File size: 40,957 Bytes
c6346bb 31312e4 c6346bb 75b0fc2 c6346bb c7691bd c6346bb c7691bd c6346bb 009cdd3 31312e4 009cdd3 c6346bb 1a85f63 f88c6c5 b3f7bba e9c817b 7395ac7 6b6ce01 85300cd 009cdd3 6b6ce01 7395ac7 e9c817b 85300cd e9c817b 914cd5a 1f01930 e9c817b 85300cd f88c6c5 7395ac7 914cd5a 85300cd b19beee 6b6ce01 b0c34ba 1a85f63 572dea1 85300cd 1a85f63 85300cd b0c34ba 6b6ce01 572dea1 85300cd 914cd5a 009cdd3 c7691bd 009cdd3 a30c920 009cdd3 b3f7bba dac0ace a30c920 914cd5a 8e99545 0113a7a 85300cd 0113a7a 009cdd3 1a85f63 009cdd3 e04f5f0 009cdd3 be9ddcf 009cdd3 8e99545 009cdd3 8e99545 85300cd 8e99545 85300cd 8e99545 009cdd3 8e99545 009cdd3 85300cd 914cd5a 85300cd c7691bd 009cdd3 c7691bd 009cdd3 e04f5f0 009cdd3 914cd5a b3f7bba ba7196e b9f4ac2 3f2aaa8 a30c920 85300cd 3f2aaa8 b9f4ac2 1a85f63 be9ddcf 1a85f63 3f2aaa8 1a85f63 914cd5a b9f4ac2 85300cd 8e99545 85300cd 8e99545 85300cd 0113a7a 8e99545 009cdd3 e04f5f0 009cdd3 e04f5f0 be9ddcf 009cdd3 8e99545 85300cd 0113a7a 85300cd 0113a7a 85300cd 0113a7a e04f5f0 df63358 85300cd 7395ac7 85300cd 009cdd3 1f01930 06c113f 0113a7a 06c113f e9c817b 1f01930 8e99545 e04f5f0 009cdd3 dac0ace e9c817b 85300cd e9c817b 85300cd 8e99545 85300cd 1f01930 85300cd 1f01930 85300cd 009cdd3 06c113f 8e99545 06c113f 85300cd 06c113f 6b6ce01 009cdd3 6b6ce01 009cdd3 3f2aaa8 009cdd3 6b6ce01 dac0ace 6b6ce01 8e99545 6b6ce01 8e99545 6b6ce01 7395ac7 009cdd3 e04f5f0 009cdd3 7395ac7 b3f7bba 6b6ce01 ba7196e 6b6ce01 009cdd3 8e99545 7395ac7 6b6ce01 7395ac7 b3f7bba 7395ac7 b3f7bba 0113a7a b3f7bba 0113a7a b3f7bba 6b6ce01 0113a7a b3f7bba 7395ac7 b3f7bba 6b6ce01 7395ac7 b3f7bba 7395ac7 6b6ce01 6f701a4 7395ac7 6f701a4 7395ac7 b3f7bba 7395ac7 b3f7bba 7395ac7 dac0ace 7395ac7 8e99545 e04f5f0 009cdd3 8e99545 3f2aaa8 7395ac7 c362437 06c113f 0113a7a c362437 6b6ce01 b3f7bba 572dea1 1a85f63 572dea1 6b6ce01 ba7196e 6b6ce01 ba7196e 6b6ce01 7395ac7 8e99545 b19beee 85300cd 009cdd3 b19beee c7691bd 009cdd3 c096080 b19beee 009cdd3 b19beee 009cdd3 b19beee c096080 b19beee 009cdd3 85300cd 8e99545 85300cd af22a0d c7691bd af22a0d 009cdd3 af22a0d 009cdd3 f88c6c5 009cdd3 af22a0d 1a85f63 8e99545 e04f5f0 009cdd3 8e99545 009cdd3 85300cd 009cdd3 e04f5f0 009cdd3 b9f4ac2 009cdd3 85300cd 009cdd3 85300cd 009cdd3 85300cd 009cdd3 85300cd 009cdd3 85300cd f88c6c5 85300cd f88c6c5 85300cd f88c6c5 85300cd f88c6c5 85300cd f88c6c5 85300cd f88c6c5 85300cd 009cdd3 85300cd 8e99545 e9c817b 85300cd e9c817b 85300cd e9c817b 85300cd e9c817b 85300cd e9c817b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 |
"""This section describes unitxt loaders.
Loaders: Generators of Unitxt Multistreams from existing date sources
=====================================================================
Unitxt is all about readily preparing of any given data source for feeding into any given language model, and then,
post-processing the model's output, preparing it for any given evaluator.
Through that journey, the data advances in the form of Unitxt Multistream, undergoing a sequential application
of various off-the-shelf operators (i.e., picked from Unitxt catalog), or operators easily implemented by inheriting.
The journey starts by a Unitxt Loader bearing a Multistream from the given datasource.
A loader, therefore, is the first item on any Unitxt Recipe.
Unitxt catalog contains several loaders for the most popular datasource formats.
All these loaders inherit from Loader, and hence, implementing a loader to expand over a new type of datasource is
straightforward.
Available Loaders Overview:
- :class:`LoadHF <unitxt.loaders.LoadHF>` - Loads data from HuggingFace Datasets.
- :class:`LoadCSV <unitxt.loaders.LoadCSV>` - Imports data from CSV (Comma-Separated Values) files.
- :class:`LoadFromKaggle <unitxt.loaders.LoadFromKaggle>` - Retrieves datasets from the Kaggle community site.
- :class:`LoadFromIBMCloud <unitxt.loaders.LoadFromIBMCloud>` - Fetches datasets hosted on IBM Cloud.
- :class:`LoadFromSklearn <unitxt.loaders.LoadFromSklearn>` - Loads datasets available through the sklearn library.
- :class:`MultipleSourceLoader <unitxt.loaders.MultipleSourceLoader>` - Combines data from multiple different sources.
- :class:`LoadFromDictionary <unitxt.loaders.LoadFromDictionary>` - Loads data from a user-defined Python dictionary.
- :class:`LoadFromHFSpace <unitxt.loaders.LoadFromHFSpace>` - Downloads and loads data from HuggingFace Spaces.
------------------------
"""
import fnmatch
import itertools
import json
import os
import tempfile
import time
from abc import abstractmethod
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import (
Any,
Dict,
Generator,
Iterable,
List,
Literal,
Mapping,
Optional,
Sequence,
Union,
)
import pandas as pd
import requests
from datasets import (
DatasetDict,
DownloadConfig,
IterableDataset,
IterableDatasetDict,
get_dataset_split_names,
)
from datasets import load_dataset as _hf_load_dataset
from huggingface_hub import HfApi
from tqdm import tqdm
from .dataclass import NonPositionalField
from .error_utils import UnitxtError, UnitxtWarning
from .fusion import FixedFusion
from .logging_utils import get_logger
from .operator import SourceOperator
from .operators import Set
from .settings_utils import get_settings
from .stream import DynamicStream, MultiStream
from .type_utils import isoftype
from .utils import LRUCache, recursive_copy
logger = get_logger()
settings = get_settings()
def hf_load_dataset(path: str, *args, **kwargs):
if settings.hf_offline_datasets_path is not None:
path = os.path.join(settings.hf_offline_datasets_path, path)
return _hf_load_dataset(
path,
*args, **kwargs,
download_config=DownloadConfig(
max_retries=settings.loaders_max_retries,
),
verification_mode="no_checks",
trust_remote_code=settings.allow_unverified_code,
download_mode= "force_redownload" if settings.disable_hf_datasets_cache else "reuse_dataset_if_exists"
)
class Loader(SourceOperator):
"""A base class for all loaders.
A loader is the first component in the Unitxt Recipe,
responsible for loading data from various sources and preparing it as a MultiStream for processing.
The loader_limit is an optional parameter used to control the maximum number of instances to load from the data source. It is applied for each split separately.
It is usually provided to the loader via the recipe (see standard.py)
The loader can use this value to limit the amount of data downloaded from the source
to reduce loading time. However, this may not always be possible, so the
loader may ignore this. In any case, the recipe, will limit the number of instances in the returned
stream, after load is complete.
Args:
loader_limit: Optional integer to specify a limit on the number of records to load.
streaming: Bool indicating if streaming should be used.
num_proc: Optional integer to specify the number of processes to use for parallel dataset loading. Adjust the value according to the number of CPU cores available and the specific needs of your processing task.
"""
loader_limit: int = None
streaming: bool = False
num_proc: int = None
# class level shared cache:
_loader_cache = LRUCache(max_size=settings.loader_cache_size)
def get_limit(self) -> int:
if settings.global_loader_limit is not None and self.loader_limit is not None:
return min(int(settings.global_loader_limit), self.loader_limit)
if settings.global_loader_limit is not None:
return int(settings.global_loader_limit)
return self.loader_limit
def get_limiter(self):
if settings.global_loader_limit is not None and self.loader_limit is not None:
if int(settings.global_loader_limit) > self.loader_limit:
return f"{self.__class__.__name__}.loader_limit"
return "unitxt.settings.global_loader_limit"
if settings.global_loader_limit is not None:
return "unitxt.settings.global_loader_limit"
return f"{self.__class__.__name__}.loader_limit"
def log_limited_loading(self):
if not hasattr(self, "_already_logged_limited_loading") or not self._already_logged_limited_loading:
self._already_logged_limited_loading = True
logger.info(
f"\nLoading limited to {self.get_limit()} instances by setting {self.get_limiter()};"
)
def add_data_classification(self, multi_stream: MultiStream) -> MultiStream:
if self.data_classification_policy is None:
get_logger().warning(
f"The {self.get_pretty_print_name()} loader does not set the `data_classification_policy`. "
f"This may lead to sending of undesired data to external services.\n"
f"Set it to a list of classification identifiers. \n"
f"For example:\n"
f"data_classification_policy = ['public']\n"
f" or \n"
f"data_classification_policy =['confidential','pii'])\n"
)
operator = Set(
fields={"data_classification_policy": self.data_classification_policy}
)
return operator(multi_stream)
def set_default_data_classification(
self, default_data_classification_policy, additional_info
):
if self.data_classification_policy is None:
if additional_info is not None:
logger.info(
f"{self.get_pretty_print_name()} sets 'data_classification_policy' to "
f"{default_data_classification_policy} by default {additional_info}.\n"
"To use a different value or remove this message, explicitly set the "
"`data_classification_policy` attribute of the loader.\n"
)
self.data_classification_policy = default_data_classification_policy
@abstractmethod
def load_iterables(self) -> Dict[str, Iterable]:
pass
def _maybe_set_classification_policy(self):
pass
def load_data(self) -> MultiStream:
try:
iterables = self.load_iterables()
except Exception as e:
raise UnitxtError(f"Error in loader:\n{self}") from e
if isoftype(iterables, MultiStream):
return iterables
return MultiStream.from_iterables(iterables, copying=True)
def process(self) -> MultiStream:
self._maybe_set_classification_policy()
return self.add_data_classification(self.load_data())
def get_splits(self):
return list(self().keys())
class LazyLoader(Loader):
split: Optional[str] = NonPositionalField(default=None)
@abstractmethod
def get_splits(self) -> List[str]:
pass
@abstractmethod
def split_generator(self, split: str) -> Generator:
pass
def load_iterables(self) -> Union[Dict[str, DynamicStream], IterableDatasetDict]:
if self.split is not None:
splits = [self.split]
else:
splits = self.get_splits()
return MultiStream({
split: DynamicStream(self.split_generator, gen_kwargs={"split": split})
for split in splits
})
class LoadHF(LazyLoader):
"""Loads datasets from the HuggingFace Hub.
It supports loading with or without streaming,
and it can filter datasets upon loading.
Args:
path:
The path or identifier of the dataset on the HuggingFace Hub.
name:
An optional dataset name.
data_dir:
Optional directory to store downloaded data.
split:
Optional specification of which split to load.
data_files:
Optional specification of particular data files to load.
revision:
Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version.
streaming (bool):
indicating if streaming should be used.
filtering_lambda (str, optional):
A lambda function for filtering the data after loading.
num_proc (int, optional):
Specifies the number of processes to use for parallel dataset loading.
Example:
Loading glue's mrpc dataset
.. code-block:: python
load_hf = LoadHF(path='glue', name='mrpc')
"""
path: str
name: Optional[str] = None
data_dir: Optional[str] = None
split: Optional[str] = None
data_files: Optional[
Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
] = None
revision: Optional[str] = None
streaming: bool = None
filtering_lambda: Optional[str] = None
num_proc: Optional[int] = None
splits: Optional[List[str]] = None
def filter_load(self, dataset: DatasetDict):
if not settings.allow_unverified_code:
raise ValueError(
f"{self.__class__.__name__} cannot run use filtering_lambda expression without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE=True."
)
logger.info(f"\nLoading filtered by: {self.filtering_lambda};")
return dataset.filter(eval(self.filtering_lambda))
def is_streaming(self) -> bool:
if self.streaming is None:
return settings.stream_hf_datasets_by_default
return self.streaming
# returns Dict when split names are not known in advance, and just the the single split dataset - if known
def load_dataset(
self, split: str, streaming=None, disable_memory_caching=False
) -> Union[IterableDatasetDict, IterableDataset]:
dataset_id = str(self) + "_" + str(split)
dataset = self.__class__._loader_cache.get(dataset_id, None)
if dataset is None:
if streaming is None:
streaming = self.is_streaming()
try:
dataset = hf_load_dataset(
self.path,
name=self.name,
data_dir=self.data_dir,
data_files=self.data_files,
revision=self.revision,
streaming=streaming,
split=split,
num_proc=self.num_proc,
)
except ValueError as e:
if "trust_remote_code" in str(e):
raise ValueError(
f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
) from e
self.__class__._loader_cache.max_size = settings.loader_cache_size
if not disable_memory_caching:
self.__class__._loader_cache[dataset_id] = dataset
return self.__class__._loader_cache[dataset_id]
def _maybe_set_classification_policy(self):
if os.path.exists(self.path):
self.set_default_data_classification(
["proprietary"], "when loading from local files"
)
else:
self.set_default_data_classification(
["public"],
None, # No warning when loading from public hub
)
def get_splits(self):
if self.splits is not None:
return self.splits
try:
return get_dataset_split_names(
path=self.path,
config_name=self.name,
trust_remote_code=settings.allow_unverified_code,
download_config=DownloadConfig(
max_retries=settings.loaders_max_retries,
extract_on_the_fly=True,
),
)
except:
UnitxtWarning(
f'LoadHF(path="{self.path}", name="{self.name}") could not retrieve split names without loading the dataset. Consider defining "splits" in the LoadHF definition to improve loading time.'
)
try:
dataset = self.load_dataset(
split=None, disable_memory_caching=True, streaming=True
)
except (
NotImplementedError
): # streaming is not supported for zipped files so we load without streaming
dataset = self.load_dataset(split=None, streaming=False)
return list(dataset.keys())
def split_generator(self, split: str) -> Generator:
if self.get_limit() is not None:
self.log_limited_loading()
try:
dataset = self.load_dataset(split=split)
except (
NotImplementedError
): # streaming is not supported for zipped files so we load without streaming
dataset = self.load_dataset(split=split, streaming=False)
if self.filtering_lambda is not None:
dataset = self.filter_load(dataset)
limit = self.get_limit()
if limit is None:
yield from dataset
else:
for i, instance in enumerate(dataset):
yield instance
if i + 1 >= limit:
break
class LoadCSV(LazyLoader):
"""Loads data from CSV files.
Supports streaming and can handle large files by loading them in chunks.
Args:
files (Dict[str, str]): A dictionary mapping names to file paths.
chunksize : Size of the chunks to load at a time.
loader_limit: Optional integer to specify a limit on the number of records to load.
streaming: Bool indicating if streaming should be used.
sep: String specifying the separator used in the CSV files.
Example:
Loading csv
.. code-block:: python
load_csv = LoadCSV(files={'train': 'path/to/train.csv'}, chunksize=100)
"""
files: Dict[str, str]
chunksize: int = 1000
loader_limit: Optional[int] = None
streaming: bool = True
sep: str = ","
compression: Optional[str] = None
lines: Optional[bool] = None
file_type: Literal["csv", "json"] = "csv"
def _maybe_set_classification_policy(self):
self.set_default_data_classification(
["proprietary"], "when loading from local files"
)
def get_reader(self):
if self.file_type == "csv":
return pd.read_csv
if self.file_type == "json":
return pd.read_json
raise ValueError()
def get_args(self):
args = {}
if self.file_type == "csv":
args["sep"] = self.sep
args["low_memory"] = self.streaming
if self.compression is not None:
args["compression"] = self.compression
if self.lines is not None:
args["lines"] = self.lines
if self.get_limit() is not None:
args["nrows"] = self.get_limit()
return args
def get_splits(self) -> List[str]:
return list(self.files.keys())
def split_generator(self, split: str) -> Generator:
dataset_id = str(self) + "_" + split
dataset = self.__class__._loader_cache.get(dataset_id, None)
if dataset is None:
if self.get_limit() is not None:
self.log_limited_loading()
for attempt in range(settings.loaders_max_retries):
try:
reader = self.get_reader()
if self.get_limit() is not None:
self.log_limited_loading()
try:
dataset = reader(self.files[split], **self.get_args()).to_dict(
"records"
)
except ValueError:
import fsspec
with fsspec.open(self.files[split], mode="rt") as f:
dataset = reader(f, **self.get_args()).to_dict("records")
except Exception as e:
logger.debug(f"Attempt csv load {attempt + 1} failed: {e}")
if attempt < settings.loaders_max_retries - 1:
time.sleep(2)
else:
raise e
self.__class__._loader_cache.max_size = settings.loader_cache_size
self.__class__._loader_cache[dataset_id] = dataset
for instance in self.__class__._loader_cache[dataset_id]:
yield recursive_copy(instance)
class LoadFromSklearn(LazyLoader):
"""Loads datasets from the sklearn library.
This loader does not support streaming and is intended for use with sklearn's dataset fetch functions.
Args:
dataset_name: The name of the sklearn dataset to fetch.
splits: A list of data splits to load, e.g., ['train', 'test'].
Example:
Loading form sklearn
.. code-block:: python
load_sklearn = LoadFromSklearn(dataset_name='iris', splits=['train', 'test'])
"""
dataset_name: str
splits: List[str] = ["train", "test"]
_requirements_list: List[str] = ["scikit-learn", "pandas"]
data_classification_policy = ["public"]
def verify(self):
super().verify()
if self.streaming:
raise NotImplementedError("LoadFromSklearn cannot load with streaming.")
def prepare(self):
super().prepare()
from sklearn import datasets as sklearn_datatasets
self.downloader = getattr(sklearn_datatasets, f"fetch_{self.dataset_name}")
def get_splits(self):
return self.splits
def split_generator(self, split: str) -> Generator:
dataset_id = str(self) + "_" + split
dataset = self.__class__._loader_cache.get(dataset_id, None)
if dataset is None:
split_data = self.downloader(subset=split)
targets = [split_data["target_names"][t] for t in split_data["target"]]
df = pd.DataFrame([split_data["data"], targets]).T
df.columns = ["data", "target"]
dataset = df.to_dict("records")
self.__class__._loader_cache.max_size = settings.loader_cache_size
self.__class__._loader_cache[dataset_id] = dataset
for instance in self.__class__._loader_cache[dataset_id]:
yield recursive_copy(instance)
class MissingKaggleCredentialsError(ValueError):
pass
class LoadFromKaggle(Loader):
"""Loads datasets from Kaggle.
Requires Kaggle API credentials and does not support streaming.
Args:
url: URL to the Kaggle dataset.
Example:
Loading from kaggle
.. code-block:: python
load_kaggle = LoadFromKaggle(url='kaggle.com/dataset/example')
"""
url: str
_requirements_list: List[str] = ["opendatasets"]
data_classification_policy = ["public"]
def verify(self):
super().verify()
if not os.path.isfile("kaggle.json"):
raise MissingKaggleCredentialsError(
"Please obtain kaggle credentials https://christianjmills.com/posts/kaggle-obtain-api-key-tutorial/ and save them to local ./kaggle.json file"
)
if self.streaming:
raise NotImplementedError("LoadFromKaggle cannot load with streaming.")
def prepare(self):
super().prepare()
from opendatasets import download
self.downloader = download
def load_iterables(self):
with TemporaryDirectory() as temp_directory:
self.downloader(self.url, temp_directory)
return hf_load_dataset(temp_directory, streaming=False)
class LoadFromIBMCloud(Loader):
"""Loads data from IBM Cloud Object Storage.
Does not support streaming and requires AWS-style access keys.
data_dir Can be either:
1. a list of file names, the split of each file is determined by the file name pattern
2. Mapping: split -> file_name, e.g. {"test" : "test.json", "train": "train.json"}
3. Mapping: split -> file_names, e.g. {"test" : ["test1.json", "test2.json"], "train": ["train.json"]}
Args:
endpoint_url_env:
Environment variable name for the IBM Cloud endpoint URL.
aws_access_key_id_env:
Environment variable name for the AWS access key ID.
aws_secret_access_key_env:
Environment variable name for the AWS secret access key.
bucket_name:
Name of the S3 bucket from which to load data.
data_dir:
Optional directory path within the bucket.
data_files:
Union type allowing either a list of file names or a mapping of splits to file names.
data_field:
The dataset key for nested JSON file, i.e. when multiple datasets are nested in the same file
caching (bool):
indicating if caching is enabled to avoid re-downloading data.
Example:
Loading from IBM Cloud
.. code-block:: python
load_ibm_cloud = LoadFromIBMCloud(
endpoint_url_env='IBM_CLOUD_ENDPOINT',
aws_access_key_id_env='IBM_AWS_ACCESS_KEY_ID',
aws_secret_access_key_env='IBM_AWS_SECRET_ACCESS_KEY',
bucket_name='my-bucket'
)
multi_stream = load_ibm_cloud.process()
"""
endpoint_url_env: str
aws_access_key_id_env: str
aws_secret_access_key_env: str
bucket_name: str
data_dir: str = None
data_files: Union[Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
data_field: str = None
caching: bool = True
data_classification_policy = ["proprietary"]
_requirements_list: List[str] = ["ibm-cos-sdk"]
def _download_from_cos(self, cos, bucket_name, item_name, local_file):
logger.info(f"Downloading {item_name} from {bucket_name} COS")
try:
response = cos.Object(bucket_name, item_name).get()
size = response["ContentLength"]
body = response["Body"]
except Exception as e:
raise Exception(
f"Unabled to access {item_name} in {bucket_name} in COS", e
) from e
if self.get_limit() is not None:
if item_name.endswith(".jsonl"):
first_lines = list(
itertools.islice(body.iter_lines(), self.get_limit())
)
with open(local_file, "wb") as downloaded_file:
for line in first_lines:
downloaded_file.write(line)
downloaded_file.write(b"\n")
logger.info(
f"\nDownload successful limited to {self.get_limit()} lines"
)
return
progress_bar = tqdm(total=size, unit="iB", unit_scale=True)
def upload_progress(chunk):
progress_bar.update(chunk)
try:
cos.Bucket(bucket_name).download_file(
item_name, local_file, Callback=upload_progress
)
logger.info("\nDownload Successful")
except Exception as e:
raise Exception(
f"Unabled to download {item_name} in {bucket_name}", e
) from e
def prepare(self):
super().prepare()
self.endpoint_url = os.getenv(self.endpoint_url_env)
self.aws_access_key_id = os.getenv(self.aws_access_key_id_env)
self.aws_secret_access_key = os.getenv(self.aws_secret_access_key_env)
root_dir = os.getenv("UNITXT_IBM_COS_CACHE", None) or os.getcwd()
self.cache_dir = os.path.join(root_dir, "ibmcos_datasets")
if not os.path.exists(self.cache_dir):
Path(self.cache_dir).mkdir(parents=True, exist_ok=True)
self.verified = False
def lazy_verify(self):
super().verify()
assert (
self.endpoint_url is not None
), f"Please set the {self.endpoint_url_env} environmental variable"
assert (
self.aws_access_key_id is not None
), f"Please set {self.aws_access_key_id_env} environmental variable"
assert (
self.aws_secret_access_key is not None
), f"Please set {self.aws_secret_access_key_env} environmental variable"
if self.streaming:
raise NotImplementedError("LoadFromKaggle cannot load with streaming.")
def _maybe_set_classification_policy(self):
self.set_default_data_classification(
["proprietary"], "when loading from IBM COS"
)
def load_iterables(self):
if not self.verified:
self.lazy_verify()
self.verified = True
import ibm_boto3
cos = ibm_boto3.resource(
"s3",
aws_access_key_id=self.aws_access_key_id,
aws_secret_access_key=self.aws_secret_access_key,
endpoint_url=self.endpoint_url,
)
local_dir = os.path.join(
self.cache_dir,
self.bucket_name,
self.data_dir or "", # data_dir can be None
f"loader_limit_{self.get_limit()}",
)
if not os.path.exists(local_dir):
Path(local_dir).mkdir(parents=True, exist_ok=True)
if isinstance(self.data_files, Mapping):
data_files_names = list(self.data_files.values())
if not isinstance(data_files_names[0], str):
data_files_names = list(itertools.chain(*data_files_names))
else:
data_files_names = self.data_files
for data_file in data_files_names:
local_file = os.path.join(local_dir, data_file)
if not self.caching or not os.path.exists(local_file):
# Build object key based on parameters. Slash character is not
# allowed to be part of object key in IBM COS.
object_key = (
self.data_dir + "/" + data_file
if self.data_dir is not None
else data_file
)
with tempfile.NamedTemporaryFile() as temp_file:
# Download to a temporary file in same file partition, and then do an atomic move
self._download_from_cos(
cos,
self.bucket_name,
object_key,
local_dir + "/" + os.path.basename(temp_file.name),
)
os.renames(
local_dir + "/" + os.path.basename(temp_file.name),
local_dir + "/" + data_file,
)
if isinstance(self.data_files, list):
dataset = hf_load_dataset(local_dir, streaming=False, field=self.data_field)
else:
dataset = hf_load_dataset(
local_dir,
streaming=False,
data_files=self.data_files,
field=self.data_field,
)
return dataset
class MultipleSourceLoader(LazyLoader):
"""Allows loading data from multiple sources, potentially mixing different types of loaders.
Args:
sources: A list of loaders that will be combined to form a unified dataset.
Examples:
1) Loading the train split from a HuggingFace Hub and the test set from a local file:
.. code-block:: python
MultipleSourceLoader(sources = [ LoadHF(path="public/data",split="train"), LoadCSV({"test": "mytest.csv"}) ])
2) Loading a test set combined from two files
.. code-block:: python
MultipleSourceLoader(sources = [ LoadCSV({"test": "mytest1.csv"}, LoadCSV({"test": "mytest2.csv"}) ])
"""
sources: List[Loader]
def add_data_classification(self, multi_stream: MultiStream) -> MultiStream:
if self.data_classification_policy is None:
return multi_stream
return super().add_data_classification(multi_stream)
def get_splits(self):
splits = []
for loader in self.sources:
splits.extend(loader.get_splits())
return list(set(splits))
def split_generator(self, split: str) -> Generator[Any, None, None]:
yield from FixedFusion(
subsets=self.sources,
max_instances_per_subset=self.get_limit(),
include_splits=[split],
)()[split]
class LoadFromDictionary(Loader):
"""Allows loading data from a dictionary of constants.
The loader can be used, for example, when debugging or working with small datasets.
Args:
data (Dict[str, List[Dict[str, Any]]]): a dictionary of constants from which the data will be loaded
Example:
Loading dictionary
.. code-block:: python
data = {
"train": [{"input": "SomeInput1", "output": "SomeResult1"},
{"input": "SomeInput2", "output": "SomeResult2"}],
"test": [{"input": "SomeInput3", "output": "SomeResult3"},
{"input": "SomeInput4", "output": "SomeResult4"}]
}
loader = LoadFromDictionary(data=data)
"""
data: Dict[str, List[Dict[str, Any]]]
def verify(self):
super().verify()
if not isoftype(self.data, Dict[str, List[Dict[str, Any]]]):
raise ValueError(
f"Passed data to LoadFromDictionary is not of type Dict[str, List[Dict[str, Any]]].\n"
f"Expected data should map between split name and list of instances.\n"
f"Received value: {self.data}\n"
)
for split in self.data.keys():
if len(self.data[split]) == 0:
raise ValueError(f"Split {split} has no instances.")
first_instance = self.data[split][0]
for instance in self.data[split]:
if instance.keys() != first_instance.keys():
raise ValueError(
f"Not all instances in split '{split}' have the same fields.\n"
f"instance {instance} has different fields different from {first_instance}"
)
def _maybe_set_classification_policy(self):
self.set_default_data_classification(
["proprietary"], "when loading from python dictionary"
)
def load_iterables(self) -> MultiStream:
return self.data
class LoadFromHFSpace(LazyLoader):
"""Used to load data from HuggingFace Spaces lazily.
Args:
space_name (str):
Name of the HuggingFace Space to be accessed.
data_files (str | Sequence[str] | Mapping[str, str | Sequence[str]]):
Relative paths to files within a given repository. If given as a mapping,
paths should be values, while keys should represent the type of respective files
(training, testing etc.).
path (str, optional):
Absolute path to a directory where data should be downloaded.
revision (str, optional):
ID of a Git branch or commit to be used. By default, it is set to None,
thus data is downloaded from the main branch of the accessed repository.
use_token (bool, optional):
Whether a token is used for authentication when accessing
the HuggingFace Space. If necessary, the token is read from the HuggingFace
config folder.
token_env (str, optional):
Key of an env variable which value will be used for
authentication when accessing the HuggingFace Space - if necessary.
"""
space_name: str
data_files: Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
path: Optional[str] = None
revision: Optional[str] = None
use_token: Optional[bool] = None
token_env: Optional[str] = None
requirements_list: List[str] = ["huggingface_hub"]
streaming: bool = True
def _get_token(self) -> Optional[Union[bool, str]]:
if self.token_env:
token = os.getenv(self.token_env)
if not token:
get_logger().warning(
f"The 'token_env' parameter was specified as '{self.token_env}', "
f"however, no environment variable under such a name was found. "
f"Therefore, the loader will not use any tokens for authentication."
)
return token
return self.use_token
@staticmethod
def _is_wildcard(path: str) -> bool:
wildcard_characters = ["*", "?", "[", "]"]
return any(char in path for char in wildcard_characters)
def _get_repo_files(self):
if not hasattr(self, "_repo_files") or self._repo_files is None:
api = HfApi()
self._repo_files = api.list_repo_files(
self.space_name, repo_type="space", revision=self.revision
)
return self._repo_files
def _get_sub_files(self, file: str) -> List[str]:
if self._is_wildcard(file):
return fnmatch.filter(self._get_repo_files(), file)
return [file]
def get_splits(self) -> List[str]:
if isinstance(self.data_files, Mapping):
return list(self.data_files.keys())
return ["train"] # Default to 'train' if not specified
def split_generator(self, split: str) -> Generator:
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError
token = self._get_token()
files = self.data_files.get(split, self.data_files) if isinstance(self.data_files, Mapping) else self.data_files
if isinstance(files, str):
files = [files]
limit = self.get_limit()
if limit is not None:
total = 0
self.log_limited_loading()
for file in files:
for sub_file in self._get_sub_files(file):
try:
file_path = hf_hub_download(
repo_id=self.space_name,
filename=sub_file,
repo_type="space",
token=token,
revision=self.revision,
local_dir=self.path,
)
except EntryNotFoundError as e:
raise ValueError(
f"The file '{file}' was not found in the space '{self.space_name}'. "
f"Please check if the filename is correct, or if it exists in that "
f"Huggingface space."
) from e
except RepositoryNotFoundError as e:
raise ValueError(
f"The Huggingface space '{self.space_name}' was not found. "
f"Please check if the name is correct and you have access to the space."
) from e
with open(file_path, encoding="utf-8") as f:
for line in f:
yield json.loads(line.strip())
if limit is not None:
total += 1
if total >= limit:
return
class LoadFromAPI(Loader):
"""Loads data from from API.
This loader is designed to fetch data from an API endpoint,
handling authentication through an API key. It supports
customizable chunk sizes and limits for data retrieval.
Args:
urls (Dict[str, str]):
A dictionary mapping split names to their respective API URLs.
chunksize (int, optional):
The size of data chunks to fetch in each request. Defaults to 100,000.
loader_limit (int, optional):
Limits the number of records to load. Applied per split. Defaults to None.
streaming (bool, optional):
Determines if data should be streamed. Defaults to False.
api_key_env_var (str, optional):
The name of the environment variable holding the API key.
Defaults to "SQL_API_KEY".
headers (Dict[str, Any], optional):
Additional headers to include in API requests. Defaults to None.
data_field (str, optional):
The name of the field in the API response that contains the data.
Defaults to "data".
method (str, optional):
The HTTP method to use for API requests. Defaults to "GET".
verify_cert (bool):
Apply verification of the SSL certificate
Defaults as True
"""
urls: Dict[str, str]
chunksize: int = 100000
loader_limit: Optional[int] = None
streaming: bool = False
api_key_env_var: str = "SQL_API_KEY"
headers: Optional[Dict[str, Any]] = None
data_field: str = "data"
method: str = "GET"
verify_cert: bool = True
# class level shared cache:
_loader_cache = LRUCache(max_size=settings.loader_cache_size)
def _maybe_set_classification_policy(self):
self.set_default_data_classification(["proprietary"], "when loading from API")
def load_iterables(self) -> Dict[str, Iterable]:
api_key = os.getenv(self.api_key_env_var, None)
if not api_key:
raise ValueError(
f"The environment variable '{self.api_key_env_var}' must be set to use the LoadFromAPI loader."
)
base_headers = {
"Content-Type": "application/json",
"accept": "application/json",
"Authorization": f"Bearer {api_key}",
}
if self.headers:
base_headers.update(self.headers)
iterables = {}
for split_name, url in self.urls.items():
if self.get_limit() is not None:
self.log_limited_loading()
if self.method == "GET":
response = requests.get(
url,
headers=base_headers,
verify=self.verify_cert,
)
elif self.method == "POST":
response = requests.post(
url,
headers=base_headers,
verify=self.verify_cert,
json={},
)
else:
raise ValueError(f"Method {self.method} not supported")
response.raise_for_status()
data = json.loads(response.text)
if self.data_field:
if self.data_field not in data:
raise ValueError(
f"Data field '{self.data_field}' not found in API response."
)
data = data[self.data_field]
if self.get_limit() is not None:
data = data[: self.get_limit()]
iterables[split_name] = data
return iterables
def process(self) -> MultiStream:
self._maybe_set_classification_policy()
iterables = self.__class__._loader_cache.get(str(self), None)
if iterables is None:
iterables = self.load_iterables()
self.__class__._loader_cache.max_size = settings.loader_cache_size
self.__class__._loader_cache[str(self)] = iterables
return MultiStream.from_iterables(iterables, copying=True)
|