Datasets:

ArXiv:
data / schema.py
Elron's picture
Upload folder using huggingface_hub
e04f5f0 verified
import json
from typing import Any, Dict, List, Optional
from datasets import Audio, Features, Sequence, Value
from datasets import Image as DatasetImage
from .artifact import Artifact
from .dict_utils import dict_get
from .image_operators import ImageDataString
from .operator import InstanceOperatorValidator
from .settings_utils import get_constants, get_settings
from .type_utils import isoftype
from .types import Image
constants = get_constants()
settings = get_settings()
UNITXT_DATASET_SCHEMA = Features(
{
"source": Value("string"),
"target": Value("string"),
"references": Sequence(Value("string")),
"metrics": Sequence(Value("string")),
"groups": Sequence(Value("string")),
"subset": Sequence(Value("string")),
"media": {
"images": Sequence(DatasetImage()),
"audios": Sequence(Audio()),
},
"postprocessors": Sequence(Value("string")),
"task_data": Value(dtype="string"),
"data_classification_policy": Sequence(Value("string")),
}
)
UNITXT_INFERENCE_SCHEMA = Features(
{
"source": Value("string"),
"metrics": Sequence(Value("string")),
"groups": Sequence(Value("string")),
"subset": Sequence(Value("string")),
"postprocessors": Sequence(Value("string")),
"task_data": Value(dtype="string"),
"data_classification_policy": Sequence(Value("string")),
"media": {
"images": Sequence(Image()),
"audios": Sequence(Audio()),
},
}
)
def get_schema(stream_name):
if stream_name == constants.inference_stream:
return UNITXT_INFERENCE_SCHEMA
return UNITXT_DATASET_SCHEMA
def load_chat_source(chat_str):
chat = json.loads(chat_str)
for turn in chat:
if isinstance(turn["content"], list):
for content in turn["content"]:
if content["type"] == "image_url":
content["image_url"]["url"] = ImageDataString(
content["image_url"]["url"]
)
return chat
def loads_instance(batch):
if (
"source" in batch
and isinstance(batch["source"][0], str)
and (
batch["source"][0].startswith('[{"role":')
or batch["source"][0].startswith('[{"content":')
)
):
batch["source"] = [load_chat_source(d) for d in batch["source"]]
if (
not settings.task_data_as_text
and "task_data" in batch
and isinstance(batch["task_data"][0], str)
):
batch["task_data"] = [json.loads(d) for d in batch["task_data"]]
return batch
class FinalizeDataset(InstanceOperatorValidator):
group_by: List[List[str]]
remove_unnecessary_fields: bool = True
@staticmethod
def artifact_to_jsonable(artifact):
if artifact.__id__ is None:
return artifact.to_dict()
return artifact.__id__
def _prepare_media(self, instance):
if "media" not in instance:
instance["media"] = {}
if "images" not in instance["media"]:
instance["media"]["images"] = []
if "audios" not in instance["media"]:
instance["media"]["audios"] = []
for i in range(len(instance["media"]["images"])):
if isoftype(instance["media"]["images"][i], Image):
instance["media"]["images"][i] = instance["media"]["images"][i]["image"]
return instance
def _get_instance_task_data(
self, instance: Dict[str, Any], use_reference_fields=True
) -> Dict[str, Any]:
task_data = {
**instance["input_fields"],
"metadata": {
"data_classification_policy": instance["data_classification_policy"],
},
}
if use_reference_fields:
task_data = {**task_data, **instance["reference_fields"]}
return task_data
def serialize_instance_fields(self, instance, task_data):
if settings.task_data_as_text:
instance["task_data"] = json.dumps(task_data)
if not isinstance(instance["source"], str):
instance["source"] = json.dumps(instance["source"])
return instance
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
task_data = self._get_instance_task_data(
instance,
use_reference_fields=stream_name != constants.inference_stream,
)
task_data["metadata"]["num_demos"] = instance["recipe_metadata"]["num_demos"]
task_data["metadata"]["demos_pool_size"] = instance["recipe_metadata"][
"demos_pool_size"
]
task_data["metadata"]["template"] = self.artifact_to_jsonable(
instance["recipe_metadata"]["template"]
)
if "criteria" in task_data and isinstance(task_data["criteria"], Artifact):
task_data["criteria"] = self.artifact_to_jsonable(task_data["criteria"])
if "demos" in instance:
task_data["demos"] = [
self._get_instance_task_data(instance)
for instance in instance.pop("demos")
]
instance = self.serialize_instance_fields(instance, task_data)
if self.remove_unnecessary_fields:
keys_to_delete = []
for key in instance.keys():
if key not in get_schema(stream_name):
keys_to_delete.append(key)
for key in keys_to_delete:
del instance[key]
data = {**task_data, **task_data["metadata"]}
groups = []
for group_attributes in self.group_by:
group = {}
if isinstance(group_attributes, str):
group_attributes = [group_attributes]
for attribute in group_attributes:
group[attribute] = dict_get(data, attribute)
groups.append(json.dumps(group))
instance["groups"] = groups
instance["subset"] = []
instance = self._prepare_media(instance)
instance["metrics"] = [
metric.to_json() if isinstance(metric, Artifact) else metric
for metric in instance["metrics"]
]
instance["postprocessors"] = [
processor.to_json() if isinstance(processor, Artifact) else processor
for processor in instance["postprocessors"]
]
return instance
def validate(self, instance: Dict[str, Any], stream_name: Optional[str] = None):
# verify the instance has the required schema
assert instance is not None, "Instance is None"
assert isinstance(
instance, dict
), f"Instance should be a dict, got {type(instance)}"
schema = get_schema(stream_name)
assert all(
key in instance for key in schema
), f"Instance should have the following keys: {schema}. Instance is: {instance}"
schema.encode_example(instance)