529934
-1.877327
64
0.295166
4,096
38
4,032
1
0.727197
0.013264
22.253223
success
0.115169
0.000001
4,032
0.013264
0.00397
72
model.layers.10.mlp.up_proj
0.054996
4,096
14,336
3.5
6.165837
-11.655581
1.559779
true
0.012872
dense
-11.462149
-0.498474
-1.890349
64
0.317341
4,096
51
4,032
1
0.723362
0.012872
24.653248
success
0.113456
0.000001
under-trained
4,032
0.012872
0.004137
73
model.layers.10.self_attn.k_proj
0.050952
1,024
4,096
4
6.928386
-17.629741
1.133472
true
0.002854
dense
-17.102107
-0.987223
-2.544567
64
0.102986
1,024
63
960
1
0.746906
0.002854
36.08643
success
0.053422
0.000001
under-trained
960
0.002854
0.001342
74
model.layers.10.self_attn.o_proj
0.039311
4,096
4,096
1
8.08292
-17.884937
1.564299
true
0.006128
dense
-17.605788
-0.702513
-2.212683
64
0.198375
4,096
60
4,032
1
0.914401
0.006128
32.37204
success
0.078281
0
under-trained
4,032
0.006128
0.002677
75
model.layers.10.self_attn.q_proj
0.060079
4,096
4,096
1
8.799813
-21.045494
1.564504
true
0.004059
dense
-20.972091
-0.900797
-2.391584
64
0.125662
4,096
23
4,032
1
1.626373
0.004059
30.95904
success
0.06371
0
under-trained
4,032
0.004059
0.002024
76
model.layers.10.self_attn.v_proj
0.044839
1,024
4,096
4
11.125341
-28.627597
1.135937
true
0.002672
dense
-28.327318
-0.957065
-2.573188
64
0.110391
1,024
38
960
1
1.642547
0.002672
41.316521
success
0.05169
0.000001
under-trained
960
0.002672
0.001649
77
model.layers.11.mlp.down_proj
0.056991
4,096
14,336
3.5
12.935681
-27.08163
1.566674
true
0.008062
dense
-27.024306
-0.530032
-2.09356
64
0.2951
4,096
64
4,032
1
1.49196
0.008062
36.604042
success
0.089788
0.000001
under-trained
4,032
0.008062
0.004213
78
model.layers.11.mlp.gate_proj
0.050258
4,096
14,336
3.5
5.273043
-10.023329
1.559382
true
0.012564
dense
-9.778413
-0.518389
-1.900863
64
0.303117
4,096
24
4,032
1
0.872231
0.012564
24.125341
success
0.11209
0.000001
4,032
0.012564
0.004489
79
model.layers.11.mlp.up_proj
0.044841
4,096
14,336
3.5
6.025806
-11.473937
1.560522
true
0.01247
dense
-11.245172
-0.493493
-1.904133
64
0.321001
4,096
43
4,032
1
0.766428
0.01247
25.741854
success
0.111669
0.000001
under-trained
4,032
0.01247
0.004309
80
model.layers.11.self_attn.k_proj
0.060456
1,024
4,096
4
6.757037
-17.235079
1.134413
true
0.002814
dense
-16.415399
-0.930107
-2.550686
64
0.117461
1,024
53
960
1
0.79079
0.002814
41.742561
success
0.053047
0.000001
under-trained
960
0.002814
0.001579
81
model.layers.11.self_attn.o_proj
0.032158
4,096
4,096
1
11.158902
-26.44295
1.567071
true
0.004269
dense
-26.008332
-0.724837
-2.369673
64
0.188435
4,096
41
4,032
1
1.586554
0.004269
44.140343
success
0.065338
0
under-trained
4,032
0.004269
0.002785
82
model.layers.11.self_attn.q_proj
0.045011
4,096
4,096
1
9.484317
-22.596014
1.565531
true
0.004145
dense
-22.532848
-0.872075
-2.382461
64
0.134253
4,096
24
4,032
1
1.731854
0.004145
32.388157
success
0.064383
0
under-trained
4,032
0.004145
0.002107
83
model.layers.11.self_attn.v_proj
0.101216
1,024
4,096
4
15.683077
-41.547668
1.136782
true
0.002243
dense
-40.842064
-0.936095
-2.649204
64
0.115852
1,024
26
960
1
2.879588
0.002243
51.654556
success
0.047359
0.000001
under-trained
960
0.002243
0.001827
84
model.layers.12.mlp.down_proj
0.032652
4,096
14,336
3.5
14.15541
-30.704631
1.567403
true
0.006775
dense
-30.458001
-0.529252
-2.169109
64
0.295629
4,096
64
4,032
1
1.644426
0.006775
43.637211
success
0.082309
0.000001
under-trained
4,032
0.006775
0.004265
85
model.layers.12.mlp.gate_proj
0.03655
4,096
14,336
3.5
5.6251
-10.731252
1.560177
true
0.012367
dense
-10.539884
-0.521513
-1.907744
64
0.300945
4,096
33
4,032
1
0.805127
0.012367
24.334984
success
0.111206
0.000001
4,032
0.012367
0.004206
86
model.layers.12.mlp.up_proj
0.043853
4,096
14,336
3.5
5.902476
-11.456355
1.562021
true
0.011457
dense
-11.172447
-0.496813
-1.94094
64
0.318557
4,096
29
4,032
1
0.910367
0.011457
27.805277
success
0.107036
0.000001
4,032
0.011457
0.004585
87
model.layers.12.self_attn.k_proj
0.090697
1,024
4,096
4
5.803976
-14.697743
1.134736
true
0.002935
dense
-13.539768
-0.862901
-2.532357
64
0.13712
1,024
64
960
1
0.600497
0.002935
46.715065
success
0.054178
0.000001
960
0.002935
0.00172
88
model.layers.12.self_attn.o_proj
0.072164
4,096
4,096
1
12.682624
-30.576485
1.567453
true
0.003882
dense
-29.915394
-0.720165
-2.410896
64
0.190474
4,096
37
4,032
1
1.920612
0.003882
49.060402
success
0.062309
0
under-trained
4,032
0.003882
0.002876
89
model.layers.12.self_attn.q_proj
0.055156
4,096
4,096
1
10.762409
-25.686382
1.566173
true
0.004105
dense
-25.603435
-0.833243
-2.386676
64
0.146811
4,096
19
4,032
1
2.23965
0.004105
35.762928
success
0.064071
0
under-trained
4,032
0.004105
0.00238
90
model.layers.12.self_attn.v_proj
0.11485
1,024
4,096
4
11.876877
-31.77564
1.13691
true
0.002111
dense
-30.658707
-0.940515
-2.675421
64
0.114679
1,024
52
960
1
1.508351
0.002111
54.313255
success
0.04595
0.000001
under-trained
960
0.002111
0.001665
91
model.layers.13.mlp.down_proj
0.036343
4,096
14,336
3.5
12.125812
-25.628331
1.566873
true
0.0077
dense
-25.49984
-0.521349
-2.113535
64
0.301058
4,096
64
4,032
1
1.390727
0.0077
39.100815
success
0.087747
0.000001
under-trained
4,032
0.0077
0.004275
92
model.layers.13.mlp.gate_proj
0.032849
4,096
14,336
3.5
5.366135
-10.105797
1.559179
true
0.013084
dense
-9.888976
-0.506566
-1.883254
64
0.311483
4,096
36
4,032
1
0.727689
0.013084
23.80612
success
0.114386
0.000001
4,032
0.013084
0.004238
93
model.layers.13.mlp.up_proj
0.037365
4,096
14,336
3.5
5.362235
-10.155244
1.560663
true
0.012769
dense
-9.899726
-0.488475
-1.893845
64
0.324732
4,096
26
4,032
1
0.855505
0.012769
25.431419
success
0.113
0.000001
4,032
0.012769
0.00471
94
model.layers.13.self_attn.k_proj
0.055607
1,024
4,096
4
7.153452
-18.283749
1.133874
true
0.00278
dense
-17.556995
-0.957891
-2.555934
64
0.110182
1,024
59
960
1
0.801111
0.00278
39.631744
success
0.052727
0.000001
under-trained
960
0.00278
0.001462
95
model.layers.13.self_attn.o_proj
0.040657
4,096
4,096
1
10.363712
-23.618383
1.566533
true
0.005261
dense
-23.320876
-0.681243
-2.27895
64
0.208332
4,096
46
4,032
1
1.380604
0.005261
39.601051
success
0.072531
0
under-trained
4,032
0.005261
0.003017
96
model.layers.13.self_attn.q_proj
0.046576
4,096
4,096
1
9.668471
-22.784899
1.565295
true
0.004399
dense
-22.73273
-0.851471
-2.356619
64
0.140776
4,096
20
4,032
1
1.938329
0.004399
31.999794
success
0.066327
0
under-trained
4,032
0.004399
0.002285
97
model.layers.13.self_attn.v_proj
0.069671
1,024
4,096
4
20.504022
-53.933001
1.136864
true
0.002342
dense
-53.52314
-0.922778
-2.630362
64
0.11946
1,024
19
960
1
4.47453
0.002342
51.001656
success
0.048397
0.000001
under-trained
960
0.002342
0.001942
98
model.layers.14.mlp.down_proj
0.032288
4,096
14,336
3.5
10.464349
-21.796519
1.566664
true
0.008262
dense
-21.630572
-0.50299
-2.082931
64
0.314058
4,096
34
4,032
1
1.623122
0.008262
38.013767
success
0.090894
0.000001
under-trained
4,032
0.008262
0.004672
99
model.layers.14.mlp.gate_proj
0.039619
4,096
14,336
3.5
5.266263
-9.813683
1.55907
true
0.013693
dense
-9.606431
-0.497325
-1.8635
64
0.318182
4,096
31
4,032
1
0.766243
0.013693
23.236776
success
0.117017
0.000001
4,032
0.013693
0.004443

No dataset card yet

New: Create and edit this dataset card directly on the website!

Contribute a Dataset Card
Downloads last month
12
Add dataset card