Multilingual index
#3
by
kimihailv
- opened
- .gitattributes +0 -1
- images.uform-vl-english-small.fbin → images.fbin +1 -1
- images.names.txt +0 -0
- images.base64.txt → images.txt +0 -0
- images.uform-vl-multilingual-v1.fbin +0 -3
- images.uform-vl-multilingual-v2.fbin +0 -3
- images.usearch +1 -1
- images.xlm-roberta-base-ViT-B-32.fbin +0 -3
- main.py +35 -52
.gitattributes
CHANGED
@@ -56,4 +56,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
56 |
*.usearch filter=lfs diff=lfs merge=lfs -text
|
57 |
*.fbin filter=lfs diff=lfs merge=lfs -text
|
58 |
images.txt filter=lfs diff=lfs merge=lfs -text
|
59 |
-
images.base64.txt filter=lfs diff=lfs merge=lfs -text
|
|
|
56 |
*.usearch filter=lfs diff=lfs merge=lfs -text
|
57 |
*.fbin filter=lfs diff=lfs merge=lfs -text
|
58 |
images.txt filter=lfs diff=lfs merge=lfs -text
|
|
images.uform-vl-english-small.fbin → images.fbin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 24875016
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e673d5acf7f4a30f67b91d2cd3fcec73ed9b8891c61c22a3e4cda053ba8c7b6
|
3 |
size 24875016
|
images.names.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
images.base64.txt → images.txt
RENAMED
File without changes
|
images.uform-vl-multilingual-v1.fbin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:055a9edbee6d33ac2bd0b402fda4c4db1af8f7a61f54632b4f0eafaefb76c7a7
|
3 |
-
size 24875016
|
|
|
|
|
|
|
|
images.uform-vl-multilingual-v2.fbin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:20f6dc3d38f0dce81063a8102e18d906bfde4a125dd96f0a456c369291b7c820
|
3 |
-
size 24875016
|
|
|
|
|
|
|
|
images.usearch
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 28584936
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:238d84a238da044eabec8f9bd9a61ff5ab9963c45f5af81faea6deadeace7505
|
3 |
size 28584936
|
images.xlm-roberta-base-ViT-B-32.fbin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a840042e6b3e2eb74e9167a305846cdf3ba6016f77b72646549571b4fedec717
|
3 |
-
size 49750024
|
|
|
|
|
|
|
|
main.py
CHANGED
@@ -2,9 +2,7 @@
|
|
2 |
from os import PathLike, listdir, remove
|
3 |
from os.path import isfile, join, exists
|
4 |
from mimetypes import guess_type
|
5 |
-
from base64 import b64encode
|
6 |
-
from io import BytesIO
|
7 |
-
import re
|
8 |
|
9 |
import pandas as pd
|
10 |
import numpy as np
|
@@ -12,7 +10,7 @@ from PIL import Image
|
|
12 |
from PIL import ImageFile
|
13 |
from tqdm import tqdm
|
14 |
|
15 |
-
from uform import
|
16 |
from usearch.index import Index, MetricKind
|
17 |
from usearch.io import save_matrix, load_matrix
|
18 |
|
@@ -34,82 +32,67 @@ def image_to_data(path: PathLike) -> str:
|
|
34 |
if not exists(path):
|
35 |
raise FileNotFoundError
|
36 |
mime, _ = guess_type(path)
|
37 |
-
with open(path,
|
38 |
data = fp.read()
|
39 |
-
data64 = b64encode(data).decode(
|
40 |
-
return f
|
41 |
-
|
42 |
-
|
43 |
-
def data_to_image(data_uri: str) -> Image:
|
44 |
-
"""Convert a base64-encoded data URI to a Pillow Image."""
|
45 |
-
base64_str = re.search(r"base64,(.*)", data_uri).group(1)
|
46 |
-
image_data = b64decode(base64_str)
|
47 |
-
image = Image.open(BytesIO(image_data))
|
48 |
-
return image
|
49 |
|
50 |
|
51 |
def trim_extension(filename: str) -> str:
|
52 |
-
return filename.rsplit(
|
53 |
|
54 |
|
55 |
-
names = sorted(f for f in listdir(
|
56 |
names = [trim_extension(f) for f in names]
|
57 |
|
58 |
-
table = (
|
59 |
-
|
60 |
-
)
|
61 |
-
table = table
|
62 |
-
table = table.sort_values("photo_id")
|
63 |
table.reset_index()
|
64 |
-
table.to_csv(
|
65 |
|
66 |
-
names = list(set(table[
|
67 |
-
names_to_delete = [f for f in listdir(
|
68 |
-
|
|
|
69 |
|
70 |
if len(names_to_delete) > 0:
|
71 |
-
print(f
|
72 |
for name in names_to_delete:
|
73 |
-
remove(join(
|
74 |
-
|
75 |
-
if not exists(
|
76 |
-
model
|
77 |
-
"unum-cloud/uform-vl-english-small",
|
78 |
-
device="cpu",
|
79 |
-
dtype="fp32",
|
80 |
-
)
|
81 |
vectors = []
|
82 |
|
83 |
-
for name in tqdm(names, desc=
|
84 |
-
image = Image.open(join(
|
85 |
-
image_data =
|
86 |
-
image_embedding = model.encode_image(image_data)
|
87 |
vectors.append(image_embedding)
|
88 |
|
89 |
image_mat = np.vstack(vectors)
|
90 |
-
save_matrix(image_mat,
|
91 |
|
92 |
-
if not exists(
|
93 |
|
94 |
datas = []
|
95 |
-
for name in tqdm(names, desc=
|
96 |
-
data = image_to_data(join(
|
97 |
datas.append(data)
|
98 |
|
99 |
-
with open(
|
100 |
-
f.write(
|
101 |
|
102 |
-
if not exists("images.names.txt"):
|
103 |
-
with open("images.names.txt", "w") as f:
|
104 |
-
f.write("\n".join(names))
|
105 |
|
106 |
-
if not exists(
|
107 |
-
image_mat = load_matrix(
|
108 |
count = image_mat.shape[0]
|
109 |
ndim = image_mat.shape[1]
|
110 |
index = Index(ndim=ndim, metric=MetricKind.Cos)
|
111 |
|
112 |
-
for idx in tqdm(range(count), desc=
|
113 |
index.add(idx, image_mat[idx, :].flatten())
|
114 |
|
115 |
-
index.save(
|
|
|
2 |
from os import PathLike, listdir, remove
|
3 |
from os.path import isfile, join, exists
|
4 |
from mimetypes import guess_type
|
5 |
+
from base64 import b64encode
|
|
|
|
|
6 |
|
7 |
import pandas as pd
|
8 |
import numpy as np
|
|
|
10 |
from PIL import ImageFile
|
11 |
from tqdm import tqdm
|
12 |
|
13 |
+
from uform import get_model
|
14 |
from usearch.index import Index, MetricKind
|
15 |
from usearch.io import save_matrix, load_matrix
|
16 |
|
|
|
32 |
if not exists(path):
|
33 |
raise FileNotFoundError
|
34 |
mime, _ = guess_type(path)
|
35 |
+
with open(path, 'rb') as fp:
|
36 |
data = fp.read()
|
37 |
+
data64 = b64encode(data).decode('utf-8')
|
38 |
+
return f'data:{mime}/jpg;base64,{data64}'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
def trim_extension(filename: str) -> str:
|
42 |
+
return filename.rsplit('.', 1)[0]
|
43 |
|
44 |
|
45 |
+
names = sorted(f for f in listdir('images') if is_image(join('images', f)))
|
46 |
names = [trim_extension(f) for f in names]
|
47 |
|
48 |
+
table = pd.read_table('images.tsv') if exists(
|
49 |
+
'images.tsv') else pd.read_table('images.csv')
|
50 |
+
table = table[table['photo_id'].isin(names)]
|
51 |
+
table = table.sort_values('photo_id')
|
|
|
52 |
table.reset_index()
|
53 |
+
table.to_csv('images.csv', index=False)
|
54 |
|
55 |
+
names = list(set(table['photo_id']).intersection(names))
|
56 |
+
names_to_delete = [f for f in listdir(
|
57 |
+
'images') if trim_extension(f) not in names]
|
58 |
+
names = list(table['photo_id'])
|
59 |
|
60 |
if len(names_to_delete) > 0:
|
61 |
+
print(f'Plans to delete: {len(names_to_delete)} images without metadata')
|
62 |
for name in names_to_delete:
|
63 |
+
remove(join('images', name))
|
64 |
+
|
65 |
+
if not exists('images.fbin'):
|
66 |
+
model = get_model('unum-cloud/uform-vl-english')
|
|
|
|
|
|
|
|
|
67 |
vectors = []
|
68 |
|
69 |
+
for name in tqdm(names, desc='Vectorizing images'):
|
70 |
+
image = Image.open(join('images', name + '.jpg'))
|
71 |
+
image_data = model.preprocess_image(image)
|
72 |
+
image_embedding = model.encode_image(image_data).detach().numpy()
|
73 |
vectors.append(image_embedding)
|
74 |
|
75 |
image_mat = np.vstack(vectors)
|
76 |
+
save_matrix(image_mat, 'images.fbin')
|
77 |
|
78 |
+
if not exists('images.txt'):
|
79 |
|
80 |
datas = []
|
81 |
+
for name in tqdm(names, desc='Encoding images'):
|
82 |
+
data = image_to_data(join('images', name + '.jpg'))
|
83 |
datas.append(data)
|
84 |
|
85 |
+
with open('images.txt', 'w') as f:
|
86 |
+
f.write('\n'.join(datas))
|
87 |
|
|
|
|
|
|
|
88 |
|
89 |
+
if not exists('images.usearch'):
|
90 |
+
image_mat = load_matrix('images.fbin')
|
91 |
count = image_mat.shape[0]
|
92 |
ndim = image_mat.shape[1]
|
93 |
index = Index(ndim=ndim, metric=MetricKind.Cos)
|
94 |
|
95 |
+
for idx in tqdm(range(count), desc='Indexing vectors'):
|
96 |
index.add(idx, image_mat[idx, :].flatten())
|
97 |
|
98 |
+
index.save('images.usearch')
|