Datasets:

ArXiv:
File size: 40,957 Bytes
c6346bb
 
 
31312e4
c6346bb
 
75b0fc2
c6346bb
 
c7691bd
 
c6346bb
 
 
c7691bd
 
c6346bb
009cdd3
31312e4
 
 
 
 
 
 
 
009cdd3
 
 
 
c6346bb
 
1a85f63
f88c6c5
b3f7bba
e9c817b
7395ac7
6b6ce01
85300cd
009cdd3
6b6ce01
7395ac7
e9c817b
 
 
85300cd
e9c817b
 
 
 
 
 
 
 
914cd5a
1f01930
e9c817b
85300cd
 
 
 
 
 
 
 
f88c6c5
7395ac7
914cd5a
85300cd
 
b19beee
6b6ce01
b0c34ba
1a85f63
572dea1
85300cd
1a85f63
85300cd
b0c34ba
6b6ce01
572dea1
 
85300cd
 
 
 
 
 
 
 
 
 
 
 
 
914cd5a
 
009cdd3
 
 
 
c7691bd
009cdd3
 
 
 
 
 
 
 
 
a30c920
009cdd3
 
b3f7bba
dac0ace
a30c920
914cd5a
8e99545
 
 
 
0113a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85300cd
 
 
 
 
0113a7a
009cdd3
 
 
 
 
 
 
 
 
 
 
 
1a85f63
009cdd3
 
 
 
e04f5f0
009cdd3
 
 
be9ddcf
 
 
 
 
 
 
009cdd3
 
 
8e99545
 
 
 
009cdd3
 
8e99545
85300cd
8e99545
85300cd
 
 
 
8e99545
 
009cdd3
8e99545
009cdd3
 
85300cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914cd5a
85300cd
c7691bd
009cdd3
 
c7691bd
009cdd3
 
e04f5f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009cdd3
 
 
 
 
 
 
 
 
914cd5a
 
 
b3f7bba
 
 
 
ba7196e
b9f4ac2
3f2aaa8
a30c920
85300cd
3f2aaa8
b9f4ac2
1a85f63
 
be9ddcf
1a85f63
3f2aaa8
1a85f63
914cd5a
b9f4ac2
 
 
 
 
85300cd
 
 
 
 
 
 
 
 
8e99545
 
 
 
 
 
 
85300cd
 
8e99545
 
 
 
 
 
 
85300cd
 
 
 
0113a7a
8e99545
009cdd3
e04f5f0
009cdd3
 
 
e04f5f0
be9ddcf
 
009cdd3
8e99545
85300cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0113a7a
85300cd
0113a7a
 
 
85300cd
0113a7a
e04f5f0
 
 
df63358
85300cd
 
 
 
 
 
 
7395ac7
 
85300cd
009cdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f01930
 
06c113f
0113a7a
06c113f
e9c817b
 
 
1f01930
8e99545
e04f5f0
009cdd3
 
dac0ace
e9c817b
 
 
 
 
 
 
 
 
 
 
85300cd
e9c817b
 
 
 
 
 
 
 
85300cd
 
 
 
 
 
 
8e99545
 
85300cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f01930
85300cd
 
1f01930
85300cd
 
009cdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06c113f
 
 
8e99545
 
 
06c113f
 
 
 
 
 
 
 
 
 
 
 
 
85300cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06c113f
 
6b6ce01
 
 
 
 
009cdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b6ce01
009cdd3
3f2aaa8
009cdd3
6b6ce01
 
 
 
 
 
 
 
dac0ace
 
 
6b6ce01
 
 
 
 
 
8e99545
6b6ce01
 
8e99545
6b6ce01
 
7395ac7
009cdd3
 
 
 
 
 
 
 
 
e04f5f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009cdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7395ac7
 
 
 
b3f7bba
6b6ce01
 
ba7196e
6b6ce01
009cdd3
 
8e99545
7395ac7
 
6b6ce01
7395ac7
 
 
b3f7bba
7395ac7
b3f7bba
 
 
 
0113a7a
b3f7bba
 
0113a7a
b3f7bba
 
 
 
 
6b6ce01
0113a7a
b3f7bba
 
7395ac7
 
 
 
 
 
 
b3f7bba
 
 
6b6ce01
7395ac7
b3f7bba
 
 
7395ac7
 
 
 
 
 
6b6ce01
 
 
 
 
6f701a4
7395ac7
6f701a4
7395ac7
b3f7bba
 
 
7395ac7
b3f7bba
 
7395ac7
 
 
dac0ace
 
7395ac7
8e99545
e04f5f0
009cdd3
 
8e99545
 
 
 
 
3f2aaa8
 
7395ac7
 
 
 
 
 
c362437
 
 
06c113f
0113a7a
c362437
6b6ce01
 
 
 
 
 
 
 
 
 
 
 
b3f7bba
 
 
 
 
 
 
572dea1
 
 
 
 
 
 
 
1a85f63
572dea1
 
 
6b6ce01
 
ba7196e
6b6ce01
 
ba7196e
 
 
 
6b6ce01
7395ac7
8e99545
b19beee
 
85300cd
009cdd3
 
 
 
b19beee
 
c7691bd
009cdd3
 
 
c096080
b19beee
 
 
009cdd3
b19beee
009cdd3
b19beee
c096080
b19beee
 
 
 
009cdd3
 
 
 
 
85300cd
 
 
 
 
8e99545
85300cd
 
 
 
 
 
af22a0d
 
 
c7691bd
af22a0d
 
 
009cdd3
af22a0d
 
009cdd3
 
 
 
 
 
f88c6c5
 
 
 
009cdd3
 
af22a0d
 
 
 
1a85f63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e99545
e04f5f0
009cdd3
 
8e99545
 
 
009cdd3
 
85300cd
 
009cdd3
 
e04f5f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009cdd3
 
 
 
 
 
 
 
 
 
b9f4ac2
 
009cdd3
 
 
 
 
 
 
 
 
 
 
 
85300cd
 
 
 
009cdd3
 
85300cd
 
 
 
 
 
009cdd3
85300cd
009cdd3
85300cd
 
 
 
009cdd3
 
85300cd
 
 
 
f88c6c5
85300cd
 
 
f88c6c5
85300cd
 
f88c6c5
85300cd
 
 
f88c6c5
85300cd
 
 
f88c6c5
85300cd
 
 
 
 
 
 
 
 
 
f88c6c5
85300cd
 
 
 
 
 
 
 
 
 
 
009cdd3
85300cd
 
 
 
 
 
 
8e99545
e9c817b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85300cd
 
 
e9c817b
 
 
 
 
 
 
 
 
 
85300cd
e9c817b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85300cd
e9c817b
 
 
 
 
85300cd
e9c817b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
"""This section describes unitxt loaders.

Loaders: Generators of Unitxt Multistreams from existing date sources
=====================================================================

Unitxt is all about readily preparing of any given data source for feeding into any given language model, and then,
post-processing the model's output, preparing it for any given evaluator.

Through that journey, the data advances in the form of Unitxt Multistream, undergoing a sequential application
of various off-the-shelf operators (i.e., picked from Unitxt catalog), or operators easily implemented by inheriting.
The journey starts by a Unitxt Loader bearing a Multistream from the given datasource.
A loader, therefore, is the first item on any Unitxt Recipe.

Unitxt catalog contains several loaders for the most popular datasource formats.
All these loaders inherit from Loader, and hence, implementing a loader to expand over a new type of datasource is
straightforward.

Available Loaders Overview:
    - :class:`LoadHF <unitxt.loaders.LoadHF>` - Loads data from HuggingFace Datasets.
    - :class:`LoadCSV <unitxt.loaders.LoadCSV>` - Imports data from CSV (Comma-Separated Values) files.
    - :class:`LoadFromKaggle <unitxt.loaders.LoadFromKaggle>` - Retrieves datasets from the Kaggle community site.
    - :class:`LoadFromIBMCloud <unitxt.loaders.LoadFromIBMCloud>` - Fetches datasets hosted on IBM Cloud.
    - :class:`LoadFromSklearn <unitxt.loaders.LoadFromSklearn>` - Loads datasets available through the sklearn library.
    - :class:`MultipleSourceLoader <unitxt.loaders.MultipleSourceLoader>` - Combines data from multiple different sources.
    - :class:`LoadFromDictionary <unitxt.loaders.LoadFromDictionary>` - Loads data from a user-defined Python dictionary.
    - :class:`LoadFromHFSpace <unitxt.loaders.LoadFromHFSpace>` - Downloads and loads data from HuggingFace Spaces.




------------------------
"""

import fnmatch
import itertools
import json
import os
import tempfile
import time
from abc import abstractmethod
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import (
    Any,
    Dict,
    Generator,
    Iterable,
    List,
    Literal,
    Mapping,
    Optional,
    Sequence,
    Union,
)

import pandas as pd
import requests
from datasets import (
    DatasetDict,
    DownloadConfig,
    IterableDataset,
    IterableDatasetDict,
    get_dataset_split_names,
)
from datasets import load_dataset as _hf_load_dataset
from huggingface_hub import HfApi
from tqdm import tqdm

from .dataclass import NonPositionalField
from .error_utils import UnitxtError, UnitxtWarning
from .fusion import FixedFusion
from .logging_utils import get_logger
from .operator import SourceOperator
from .operators import Set
from .settings_utils import get_settings
from .stream import DynamicStream, MultiStream
from .type_utils import isoftype
from .utils import LRUCache, recursive_copy

logger = get_logger()
settings = get_settings()

def hf_load_dataset(path: str, *args, **kwargs):
    if settings.hf_offline_datasets_path is not None:
        path = os.path.join(settings.hf_offline_datasets_path, path)
    return _hf_load_dataset(
        path,
        *args, **kwargs,
            download_config=DownloadConfig(
                max_retries=settings.loaders_max_retries,
            ),
            verification_mode="no_checks",
            trust_remote_code=settings.allow_unverified_code,
            download_mode= "force_redownload" if settings.disable_hf_datasets_cache else "reuse_dataset_if_exists"
        )

class Loader(SourceOperator):
    """A base class for all loaders.

    A loader is the first component in the Unitxt Recipe,
    responsible for loading data from various sources and preparing it as a MultiStream for processing.
    The loader_limit is an optional parameter used to control the maximum number of instances to load from the data source.  It is applied for each split separately.
    It is usually provided to the loader via the recipe (see standard.py)
    The loader can use this value to limit the amount of data downloaded from the source
    to reduce loading time.  However, this may not always be possible, so the
    loader may ignore this.  In any case, the recipe, will limit the number of instances in the returned
    stream, after load is complete.

    Args:
        loader_limit: Optional integer to specify a limit on the number of records to load.
        streaming: Bool indicating if streaming should be used.
        num_proc: Optional integer to specify the number of processes to use for parallel dataset loading. Adjust the value according to the number of CPU cores available and the specific needs of your processing task.
    """

    loader_limit: int = None
    streaming: bool = False
    num_proc: int = None

    # class level shared cache:
    _loader_cache = LRUCache(max_size=settings.loader_cache_size)

    def get_limit(self) -> int:
        if settings.global_loader_limit is not None and self.loader_limit is not None:
            return min(int(settings.global_loader_limit), self.loader_limit)
        if settings.global_loader_limit is not None:
            return int(settings.global_loader_limit)
        return self.loader_limit

    def get_limiter(self):
        if settings.global_loader_limit is not None and self.loader_limit is not None:
            if int(settings.global_loader_limit) > self.loader_limit:
                return f"{self.__class__.__name__}.loader_limit"
            return "unitxt.settings.global_loader_limit"
        if settings.global_loader_limit is not None:
            return "unitxt.settings.global_loader_limit"
        return f"{self.__class__.__name__}.loader_limit"

    def log_limited_loading(self):
        if not hasattr(self, "_already_logged_limited_loading") or not self._already_logged_limited_loading:
            self._already_logged_limited_loading = True
            logger.info(
                f"\nLoading limited to {self.get_limit()} instances by setting {self.get_limiter()};"
            )

    def add_data_classification(self, multi_stream: MultiStream) -> MultiStream:
        if self.data_classification_policy is None:
            get_logger().warning(
                f"The {self.get_pretty_print_name()} loader does not set the `data_classification_policy`. "
                f"This may lead to sending of undesired data to external services.\n"
                f"Set it to a list of classification identifiers. \n"
                f"For example:\n"
                f"data_classification_policy = ['public']\n"
                f" or \n"
                f"data_classification_policy =['confidential','pii'])\n"
            )

        operator = Set(
            fields={"data_classification_policy": self.data_classification_policy}
        )
        return operator(multi_stream)

    def set_default_data_classification(
        self, default_data_classification_policy, additional_info
    ):
        if self.data_classification_policy is None:
            if additional_info is not None:
                logger.info(
                    f"{self.get_pretty_print_name()} sets 'data_classification_policy' to "
                    f"{default_data_classification_policy} by default {additional_info}.\n"
                    "To use a different value or remove this message, explicitly set the "
                    "`data_classification_policy` attribute of the loader.\n"
                )
            self.data_classification_policy = default_data_classification_policy

    @abstractmethod
    def load_iterables(self) -> Dict[str, Iterable]:
        pass

    def _maybe_set_classification_policy(self):
        pass

    def load_data(self) -> MultiStream:
        try:
            iterables = self.load_iterables()
        except Exception as e:
            raise UnitxtError(f"Error in loader:\n{self}") from e
        if isoftype(iterables, MultiStream):
            return iterables
        return MultiStream.from_iterables(iterables, copying=True)

    def process(self) -> MultiStream:
        self._maybe_set_classification_policy()
        return self.add_data_classification(self.load_data())

    def get_splits(self):
        return list(self().keys())


class LazyLoader(Loader):
    split: Optional[str] = NonPositionalField(default=None)

    @abstractmethod
    def get_splits(self) -> List[str]:
        pass

    @abstractmethod
    def split_generator(self, split: str) -> Generator:
        pass

    def load_iterables(self) -> Union[Dict[str, DynamicStream], IterableDatasetDict]:
        if self.split is not None:
            splits = [self.split]
        else:
            splits = self.get_splits()

        return MultiStream({
            split: DynamicStream(self.split_generator, gen_kwargs={"split": split})
            for split in splits
        })


class LoadHF(LazyLoader):
    """Loads datasets from the HuggingFace Hub.

    It supports loading with or without streaming,
    and it can filter datasets upon loading.

    Args:
        path:
            The path or identifier of the dataset on the HuggingFace Hub.
        name:
            An optional dataset name.
        data_dir:
            Optional directory to store downloaded data.
        split:
            Optional specification of which split to load.
        data_files:
            Optional specification of particular data files to load.
        revision:
            Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version.
        streaming (bool):
            indicating if streaming should be used.
        filtering_lambda (str, optional):
            A lambda function for filtering the data after loading.
        num_proc (int, optional):
            Specifies the number of processes to use for parallel dataset loading.

    Example:
        Loading glue's mrpc dataset

        .. code-block:: python

            load_hf = LoadHF(path='glue', name='mrpc')
    """

    path: str
    name: Optional[str] = None
    data_dir: Optional[str] = None
    split: Optional[str] = None
    data_files: Optional[
        Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
    ] = None
    revision: Optional[str] = None
    streaming: bool = None
    filtering_lambda: Optional[str] = None
    num_proc: Optional[int] = None
    splits: Optional[List[str]] = None

    def filter_load(self, dataset: DatasetDict):
        if not settings.allow_unverified_code:
            raise ValueError(
                f"{self.__class__.__name__} cannot run use filtering_lambda expression without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE=True."
            )
        logger.info(f"\nLoading filtered by: {self.filtering_lambda};")
        return dataset.filter(eval(self.filtering_lambda))

    def is_streaming(self) -> bool:
        if self.streaming is None:
            return settings.stream_hf_datasets_by_default
        return self.streaming

    # returns Dict when split names are not known in advance, and just the the single split dataset - if known
    def load_dataset(
        self, split: str, streaming=None, disable_memory_caching=False
    ) -> Union[IterableDatasetDict, IterableDataset]:
        dataset_id = str(self) + "_" + str(split)
        dataset = self.__class__._loader_cache.get(dataset_id, None)
        if dataset is None:
            if streaming is None:
                streaming = self.is_streaming()
            try:
                dataset = hf_load_dataset(
                    self.path,
                    name=self.name,
                    data_dir=self.data_dir,
                    data_files=self.data_files,
                    revision=self.revision,
                    streaming=streaming,
                    split=split,
                    num_proc=self.num_proc,
                )
            except ValueError as e:
                if "trust_remote_code" in str(e):
                    raise ValueError(
                        f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
                    ) from e
            self.__class__._loader_cache.max_size = settings.loader_cache_size
            if not disable_memory_caching:
                self.__class__._loader_cache[dataset_id] = dataset
        return self.__class__._loader_cache[dataset_id]

    def _maybe_set_classification_policy(self):
        if os.path.exists(self.path):
            self.set_default_data_classification(
                ["proprietary"], "when loading from local files"
            )
        else:
            self.set_default_data_classification(
                ["public"],
                None,  # No warning when loading from public hub
            )

    def get_splits(self):
        if self.splits is not None:
            return self.splits
        try:
            return get_dataset_split_names(
                path=self.path,
                config_name=self.name,
                trust_remote_code=settings.allow_unverified_code,
                download_config=DownloadConfig(
                    max_retries=settings.loaders_max_retries,
                    extract_on_the_fly=True,
                ),
            )
        except:
            UnitxtWarning(
                f'LoadHF(path="{self.path}", name="{self.name}") could not retrieve split names without loading the dataset. Consider defining "splits" in the LoadHF definition to improve loading time.'
            )
            try:
                dataset = self.load_dataset(
                    split=None, disable_memory_caching=True, streaming=True
                )
            except (
                NotImplementedError
            ):  # streaming is not supported for zipped files so we load without streaming
                dataset = self.load_dataset(split=None, streaming=False)
            return list(dataset.keys())

    def split_generator(self, split: str) -> Generator:
        if self.get_limit() is not None:
            self.log_limited_loading()
        try:
            dataset = self.load_dataset(split=split)
        except (
            NotImplementedError
        ):  # streaming is not supported for zipped files so we load without streaming
            dataset = self.load_dataset(split=split, streaming=False)

        if self.filtering_lambda is not None:
            dataset = self.filter_load(dataset)

        limit = self.get_limit()
        if limit is None:
            yield from dataset
        else:
            for i, instance in enumerate(dataset):
                yield instance
                if i + 1 >= limit:
                    break


class LoadCSV(LazyLoader):
    """Loads data from CSV files.

    Supports streaming and can handle large files by loading them in chunks.

    Args:
        files (Dict[str, str]): A dictionary mapping names to file paths.
        chunksize : Size of the chunks to load at a time.
        loader_limit: Optional integer to specify a limit on the number of records to load.
        streaming: Bool indicating if streaming should be used.
        sep: String specifying the separator used in the CSV files.

    Example:
        Loading csv

        .. code-block:: python

            load_csv = LoadCSV(files={'train': 'path/to/train.csv'}, chunksize=100)
    """

    files: Dict[str, str]
    chunksize: int = 1000
    loader_limit: Optional[int] = None
    streaming: bool = True
    sep: str = ","
    compression: Optional[str] = None
    lines: Optional[bool] = None
    file_type: Literal["csv", "json"] = "csv"

    def _maybe_set_classification_policy(self):
        self.set_default_data_classification(
            ["proprietary"], "when loading from local files"
        )

    def get_reader(self):
        if self.file_type == "csv":
            return pd.read_csv
        if self.file_type == "json":
            return pd.read_json
        raise ValueError()

    def get_args(self):
        args = {}
        if self.file_type == "csv":
            args["sep"] = self.sep
            args["low_memory"] = self.streaming
        if self.compression is not None:
            args["compression"] = self.compression
        if self.lines is not None:
            args["lines"] = self.lines
        if self.get_limit() is not None:
            args["nrows"] = self.get_limit()
        return args

    def get_splits(self) -> List[str]:
        return list(self.files.keys())

    def split_generator(self, split: str) -> Generator:
        dataset_id = str(self) + "_" + split
        dataset = self.__class__._loader_cache.get(dataset_id, None)
        if dataset is None:
            if self.get_limit() is not None:
                self.log_limited_loading()
            for attempt in range(settings.loaders_max_retries):
                try:
                    reader = self.get_reader()
                    if self.get_limit() is not None:
                        self.log_limited_loading()

                    try:
                        dataset = reader(self.files[split], **self.get_args()).to_dict(
                            "records"
                        )
                    except ValueError:
                        import fsspec

                        with fsspec.open(self.files[split], mode="rt") as f:
                            dataset = reader(f, **self.get_args()).to_dict("records")
                except Exception as e:
                    logger.debug(f"Attempt csv load {attempt + 1} failed: {e}")
                    if attempt < settings.loaders_max_retries - 1:
                        time.sleep(2)
                    else:
                        raise e
            self.__class__._loader_cache.max_size = settings.loader_cache_size
            self.__class__._loader_cache[dataset_id] = dataset

        for instance in self.__class__._loader_cache[dataset_id]:
            yield recursive_copy(instance)


class LoadFromSklearn(LazyLoader):
    """Loads datasets from the sklearn library.

    This loader does not support streaming and is intended for use with sklearn's dataset fetch functions.

    Args:
        dataset_name: The name of the sklearn dataset to fetch.
        splits: A list of data splits to load, e.g., ['train', 'test'].

    Example:
        Loading form sklearn

        .. code-block:: python

            load_sklearn = LoadFromSklearn(dataset_name='iris', splits=['train', 'test'])
    """

    dataset_name: str
    splits: List[str] = ["train", "test"]

    _requirements_list: List[str] = ["scikit-learn", "pandas"]

    data_classification_policy = ["public"]

    def verify(self):
        super().verify()

        if self.streaming:
            raise NotImplementedError("LoadFromSklearn cannot load with streaming.")

    def prepare(self):
        super().prepare()
        from sklearn import datasets as sklearn_datatasets

        self.downloader = getattr(sklearn_datatasets, f"fetch_{self.dataset_name}")

    def get_splits(self):
        return self.splits

    def split_generator(self, split: str) -> Generator:
        dataset_id = str(self) + "_" + split
        dataset = self.__class__._loader_cache.get(dataset_id, None)
        if dataset is None:
            split_data = self.downloader(subset=split)
            targets = [split_data["target_names"][t] for t in split_data["target"]]
            df = pd.DataFrame([split_data["data"], targets]).T
            df.columns = ["data", "target"]
            dataset = df.to_dict("records")
            self.__class__._loader_cache.max_size = settings.loader_cache_size
            self.__class__._loader_cache[dataset_id] = dataset
        for instance in self.__class__._loader_cache[dataset_id]:
            yield recursive_copy(instance)


class MissingKaggleCredentialsError(ValueError):
    pass


class LoadFromKaggle(Loader):
    """Loads datasets from Kaggle.

    Requires Kaggle API credentials and does not support streaming.

    Args:
        url: URL to the Kaggle dataset.

    Example:
        Loading from kaggle

        .. code-block:: python

            load_kaggle = LoadFromKaggle(url='kaggle.com/dataset/example')
    """

    url: str

    _requirements_list: List[str] = ["opendatasets"]
    data_classification_policy = ["public"]

    def verify(self):
        super().verify()
        if not os.path.isfile("kaggle.json"):
            raise MissingKaggleCredentialsError(
                "Please obtain kaggle credentials https://christianjmills.com/posts/kaggle-obtain-api-key-tutorial/ and save them to local ./kaggle.json file"
            )

        if self.streaming:
            raise NotImplementedError("LoadFromKaggle cannot load with streaming.")

    def prepare(self):
        super().prepare()
        from opendatasets import download

        self.downloader = download

    def load_iterables(self):
        with TemporaryDirectory() as temp_directory:
            self.downloader(self.url, temp_directory)
            return hf_load_dataset(temp_directory, streaming=False)


class LoadFromIBMCloud(Loader):
    """Loads data from IBM Cloud Object Storage.

    Does not support streaming and requires AWS-style access keys.
    data_dir Can be either:
    1. a list of file names, the split of each file is determined by the file name pattern
    2. Mapping: split -> file_name, e.g. {"test" : "test.json", "train": "train.json"}
    3. Mapping: split -> file_names, e.g. {"test" : ["test1.json", "test2.json"], "train": ["train.json"]}

    Args:
        endpoint_url_env:
            Environment variable name for the IBM Cloud endpoint URL.
        aws_access_key_id_env:
            Environment variable name for the AWS access key ID.
        aws_secret_access_key_env:
            Environment variable name for the AWS secret access key.
        bucket_name:
            Name of the S3 bucket from which to load data.
        data_dir:
            Optional directory path within the bucket.
        data_files:
            Union type allowing either a list of file names or a mapping of splits to file names.
        data_field:
            The dataset key for nested JSON file, i.e. when multiple datasets are nested in the same file
        caching (bool):
            indicating if caching is enabled to avoid re-downloading data.

    Example:
        Loading from IBM Cloud

        .. code-block:: python

            load_ibm_cloud = LoadFromIBMCloud(
                endpoint_url_env='IBM_CLOUD_ENDPOINT',
                aws_access_key_id_env='IBM_AWS_ACCESS_KEY_ID',
                aws_secret_access_key_env='IBM_AWS_SECRET_ACCESS_KEY',
                bucket_name='my-bucket'
            )
            multi_stream = load_ibm_cloud.process()
    """

    endpoint_url_env: str
    aws_access_key_id_env: str
    aws_secret_access_key_env: str
    bucket_name: str
    data_dir: str = None

    data_files: Union[Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
    data_field: str = None
    caching: bool = True
    data_classification_policy = ["proprietary"]

    _requirements_list: List[str] = ["ibm-cos-sdk"]

    def _download_from_cos(self, cos, bucket_name, item_name, local_file):
        logger.info(f"Downloading {item_name} from {bucket_name} COS")
        try:
            response = cos.Object(bucket_name, item_name).get()
            size = response["ContentLength"]
            body = response["Body"]
        except Exception as e:
            raise Exception(
                f"Unabled to access {item_name} in {bucket_name} in COS", e
            ) from e

        if self.get_limit() is not None:
            if item_name.endswith(".jsonl"):
                first_lines = list(
                    itertools.islice(body.iter_lines(), self.get_limit())
                )
                with open(local_file, "wb") as downloaded_file:
                    for line in first_lines:
                        downloaded_file.write(line)
                        downloaded_file.write(b"\n")
                logger.info(
                    f"\nDownload successful limited to {self.get_limit()} lines"
                )
                return

        progress_bar = tqdm(total=size, unit="iB", unit_scale=True)

        def upload_progress(chunk):
            progress_bar.update(chunk)

        try:
            cos.Bucket(bucket_name).download_file(
                item_name, local_file, Callback=upload_progress
            )
            logger.info("\nDownload Successful")
        except Exception as e:
            raise Exception(
                f"Unabled to download {item_name} in {bucket_name}", e
            ) from e

    def prepare(self):
        super().prepare()
        self.endpoint_url = os.getenv(self.endpoint_url_env)
        self.aws_access_key_id = os.getenv(self.aws_access_key_id_env)
        self.aws_secret_access_key = os.getenv(self.aws_secret_access_key_env)
        root_dir = os.getenv("UNITXT_IBM_COS_CACHE", None) or os.getcwd()
        self.cache_dir = os.path.join(root_dir, "ibmcos_datasets")

        if not os.path.exists(self.cache_dir):
            Path(self.cache_dir).mkdir(parents=True, exist_ok=True)
        self.verified = False

    def lazy_verify(self):
        super().verify()
        assert (
            self.endpoint_url is not None
        ), f"Please set the {self.endpoint_url_env} environmental variable"
        assert (
            self.aws_access_key_id is not None
        ), f"Please set {self.aws_access_key_id_env} environmental variable"
        assert (
            self.aws_secret_access_key is not None
        ), f"Please set {self.aws_secret_access_key_env} environmental variable"
        if self.streaming:
            raise NotImplementedError("LoadFromKaggle cannot load with streaming.")

    def _maybe_set_classification_policy(self):
        self.set_default_data_classification(
            ["proprietary"], "when loading from IBM COS"
        )

    def load_iterables(self):
        if not self.verified:
            self.lazy_verify()
            self.verified = True
        import ibm_boto3

        cos = ibm_boto3.resource(
            "s3",
            aws_access_key_id=self.aws_access_key_id,
            aws_secret_access_key=self.aws_secret_access_key,
            endpoint_url=self.endpoint_url,
        )
        local_dir = os.path.join(
            self.cache_dir,
            self.bucket_name,
            self.data_dir or "",  # data_dir can be None
            f"loader_limit_{self.get_limit()}",
        )
        if not os.path.exists(local_dir):
            Path(local_dir).mkdir(parents=True, exist_ok=True)
        if isinstance(self.data_files, Mapping):
            data_files_names = list(self.data_files.values())
            if not isinstance(data_files_names[0], str):
                data_files_names = list(itertools.chain(*data_files_names))
        else:
            data_files_names = self.data_files

        for data_file in data_files_names:
            local_file = os.path.join(local_dir, data_file)
            if not self.caching or not os.path.exists(local_file):
                # Build object key based on parameters. Slash character is not
                # allowed to be part of object key in IBM COS.
                object_key = (
                    self.data_dir + "/" + data_file
                    if self.data_dir is not None
                    else data_file
                )
                with tempfile.NamedTemporaryFile() as temp_file:
                    # Download to  a temporary file in same file partition, and then do an atomic move
                    self._download_from_cos(
                        cos,
                        self.bucket_name,
                        object_key,
                        local_dir + "/" + os.path.basename(temp_file.name),
                    )
                    os.renames(
                        local_dir + "/" + os.path.basename(temp_file.name),
                        local_dir + "/" + data_file,
                    )

        if isinstance(self.data_files, list):
            dataset = hf_load_dataset(local_dir, streaming=False, field=self.data_field)
        else:
            dataset = hf_load_dataset(
                local_dir,
                streaming=False,
                data_files=self.data_files,
                field=self.data_field,
            )

        return dataset


class MultipleSourceLoader(LazyLoader):
    """Allows loading data from multiple sources, potentially mixing different types of loaders.

    Args:
        sources: A list of loaders that will be combined to form a unified dataset.

    Examples:
        1) Loading the train split from a HuggingFace Hub and the test set from a local file:

        .. code-block:: python

            MultipleSourceLoader(sources = [ LoadHF(path="public/data",split="train"), LoadCSV({"test": "mytest.csv"}) ])



        2) Loading a test set combined from two files

        .. code-block:: python

            MultipleSourceLoader(sources = [ LoadCSV({"test": "mytest1.csv"}, LoadCSV({"test": "mytest2.csv"}) ])
    """

    sources: List[Loader]

    def add_data_classification(self, multi_stream: MultiStream) -> MultiStream:
        if self.data_classification_policy is None:
            return multi_stream
        return super().add_data_classification(multi_stream)

    def get_splits(self):
        splits = []
        for loader in self.sources:
            splits.extend(loader.get_splits())
        return list(set(splits))

    def split_generator(self, split: str) -> Generator[Any, None, None]:
        yield from FixedFusion(
            subsets=self.sources,
            max_instances_per_subset=self.get_limit(),
            include_splits=[split],
        )()[split]


class LoadFromDictionary(Loader):
    """Allows loading data from a dictionary of constants.

    The loader can be used, for example, when debugging or working with small datasets.

    Args:
        data (Dict[str, List[Dict[str, Any]]]): a dictionary of constants from which the data will be loaded

    Example:
        Loading dictionary

        .. code-block:: python

            data = {
                "train": [{"input": "SomeInput1", "output": "SomeResult1"},
                          {"input": "SomeInput2", "output": "SomeResult2"}],
                "test":  [{"input": "SomeInput3", "output": "SomeResult3"},
                          {"input": "SomeInput4", "output": "SomeResult4"}]
            }
            loader = LoadFromDictionary(data=data)
    """

    data: Dict[str, List[Dict[str, Any]]]

    def verify(self):
        super().verify()
        if not isoftype(self.data, Dict[str, List[Dict[str, Any]]]):
            raise ValueError(
                f"Passed data to LoadFromDictionary is not of type Dict[str, List[Dict[str, Any]]].\n"
                f"Expected data should map between split name and list of instances.\n"
                f"Received value: {self.data}\n"
            )
        for split in self.data.keys():
            if len(self.data[split]) == 0:
                raise ValueError(f"Split {split} has no instances.")
            first_instance = self.data[split][0]
            for instance in self.data[split]:
                if instance.keys() != first_instance.keys():
                    raise ValueError(
                        f"Not all instances in split '{split}' have the same fields.\n"
                        f"instance {instance} has different fields different from {first_instance}"
                    )

    def _maybe_set_classification_policy(self):
        self.set_default_data_classification(
            ["proprietary"], "when loading from python dictionary"
        )

    def load_iterables(self) -> MultiStream:
        return self.data


class LoadFromHFSpace(LazyLoader):
    """Used to load data from HuggingFace Spaces lazily.

    Args:
        space_name (str):
            Name of the HuggingFace Space to be accessed.
        data_files (str | Sequence[str] | Mapping[str, str | Sequence[str]]):
            Relative paths to files within a given repository. If given as a mapping,
            paths should be values, while keys should represent the type of respective files
            (training, testing etc.).
        path (str, optional):
            Absolute path to a directory where data should be downloaded.
        revision (str, optional):
            ID of a Git branch or commit to be used. By default, it is set to None,
            thus data is downloaded from the main branch of the accessed repository.
        use_token (bool, optional):
            Whether a token is used for authentication when accessing
            the HuggingFace Space. If necessary, the token is read from the HuggingFace
            config folder.
        token_env (str, optional):
            Key of an env variable which value will be used for
            authentication when accessing the HuggingFace Space - if necessary.
    """

    space_name: str
    data_files: Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
    path: Optional[str] = None
    revision: Optional[str] = None
    use_token: Optional[bool] = None
    token_env: Optional[str] = None
    requirements_list: List[str] = ["huggingface_hub"]

    streaming: bool = True

    def _get_token(self) -> Optional[Union[bool, str]]:
        if self.token_env:
            token = os.getenv(self.token_env)
            if not token:
                get_logger().warning(
                    f"The 'token_env' parameter was specified as '{self.token_env}', "
                    f"however, no environment variable under such a name was found. "
                    f"Therefore, the loader will not use any tokens for authentication."
                )
            return token
        return self.use_token

    @staticmethod
    def _is_wildcard(path: str) -> bool:
        wildcard_characters = ["*", "?", "[", "]"]
        return any(char in path for char in wildcard_characters)



    def _get_repo_files(self):
        if not hasattr(self, "_repo_files") or self._repo_files is None:
            api = HfApi()
            self._repo_files = api.list_repo_files(
                self.space_name, repo_type="space", revision=self.revision
            )
        return self._repo_files

    def _get_sub_files(self, file: str) -> List[str]:
        if self._is_wildcard(file):
            return fnmatch.filter(self._get_repo_files(), file)
        return [file]


    def get_splits(self) -> List[str]:
        if isinstance(self.data_files, Mapping):
            return list(self.data_files.keys())
        return ["train"]  # Default to 'train' if not specified

    def split_generator(self, split: str) -> Generator:
        from huggingface_hub import hf_hub_download
        from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError

        token = self._get_token()
        files = self.data_files.get(split, self.data_files) if isinstance(self.data_files, Mapping) else self.data_files

        if isinstance(files, str):
            files = [files]
        limit = self.get_limit()

        if limit is not None:
            total = 0
            self.log_limited_loading()

        for file in files:
            for sub_file in self._get_sub_files(file):
                try:
                    file_path = hf_hub_download(
                        repo_id=self.space_name,
                        filename=sub_file,
                        repo_type="space",
                        token=token,
                        revision=self.revision,
                        local_dir=self.path,
                    )
                except EntryNotFoundError as e:
                    raise ValueError(
                        f"The file '{file}' was not found in the space '{self.space_name}'. "
                        f"Please check if the filename is correct, or if it exists in that "
                        f"Huggingface space."
                    ) from e
                except RepositoryNotFoundError as e:
                    raise ValueError(
                        f"The Huggingface space '{self.space_name}' was not found. "
                        f"Please check if the name is correct and you have access to the space."
                    ) from e

                with open(file_path, encoding="utf-8") as f:
                    for line in f:
                        yield json.loads(line.strip())
                        if limit is not None:
                            total += 1
                            if total >= limit:
                                return



class LoadFromAPI(Loader):
    """Loads data from from API.

    This loader is designed to fetch data from an API endpoint,
    handling authentication through an API key. It supports
    customizable chunk sizes and limits for data retrieval.

    Args:
        urls (Dict[str, str]):
            A dictionary mapping split names to their respective API URLs.
        chunksize (int, optional):
            The size of data chunks to fetch in each request. Defaults to 100,000.
        loader_limit (int, optional):
            Limits the number of records to load. Applied per split. Defaults to None.
        streaming (bool, optional):
            Determines if data should be streamed. Defaults to False.
        api_key_env_var (str, optional):
            The name of the environment variable holding the API key.
            Defaults to "SQL_API_KEY".
        headers (Dict[str, Any], optional):
            Additional headers to include in API requests. Defaults to None.
        data_field (str, optional):
            The name of the field in the API response that contains the data.
            Defaults to "data".
        method (str, optional):
            The HTTP method to use for API requests. Defaults to "GET".
        verify_cert (bool):
            Apply verification of the SSL certificate
            Defaults as True
    """

    urls: Dict[str, str]
    chunksize: int = 100000
    loader_limit: Optional[int] = None
    streaming: bool = False
    api_key_env_var: str = "SQL_API_KEY"
    headers: Optional[Dict[str, Any]] = None
    data_field: str = "data"
    method: str = "GET"
    verify_cert: bool = True

    # class level shared cache:
    _loader_cache = LRUCache(max_size=settings.loader_cache_size)

    def _maybe_set_classification_policy(self):
        self.set_default_data_classification(["proprietary"], "when loading from API")

    def load_iterables(self) -> Dict[str, Iterable]:
        api_key = os.getenv(self.api_key_env_var, None)
        if not api_key:
            raise ValueError(
                f"The environment variable '{self.api_key_env_var}' must be set to use the LoadFromAPI loader."
            )

        base_headers = {
            "Content-Type": "application/json",
            "accept": "application/json",
            "Authorization": f"Bearer {api_key}",
        }
        if self.headers:
            base_headers.update(self.headers)

        iterables = {}
        for split_name, url in self.urls.items():
            if self.get_limit() is not None:
                self.log_limited_loading()

            if self.method == "GET":
                response = requests.get(
                    url,
                    headers=base_headers,
                    verify=self.verify_cert,
                )
            elif self.method == "POST":
                response = requests.post(
                    url,
                    headers=base_headers,
                    verify=self.verify_cert,
                    json={},
                )
            else:
                raise ValueError(f"Method {self.method} not supported")

            response.raise_for_status()

            data = json.loads(response.text)

            if self.data_field:
                if self.data_field not in data:
                    raise ValueError(
                        f"Data field '{self.data_field}' not found in API response."
                    )
                data = data[self.data_field]

            if self.get_limit() is not None:
                data = data[: self.get_limit()]

            iterables[split_name] = data

        return iterables

    def process(self) -> MultiStream:
        self._maybe_set_classification_policy()
        iterables = self.__class__._loader_cache.get(str(self), None)
        if iterables is None:
            iterables = self.load_iterables()
            self.__class__._loader_cache.max_size = settings.loader_cache_size
            self.__class__._loader_cache[str(self)] = iterables
        return MultiStream.from_iterables(iterables, copying=True)