.gitattributes CHANGED
@@ -56,4 +56,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
56
  *.usearch filter=lfs diff=lfs merge=lfs -text
57
  *.fbin filter=lfs diff=lfs merge=lfs -text
58
  images.txt filter=lfs diff=lfs merge=lfs -text
59
- images.base64.txt filter=lfs diff=lfs merge=lfs -text
 
56
  *.usearch filter=lfs diff=lfs merge=lfs -text
57
  *.fbin filter=lfs diff=lfs merge=lfs -text
58
  images.txt filter=lfs diff=lfs merge=lfs -text
 
images.uform-vl-english-small.fbin → images.fbin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f36e6ec615d4ef679aaa46fae4da034d37d9814c1976ce6917c779a0724277ee
3
  size 24875016
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e673d5acf7f4a30f67b91d2cd3fcec73ed9b8891c61c22a3e4cda053ba8c7b6
3
  size 24875016
images.names.txt DELETED
The diff for this file is too large to render. See raw diff
 
images.base64.txt → images.txt RENAMED
File without changes
images.uform-vl-multilingual-v1.fbin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:055a9edbee6d33ac2bd0b402fda4c4db1af8f7a61f54632b4f0eafaefb76c7a7
3
- size 24875016
 
 
 
 
images.uform-vl-multilingual-v2.fbin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:20f6dc3d38f0dce81063a8102e18d906bfde4a125dd96f0a456c369291b7c820
3
- size 24875016
 
 
 
 
images.usearch CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5f1733524594e565c6ad01dc3254c660a2b16e75e4ab7607addf5e4fc948b9ba
3
  size 28584936
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:238d84a238da044eabec8f9bd9a61ff5ab9963c45f5af81faea6deadeace7505
3
  size 28584936
images.xlm-roberta-base-ViT-B-32.fbin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a840042e6b3e2eb74e9167a305846cdf3ba6016f77b72646549571b4fedec717
3
- size 49750024
 
 
 
 
main.py CHANGED
@@ -2,9 +2,7 @@
2
  from os import PathLike, listdir, remove
3
  from os.path import isfile, join, exists
4
  from mimetypes import guess_type
5
- from base64 import b64encode, b64decode
6
- from io import BytesIO
7
- import re
8
 
9
  import pandas as pd
10
  import numpy as np
@@ -12,7 +10,7 @@ from PIL import Image
12
  from PIL import ImageFile
13
  from tqdm import tqdm
14
 
15
- from uform import get_model_onnx
16
  from usearch.index import Index, MetricKind
17
  from usearch.io import save_matrix, load_matrix
18
 
@@ -34,82 +32,67 @@ def image_to_data(path: PathLike) -> str:
34
  if not exists(path):
35
  raise FileNotFoundError
36
  mime, _ = guess_type(path)
37
- with open(path, "rb") as fp:
38
  data = fp.read()
39
- data64 = b64encode(data).decode("utf-8")
40
- return f"data:{mime}/jpg;base64,{data64}"
41
-
42
-
43
- def data_to_image(data_uri: str) -> Image:
44
- """Convert a base64-encoded data URI to a Pillow Image."""
45
- base64_str = re.search(r"base64,(.*)", data_uri).group(1)
46
- image_data = b64decode(base64_str)
47
- image = Image.open(BytesIO(image_data))
48
- return image
49
 
50
 
51
  def trim_extension(filename: str) -> str:
52
- return filename.rsplit(".", 1)[0]
53
 
54
 
55
- names = sorted(f for f in listdir("images") if is_image(join("images", f)))
56
  names = [trim_extension(f) for f in names]
57
 
58
- table = (
59
- pd.read_table("images.tsv") if exists("images.tsv") else pd.read_table("images.csv")
60
- )
61
- table = table[table["photo_id"].isin(names)]
62
- table = table.sort_values("photo_id")
63
  table.reset_index()
64
- table.to_csv("images.csv", index=False)
65
 
66
- names = list(set(table["photo_id"]).intersection(names))
67
- names_to_delete = [f for f in listdir("images") if trim_extension(f) not in names]
68
- names = list(table["photo_id"])
 
69
 
70
  if len(names_to_delete) > 0:
71
- print(f"Plans to delete: {len(names_to_delete)} images without metadata")
72
  for name in names_to_delete:
73
- remove(join("images", name))
74
-
75
- if not exists("images.fbin") and 0:
76
- model, processor = get_model_onnx(
77
- "unum-cloud/uform-vl-english-small",
78
- device="cpu",
79
- dtype="fp32",
80
- )
81
  vectors = []
82
 
83
- for name in tqdm(names, desc="Vectorizing images"):
84
- image = Image.open(join("images", name + ".jpg"))
85
- image_data = processor.preprocess_image(image)
86
- image_embedding = model.encode_image(image_data)
87
  vectors.append(image_embedding)
88
 
89
  image_mat = np.vstack(vectors)
90
- save_matrix(image_mat, "images.fbin")
91
 
92
- if not exists("images.base64.txt"):
93
 
94
  datas = []
95
- for name in tqdm(names, desc="Encoding images"):
96
- data = image_to_data(join("images", name + ".jpg"))
97
  datas.append(data)
98
 
99
- with open("images.base64.txt", "w") as f:
100
- f.write("\n".join(datas))
101
 
102
- if not exists("images.names.txt"):
103
- with open("images.names.txt", "w") as f:
104
- f.write("\n".join(names))
105
 
106
- if not exists("images.usearch"):
107
- image_mat = load_matrix("images.fbin")
108
  count = image_mat.shape[0]
109
  ndim = image_mat.shape[1]
110
  index = Index(ndim=ndim, metric=MetricKind.Cos)
111
 
112
- for idx in tqdm(range(count), desc="Indexing vectors"):
113
  index.add(idx, image_mat[idx, :].flatten())
114
 
115
- index.save("images.usearch")
 
2
  from os import PathLike, listdir, remove
3
  from os.path import isfile, join, exists
4
  from mimetypes import guess_type
5
+ from base64 import b64encode
 
 
6
 
7
  import pandas as pd
8
  import numpy as np
 
10
  from PIL import ImageFile
11
  from tqdm import tqdm
12
 
13
+ from uform import get_model
14
  from usearch.index import Index, MetricKind
15
  from usearch.io import save_matrix, load_matrix
16
 
 
32
  if not exists(path):
33
  raise FileNotFoundError
34
  mime, _ = guess_type(path)
35
+ with open(path, 'rb') as fp:
36
  data = fp.read()
37
+ data64 = b64encode(data).decode('utf-8')
38
+ return f'data:{mime}/jpg;base64,{data64}'
 
 
 
 
 
 
 
 
39
 
40
 
41
  def trim_extension(filename: str) -> str:
42
+ return filename.rsplit('.', 1)[0]
43
 
44
 
45
+ names = sorted(f for f in listdir('images') if is_image(join('images', f)))
46
  names = [trim_extension(f) for f in names]
47
 
48
+ table = pd.read_table('images.tsv') if exists(
49
+ 'images.tsv') else pd.read_table('images.csv')
50
+ table = table[table['photo_id'].isin(names)]
51
+ table = table.sort_values('photo_id')
 
52
  table.reset_index()
53
+ table.to_csv('images.csv', index=False)
54
 
55
+ names = list(set(table['photo_id']).intersection(names))
56
+ names_to_delete = [f for f in listdir(
57
+ 'images') if trim_extension(f) not in names]
58
+ names = list(table['photo_id'])
59
 
60
  if len(names_to_delete) > 0:
61
+ print(f'Plans to delete: {len(names_to_delete)} images without metadata')
62
  for name in names_to_delete:
63
+ remove(join('images', name))
64
+
65
+ if not exists('images.fbin'):
66
+ model = get_model('unum-cloud/uform-vl-english')
 
 
 
 
67
  vectors = []
68
 
69
+ for name in tqdm(names, desc='Vectorizing images'):
70
+ image = Image.open(join('images', name + '.jpg'))
71
+ image_data = model.preprocess_image(image)
72
+ image_embedding = model.encode_image(image_data).detach().numpy()
73
  vectors.append(image_embedding)
74
 
75
  image_mat = np.vstack(vectors)
76
+ save_matrix(image_mat, 'images.fbin')
77
 
78
+ if not exists('images.txt'):
79
 
80
  datas = []
81
+ for name in tqdm(names, desc='Encoding images'):
82
+ data = image_to_data(join('images', name + '.jpg'))
83
  datas.append(data)
84
 
85
+ with open('images.txt', 'w') as f:
86
+ f.write('\n'.join(datas))
87
 
 
 
 
88
 
89
+ if not exists('images.usearch'):
90
+ image_mat = load_matrix('images.fbin')
91
  count = image_mat.shape[0]
92
  ndim = image_mat.shape[1]
93
  index = Index(ndim=ndim, metric=MetricKind.Cos)
94
 
95
+ for idx in tqdm(range(count), desc='Indexing vectors'):
96
  index.add(idx, image_mat[idx, :].flatten())
97
 
98
+ index.save('images.usearch')