|
import os |
|
import json |
|
import cv2 |
|
from datasets import Dataset, DatasetDict, Features, Value, Array2D, Array3D, Sequence |
|
from pathlib import Path |
|
import numpy as np |
|
|
|
|
|
VIDEO_EXTENSIONS = ['.avi'] |
|
JSON_EXTENSIONS = ['.json'] |
|
KEYPOINTS = [ |
|
"nose", "left_eye", "right_eye", "left_ear", "right_ear", "left_shoulder", "right_shoulder", |
|
"left_elbow", "right_elbow", "left_wrist", "right_wrist", "left_hip", "right_hip", |
|
"left_knee", "right_knee", "left_ankle", "right_ankle" |
|
] |
|
|
|
def load_video(video_path): |
|
"""Reads a video file and returns a list of frames as NumPy arrays.""" |
|
cap = cv2.VideoCapture(video_path) |
|
frames = [] |
|
|
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
frames.append(frame) |
|
|
|
cap.release() |
|
return np.array(frames) |
|
|
|
def load_json(json_path): |
|
"""Loads the JSON keypoint data for each frame.""" |
|
with open(json_path, 'r') as f: |
|
data = json.load(f) |
|
return data |
|
|
|
def process_frame_data(frame_data): |
|
"""Converts the frame's keypoints into a structured format.""" |
|
detections = [] |
|
|
|
|
|
if 'detections' in frame_data: |
|
for detection in frame_data['detections']: |
|
if detection: |
|
person = { |
|
"confidence": detection.get("confidence", 0), |
|
"box": detection.get("box", {}), |
|
"keypoints": { |
|
keypoint['label']: keypoint['coordinates'] |
|
for keypoint in detection.get('keypoints', []) |
|
} |
|
} |
|
detections.append(person) |
|
else: |
|
print(f"Warning: Empty detection in frame {frame_data['frame_index']}") |
|
else: |
|
|
|
print(f"Warning: 'data' key missing in frame data: {frame_data}") |
|
|
|
return detections |
|
|
|
|
|
|
|
def get_file_paths(base_path, split="train"): |
|
"""Returns video and JSON file paths.""" |
|
video_paths = [] |
|
json_paths = [] |
|
split_path = os.path.join(base_path, split) |
|
|
|
for label in ['Fight', 'NonFight']: |
|
label_path = os.path.join(split_path, label) |
|
for video_folder in os.listdir(label_path): |
|
video_folder_path = os.path.join(label_path, video_folder) |
|
video_file = next((f for f in os.listdir(video_folder_path) if any(f.endswith(ext) for ext in VIDEO_EXTENSIONS)), None) |
|
json_file = next((f for f in os.listdir(video_folder_path) if any(f.endswith(ext) for ext in JSON_EXTENSIONS)), None) |
|
|
|
if video_file and json_file: |
|
video_paths.append(os.path.join(video_folder_path, video_file)) |
|
json_paths.append(os.path.join(video_folder_path, json_file)) |
|
|
|
return video_paths, json_paths |
|
|
|
def load_data(base_path, split="train"): |
|
"""Loads and processes the data for a given split (train or val).""" |
|
video_paths, json_paths = get_file_paths(base_path, split) |
|
dataset = [] |
|
|
|
for video_path, json_path in zip(video_paths, json_paths): |
|
|
|
frames = load_video(video_path) |
|
|
|
|
|
keypoints_data = load_json(json_path) |
|
|
|
|
|
frame_data = [process_frame_data(frame) for frame in keypoints_data] |
|
|
|
|
|
dataset.append({ |
|
'video': frames, |
|
'keypoints': frame_data, |
|
'video_path': video_path, |
|
'json_path': json_path |
|
}) |
|
|
|
return dataset |
|
|
|
def main(): |
|
|
|
dataset_dir = '.' |
|
|
|
|
|
train_data = load_data(dataset_dir, split="train") |
|
val_data = load_data(dataset_dir, split="val") |
|
|
|
|
|
train_features = Features({ |
|
'video': Array3D(dtype='int32', shape=(None, None, None)), |
|
'keypoints': Sequence(Features({ |
|
'person_id': Value('int32'), |
|
'confidence': Value('float32'), |
|
'box': { |
|
'x1': Value('float32'), |
|
'y1': Value('float32'), |
|
'x2': Value('float32'), |
|
'y2': Value('float32') |
|
}, |
|
'keypoints': {key: Array2D(dtype='float32', shape=(2,)) for key in KEYPOINTS} |
|
})), |
|
'video_path': Value('string'), |
|
'json_path': Value('string') |
|
}) |
|
|
|
|
|
dataset_dict = DatasetDict({ |
|
'train': Dataset.from_dict(train_data, features=train_features), |
|
'val': Dataset.from_dict(val_data, features=train_features) |
|
}) |
|
|
|
|
|
dataset_dict.save_to_disk("keypoints_keyger") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|